JP2004273489A - Thermoelectric conversion module and its manufacturing method - Google Patents

Thermoelectric conversion module and its manufacturing method Download PDF

Info

Publication number
JP2004273489A
JP2004273489A JP2003058033A JP2003058033A JP2004273489A JP 2004273489 A JP2004273489 A JP 2004273489A JP 2003058033 A JP2003058033 A JP 2003058033A JP 2003058033 A JP2003058033 A JP 2003058033A JP 2004273489 A JP2004273489 A JP 2004273489A
Authority
JP
Japan
Prior art keywords
thermoelectric
conversion module
thermoelectric conversion
fine particles
metal fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003058033A
Other languages
Japanese (ja)
Inventor
Atsushi Suzuki
篤史 鈴木
Yasuhiro Hasegawa
靖洋 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saitama University NUC
Original Assignee
Saitama University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saitama University NUC filed Critical Saitama University NUC
Priority to JP2003058033A priority Critical patent/JP2004273489A/en
Publication of JP2004273489A publication Critical patent/JP2004273489A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoelectric conversion module from which the resistances held by thermoelectric elements 3 themselves can be drawn out by reducing contact resistances to the utmost, and in which the performance of the thermoelectric elements is not deteriorated even when the elements are modularized. <P>SOLUTION: In this thermoelectric conversion module 1, a serial circuit is constituted by alternately arranging p-type thermoelectric elements 2 and n-type thermoelectric elements 3 and successively connecting the thermoelectric elements 2 and 3 to each other through conductive members 4. In addition, insulating members 5 are provided on the outsides of the thermoelectric elements 2 and 3. The conductive members 4 are composed of copper electrodes 6 and binders 7 which join one surfaces of the electrodes 6 to the thermoelectric elements 2 and 3 and the other surfaces of the electrodes 6 to the insulating members 5. The binders 7 which join them to each other are obtained by sintering conductive paste prepared by dispersing fine metallic particles having a mean particle diameter of 1-10 nm in a liquid. It is preferable that the fine metallic particles are composed of silver that can accomplish good junctions between the insulating members 5 and thermoelectric elements 2 and 3 and the copper electrodes 6. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、複数対の熱電変換素子を電気的に接続して構成した熱電変換モジュール及びその製造方法に関するものである。
【0002】
【従来の技術】
熱電変換モジュールは、p型とn型の熱電素子を金属電極で順次接続して直列回路を構成し、この終端からリード線を引き出して外部と電気的に接続できるように構成されている。熱電素子は、p型熱電素子とn型熱電素子との接合部間に温度差を与えると電位差が発生するというゼーベック効果と、同接合部間に電流を流すと、その電流の向きに応じて吸熱または発熱するペルチェ効果とを有し、このような効果を利用して熱エネルギを電気エネルギに変換し、または、電気エネルギを熱エネルギに変換している。
【0003】
現在、熱を電気に変換する熱電変換素子、ならびに電気を熱に変換するペルチェ素子が研究されており、後者のペルチェ素子は、半導体レーザーの温度制御用に使用され、民生用には温冷庫などに用いられるようになっている。
【0004】
しかし、熱を電気に変換するための熱電変換素子はまだまだ実用化されていない。それは発電効率が10%程度と低く、コスト的に合わないためである。とはいうものの、IT基盤技術の一つである半導体レーザーの温度制御用ペルチェモジュールは、大きな産業の一つとなっている。又、熱電変換技術は駆動部がなく、無騒音で、長期間の使用に耐え、メンテナンスも不要で、未利用の熱エネルギを直接電気エネルギに有効再利用できることなどから、環境問題の解決にも寄与し得る技術として近年急速に研究開発活動が活発化している。
【0005】
熱電素子は、先に述べたようにp型熱電素子とn型熱電素子とを各1個ずつ直列に接続したものを構成し、これを最小単位とするものである。ここで固体中に温度差があることによって生まれる熱起電力を温度で規格化したゼーベック係数α、固体の電気抵抗率η、そして熱伝導率κを使って、熱電素子の性能を次のように示すことができる。
【0006】
Z=α/ηκ,ZT=(α/ηκ)T
ここでZは性能指数と呼ばれるもので、無次元化するために温度TをかけてZTを無次元性能指数と呼んでいる。この指数は高いものほど性能が良いことを示すが、従来ペルチェモジュールとして販売されている性能は、ZT=1、Z=3.3×10−3程度のものである。とはいっても、これは使っている素子の性能であって、モジュール化することによって総合的な性能が落ちることが確認されている。これはモジュール化による接触抵抗の増加と、バインダ材料であるハンダが熱電素子自身と反応し、その性能が劣化するためである。
【0007】
ところで従来の熱電変換モジュールにおいては、各熱電素子の上下両面に露出させている端面には、電極板である銅板を取り付けることで各熱電素子を直列に接続し、銅電極の上下両面には電気的に絶縁するための絶縁基板を被覆していた。この絶縁基板は熱電変換モジュールの構造維持及び外部との熱輸送のために配されており、比較的優れた熱伝導率および機械的強度を確保できる、例えば、アルミナ(Al)焼結体,窒化アルミニウム(AlN)焼結体,ベアリリア(BeO)焼結体,コージェライト(2MgO・Al・SiO)焼結体などのセラミック板が一般に適用されていた。
【0008】
このような熱電変換モジュールについては、例えば特許文献1、特許文献2あるいは特許文献3に記載されるような各種構造が提案されていた。
【0009】
【特許文献1】
特開平8−153899号公報
【特許文献2】
特開2001−119076号公報
【特許文献3】
特開2002−111076号公報
【0010】
従来の熱電変換モジュールの構造を図11及び図12に示す。図11は従来の熱電変換モジュールの概略断面図、図12は図11のc部拡大断面図である。従来の熱電変換モジュール101は、熱電素子102,103の両端にスムーズに温度差が出来るようにセラミック板105にメタライズ加工108して銅電極106を取り付け、銅電極106と熱電素子102,103は図12に示すように、ハンダ107を使って電気的に接続されていた。この際、ハンダ107がうまく乗るように、一般的な熱電素子102,103は電極としてNi板109が圧接されていた。なおNi板109の上には金がコーティングされている場合もあった。
【0011】
ここで、従来の熱電変換モジュール101における熱の流れと電気の流れは次のようになる。図11のセラミック板105の上部から伝わってきた熱は、メタライズされた部分108→銅電極106→Ni板109→熱電素子102,103→Ni板109→銅電極106→メタライズされた部分108を通って図の矢印方向に流れていき、又電気については、銅電極106→Ni板109→熱電素子102,103→Ni板109→銅電極106といった形で流れていく。
【0012】
熱については、熱接触の問題があるため、電極にはNi板109や銅板106などの熱伝導率が高いものを使っており、これらの金属材料は電気抵抗も低いものであった。
【0013】
又従来の熱電変換モジュールの製造方法を図13に示す。従来は、1枚のセラミック板105にメタライズ加工108を行なった後(図13(a))、ハンダ107を用いて銅電極106を取り付け(同(b))、この銅電極106上の所定部分に更にハンダを盛り、その上面に熱電素子102,103を配置していた(同(c))。
【0014】
この熱電素子102,103は、夫々熱電素子材料102a、103a(同(d))の両面にNi板109を圧接もしくはメッキ処理により取り付けた後(同(e))、カッティングを行なって作製したものであった(同(f))。
【0015】
同様の手順によりメタライズ処理をして銅電極を取り付けた他のセラミック板105を、上面にハンダを盛った前記熱電素子102,103上に載置した後(同(g))、加熱処理を行なって各熱電素子と銅電極をハンダ付けし、熱電変換モジュールを完成させていた。
【0016】
【発明が解決しようとする課題】
このように従来の熱電変換モジュール101は、セラミック板105のメタライズされた部分108と銅板106との間、又はNi板109と銅板106との間のように、異種金属間の接合については、ハンダ107などのバインダを用いる必要があったので、これの接触抵抗が無視できず、又ハンダ107と熱電素子102,103が化学反応を起こしてしまうこともあって、最終的にモジュール化することによってその性能が劣化してしまう欠点があった。
