WO2006030738A1 - 白金材料用コーティング材及び該コーティング材が被覆された白金材料並びにガラス製造装置 - Google Patents

白金材料用コーティング材及び該コーティング材が被覆された白金材料並びにガラス製造装置 Download PDF

Info

Publication number
WO2006030738A1
WO2006030738A1 PCT/JP2005/016757 JP2005016757W WO2006030738A1 WO 2006030738 A1 WO2006030738 A1 WO 2006030738A1 JP 2005016757 W JP2005016757 W JP 2005016757W WO 2006030738 A1 WO2006030738 A1 WO 2006030738A1
Authority
WO
WIPO (PCT)
Prior art keywords
platinum
coating
glass
fired
slurry
Prior art date
Application number
PCT/JP2005/016757
Other languages
English (en)
French (fr)
Inventor
Toru Shoji
Mitsuo Kato
Mikio Hiyama
Tatsuya Takaya
Takashi Aitoku
Original Assignee
Tanaka Kikinzoku Kogyo K.K.
Nippon Electric Glass Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo K.K., Nippon Electric Glass Co., Ltd. filed Critical Tanaka Kikinzoku Kogyo K.K.
Priority to CN2005800355188A priority Critical patent/CN101044265B/zh
Priority to JP2006535874A priority patent/JP4316615B2/ja
Priority to US11/662,503 priority patent/US20080090087A1/en
Priority to KR1020077005786A priority patent/KR101314889B1/ko
Publication of WO2006030738A1 publication Critical patent/WO2006030738A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/167Means for preventing damage to equipment, e.g. by molten glass, hot gases, batches
    • C03B5/1672Use of materials therefor

Definitions

  • Coating material for platinum material platinum material coated with the coating material, and glass manufacturing apparatus
  • the present invention relates to a coating material for coating a platinum material used in a high temperature environment such as a glass manufacturing apparatus.
  • Platinum materials are generally used as constituent materials for apparatuses (such as a stirring tank, a dissolution tank, and a clarification tank) for producing high-quality glass such as optical glass and display glass. Platinum is used as a constituent material for these tower tanks because platinum does not deteriorate because it does not form an oxide layer in the atmosphere with a high melting point, and it is less likely to be deformed or damaged during operation. In addition, it has excellent chemical stability and is less likely to contaminate molten glass. As this platinum material, platinum alloys such as platinum rhodium alloy are widely used in addition to platinum (as for the platinum material applicable to the glass industry, details are given in the conventional technology column of Patent Document 1. ) O
  • the apparatus temperature in the glass manufacturing process is in a high temperature environment of 1200 to 1600 ° C. and 1000 ° C. or higher depending on the processing contents.
  • the platinum material can maintain sufficient durability for a long period of time without contaminating the molten glass inside the apparatus even under the above-mentioned characteristic force and in such a high temperature environment.
  • the volatilization loss of platinum is a factor that directly impairs the strength and stability of the platinum material at a site where the volatilization amount of the platinum apparatus is several percent of the weight of the platinum apparatus in a normal use and the volatilization amount is locally large.
  • the volatilized platinum adheres to the refractory material and heat insulating material installed around the glass manufacturing apparatus, a large number of members become targets for platinum recovery and purification.
  • the loss due to the volatilization of expensive platinum materials in difficult-to-recover spaces is also significant.
  • Patent Document 3 it is proposed to provide a hydrogen-impermeable glass-based coating on the outer surface of the platinum member in order to solve the above-mentioned problem of bubble generation during glass production.
  • Patent Document 2 JP 2001-503008
  • Patent Document 3 Japanese Translation of Special Publication 2004-523449
  • a first object of the present invention is to provide a material suitable for coating a platinum material used in a high temperature environment.
  • a second object of the present invention is to provide a coating material for platinum material that can reduce the generation of bubbles due to moisture in the glass during glass production.
