WO2006035839A1 - 測定装置 - Google Patents

測定装置 Download PDF

Info

Publication number
WO2006035839A1
WO2006035839A1 PCT/JP2005/017889 JP2005017889W WO2006035839A1 WO 2006035839 A1 WO2006035839 A1 WO 2006035839A1 JP 2005017889 W JP2005017889 W JP 2005017889W WO 2006035839 A1 WO2006035839 A1 WO 2006035839A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
receiving element
light receiving
output value
light source
Prior art date
Application number
PCT/JP2005/017889
Other languages
English (en)
French (fr)
Inventor
Yuki Ito
Hitoshi Hata
Hiroyuki Nakanishi
Original Assignee
Arkray, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkray, Inc. filed Critical Arkray, Inc.
Priority to US11/664,206 priority Critical patent/US7495751B2/en
Priority to EP05788008.0A priority patent/EP1790974B1/en
Priority to CN2005800334228A priority patent/CN101031791B/zh
Priority to JP2006537783A priority patent/JP4850067B2/ja
Publication of WO2006035839A1 publication Critical patent/WO2006035839A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • G01N21/3151Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths using two sources of radiation of different wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/8483Investigating reagent band

Definitions

  • the present invention relates to a measuring apparatus, and more particularly to an absorbance measuring apparatus that measures the absorbance of a target component contained in a sample.
  • the absorbance measurement method is used for various component analyses.
  • Component analysis by the absorbance measurement method is performed, for example, by the following procedure. First, light of a wavelength corresponding to the dye is irradiated from a light source such as a halogen lamp or LED onto a transparent container (cell) containing the sample mixed with the dye. Next, the intensity I of the transmitted light that has passed through the transparent container and the specimen is measured by a light receiving element.
  • the component amount of the substance labeled with the dye can be detected (see, for example, Patent Document 1).
  • the blank value I is measured in a cell with water or empty.
  • the light source power is also applied to the cell by irradiating light.
  • a reflection method using reflected light reflected by a measurement object is also known as an absorbance measurement method.
  • the absorbance measurement method is also used for measuring blood glucose levels in blood.
  • a blood glucose meter that measures a blood glucose level by an absorbance measurement method is generally called a colorimetric blood glucose meter.
  • colorimetric blood glucose meters that are assumed to be carried by the patient, in order to reduce the size, use made of non-woven fabric or a discarded sensor or chip is used instead of the transparent container. .
  • the amount of light from the halogen lamp, the LED, or the like that serves as the light source varies with time, and accordingly, the amount of transmitted light and reflected light also varies. For this reason, in order to obtain an accurate absorbance in the conventional absorbance measurement method, it is necessary to take into account the temporal change in the light amount of the light source. Therefore, in the conventional absorbance measurement device (blood glucose meter), it is necessary to measure the blank value in advance before measuring the absorbance, so that complicated operations are required before the actual measurement starts! / There is a problem that the preparation time until the start of measurement is long!
  • a sensor or a chip to be measured is inserted into an insertion hole provided in the blood glucose meter.
  • a problem that a blank value cannot be measured also occurs.
  • the blood glucose meter is provided with an optical system dedicated to measuring a blank value, it is considered that the complication of operation can be suppressed. Also, in this case, the optical element provided in the optical system dedicated to the measurement of the blank value is used for actual measurement in addition to the measurement of the blank value, thereby improving the measurement accuracy of the absorbance. Can do.
  • An object of the present invention is to provide a measuring apparatus that solves the above-described problems, has excellent operability, and can accurately measure absorbance.
  • a measuring apparatus is a measuring apparatus that measures the absorbance of a target component contained in a sample, and a light source that emits light having a wavelength that is absorbed by the target component; Comprising a first light receiving element and a second light receiving element that output a signal having a magnitude corresponding to the intensity of the received light, a calculation unit, and a storage unit, wherein the first light receiving element and the light source include: Transmitted light emitted from the light source and transmitted through the sample is the first light receiving element.
  • the second light receiving element is disposed so as to receive light other than the transmitted light emitted from the light source, and the storage unit does not include the sample.
  • the correlation between the output value of the first light receiving element and the output value of the second light receiving element when the light source power light is emitted in a state is stored, and the calculation unit includes the sample.
  • the absorbance of the target component is calculated from output values of the first light receiving element and the second light receiving element when light is emitted from the light source in the state and the correlation.
  • the measurement apparatus according to the present invention is excellent in operability because it is not necessary to measure the blank value in advance before measuring the absorbance.
  • the absorbance measured by the measuring apparatus according to the present invention is an accurate value that takes into account the temporal change in the amount of light from the light source.
  • FIG. 1 is a configuration diagram showing a schematic configuration of a measurement apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 shows the output value of the first light receiving element 5 and the second light receiving element when light is emitted from the light source 4 in a state where the sensor 7 is not inserted into the insertion hole 2 (the sample is not present).
  • 6 is a diagram showing a relationship with an output value of 6.
  • FIG. 3 is a flowchart showing the operation of the measuring apparatus shown in FIG.
  • FIG. 4 is a flowchart showing a process of acquiring a proportionality constant performed by the measuring apparatus shown in FIG.
  • FIG. 5 is a diagram showing an example in which an external device is connected to the measuring device shown in FIG. 1.
  • FIG. 6 is a flowchart showing processing in the external device and the measuring device shown in FIG.
  • FIG. 7 is a configuration diagram showing a schematic configuration of a measuring apparatus according to Embodiment 2 of the present invention.
  • FIG. 8 is a flowchart showing the operation of the measuring apparatus shown in FIG.
  • FIG. 9 is a flowchart showing a process for acquiring a proportional constant performed by the measuring apparatus shown in FIG. FIG.
  • FIG. 10 is a diagram showing an example in which an external device is connected to the measuring device shown in FIG.
  • FIG. 11 is a flowchart showing processing in the external device and the measuring device shown in FIG.
  • the measuring device is a measuring device that measures the absorbance of a target component contained in a sample, according to a light source that emits light having a wavelength that is absorbed by the target component, and the intensity of the received light.
  • a first light receiving element and a second light receiving element that output a signal having a magnitude, a calculation unit, and a storage unit, wherein the first light receiving element and the light source are emitted from the light source, and The transmitted light that has passed through the sample is arranged to be received by the first light receiving element, and the second light receiving element is arranged to receive light other than the transmitted light emitted from the light source.
  • the storage unit stores a correlation between an output value of the first light receiving element and an output value of the second light receiving element when the light source is emitted in the absence of the sample,
  • the computing unit is the light source in the presence of the sample.
  • the absorbance of the target component is calculated from the output values of the first light receiving element and the second light receiving element when the light is emitted and the correlation.
  • the correlation is an output value A of the first light receiving element when the light source power is emitted in a state where the sample does not exist;
  • the output values of the first light receiving element and the second light receiving element when light is emitted from the light source in the presence of the sample are A and B, respectively, and the target component
  • the calculation unit can be a first mode in which the absorbance S of the target component is calculated based on the following formula (2). According to the first aspect, it is possible to easily calculate an accurate absorbance.
  • the calculation unit causes the light source to emit light to output the output value A of the first light receiving element and the second light receiving element.
  • the proportional constant t is calculated by substituting the output value B of the optical element into the above formula (1).
  • the proportional constant t is stored in the storage unit, and the stored proportional constant t is used to store the proportional constant t.
  • the absorbance S of the target component can also be calculated.
  • the sample includes a component that obstructs the progress of light incident on the sample, and emits light having a wavelength that is not absorbed by the target component.
  • a second light source wherein the second light source emits the second transmitted light that has been emitted from the second light source and transmitted through the sample, and is received by the first light receiving element.
  • the second light source is arranged such that light other than the second transmitted light emitted from the second light source is received by the second light receiving element, and the storage unit is in a state where the sample is not present.
  • the correlation between the output value B of the first light receiving element and the output value B of the first light receiving element is further stored.
  • the calculation unit outputs an output value A of the first light receiving element and an output value B of the second light receiving element when light is emitted from the second light source in the presence of the sample.
  • the second aspect of calculating the absorbance S of the target component may be adopted.
  • the absorbance of the target component can be accurately measured even if the sample contains a component that prevents light from passing from a light source other than the target component.
  • the calculation unit when the sample does not exist, causes the second light source to emit light to output the output value A of the first light receiving element and the first light source.
  • the output value B of the optical element is obtained, and the obtained output value A of the first light receiving element and the first output value are obtained.
  • the proportional constant t is stored in the storage unit, and the stored proportional constant t is used.
  • the absorbance S of the target component can also be calculated.
  • the target component may be a sugar in the sample that is colored by a reagent.
  • the sample is blood containing a blood cell component and the target component is sugar in the blood colored by a reagent, accurate absorbance measurement is possible. It becomes possible.
  • FIG. 1 is a configuration diagram showing a schematic configuration of a measuring apparatus according to Embodiment 1 of the present invention.
  • the measuring device is used as a colorimetric blood glucose meter.
  • the sample is a plasma component obtained by centrifuging the patient's blood.
  • the target component to be measured is a sugar contained in the sample and colored by the reagent. Specifically, as shown in FIG. 1, the sample is subjected to measurement while being impregnated in the reagent part 8 of the sensor 7.
  • Sensor 7 was obtained by molding a resin such as polyethylene resin, polyethylene terephthalate (PET) resin, polystyrene resin, polyvinyl chloride resin, etc. into a strip shape. It is.
  • the sensor 7 may be a single layer body or a multilayer body formed by laminating a plurality of strip-shaped base materials.
  • a slit (not shown) is provided in the intermediate layer, and the slit is used to guide the sample to the reagent section. It is preferable to use it as a flow path. In this case, it is preferable to provide a through-hole communicating with the slit of the intermediate layer in the base material as the upper layer, and use this through-hole as a sample inlet.
  • the reagent section 8 contains reagents that develop color in response to sugar, such as glucose oxidase, peroxidase, 4-aminoantipyrine, N-ethyl N- (2 hydroxy-1-3-sulfopropyl) m-toluidine'sodium. Etc. are impregnated. For this reason, when a sample is dropped onto the reagent part 8, color development occurs according to the concentration of sugar contained in the sample.