【0017】
実際、ビスマス・テルル(BiTe)系材料で、熱電素子としての性能がZT=1としても、モジュール化することによってZT=0.5程度まで性能が落ちていた。素子の性能がZT=1程度と40年程度も変化しない現在、モジュール化技術を上げ、ZT=1の性能を持った素子を、モジュール化してどれだけZT=1に近づけられるかがポイントとなっていた。
【0018】
具体的な熱電素子の性能を見てみる。BiTe系材料の抵抗率は9×10−6Ωmが室温における代表的な値である。一般的に使われている素子の形状は3×3×1mm程度の直方体で、この直方体自体の抵抗は形状を考えると、一つあたり3mΩ程度である。しかし、この直方体にNi電極を圧接した場合、あるいはメッキ処理などした場合、若しくはハンダを使って銅電極と接続した場合などのケースでは、どうしても接触抵抗が加わることが避けられなかった。
【0019】
又、従来のハンダを用いた熱電変換モジュールの場合、高温の温度域で使用可能な熱電材料を選択しても、使用できる温度範囲はハンダの融点である200℃以下に限定されてしまい、高温域での使用には耐えられなかった。又、極低温度環境にもあまり適さないものであった。
【0020】
又、従来の熱電変換モジュールの製造方法は、ハンダによる接合を可能とするために、メタライズ加工やNi電極の圧接など複雑な工程が不可欠であり、これが製造コストを上昇させる原因ともなっていた。
【0021】
この発明は、従来の熱電変換モジュールが有する上記問題点を解消すべくなされたものであり、接触抵抗を極力減らして、熱電素子が持っている抵抗そのものを引き出すことができ、モジュール化によっても熱電素子の性能が劣化しない、又極低温度から高温度領域までの広範な温度域で使用可能な熱電変換モジュールを提供することを目的としている。
【0022】
又簡易な工程での製作が可能で、コスト低減も図れる熱電変換モジュールの製造方法を提供することを目的としている。
【0023】
【課題を解決するための手段】
上記課題を解決するため、この発明の熱電変換モジュールは、隣接する熱電素子の端部間を導電性部材によって接続することで複数個の熱電素子を電気的に直列に接続し、この導電性部材の外方を絶縁性部材で被覆する熱電変換モジュールにおいて、前記導電性部材は、電極板と、平均粒径が1〜10nmである金属微粒子が液体中に分散する導電性ペーストを前記熱電素子及び/又は前記絶縁性部材及び/又は前記電極板に塗布した後、前記金属微粒子同士を燒結することにより前記電極板の一面を前記熱電素子に接合し他面を前記絶縁性部材に接合するバインダであることを特徴とするものである。
【0024】
従来は、例えば銅板からなる電極板と接合するために、熱電素子に例えばNi電極を圧接し、そこにハンダ付けが行なわれていたが、平均粒径が1〜10nmの金属微粒子からなる導電性ペーストを用いることによってNi電極部とハンダ部を採用しなくとも熱電素子と銅電極とを直接接合することが可能になる。
【0025】
又、絶縁性部材、例えばセラミック板と銅電極との接合も導電性ペーストで行なうことができ、熱抵抗を減らすことができる。しかも、絶縁性部材と銅電極はミクロ的には表面がスムーズではないが、平均粒径が1〜10nmの金属微粒子は、これらの表面に形成されている粗面の隙間に入り込むことによって良い熱接触が期待できる。
【0026】
このような微細なサイズの金属微粒子からなる導電性ペーストを採用することで、接触抵抗が大きく低減し、熱電素子が持っている抵抗そのものを引き出すことができ、又熱電素子とも化学反応を起こさないためモジュール化によっても熱電素子の性能が劣化しない。
【0027】
請求項2記載の熱電変換モジュールは、隣接する熱電素子の端部間を導電性部材によって接続することで複数個の熱電素子を電気的に直列に接続し、この導電性部材の外方に絶縁性部材で被覆する熱電変換モジュールにおいて、前記導電性部材は、平均粒径が1〜10nmである金属微粒子が液体中に分散する導電性ペーストを前記絶縁性部材に塗布した後、前記金属微粒子同士を燒結することにより前記熱電素子と前記絶縁性部材を接合するバインダであることを特徴とするものである。
【0028】
従来使われていた電極板自体を取り除き、導電性ペーストを燒結した部材を電極として使用する。この場合、絶縁性部材と熱電素子との熱接触がさらによくなる。なおペルチェモジュールとして使う場合、即ち発電ではなく電流を流して温度差を作る使い方の場合には、導電性部材の厚みをある程度大きくしないとジュール熱によって発熱する可能性がある。
【0029】
請求項3記載の熱電変換モジュールの製造方法は、絶縁性の板体上に、平均粒径が1〜10nmである金属微粒子が液体中に分散する導電性ペーストを複数箇所塗布して、各塗布箇所毎に電極板を並置し、この電極板上の所定部分に前記導電性ペーストを塗布した後、その上面に熱電素子を配置する一方、下面に前記導電性ペーストを複数箇所塗布して各塗布箇所毎に電極板を添着する他の絶縁性の板体を前記熱電素子上に載置した後、加熱処理を行なって前記金属微粒子同士を燒結することにより各電極板の一面を熱電素子に接合すると同時に他面を絶縁性の板体に接合することを特徴とするものである。
【0030】
導電性ペーストは、常温では粘度の高い液体の挙動を示しており、絶縁性部材、電極板、熱電素子に塗布してこれを盛り付けることが可能であり、絶縁性部材に塗布した導電性ペーストで電極板を添着することもでき、熱電素子を挟持する一組の絶縁性部材を例えば250℃程度に加熱して、金属微粒子同士を燒結することによりこれらを接合することができる。このような簡易な工程での製造が可能となるため、モジュール化の手間を従来の製造方法より省くことができる。
【0031】
請求項4記載の熱電変換モジュールの製造方法は、絶縁性の板体上に、平均粒径が1〜10nmである金属微粒子が液体中に分散する導電性ペーストを複数箇所塗布して、各塗布箇所の所定部分に熱電素子を配置する一方、下面に前記導電性ペーストを複数箇所塗布する他の絶縁性の板体を前記熱電素子上に載置した後、加熱処理を行なって前記金属微粒子同士を燒結することにより熱電素子を絶縁性の板体に接合することを特徴とするものである。
【0032】
この製造方法の場合には、より簡易な工程となるため製造コストの低減にも大きく寄与するものと考える。
【0033】
請求項5記載の熱電変換モジュールと請求項6記載の熱電変換モジュールの製造方法における前記金属微粒子は、銀または銅であることを特徴とするものである。銀または銅の金属微粒子からなる導電性ペーストは絶縁性部材、電極板、熱電素子に対して良好な接合を達成し得る。
【0034】
このような金属微粒子からなる熱電変換モジュールは、その使用温度範囲を−260℃〜1000℃程度まで広げることができる。従来のハンダを用いた熱電変換モジュールの場合、使用できる温度範囲はハンダの融点である200℃以下に限定されており、極低温度での使用も困難であったが、銀の金属微粒子からなる導電性ペーストの場合には銀の融点963℃付近まで、又銅の金属微粒子からなる導電性ペーストを用いる場合には銅の融点1083℃付近まで温度範囲を広げることが可能となる。又導電性ペーストを用いて製作した熱電変換モジュールでは−260℃まで冷却した場合でも、その性能に変化はなく安定している。
【0035】
【発明の実施の形態】
次にこの発明の実施の形態を添付図面に基づき詳細に説明する。図1は熱電変換モジュールの概略断面図、図2は図1のa部拡大断面図である。熱電変換モジュール1は、p型の熱電素子2とn型の熱電素子3とを交互に配列するとともに、1つのp型熱電素子2とこれに隣接する1つのn型熱電素子3の下部には、それらを共通に接続する導電性部材4を設け、他方、このn型熱電素子3とこれに隣接するp型熱電素子2の上部には、それらを共通に接続する導電性部材4を設けている。
【0036】
従ってこれら上下部に設ける導電性部材4は、素子1個分だけずれた形態で設けられており、複数個の熱電素子2,3は電気的に直列に接続している。又これら熱電素子2,3の外方には各導電性部材4に共通に接合された絶縁性部材5が設けられている。絶縁性部材5としては、例えばセラミック板を用いる。
【0037】
導電性部材4は、銅電極6と、この銅電極6の一面を熱電素子2,3に接合し他面を絶縁性部材5に接合するバインダ7よりなる。バインダ7は平均粒径が1〜10nmである金属微粒子が液体中に分散する導電性ペーストを熱電素子2,3及び/又は絶縁性部材5及び/又は銅電極6に塗布した後、金属微粒子同士を燒結することによりこれらを接合する。この金属微粒子は、絶縁性部材5、銅電極6、熱電素子2,3に対して良好な接合を達成し得る銀または銅であることが望ましい。
【0038】
図1に示す熱電変換モジュール1において、上部絶縁性部材5側を高温に、下部絶縁性部材5側を低温にする温度差を与えると、上下の導電性部材4,4間に電位差が生じ、電極を取り出すことができる。
【0039】
次にこの熱電変換モジュールの製造方法を図3に示す。セラミック板等からなる下部絶縁性部材5に導電性ペーストよりなるバインダ7を複数箇所塗布して(図3(a))、各塗布箇所毎に銅電極6を並置し(同(b))、この銅電極6上の所定部分に前記バインダ7を塗布した後、その上面に熱電素子2,3を配置する(同(c))。なお熱電素子2,3は、夫々熱電素子材料2a、3a(同(d))をそのままカッティングを行なって作製したものである(同(e))。
【0040】
次に下面に前記バインダ7を複数箇所塗布して各塗布箇所毎に銅電極を添着する上部絶縁性部材5をその銅電極上にバインダ7を盛った状態で、前記熱電素子2,3上に載置した後(同(f))、加熱処理を行なってバインダ7を構成する金属微粒子同士を燒結することにより各銅電極6の一面を熱電素子2,3に接合すると同時に他面を両絶縁性部材5に接合する。
【0041】
次に別の実施形態を図4及び図5に示す。図4は別の実施形態の熱電変換モジュールの概略断面図、図5は図4のb部拡大断面図である。なお図4及び図5において図1で説明した部材と構成、作用が同一である部材には同一の符号を付して説明は省略する。
【0042】
この実施形態の熱電変換モジュール11は、導電性部材4に平均粒径が1〜10nmである金属微粒子、例えば銀微粒子が液体中に分散する導電性ペーストを燒結した部材を用いる。即ち従来使われていた電極板自体を取り除き、導電性ペーストを燒結した部材を電極として使用する。
【0043】
この実施形態の熱電変換モジュールの製造方法を図6に示す。セラミック板等からなる下部絶縁性部材5に導電性ペーストよりなるバインダ7を複数箇所塗布して(図6(a))、各塗布箇所の所定部分に熱電素子2,3を配置する(同(b))。次に下面に前記バインダ7を複数箇所塗布する上部絶縁性部材5を前記熱電素子2,3上に載置した後(同(c))、加熱処理を行なってバインダ7を構成する金属微粒子同士を燒結することにより熱電素子2,3を両絶縁性部材5に接合する。
【0044】
【実施例】
本発明の作用効果を確認するため、各種バインダを用いて接合した複数の試験体の抵抗値を比較した。測定は図7に示すような構造の試験体で4端子法による抵抗測定を行なった。測定サンプルとしては2×2×5mmの銅ブロック8を用い、これを接合バインダ9によって両側の銅電極10,11と接合し、更にこれらにリード線12を夫々ハンダ接合13した。
【0045】
接合バインダ9としては、典型的なハンダと、導電性ペーストとして典型的な銀ペースト、低抵抗銀ペースト、本発明に使用した銀ナノペーストを用いた。これらの特徴及び試験体での抵抗値を表1に示す。
【表1】