  • metal oxides known as general refractory materials can be used in terms of strength and stability under high-temperature environments, but they are poor in flexibility and have a high melting point. For this reason, it is difficult to form a dense film by firing, and the target characteristics of the present invention are not provided.
  • the present inventors have studied the composition of a suitable coating material, and as a result, have added a glass component to a material that is a crystalline metal oxide of alumina or silica.
  • the present invention has been conceived as being able to satisfy the above-mentioned conditions.
  • the present invention is a material for coating the surface of platinum material that also has platinum or platinum alloy power, and is a coating material for a white metal material containing a refractory material component containing alumina and silica, and a glass component. It is.
  • the coating material in the present invention contains alumina particles, a glass component, silica particles, and Z or colloidal silica.
  • alumina particles a glass component
  • silica particles silica particles
  • Z or colloidal silica a glass component
  • technical matters common to the first to fourth embodiments according to the present invention may be described as “the present invention”.
  • the coating material includes alumina particles, a glass component, colloidal silica, and, if necessary, silica particles.
  • alumina particles and glass components, or further silica particles may be mixed in advance. That is, it is good also as a coating material using the pulverized material which mixed the alumina particle
  • the coating material is preferably in the form of a slurry. That is, it is preferable to use a slurry containing alumina particles, a glass component, colloidal silica, or silica particles as the coating material. As described above, powder obtained by pulverizing a sintered body of a mixture of alumina particles and glass components, or further silica particles When a crushed material is used, a slurry containing the pulverized material and colloidal silica is used as a coating material.
  • the slurry preferably contains a water-soluble polymer such as methylcellulose as an organic binder.
  • the content of the organic binder is preferably in the range of 0.5 to: LO parts by weight, more preferably in the range of 1 to 5 parts by weight with respect to 100 parts by weight of the inorganic solid content in the slurry. .
  • Examples of the method for coating the platinum material with the slurry-form coating material in the present invention include a method in which the slurry is applied to the surface of the platinum material and then fired. After the slurry is applied to the surface of the platinum material, it is preferably dried at a temperature of 40 to 95 ° C., for example. Further, the slurry may be applied while heating the platinum material. The slurry is preferably applied by spraying.
  • the firing temperature when the coating material is applied to the surface of the platinum material and then fired is preferably within a temperature range of 1200 ° C to 1600 ° C.
  • the use temperature is the firing temperature.
  • the platinum material member is heated by molten glass that passes through the inside of the member formed from the platinum material, so the coating material layer applied to the surface of the platinum material is Baking at that temperature.
  • the coating fired film in the first embodiment of the present invention is obtained by applying a coating material containing alumina particles, a glass component, colloidal silica, or further silica particles to the surface of the platinum material and then firing the coating material. It can be obtained from Yuko. Since colloidal silica is used as at least a part of silica, colloidal silica shows a role as an inorganic binder. For this reason, the coating fired film of the first embodiment can be formed as a dense fired film. Therefore, it can be set as the film excellent in hydrogen impermeability, and generation
  • colloidal silica is a fine particle, it must be distinguished from a glass component after firing. Will not be possible and will disappear in the glass component. Therefore, in such a fired film, alumina particles are dispersed as a dispersed phase in a matrix phase having both glass component and colloidal silica component forces. When silica particles are contained in the coating material, the silica particles are dispersed as a dispersed phase together with the alumina particles.
  • the thickness of the fired coating film according to the first embodiment of the present invention is preferably 100 to 1000 m, more preferably 200 to 1000 m, still more preferably 500 to 1000; ⁇ ; ⁇ is there. If the coating fired film becomes too thin, hydrogen shielding properties may be insufficient. On the other hand, if the thickness of the coating fired film is too thick, an effect proportional to the thickness cannot be obtained, which is economically disadvantageous.
  • the average particle diameter of the alumina particles used in the present invention is preferably in the range of 1 to: LOO / zm, and more preferably in the range of 3 to 80m.
  • the average particle diameter is preferably in the range of 1 to L00 ⁇ m, and more preferably in the range of 3 to 80 m. If the average particle size is too large, a dense film may not be obtained even if it contains a glass component. If the average particle size is too small, the role as a filler that gives strength to the coating may be lost.
