WO2006046276A1 - アバランシェフォトダイオード - Google Patents

アバランシェフォトダイオード Download PDF

Info

Publication number
WO2006046276A1
WO2006046276A1 PCT/JP2004/015794 JP2004015794W WO2006046276A1 WO 2006046276 A1 WO2006046276 A1 WO 2006046276A1 JP 2004015794 W JP2004015794 W JP 2004015794W WO 2006046276 A1 WO2006046276 A1 WO 2006046276A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
avalanche photodiode
light absorption
avalanche
electrode
Prior art date
Application number
PCT/JP2004/015794
Other languages
English (en)
French (fr)
Inventor
Eiji Yagyu
Eitaro Ishimura
Masaharu Nakaji
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to CNB2004800442923A priority Critical patent/CN100557826C/zh
Priority to PCT/JP2004/015794 priority patent/WO2006046276A1/ja
Priority to EP04792925.2A priority patent/EP1811578B1/en
Priority to US11/666,091 priority patent/US9640703B2/en
Priority to JP2006542153A priority patent/JP4609430B2/ja
Priority to TW094119960A priority patent/TWI262611B/zh
Publication of WO2006046276A1 publication Critical patent/WO2006046276A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • H01L31/1075Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes in which the active layers, e.g. absorption or multiplication layers, form an heterostructure, e.g. SAM structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a light receiving element using a semiconductor, and more particularly, to an avalanche photodiode that has a low long current and high reliability in the long term.
  • Avalanche photodiodes used in optical communications, etc. have improved light receiving sensitivity by providing a layer that amplifies the avalanche (avalanche) of photoelectrically converted carriers in addition to the light absorbing layer that performs photoelectric conversion. It is a semiconductor light-receiving element, and it requires a low current and high reliability.
  • the mesa structure is a structure in which a mesa (plateau) is formed on a substrate and a pn junction is included in the mesa, and breakdown is likely to occur on the surface around the mesa.
  • a structure with a slope is generally adopted, and a structure such as a trapping layer serving as a high resistance portion is further provided in the mesa outer peripheral region, and contrivances have been made to keep the current low (for example, Patent Document 1).
  • a pn junction is formed by providing a selective diffusion region, but edge breakdown at the edge of the pn junction becomes a problem.
  • the reverse voltage of the pn junction in the light receiving part located in the center hardly increases even if the voltage is increased, so it cannot function as an avalanche photodiode. Therefore, for example, measures such as providing a high-resistance guard ring at the edge portion by impurity implantation or the like are taken (for example, Patent Document 2).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-324911 (FIG. 1)
  • Patent Document 2 JP-A-7-312442 (Pages 4-6, Figures 2 and 6)
  • the conventional avalanche photodiodes have the following problems.
  • MO-CVD metal organic vapor phase epitaxy
  • a trench is formed and Ti or the like is formed. Ion implantation had to be performed, and an etching stopper layer had to be provided. Furthermore, since an impurity diffusion layer is provided on the outer periphery, the process is complicated, the manufacturing cost increases, and the yield is problematic. Another problem was that the tunnel dark current increased because the electric field strength of the guard ring in the light absorption layer increased.
  • the present invention has been made to solve these problems, and provides an avalanche photodiode that can be manufactured by a simple process, suppresses dredging current, and ensures long-term reliability. It is the purpose.
  • An avalanche photodiode includes a first electrode and a substrate including a first semiconductor layer of a first conductivity type electrically connected to the first electrode, and the substrate includes: At least an avalanche multiplication layer, a light absorption layer, and a second semiconductor layer having a larger band gap than the light absorption layer are stacked, and a second conductive type conductive region is formed in the second semiconductor layer.
  • the second conductivity type conductive region is disposed so as to be electrically connected to the second electrode.
  • FIG. 1 is a sectional view showing a schematic structure of an avalanche photodiode according to a first embodiment of the present invention.
  • 2 A characteristic diagram showing the electric field strength distribution in the depth direction in the AA ′ cross section of FIG. 1 according to the first embodiment of the present invention.
  • FIG. 3 A characteristic diagram showing the electric field strength distribution in the plane direction in the BB ′ section and the C_C ′ section in FIG. 1 according to the first embodiment of the present invention.
  • FIG. 5 is a characteristic diagram showing the energy distribution at the layer junction of the conduction band and the valence band of the avalanche photodiode according to the second embodiment of the present invention.
  • FIG. 6 A sectional view showing a schematic structure of the avalanche photodiode according to the third embodiment of the present invention.
  • FIG. 7 A sectional view showing a schematic structure of the avalanche photodiode according to the third embodiment of the present invention.
  • FIG. 8 A sectional view showing a schematic structure of the avalanche photodiode according to the fourth embodiment of the present invention.
  • FIG. 9 A characteristic diagram showing the relationship between the current and multiplication factor M and the reverse bias voltage in the avalanche photodiode according to the fourth embodiment of the present invention.
  • FIG. 10 A sectional view showing a schematic configuration of an avalanche photodiode according to the fifth embodiment of the present invention.
  • FIG. 11 A sectional view showing a schematic configuration of an avalanche photodiode according to the sixth embodiment of the present invention.
  • FIG. 12 A sectional view showing a schematic structure of an avalanche photodiode according to a seventh embodiment of the present invention.
  • FIG. 13 A sectional view showing a schematic structure of an avalanche photodiode according to an eighth embodiment of the present invention.
  • FIG. 15 A sectional view showing a schematic configuration of an avalanche photodiode according to the ninth embodiment of the present invention.
  • FIG. 16 is a cross-sectional view showing a schematic configuration of an avalanche photodiode according to the ninth embodiment of the present invention.
  • FIG. 17 is a characteristic diagram showing the relationship between current and multiplication factor M and reverse bias voltage in an avalanche photodiode according to the ninth embodiment of the present invention.
  • FIG. 18 is a sectional view showing a schematic configuration of an avalanche photodiode according to the ninth embodiment of the present invention.
  • FIG. 19 is a sectional view showing a schematic configuration of the avalanche photodiode according to the tenth embodiment of the present invention.
  • FIG. 1 is a cross-sectional view showing a schematic structure of an avalanche photodiode according to Embodiment 1 of the present invention.
  • n-type is used as the first conductivity type
  • p-type is used as the second conductivity type
  • n-electrode is used as the first electrode
  • p-electrode is used as the second electrode.
  • the production of each semiconductor layer can be realized on a wafer-like substrate 1 such as n-type InP by using MO-CVD, molecular beam epitaxy (MBE), or the like.
  • MO-CVD molecular beam epitaxy
  • MBE molecular beam epitaxy
  • the first semiconductor layer such as 2 (hereinafter referred buffer layer) in the thickness 0. 1-LXM, i-type AlInAs
  • the avalanche multiplication layer 4 of p-type InP with a carrier concentration of 0.5—l X 10 18 cm 3 is thickened to 0.03—0.06 zm.
  • a p-type GalnAs light absorption layer 6 having a carrier concentration of 5 x 10 15 cm 3 is 1 x 1.1.5 xm
  • a second semiconductor layer having a band gap larger than the light absorption layer 6 of i-type InP or the like 8 With a thickness of 1.0— and an i-type GalnAs contact layer 9 with a thickness of 0.1—0.5. Grows sequentially to ⁇ m.
  • the band gap of the second semiconductor layer 8 is made larger than the energy of the light to be detected. Further, since the second semiconductor layer 8 transmits the light to be detected, the second semiconductor layer 8 is hereinafter referred to as a window layer.
  • a p-type conductive region 10 is formed in a circular portion that is not covered with the mask by, for example, a Zn selective thermal diffusion method.
  • the central portion and the outside are removed by etching so that the i-type GalnAs contact layer on the p-type conductive region 10 remains in a ring shape with a force width of 5-10 ⁇ m.
  • a SiNx surface protection film / antireflection film 120 is formed by vapor deposition, the SiNx surface protection film / antireflection film 120 above the contact layer 9 is removed, and a p-electrode 14 is formed on the contact layer 9 by AuZn. Form. Further, the surface of the substrate 1 opposite to the surface on which the buffer layer 2 is laminated is polished so that the n electrode 13 is formed of AuGe so that the buffer layer 2 is electrically connected to the n electrode 13. . Further, the wafer-like substrate 1 is cleaved and separated to obtain an element having a cleavage plane 27 of about 300 ⁇ square.
  • the operation of the avalanche photodiode manufactured by the above process will be described below.
  • the light 28 is incident from the ⁇ electrode 14 side with a reverse bias voltage adjusted from the outside so that the ⁇ electrode 13 side is positive and the ⁇ electrode 14 side is negative.
  • the light passes through the window layer 8 and is absorbed by the light absorption layer 6 is absorbed to generate one hole pair of electrons, and the electrons move to the n-electrode 13 side and the holes move to the p-electrode 14 side.
  • the electrons are ionized in the avalanche multiplication layer 4 to generate a new electron-hole pair and cause further ionization together with the newly generated electrons and holes. This causes avalanche multiplication in which electrons and holes multiply like an avalanche.
  • FIG. 2 is a characteristic diagram showing the electric field strength distribution in the depth direction in the section A-A 'in Fig. 1.
  • Fig. 3 shows the electric field strength distribution in the plane direction in the B_B' and C_C 'sections in Fig. 1.
  • FIG. The symbols on the horizontal axis in FIGS. 2 and 3 indicate the semiconductors formed above.
  • the A—A ′ section is represented as A—A ′
  • the ⁇ _ ⁇ ′ section is represented as B_B ′
  • the C_C ′ section is represented as C_C ′.
  • the portion having the highest electric field is the avalanche multiplication layer 4.
  • the central portion of the light receiving region immediately below the p-type conductive region 10 is the highest region, and the electric field strength decreases toward the peripheral portion.
  • the electric field strength at the periphery of the p-type conductive region 10 is higher than that at the center due to the finite curvature of the diffusion region.
  • a region where the electric field strength around the diffusion region is locally high that is, a portion where the electric field strength is high in the peripheral portion of the p-type conductive region 10 in the C 1 C ′ section in FIG. Since it is formed in the window layer 8 having a band gap larger than that of the absorption layer 6, it is possible to suppress the tunnel dark current from flowing from the portion where the electric field strength is high. Therefore, the avalanche photodiode according to this embodiment can easily realize an avalanche photodiode with high reliability and low current without the need to provide a structure called a guard ring that suppresses edge breakdown. it can.
  • the atom to be used may be any element that imparts the p-type conductivity.