  • sugar such as glucose oxidase, peroxidase, 4-aminoantipyrine, N-ethyl N- (2 hydroxy-1-3-sulfopropyl) m-toluidine'sodium. Etc. are impregnated. For this reason, when a sample is dropped onto the reagent part 8, color development occurs according to the concentration of sugar contained in the sample.
  • the measuring apparatus includes an optical unit 1 and a computing unit 11.
  • the optical unit 1 includes a light source 4 that irradiates the sample with light, a first light receiving element 5 that receives the transmitted light that has passed through the sample, and a second light receiving element that receives outgoing light other than the transmitted light emitted by the light source. 6 and prepare.
  • both the first light receiving element 5 and the second light receiving element 6 are photodiodes that output a signal having a magnitude corresponding to the intensity of received light.
  • the first light receiving element 5 and the second light receiving element 6 other phototransistors, CCD, CMOS, or the like can be used.
  • the light source 4 is a light emitting diode.
  • a halogen lamp, a semiconductor laser, or the like can be used as the light source 4.
  • the wavelength of the emitted light from the light source 4 is set so that the emitted light is absorbed by the target component that is colored by the reaction with the reagent.
  • the optical unit 1 also includes a light source chamber 10 that houses the insertion hole 2 for inserting the sensor 7, the optical path 3, and the light source 4.
  • the optical path 3 may be formed of a transparent resin material such as glass or may be a simple cavity. Further, the optical path 3 is arranged so as to be perpendicular to the sensor 7, one end exposed at the side wall of the insertion hole 2, and the other end exposed at the ceiling surface of the light source chamber 10.
  • the reagent part 8 of the sensor 7 is arranged so as to face one end of the optical path 3 when the sensor 7 is inserted all the way into the insertion hole 2.
  • the hatched portion is shielded from light and shows the portion! /.
  • 9 is a limit switch for detecting that the sensor 7 is inserted into the insertion hole 2.
  • the first light receiving element 5 is disposed on the extended line of the optical path 3 so that the light receiving surface is exposed to the side wall of the insertion hole 2. Therefore, the transmitted light emitted from the light source 4 and transmitted through the sample is received by the first light receiving element 5.
  • the second light receiving element 6 is arranged in the light source chamber 10 with the light receiving surface facing the light source 4. For this reason, the second light receiving element 6 receives light other than the transmitted light emitted from the light source 4, that is, the emitted light of the light source 4 not transmitted through the sensor 7. Further, the arrangement of the second light receiving element 6 is not limited to that shown in FIG. 1. For example, the second light emitting element 6 is arranged inside the light emitting diode package that constitutes the light source 4. OK.
  • the calculation unit 11 includes a calculation unit 12, a storage unit 13, a detection unit 14, a drive unit 15, and a display unit 16.
  • the drive unit 15 detects the sensor 7 and emits light from the light source 4. Specifically, the drive unit 15 is connected to the limit switch 9, and when the limit switch 9 is turned on (when the sensor 7 is inserted into the insertion hole 2), a signal (notification signal) is notified. ) Is output to the arithmetic unit 12.
  • the calculation unit 12 determines that the sensor 7 is inserted into the insertion hole 2 when the notification signal is output from the drive unit 15. Further, the drive unit 15 causes the light source 4 to emit light in response to an instruction from the calculation unit 12.
  • the detection unit 14 is connected to the first light-emitting element 5 and the second light-emitting element 6, and when a signal is output from these, the information specifying the output value of the output signal is calculated. Output to part 12. Specifically, the detection unit 14 converts the output signals (analog signals) of the first light-emitting element 5 and the second light-emitting element 6 according to the intensity of the received light by AZD conversion into digital signals. The digital signal is output to the arithmetic unit 12.
  • the calculation unit 12 calculates the absorbance of the target component (sugar) based on the information stored in the storage unit 13 and the information input from the detection unit 14, and further calculates the calculated absorbance power blood glucose level To do. In addition, the calculation unit 12 outputs information specifying the calculation result to the display unit 16 and causes the display unit 16 to display the calculation result.
  • FIG. 2 shows the output value of the first light receiving element 5 and the second light receiving when the sensor 7 is not inserted into the insertion hole 2 and the light is emitted from the light source 4 in the state (the sample is not present).
  • 5 is a diagram showing a relationship with an output value of element 6.
  • the vertical axis represents the count value of the first light receiving element 5
  • the horizontal axis represents the count value of the second light receiving element 6.
  • the count values of the first light receiving element 5 and the second light receiving element 6 are measured by changing the light amount of the light source 4 to 100%, 80%, 60%, 40%, and 20%.
  • the count value is a digital value obtained by AZD conversion of the analog output signal (voltage value) of the light receiving element by 16-bit AZD conversion.
  • the sensor 7 is not inserted into the insertion hole 2 and the count value of the first light receiving element 5 and the second light receiving element 6 when light is emitted from the light source 4 in a state where the sensor 7 is not inserted.
  • the count value There is a proportional relationship with the count value. Therefore, when light is emitted from the light source 4 without inserting the sensor 7 into the insertion hole 2, the output value of the first light receiving element 5 is A, and the output value of the second light receiving element 6 is B.
  • the number t is always a constant value regardless of the light amount of the light source.
  • the storage unit 13 is also a proportional constant.
  • the output value of the first light receiving element 5 is A when the sensor 7 is removed from the insertion hole 2 and light is emitted from the light source 4 without changing the light intensity setting of the source 4.
  • Output value A is background technology
  • the absorbance S can be calculated by the following formula (5) because it corresponds to the blank value described in the above.
  • the second light receiving element 6 since the second light receiving element 6 receives outgoing light other than the transmitted light, the output value of the second light receiving element 6 depends on whether or not the sensor 7 is present unless the light amount setting of the light source 4 is changed. Not affected. Therefore, even when the output value (blank value) of the first light receiving element 5 is A, the second light receiving element 5
  • the output value B and force of the second light receiving element 6 also indicate that the blank value A can be obtained.
  • the value of t is a value that does not change due to fluctuations in the light amount of the light source 4.
  • (B′t) corresponding to the blank value A is the output value B every time light is emitted from the light source 4.
  • the value takes into account the change over time in the amount of light from the light source 4. That is, the absorbance S calculated by the calculation unit 12 using the above formula (2) has approximately the same accuracy as the absorbance calculated by measuring the blank value every time the absorbance is measured.
  • the calculation unit 12 can calculate the correct absorbance S without measuring. To calculate the proportionality constant t,
  • 0 1 For example, it can be performed by the arithmetic unit 12 when the measuring apparatus is shipped from the factory.
  • the calculation unit 12 calculates the proportionality constant t at any time selected by the user of the measurement device.
  • FIG. 3 is a flowchart showing the operation of the measuring apparatus shown in FIG. As shown in FIG. 3, first, the calculation unit 12 determines whether or not the sensor 7 is inserted into the insertion hole 2 via the drive unit 15 (step Sl).
  • the calculation unit 12 When the sensor 7 is not inserted into the insertion hole 2, that is, when the notification signal is not output from the drive unit 15, the calculation unit 12 enters a standby state. On the other hand, when the sensor 7 is inserted into the insertion hole 2, that is, when a notification signal is output from the drive unit 15, the calculation unit 12 instructs the drive unit 15 to emit the light source 4 (step S2). ). Further, the drive unit 15 notifies the calculation unit 12 that the light source 4 has emitted light. Next, the calculation unit 12 reads the proportional constant t from the storage unit 13 (step S3). In addition, the performance
  • the arithmetic unit 12 specifies the output value A of the first light receiving element and the output value B of the second light receiving element.
  • step S4 It is determined whether information is input from the detection unit 14 (step S4). If no information is input, the calculation unit 12 enters a standby state. On the other hand, when information is input, the calculation unit 12 calculates the absorbance S using the above equation (2) (step S5).
  • the calculation unit 12 calculates a blood glucose level using the absorbance S calculated in step S5 (step S7).
  • the blood glucose level can be calculated, for example, by storing a function representing the relationship between the absorbance S and the blood glucose level in the storage unit 13 in advance.
  • the blood glucose level can also be calculated by storing the relationship between the absorbance S and the blood glucose level in the storage unit 13 as an “absorbance blood glucose level table” and applying the calculated absorbance S to this table. wear.
  • the calculation unit 12 displays the calculated blood glucose level on the display unit 16 (step S7), and the processing is terminated. Further, when the sensor 7 inserted into the insertion hole 2 is taken out and then the sensor 7 is newly inserted into the insertion hole 2, the calculation unit 12 executes steps S1 to S7 again. Even in this case, the blank value is not measured.
  • the measuring apparatus can obtain the blank value necessary for calculating the absorbance by calculation, and absorbs the absorbance as in the past. It is not necessary to measure the blank value in advance before the measurement. Further, since the blank value obtained by calculation has the same degree of accuracy as the blank value obtained by measurement, the calculated absorbance is also an accurate value. Furthermore, according to the measuring apparatus in the first embodiment, since it is not necessary to measure a blank value, it is possible to suppress complication of operation, enlargement of the apparatus, and increase in cost of the apparatus.
  • the measuring apparatus according to the first embodiment is activated simply by inserting the sensor 7 into the insertion hole 2, and starts measuring absorbance immediately, so that it has excellent operability. Therefore, the user does not perform complicated operations or wait before actual measurement. For example, if the measurement apparatus in the first embodiment is used in a portable blood glucose meter that a diabetic patient uses many times a day, the burden on the diabetic patient can be reduced.
  • the arithmetic unit 11 can transmit / receive signals to / from an external device. It can also be realized by installing and executing a program for implementing steps S 1 to S 7 shown in FIG. 3 in a microcomputer having a simple interface.
  • a CPU central processing unit
  • a storage device such as a memory provided in the microcomputer functions as the storage unit 13.
  • the interface provided in the microcomputer functions as the detection unit 14 and the drive unit 15.
  • the measuring apparatus can also perform processing for obtaining the proportional constant t to be used next time after completion of Step S1 to Step S7 shown in FIG. This point will be described with reference to FIG.
  • FIG. 4 is a flowchart showing the process of obtaining the proportionality constant performed by the measuring apparatus shown in FIG.
  • the calculation unit 12 determines whether or not the sensor 7 has been taken out from the insertion hole 2 via the drive unit 15 (step S101). Specifically, the calculation unit 12 determines whether or not the output of the notification signal from the drive unit 15 is stopped, and when the output of the notification signal is stopped !, the sensor 7 is inserted into the insertion hole. It is determined that it is taken out from 2! /.
  • the calculation unit 12 When the sensor 7 is not removed from the insertion hole 2, that is, when the output of the notification signal from the drive unit 15 is continued, the calculation unit 12 enters a standby state. On the other hand, when the sensor 7 is removed from the insertion hole 2, that is, when the output of the notification signal from the drive unit 15 is stopped, the calculation unit 12 instructs the drive unit 15 to emit the light source 4. (Step S102).
  • the calculation unit 12 acquires the output value A of the first light receiving element and the output value B of the second light receiving element based on the signal from the detection unit 14 (step S 103). Subsequently, the calculation unit 12