  • the average particle size is preferably in the range of 10 to 100 nm, more preferably in the range of 10 to 50 nm, and still more preferably in the range of 10 to 30 nm. It is.
  • colloidal silica serves as an inorganic binder in the coating material, and a denser film can be formed by using colloidal silica.
  • the glass component used in the present invention is not particularly limited, but when applied to an apparatus for producing alkali-free glass, it is desirable that the glass component be alkali-free. This is because, even if cracks occur in the platinum device, it is an absolute requirement that the alkali component does not enter the glass (product) inside the device, so the glass component constituting the coating material is also preferably alkali-free. Because.
  • “alkali-free” means that the content of the alkali component is 0.1% by weight or less. Examples of such glass components include borosilicate glass and aluminoborosilicate glass.
  • the glass component, alumina, and silica are preferably contained or contained.
  • the total amount of a silica component is the same content as the above.
  • the content of each component in the coating material has a preferable range depending on the use temperature at which the coating material is used.
  • the temperature at which the white metal material is used in the glass manufacturing facility can be broadly divided into three temperature ranges of 1000 to 1250 ° C, 1250 to 1450 ° C, and 1450 to 1600 ° C.
  • the content is preferably ⁇ 50 wt% (preferably 10 to 30 wt%, more preferably 15 to 25 wt%).
  • the glass component is 20 to 60% by weight (preferably 25 to 45% by weight), the alumina component is 20 to 60% by weight (preferably 30 to 55% by weight), the silica component The content is preferably 10 to 50% by weight (preferably 10 to 30% by weight, more preferably 15 to 25% by weight). 1450-1600
  • the coating material of the second embodiment uses silica particles as silica.
  • Other glass components and alumina components can be the same as those in the first embodiment.
  • the coating material of the second embodiment according to the present invention may be in the form of a slurry, or may be in the form of a paste or a green sheet. By using a paste or green sheet, a thick film can be formed.
  • alumina particles, silica particles, and glass components may be mixed in advance and sintered. That is, a coating material may be produced using a pulverized product obtained by pulverizing a sintered body of a mixture of alumina particles, silica particles, and a glass component.
  • the paste or green sheet in the second embodiment of the present invention includes alumina particles, silica particles, and a glass component. As described above, it may include a pulverized product obtained by pulverizing a sintered body of a mixture obtained by premixing these particles.
  • the paste or green sheet in the second embodiment according to the present invention preferably contains fibrous alumina particles (alumina fibers) as alumina particles.
  • alumina fibers fibrous alumina particles
  • the content of the alumina fiber is preferably in the range of 0.1 to 30% by weight in the solid content of the paste or green sheet.
  • A10 is 50% by weight or more, preferably 70% by weight or less.
  • the fiber length is 0.1 to 100 mm, preferably 1 mm to 50 mm, and the fiber diameter is 0.1 ⁇ m to 50 ⁇ m, preferably 1 to 20 ⁇ m. Glass with low heat resistance when Al 0 is less than 50% by weight
  • the fiber length is less than 0.1 mm, it is not different from particles, and when it is longer than 50 mm, it is difficult to mix uniformly. With respect to the fiber diameter, heat resistance cannot be expected at less than 0 ⁇ ⁇ m, and uniform dispersion is difficult at 50 m or more.
  • the paste or green sheet of the second embodiment according to the present invention may contain a water-soluble polymer such as methylcellulose as an organic binder.
  • the content of the organic binder is preferably in the range of 0.5 to 10 parts by weight, more preferably 1 to 5 parts by weight with respect to 100 parts by weight of the inorganic solid content in the paste or green sheet. Within the scope of the part.
  • the coating material of the second embodiment of the present invention may be in the form of a slurry.
  • a slurry is a slurry containing a mixture of alumina particles, silica particles, and glass components.