  • a p-type conductive region is formed by a Zn selective thermal diffusion method using a SiOx film that has been cut through a circle as a mask, and then a Zn film that is a diffusion supply source and the SiOx film are formed. It is also possible to diffuse the Zn inside the p-type conductive region by removing the heat and then performing the thermal diffusion treatment again (hereinafter referred to as Zn additional diffusion).
  • It can also be formed by, for example, removing a photoresist film after ion-implanting Be with a photoresist film cut through a circle as a mask and performing a thermal annealing treatment at about 700 ° C. for about 12 hours. (Hereinafter referred to as Be injection).
  • FIG. 4 shows a case where the Zn selective thermal diffusion (D in the figure), Zn additional diffusion (E in the figure), and Be implantation (F in the figure) are used as a method of forming the p-type conductive region 10.
  • FIG. 6 is a characteristic diagram showing the difference in carrier concentration in the depth direction (conductive region 10—window layer 8 junction) (the symbols on the horizontal axis correspond to the respective layers).
  • the carrier concentration changes significantly.
  • the change in carrier concentration can be moderated, so that the electric field strength at the junction of the conductive region 10-P window layer 8 can be further suppressed, and the tunnel soot current can be suppressed.
  • Be implantation the change in carrier concentration can be further moderated.
  • the force AlInAs shown in the example in which the electric field relaxation layer 5 is p-type InP may be used.
  • the electric field relaxation layer 5 can be omitted.
  • the contact layer 9 is provided to electrically connect the p-type conductive region 10 and the p-electrode 14 is shown, the p-type conductive region 10 and the p-electrode 14 may be in direct contact, .
  • the conductivity type can be either semi-insulating, insulating, n-type, or p-type with low conductivity.
  • the stopper layer 3 containing GaInAsP, AlInAs, AlGaInAs, GalnAsP, etc. is provided between the window layer 8 and the light absorbing layer 6, the p type conductive region diffuses from the p type conductive region 10 to the light absorbing layer 6. Can be suppressed, even more preferred.
  • the transition layer 7 is further provided between the light absorption layer 6 and the window layer 8 in the avalanche photodiode shown in the first embodiment.
  • the formation method following the step of growing the light absorption layer 6 in the first embodiment, for example, i-type GalnAsP was grown to a thickness of 0.01-0.05 ⁇ m to form the transition layer 7.
  • FIG. 5 shows the energy distribution at the layer junction of the conduction band and the valence band of the avalanche photodiode according to the present embodiment.
  • the abscissa indicates the stacked semiconductor layers, the ordinate indicates the energy, G in the figure indicates the conduction band, H in the figure indicates the valence band, and I in the figure indicates the energy of each hole. From FIG. 5, it is understood that the valence band energy of the transition layer 7 takes a value higher than that of the light absorption layer 6 and lower than the window layer 8, that is, a value between the light absorption layer 6 and the window layer 8.
  • the transition layer 7 is a single layer, it may be a multiple layer whose band gap is changed stepwise. By using multiple layers, the discontinuity of the valence band becomes even smaller, and the result Since the hole can easily flow, a faster optical response can be realized. Further, as shown by a broken line in FIG. 5, a layer in which the band gap is continuously changed may be used.
  • the force ⁇ As, AlGaInAs, or GalnAsP shown as an example using i-type GalnAsP as the transition layer 7 may be used.
  • InP when used for the window layer 8, it functions as a diffusion stagger for the second conductivity type region.
  • a p-type peripheral conductive region 110 is further provided around the p-type conductive region 10 in the avalanche photodiode shown in the first and second embodiments.
  • 6 and 7 are sectional views showing a schematic structure of the avalanche photodiode according to the present embodiment.
  • 6 is a light absorption layer
  • 3 is a stopper layer, which also serves as a hole transition and diffusion stopper.
  • 8 is a window layer
  • 9 is a contact layer.
  • the p-type conductive region 10 is formed by performing selective thermal diffusion deep enough to reach the transition layer 7 in a narrower range than the peripheral conductive region 110.
  • the region of the p-type conductive region 10 is selectively thermally diffused. As described above, the resistance of the p-type conductive region 10 can be sufficiently increased, and the periphery is surrounded by the p-type peripheral conductive region 110, so that the surface electric field strength can be reduced. Therefore, breakdown can be further suppressed and reliability can be increased.
  • the avalanche photodiode shown in FIG. 7 has a p-type peripheral conductive region 110 formed in an annular shape so as to surround the periphery of the p-type conductive region 10 formed under the contact layer 9.
  • the surface electric field strength can be reduced, and breakdown can be suppressed.
  • FIG. 8 is a cross-sectional view showing a schematic structure of the avalanche photodiode according to the fourth embodiment of the present invention.
  • the depleted region 11 is shown as an image.
  • the avalanche photodiode shown in the first embodiment includes the p-type conductive region 10 and the peripheral region of the p-type conductive region 10 has a diameter of about 100 / im. Then, the window layer 8 and the light absorption layer 6 on the outer periphery thereof were removed until reaching the electric field relaxation layer 5 to form the side surface 25 (hereinafter referred to as side surface removal).
  • FIG. 9 is a characteristic diagram showing the relationship between the current and multiplication factor M and the reverse bias voltage for the avalanche photodiode with the side surface removed.
  • the broken line in the figure represents the high-current characteristics of the avalanche photodiode of the first embodiment in which elements are separated by simply cleaving without removing the side surfaces.
  • the soot current that does not depend on the reverse bias voltage (Idark in the figure) is the soot current generated from the light absorption layer 6, and in the configuration in which only the cleavage occurs, the generated soot current flows through the cleavage plane, so the dark current becomes 10- 7 a level (in the figure Idark dashed line).
  • Idark in the figure is the soot current generated from the light absorption
  • the dark current is mainly generated from the light absorption layer 6 and flows through the depletion region 11, so that at least the light absorption layer 6 surrounding the depletion region 11 may be removed.
  • the side surface may be removed while leaving the light absorption layer 6 having a width of 10 / m or more from the second conductivity type conductive region.
  • the width of the light absorption layer 6 left by the side surface removal is 10 zm or more and 200 zm or less is preferable.
  • the shape of the light absorption layer 6 left by the side surface removal is not particularly limited, and may be left as a circular shape or an elliptical shape, or may be a rectangular shape or a polygonal shape. In the case of the quadrangular shape or the polygonal shape, it is preferable to round the corner portion to prevent electric field concentration at the corner portion.
  • a method for removing the side surface for example, there is a method of etching using a mixed solution of HBr / hydrogen peroxide solution.
  • organic acid etching using a mixed solution of an organic acid such as citrate and tartaric acid and a hydrogen peroxide solution may be used.
  • Dry etching such as reactive ion etching (RIE) may be used.
  • RIE reactive ion etching
  • hydrochloric acid-based solutions such as a hydrochloric acid-Z phosphoric acid mixed solution can be used.
  • organic acid solutions such as organic acid (taenoic acid, tartaric acid, etc.) / Hydrogen peroxide mixed solution, and sulfuric acid solutions can be used.
  • the desired side surface removal can be achieved by appropriately combining these with a Br-based solution such as HBr / hydrogen peroxide solution or BrZ methanol having a low selective etching property.
  • the side surface is removed until reaching the electric field relaxation layer 5 is shown, but the side surface may be removed to a layer deeper than the avalanche multiplication layer 4.
  • the window layer 8 and the light absorption layer 6 are joined.
  • a transition layer 7 or a stopper layer 3 may be provided.
  • the conductive region 10 is formed in the present embodiment.
  • the peripheral conductive region 110 may be further formed.
  • FIG. 10 is a cross-sectional view showing a schematic configuration of the avalanche photodiode according to the fifth embodiment of the present invention.
  • the side surface 25 is formed so that the width of the light absorption layer 6 is smaller than that of the window layer 8 and the electric field relaxation layer 5.
  • the light absorption layer 6 can be selectively etched deeply. By this way providing the step in the light-absorbing layer 6 and the electric field relaxation layer 5, the dark current becomes "flow, could be reducing the dark current below 10- 8 A levels.
  • the electric field relaxation layer 5 may be omitted, and a step may be provided between the avalanche multiplication layer 4 and the light absorption layer 6 therebelow.
  • FIG. 11 is a cross-sectional view showing a schematic configuration of the avalanche photodiode according to the sixth embodiment of the present invention.
  • the window layer 8 is laterally removed with a hydrochloric acid / phosphoric acid solution
  • the light absorption layer 6 is laterally removed with an organic acid Z hydrogen peroxide aqueous solution.
  • the electric field relaxation layer 5, the avalanche multiplication layer 4, and a part of the buffer layer 2 are removed with a HBr / hydrogen peroxide mixed solution at a position about 10 ⁇ m away from the side surface 25 of the light absorption layer 8.
  • a groove 26 was formed.
  • the groove 26 is formed by removing the electric field relaxation layer 5, the avalanche multiplication layer 4, and the buffer layer 2, but at least the electric field relaxation layer 5 may be removed. If the electric field relaxation layer 5 is not provided, at least the uppermost layer may be removed.
  • FIG. 12 is a sectional view showing a schematic structure of an avalanche photodiode according to the seventh embodiment of the present invention.
  • the protective film 12 is formed of SiNx so as to cover at least the side surface 25 of the removed light absorption layer 6 in the avalanche photodiode shown in the fourth to sixth embodiments.
  • the protective film 12 By providing the protective film 12, oxidation and moisture absorption can be prevented, so that generation of soot current can be suppressed and long-term reliability can be obtained. In addition, it has the effect of preventing damage due to contact during device handling.
  • SiNx As the protective film 12 because an antireflection effect can be provided, but a dielectric such as SiOx or an organic material such as polyimide may be used from the viewpoint of protection.
  • FIG. 13 is a sectional view showing a schematic structure of an avalanche photodiode according to the eighth embodiment of the present invention.
  • an n-type AlInAsZGalnAs distributed Bragg reflective layer 23 having a carrier concentration of 2 ⁇ 10 18 — 2 X 10 19 cm— 3 is formed on the n-type InP substrate 1 to a predetermined thickness, and the n-type AlInAs the reflection adjustment layer 24 to a predetermined thickness, the i-type AlInAs Abaranshiwe multiplication layer 4 to 0. 1-0. 3 111, the mold 111?
  • the predetermined thickness of the distributed Bragg reflection layer 23 is defined as satisfying the Bragg reflection condition given by an odd multiple of ⁇ / (4 ⁇ ), where ⁇ is the wavelength of light to be detected and ⁇ is the refractive index. To do.
  • the smallest value is preferably ⁇ / (4 ⁇ ).
  • the predetermined thickness of the reflection adjusting layer 24 means that the thickness is t, the refractive index is n, the thickness of the avalanche multiplication layer 4 is t, the refractive index is n, the thickness of the electric field relaxation layer 5 is t, and the refractive index is If n,