  • step S105 The constant t is stored in the storage unit 13 (step S105), and the process is terminated.
  • the calculated proportionality constant t is read in step S3 when calculating the next absorbance.
  • FIG. 5 is a diagram showing an example in which an external device is connected to the measuring device shown in FIG. As shown in FIG. 5, when connecting with the external device 20, a communication unit 18 is newly provided in the arithmetic unit 11.
  • the communication unit 18 includes an interface circuit that transmits and receives signals to and from the external device 20 by wire or wireless. Note that the communication unit 18 may be temporarily attached to the measuring device only when the external device 20 is connected.
  • the external device 20 starts communication with the measuring device that has been assembled by wire or wireless, and instructs the calculation of the proportional constant t and the transmission of the calculated proportional constant t. Also,
  • the external device 20 When the external device 20 receives the proportionality constant t from the measuring device, it compares it with other measuring devices of the same type.
  • FIG. 6 is a flowchart showing processing in the external apparatus and measurement apparatus shown in FIG.
  • the external device 20 starts communication with the measuring device that has been assembled, and instructs the calculation of the proportional constant t and the transmission of the calculated proportional constant t ( Step
  • the calculation unit 12 is not instructed by the external device 20 to calculate and transmit the proportional constant t via the communication unit 18.
  • step S211 It is determined whether or not (step S211). If no instruction is given by the external device 20, the calculation unit 12 enters a standby state.
  • Steps S212 to S214 are shown in FIG.
  • Steps S101 to S104 are the same steps. Thereafter, the calculation unit 12 transmits the calculated proportionality constant t to the external device 20 via the communication unit 18 (step S216), and further calculates.
  • the calculated proportionality constant t is stored in the storage unit 13 (step S217), and the process is terminated.
  • step S201 the external device 20 determines whether or not the force has received the proportional constant t. (Step S202). If the proportional constant t is not received as a result of judgment,
  • the external device 20 enters a standby state. On the other hand, if the proportional constant t is received,
  • the device 20 stores the received proportionality constant t in a storage unit (memory) included in the device 20 (step S).
  • the external device 20 transmits the stored proportional constant t to another measuring device of the same type.
  • step S204 the external device 20 can also correct the proportionality constant t according to the temperature around the measuring device and the like. Correction
  • the external device 20 may be connected to the measuring device or other
  • FIG. 7 is a configuration diagram showing a schematic configuration of the measuring apparatus according to the second embodiment of the present invention.
  • the measuring device is used as a colorimetric blood glucose meter as in the first embodiment.
  • the sample is patient blood.
  • the component to be measured is sugar in the blood colored by the reagent as in the first embodiment.
  • Embodiment 2 uses patient blood that has not been centrifuged as a sample, and blood as a sample contains blood cell components. In this case, a part of the emitted light from the light source 4 is absorbed by blood cell components in the blood, so that it is difficult for the measuring apparatus in the first embodiment to calculate the correct absorbance.
  • the measurement apparatus in the second embodiment is different from the measurement apparatus shown in FIG. 1 in the first embodiment, in addition to the light source 4 and the second light source 17. It also has.
  • the wavelength of the emitted light from the second light source 17 is set to a wavelength that is not absorbed by the sugar colored by the reagent.
  • the calculation unit 12 uses the output values of the first light receiving element 5 and the second light receiving element 6 when light is emitted from the second light source 17 so that the absorbance value is an accurate value. Like Make corrections. Except for these points, the measuring apparatus in the second embodiment is configured in the same manner as the measuring apparatus in the first embodiment.
  • the second light source 17 is arranged in parallel with the light source 4 so that the emission direction thereof is the same as the emission direction of the light source 4. Therefore, transmitted light (hereinafter referred to as “second transmitted light”) emitted from the second light source 17 and transmitted through the sample (sensor 7) is also received by the first light receiving element 5.
  • second transmitted light transmitted light
  • the second light receiving element 6 includes light other than the transmitted light emitted from the first light source 4 and light other than the transmitted light emitted from the second light source 17. Are arranged so that they can receive light. Specifically, the second light receiving element 6 is disposed in the light source chamber 10 with the light receiving surface facing both the light source 4 and the second light source 17. The distance between the second light receiving element 6 and the first light source 4, the distance between the second light receiving element 6 and the second light source 17, and the ratio of these distances are not particularly limited as long as they do not vary. It is not something.
  • the proportionality constant t is the same as the proportionality constant t shown in the above formula (1), regardless of the light amount of the light source.
  • the storage unit 13 sets the proportional constant t.
  • the output values of the first light receiving element 5 and the second light receiving element 6 are respectively expressed as A and B. And then at this time
  • the wavelength of the emitted light from the second light source 17 is set to a wavelength that is not absorbed by the sugar colored by the reagent. Therefore, the absorbance S calculated by the above formula (7) corresponds to the absorbance of blood cell components in the blood. In addition, the absorbance has substantially the same accuracy as the absorbance calculated by measuring the blank value, similarly to the absorbance calculated by the above formula (2).
  • blood as a sample contains blood cell components. Therefore, when the calculation unit 12 calculates the absorbance S of the target component using the above equation (2) used in Embodiment 1, a part of the emitted light from the light source 4 is absorbed by the blood cell component Therefore, the absorbance obtained is higher than the actual value. Therefore, if the absorbance of the blood cell component is subtracted from the absorbance obtained by the above formula (2), an accurate sugar absorbance can be obtained.
  • the calculation unit 12 calculates the absorbance S using the following formula (4).
  • the calculation of the proportional constants t and t is, for example, a measurement device.
  • FIG. 8 is a flowchart showing the operation of the measuring apparatus shown in FIG. As shown in FIG. 8, first, steps S11 to S14 are performed. Steps S11 to S14 are the same as steps S1 to S4 shown in FIG. 3 in the first embodiment. As a result, the calculation unit 12 reads the proportional constant t from the storage unit 13, and further, from the light source 4 by the input information from the detection unit 14
  • the output value A of the first light receiving element 5 and the output value B of the second light receiving element 6 when light is emitted are
  • the calculation unit 12 instructs the drive unit 15 to cause the second light source 17 to emit light (Step S15).
  • the drive unit 15 notifies the calculation unit 12 that the second light source 17 has emitted light.
  • the calculation unit 12 reads the proportionality constant t from the storage unit 13 (step S16).
  • the calculation unit 12 calculates the output value A of the first light receiving element and the output value B of the second light receiving element.
  • step S17 It is determined whether or not the information to be identified is input from the detection unit 14 (step S17). When no information is input, the calculation unit 12 enters a standby state. On the other hand, when information is input, the calculation unit 12 calculates the absorbance S using the above formula (4) (step S 18).
  • the calculation unit 12 calculates a blood glucose level (step S19), displays it on the display unit 16 (step S20), and ends the process. Further, when the sensor 7 inserted into the insertion hole 2 is taken out and then the sensor 7 is newly inserted into the insertion hole 2, Steps S11 to S20 are executed again. In this case, the blank value is not measured.
  • the measurement apparatus in the second embodiment can also calculate a blank value necessary for calculating the absorbance by calculation, as in the first embodiment. it can. Therefore, it is not necessary to measure the blank value every time the absorbance is measured.
  • the measurement apparatus according to the second embodiment even if the sample includes a component that prevents light from passing from a light source other than the target component, the absorbance of the target component is accurate. Can be measured.
  • the arithmetic unit 11 can be realized by a microcomputer.
  • FIG. 9 is a flowchart showing a proportional constant acquisition process performed by the measuring apparatus shown in FIG.
  • Steps S111 to S114 are the same as steps S101 to S104 shown in FIG. 4 in the first embodiment.
  • steps S111 to S114 the proportional constant t is calculated.
  • the calculation unit 12 instructs the drive unit 15 to cause the second light source 17 to emit light (step S115).
  • the computing unit 12 acquires the output value A of the first light receiving element and the output value B of the second light receiving element based on the signal from the detecting unit 14 (step S116). continue
  • the computing unit 12 calculates the proportionality constant t based on the above-described equation (3) (step S117).
  • the calculation unit 12 calculates the proportional constant t calculated in step S114 and the step S117.
  • the output proportional constant t is stored in the storage unit 13 (step SI 18), and the process is terminated.
  • the proportional constants t and t are calculated at the time of shipment from the factory.
  • FIG. 10 is a diagram showing an example in which an external device is connected to the measurement device shown in FIG.
  • a new communication unit 18 is added to the arithmetic unit 11. Is provided.
  • the communication unit 18 may be temporarily attached to the measuring device only when the connection to the external device 20 is performed.
  • Embodiment 1 As in Embodiment 1, external device 20 starts communication with a measuring device that has been assembled by wire or wirelessly.
  • Embodiment 2 in addition to proportional constant t,
  • the external device 20 is another measuring device of the same type.
  • FIG. 11 is a flowchart showing processing in the external device and the measuring device shown in FIG. As shown in FIG. 10, first, the external device 20 starts communication with the measuring device that has been assembled, and calculates the proportional constants t and t, and transmits the calculated proportional constants t and t.
  • the calculation unit 12 uses the communication unit 18 to calculate and transmit proportional constants t and t by the external device 20.
  • step S231 It is determined whether the indication is made (step S231). When no instruction is given by the external device 20, the calculation unit 12 enters a standby state.
  • the calculation unit 12 executes steps S232 to S235 to calculate the proportionality constant t, and further executes steps S236 to S238 to perform the proportionality determination.
  • step 7 The same steps as in step 7.
  • the calculation unit 12 sends the calculated proportional constants t and t to the external device via the communication unit 18.
  • Step S240 the process ends.
  • step S221 the external device 20 receives the proportional constants t and t.
  • the external device 20 stores the proportional constants t and t stored in another measuring device of the same type. Is transmitted (step S224), and the process is terminated. Also in the second embodiment, after the end of step S223, the external device 20 can correct the proportional constants t and t according to the ambient temperature of the measuring device and the like. If correction is made, the external device 20
  • the proportional constant t after correction is applied to the measuring device that has transmitted the constants t and t and other measuring devices of the same type.
  • the measuring apparatus according to the present invention can accurately measure the absorbance without measuring the blank value. Therefore, the operation in the measuring apparatus can be simplified. For this reason, when the measuring apparatus of the present invention is used, for example, in a blood glucose meter carried by a diabetic patient, the burden on the diabetic patient can be reduced.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Optics & Photonics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Toxicology (AREA)
  • Emergency Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