  • the coating method according to the second embodiment of the present invention is characterized in that the coating material according to the second embodiment of the present invention described above is baked after being applied or applied to the surface of the platinum material. It is said.
  • the conditions such as the firing temperature are the same as in the first embodiment.
  • the fired coating film according to the second embodiment of the present invention is the second embodiment of the present invention. It is characterized in that it is obtained by applying or applying the coating material of the embodiment to the surface of the platinum material, followed by baking.
  • the fired coating film according to the second embodiment of the present invention generally has a form in which alumina particles and silica particles are dispersed as a dispersed phase in a matrix phase composed of a glass component.
  • FIG. 1 is a schematic diagram showing a coating fired film according to the second embodiment of the present invention.
  • Fig. 1 (a) shows a fired film fired at a relatively low temperature of about 1300 ° C. Alumina particles and silica particles are dispersed in a matrix having glass component strength.
  • Fig. 1 (b) shows a fired film fired in a high temperature region exceeding 1500 ° C.
  • the dispersed alumina particles and silica particles are partially dissolved in the matrix phase. It is a silica-rich glass component. This improves the thermal stability of the matrix phase, and this coating material is flexible at high temperatures of 1500 ° C or higher, and covers the substrate in a good state without causing deformation or sagging. can do.
  • the thickness of the coating fired coating formed using the paste or the green sheet according to the second embodiment of the present invention is preferably in the range of 1 to: LOmm, more preferably 2 to The range is 5mm. Further, the thickness of the coating fired film when formed using the slurry is the same as in the case of the first embodiment.
  • a slurry coating material layer is formed on the surface of a platinum material by applying the slurry in the first embodiment of the present invention, and on the slurry coating material layer, A protective coating material layer is formed by pasting a paste or a green sheet according to the second embodiment of the present invention.
  • the coating method according to the third embodiment of the present invention is characterized in that a slurry coating material layer is formed as described above, a protective coating material layer is formed thereon, and then fired. Firing conditions such as the firing temperature are the same as in the first embodiment of the present invention.
  • the thickness of the portion of the slurry coating layer (slurry coating fired layer) in the fired coating film according to the third embodiment of the present invention is preferably in the range of 100 to 1000 m, more preferably 200 to 1000 m. It is a range, More preferably, it is the range of 500-1000 m.
  • the protective coating layer part protecting coating baking The thickness of the layer
  • the fired slurry coating fired layer according to the third embodiment of the present invention is, for example, in a state where alumina particles are dispersed as a dispersed phase in a matrix phase having a glass component and colloidal silica component force.
  • the fired protective coating fired layer is, for example, in a state where alumina particles and silica particles are dispersed as a dispersed phase in a matrix phase having a glass component force.
  • the coating fired film according to the third embodiment of the present invention has a slurry coating fired layer similar to the coating fired film according to the first embodiment of the present invention, on which the film thickness is protected.
  • a coating fired layer is provided. Since the slurry coating fired layer that directly covers the platinum material is the same as the fired film of the first embodiment of the present invention, it is excellent in hydrogen impermeability and generates bubbles in the glass during glass production. Can be effectively reduced. In addition, since the protective coating fired layer covering it is a thick coating fired film, it can effectively protect the platinum material in a high temperature environment and suppress the volatilization loss of platinum.
  • Firing conditions such as a firing temperature during firing are the same as firing conditions such as the firing temperature of the first embodiment, and firing is performed by placing a protective coating material layer on the slurry coating material layer. After the formation, the slurry coating material layer and the protective coating material layer are preferably fired simultaneously.
  • the slurry coating material layer and the protective coating material layer are formed so that the ratios of the glass component, the silica component, and the alumina component are substantially the same. It's done! But it's different!
  • the fourth embodiment according to the present invention has a two-layer structure including a first coating layer in contact with a platinum material and a second coating layer on the first coating layer.
  • Laminar force The layer is made of a mixture of alumina and silica, and the second coating layer is made of a glass component.