  • the minimum value is preferably used.
  • the p-type conductive region 10 and the contact layer 9 are formed, the side surfaces are removed in the same manner as in the fourth embodiment, and the same as in the seventh embodiment.
  • a protective film 12 was formed on the top and side surfaces of SiNx.
  • the avalanche photodiode when light 28 is incident with the n-electrode 13 being positive and the p-electrode 14 being negative and the reverse bias voltage being externally applied, the light is absorbed into the light absorption layer 6 It is absorbed by and generates electron-hole pairs. A part of the light is transmitted without being absorbed by the light absorption layer 6, but is effectively reflected by the reflection adjusting layer 24 and the distributed Bragg reflection layer 23 having the predetermined thickness and is again reflected on the light absorption layer 6. Incident and absorbed. This light further generates an electron-hole pair.
  • the electric field intensity distribution in the avalanche photodiode according to the present embodiment is the highest so as to cause avalanche multiplication by ionization in the avalanche multiplication layer 4 as in FIG. 2 shown in the first embodiment.
  • Electric field relaxation layer 5 changes in light Absorption layer 6 can prevent tunnel breakdown.
  • the electric field strength distribution in the direction parallel to each layer (plane direction) is such that the highest edge breakdown does not occur right under the p-type conductive region 10 in the avalanche multiplication layer 4.
  • the transition layer 7 with a large band gap is provided, breakdown is less likely to occur.
  • the side surface of the light absorption layer 6 was removed, the negative current path was blocked, and the rise of the electric field strength in the transition layer 7 could be further suppressed as compared with the example of the second embodiment.
  • FIG. 14 is a characteristic diagram showing the light receiving sensitivity distribution according to the present embodiment, which is expressed by a normalized photocurrent with a peak of 1. From Fig. 14, it can be seen that in the central part of the p-type conductive region 10, the most sensitive and no edge breakdown is obtained, and a good avalanche multiplication can be obtained. In the present embodiment, since the distributed Bragg reflection layer 23 and the reflection adjustment layer 24 are provided, the light that is transmitted without being absorbed in the light absorption layer 6 can be reflected again toward the light absorption layer 6. The light absorption amount in the absorption layer 6 can be further increased. Therefore, the photosensitivity of the avalanche photodiode can be increased.
  • the distributed Bragg reflection layer 23 is AlInAs / GalnAs is shown, but a layer having a high refractive index and a layer having a low refractive index may be alternately stacked.
  • a layer having a high refractive index layer GalnAs, GalnAsP having a high As composition ratio, AlGalnAs having a high Ga composition ratio, or the like can be used.
  • the layer having a low refractive index AlGalnAs having a high A1 composition ratio, particularly AlInAs, and GaInAsP and InP having a high P composition ratio can be used.
  • the force InP, AlGalnAs, GalnAsP, etc., in which the reflection adjusting layer 24 uses AlInAs having a low refractive index may be used.
  • the n-type carrier concentration in the distributed Bragg reflection layer 23 and the reflection adjustment layer 24 should be changed within a range that does not cause a problem with respect to the operation speed.
  • the Bragg reflection layer 23 and the reflection adjustment layer 24 may be provided with a predetermined thickness.
  • Another layer may be sandwiched between the light absorption layer 6 and the Bragg reflection layer 23.
  • the predetermined thickness of the Bragg reflection layer 23 is an odd multiple of the numerical value represented by ⁇ / (4 ⁇ ) when the wavelength of light to be detected is given and the refractive index of the Bragg reflection layer is n.
  • the predetermined thickness t of the reflection adjustment layer 24 is ,
  • ⁇ and k are odd numbers
  • the force electric field relaxation layer 5 described in the example of removing the side surfaces up to the electric field relaxation layer 5 may be omitted if necessary. Good. By removing the side surfaces up to the reflection adjustment layer 24, it is possible to prevent the depletion region 11 from being exposed, thereby further improving the reliability.
  • FIG. 15 is a cross-sectional view showing a schematic configuration of the avalanche photodiode according to the ninth embodiment of the present invention.
  • the insulating film 15 is provided on the outer peripheral portion, and a part of the insulating film 15 is removed to form the n electrode 13 did.
  • the n electrode 13 and the p electrode 14 can be arranged on the element surface, both the n electrode 13 and the p electrode 14 can be connected by wire wiring. Further, if a bump electrode is formed on the n electrode 13 using AuZn or the like, flip chip mounting is possible. Further, the n electrode 13 and the p electrode 14 can be formed of the same material at the same time.
  • the protective film 12 may be used as the insulating film 15 in the present embodiment.
  • the n electrode 13 is formed on the reflection adjustment layer 24.
  • the n-electrode 13 is disposed on a layer having a small band gap. Contact resistance can be reduced.
  • the material is preferably contacted with GalnAs.
  • the example in which the side surface is removed up to the reflection adjustment layer 24 is shown, but the electric field relaxation layer 5 or the avalanche multiplication layer 4 may be used up to the light absorption layer 6. Further, the transition layer 7 and the electric field relaxation layer 5 may be omitted. The reflection adjustment layer 24 and the distributed Bragg reflection layer 23 may be omitted.
  • the p-type peripheral conductive region 110 shown in the third embodiment may be provided.
  • FIG. 17 is a characteristic diagram showing the relationship between the current, multiplication factor M, and reverse bias voltage when the stop hole 30 is provided.
  • the broken line in the figure is the drooping current characteristic of the avalanche photodiode of the first embodiment in which the side surface is not removed and the element is simply cleaved and separated.
  • the shape of the perforated hole 30 is not particularly limited, and may be left in a ring shape or a track shape.
  • the ring shape includes a quadrilateral shape that is not only a shape with a circular central portion removed, and a shape with a polygonal central portion removed. A shape with rounded corners is preferred to prevent electric field concentration.
  • the track shape refers to a shape in which both ends of a rectangle are surrounded by a semicircle and a central portion is removed, and the semicircle portion includes a shape that is a part of a quadrangular shape or a polygonal shape. Similarly, a shape with rounded corners is preferable.
  • the track shape includes a shape in which an elliptical central portion is removed.
  • the stop hole 30 may be provided, and the second stop hole 30 may be provided on the outer side thereof. Providing a plurality of perforations 30 can stop chipping and scratches generated during handling on the outside, improving yield and reliability.
  • a p-type peripheral conductive region 110 may be provided on the outer peripheral portion.
  • a semi-insulating substrate 29 is used as the substrate 1 and surface incidence is performed. In this case, since the capacitance can be suppressed, the operating band can be improved.
  • the stop hole 30 is provided in order to dispose the n electrode 13 and the p electrode 14 on the element surface.
  • the stop hole 30 is formed in the second conductivity type conductive region. 10 is used as a means for removing at least the side surface of the light absorption layer among the layers stacked on the outer peripheral substrate, leaving the second semiconductor layer 8 around the second conductive type conductive region. it can. That is, in the avalanche photodiode of the present invention in which the first electrode 13 is provided on the back surface of the substrate 1 in the above Embodiments 11 and 8, the blind hole 30 is provided as the side surface removing means. In the same manner, there is an effect that the dredging current can be reduced.
  • FIG. 19 is a cross-sectional view showing a schematic configuration of the avalanche photodiode according to the tenth embodiment of the present invention.
  • a semi-insulating substrate 29 such as InP made of Fe or the like is used for the substrate 1 in the avalanche photodiode shown in the first to ninth embodiments.
  • Light 28 is incident from the semi-insulating substrate 29 substrate side.
  • an n-type A1 InAs buffer layer 19 and an i-type AlInAs avalanche multiplication layer 4 having a carrier concentration of 2 X 10 18 — 2 X 10 19 cm 3 are formed on a semi-insulating substrate 29. ⁇ 1- 0.
  • the side surface was removed up to the n-type AlInAs buffer layer 19, the protective film 12 was provided so as to cover the upper surface and the side surface 25, and the n-type electrode 13 was formed so as to contact the n-type AlInAs buffer layer 19.
  • the light 28 can be incident from the back surface, and the light transmitted through the light absorption layer 6 can be reflected by the p electrode 14. Since the n electrode 13 and the p electrode 14 are provided on the surface of the InP semi-insulating substrate 29, flip chip mounting is possible. In addition, the use of a Fe-doped InP semi-insulating substrate can reduce the electric capacity, thereby enabling high speed operation. There is also an effect of suppressing absorption in the substrate. In addition, since the side surface 25 is provided, it can be used as a side-surface incident waveguide type, and the device capacity can be reduced.
  • the light 28 is incident on the back surface of the semi-insulating substrate 29, but an antireflection film may be provided on the semi-insulating substrate 29.
  • an antireflection film may be provided on the semi-insulating substrate 29.
  • the n-type AlInAs buffer layer 19 it can also be used as an n-type noffer Z-cladding layer.
  • a p-type peripheral conductive region 110 may be provided around the P-type conductive region 10.
  • n-type is used as the first conductivity type
  • second-conductivity type is used.
  • An n electrode may be used as the second electrode.
  • the formation of the conductive region 10 may be performed using force vapor phase diffusion, which is an example of solid phase diffusion.
  • AuZnZAu, AuGe / Ni / Au, or TiZAu may be used as the material for the n electrode 13 and the ⁇ electrode 14.
  • the avalanche multiplication layer 4 can be a GaInAsP, AlInAs / AlGalnAs superlattice, or AlInAs / GalnAsP superlattice.
  • the avalanche multiplication layer 4 uses an A material that multiplies electrons more. However, when the multiplication layer side is p-type, the holes are in the multiplication layer. Because it moves, an InP-based material that can multiply holes can be used as the avalanche multiplication layer 4.
  • the electric field relaxation layer 5 is preferably made of a material with a large band gap that can be omitted if not particularly required. Since InP is a hole and AlInAs has a higher electron ionization rate, a material with a higher electron ion rate, such as AlInAs, is used for the avalanche multiplication layer 4 as well. If the AlInAs electric field relaxation layer 5 having a high ionization rate is used, it is possible to obtain more excellent characteristics in terms of operation speed and noise.
  • the i-type and n-conductivity types may be only the upper part of the light absorption layer 6.
  • AlInAs and GalnAsP are also acceptable.
  • AlInAs and AlGalnAs are acceptable.
  • a semi-insulating type doped with Fe may be used.
  • the contact layer 9 may be non-conductive. If the conductive region 10 of the window layer 8 and the p-electrode 14 can be contacted with low resistance, they may be omitted.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