Figure 2004273489
【0046】
バインダ接合による接触抵抗を除いた本試験体の抵抗値は、銅の室温での抵抗率1×10−8Ωmを考えると、測定サンプルである2×2×5mmの銅ブロック8自体の持っている0.0125mΩである。両側の銅電極10,11の影響も考えられるが、測定された抵抗値はほとんど数mΩであるため、表1に示す4端子法による抵抗値は略接合バインダ9(とリード線12のハンダ接合13との和)によるものであると考えられる。
【0047】
この試験体は図8に示す等価回路として考えられ、銅電極抵抗14が小さく、バインダー抵抗15が大きいものとなる。これを先に示した図11の従来の熱電変換モジュール101について考えると図9に示す等価回路となる。即ち熱電素子抵抗16を3mΩとすると、バインダ抵抗17の合計が0.1〜0.5mΩとなり、更にNi電極接触抵抗18の合計が0.5〜3mΩとなる。従って一つのモジュールあたりの合計抵抗が6mΩ程度と、純粋な熱電素子抵抗16と比較して2倍程度となっている。これがモジュールすることによって実効的な性能指数が落ちる理由であると考えられる。
【0048】
一方本発明の熱電変換モジュールについて考えると図10に示すような等価回路となり、熱電素子抵抗16の3mΩに対し、銀ナノペースト抵抗19の合計は本試験では0.1mΩ以下の0.05mΩ〜0.08mΩとなっており、一つのモジュールあたりの実効的な抵抗を従来の熱電変換モジュールの半分程度まで下げることが可能となる。即ち、従来は銅電極と接合するためにNi電極を形成し、そこにハンダ付けが行なわれていたが、銀ナノペーストを用いることによってNi電極部とハンダ部を採用せず、熱電素子と銅電極と直接接合することが可能になる。
【0049】
更に、絶縁性部材との接合も銀ナノペーストで行なうことができ、熱抵抗を減らすことができる。しかも、絶縁性部材と銅電極はミクロ的には表面がスムーズではないが、銀ナノペーストの粒子が数nm程度であるので、隙間に入り込むことによって良い熱接触が期待できる。又ハンダを用いないために、Ni電極の必要性もなくなり、接触抵抗が大きく低減される。
【0050】
このように銀ナノペーストは、熱電素子が持っている抵抗そのものを引き出すことができ、モジュール化によっても熱電素子の性能が劣化しない。
【0051】
【発明の効果】
以上説明したように、この発明の熱電変換モジュールは、導電性部材として電極板と、平均粒径が1〜10nmである金属微粒子が液体中に分散する導電性ペーストを用いたので、Ni電極部とハンダ部を採用しなくとも熱電素子と銅電極とを直接接合することが可能になる。又、絶縁性部材と銅電極との接合も導電性ペーストで行なうことができ、熱抵抗を減らすことができ、金属微粒子が隙間に入り込むことによって良い熱接触が期待できる。
【0052】
このような微細なサイズの金属微粒子からなる導電性ペーストを採用することで、接触抵抗が大きく低減し、熱電素子が持っている抵抗そのものを引き出すことができ、又熱電素子とも化学反応を起こさないためモジュール化によっても熱電素子の性能が劣化しない。
【0053】
又バインダにハンダを用いないため、使用温度範囲の拡大を図ることができる。従来はハンダの融点である200℃以下に限定されていたが、これを越える高温域でも使用可能となる。
【0054】
請求項2記載の熱電変換モジュールは、導電性部材として平均粒径が1〜10nmである金属微粒子が液体中に分散する導電性ペーストを用いるので、従来使われていた電極板自体を取り除き、導電性ペーストを燒結した部材を電極として使用することができる。この場合、絶縁性部材と熱電素子との熱接触がさらによくなる。
【0055】
請求項3記載の熱電変換モジュールの製造方法は、常温で粘度の高い導電性ペーストの性質を利用することで、絶縁性部材で電極板及び熱電素子を挟持し燒結によりこれらを接合するので、簡易な工程での熱電変換モジュールの製造方法が実現できる。
【0056】
請求項4記載の熱電変換モジュールの製造方法は、絶縁性部材で熱電素子を挟持し燒結によりこれらを接合するという、より簡易な工程を採用するため製造コストの低減にも大きく寄与する。
【0057】
請求項5記載の熱電変換モジュールと請求項6記載の熱電変換モジュールの製造方法では金属微粒子として銀または銅を採用するので絶縁性部材、電極板、熱電素子に対して良好な接合を達成し得る。又このような金属微粒子からなる熱電変換モジュールは、その使用温度範囲を−260℃〜1000℃程度まで広げることができる。
【0058】
従来のハンダを用いた熱電変換モジュールの場合、使用できる温度範囲はハンダの融点である200℃以下に限定されており、極低温度での使用も困難であったが、銀の金属微粒子からなる導電性ペーストの場合には銀の融点963℃付近まで、又銅の金属微粒子からなる導電性ペーストを用いる場合には銅の融点1083℃付近まで温度範囲を広げることが可能となる。又導電性ペーストを用いて製作した熱電変換モジュールでは−260℃まで冷却した場合でも、その性能に変化はなく安定している。
【図面の簡単な説明】
【図1】熱電変換モジュールの概略断面図である。
【図2】図1のa部拡大断面図である。
【図3】熱電変換モジュールの製造方法を示すフロー図である。
【図4】別の実施形態の熱電変換モジュールの概略断面図である。
【図5】図4のb部拡大断面図である。
【図6】別の実施形態の熱電変換モジュールの製造方法を示すフロー図である。
【図7】試験体抵抗測定用の説明図である。
【図8】試験体の等価回路図である。
【図9】従来の熱電変換モジュールの等価回路図である。
【図10】本発明の熱電変換モジュールの等価回路図である。
【図11】従来の熱電変換モジュールの概略断面図である。
【図12】図11のc部拡大断面図である。
【図13】従来の熱電変換モジュールの製造方法を示すフロー図である。
【符号の説明】
1 熱電変換モジュール
2 熱電素子
3 熱電素子
4 導電性部材
5 絶縁性部材
6 銅電極
7 バインダ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a thermoelectric conversion module configured by electrically connecting a plurality of pairs of thermoelectric conversion elements, and a method for manufacturing the same.
[0002]
[Prior art]
The thermoelectric conversion module is configured so that p-type and n-type thermoelectric elements are sequentially connected by metal electrodes to form a series circuit, and a lead wire is drawn out from the terminal to be electrically connected to the outside. The thermoelectric element has a Seebeck effect in which a potential difference is generated when a temperature difference is given between the junctions of the p-type thermoelectric element and the n-type thermoelectric element, and, according to the direction of the current when a current flows between the junctions. It has a Peltier effect of absorbing or generating heat, and utilizes such an effect to convert heat energy into electric energy or convert electric energy into heat energy.
[0003]
Currently, thermoelectric conversion elements that convert heat to electricity and Peltier elements that convert electricity to heat are being studied.The latter Peltier elements are used for controlling the temperature of semiconductor lasers, and for consumer use such as hot and cold storage It has been used for.
[0004]
However, thermoelectric conversion elements for converting heat into electricity have not yet been put to practical use. This is because the power generation efficiency is as low as about 10% and does not match the cost. However, the Peltier module for temperature control of a semiconductor laser, which is one of the IT fundamental technologies, has become one of the major industries. In addition, thermoelectric conversion technology has no driving parts, is noiseless, can withstand long-term use, requires no maintenance, and can effectively reuse unused heat energy directly into electric energy, thus solving environmental problems. In recent years, research and development activities have been rapidly activated as a contributing technology.
[0005]
As described above, the thermoelectric element is configured by connecting a p-type thermoelectric element and an n-type thermoelectric element one by one in series, and uses this as a minimum unit. Here, using the Seebeck coefficient α, the electric resistivity η of the solid, and the thermal conductivity κ, the thermoelectromotive force generated by the temperature difference in the solid is normalized by the temperature, the performance of the thermoelectric element is as follows: Can be shown.
[0006]
Z = α 2 / ηκ, ZT = (α 2 / ηκ) T
Here, Z is called a figure of merit, and ZT is called a dimensionless figure of merit by applying a temperature T to make it dimensionless. The higher the index is, the better the performance is. However, the performance conventionally sold as a Peltier module is about ZT = 1 and Z = 3.3 × 10 −3 . Nevertheless, this is the performance of the device used, and it has been confirmed that the overall performance is reduced by modularization. This is because the contact resistance increases due to the modularization, and the solder, which is the binder material, reacts with the thermoelectric element itself to deteriorate its performance.
[0007]
By the way, in the conventional thermoelectric conversion module, each thermoelectric element is connected in series by attaching a copper plate which is an electrode plate to an end face exposed on both the upper and lower surfaces of each thermoelectric element, and the upper and lower surfaces of the copper electrode are electrically connected. An insulating substrate for electrically insulating was covered. The insulating substrate is provided for maintaining the structure of the thermoelectric conversion module and transporting heat to and from the outside. For example, alumina (Al 2 O 3 ) sintering that can ensure relatively excellent thermal conductivity and mechanical strength. A ceramic plate such as a sintered body, an aluminum nitride (AlN) sintered body, a barelya (BeO) sintered body, and a cordierite (2MgO.Al 2 O 3 .SiO 2 ) sintered body have been generally applied.
[0008]
For such a thermoelectric conversion module, various structures have been proposed, for example, as described in Patent Literature 1, Patent Literature 2, or Patent Literature 3.
[0009]
[Patent Document 1]
JP-A-8-153899 [Patent Document 2]
Japanese Patent Application Laid-Open No. 2001-119076 [Patent Document 3]
Japanese Patent Application Laid-Open No. 2002-111076
11 and 12 show the structure of a conventional thermoelectric conversion module. FIG. 11 is a schematic sectional view of a conventional thermoelectric conversion module, and FIG. 12 is an enlarged sectional view of a portion c in FIG. In a conventional thermoelectric conversion module 101, a copper electrode 106 is attached to a ceramic plate 105 by metallizing 108 so that a temperature difference can be smoothly generated between both ends of the thermoelectric elements 102 and 103. The copper electrode 106 and the thermoelectric elements 102 and 103 are shown in FIG. As shown in FIG. 12, they were electrically connected using the solder 107. At this time, the Ni plate 109 was pressed against the general thermoelectric elements 102 and 103 as electrodes so that the solder 107 could be put on well. In some cases, gold was coated on the Ni plate 109.
[0011]
Here, the flow of heat and the flow of electricity in the conventional thermoelectric conversion module 101 are as follows. The heat transmitted from the upper portion of the ceramic plate 105 in FIG. 11 passes through the metallized portion 108 → the copper electrode 106 → Ni plate 109 → thermoelectric elements 102 and 103 → Ni plate 109 → copper electrode 106 → metalized portion 108. And flows in the direction of the arrow in the figure, and the electric current flows in the form of the copper electrode 106 → Ni plate 109 → thermoelectric elements 102 and 103 → Ni plate 109 → copper electrode 106.