  • the coating fired film of the fourth embodiment of the present invention can be obtained by firing the coating material layer having the above two-layer structure. Firing conditions such as the firing temperature are the same as in the first embodiment.
  • the fired coating film of the fourth embodiment is mainly used in a high temperature environment. It is provided for the purpose of suppressing platinum volatilization loss.
  • the mixture of alumina and silica, which is the first coating layer exhibits a basic function as a coating material, and coats the platinum material as a base material without being damaged even in a high temperature environment.
  • the second coating layer which has a glass component force, further covers the first coating layer to completely block the base material from the outside air, and has flexibility even at high temperatures. Covering and holding the coating layer of 1 suppresses peeling of the first coating layer.
  • FIG. 2 is a schematic diagram showing a fired coating film according to the fourth embodiment of the present invention.
  • Fig. 2 (a) at a firing temperature of about 1300 ° C, the two-layer structure is maintained and the substrate is coated.
  • FIG. 2 (b) when the temperature exceeds 1500 ° C., the first coating layer and the second coating layer react to form a single coating layer rather than a two-layer structure. Thereby, it becomes a layer which also has the glass component power with high alumina concentration and silica concentration.
  • the composition of each coating layer is as follows.
  • the mixed layer of alumina and silica (first coating layer) is 15 to 88% by weight of alumina, and silica is 12 to 85. It is preferable to use weight%. If the alumina exceeds 88% by weight, defects tend to occur when the reaction with the glass phase occurs at a high temperature of 1500 ° C or higher, and if the silica exceeds 85% by weight, peeling tends to occur due to a decrease in the thermal expansion coefficient. Because.
  • the glass component layer (second coating layer) may be composed of one kind of glass, or may be a mixture of plural kinds of glass.
  • the amount of the glass serving as the second coating layer is preferably about 1: 1 with respect to the mixed layer of alumina and silica.
  • each layer is 50 to 500 111, particularly 50 to 250 / z m for the first coating layer! /.
  • the second coating layer is preferably 50 to 500 111, particularly 50 to 250 / ⁇ ⁇ . If the total thickness of the first and second coating layers is less than 100 m, it may not be a dense film necessary to prevent acidification, and if it exceeds 1000 m, peeling occurs when a significant temperature fluctuation occurs. 'This is because the possibility of dropping out increases.
  • the coating material of the present invention contains alumina, silica, and a glass component as essential components. In addition to these components, if necessary, zirconia, titer, It may contain other ceramic components such as mites.
  • the platinum material used as the base material is not limited to pure platinum, and can be applied to a white metal alloy. Examples of platinum alloys include platinum rhodium alloys, platinum gold alloys, platinum palladium alloys, platinum iridium alloys, and platinum-ruthenium alloys.
  • the coating material of the present invention can be applied not only to solid solution alloys but also to particle dispersion strengthened platinum alloys called reinforced platinum.
  • the platinum material of the present invention is coated with or coated with the coating material according to the first embodiment, the second embodiment, the third embodiment, or the fourth embodiment of the present invention.
  • the platinum material coated with the coating material indicates the platinum material in a state before being baked after being coated by applying or pasting the coating material.
  • the platinum material with the coating fired film formed on the surface indicates the white metal material after the coated coating material is fired.
  • the glass manufacturing apparatus of the present invention is coated with a coating material according to the first embodiment, the second embodiment, the third embodiment, or the fourth embodiment of the present invention, or the coating.
  • a glass manufacturing apparatus characterized in that a platinum material on which a fired film is formed is used as a constituent material.
  • a glass manufacturing apparatus using a platinum material coated with a coating material as a constituent material shows a state before the coating material is fired, and the platinum material on which the coating fired film is formed is used as the constituent material.
  • the glass manufacturing apparatus shows the state after firing the coating material.
  • FIG. 1 schematically shows a fired coating film of one example according to the second embodiment of the present invention.
  • FIG. 2 is a diagram schematically showing a coating fired film of one example according to the fourth embodiment of the present invention.