 第1電極と、これに電気的に接続された第1導電型からなる第1の半導体層を具備する基板とを備えるアバランシェフォトダイオードにおいて、前記基板上に、少なくともアバランシェ増倍層と、光吸収層と、前記光吸収層よりバンドギャップの大きい第2の半導体層とを積層し、前記第2の半導体層内に第2導電型導電領域を形成し、前記第2導電型導電領域を第2電極に電気的に接続するように配置させる構成とした。この構成により、簡易な工程で、低暗電流、かつ長期信頼性の高いアバランシェフォトダイオードを提供できる。  また、前記第2導電型導電領域を含むように、前記第2導電型導電領域の周囲の第2の半導体層を残し、その外周の基板上に積層された層のうち、少なくとも光吸収層を除去して前記光吸収層の側面を形成する構成とした。この構成により、さらに暗電流を低減できる。

Description

明 細 書
アバランシェフオトダイオード
技術分野
[0001] 本発明は、半導体を用いた受光素子に係り、特に喑電流が低ぐ長期的に信頼性 の高いアバランシェフオトダイオードに関する。
背景技術
[0002] 光通信等で使用されるアバランシェフオトダイオードは、光電変換を行なう光吸収層 に加え、光電変換されたキャリアをアバランシェ (雪崩)増倍させる層を設けることによ つて受光感度を高めた半導体受光素子であり、喑電流が低くかつ高い信頼性を有す ること力 S要求される。
[0003] 上記アバランシヱフォトダイオードの多くは化合物半導体によって形成され、その構 造力 メサ構造とプレーナ構造に大別することができる。メサ構造は、基板上にメサ( 台地)を形成し、同メサ中に pn接合を含んだ構造をとるものであり、メサ周辺の表面 でブレークダウンが生じやすレ、。これを抑制するため、一般に傾斜を設けた構造が採 られ、さらにメサ外周領域に高抵抗部となる坦め込み層を設けるなどの構造をとり、喑 電流を低く抑える工夫がなされている(例えば特許文献 1)。
プレーナ構造は、選択拡散領域を設けることにより pn接合を形成するものであるが 、前記 pn接合のエッジ部におけるエッジブレークダウンが問題となる。エッジ部で電 流が流れると、電圧を増大させても中央に位置する受光部の pn接合の逆方向電圧 はほとんど増加しないため、アバランシェフオトダイオードとしての機能を発揮できな レ、。そのため例えば前記エッジ部に不純物注入などにより高抵抗のガードリングを設 けるなどの対策がとられてレ、る(例えば特許文献 2)。
[0004] 特許文献 1 :特開 2002 - 324911号公報(第 1図)
特許文献 2 :特開平 7 - 312442号公報 (第 4 - 6頁、第 2、 6図)
発明の開示
発明が解決しょうとする課題
[0005] しかしながら、従来のアバランシェフオトダイオードでは次のような問題があった。 傾斜型メサ構造において、メサ外周領域に坦め込み層を設けるためには、例えば 有機金属気相成長法 (MO—CVD)法などで、部分的に、かつ結晶面によらず均一 に結晶再成長させるというプロセスが必要であるため、製造コストが上昇する、歩留ま りが悪いという問題があった。また喑電流を低くする対策がとられているものの抑制効 果が不十分であるという問題があった。
プレーナ構造において(特許文献 2では擬似プレーナ構造と記載)、例えば受光領 域周辺部の電界緩和層の P導電型を補償してガードリングを形成する方法では、トレ ンチを形成して Tiなどのイオン注入を行なわなければならず、エッチングストッパー層 を設ける必要があった。さらにその外周に不純物拡散層を設けるので、プロセスが複 雑となり製造コストが上昇するとともに、歩留まりにも問題があった。また光吸収層中 のガードリングの電界強度が高くなるのでトンネル暗電流が大きくなるなどの問題もあ つた。
[0006] 本発明はこれらの問題を解決するためになされたものであり、簡易な工程で作製で き、かつ喑電流が抑制され、長期信頼性が確保されたアバランシェフオトダイオード を提供することを目的とするものである。
課題を解決するための手段
[0007] 本発明に係るアバランシェフオトダイオードは、第 1電極と、これに電気的に接続さ れた第 1導電型からなる第 1の半導体層を具備する基板とを備え、前記基板には、少 なくともアバランシェ増倍層と、光吸収層と、前記光吸収層よりバンドギャップの大き い第 2の半導体層とが積層され、前記第 2の半導体層内には、第 2導電型導電領域 が形成され、前記第 2導電型導電領域は、第 2電極に電気的に接続されるように配 置したものである。
発明の効果
[0008] 本発明によれば、簡易な工程で、低喑電流、かつ長期信頼性の高いアバランシェ フォトダイオードを提供できる。
図面の簡単な説明
[0009] [図 1]本発明の実施の形態 1によるアバランシェフオトダイオードの概略構造を示す断 面図である。 園 2]本発明の実施の形態 1による図 1の A— A '断面における深さ方向の電界強度分 布を表した特性図である。
園 3]本発明の実施の形態 1による図 1の B— B'断面及び C_C'断面における面方向 の電界強度分布を表した特性図である。
園 4]本発明の実施の形態 1による深さ方向におけるキャリア濃度の違いを示した特 性図である。
園 5]本発明の実施の形態 2によるアバランシェフオトダイオードの伝導帯及び価電子 帯の層接合部でのエネルギー分布を示した特性図である。
園 6]本発明の実施の形態 3によるアバランシェフオトダイオードの概略構造を示す断 面図である。
園 7]本発明の実施の形態 3によるアバランシェフオトダイオードの概略構造を示す断 面図である。
園 8]本発明の実施の形態 4によるアバランシェフオトダイオードを示す概略構造を示 す断面図である。
園 9]本発明の実施の形態 4によるアバランシェフオトダイオードについて電流および 増倍率 Mと逆バイアス電圧の関係を示した特性図である。
園 10]本発明の実施の形態 5によるアバランシェフオトダイオードの概略構成を示す 断面図である。
園 11]本発明の実施の形態 6によるアバランシェフオトダイオードの概略構成を示す 断面図である。
園 12]本発明の実施の形態 7によるアバランシェフオトダイオードの概略構造を示す 断面図である。
園 13]本発明の実施の形態 8によるアバランシェフオトダイオードの概略構造を示す 断面図である。
園 14]本発明の実施の形態 8によるアバランシェフオトダイオードの受光感度分布を 示した特^図である。
園 15]本発明の実施の形態 9によるアバランシェフオトダイオードの概略構成を示す 断面図である。 [図 16]本発明の実施の形態 9によるアバランシェフオトダイオードの概略構成を示す 断面図である。
[図 17]本発明の実施の形態 9によるアバランシェフオトダイオードについて電流およ び増倍率 Mと逆バイアス電圧の関係を示した特性図である。
[図 18]本発明の実施の形態 9によるアバランシェフオトダイオードの概略構成を示す 断面図である。
[図 19]本発明の実施の形態 10によるアバランシェフオトダイオードの概略構成を示す 断面図である。
符号の説明
[0010] 1 基板、 2、 19 第 1の半導体層、 3 ストッパ層、 4 アバランシヱ増倍層、 5 電界緩 和層、 6 光吸収層、 7 遷移層、 8 第 2の半導体層、 9 コンタクト層、 10 第 2導電 型導電領域、 11 空乏化領域、 12 保護膜、 13 第 1電極、 14 第 2電極、 15 絶 縁膜、 23 ブラッグ反射層、 24 反射調整層、 25 側面、 26 溝、 27 劈開面、 28 光、 29 半絶縁性基板、 30 とまり孔、 110 第 2導電型周辺導電領域、 120 表 面保護膜兼反射防止膜
発明を実施するための最良の形態
[0011] 実施の形態 1.
図 1は本発明の実施の形態 1によるアバランシェフオトダイオードの概略構造を示す 断面図である。ここでは第 1導電型として n型を、第 2導電型として p型を、第 1電極と して n電極を、第 2電極として p電極を用いている。各半導体層の作製は、例えば n型 I nPなどのウェハ状の基板 1上に、 MO-CVDや分子線ェピタキシャル成長法(MBE )などを用いて実現できる。本実施の形態 1では次の工程順で作製した。基板 1上に 、例えばキャリア濃度 0. 2—2 101 111—311型11 ?などの第1の半導体層2 (以下 バッファ層という)を厚み 0. 1— l x mに、 i型 AlInAsのアバランシェ増倍層 4を厚み 0 . 15—0. に、キャリア濃度 0. 5— l X 1018cm 3の p型 InPの電界緩和層 5を厚 み 0. 03—0. 06 z mに、キャリア濃度 1一 5 X 1015cm 3の p型 GalnAsの光吸収層 6を厚み 1一 1. 5 x mに、 i型 InPなどの前記光吸収層 6よりバンドギャップの大きい第 2の半導体層 8を厚み 1. 0— に、 i型 GalnAsコンタクト層 9を厚み 0. 1—0. 5 μ mに順次成長させた。ここでは被検出光を基板 1と反対側から入射する構成 (以下 表面入射という)をとるため、前記第 2の半導体層 8のバンドギャップは被検出光のェ ネルギ一より大きくしている。また第 2の半導体層 8は、被検出光を透過させるので以 下第 2の半導体層 8を窓層という。
[0012] 次に、直径 25— 55 x mの円形をくり貫いた Si〇x膜をマスクとして、前記マスクに覆 われていない円形部に p型導電領域 10を例えば Zn選択熱拡散方法で形成する。続 いて前記 p型導電領域 10上の i型 GalnAsコンタクト層 9力 幅 5— 10 x mのリング状 に残るように中央部と外部をエッチング除去する。さらに蒸着により SiNx表面保護膜 兼反射防止膜 120を形成し、前記コンタクト層 9の上部にある前記 SiNx表面保護膜 兼反射防止膜 120を取り除き、前記コンタクト層 9の上に p電極 14を AuZnによって形 成する。さらに基板 1において、バッファ層 2が積層されている面と逆の面を研摩し、 n 電極 13を AuGeによって形成し、前記 n電極 13に前記バッファ層 2が電気的に接続 されるようにする。さらにウェハ状の基板 1を劈開分離して、劈開面 27を有する 300 μ η角程度の素子とする。
[0013] 上記の工程で作製されたアバランシェフオトダイオードの動作を以下に説明する。 η 電極 13側がプラス、 ρ電極 14側がマイナスとなるように外部から逆バイアス電圧をカロ えた状態で、 ρ電極 14側から光 28を入射させる。例えば光通信波長帯である 1. 3 μ m帯あるいは 1. 5 z m帯の近赤外領域の光を前記コンタクト層 9のリング内部に入射 させると、光は窓層 8を透過し光吸収層 6において吸収されて電子一ホール対を発生 し、前記電子は n電極 13側、前記ホールは p電極 14側に移動する。逆バイアス電圧 が充分に高い時、前記アバランシェ増倍層 4におレ、て電子はイオン化して新たな電 子一ホール対を生成し、新たに生成された電子、ホールと共にさらなるイオン化を引き 起こす事によって、電子、ホールが雪崩的に増倍するアバランシェ増倍が引き起こさ れる。
[0014] 次に、図 1に示す本実施の形態のアバランシェフオトダイオードにおける電界強度 につレ、て説明する。図 2は図 1の A— A'断面における深さ方向の電界強度分布を表 した特性図であり、図 3は図 1の B_B '断面及び C_C '断面における面方向の電界強 度分布を表した特性図である。図 2及び図 3の横軸の符号は上記形成した各半導体 層を示し、図中 A— A'断面を A— A'、 Β_Β'断面を B_B'、 C_C'断面を C_C'と表す。 図 2に示すように、最も高電界となる部分はアバランシヱ増倍層 4となる。さらに図 3の B— B'断面における電界強度分布で示されるように、その中でも前記 p型導電領域 10 直下の受光領域中央部が最も高い領域となり、周辺部にいく程電界強度は小さくな る。また図 3の C_C'断面における電界強度分布で示されるように、前記 p型導電領 域 10の周辺部の電界強度は拡散領域の有限の曲率により中央部よりも高くなるが、 図 2の B—B'断面における電界強度分布と比較するとアバランシェ増倍層 4にかかる 電界強度よりは低いため、エッジブレークダウンとして知られる周辺部での電流を抑 えることができ、アバランシェフオトダイオードとして機能させることができる。
[0015] さらに、拡散領域周辺の電界強度が局所的に高い領域、すなわち図 3の C一 C'断 面において前記 p型導電領域 10の周辺部で電界強度が高くなつている部分を、光 吸収層 6よりもバンドギャップの大きな窓層 8内に形成しているので、前記電界強度が 高くなつている部分からトンネル暗電流が流れることを抑制することができる。したが つて、本実施の形態によるアバランシェフオトダイオードは、エッジブレークダウンを抑 制するガードリングと呼ばれる構造を設ける必要がなぐ簡易に低喑電流で高信頼性 を有するアバランシェフオトダイオードを実現することができる。
[0016] なお本実施の形態では、 Znを用いた選択熱拡散によって p型導電領域 10を形成 する例について説明したが、用いる原子は p導電型を付与するものであればよい。他 の形成方法としては、例えば円形をくり貫いた Si〇x膜をマスクとして、 p型導電領域 を Zn選択熱拡散方法で形成した後に、拡散の供給源である Zn膜および前記 Si〇x 膜を除去し、さらに再度熱拡散処理を行い p型導電領域内部の Znを拡散させてもよ レ、(以下 Zn追加拡散という)。また、例えば円形をくり貫いたフォトレジスト膜をマスクと して、 Beをイオン注入した後にフォトレジスト膜を除去し、 700°C程度で 12時間程度 熱アニーリング処理をすることによつても形成できる(以下 Be注入という)。