[0012]
As for heat, there is a problem of thermal contact, and therefore, electrodes having high thermal conductivity such as Ni plate 109 and copper plate 106 are used for these electrodes, and these metal materials have low electric resistance.
[0013]
FIG. 13 shows a method of manufacturing a conventional thermoelectric conversion module. Conventionally, after a metallization process 108 is performed on one ceramic plate 105 (FIG. 13A), a copper electrode 106 is attached using a solder 107 (FIG. 13B), and a predetermined portion on the copper electrode 106 is formed. , And thermoelectric elements 102 and 103 are arranged on the upper surface thereof ((c)).
[0014]
The thermoelectric elements 102 and 103 were prepared by attaching Ni plates 109 to both surfaces of thermoelectric element materials 102a and 103a (the same (d)) by pressure welding or plating (the same (e)) and then performing cutting. ((F)).
[0015]
The other ceramic plate 105 to which the copper electrode was attached by performing the metallizing process in the same procedure was placed on the thermoelectric elements 102 and 103 having soldered on the upper surface (the same (g)), and then the heating process was performed. Thus, each thermoelectric element and a copper electrode were soldered to complete a thermoelectric conversion module.
[0016]
[Problems to be solved by the invention]
As described above, the conventional thermoelectric conversion module 101 uses a solder for bonding between dissimilar metals, such as between the metallized portion 108 of the ceramic plate 105 and the copper plate 106 or between the Ni plate 109 and the copper plate 106. Since it was necessary to use a binder such as 107, the contact resistance was not negligible, and the solder 107 and the thermoelectric elements 102 and 103 could cause a chemical reaction. There is a disadvantage that its performance is deteriorated.
[0017]
Actually, even if the performance as a thermoelectric element is made of bismuth tellurium (Bi 2 Te 3 ) -based material and the performance as a thermoelectric element is ZT = 1, the performance is reduced to about ZT = 0.5 by modularization. At present, the performance of the device has not changed for about 40 years with ZT = 1, and the key point is how much the module with the performance of ZT = 1 can be modularized to bring it closer to ZT = 1 by improving the modularization technology. I was
[0018]
Let's look at the performance of specific thermoelectric elements. 9 × 10 −6 Ωm is a typical value of the resistivity of the Bi 2 Te 3 based material at room temperature. The shape of a generally used element is a rectangular parallelepiped of about 3 × 3 × 1 mm, and the resistance of the rectangular parallelepiped itself is about 3 mΩ for each element. However, in the case where the Ni electrode is pressed against the rectangular parallelepiped, the case where the Ni electrode is plated, or the case where the Ni electrode is connected to the copper electrode using solder, it is inevitable that the contact resistance is inevitably added.
[0019]
Further, in the case of a thermoelectric conversion module using a conventional solder, even if a thermoelectric material usable in a high temperature range is selected, the usable temperature range is limited to 200 ° C. or less, which is the melting point of the solder. It could not withstand use in the area. Moreover, it was not suitable for an extremely low temperature environment.
[0020]
In addition, in the conventional method of manufacturing a thermoelectric conversion module, complicated steps such as metallization and pressure welding of a Ni electrode are indispensable in order to enable bonding by solder, and this has caused an increase in manufacturing cost.
[0021]
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems of the conventional thermoelectric conversion module, and it is possible to reduce the contact resistance as much as possible to extract the resistance of the thermoelectric element itself. It is an object of the present invention to provide a thermoelectric conversion module that does not deteriorate the performance of the element and can be used in a wide temperature range from an extremely low temperature to a high temperature range.
[0022]
It is another object of the present invention to provide a method of manufacturing a thermoelectric conversion module that can be manufactured in a simple process and that can reduce costs.
[0023]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, a thermoelectric conversion module according to the present invention is configured such that a plurality of thermoelectric elements are electrically connected in series by connecting ends of adjacent thermoelectric elements with a conductive member. In the thermoelectric conversion module in which the outside of the thermoelectric conversion module is coated with an insulating member, the conductive member includes an electrode plate and a conductive paste in which metal fine particles having an average particle diameter of 1 to 10 nm are dispersed in a liquid. And / or a binder that applies one surface of the electrode plate to the thermoelectric element and the other surface to the insulating member by sintering the metal fine particles after application to the insulating member and / or the electrode plate. It is characterized by having.
[0024]
Conventionally, for example, a Ni electrode was pressed against a thermoelectric element in order to join it to an electrode plate made of a copper plate, for example, and soldering was performed thereon. However, a conductive material made of metal fine particles having an average particle diameter of 1 to 10 nm was used. By using the paste, the thermoelectric element and the copper electrode can be directly joined without using the Ni electrode part and the solder part.
[0025]
In addition, the bonding between the insulating member, for example, the ceramic plate and the copper electrode can be performed using a conductive paste, and the thermal resistance can be reduced. In addition, although the surfaces of the insulating member and the copper electrode are not smooth microscopically, the fine metal particles having an average particle size of 1 to 10 nm can enter the gaps between the rough surfaces formed on these surfaces to achieve good heat. Contact can be expected.
[0026]
By employing a conductive paste composed of such fine metal particles, the contact resistance is greatly reduced, the resistance of the thermoelectric element itself can be extracted, and no chemical reaction occurs with the thermoelectric element. Therefore, the performance of the thermoelectric element does not deteriorate even by modularization.
[0027]
In the thermoelectric conversion module according to the second aspect, a plurality of thermoelectric elements are electrically connected in series by connecting the ends of adjacent thermoelectric elements with a conductive member, and the thermoelectric conversion module is insulated outside the conductive member. In the thermoelectric conversion module covered with a conductive member, the conductive member is formed by applying a conductive paste in which metal fine particles having an average particle diameter of 1 to 10 nm are dispersed in a liquid to the insulating member, and then contacting the metal fine particles with each other. Sintering the thermoelectric element and the insulating member.
[0028]
A conventionally used electrode plate is removed, and a member obtained by sintering a conductive paste is used as an electrode. In this case, the thermal contact between the insulating member and the thermoelectric element is further improved. In the case where the conductive member is used as a Peltier module, that is, in a case where a temperature difference is generated by passing an electric current instead of power generation, heat may be generated by Joule heat unless the thickness of the conductive member is increased to some extent.
[0029]