 光源4と、光の強度に応じた大きさの信号を出力する第1の受光素子5及び第2の受光素子6と、演算部12と、記憶部13とを備えた測定装置を用いる。第1の受光素子6及び光源4は、試料を透過した光源からの透過光が第1の受光素子6に受光されるように配置する。第2の受光素子6は光源4から出射された透過光以外の光を受光するよう配置する。記憶部13に、試料が存在しない状態で光源4から光を出射したときの第1の受光素子5の出力値と第2の受光素子6の出力値との相関関係を記憶させる。演算部は、試料が存在する状態で光源4から光を出射したときの第1の受光素子5及び第2の受光素子6の出力値と、相関関係とから、試料に含まれる対象成分の吸光度を算出する。                                                                                 

Description

測定装置
技術分野
[0001] 本発明は、測定装置に関し、特には、試料に含まれる対象成分の吸光度を測定す る吸光度測定装置に関する。
背景技術
[0002] 現在、吸光度測定方法は、種々の成分分析に利用されている。吸光度測定方法に よる成分分析は、例えば、次に示す手順によって行われる。先ず、色素を混合した検 体の入った透明容器 (セル)に、色素に対応した波長の光をハロゲンランプや LED 等の光源から照射する。次に、透明容器及び検体を通過した透過光の強度 Iを受光 素子によって測定する。
[0003] その後、測定した透過光の強度 Iと予め測定してぉ 、たブランク値 Iとから、吸光度(
0
=iog (I
10 0 ZD)を算出する。これにより、色素が標識された物質の成分量を検出でき る(例えば特許文献 1参照)。なお、ブランク値 Iの測定は、水の入ったセル又は空の
0
セルに光源力も光を照射することによって行われている。また、吸光度測定方法とし ては、上記した透過光を利用する透過式の外、測定対象物で反射された反射光を利 用する反射式も知られて ヽる。
[0004] また、吸光度測定方法は、血液中の血糖値の測定にも利用されている。吸光度測 定方法によって血糖値を測定する血糖計は、一般に比色式血糖計と呼ばれる。比色 式血糖計のうち、患者が携帯することを前提としたものでは、小型化を図るため、透 明容器の代わりに、不織布等で形成された使 、捨てのセンサ又はチップが用いられ る。
[0005] センサ又はチップには、血液中の糖と反応して発色する試薬が含浸される。よって 、センサ又はチップを透過する光の透過光量は発色度合いに応じて変動するため、 測定された吸光度力 血糖値を得ることができる。また、このような携帯型の比色式血 糖計では、ブランク値の測定はセンサ又はチップを取り付けな 、状態で行われる。 特許文献 1:特開 2001— 91518号公報 発明の開示
発明が解決しょうとする課題
[0006] し力しながら、光源となるハロゲンランプや LED等の光量は、時間の経過と共に変 動するため、これに伴い透過光や反射光の光量も変動する。このため、従来からの 吸光度測定方法において正確な吸光度を得るためには、光源の光量の経時変化を 加味する必要がある。よって、従来からの吸光度測定装置 (血糖計)においては、吸 光度の測定の前に必ず予めブランク値を測定する必要があることから、実際の測定 開始までに煩雑な操作が必要となると!/、う問題や、測定開始までの準備時間が長!、 という問題がある。
[0007] また、特に透過式の吸光度測定方法を採用する小型の血糖計にお!、ては、測定 対象となるセンサ又はチップは血糖計に設けられた挿入孔に挿入されるため、ー且、 センサ又はチップを挿入すると、ブランク値の測定ができないという問題も発生する。
[0008] 一方、血糖計にブランク値の測定専用の光学系を備えておけば、操作の煩雑化を 抑制できると考えられる。また、この場合は、ブランク値の測定専用の光学系に備えら れた光学素子を、ブランク値の測定だけでなぐ実際の測定にも利用することで、吸 光度の測定精度の向上を図ることができる。
[0009] しかし、この場合は、装置の部品数が増加し、又装置の構造が複雑ィ匕するため、装 置の大型化やコスト高といった問題が生じる。また、ブランク値の測定専用の光学系 と、実際の測定を行なうための光学系との間には、通常、誤差が生じるため、誤差を 補正しない限り正確な吸光度を得ることができな 、と 、う問題も生じる。
[0010] 本発明の目的は、上記問題を解消し、操作性に優れ、且つ、正確な吸光度の測定 を行え得る測定装置を提供することにある。
課題を解決するための手段
[0011] 上記目的を達成するため本発明における測定装置は、試料に含まれる対象成分の 吸光度を測定する測定装置であって、前記対象成分に吸光される波長の光を出射 する光源と、受光した光の強度に応じた大きさの信号を出力する第 1の受光素子及 び第 2の受光素子と、演算部と、記憶部とを備え、前記第 1の受光素子及び前記光 源は、前記光源から出射され、且つ前記試料を透過した透過光が前記第 1の受光素 子によって受光されるように配置され、前記第 2の受光素子は、前記光源から出射さ れた前記透過光以外の光を受光するように配置され、前記記憶部は、前記試料が存 在しない状態で前記光源力 光を出射したときの前記第 1の受光素子の出力値と前 記第 2の受光素子の出力値との相関関係を記憶し、前記演算部は、前記試料が存 在する状態で前記光源から光を出射したときの前記第 1の受光素子及び前記第 2の 受光素子の出力値と、前記相関関係とから、前記対象成分の吸光度を算出すること を特徴とする。
発明の効果
[0012] 以上の特徴により、本発明における測定装置においては、吸光度の測定の前に予 めブランク値を測定しなくても良いため、本発明における測定装置は、操作性に優れ ている。また、本発明における測定装置によって測定された吸光度は、光源の光量 の経時変化をカ卩味した正確な値となって 、る。
図面の簡単な説明
[0013] [図 1]図 1は、本発明の実施の形態 1における測定装置の概略構成を示す構成図で ある。
[図 2]図 2は、挿入孔 2にセンサ 7を挿入しない状態 (試料が存在しない状態)で光源 4から光を出射したときの第 1の受光素子 5の出力値と第 2の受光素子 6の出力値との 関係を示す図である。
[図 3]図 3は、図 1に示す測定装置の動作を示すフロー図である。
[図 4]図 4は、図 1に示す測定装置によって行なわれる比例定数の取得処理を示すフ ロー図である。
[図 5]図 5は、図 1に示す測定装置に外部装置を接続した例を示す図である。
[図 6]図 6は、図 5に示した外部装置及び測定装置における処理を示すフロー図であ る。
[図 7]図 7は、本発明の実施の形態 2における測定装置の概略構成を示す構成図で ある。
[図 8]図 8は、図 7に示す測定装置の動作を示すフロー図である。
[図 9]図 9は、図 7に示す測定装置によって行なわれる比例定数の取得処理を示すフ ロー図である。
[図 10]図 10は、図 7に示す測定装置に外部装置を接続した例を示す図である。
[図 11]図 11は、図 10に示した外部装置及び測定装置における処理を示すフロー図 である。
発明を実施するための最良の形態
[0014] 本発明における測定装置は、試料に含まれる対象成分の吸光度を測定する測定 装置であって、前記対象成分に吸光される波長の光を出射する光源と、受光した光 の強度に応じた大きさの信号を出力する第 1の受光素子及び第 2の受光素子と、演 算部と、記憶部とを備え、前記第 1の受光素子及び前記光源は、前記光源から出射 され、且つ前記試料を透過した透過光が前記第 1の受光素子によって受光されるよう に配置され、前記第 2の受光素子は、前記光源から出射された前記透過光以外の光 を受光するように配置され、前記記憶部は、前記試料が存在しない状態で前記光源 力 光を出射したときの前記第 1の受光素子の出力値と前記第 2の受光素子の出力 値との相関関係を記憶し、前記演算部は、前記試料が存在する状態で前記光源か ら光を出射したときの前記第 1の受光素子及び前記第 2の受光素子の出力値と、前 記相関関係とから、前記対象成分の吸光度を算出することを特徴とする。
[0015] 上記本発明における測定装置においては、前記相関関係が、前記試料が存在し ない状態で前記光源力 光を出射したときの、前記第 1の受光素子の出力値 A と、
10 前記第 2の受光素子の出力値 B とを下記式(1)に代入して算出される比例定数 tで
10 1 表され、前記試料が存在する状態で前記光源から光を出射したときの前記第 1の受 光素子及び前記第 2の受光素子の出力値をそれぞれ A及び Bとし、前記対象成分
1 1
の吸光度を Sとしたときに、前記演算部が下記式(2)に基づいて、前記対象成分の 吸光度 Sを算出する第 1の態様とすることができる。上記第 1の態様によれば、簡単に 正確な吸光度を算出できる。
[0016] [数 5]
[0017] [数 6] S = (- 1 o g ~~ ) - ( 2 )
^i*
[0018] また、上記第 1の態様においては、前記演算部は、前記試料が存在しないときに、 前記光源に光を出射させて前記第 1の受光素子の出力値 A と前記第 2の受光素子
10
の出力値 B とを取得し、取得した前記第 1の受光素子の出力値 A と前記第 2の受
10 10
光素子の出力値 B とを上記式(1)に代入して前記比例定数 tを算出し、算出した前
10 1
記比例定数 tを前記記憶部に記憶させ、記憶させた前記比例定数 tを用いて前記
1 1
対象成分の吸光度 Sを算出することもできる。
[0019] 上記本発明における測定装置にお!/ヽては、前記試料に、前記試料に入射した光の 進行を妨げる成分が含まれており、前記対象成分に吸光されない波長の光を出射す る第 2の光源を更に備え、前記第 2の光源は、前記第 2の光源から出射され、且つ前 記試料を透過した第 2の透過光が前記第 1の受光素子によって受光され、前記第 2 の光源から出射された前記第 2の透過光以外の光が前記第 2の受光素子によって受 光されるように配置され、前記記憶部が、前記試料が存在しない状態で前記第 2の 光源力 光を出射したときの前記第 1の受光素子の出力値 A と前記第 2の受光素子
20
の出力値 B との相関関係を更に記憶し、前記第 1の受光素子の出力値 A と前記第
20 20
2の受光素子の出力値 B との相関関係は、前記第 1の受光素子の出力値 A と前記
20 20 第 2の受光素子の出力値 B とを下記式 (3)に代入して算出される比例定数 tで表さ
20 2 れ、前記演算部が、前記試料が存在する状態で前記第 2の光源から光を出射したと きの前記第 1の受光素子の出力値 A及び前記第 2の受光素子の出力値 B、前記第
2 2
1の受光素子の出力値 A と前記第 2の受光素子の出力値 B との相関関係を更に用
20 20
い、下記式 (4)に基づいて、前記対象成分の吸光度 Sを算出する第 2の態様とするこ ともできる。上記第 2の態様とすれば、試料中に、対象成分以外の光源からの光の通 過を妨げる成分が含まれている場合であっても、対象成分の吸光度を正確に測定す ることがでさる。
[0020] [数 7] t 2 =A 2 0/ 2 0 · · . ( 0 ) [0021] [数 8]
S = ( - l o g ) · · · ( 4 )
Figure imgf000008_0001
[0022] また、上記第 2の態様においては、前記演算部は、前記試料が存在しないときに、 前記第 2の光源に光を出射させて前記第 1の受光素子の出力値 A と前記第 2の受