[0017] 図 4は、 p型導電領域 10の形成方法として、前記 Zn選択熱拡散(図中 D)、 Zn追加 拡散(図中 E)、および Be注入(図中 F)を用いた場合の深さ方向(導電領域 10—窓層 8接合部)におけるキャリア濃度の違いを示した特性図である(横軸の符号はそれぞ れの層に相当する)。これより、 Zn追加拡散を用いた場合、著しくキャリア濃度が変化 する Zn選択熱拡散に比べキャリア濃度変化を緩やかにすることができるため、導電 領域 10—P窓層 8接合部での電界強度をより低く抑えることができ、トンネル喑電流を 抑制できる。また Be注入では、さらにキャリア濃度変化を緩やかにすることができる。
[0018] なお本実施の形態では、電界緩和層 5を p型 InPとした例を示した力 AlInAsとし てもよレ、。状況により電界緩和層 5を省略することもできる。また p型導電領域 10と p電 極 14とを電気的に接続させるためコンタクト層 9を設けた例を示したが、 p型導電領域 10と p電極 14とを直接接触させてもよレ、。窓層 8として i型 InPを用いる例を示した力 導電型は半絶縁性、絶縁性、 n型、あるいは導電性の低い p型のいずれであってもよ レ、。窓層 8と光吸収層 6との間に、 GaInAsP、 AlInAs、 AlGaInAs、 GalnAsPなどを 含むストッパ層 3を設ければ、 p型導電領域 10から光吸収層 6へ p型導電領域が拡散 することを抑制でき、さらに好ましレ、。
[0019] 実施の形態 2.
本発明の実施の形態 2によるアバランシェフオトダイオードでは、上記実施の形態 1 で示したアバランシェフオトダイオードにおいて、光吸収層 6と窓層 8との間に、さらに 遷移層 7を設けた。形成方法としては、上記実施の形態 1で光吸収層 6を成長させた 工程に続き、例えば i型 GalnAsPを厚み 0. 01-0. 05 x mに成長させ、遷移層 7と した。
[0020] 図 5は、本実施の形態によるアバランシェフオトダイオードの伝導帯及び価電子帯 の層接合部でのエネルギー分布を示している。横軸の符号は積層された各半導体 層を、縦軸はエネルギーを示し、図中 Gは伝導帯、図中 Hは価電子帯、図中 Iはホー ルそれぞれのエネルギーを示している。図 5より、遷移層 7の価電子帯エネルギーは 、光吸収層 6よりも低 窓層 8よりも高い値、すなわち光吸収層 6と窓層 8との間の値 をとることがわかる。これは、光吸収層 6と窓層 8との間に、遷移層 7を挟むことにより、 価電子帯の不連続量が小さくなり、光吸収層 6よりホールが流れやすくなることを示し ている。したがってヘテロ界面でのホールのパイルアップを防ぐことができ、より高速 な光応答を実現できる。
[0021] なお、前記遷移層 7は単層としたが、段階的にバンドギャップを変化させた複数層と してもよい。複数層にすることにより価電子帯の不連続量はさらに小さくなり、その結 果ホールが流れやすくなるため、より高速な光応答を実現できる。また、図 5において 破線で示すように、連続的にバンドギャップを変化させた層としてもよい。
[0022] 本実施の形態において、遷移層 7として i型 GalnAsPを用いた例を示した力 ΑΠη As、 AlGaInAs、 GalnAsPを用いてもよレ、。特に窓層 8に InPを用いた場合に、第 2 導電型領域の拡散ストツバとして機能する。
[0023] 実施の形態 3.
本発明の実施の形態 3によるアバランシェフオトダイオードでは、上記実施の形態 1 、 2で示したアバランシェフオトダイオードにおいて、 p型導電領域 10の周辺にさらに p 型周辺導電領域 110を設けた。図 6、図 7は、本実施の形態によるアバランシェフオト ダイオードの概略構造を示す断面図である。ここで 6は光吸収層、 3はストッパ層であ り、ホール遷移および拡散ストッパを兼ねている。 8は窓層、 9はコンタクト層である。 図 6に示すアバランシェフオトダイオードは、コンタクト層 9の外周を超えた広い範囲 に遷移層 7に達しない程度に浅く選択熱拡散を行なって p型導電領域 110を形成し 、その後に、上記 p型周辺導電領域 110の領域より狭い範囲に遷移層 7に達する程 度に深く選択熱拡散を行なって p型導電領域 10を形成したものである。上記 p型導 電領域 10の領域は、重ねて選択熱拡散されている。このように、 p型導電領域 10の 抵抗を十分上げることができ、さらに p型周辺導電領域 110で周辺を取り囲むようにし ているので、表面電界強度を下げることができる。したがってブレークダウンをさらに 抑制でき、信頼性を増すことができる。
[0024] また、図 7に示すアバランシェフオトダイオードは、コンタクト層 9の下に形成した p型 導電領域 10の周辺を取り巻くように、環状に p型周辺導電領域 110を形成したもので ある。このように p型導電領域 10および p型周辺導電領域 110を形成しても、表面電 界強度の低下が図れ、ブレークダウンを抑制できる。
[0025] 実施の形態 4.
図 8は、本発明の実施の形態 4によるアバランシヱフォトダイオードを示す概略構造 を示す断面図であり、現象を説明するため、イメージ的に空乏化領域 11を示してい る。本実施の形態では、上記実施の形態 1で示したアバランシェフオトダイオードにお いて、 p型導電領域 10を含み、上記 p型導電領域 10の周辺領域を径 100 /i m程度 の円形状に残し、その外周の窓層 8、光吸収層 6を電界緩和層 5に達するまで除去し 、側面 25を形成した(以下側面除去という)。
[0026] 図 9は、上記側面除去したアバランシェフオトダイオードについて、電流および増倍 率 Mと逆バイアス電圧の関係を示した特性図である。図中破線は、上記側面除去せ ず単に劈開して素子分離した上記実施の形態 1のアバランシェフオトダイオードの喑 電流特性である。逆バイアス電圧に依存しない喑電流(図中 Idark)は、光吸収層 6 からの発生喑電流であり、単に劈開したのみの構成では前記発生喑電流が劈開面 を経由して流れるため、暗電流は 10— 7Aレベル(図中 Idark破線)となる。これに比較 し、本実施の形態のアバランシェフオトダイオードでは光吸収層 6からの発生喑電流 経路を遮断できるため、喑電流を 10— 8Aレベル(図中 Idark実線)まで低減できること 力 sわ力る。
[0027] 上述のとおり暗電流は、主に光吸収層 6から発生し、空乏化領域 11を経路として流 れるため、少なくとも空乏化領域 11を囲む光吸収層 6を除去すればよい。空乏化領 域 11の拡がりを考慮すれば、例えば第 2導電型導電領域より 10 / m以上の幅の光 吸収層 6を残して、側面除去するとよい。
[0028] 前記側面除去により残す光吸収層 6の幅を小さくすると、前記側面除去した面の電 界強度が高くなり、長期信頼性も低下するため、側面除去により残す光吸収層 6の幅 は、 10 z m以上 200 z m以下程度とするのが好ましい。また、前記側面除去により残 す光吸収層 6の形状は特に限定するものではなぐ円形状、楕円形状に残してもよく 、四角形状、多角形状にしてもよい。前記四角形状、多角形状とする場合には、角部 に丸みを設けると前記角部での電界集中を防ぐことができ好ましい。
[0029] 側面除去の方法としては、例えば HBr/過酸化水素水混合溶液を用いてエツチン グする方法がある。またクェン酸、酒石酸などの有機酸と過酸化水素水の混合溶液 を用いた有機酸エッチングを用いてもよい。反応性イオンエッチング (RIE)などによ るドライエッチングとしてもよい。また InP系材料を選択的にエッチングする場合は、塩 酸 Zリン酸混合溶液などの塩酸系溶液を用いることができる。 AlGalnAs系材料や G alnAsP系材料を選択的にエッチングする場合は、有機酸 (タエン酸、酒石酸など) /過酸化水素水混合溶液などの有機酸系溶液、硫酸系溶液を用いることができる。 これらに選択エッチング性の小さい HBr/過酸化水素水や BrZメタノールなどの Br 系溶液などを適宜組み合わせれば所望の側面除去が達成できる。
[0030] また、本実施の形態では電界緩和層 5に達するまで側面除去する例を示したが、ァ バランシェ増倍層 4より深い層まで側面除去してもよい。
本実施の形態では窓層 8と光吸収層 6とを接合させた例を示したが、上記実施の形 態 2あるいは実施の形態 3で示したように、窓層 8と光吸収層 6との間に遷移層 7ある いはストッパ層 3を設けてもよい。
本実施の形態では導電領域 10を形成した例を示したが、上記実施の形態 3で示し たようにさらに周辺導電領域 110を形成してもよい。
[0031] 実施の形態 5.
図 10は、本発明の実施の形態 5によるアバランシェフオトダイオードの概略構成を 示す断面図である。本実施の形態では、上記実施の形態 4で示したアバランシェフォ トダイオードにおいて、光吸収層 6の幅が窓層 8および電界緩和層 5より小さくなるよう に側面 25を形成した。例えば有機酸と過酸化水素水の混合溶液を用いれば、選択 的に光吸収層 6を深くエッチングできる。このようにして光吸収層 6と電界緩和層 5に 段差を設けることにより、暗電流は流れに《なり、前記暗電流を 10— 8 Aレベル以下に 低減できた。
[0032] なお、特に電界緩和層 5を設ける必要がない場合は、前記電界緩和層 5を省略し、 その下のアバランシヱ倍増層 4と光吸収層 6とに段差を設ければよい。
[0033] 実施の形態 6.
図 11は、本発明の実施の形態 6によるアバランシェフオトダイオードの概略構成を 示す断面図である。本実施の形態では、上記実施の形態 4で示したアバランシェフォ トダイオードにおいて、窓層 8を塩酸/リン酸溶液で側面除去し、有機酸 Z過酸化水 素水溶液により光吸収層 6を側面除去した後、光吸収層 8の側面 25より 10 μ m程度 離れた位置において電界緩和層 5、アバランシヱ増倍層 4、バッファ層 2の一部を HB r/過酸化水素水混合溶液を用いて除去して溝 26を形成した。このように少なくとも 光吸収層 6を側面除去した上で、さらに上記溝 26を設けることにより、光吸収層 6から 喑電流が流れに《なり、前記暗電流を 10— 8Aレベル以下に低減できた。 [0034] なお、上記側面 25と上記溝 26との隔たりを 10 μ mとした力 10 μ m以上としてもよ レ、。
溝 26は、電界緩和層 5、アバランシヱ増倍層 4、バッファ層 2を除去して形成したが 、少なくとも電界緩和層 5を除去すればよい。電界緩和層 5を設けない場合は、少なく とも最上層を除去すればよい。
[0035] 実施の形態 7.
図 12は本発明の実施の形態 7によるアバランシェフオトダイオードの概略構造を示 す断面図である。本実施の形態では、上記実施の形態 4一 6で示したアバランシェフ オトダイオードにおいて、少なくとも除去された光吸収層 6の側面 25を覆うように SiNx により保護膜 12を形成した。
前記保護膜 12を設けることにより、酸化や水分吸収を防止できるため、喑電流発生 を抑制でき、長期信頼性を得ることができる。さらに素子取り扱い時の接触による破 損の防止ができる効果もある。
[0036] なお、保護膜 12として SiNxを用いれば反射防止の効果をもたせることもできるため 好ましいが、保護の観点から SiOxなどの誘電体やポリイミドなど有機材料を用いても よい。
本実施の形態の図 12では、保護膜 12を、光吸収層 6の側面 25のみでなく上面お よび他の層の側面にも設けた例を示した力 少なくとも除去された光吸収層 6の側面 25を覆えば、その他は必要な部位のみ部分的に設けてもよい。
[0037] 実施の形態 8.
図 13は本発明の実施の形態 8によるアバランシェフオトダイオードの概略構造を示 す断面図である。上記実施の形態 1と同様にして、 n型 InP基板 1上に、キャリア濃度 2 X 1018— 2 X 1019cm— 3の n型 AlInAsZGalnAs分布ブラッグ反射層 23を所定の 厚みに、 n型 AlInAs反射調整層 24を所定の厚みに、 i型 AlInAsアバランシヱ増倍 層 4を 0. 1—0. 3 111に、キャリァ濃度1 1017—2 10180111—3の 型111?電界緩和 層 5を 0. 03—0. 06 z m (こ、キャリア濃度 1一 5 X 1015cm— 3の p型 GalnAs光吸収層 6を 1. 0一 1. (こ、 i型 GalnAs遷移層 7を 0. 02—0. 2 μ m (こ、 i型 InP窓層 8を 1. 0—2. 0 /i mに、 i型 GalnAsコンタクト層 9を 0. 1— 0. 4 μ mに順次成長させた。 [0038] ここで上記分布ブラッグ反射層 23の所定の厚みとは、検出したい光の波長を λ , 屈折率を ηとして、 λ / (4η)の奇数倍で与えられるブラッグ反射条件を満たすものと する。好ましくは最も小さい λ / (4η)とするのがよレ、。
また、反射調整層 24の所定の厚みとは、該厚みを t、屈折率を n、アバランシェ増 倍層 4の厚みを t、屈折率を n、電界緩和層 5の厚みを t、屈折率を nとすると、
a a e e
t = 1/ (4 X n ) (k X λ -4 X (t X n +t X n ) ) >0
r r a a e e
(kは奇数)
を満たすものである。好ましくは最小値を使用するのがよい。
[0039] さらに上記実施の形態 1と同様にして、 p型導電領域 10、コンタクト層 9を形成し、上 記実施の形態 4と同様にして側面除去し、上記実施の形態 7と同様にして SiNxによ り、上面および側面に保護膜 12を形成した。