The method for manufacturing a thermoelectric conversion module according to claim 3, wherein a conductive paste in which metal fine particles having an average particle size of 1 to 10 nm are dispersed in a liquid is applied on a plurality of portions on an insulating plate. An electrode plate is juxtaposed for each location, and after applying the conductive paste to a predetermined portion on the electrode plate, a thermoelectric element is arranged on the upper surface thereof, and the conductive paste is applied at a plurality of locations on the lower surface, and each application is performed. After another insulating plate to which the electrode plate is attached is placed on the thermoelectric element for each location, one surface of each electrode plate is joined to the thermoelectric element by performing a heat treatment and sintering the metal fine particles. At the same time, the other surface is joined to an insulating plate.
[0030]
The conductive paste shows the behavior of a highly viscous liquid at room temperature, and can be applied to an insulating member, an electrode plate, and a thermoelectric element and placed thereon, and the conductive paste applied to the insulating member can be used. An electrode plate may be attached, and a set of insulating members sandwiching the thermoelectric element may be heated to, for example, about 250 ° C., and the metal particles may be joined together by sintering. Since manufacturing can be performed in such a simple process, the time and effort for modularization can be reduced as compared with the conventional manufacturing method.
[0031]
The method for manufacturing a thermoelectric conversion module according to claim 4, wherein a conductive paste in which metal fine particles having an average particle diameter of 1 to 10 nm are dispersed in a liquid is applied on a plurality of places on an insulating plate. While the thermoelectric element is arranged at a predetermined portion of the place, another insulating plate body to which the conductive paste is applied at a plurality of places is placed on the lower surface of the thermoelectric element. And bonding the thermoelectric element to the insulating plate by sintering.
[0032]
In the case of this manufacturing method, it is considered that the process is simpler, and thus greatly contributes to reduction of the manufacturing cost.
[0033]
In the thermoelectric conversion module according to the fifth aspect and the method for manufacturing a thermoelectric conversion module according to the sixth aspect, the metal fine particles are silver or copper. A conductive paste made of silver or copper metal fine particles can achieve good bonding to an insulating member, an electrode plate, and a thermoelectric element.
[0034]
The use temperature range of the thermoelectric conversion module made of such metal fine particles can be expanded to about -260 ° C to about 1000 ° C. In the case of a conventional thermoelectric conversion module using solder, the usable temperature range is limited to 200 ° C. or less, which is the melting point of solder, and it is difficult to use at an extremely low temperature. In the case of a conductive paste, the temperature range can be extended to about 963 ° C. of the melting point of silver, and in the case of using a conductive paste composed of copper metal fine particles, to about 1083 ° C. of the melting point of copper. Further, in the thermoelectric conversion module manufactured using the conductive paste, even when cooled to -260 ° C., its performance is stable without change.
[0035]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a schematic sectional view of the thermoelectric conversion module, and FIG. 2 is an enlarged sectional view of a part a in FIG. The thermoelectric conversion module 1 has a p-type thermoelectric element 2 and an n-type thermoelectric element 3 arranged alternately, and one p-type thermoelectric element 2 and one n-type thermoelectric element 3 adjacent thereto are provided below. A conductive member 4 for connecting them in common is provided. On the other hand, a conductive member 4 for connecting them in common is provided above the n-type thermoelectric element 3 and the p-type thermoelectric element 2 adjacent thereto. I have.
[0036]
Therefore, the conductive members 4 provided on the upper and lower portions are provided in a form shifted by one element, and the plurality of thermoelectric elements 2 and 3 are electrically connected in series. Outside the thermoelectric elements 2 and 3, an insulating member 5 commonly connected to the conductive members 4 is provided. As the insulating member 5, for example, a ceramic plate is used.
[0037]
The conductive member 4 includes a copper electrode 6 and a binder 7 that joins one surface of the copper electrode 6 to the thermoelectric elements 2 and 3 and joins the other surface to the insulating member 5. The binder 7 is formed by applying a conductive paste in which metal fine particles having an average particle diameter of 1 to 10 nm are dispersed in a liquid to the thermoelectric elements 2 and 3 and / or the insulating member 5 and / or the copper electrode 6 and then bonding the metal fine particles to each other. These are joined by sintering. The metal fine particles are desirably silver or copper that can achieve good bonding to the insulating member 5, the copper electrode 6, and the thermoelectric elements 2 and 3.
[0038]
In the thermoelectric conversion module 1 shown in FIG. 1, when a temperature difference is set such that the upper insulating member 5 side has a high temperature and the lower insulating member 5 side has a low temperature, a potential difference occurs between the upper and lower conductive members 4 and 4. The electrode can be taken out.
[0039]
Next, a method for manufacturing the thermoelectric conversion module is shown in FIG. A binder 7 made of a conductive paste is applied to a plurality of places on a lower insulating member 5 made of a ceramic plate or the like (FIG. 3A), and a copper electrode 6 is juxtaposed at each applied place (FIG. 3B). After applying the binder 7 to a predetermined portion on the copper electrode 6, the thermoelectric elements 2 and 3 are arranged on the upper surface thereof ((c)). The thermoelectric elements 2 and 3 are made by cutting the thermoelectric element materials 2a and 3a ((d)) as they are ((e)).
[0040]
Next, the binder 7 is applied to the lower surface at a plurality of locations, and the upper insulating member 5 for attaching the copper electrode to each applied location is placed on the thermoelectric elements 2 and 3 in a state where the binder 7 is mounted on the copper electrode. After mounting (same (f)), one surface of each copper electrode 6 is joined to the thermoelectric elements 2 and 3 by performing a heat treatment to sinter the metal fine particles constituting the binder 7 and simultaneously insulate the other surfaces. To the conductive member 5.
[0041]
Next, another embodiment is shown in FIGS. FIG. 4 is a schematic sectional view of a thermoelectric conversion module according to another embodiment, and FIG. 5 is an enlarged sectional view of a portion b in FIG. 4 and 5, members having the same structure and operation as those described with reference to FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted.
[0042]
In the thermoelectric conversion module 11 of this embodiment, a member obtained by sintering a conductive paste in which metal fine particles having an average particle diameter of 1 to 10 nm, for example, silver fine particles are dispersed in a liquid, is used for the conductive member 4. That is, the conventionally used electrode plate itself is removed, and a member obtained by sintering a conductive paste is used as an electrode.
[0043]
FIG. 6 shows a method for manufacturing the thermoelectric conversion module of this embodiment. A binder 7 made of a conductive paste is applied to a plurality of places on a lower insulating member 5 made of a ceramic plate or the like (FIG. 6A), and thermoelectric elements 2 and 3 are arranged at predetermined portions of the applied places (see FIG. b)). Next, after the upper insulating member 5 for applying the binder 7 at a plurality of places on the lower surface is mounted on the thermoelectric elements 2 and 3 ((c)), the metal fine particles constituting the binder 7 are subjected to a heat treatment. Are bonded to the two insulating members 5 by sintering.
[0044]
【Example】