20
光素子の出力値 B とを取得し、取得した前記第 1の受光素子の出力値 A と前記第
20 20
2の受光素子の出力値 B とを上記式 (3)に代入して前記比例定数 tを算出し、算出
20 2
した前記比例定数 tを前記記憶部に記憶させ、記憶させた前記比例定数 tを用いて
2 2 前記対象成分の吸光度 Sを算出することもできる。
[0023] 上記本発明における測定装置においては、前記対象成分は、試薬によって発色し た前記試料中の糖であっても良い。特に、上記第 2の態様とした場合は、例えば、前 記試料が血球成分を含む血液であり、前記対象成分が試薬によって発色した前記 血液中の糖である場合も、正確な吸光度の測定が可能となる。
[0024] (実施の形態 1)
以下、本発明の実施の形態 1における測定装置について、図 1〜図 6を参照しなが ら説明する。最初に、本実施の形態 1における測定装置の構成について図 1を用い て説明する。図 1は、本発明の実施の形態 1における測定装置の概略構成を示す構 成図である。
[0025] 本実施の形態 1では、測定装置は比色血糖計として利用されて 、る。試料は、患者 の血液を遠心分離して得られた血漿成分である。測定の対象となる対象成分は、試 料に含まれ、試薬によって発色した糖である。具体的には、図 1に示すように、試料 はセンサ 7の試薬部 8に含浸された状態で測定にかけられる。
[0026] センサ 7は、ポリエチレン榭脂、ポリエチレンテレフタレート(PET)榭脂、ポリスチレ ン榭脂、ポリ塩化ビニル榭脂等の榭脂を基材とし、これを短冊状に成形して得られた ものである。また、センサ 7は、単層体であっても良いし、複数の短冊状の基材を積層 して形成された多層体であっても良い。センサ 7を多層体とする場合は、例えば、中 間層となる機材にスリット(図示せず)を設け、このスリットを試薬部に試料を導くため の流路として利用するのが好ましい。また、この場合は、上層となる基材に、中間層の スリットと連通する貫通孔を設け、この貫通孔を試料の導入口として利用するのが好 ましい。
[0027] 試薬部 8には、糖に反応して発色する試薬、例えば、グルコースォキシダーゼ、ぺ ルォキシダーゼ、 4 ァミノアンチピリン、 N ェチル N— (2 ヒドロキシ一 3—スル ホプロピル) m—トルイジン'ナトリウム等が含浸されている。このため、試薬部 8に 試料を滴下すると、試料に含まれる糖の濃度に応じた発色が生じる。
[0028] 図 1に示すように、本実施の形態 1における測定装置は、光学ユニット 1と演算ュ- ット 11とを備えている。光学ユニット 1は、試料に光を照射する光源 4と、試料を透過 した透過光を受光する第 1の受光素子 5と、光源が出射した透過光以外の出射光を 受光する第 2の受光素子 6とを備えて ヽる。
[0029] 本実施の形態 1では、第 1の受光素子 5及び第 2の受光素子 6は、共に、受光した 光の強度に応じた大きさの信号を出力するフォトダイオードである。第 1の受光素子 5 及び第 2の受光素子 6としては、その他フォトトランジスタや、 CCD、 CMOS等を用い ることちでさる。
[0030] また、本実施の形態 1では、光源 4は、発光ダイオードである。光源 4としては、その 他、ハロゲンランプや半導体レーザ等を用いることもできる。光源 4の出射光の波長 は、出射光が試薬との反応により発色した対象成分に吸収されるように設定されてい る。
[0031] また、本実施の形態 1では、光学ユニット 1は、センサ 7を挿入するための挿入孔 2、 光路 3、光源 4を収容する光源室 10も備えている。光路 3は、透明の榭脂材料ゃガラ スによって形成されていても良いし、単なる空洞であっても良い。また、光路 3は、セ ンサ 7に対して垂直となり、且つ、一端が挿入孔 2の側壁に露出し、他端が光源室 10 の天井面に露出するように配置されている。センサ 7の試薬部 8は、センサ 7を挿入孔 2の奥まで挿入したときに、光路 3の一端と対向するように配置されて 、る。
[0032] なお、図 1にお 、てハッチングが施された部分は遮光されて 、る部分を示して!/、る 。また、図 1において、 9は挿入孔 2にセンサ 7が挿入されたことを検知するリミットスィ ツチである。 [0033] また、第 1の受光素子 5は、光路 3の延長線上において、受光面が挿入孔 2の側壁 に露出するように配置されている。このため、光源 4から出射され、且つ試料を透過し た透過光は第 1の受光素子 5によって受光される。
[0034] 第 2の受光素子 6は、光源室 10内に、受光面を光源 4に向けて配置されている。こ のため、第 2の受光素子 6は、光源 4から出射された透過光以外の光、即ちセンサ 7 を透過していない光源 4の出射光を受光する。また、第 2の受光素子 6の配置態様は 、図 1に示す態様に限定されるものではなぐ例えば、第 2の発光素子 6は、光源 4を 構成する発光ダイオードのパッケージの内部に配置されて 、ても良 、。
[0035] 演算ユニット 11は、演算部 12と、記憶部 13と、検出部 14と、駆動部 15と、表示部 1 6とを備えている。駆動部 15は、センサ 7の検知と光源 4の発光とを行なっている。具 体的には、駆動部 15は、リミットスィッチ 9に接続されており、リミットスィッチ 9がオン になると (センサ 7が挿入孔 2に挿入されると)、そのことを通知する信号 (通知信号)を 演算部 12に出力する。演算部 12は、駆動部 15から通知信号が出力されると、セン サ 7が挿入孔 2に挿入されていると判定する。また、演算部 12の指示に応じて、駆動 部 15は、光源 4を発光させる。
[0036] 検出部 14は、第 1の発光素子 5と第 2の発光素子 6とに接続されており、これらから 信号が出力されると、出力された信号の出力値を特定する情報を演算部 12に出力 する。具体的には、検出部 14は、受光した光の強度に応じた第 1の発光素子 5及び 第 2の発光素子 6の出力信号 (アナログ信号)を、 AZD変換してデジタル信号に変 換し、このデジタル信号を演算部 12に出力する。
[0037] 演算部 12は、記憶部 13に格納された情報と、検出部 14から入力された情報とに 基づいて対象成分 (糖)の吸光度を算出し、更に算出した吸光度力 血糖値を算出 する。また、演算部 12は、算出結果を特定する情報を表示部 16に出力し、表示部 1 6に算出結果を表示させる。
[0038] 次に、図 2を用いて、本実施の形態 1において演算部 12で行われる処理と記憶部 1 3に格納されている情報とについて以下に具体的に説明する。図 2は、挿入孔 2にセ ンサ 7を挿入しな 、状態 (試料が存在しな 、状態)で光源 4から光を出射したときの第 1の受光素子 5の出力値と第 2の受光素子 6の出力値との関係を示す図である。 [0039] 図 2において、縦軸は第 1の受光素子 5のカウント値を示しており、横軸は第 2の受 光素子 6のカウント値を示している。また、第 1の受光素子 5及び第 2の受光素子 6の カウント値は、光源 4の光量を 100%、 80%、 60%、 40%、 20%と変化させて測定し ている。なお、カウント値は、受光素子のアナログ出力信号 (電圧値)を 16ビットの A ZD変翻で AZD変換して得られたデジタル値である。
[0040] 図 2から分力るように、挿入孔 2にセンサ 7を挿入しな 、状態で光源 4から光を照射 したときの第 1の受光素子 5のカウント値と第 2の受光素子 6のカウント値とは、比例関 係にある。よって、挿入孔 2にセンサ 7を挿入しない状態で光源 4から光を出射したと きの、第 1の受光素子 5の出力値を A 、第 2の受光素子 6の出力値を B とすると、こ
10 10 れらの相関関係は、下記式(1)から算出される比例定数 tによって表される。比例定
1
数 tは、光源の光量に拘わらず、常に一定の値となる。また、記憶部 13は、比例定数
1
tを格納している。
1
[0041] [数 9] t i ^ A i o / B i o · · · ( 1 )
[0042] ここで、挿入孔 2にセンサ 7を挿入して、光源 4から光を照射したときの、第 1の受光 素子 5及び第 2の受光素子 6の出力値がそれぞれ A及び Bであったとする。また、光
1 1
源 4の光量設定を変更せずに、挿入孔 2からセンサ 7を取り外して、光源 4から光を照 射したときの第 1の受光素子 5の出力値が Aであったとする。出力値 Aは背景技術
0 0
において説明したブランク値に相当するから、吸光度 Sは下記式(5)によって算出で きる。
[0043] [数 10]
S二 (- 1 o g ^- ) · · · ( 5 )
[0044] ところで、第 2の受光素子 6は透過光以外の出射光を受光するため、第 2の受光素 子 6の出力値は、光源 4の光量設定が変更されない限り、センサ 7の有無に影響を受 けない。よって、第 1の受光素子 5の出力値 (ブランク値)が Aのときも、第 2の受光素
0
子 6の出力値は Bとなる。よって、図 2及び上記式(1)より、下記式 (6)が成立する。 [0045] [数 11]
• · · ( 6 )
[0046] 上記式 (6)を変形すると、 A =t ·Βと表わすことができる。この式は、比例定数 tと
0 1 1 1 第 2の受光素子 6の出力値 Bと力もブランク値 Aを求めることができることを示してい
1 0
る。更に、この式を上記式(5)に代入すると、下記式(2)が成立する。
[0047] [数 12]
Figure imgf000012_0001
[0048] 上記式(2)において、 tの値は光源 4の光量の変動によって変化しない値である。
1
更に、ブランク値 Aに相当する(B 't )は、出力値 Bが光源 4から光が出射される度
0 1 1 1
に測定されていることから、光源 4の光量の経時変化を加味した値となる。即ち、演算 部 12が上記式(2)を用いて算出した吸光度 Sは、吸光度の測定の度にブランク値を 測定して算出した吸光度と略同等の精度を備えている。
[0049] これらの点から、上記式(1)を用いて比例定数 tを予め求めておけば、ブランク値 A
1
を測定しなくても、演算部 12は正確な吸光度 Sを算出できる。比例定数 tの算出は、
0 1 例えば、測定装置の工場出荷時に演算部 12によって行うことができる。また、測定装 置の利用者が選択した任意の時に、演算部 12が比例定数 tを算出する態様とするこ
1
とちでさる。
[0050] 次に、本実施の形態 1における測定装置の動作について図 3を用いて説明する。
図 3は、図 1に示す測定装置の動作を示すフロー図である。図 3に示すように、先ず、 演算部 12は、駆動部 15を介して、センサ 7が挿入孔 2に挿入されているかどうかを判 定する (ステップ Sl)。
[0051] センサ 7が挿入孔 2に挿入されていないとき、即ち、駆動部 15から通知信号が出力 されていないときは、演算部 12は待機状態となる。一方、センサ 7が挿入孔 2に挿入 されると、即ち、駆動部 15から通知信号が出力されると、演算部 12は、駆動部 15に 光源 4を発光させるように指示を行う (ステップ S2)。また、駆動部 15は、光源 4が発 光したことを演算部 12に通知する。 [0052] 次に、演算部 12は、記憶部 13から比例定数 tを読み出す (ステップ S3)。更に、演