[0040] 本実施の形態によるアバランシェフオトダイオードにおいて、 n電極 13をプラス、 p電 極 14をマイナスとして外部から逆バイアス電圧をカ卩えた状態で光 28を入射させると、 光は光吸収層 6で吸収され電子 -ホール対を生成する。一部の光は上記光吸収層 6 で吸収されずに透過されるが、上記所定の厚みを有する反射調整層 24と分布ブラッ グ反射層 23によって効果的に反射されて再び光吸収層 6に入射され、吸収される。 この光はさらに電子一ホール対を生成し、逆バイアス電圧により光吸収層 6が空乏化 している領域では、電界により発生した電子はプラス側に、ホールはマイナス側にドリ フトする。遷移層 7に達したホールは上記各層間での価電子帯の不連続量が抑えら れているので、滞ることなく p型導電領域 10に達する。したがってさらに高速な応答が 可能となる。
特に逆バイアス電圧が充分に高い時、アバランシェ増倍層 4に達した電子はイオン 化して電子一ホール対を生成し、生成された電子、ホールもそれぞれ反対方向にドリ フトする。これらの電子、ホールがさらにイオンィ匕することにより電子、ホールが雪崩的 に増倍することができる。
[0041] 本実施の形態によるアバランシェフオトダイオードにおける電界強度分布について も上記実施の形態 1で示した図 2と同様に、アバランシェ増倍層 4中でイオン化による アバランシェ増倍を引き起こすよう最も高くなり、電界緩和層 5中において変化し、光 吸収層 6でトンネルブレークダウンが生じないようにできる。さらに図 3と同様に各層と 平行方向(面方向)の電界強度分布は、アバランシェ増倍層 4中で p型導電領域 10 直下が最も高 エッジブレークダウンを生じないようになつている。またバンドギヤッ プの大きい遷移層 7を設けたので、さらにブレークダウンは生じにくい。また光吸収層 6を側面除去したので、喑電流経路が遮断され、遷移層 7での電界強度の立ち上が りを、上記実施の形態 2の例よりさらに抑えることができた。
[0042] 図 14は、本実施の形態による受光感度分布を示した特性図であり、ピークを 1とし た規格化光電流で表している。図 14より p型導電領域 10中央部において最も感度が 高ぐエッジブレークダウンがなく良好なアバランシェ増倍が得られることがわかる。 本実施の形態では、分布ブラッグ反射層 23および反射調整層 24を設けたので、 光吸収層 6において吸収されずに透過した光を再度光吸収層 6へ向けて反射させる ことができるので、光吸収層 6での光吸収量をより高めることができる。したがってアバ ランシェフオトダイオードの光感度を高めることが可能となる。
[0043] なお、本実施の形態では分布ブラッグ反射層 23を AlInAs/GalnAsとする例を示 したが、屈折率の高い層と低い層を交互に積層すればよい。屈折率の高い層として は、 GalnAsや As組成比の高い GalnAsPや、 Ga組成比の高い AlGalnAsなどを用 レ、ることができる。屈折率の低い層としては、 A1組成比の高い AlGalnAs特に AlInA s、 P組成比の高い GaInAsP、 InPを用レ、ること力できる。
また、本実施の形態では、反射調整層 24として屈折率の低い AlInAsを用いた例 を示した力 InP、 AlGalnAs, GalnAsPなどを用いてもよレ、。
分布ブラッグ反射層 23、反射調整層 24における n型キャリア濃度については、抵 杭が動作速度に対し問題とならない範囲で変化させればよく大きいほどよい。
[0044] また、本実施の形態では、基板 1とアバランシェ増倍層 4との間にブラッグ反射層 23 および反射調整層 24を設けた例を示したが、光吸収層 6の光出射面側にブラッグ反 射層 23および反射調整層 24が所定の厚みで設けられていればよい。光吸収層 6と ブラッグ反射層 23との間に他の層が挟まれていてもよい。この場合、ブラッグ反射層 23の所定の厚みは、検出する光の波長をえ、前記ブラッグ反射層の屈折率を nとし たときに、 λ / (4η)で表される数値の奇数倍とし、反射調整層 24の所定の厚み tは 、反射調整層 24の屈折率を^、光吸収層 6とブラッグ反射層 23との間に挟まれる層 の厚みを t、 t、 · · 't、屈折率を n、 n、 n、 · · ·η、 kを奇数としたときに、
1 2 1 1 2 3 n
t = 1/ (4 X n ) (k X λ -4 X∑ (t X n ) ) >0
r r n n
を満たす数値であればょレ、。
[0045] また、本実施の形態では、電界緩和層 5まで側面除去する例について説明した力 電界緩和層 5を必要に応じ省略してもよぐ反射調整層 24に至るまで側面除去しても よい。反射調整層 24まで側面除去することにより、空乏化領域 11の露出を防止でき るので、さらに信頼性が向上する。
[0046] 実施の形態 9.
図 15は、本発明の実施の形態 9によるアバランシェフオトダイオードの概略構成を 示す断面図である。本実施の形態では上記実施の形態 4一 9で示したアバランシェ フォトダイオードにおいて、側面除去した後、外周部に絶縁膜 15を設け、この絶縁膜 15の一部を除去して n電極 13を形成した。本実施の形態のアバランシェフオトダイォ ードは、素子表面に n電極 13と p電極 14とを配置させることができるため、 n電極 13、 p電極 14ともにワイヤ配線接合が可能となる。また、 n電極 13に AuZnなどを用いて バンプ電極を形成すれば、フリップチップ実装が可能となる。また、 n電極 13と p電極 14を同材料にして同時に形成することもできる。
[0047] なお、本実施の形態における絶縁膜 15は保護膜 12を流用してもよい。
また本実施の形態において、反射調整層 24上に n電極 13を形成する例を示した 力 反射調整層 24およびブラッグ反射層 23を構成する層のうち、バンドギャップの小 さい層上に配置すればコンタクト抵抗を低減することができる。材質としては GalnAs とコンタクトさせることが好ましレ、。
[0048] また、本実施の形態では反射調整層 24に至るまで側面除去した例を示したが、光 吸収層 6まででもよぐ電界緩和層 5あるいはアバランシヱ増倍層 4まででもよレ、。また 遷移層 7、電界緩和層 5を省略してもよい。反射調整層 24、分布ブラッグ反射層 23を 省略してもよレ、。上記実施の形態 3で示した p型周辺導電領域 110を設けてもょレ、。
[0049] また、側面除去は劈開面 27まですベて行う必要はなぐ例えば図 16に示すように 外周の第 1導電型半導体基板上に積層された層のうち、少なくとも光吸収層が除去 されるように上面から除去してとまり孔 30を部分的に形成してもよい。図 17は、とまり 孔 30を設けた場合の電流および増倍率 Mと逆バイアス電圧の関係を示した特性図 である。図中破線は、上記側面除去せず単に劈開して素子分離した上記実施の形 態 1のアバランシェフオトダイオードの喑電流特性である。とまり孔 30を設けることによ り、空乏化領域の拡がりが変化するので光電流(図中 Iphoto)が一旦減少する力 上 記実施の形態 4と同様に喑電流を 10— 8Aレベル(図中 Idark実線)まで低減できること がわかる。
[0050] なお、前記とまり孔 30の形状は特に限定するものではなぐリング状、トラック形状に 残してもよい。前記リング状とは、円形の中央部を抜いた形状のみではなぐ四角形 状、多角形状の中央部を抜いた形状も含む。電界集中を防止できるように角部に丸 みを設けた形状が好ましい。同様に前記トラック形状とは、長方形の両端を半円で囲 み、中央部を抜いた形状を指すが、前記半円部は、四角形状、多角形状の一部であ る形状を含む。同様に角部に丸みを設けた形状が好ましい。また、前記トラック形状 は、楕円形状の中央部を抜いた形状も含む。
[0051] また、図 18に示すように、前記とまり孔 30を設け、さらにその外側に第 2のとまり孔 3 0を設けてもよい。複数のとまり孔 30を設けるとハンドリング時に発生するチッビング、 キズを外側でとめることができ、歩留まり、信頼性が向上できる。
[0052] また、 n電極 13を上面に引き出すようにすれば、さらに実装が容易となる。外周部に p型周辺導電領域 110を設けてもよい。
[0053] 上記実施の形態 1一 9において、基板 1に半絶縁性基板 29を用いて、表面入射と してもょレ、。この場合静電容量を抑えることができるので動作帯域を向上することがで きる。
[0054] なお、本実施の形態では、素子表面に n電極 13と p電極 14とを配置させるために、 とまり孔 30を設ける例を示したが、とまり孔 30は、第 2導電型導電領域 10を含み、前 記第 2導電型導電領域の周囲の第 2の半導体層 8を残し、その外周の基板上に積層 された層のうち、少なくとも光吸収層の側面除去する手段として用いることができる。 すなわち上記実施の形態 1一 8における基板 1の裏面に第 1電極 13を設けた本発明 のアバランシェフオトダイオードにおいて、側面除去手段として、とまり孔 30を設ける こともでき、同様に喑電流を低減できる効果を奏する。
[0055] 実施の形態 10.
図 19は、本発明の実施の形態 10によるアバランシェフオトダイオードの概略構成を 示す断面図である。本実施の形態では上記実施の形態 1一 9で示したアバランシェ フォトダイオードにおいて、基板 1に Feドープなどによる InPなどの半絶縁性基板 29 を用いる。また光 28を半絶縁性基板 29基板側から入射させる。半導体の積層方法と しては、例えば半絶縁性基板 29上に、キャリア濃度 2 X 1018— 2 X 1019cm 3の n型 A1 InAsバッファ層 19、 i型 AlInAsアバランシェ増倍層 4を 0· 1— 0. 3 /i m、キャリア濃 度 1 X 1017— 2 X 1018cm— 3の p型 InP電界緩和層 5を 0. 03—0. 06 x m、キャリア濃 度 1 X 1015— 5 X 1015cm— 3の p型 GalnAs光吸収層 6を 1. 0—1. 5 μ m、 i型 AlGaln As遷移層 7を 0. 02-0. 2 x m、 i型 InPの第 2の半導体層 8 (裏面より光入射させる 場合はキャップ層として機能する)を 1. 0-2. 0 x m、 i型 GalnAsコンタクト層 9を 0· 1一 0. 4 μ ΐη順次成長させた後、 ρ型導電領域 10、 GalnAsコンタクト層 9、および p 電極 14を形成した。さらに n型 AlInAsバッファ層 19に至るまで側面除去し、上面お よび側面 25を覆うように保護膜 12を設け、 n型 AlInAsバッファ層 19にコンタクトさせ るように n型電極 13を形成した。
[0056] 本実施の形態のアバランシェフオトダイオードは、上述のように構成したので、裏面 より光 28を入射させ、光吸収層 6を透過した光を p電極 14によって反射させることが できる。また n電極 13と p電極 14を InP半絶縁性基板 29の表面に設けているので、フ リップチップ実装が可能である。また Feドープ InP半絶縁性基板を用いることにより電 気容量を低減できるので、高速化が可能となる。基板での吸収を抑制する効果もある 。また側面 25を設けているので、側面入射導波路型としても利用でき、素子容量を 低減できる。
[0057] 本実施の形態では、半絶縁性基板 29の裏面に光 28を入射させるようにしたが、半 絶縁性基板 29に反射防止膜を設けてもよい。 n型 AlInAsバッファ層 19に替えて n型 ノ ッファ Zクラッド層としてもよレ、。 P型導電領域 10の周辺に p型周辺導電領域 110を 設けてもよい。
[0058] なお、上記実施の形態 1一 10において、第 1導電型として n型を、第 2導電型として p型を、第 1電極として n電極を、第 2電極として p電極を用いた例を示した力 第 1導 電型として p型を、第 2導電型として n型を、第 1電極として p電極を、第 2電極として n 電極を用いてもよい。
[0059] 導電領域 10の形成は、固相拡散の例を示した力 気相拡散を用いてもよい。
n電極 13、 ρ電極 14の材料としては、 AuZnZAu、 AuGe/Ni/Au, TiZAuを用 いてもよい。
アバランシェ増倍層 4としては、 GaInAsP、 AlInAs/AlGalnAs超格子、 AlInAs /GalnAsP超格子としてもよレ、。
なお上記実施の形態 1一 10において、アバランシェ増倍層 4は、電子をより増倍す る A 材料を用いた例を示したが、增倍層側が p型の場合、ホールが増倍層に動く ため、ホールをより増倍できる InP系材料をアバランシェ增倍層 4として用いることが できる。
電界緩和層 5は、特に必要としない場合は省略できる力 バンドギャップが大きい材 料が好ましレ、。 InPはホール、 AlInAsは電子のイオン化率が高いため、電子のィォ ンィ匕率がより高い材料、例えば AlInAsなどの A1系材料をアバランシヱ增倍層 4に用 レ、る際には、同じく電子のイオン化率が高い AlInAs電界緩和層 5を用いれば、動作 速度、雑音についてより優れた特性を得ることができる。
[0060] 光吸収層 6については、 i型としてもよぐ 3 10 1!1—3以下の11導電型としてもょぃ。
また前記 i型、 n導電型は光吸収層 6の上部のみでもよい。
遷移層 7については、 AlInAs、 GalnAsPとしてもよレ、。
窓層 8については、 AlInAs, AlGalnAsとしてもよレ、。また Feをドープした半絶縁 性型としてもよい。
コンタクト層 9については、非導電型であってもよレ、。窓層 8の導電領域 10と p電極 1 4とが低抵抗でコンタクトできれば省略してもよい。
[0061] なお、上記実施の形態 1一 10それぞれの組合せの形態においても上記効果を奏 する。