In order to confirm the operation and effect of the present invention, resistance values of a plurality of specimens joined using various binders were compared. The resistance was measured by a four-terminal method using a test body having a structure as shown in FIG. A 2 × 2 × 5 mm copper block 8 was used as a measurement sample, and this was bonded to copper electrodes 10 and 11 on both sides by a bonding binder 9, and further, lead wires 12 were solder-bonded 13 to them.
[0045]
A typical solder, a typical silver paste as a conductive paste, a low-resistance silver paste, and a silver nanopaste used in the present invention were used as the bonding binder 9. Table 1 shows these characteristics and the resistance values of the test pieces.
[Table 1]
Figure 2004273489
[0046]
The resistance value of this test piece excluding the contact resistance due to the binder bonding is the value of the copper block 8 itself of 2 × 2 × 5 mm, which is a measurement sample, considering the resistivity of copper at room temperature of 1 × 10 −8 Ωm. 0.0125 mΩ. Although the influence of the copper electrodes 10 and 11 on both sides can be considered, since the measured resistance value is almost several mΩ, the resistance value by the four-terminal method shown in Table 1 is substantially equal to the bonding binder 9 (and the solder bonding of the lead wire 12). 13 (sum of 13).
[0047]
This test body is considered as an equivalent circuit shown in FIG. 8, in which the copper electrode resistance 14 is small and the binder resistance 15 is large. When this is considered for the conventional thermoelectric conversion module 101 shown in FIG. 11 described above, an equivalent circuit shown in FIG. 9 is obtained. That is, assuming that the thermoelectric element resistance 16 is 3 mΩ, the total of the binder resistances 17 is 0.1 to 0.5 mΩ, and the total of the Ni electrode contact resistance 18 is 0.5 to 3 mΩ. Therefore, the total resistance per module is about 6 mΩ, which is about twice as large as that of the pure thermoelectric element resistance 16. This is considered to be the reason why the effective figure of merit falls due to the modularization.
[0048]
On the other hand, when considering the thermoelectric conversion module of the present invention, an equivalent circuit as shown in FIG. 10 is obtained. In contrast to 3 mΩ of the thermoelectric element resistor 16, the total of the silver nanopaste resistors 19 is 0.1 mΩ or less in the present test. 0.08 mΩ, and the effective resistance per module can be reduced to about half that of the conventional thermoelectric conversion module. That is, conventionally, a Ni electrode was formed for bonding with a copper electrode, and soldering was performed thereon. However, by using a silver nanopaste, a Ni electrode portion and a solder portion were not adopted, and a thermoelectric element and a copper were used. It becomes possible to directly join the electrode.
[0049]
Furthermore, the bonding with the insulating member can also be performed with silver nanopaste, and the thermal resistance can be reduced. In addition, although the surfaces of the insulating member and the copper electrode are not smooth microscopically, since the particles of the silver nanopaste are about several nm, good thermal contact can be expected by entering the gap. Also, since no solder is used, the need for a Ni electrode is eliminated, and the contact resistance is greatly reduced.
[0050]
In this way, the silver nanopaste can draw out the resistance itself of the thermoelectric element, and the performance of the thermoelectric element does not deteriorate even by modularization.
[0051]
【The invention's effect】
As described above, the thermoelectric conversion module of the present invention uses an electrode plate as a conductive member and a conductive paste in which metal fine particles having an average particle size of 1 to 10 nm are dispersed in a liquid. It is possible to directly join the thermoelectric element and the copper electrode without using a solder part. In addition, the bonding between the insulating member and the copper electrode can be performed using a conductive paste, the thermal resistance can be reduced, and good thermal contact can be expected by the fine metal particles entering the gap.
[0052]
By employing a conductive paste composed of such fine metal particles, the contact resistance is greatly reduced, the resistance of the thermoelectric element itself can be extracted, and no chemical reaction occurs with the thermoelectric element. Therefore, the performance of the thermoelectric element does not deteriorate even by modularization.
[0053]
Further, since solder is not used for the binder, the operating temperature range can be expanded. Conventionally, the melting point of the solder is limited to 200 ° C. or less, but it can be used even in a high temperature range exceeding the melting point.
[0054]
The thermoelectric conversion module according to claim 2 uses, as the conductive member, a conductive paste in which metal fine particles having an average particle diameter of 1 to 10 nm are dispersed in a liquid. A member obtained by sintering a conductive paste can be used as an electrode. In this case, the thermal contact between the insulating member and the thermoelectric element is further improved.
[0055]
In the method for manufacturing a thermoelectric conversion module according to the third aspect, by utilizing the property of a conductive paste having a high viscosity at room temperature, the electrode plate and the thermoelectric element are sandwiched by an insulating member and joined by sintering. A method for manufacturing a thermoelectric conversion module in a simple process can be realized.
[0056]
The method for manufacturing a thermoelectric conversion module according to claim 4 employs a simpler process of sandwiching the thermoelectric elements with insulating members and joining them by sintering, which greatly contributes to a reduction in manufacturing cost.
[0057]
In the method for manufacturing a thermoelectric conversion module according to the fifth aspect and the method for manufacturing a thermoelectric conversion module according to the sixth aspect, silver or copper is employed as the metal fine particles, so that good bonding to the insulating member, the electrode plate, and the thermoelectric element can be achieved. . Further, the working temperature range of the thermoelectric conversion module made of such metal fine particles can be expanded to about -260 ° C to 1000 ° C.
[0058]
In the case of a conventional thermoelectric conversion module using solder, the usable temperature range is limited to 200 ° C. or less, which is the melting point of solder, and it has been difficult to use at an extremely low temperature. In the case of a conductive paste, the temperature range can be extended up to about 963 ° C. of the melting point of silver, and in the case of using a conductive paste composed of fine metal particles of copper, up to about 1083 ° C. of the melting point of copper. Further, in the thermoelectric conversion module manufactured using the conductive paste, even when cooled to −260 ° C., its performance is stable without change.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view of a thermoelectric conversion module.
FIG. 2 is an enlarged sectional view of a part a in FIG.
FIG. 3 is a flowchart showing a method for manufacturing a thermoelectric conversion module.
FIG. 4 is a schematic sectional view of a thermoelectric conversion module according to another embodiment.
FIG. 5 is an enlarged sectional view of a portion b in FIG. 4;
FIG. 6 is a flowchart illustrating a method for manufacturing a thermoelectric conversion module according to another embodiment.
FIG. 7 is an explanatory diagram for measuring a specimen resistance.
FIG. 8 is an equivalent circuit diagram of a test body.
FIG. 9 is an equivalent circuit diagram of a conventional thermoelectric conversion module.
FIG. 10 is an equivalent circuit diagram of the thermoelectric conversion module of the present invention.
FIG. 11 is a schematic sectional view of a conventional thermoelectric conversion module.
FIG. 12 is an enlarged sectional view of a portion c in FIG. 11;
FIG. 13 is a flowchart showing a method for manufacturing a conventional thermoelectric conversion module.
[Explanation of symbols]
Reference Signs List 1 thermoelectric conversion module 2 thermoelectric element 3 thermoelectric element 4 conductive member 5 insulating member 6 copper electrode 7 binder