1
算部 12は、第 1の受光素子の出力値 Aと第 2の受光素子の出力値 Bとを特定する
1 1
情報が検出部 14から入力されているかどうかを判定する (ステップ S4)。情報が入力 されていない場合は、演算部 12は待機状態となる。一方、情報が入力されている場 合は、演算部 12は上記式(2)を用いて吸光度 Sを算出する (ステップ S5)。
[0053] 更に、演算部 12は、ステップ S5で算出した吸光度 Sを用いて、血糖値を算出する( ステップ S7)。なお、血糖値は、例えば、予め、記憶部 13に、吸光度 Sと血糖値との 関係を表す関数を記憶させておき、この関数力 算出することができる。また、吸光 度 Sと血糖値との関係を「吸光度 血糖値テーブル」として記憶部 13に記憶させてお き、算出された吸光度 Sをこのテーブルに当てはめることによつても、血糖値を算出で きる。
[0054] その後、演算部 12は、算出された血糖値を表示部 16に表示させ (ステップ S7)、処 理を終了する。また、挿入孔 2に挿入されているセンサ 7が取り出され、その後に新た にセンサ 7が挿入孔 2に挿入された場合は、再度、演算部 12は、ステップ S1〜S7を 実行する。この場合においても、ブランク値の測定は行われない。
[0055] 以上、図 1から図 3を用いて説明したように、本実施の形態 1における測定装置は、 吸光度の算出に必要なブランク値を演算によって求めることができ、従来のように吸 光度の測定の前に予めブランク値を測定する必要がない。また、演算によって求め たブランク値は、測定によって求めたブランク値と同程度の正確性を備えているため 、算出された吸光度も正確な値となる。更に、本実施の形態 1における測定装置によ れば、ブランク値を測定する必要がないため、操作の煩雑化や装置の大型化、装置 のコスト上昇を抑制できる。
[0056] また、本実施の形態 1における測定装置は、センサ 7を挿入孔 2に挿入するだけで 起動し、直ぐに吸光度の測定を開始するため、操作性に優れている。よって、利用者 は、実際の測定前に煩雑な操作を行なったり、待たされたりすることがない。例えば、 本実施の形態 1における測定装置を、糖尿病患者が一日に何度も使用する携帯型 の血糖計に利用すれば、糖尿病患者の負担軽減を図ることができる。
[0057] 本実施の形態 1において、演算ユニット 11は、外部の機器と信号の送受信が可能 なインタフェースを備えたマイクロコンピュータに、図 3に示すステップ S 1〜S 7を具現 化させるプログラムをインストールし、これを実行することによつても実現することがで きる。この場合、マイクロコンピュータの CPU (central processing unit)が演算部 12と して機能し、マイクロコンピュータに備えられメモリ等の記憶装置が記憶部 13として機 能する。また、マイクロコンピュータに備えられたインタフェースは、検出部 14及び駆 動部 15として機能する。
[0058] また、本実施の形態 1においては、測定装置は、図 3に示したステップ S1〜ステツ プ S7の終了後に、次回使用する比例定数 tを取得する処理を行なうこともできる。こ の点について、図 4を用いて説明する。図 4は、図 1に示す測定装置によって行なわ れる比例定数の取得処理を示すフロー図である。
[0059] 図 4に示すように、先ず、演算部 12は、駆動部 15を介して、センサ 7が挿入孔 2から 取り出されているかどうかを判定する (ステップ S101)。具体的には、演算部 12は、 駆動部 15からの通知信号の出力が停止されて 、るかどうかを判定し、通知信号の出 力が停止されて!、ると、センサ 7が挿入孔 2から取り出されて!/、ると判定する。
[0060] センサ 7が挿入孔 2から取り出されていないとき、即ち、駆動部 15からの通知信号 の出力が継続されているときは、演算部 12は待機状態となる。一方、センサ 7が挿入 孔 2から取り出されると、即ち、駆動部 15からの通知信号の出力が停止されていると 、演算部 12は、駆動部 15に光源 4を発光させるように指示を行う(ステップ S102)。
[0061] 次に、演算部 12は、検出部 14からの信号に基づいて、第 1の受光素子の出力値 A と第 2の受光素子の出力値 B とを取得する (ステップ S 103)。続いて、演算部 12は
10 10
、上述した式(1)に基づいて、比例定数 tを算出し (ステップ S 104)、算出した比例
1
定数 tを記憶部 13に格納させ (ステップ S 105)、処理を終了する。ステップ S105で
1
算出されたた比例定数 tは、次の吸光度の算出の際のステップ S3において読み出さ
1
れ、吸光度の算出に用いられる。
[0062] このように、図 3に示したステップ S1〜ステップ S7の実行の度に、次回使用する比 例定数 tを取得する処理を行なう態様とした場合は、吸光度の算出時に生じる誤差
1
を小さくでき、より正確な吸光度を得ることができる。また、次回使用する比例定数 t
1 を取得する処理を行なった場合であっても、利用者は、センサ 7を挿入孔 2に挿入す るだけで良いため、実際の測定前に煩雑な操作を行なったり、待たされたりすること がなぐ操作性が低下することはない。
[0063] また、比例定数 tの算出を測定装置の工場出荷時に行なう場合は、図 5に示すよう
1
に外部装置 20を用いることができる。図 5は、図 1に示す測定装置に外部装置を接 続した例を示す図である。図 5に示すように、外部装置 20との接続を行なう場合は、 演算ユニット 11に新たに通信部 18が設けられる。通信部 18は、外部装置 20との間 で有線又は無線によって信号の送受信を行なうインタフェース回路を備えて 、る。な お、外部装置 20との接続を行なう場合にのみ、測定装置に通信部 18が一時的に取 り付けられる態様であっても良 、。
[0064] 外部装置 20は、組み立てが完了した測定装置との間で、有線又は無線によって通 信を開始し、比例定数 tの算出と、算出した比例定数 tの送信とを指示する。また、
1 1
外部装置 20は、測定装置から比例定数 tを受信すると、同型の他の測定装置に比
1
例定数 tを送信し、これを記憶させる。この点について図 6を用いて更に具体的に説
1
明する。また、以下の説明においては適宜図 5を参酌する。
[0065] 図 6は、図 5に示した外部装置及び測定装置における処理を示すフロー図である。
図 6に示すように、先ず、外部装置 20は、組み立てが完了した測定装置との間で、通 信を開始し、比例定数 tの算出と、算出した比例定数 tの送信とを指示する (ステップ
1 1
S201)。
[0066] 一方、外部装置 20の通信対象となっている測定装置においては、先ず、演算部 1 2は、通信部 18を介して、外部装置 20によって比例定数 tの算出と送信の指示がな
1
されて 、るかを判定する (ステップ S211)。外部装置 20によって指示がなされて 、な い場合は、演算部 12は待機状態となる。
[0067] 外部装置 20によって指示がなされている場合は、演算部 12は、ステップ S212〜S 214を実行して、比例定数 tを算出する。なお、ステップ S212〜S215は、図 4に示
1
したステップ S101〜S104と同様のステップである。その後、演算部 12は、算出した 比例定数 tを、通信部 18を介して外部装置 20に送信し (ステップ S216)、更に、算
1
出した比例定数 tを記憶部 13に格納して (ステップ S217)、処理を終了する。
1
[0068] また、ステップ S 201の後において、外部装置 20は、比例定数 tを受信した力どうか の判断を行う(ステップ S202)。判断の結果、比例定数 tを受信していない場合は、
1
外部装置 20は、待機状態となる。一方、比例定数 tを受信している場合は、外部装
1
置 20は、それが備える記憶部 (メモリ)に、受信した比例定数 tを格納する (ステップ S
1
203)。
[0069] その後、外部装置 20は、同型の他の測定装置に、格納している比例定数 tを送信
1 し (ステップ S 204)、処理を終了する。なお、ステップ S203の終了後に、外部装置 2 0は、測定装置の周囲の温度等に応じて比例定数 tを補正することもできる。補正が
1
行なわれた場合は、外部装置 20は、比例定数 tを送信した測定装置や同型の他の
1
測定装置に、補正後の比例定数 tを送信し、これを格納させる。
[0070] このように、図 5及び図 6に示す例によれば、複数個の測定装置に対して、一括して 比例定数 tを設定できるため、測定装置の製造コストの低減ィ匕を図ることができる。
1
[0071] (実施の形態 2)
次に本発明の実施の形態 2における測定装置について、図 7及び図 8を参照しな 力 説明する。最初に、本実施の形態 2における測定装置の構成について図 7を用 いて説明する。図 7は、本発明の実施の形態 2における測定装置の概略構成を示す 構成図である。
[0072] 本実施の形態 2においても、測定装置は、実施の形態 1と同様に比色血糖計として 利用されている。試料は患者の血液である。測定の対象となる成分は、実施の形態 1 と同様に、試薬によって発色した血液中の糖である。但し、本実施の形態 2において は、実施の形態 1と異なり、遠心分離されていない患者の血液が試料として用いられ ており、試料となる血液には血球成分が含まれている。この場合、光源 4からの出射 光の一部は血液中の血球成分に吸収されるため、実施の形態 1における測定装置 では、正確な吸光度の算出が困難になる。
[0073] このため、図 1に示すように、本実施の形態 2における測定装置は、実施の形態 1に おいて図 1に示した測定装置と異なり、光源 4に加え、第 2の光源 17も備えている。第 2の光源 17の出射光の波長は、試薬によって発色した糖に吸収されない波長に設 定されている。また、演算部 12は、第 2の光源 17から光が出射されたときの第 1の受 光素子 5及び第 2の受光素子 6の出力値を用いて、吸光度の値が正確な値となるよう に補正を行う。なお、これらの点以外においては、本実施の形態 2における測定装置 は、実施の形態 1における測定装置と同様に構成されて 、る。
[0074] 以下、本実施の形態 2における測定装置と実施の形態 1における測定装置との相 違点について説明する。図 7に示すように、第 2の光源 17は、その出射方向が光源 4 の出射方向と同方向となるように、光源 4と並列に配置されている。このため、第 2の 光源 17から出射され、且つ試料 (センサ 7)を透過した透過光(以下、「第 2の透過光 」という。)も、第 1の受光素子 5によって受光される。
[0075] また、本実施の形態 2においては、第 2の受光素子 6は、第 1の光源 4から出射され た透過光以外の光と第 2の光源 17から出射された透過光以外の光とを受光できるよ うに配置されている。具体的には、第 2の受光素子 6は、光源室 10内に、受光面を光 源 4と第 2の光源 17との両方に向けて配置されている。なお、第 2の受光素子 6と第 1 の光源 4との距離、第 2の受光素子 6と第 2の光源 17との距離、これらの距離の比は、 変動しなければ良ぐ特に限定されるものではない。