Claims

請求の範囲
[1] 第 1電極と、これに電気的に接続された第 1導電型からなる第 1の半導体層を具備 する基板とを備え、前記基板には、少なくともアバランシェ増倍層と、光吸収層と、前 記光吸収層よりバンドギャップの大きい第 2の半導体層とが積層され、前記第 2の半 導体層内には、第 2導電型導電領域が形成され、前記第 2導電型導電領域は、第 2 電極に電気的に接続されていることを特徴とするアバランシェフオトダイオード。
[2] 第 2導電型導電領域は、選択熱拡散、前記選択熱拡散に追加して熱拡散処理す る追加熱拡散、イオン注入後に熱アニーリングする処理のうち、少なくともいずれかを 用いたことを特徴とする請求項 1に記載のアバランシェフオトダイオード。
[3] 光吸収層と、第 2の半導体層との間に少なくとも 1層のストッパ層を設けたことを特徴 とする請求項 1に記載のアバランシヱフォトダイオード。
[4] 光吸収層と、第 2の半導体層との間に少なくとも 1層の遷移層を設けたことを特徴と する請求項 1に記載のアバランシヱフォトダイオード。
[5] 第 2の半導体層内には、第 2導電型導電領域の周囲に、さらに第 2導電型周辺導 電領域が形成されていることを特徴とする請求項 1に記載のアバランシェフオトダイォ ード。
[6] 第 2導電型導電領域を含み、前記第 2導電型導電領域の周囲の第 2の半導体層を 残し、その外周の基板上に積層された層のうち、少なくとも光吸収層が除去されて前 記光吸収層の側面が形成されていることを特徴とする請求項 1に記載のアバランシェ フォトダイオード。
[7] 光吸収層の側面には保護膜が設けられていることを特徴とする請求項 6に記載の アバランシェフオトダイオード。
[8] 外周の基板上に積層された層には、第 1導電型の層を含み、前記第 1導電型の層 上には絶縁膜が設けられ、上記絶縁膜上には第 1電極が形成されていることを特徴 とする請求項 6に記載のアバランシェフオトダイオード。
[9] 外周の基板上に積層された層のうち、少なくとも光吸収層が除去されるように上面 力 除去されたとまり孔を設けたことを特徴とする請求項 6に記載のアバランシェフオト ダイオード。
[10] とまり孔は、リング状あるいはトラック形状であることを特徴とする請求項 8に記載の アバランシェフオトダイオード。
[11] 外周の基板上に積層された層のうち、光吸収層が他の層より狭く形成されて層間に 段差が設けられていることを特徴とする請求項 6に記載のアバランシェフオトダイォー ド、。
[12] 外周の基板上に積層された層のうち、少なくとも光吸収層が除去されて前記光吸収 層の側面が形成され、前記側面より離れた部位の前記外周の基板上に積層された 層に溝が設けられていることを特徴とする請求項 6に記載のアバランシェフオトダイォ ード。
[13] 光吸収層の光出射面側にブラッグ反射層および反射調整層が所定の厚みで設け られ、
前記ブラッグ反射層の所定の厚みは、検出する光の波長をえ、前記ブラッグ反射層 の屈折率を nとしたときに、 λ / (4η)で表される数値の奇数倍であって、
前記反射調整層の所定の厚み tは、前記反射調整層の屈折率を n、前記光吸収層 と前記ブラッグ反射層との間に挟まれる層の厚みを t、 t、 · · 't、屈折率を n、 n、 n
1 2 n 1 2
、 ·'·η、kを奇数としたときに、
3 n
t =l/(4Xn) (kX λ-4Χ∑ (t Xn))>0
r r n n
を満たす数値であることを特徴とする請求項 1に記載のアバランシェフオトダイオード
PCT/JP2004/015794 2004-10-25 2004-10-25 アバランシェフォトダイオード WO2006046276A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CNB2004800442923A CN100557826C (zh) 2004-10-25 2004-10-25 雪崩光电二极管
PCT/JP2004/015794 WO2006046276A1 (ja) 2004-10-25 2004-10-25 アバランシェフォトダイオード
EP04792925.2A EP1811578B1 (en) 2004-10-25 2004-10-25 Avalanche photodiode
US11/666,091 US9640703B2 (en) 2004-10-25 2004-10-25 Avalanche photodiode
JP2006542153A JP4609430B2 (ja) 2004-10-25 2004-10-25 アバランシェフォトダイオード
TW094119960A TWI262611B (en) 2004-10-25 2005-06-16 Avalanche photo diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/015794 WO2006046276A1 (ja) 2004-10-25 2004-10-25 アバランシェフォトダイオード

Publications (1)

Publication Number Publication Date
WO2006046276A1 true WO2006046276A1 (ja) 2006-05-04

Family

ID=36227528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/015794 WO2006046276A1 (ja) 2004-10-25 2004-10-25 アバランシェフォトダイオード

Country Status (6)