Claims (6)

隣接する熱電素子の端部間を導電性部材によって接続することで複数個の熱電素子を電気的に直列に接続し、この導電性部材の外方を絶縁性部材で被覆する熱電変換モジュールにおいて、前記導電性部材は、電極板と、平均粒径が1〜10nmである金属微粒子が液体中に分散する導電性ペーストを前記熱電素子及び/又は前記絶縁性部材及び/又は前記電極板に塗布した後、前記金属微粒子同士を燒結することにより前記電極板の一面を前記熱電素子に接合し他面を前記絶縁性部材に接合するバインダであることを特徴とする熱電変換モジュール。In a thermoelectric conversion module in which a plurality of thermoelectric elements are electrically connected in series by connecting end portions of adjacent thermoelectric elements with a conductive member, and the outside of the conductive member is covered with an insulating member, The conductive member has an electrode plate, and a conductive paste in which metal fine particles having an average particle diameter of 1 to 10 nm are dispersed in a liquid is applied to the thermoelectric element and / or the insulating member and / or the electrode plate. And a binder for bonding one surface of the electrode plate to the thermoelectric element and bonding the other surface to the insulating member by sintering the metal fine particles. 隣接する熱電素子の端部間を導電性部材によって接続することで複数個の熱電素子を電気的に直列に接続し、この導電性部材の外方に絶縁性部材で被覆する熱電変換モジュールにおいて、前記導電性部材は、平均粒径が1〜10nmである金属微粒子が液体中に分散する導電性ペーストを前記絶縁性部材に塗布した後、前記金属微粒子同士を燒結することにより前記熱電素子と前記絶縁性部材を接合するバインダであることを特徴とする熱電変換モジュール。In a thermoelectric conversion module in which a plurality of thermoelectric elements are electrically connected in series by connecting end portions of adjacent thermoelectric elements by a conductive member, and the outside of the conductive member is covered with an insulating member, The conductive member is formed by applying a conductive paste in which metal fine particles having an average particle diameter of 1 to 10 nm are dispersed in a liquid to the insulating member, and then sintering the metal fine particles with each other. A thermoelectric conversion module, which is a binder for joining insulating members. 絶縁性の板体上に、平均粒径が1〜10nmである金属微粒子が液体中に分散する導電性ペーストを複数箇所塗布して、各塗布箇所毎に電極板を並置し、この電極板上の所定部分に前記導電性ペーストを塗布した後、その上面に熱電素子を配置する一方、下面に前記導電性ペーストを複数箇所塗布して各塗布箇所毎に電極板を添着する他の絶縁性の板体を前記熱電素子上に載置した後、加熱処理を行なって前記金属微粒子同士を燒結することにより各電極板の一面を熱電素子に接合すると同時に他面を絶縁性の板体に接合することを特徴とする熱電変換モジュールの製造方法。A conductive paste in which metal fine particles having an average particle diameter of 1 to 10 nm are dispersed in a liquid is applied on a plurality of portions on an insulating plate, and an electrode plate is juxtaposed at each application portion. After applying the conductive paste to a predetermined portion, the thermoelectric element is disposed on the upper surface, while the conductive paste is applied on the lower surface at a plurality of locations, and an electrode plate is attached to each applied location. After the plate is placed on the thermoelectric element, a heat treatment is performed to sinter the metal fine particles so that one surface of each electrode plate is joined to the thermoelectric element and the other surface is joined to the insulating plate. A method for manufacturing a thermoelectric conversion module, comprising: 絶縁性の板体上に、平均粒径が1〜10nmである金属微粒子が液体中に分散する導電性ペーストを複数箇所塗布して、各塗布箇所の所定部分に熱電素子を配置する一方、下面に前記導電性ペーストを複数箇所塗布する他の絶縁性の板体を前記熱電素子上に載置した後、加熱処理を行なって前記金属微粒子同士を燒結することにより熱電素子を絶縁性の板体に接合することを特徴とする熱電変換モジュールの製造方法。A conductive paste in which metal fine particles having an average particle diameter of 1 to 10 nm are dispersed in a liquid is applied on a plurality of places on an insulating plate body, and a thermoelectric element is arranged at a predetermined portion of each applied place, while a lower surface is placed. After placing another insulating plate body on which the conductive paste is applied at a plurality of places on the thermoelectric element, heat-treating the metal fine particles to thereby insulate the thermoelectric element from the insulating plate body A method for manufacturing a thermoelectric conversion module, comprising: 前記金属微粒子は、銀または銅であることを特徴とする請求項1又は請求項2記載の熱電変換モジュール。The thermoelectric conversion module according to claim 1, wherein the metal fine particles are silver or copper. 前記金属微粒子は、銀または銅であることを特徴とする請求項3又は請求項4記載の熱電変換モジュールの製造方法。The method for manufacturing a thermoelectric conversion module according to claim 3, wherein the metal fine particles are silver or copper.
JP2003058033A 2003-03-05 2003-03-05 Thermoelectric conversion module and its manufacturing method Pending JP2004273489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003058033A JP2004273489A (en) 2003-03-05 2003-03-05 Thermoelectric conversion module and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003058033A JP2004273489A (en) 2003-03-05 2003-03-05 Thermoelectric conversion module and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004273489A true JP2004273489A (en) 2004-09-30