[0076] また、このような構成により、挿入孔 2にセンサ 7を挿入しない状態で第 2の光源 17 力も光を照射した場合も、図 2と同様のグラフが得られる。よって、挿入孔 2にセンサ 7 を挿入しない状態で第 2の光源 17から光を出射したときの、第 1の受光素子 5の出力 値を A 、第 2の受光素子 6の出力値を B とすると、これらの相関関係は、下記式(3)
20 20
力 算出される比例定数 tによって表される。
2
[0077] [数 13] t 2 2 0 / ^ 2 0 · ·
[0078] 比例定数 tも、上記式(1)で示した比例定数 tと同様に、光源の光量に拘わらず、
2 1
常に一定の値となる。また、本実施の形態 2においては、記憶部 13は、比例定数 tに
1 加え、比例定数 tも格納している。
2
[0079] ここで、挿入孔 2にセンサを挿入して、第 2の光源 17から光を照射したときの、第 1 の受光素子 5及び第 2の受光素子 6の出力値をそれぞれ A及び Bとし、更にこのとき
2 2
の吸光度を とする。上記式(3)が成り立つことから、実施の形態 1で示した上記式( 2)と同様にして、下記式 (7)を導くことができる。 [0080] [数 14]
S ' = ( - 1 o g ^^ ) …(7 )
'
[0081] 上述したように、第 2の光源 17の出射光の波長は、試薬によって発色した糖に吸収 されない波長に設定されている。よって、上記式(7)によって算出された吸光度 S ま 、血液中の血球成分の吸光度に相当する。なお、吸光度 も、上記式(2)で算出し た吸光度と同様に、ブランク値を測定して算出した吸光度と略同等の精度を備えて いる。
[0082] ところで、本実施の形態 2においては、試料となる血液には血球成分が含まれてい る。よって、演算部 12が、実施の形態 1で用いた上記式(2)を用いて対象成分の吸 光度 Sを算出した場合、光源 4からの出射光の一部が血球成分に吸収されているた め、得られる吸光度は実際より高い値となる。従って、上記式(2)で得られた吸光度 から、血球成分の吸光度 を引いてやれば、正確な糖の吸光度が得られる。
[0083] つまり、試料が血球成分を含む血液である場合は、上記式(2)と上記式(7)とから 導かれる下記式 (4)を用いることによって、正確な対象成分の吸光度 Sが求められる 。本実施の形態 2においては、演算部 12は、下記式 (4)を用いて吸光度 Sの算出を 行っている。
[0084] [数 15]
S = ( - 1 o g ^—) - ( - 1 o g ^i— ) · · - ( 4 )
[0085] なお、本実施の形態 2にお 、ても、比例定数 t及び tの算出は、例えば、測定装置
1 2
の工場出荷時や、測定装置の利用者が選択した任意の時に、演算部 12によって行 うことができる。
[0086] 更に、 t /t =tとすると、上記式 (4)は下記式 (8)に変形できる。よって、記憶部 13
1 2
に定数 tを格納させ、演算部 12が下記式 (8)を用いて吸光度 Sを算出する態様とす ることちでさる。 [0087] [数 16]
(- 1 o g ^- · t ) · · · ( 8 )
B ' 2
[0088] 次に、本実施の形態 2における測定装置の動作について図 8を用いて説明する。
図 8は、図 7に示す測定装置の動作を示すフロー図である。図 8に示すように、先ず、 ステップ S11〜S14が実施される。ステップ S11〜S14は、実施の形態 1において図 3に示したステップ S1〜S4と同様のステップである。この結果、演算部 12は記憶部 1 3から比例定数 tを読み出し、更に、検出部 14からの入力情報によって、光源 4から
1
光を出射したときの第 1の受光素子 5の出力値 Aと第 2の受光素子 6の出力値 Bとを
1 1 取得する。
[0089] 次に、演算部 12は、駆動部 15に第 2の光源 17を発光させるように指示を与える (ス テツプ S15)。駆動部 15は、第 2の光源 17が発光したことを演算部 12に通知する。更 に、演算部 12は、記憶部 13から比例定数 tを読み出す (ステップ S16)。
2
[0090] 次に、演算部 12は、第 1の受光素子の出力値 Aと第 2の受光素子の出力値 Bとを
2 2 特定する情報が検出部 14から入力されているかどうかを判定する (ステップ S17)。 情報が入力されていない場合は、演算部 12は待機状態となる。一方、情報が入力さ れて 、る場合は、演算部 12は上記式 (4)を用 、て吸光度 Sを算出する (ステップ S 1 8)。
[0091] その後、演算部 12は、血糖値を算出し (ステップ S19)、それを表示部 16に表示さ せ (ステップ S20)、処理を終了する。また、挿入孔 2に挿入されているセンサ 7が取り 出され、その後に新たにセンサ 7が挿入孔 2に挿入された場合は、再度、ステップ S1 1〜ステップ S20が実行される。この場合においても、ブランク値の測定は行われな い。
[0092] 以上、図 7及び図 8を用いて説明したように、本実施の形態 2における測定装置も、 実施の形態 1と同様に、吸光度の算出に必要なブランク値を演算によって求めること ができる。よって、従来のように吸光度の測定の度にブランク値を測定する必要がな い。 [0093] また、本実施の形態 2における測定装置は、試料中に、対象成分以外の光源から の光の通過を妨げる成分が含まれて 、る場合であっても、正確な対象成分の吸光度 を測定することができる。本実施の形態 2においても、演算ユニット 11はマイクロコン ピュータによって実現することができる。
[0094] また、本実施の形態 2においても、測定装置による測定の終了後 (ステップ S11〜S 20の終了後)に、次回使用する比例定数 t及び tを取得する処理を行なうことができ
1 2
る。この点について、図 9を用いて説明する。図 9は、図 7に示す測定装置によって行 なわれる比例定数の取得処理を示すフロー図である。
[0095] 図 9に示すように、最初に、演算部 12は、ステップ S111〜S114を実施する。ステ ップ S111〜S114は、実施の形態 1において図 4に示したステップ S101〜S104と 同様のステップである。ステップ S111〜S114の実施により、比例定数 tが算出され
1 る。
[0096] 次に、演算部 12は、駆動部 15に第 2の光源 17を発光させるように指示を行う(ステ ップ S115)。次いで、演算部 12は、検出部 14からの信号に基づいて、第 1の受光素 子の出力値 A と第 2の受光素子の出力値 B とを取得する (ステップ S 116)。続いて
20 20
、演算部 12は、上述した式(3)に基づいて、比例定数 tを算出する (ステップ S117)
2
。その後、演算部 12は、ステップ S 114で算出した比例定数 tと、ステップ S117で算
1
出した比例定数 tとを記憶部 13に格納させ (ステップ SI 18)、処理を終了する。
2
[0097] このように、図 8に示したステップ S11〜ステップ S20の実行の度に、次回使用する 比例定数 t及び tを取得する処理を行なう態様とした場合は、吸光度の算出時に生
1 2
じる誤差を小さくでき、より正確な吸光度を得ることができる。また、次回使用する比 例定数 t及び tを取得する処理を行なった場合であっても、利用者は、センサ 7を挿
1 2
入孔 2に挿入するだけで良いため、実際の測定前に煩雑な操作を行なったり、待たさ れたりすることがなぐ操作性が低下することはない。
[0098] また、本実施の形態 2にお 、ても、比例定数 t及び tの算出を工場出荷時に行なう
1 2
場合は、図 10に示す外部装置 20を用いることができる。図 10は、図 7に示す測定装 置に外部装置を接続した例を示す図である。図 10に示すように、本実施の形態 2に おいても、外部装置 20との接続を行なう場合は、演算ユニット 11に新たに通信部 18 が設けられる。また、本実施の形態 2においても、外部装置 20との接続を行なう場合 にのみ、測定装置に通信部 18が一時的に取り付けられる態様であっても良い。
[0099] 外部装置 20は、実施の形態 1と同様に、組み立てが完了した測定装置との間で、 有線又は無線によって通信を開始するが、本実施の形態 2では、比例定数 tに加え
1
、比例定数 tの算出と送信も指示する。また、外部装置 20は、同型の他の測定装置
2
に対して、比例定数 tに加え、比例定数 tも送信し、これを記憶させる。この点につい
1 2
て図 11を用いて更に具体的に説明する。また、以下の説明においては適宜図 10を 参酌する。
[0100] 図 11は、図 10に示した外部装置及び測定装置における処理を示すフロー図であ る。図 10に示すように、先ず、外部装置 20は、組み立てが完了した測定装置との間 で、通信を開始し、比例定数 t及び tの算出と、算出した比例定数 t及び tの送信と
1 2 1 2 を指示する (ステップ S221)。
[0101] 一方、外部装置 20の通信対象となっている測定装置においては、先ず、演算部 1 2は、通信部 18を介して、外部装置 20によって比例定数 t及び tの算出と送信の指
1 2
示がなされているかを判定する(ステップ S231)。外部装置 20によって指示がなされ ていない場は、演算部 12は待機状態となる。
[0102] 外部装置 20によって指示がなされている場合は、演算部 12は、ステップ S232〜S 235を実行して比例定数 tを算出し、更にステップ S236〜S238を実行して比例定
1
数 tを算出する。なお、ステップ S232〜S238iま、図 9に示したステップ S 111〜S 11
2
7と同様のステップである。
[0103] その後、演算部 12は、算出した比例定数 t及び tを、通信部 18を介して外部装置
1 2
20に送信し (ステップ S239)、更に、算出した比例定数 t及び tを記憶部 13に格納
1 2
して (ステップ S240)、処理を終了する。
[0104] また、ステップ S221の後において、外部装置 20は、比例定数 t及び tを受信した
1 2
力どうかの判断を行う(ステップ S222)。判断の結果、受信していない場合は、外部 装置 20は、待機状態となる。一方、受信している場合は、外部装置 20は、それが備 える記憶部 (メモリ)に、受信した比例定数 t及び tを格納する (ステップ S223)。
1 2
[0105] その後、外部装置 20は、同型の他の測定装置に、格納している比例定数 t及び t を送信し (ステップ S224)、処理を終了する。なお、本実施の形態 2においても、ステ ップ S223の終了後に、外部装置 20は、測定装置の周囲の温度等に応じて比例定 数 t及び tを補正することもできる。補正が行なわれた場合は、外部装置 20は、比例
1 2
定数 t及び tを送信した測定装置や同型の他の測定装置に、補正後の比例定数 t
1 2 1 及び tを送信し、これを格納させる。
2
[0106] このように、本実施の形態 2においても、図 10及び図 11に示す例によれば、複数 個の測定装置に対して、一括して比例定数 t及び tを設定できるため、測定装置の
1 2
製造コストの低減ィ匕を図ることができる。 産業上の利用可能性
[0107] 以上のように、本発明における測定装置は、ブランク値を測定することなぐ正確な 吸光度の測定を行うことができる。よって、測定装置における操作を簡略ィ匕できる。こ のため、本発明の測定装置を、例えば糖尿病患者が携帯する血糖計に用いた場合 は、糖尿病患者の負担軽減を図ることができる。