Country Link
US (1) US9640703B2 (ja)
EP (1) EP1811578B1 (ja)
JP (1) JP4609430B2 (ja)
CN (1) CN100557826C (ja)
TW (1) TWI262611B (ja)
WO (1) WO2006046276A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008028421A (ja) * 2007-10-10 2008-02-07 Mitsubishi Electric Corp アバランシェフォトダイオード
US20080121867A1 (en) * 2004-10-25 2008-05-29 Mitsubishi Electric Corporation Avalanche Photodiode
WO2008066696A2 (en) * 2006-11-27 2008-06-05 The Boeing Company Sam avalanche photodiode detector with absorption region and multiplication region in individual isolated mesas
JP2008251729A (ja) * 2007-03-29 2008-10-16 Eudyna Devices Inc 受光素子の製造方法
US7538367B2 (en) 2005-09-12 2009-05-26 Mitsubishi Electric Corporation Avalanche photodiode
JP2009124145A (ja) * 2007-11-14 2009-06-04 Jds Uniphase Corp 前面照射型アバランシェ・フォトダイオード
JP2009283854A (ja) * 2008-05-26 2009-12-03 Mitsubishi Electric Corp 光半導体装置
JP2009290161A (ja) * 2008-06-02 2009-12-10 Mitsubishi Electric Corp 光半導体装置
US7893460B2 (en) * 2008-02-28 2011-02-22 Mitsubishi Electric Corporation Semiconductor light detecting element including first and second multilayer light reflective structures sandwiching and contacting a light absorptive layer
US8294234B2 (en) 2009-06-02 2012-10-23 Renesas Electronics Corporation Mesa photodiode and method for manufacturing the same
JP2013532902A (ja) * 2010-07-23 2013-08-19 インテル コーポレイション 高速、高光帯域、及び、高効率の共振空洞感度増強光検出器
US9691932B2 (en) 2014-09-16 2017-06-27 Kabushiki Kaisha Toshiba Photodetector
WO2019150536A1 (ja) * 2018-02-01 2019-08-08 株式会社京都セミコンダクター 半導体受光素子
JP2021135077A (ja) * 2020-02-25 2021-09-13 三菱電機株式会社 アバランシェフォトダイオードの評価方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4306508B2 (ja) * 2004-03-29 2009-08-05 三菱電機株式会社 アバランシェフォトダイオード
EP1898471A4 (en) 2005-05-18 2014-01-15 Mitsubishi Electric Corp PHOTODIODE AT AVALANCHE
JP2010135360A (ja) * 2008-12-02 2010-06-17 Mitsubishi Electric Corp アバランシェフォトダイオード
JP2011035018A (ja) * 2009-07-30 2011-02-17 Renesas Electronics Corp 半導体受光素子
JP2011035114A (ja) * 2009-07-31 2011-02-17 Renesas Electronics Corp メサ型フォトダイオード及びその製造方法
JP5444994B2 (ja) * 2009-09-25 2014-03-19 三菱電機株式会社 半導体受光素子
US9299864B2 (en) * 2014-02-21 2016-03-29 Sifotonics Technologies Co., Ltd. Ge/Si avalanche photodiode with integrated heater and fabrication thereof
US10923614B2 (en) 2014-07-25 2021-02-16 Panasonic Intellectual Property Management Co., Ltd. Photodiode, photodiode array, and solid-state imaging device
JP6302143B2 (ja) 2014-11-13 2018-03-28 アーティラックス インコーポレイテッドArtilux Inc. 光吸収装置
US9799689B2 (en) 2014-11-13 2017-10-24 Artilux Inc. Light absorption apparatus
CN107924929B (zh) * 2015-09-17 2022-10-18 索尼半导体解决方案公司 固体摄像器件、电子设备以及固体摄像器件的制造方法
WO2019053877A1 (ja) * 2017-09-15 2019-03-21 三菱電機株式会社 半導体受光素子およびその製造方法
US20190157479A1 (en) * 2017-09-15 2019-05-23 Kabushiki Kaisha Toshiba Photodetection element, photodetector, photodetection system and laser imaging detection and ranging apparatus
US20190088812A1 (en) * 2017-09-15 2019-03-21 Kabushiki Kaisha Toshiba Photodetection element, photodetector and laser imaging detection and ranging apparatus
KR102496483B1 (ko) * 2017-11-23 2023-02-06 삼성전자주식회사 아발란치 광검출기 및 이를 포함하는 이미지 센서
WO2020202557A1 (ja) * 2019-04-05 2020-10-08 三菱電機株式会社 半導体受光素子及び半導体受光素子製造方法
CN112289883B (zh) * 2020-10-30 2023-03-28 华中科技大学 一种三维半导体雪崩光电探测芯片及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03109779A (ja) * 1989-09-25 1991-05-09 Shimadzu Corp フォトダイオード
JPH03291979A (ja) * 1990-04-09 1991-12-24 Nec Corp アバランシェフォトダイオード
JPH04296066A (ja) * 1991-03-26 1992-10-20 Hitachi Ltd 半導体受光装置
JPH05129638A (ja) * 1991-03-18 1993-05-25 Hitachi Ltd 光半導体装置
JPH07202252A (ja) * 1993-12-28 1995-08-04 Nec Corp 超格子アバランシェフォトダイオード
JPH10313131A (ja) * 1997-05-14 1998-11-24 Nec Corp アバランシェフォトダイオード
JPH11121785A (ja) * 1997-10-16 1999-04-30 Toshiba Electronic Engineering Corp 化合物半導体素子およびその製造方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4470060A (en) * 1981-01-09 1984-09-04 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display with vertical non-single crystal semiconductor field effect transistors
US4410903A (en) * 1981-02-02 1983-10-18 The United States Of America As Represented By The Secretary Of The Navy Heterojunction-diode transistor EBS amplifier
US4660208A (en) * 1984-06-15 1987-04-21 American Telephone And Telegraph Company, At&T Bell Laboratories Semiconductor devices employing Fe-doped MOCVD InP-based layer for current confinement
EP0216572B1 (en) * 1985-09-24 1995-04-05 Kabushiki Kaisha Toshiba Semiconductor photo-detector having a two-stepped impurity profile
JPH0821727B2 (ja) * 1988-11-18 1996-03-04 日本電気株式会社 アバランシェフォトダイオード
JPH02202071A (ja) * 1989-01-31 1990-08-10 Toshiba Corp 半導体受光素子及びその製造方法
JPH02228077A (ja) * 1989-02-28 1990-09-11 Nec Corp 半導体受光素子
US5138416A (en) * 1991-07-12 1992-08-11 Xerox Corporation Multi-color photosensitive element with heterojunctions
JP2762939B2 (ja) 1994-03-22 1998-06-11 日本電気株式会社 超格子アバランシェフォトダイオード
US6036769A (en) * 1994-06-29 2000-03-14 British Telecommunications Public Limited Company Preparation of semiconductor substrates
JPH0945954A (ja) * 1995-07-31 1997-02-14 Mitsubishi Electric Corp 半導体素子,及び半導体素子の製造方法
JPH1065201A (ja) * 1996-06-13 1998-03-06 Furukawa Electric Co Ltd:The 半導体導波路型受光素子とその製造方法
US6417528B1 (en) * 2000-01-28 2002-07-09 Agere Systems Guardian Corp. High speed semiconductor photodetector
JP4220688B2 (ja) 2001-02-26 2009-02-04 日本オプネクスト株式会社 アバランシェホトダイオード
JP2003168818A (ja) * 2001-09-18 2003-06-13 Anritsu Corp 順メサ型アバランシェフォトダイオード及びその製造方法
US6720588B2 (en) 2001-11-28 2004-04-13 Optonics, Inc. Avalanche photodiode for photon counting applications and method thereof
JP2003163362A (ja) * 2001-11-29 2003-06-06 Osaka Gas Co Ltd 火炎センサ
KR20020034100A (ko) * 2002-01-21 2002-05-08 주흥로 애벌란치 포토다이오드
WO2003065418A2 (en) 2002-02-01 2003-08-07 Picometrix, Inc. Planar avalanche photodiode
WO2003073517A1 (en) * 2002-02-27 2003-09-04 Midwest Research Institute Monolithic photovoltaic energy conversion device
JP4093304B2 (ja) * 2002-06-26 2008-06-04 Nttエレクトロニクス株式会社 アバランシ・フォトダイオード
US6838741B2 (en) * 2002-12-10 2005-01-04 General Electtric Company Avalanche photodiode for use in harsh environments
JP4166560B2 (ja) * 2002-12-17 2008-10-15 三菱電機株式会社 アバランシェフォトダイオード及びその製造方法
EP1811578B1 (en) * 2004-10-25 2016-12-21 Mitsubishi Denki Kabushiki Kaisha Avalanche photodiode

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03109779A (ja) * 1989-09-25 1991-05-09 Shimadzu Corp フォトダイオード
JPH03291979A (ja) * 1990-04-09 1991-12-24 Nec Corp アバランシェフォトダイオード
JPH05129638A (ja) * 1991-03-18 1993-05-25 Hitachi Ltd 光半導体装置
JPH04296066A (ja) * 1991-03-26 1992-10-20 Hitachi Ltd 半導体受光装置
JPH07202252A (ja) * 1993-12-28 1995-08-04 Nec Corp 超格子アバランシェフォトダイオード
JPH10313131A (ja) * 1997-05-14 1998-11-24 Nec Corp アバランシェフォトダイオード
JPH11121785A (ja) * 1997-10-16 1999-04-30 Toshiba Electronic Engineering Corp 化合物半導体素子およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1811578A4 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080121867A1 (en) * 2004-10-25 2008-05-29 Mitsubishi Electric Corporation Avalanche Photodiode
US9640703B2 (en) * 2004-10-25 2017-05-02 Mitsubishi Electric Corporation Avalanche photodiode
US7538367B2 (en) 2005-09-12 2009-05-26 Mitsubishi Electric Corporation Avalanche photodiode
US9570647B2 (en) 2006-11-27 2017-02-14 The Boeing Company Avalanche photodiode detector
US9035410B2 (en) 2006-11-27 2015-05-19 The Boeing Company Avalanche photodiode detector
GB2457206A (en) * 2006-11-27 2009-08-12 Boeing Co SAM avalanche photodiode detector with absorption region and multiplication region in individual isolated mesas
WO2008066696A3 (en) * 2006-11-27 2008-11-06 Boeing Co Sam avalanche photodiode detector with absorption region and multiplication region in individual isolated mesas
WO2008066696A2 (en) * 2006-11-27 2008-06-05 The Boeing Company Sam avalanche photodiode detector with absorption region and multiplication region in individual isolated mesas
GB2457206B (en) * 2006-11-27 2011-06-29 Boeing Co Avalanche photodiode detector
JP2008251729A (ja) * 2007-03-29 2008-10-16 Eudyna Devices Inc 受光素子の製造方法
JP2008028421A (ja) * 2007-10-10 2008-02-07 Mitsubishi Electric Corp アバランシェフォトダイオード
JP2009124145A (ja) * 2007-11-14 2009-06-04 Jds Uniphase Corp 前面照射型アバランシェ・フォトダイオード
US7893460B2 (en) * 2008-02-28 2011-02-22 Mitsubishi Electric Corporation Semiconductor light detecting element including first and second multilayer light reflective structures sandwiching and contacting a light absorptive layer
JP2009283854A (ja) * 2008-05-26 2009-12-03 Mitsubishi Electric Corp 光半導体装置
JP2009290161A (ja) * 2008-06-02 2009-12-10 Mitsubishi Electric Corp 光半導体装置
US8294234B2 (en) 2009-06-02 2012-10-23 Renesas Electronics Corporation Mesa photodiode and method for manufacturing the same
JP2013532902A (ja) * 2010-07-23 2013-08-19 インテル コーポレイション 高速、高光帯域、及び、高効率の共振空洞感度増強光検出器
US9691932B2 (en) 2014-09-16 2017-06-27 Kabushiki Kaisha Toshiba Photodetector
WO2019150536A1 (ja) * 2018-02-01 2019-08-08 株式会社京都セミコンダクター 半導体受光素子
JP2021135077A (ja) * 2020-02-25 2021-09-13 三菱電機株式会社 アバランシェフォトダイオードの評価方法
JP7331732B2 (ja) 2020-02-25 2023-08-23 三菱電機株式会社 アバランシェフォトダイオードの評価方法

Also Published As

Publication number Publication date
US9640703B2 (en) 2017-05-02
CN101048878A (zh) 2007-10-03
TWI262611B (en) 2006-09-21
EP1811578A1 (en) 2007-07-25
EP1811578A4 (en) 2009-07-15
US20080121867A1 (en) 2008-05-29
EP1811578B1 (en) 2016-12-21
CN100557826C (zh) 2009-11-04
JP4609430B2 (ja) 2011-01-12
JPWO2006046276A1 (ja) 2008-05-22
TW200614546A (ja) 2006-05-01

Similar Documents

Publication Publication Date Title
WO2006046276A1 (ja) アバランシェフォトダイオード
JP5045436B2 (ja) アバランシェフォトダイオード
EP1898472B1 (en) Avalanche photodiode
JP4220688B2 (ja) アバランシェホトダイオード
US20100133637A1 (en) Avalanche photodiode
JP2013236012A (ja) アバランシェフォトダイオード及びその製造方法
JPH0945954A (ja) 半導体素子,及び半導体素子の製造方法
JP5746222B2 (ja) 光−電子デバイス
JP2009252769A (ja) 半導体受光素子
JP3675223B2 (ja) アバランシェフォトダイオードとその製造方法
JP2011258809A (ja) 半導体受光素子
WO2022157888A1 (ja) アバランシェフォトダイオード
JP4985298B2 (ja) アバランシェフォトダイオード
JP4861388B2 (ja) アバランシェホトダイオード
KR100509355B1 (ko) 포토 다이오드의 구조 및 제조 방법
JP4166560B2 (ja) アバランシェフォトダイオード及びその製造方法
CN101232057B (zh) 雪崩光电二极管
KR102307789B1 (ko) 후면 입사형 애벌런치 포토다이오드 및 그 제조 방법
TWI731630B (zh) 半導體受光元件以及半導體受光元件製造方法
JP5303793B2 (ja) フォトダイオード
JP2008047580A (ja) 半導体受光素子
JP4284781B2 (ja) Msm型フォトダイオード

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS JP KE KG KP KZ LC LK LR LS LT LU LV MA MD MK MN MW MX MZ NA NI NO NZ PG PH PL PT RO RU SC SD SE SG SK SY TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IT MC NL PL PT RO SE SI SK TR BF CF CG CI CM GA GN GQ GW ML MR SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006542153

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2004792925

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004792925

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200480044292.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2004792925

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11666091

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 11666091

Country of ref document: US