Family

ID=33121240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003058033A Pending JP2004273489A (en) 2003-03-05 2003-03-05 Thermoelectric conversion module and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004273489A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007098736A2 (en) * 2006-03-01 2007-09-07 Curamik Electronics Gmbh Method for the production of peltier modules, and peltier module
WO2009013960A1 (en) * 2007-07-20 2009-01-29 Aruze Corp. Thermoelectric conversion module
JP2009081252A (en) * 2007-09-26 2009-04-16 Aruze Corp Thermoelectric conversion element and method for forming electrode thereof
JP2009302332A (en) * 2008-06-13 2009-12-24 Aruze Corp Thermoelectric conversion element and conductive member for thermoelectric conversion element
JP2010238741A (en) * 2009-03-30 2010-10-21 Atsumi Tec:Kk Method for manufacturing thermoelectric transducer, and device
JP4782897B1 (en) * 2011-04-11 2011-09-28 隆彌 渡邊 Air conditioning
CN102315380A (en) * 2010-06-30 2012-01-11 株式会社丰田自动织机 The syndeton of element and method of attachment
JP4856282B1 (en) * 2011-07-30 2012-01-18 隆彌 渡邊 Air conditioning
WO2012140800A1 (en) * 2011-04-11 2012-10-18 Watanabe Takaya Cooling and heating device
DE102011079467A1 (en) * 2011-07-20 2013-01-24 Behr Gmbh & Co. Kg Thermoelectric module, method for producing a thermoelectric module and use of a metallic glass or a sintered material
EP2629343A2 (en) 2012-02-17 2013-08-21 Yamaha Corporation Thermoelectric conversion module and method for manufacturing thermoelectric conversion module
JP2013168608A (en) * 2012-02-17 2013-08-29 Yamaha Corp Thermoelectric element and manufacturing method therefor
JP2014236109A (en) * 2013-06-03 2014-12-15 ヤマハ株式会社 Thermoelectric conversion component
KR20160013309A (en) * 2014-07-24 2016-02-04 주식회사 제펠 Thermoelectric module having sintered layer and method of manufacturing the module
US20170069816A1 (en) * 2015-09-04 2017-03-09 Yamaha Corporation Thermoelectric conversion module and manufacturing method thereof
US20180038158A1 (en) * 2016-08-02 2018-02-08 Camille Charles Chidiac Thermoelectricity Harvested from Infrared Absorbing Coatings
WO2019082932A1 (en) * 2017-10-24 2019-05-02 日立化成株式会社 Method for manufacturing thermoelectric conversion module, thermoelectric conversion module, and binder for thermoelectric conversion module

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8481842B2 (en) 2006-03-01 2013-07-09 Curamik Electronics Gmbh Process for producing Peltier modules, and Peltier module
WO2007098736A3 (en) * 2006-03-01 2008-07-03 Curamik Electronics Gmbh Method for the production of peltier modules, and peltier module
JP2009528684A (en) * 2006-03-01 2009-08-06 クラミック エレクトロニクス ゲーエムベーハー Peltier element purification process and Peltier element
WO2007098736A2 (en) * 2006-03-01 2007-09-07 Curamik Electronics Gmbh Method for the production of peltier modules, and peltier module
WO2009013960A1 (en) * 2007-07-20 2009-01-29 Aruze Corp. Thermoelectric conversion module
JP2009081252A (en) * 2007-09-26 2009-04-16 Aruze Corp Thermoelectric conversion element and method for forming electrode thereof
JP2009302332A (en) * 2008-06-13 2009-12-24 Aruze Corp Thermoelectric conversion element and conductive member for thermoelectric conversion element
US20110100410A1 (en) * 2008-06-13 2011-05-05 Universal Entertainment Corporation Thermoelectric converter element and conductive member for thermoelectric converter element
JP2010238741A (en) * 2009-03-30 2010-10-21 Atsumi Tec:Kk Method for manufacturing thermoelectric transducer, and device
CN102315380A (en) * 2010-06-30 2012-01-11 株式会社丰田自动织机 The syndeton of element and method of attachment
WO2012140800A1 (en) * 2011-04-11 2012-10-18 Watanabe Takaya Cooling and heating device
JP4782897B1 (en) * 2011-04-11 2011-09-28 隆彌 渡邊 Air conditioning
DE102011079467A1 (en) * 2011-07-20 2013-01-24 Behr Gmbh & Co. Kg Thermoelectric module, method for producing a thermoelectric module and use of a metallic glass or a sintered material
US9837594B2 (en) 2011-07-20 2017-12-05 Mahle International Gmbh Thermoelectric module, method for producing a thermoelectric module and use of a metallic glass or a sintered material
JP4856282B1 (en) * 2011-07-30 2012-01-18 隆彌 渡邊 Air conditioning
EP2629343A2 (en) 2012-02-17 2013-08-21 Yamaha Corporation Thermoelectric conversion module and method for manufacturing thermoelectric conversion module
CN103311423B (en) * 2012-02-17 2017-06-30 雅马哈株式会社 The manufacture method of thermoelectric conversion component and thermoelectric conversion component
JP2013191838A (en) * 2012-02-17 2013-09-26 Yamaha Corp Thermoelectric conversion module and manufacturing method of the same
EP2629343A3 (en) * 2012-02-17 2014-05-07 Yamaha Corporation Thermoelectric conversion module and method for manufacturing thermoelectric conversion module
CN103311423A (en) * 2012-02-17 2013-09-18 雅马哈株式会社 Thermoelectric conversion module and method for manufacturing thermoelectric conversion module
JP2013168608A (en) * 2012-02-17 2013-08-29 Yamaha Corp Thermoelectric element and manufacturing method therefor
US9705061B2 (en) 2012-02-17 2017-07-11 Yamaha Corporation Thermoelectric conversion module and method for manufacturing thermoelectric conversion module
JP2014236109A (en) * 2013-06-03 2014-12-15 ヤマハ株式会社 Thermoelectric conversion component
KR101593498B1 (en) * 2014-07-24 2016-02-16 주식회사 제펠 Thermoelectric module having sintered layer and method of manufacturing the module
KR20160013309A (en) * 2014-07-24 2016-02-04 주식회사 제펠 Thermoelectric module having sintered layer and method of manufacturing the module
US20170069816A1 (en) * 2015-09-04 2017-03-09 Yamaha Corporation Thermoelectric conversion module and manufacturing method thereof
US10868230B2 (en) * 2015-09-04 2020-12-15 Yamaha Corporation Thermoelectric conversion module and manufacturing method thereof
US20180038158A1 (en) * 2016-08-02 2018-02-08 Camille Charles Chidiac Thermoelectricity Harvested from Infrared Absorbing Coatings
WO2019082932A1 (en) * 2017-10-24 2019-05-02 日立化成株式会社 Method for manufacturing thermoelectric conversion module, thermoelectric conversion module, and binder for thermoelectric conversion module
JPWO2019082932A1 (en) * 2017-10-24 2020-11-12 日立化成株式会社 Manufacturing method of thermoelectric conversion module, bonding material for thermoelectric conversion module and thermoelectric conversion module
JP7302478B2 (en) 2017-10-24 2023-07-04 株式会社レゾナック Method for manufacturing thermoelectric conversion module, thermoelectric conversion module, and bonding material for thermoelectric conversion module

Similar Documents

Publication Publication Date Title
JP2004273489A (en) Thermoelectric conversion module and its manufacturing method
TWI505522B (en) Method for manufacturing thermoelectric conversion module
US6563039B2 (en) Thermoelectric unicouple used for power generation
JP5336373B2 (en) Thermoelectric conversion module
WO2013011997A1 (en) Stacked thermoelectric conversion module
US6673996B2 (en) Thermoelectric unicouple used for power generation
JP2007109942A (en) Thermoelectric module and manufacturing method thereof
JP2006319210A (en) Manufacturing method of thermoelectric conversion element
WO2017059256A1 (en) Mechanical advantage in low temperature bond to a substrate in a thermoelectric package
JP3245793B2 (en) Manufacturing method of thermoelectric conversion element
JPH0697512A (en) Thermoelectric conversion element
WO2006043402A1 (en) Thermoelectric conversion module
CN115004391A (en) Thermoelectric conversion module
JP5653455B2 (en) Thermoelectric conversion member
WO2017020833A1 (en) Phase change inhibited heat-transfer thermoelectric power generation device and manufacturing method thereof
JP5713526B2 (en) Thermoelectric conversion module, cooling device, power generation device and temperature control device
JP2004311819A (en) Thermoelectric conversion module
JPH09172204A (en) Thermoelectric conversion apparatus and thermoelectric its manufacture
JP3472593B2 (en) Thermoelectric device
JP2006013200A (en) Thermoelectric transducing module, substrate therefor cooling device, and power generating device
JP2018093152A (en) Thermoelectric power generation device
JPH1168172A (en) Junction of group silicon and germanium-based material, thermoelectric converter module and manufacture thereof
KR101300758B1 (en) HIGHLY EFFICIENT π-TYPE THERMOELECTRIC MODULE FOR POWER GENERATION AND PREPARING METHOD OF THE SAME
JPH1084140A (en) Thermo-electric converter and manufacture thereof
JP2020150139A (en) Thermoelectric conversion module

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041101

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050202

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050202

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090415