Claims

請求の範囲 [1] 試料に含まれる対象成分の吸光度を測定する測定装置であって、 前記対象成分に吸光される波長の光を出射する光源と、受光した光の強度に応じ た大きさの信号を出力する第 1の受光素子及び第 2の受光素子と、演算部と、記憶部 とを備え、 前記第 1の受光素子及び前記光源は、前記光源から出射され、且つ前記試料を透 過した透過光が前記第 1の受光素子によって受光されるように配置され、 前記第 2の受光素子は、前記光源から出射された前記透過光以外の光を受光する ように配置され、 前記記憶部は、前記試料が存在しな!ヽ状態で前記光源から光を出射したときの前 記第 1の受光素子の出力値と前記第 2の受光素子の出力値との相関関係を記憶し、 前記演算部は、前記試料が存在する状態で前記光源から光を出射したときの前記 第 1の受光素子及び前記第 2の受光素子の出力値と、前記相関関係とから、前記対 象成分の吸光度を算出することを特徴とする測定装置。 [2] 前記相関関係が、前記試料が存在しない状態で前記光源力も光を出射したときの 、前記第 1の受光素子の出力値 A と、前記第 2の受光素子の出力値 B とを下記式( 10 10 1)に代入して算出される比例定数 tで表され、 1 前記試料が存在する状態で前記光源から光を出射したときの前記第 1の受光素子 及び前記第 2の受光素子の出力値をそれぞれ A及び Bとし、前記対象成分の吸光 1 1 度を Sとしたときに、前記演算部が下記式(2)に基づいて、前記対象成分の吸光度 S を算出する請求項 1記載の測定装置。
[数 1] t ^ Α , ο Β , ο · · · ( ! )
[数 2]
• ( 2 ) [3] 前記演算部が、前記試料が存在しないときに、前記光源に光を出射させて前記第 1の受光素子の出力値 A と前記第 2の受光素子の出力値 B とを取得し、取得した
10 10
前記第 1の受光素子の出力値 A と前記第 2の受光素子の出力値 B とを上記式(1)
10 10
に代入して前記比例定数 tを算出し、算出した前記比例定数 tを前記記憶部に記憶
1 1
させ、記憶させた前記比例定数 tを用いて前記対象成分の吸光度 Sを算出する請求
1
項 2に記載の測定装置。
[4] 前記試料に、前記試料に入射した光の進行を妨げる成分が含まれており、
前記対象成分に吸光されない波長の光を出射する第 2の光源を更に備え、 前記第 2の光源は、前記第 2の光源から出射され、且つ前記試料を透過した第 2の 透過光が前記第 1の受光素子によって受光され、前記第 2の光源から出射された前 記第 2の透過光以外の光が前記第 2の受光素子によって受光されるように配置され、 前記記憶部が、前記試料が存在しな!、状態で前記第 2の光源から光を出射したと きの前記第 1の受光素子の出力値 A と前記第 2の受光素子の出力値 B との相関関
20 20 係を更に記憶し、
前記第 1の受光素子の出力値 A と前記第 2の受光素子の出力値 B との相関関係
20 20
は、前記第 1の受光素子の出力値 A と前記第 2の受光素子の出力値 B とを下記式
20 20
(3)に代入して算出される比例定数 tで表され、
2
前記演算部が、前記試料が存在する状態で前記第 2の光源から光を出射したとき の前記第 1の受光素子の出力値 A及び前記第 2の受光素子の出力値 B、前記第 1
2 2 の受光素子の出力値 A と前記第 2の受光素子の出力値 B との相関関係を更に用
20 20
い、下記式 (4)に基づいて、前記対象成分の吸光度 Sを算出する請求項 2または 3に 記載の測定装置。
[数 3]
t 2 = A 2 0/ D 2 0 · · ·、3 ,
[数 4]
- (― 1 o g -^- ) • ( 4 )
Β2·
[5] 前記演算部が、前記試料が存在しないときに、前記第 2の光源に光を出射させて 前記第 1の受光素子の出力値 A と前記第 2の受光素子の出力値 B とを取得し、取
20 20
得した前記第 1の受光素子の出力値 A と前記第 2の受光素子の出力値 B とを上記
20 20 式(3)に代入して前記比例定数 tを算出し、算出した前記比例定数 tを前記記憶部
2 2
に記憶させ、記憶させた前記比例定数 tを用いて前記対象成分の吸光度 Sを算出
2
する請求項 2に記載の測定装置。
[6] 前記対象成分が、試薬によって発色した前記試料中の糖である請求項 1から 5のい ずれかに記載の測定装置。
[7] 前記試料が血球成分を含む血液であり、前記対象成分が試薬によって発色した前 記血液中の糖である請求項 4に記載の測定装置。
PCT/JP2005/017889 2004-09-30 2005-09-28 測定装置 WO2006035839A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US11/664,206 US7495751B2 (en) 2004-09-30 2005-09-28 Measuring apparatus
EP05788008.0A EP1790974B1 (en) 2004-09-30 2005-09-28 Colorimetric blood glucose meter
CN2005800334228A CN101031791B (zh) 2004-09-30 2005-09-28 测量装置
JP2006537783A JP4850067B2 (ja) 2004-09-30 2005-09-28 測定装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004287306 2004-09-30
JP2004-287306 2004-09-30

Publications (1)

Publication Number Publication Date
WO2006035839A1 true WO2006035839A1 (ja) 2006-04-06

Family

ID=36118985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/017889 WO2006035839A1 (ja) 2004-09-30 2005-09-28 測定装置

Country Status (5)

Country Link
US (1) US7495751B2 (ja)
EP (1) EP1790974B1 (ja)
JP (1) JP4850067B2 (ja)
CN (1) CN101031791B (ja)
WO (1) WO2006035839A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011196843A (ja) * 2010-03-19 2011-10-06 Apel Co Ltd 血液凝固時間測定装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6430845B2 (ja) * 2015-02-05 2018-11-28 テルモ株式会社 測定用チップ及び成分測定システム
CN108896516B (zh) * 2018-05-19 2021-04-16 芜湖新利德玻璃制品有限公司 一种基于透光率的有机玻璃银纹检测装置
CN109060678A (zh) * 2018-08-27 2018-12-21 北京雪迪龙科技股份有限公司 一种吸光度测量电路
CN109142284B (zh) * 2018-09-03 2021-10-01 重庆惠科金渝光电科技有限公司 穿透率检测方法、装置和计算机可读存储介质
KR20220012096A (ko) * 2020-07-22 2022-02-03 재단법인 아산사회복지재단 진단 키트 결과 판단 장치 및 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4181699A (en) 1978-03-07 1980-01-01 Noranda Mines Limited Apparatus for detecting the presence of a specific substance in a gas stream
JPH04151546A (ja) * 1990-10-15 1992-05-25 Anritsu Corp ガス検出装置
JP2001516010A (ja) * 1997-08-29 2001-09-25 チー ネン アーサー ハン 分析物検出システム
US20030025909A1 (en) 1998-12-01 2003-02-06 Hans Hallstadius Method and apparatus for measuring of the concentration of a substance in a fluid medium
US20040019431A1 (en) 2001-12-14 2004-01-29 Sterling Bernhard B. Method of determining an analyte concentration in a sample from an absorption spectrum

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1010613B (zh) * 1986-10-11 1990-11-28 西北工业大学 参比光学分析方法及其激光光学分析仪
CA2077781A1 (en) * 1991-09-23 1993-03-24 James W. Bacus Method and apparatus for automated assay of biological specimens
WO1998019159A1 (en) * 1996-10-30 1998-05-07 Mercury Diagnostics, Inc. Synchronized analyte testing system
US6087182A (en) * 1998-08-27 2000-07-11 Abbott Laboratories Reagentless analysis of biological samples
JP2001091518A (ja) 1999-09-20 2001-04-06 Hitachi Ltd 自動分析装置
US6525330B2 (en) * 2001-02-28 2003-02-25 Home Diagnostics, Inc. Method of strip insertion detection
JP4751543B2 (ja) * 2001-09-07 2011-08-17 シスメックス株式会社 自動血液分析装置とその装置に用いる検体ラック用ロック装置
WO2004003219A2 (en) * 2002-06-28 2004-01-08 Igen International, Inc. Improved assay systems and components
WO2004092743A1 (en) * 2003-04-15 2004-10-28 Optiscan Biomedical Corporation Sample element qualification

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4181699A (en) 1978-03-07 1980-01-01 Noranda Mines Limited Apparatus for detecting the presence of a specific substance in a gas stream
JPH04151546A (ja) * 1990-10-15 1992-05-25 Anritsu Corp ガス検出装置
JP2001516010A (ja) * 1997-08-29 2001-09-25 チー ネン アーサー ハン 分析物検出システム
US20030025909A1 (en) 1998-12-01 2003-02-06 Hans Hallstadius Method and apparatus for measuring of the concentration of a substance in a fluid medium
US20040019431A1 (en) 2001-12-14 2004-01-29 Sterling Bernhard B. Method of determining an analyte concentration in a sample from an absorption spectrum

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1790974A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011196843A (ja) * 2010-03-19 2011-10-06 Apel Co Ltd 血液凝固時間測定装置

Also Published As

Publication number Publication date
JP4850067B2 (ja) 2012-01-11
US20070291253A1 (en) 2007-12-20
JPWO2006035839A1 (ja) 2008-05-15
US7495751B2 (en) 2009-02-24
CN101031791A (zh) 2007-09-05
EP1790974A1 (en) 2007-05-30
EP1790974A4 (en) 2010-07-28
EP1790974B1 (en) 2016-08-03
CN101031791B (zh) 2011-03-30

Similar Documents

Publication Publication Date Title
US11754564B2 (en) Method, apparatus and system for detecting and determining compromised reagent pads by quantifying color changes induced by exposure to a hostile environment
WO2006035839A1 (ja) 測定装置
CN106461646A (zh) 电子测试装置数据通信
US8325329B2 (en) Sample detector and measurement device equipped with the same
JP2006500560A (ja) ケモクロミックセンサならびにケモクロミック試薬および試験材料の検知方法
US20180238921A1 (en) Disposable analytical microprocessor device
JP2006505788A (ja) 無希釈の全血における凝固時間の光度判定
JP2007155494A (ja) ツインフローセルとそれを用いる濃度測定システム
JP5281196B2 (ja) 生体データ測定装置、生体データ測定用のストリップ及び生体データ測定方法
JP5312834B2 (ja) 血液凝固分析装置、血液凝固分析方法、及び、コンピュータプログラム
CN110869746A (zh) 利用通用电路***执行光学和电化学测定的技术
EP2950083B1 (en) Calibration method, device, and program, and bodily-fluid component measurement device calibrated using said method
JP2009244029A (ja) 血液凝固分析装置、血液凝固分析方法、及びコンピュータプログラム
US20200326326A1 (en) Systems and methods for meter reconfiguration, control, and operation via an insertable chip with microprocessor
EP2950082A1 (en) Calibration method, calibration system, and bodily-fluid component measurement device calibrated using said method
US9562909B2 (en) Sensor used for measuring biological information on user
JP6952046B2 (ja) 成分測定装置、成分測定方法及び成分測定プログラム
CN109307767A (zh) 一种干式荧光免疫分析仪
KR101927444B1 (ko) 태양 전지를 이용한 자가발전 가스 측정 장치
US20230384305A1 (en) Method, apparatus and system for detecting and determining comprised reagent pads by quantifying color changes induced by exposure to a hostile environment
JPH02161354A (ja) 自動尿検査装置
WO2021166606A1 (ja) 成分測定装置、成分測定装置セット及び情報処理方法
EP3978909A1 (en) Method of determining the concentration of at least one analyte in a bodily fluid
US20220371016A1 (en) Component measurement apparatus, component measurement apparatus set, and information processing method
CN114729923A (zh) 成分测定装置、成分测定装置组以及信息处理方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006537783

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11664206

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580033422.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2005788008

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005788008

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005788008

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11664206

Country of ref document: US