  • FIG. 3 is a diagram showing an example of the apparatus configuration of a glass manufacturing apparatus.
  • FIG. 4 is a diagram showing an interfacial foam state of Example 6.
  • FIG. 5 is a diagram showing an interfacial foam state of Comparative Example 2.
  • FIG. 6 is a diagram showing an interfacial foam state of Comparative Example 3.
  • FIG. 7 is a diagram showing an interfacial foam state of Comparative Example 4.
  • This example is an example using a coating material in the form of a slurry according to the first embodiment of the present invention.
  • a coating material fired film in which a glass component is used as a matrix phase and alumina and silica are dispersed as a dispersed phase is produced on a platinum alloy substrate, and whether or not there is volatilization loss of platinum from the substrate It was investigated.
  • four types of coating materials having different contents of each component were manufactured.
  • a raw material sol (slurry) according to the composition of the coating material to be manufactured was manufactured.
  • the alumina and silica used in the raw material sol (slurry) were in a deionized colloidal solution (alkali-free) state (colloidal silica).
  • the alumina and silica used as the dispersed phase are preferably those in which at least one of alumina and silica is derived from a colloidal solution as in this embodiment.
  • the glass component Nippon Electric Glass Co., Ltd. alkali Freer luminometer borosilicate glass (material name OA- 10 Composition (wt 0/0): SiO 60% , BO 10%, A
  • the raw material sol (slurry) is produced by suspending a colloidal solution of glass, alumina, and silica in water twice the weight of the solid, and adding 3% by weight of methyl cellulose to the solid weight. And stirred to obtain a raw material sol.
  • a flat plate of Pt—10 wt% Rh alloy was used as a test piece as a base material (dimension: 75 mm port X 1.
  • the raw material sol was supplied to the spray nozzle while stirring with a stirrer while heating with a hot air gun, and the sol was repeatedly sprayed on the test piece to a thickness of 200 / zm. After coating the sol on both sides, it was fired at 1300 ° C in an electric furnace to produce a coating material (fired coating).
  • the test piece on which the coating material (fired film) was formed was examined for the presence or absence of platinum volatilization loss. This examination was performed by heating the test piece in the open air at 1300 ° C and 1500 ° C for 100 hours and measuring the weight change after heating. The results are shown in Table 1. Table 1 also shows the test results of Pt—10 wt% Rh alloy with the coating material (firing film) formed.
  • This example is an example according to the fourth embodiment of the present invention.
  • a two-layer coating material fired film
  • a raw material sol slurry
  • alumina and silica was applied onto a substrate (alumina 53.1 wt%, silica 46.9 wt%).
  • the solvent of the raw material sol here and the adjusting method were the same as in Examples 1 to 4, and only the blending amount was adjusted.
  • coating method was performed by spray application like Examples 1-4. Then, after applying the sol, it was dried and fired to form a first coating layer (thickness 150 ⁇ ).
  • a second coating layer was formed thereon.
  • This second coating layer was a glass component layer containing 50% by weight of OA-10 and EF (both manufactured by Nippon Electric Glass Co., Ltd.) as glass components.
  • the second coating layer was formed by sol spraying as described above, and the film thickness was 150 / zm.
  • This example is an example according to the first embodiment of the present invention.
  • Lumina particles (average particle size 50 m) are used.
  • SiO colloidal silica (silica
  • a slurry was prepared by suspending in water twice the weight of the solid and adding 3% by weight of methylcellulose to the weight of the solid.
  • the platinum crucible was fired at 1500 ° C. for 5 hours to fire the coating material layer.
  • the thickness of the coating fired film was 500 m.
  • aluminoborosilicate glass (OA-10) was filled in a platinum crucible with the temperature lowered to 1300 ° C, and the temperature was raised to 1500 ° C at a rate of 10 ° CZ. did. Hold at 1500 ° C for 1 hour.
  • FIG. 4 to 7 show photographs of the foamed state of the glass in the platinum crucible. 4 shows Example 6, FIG. 5 shows Comparative Example 2, FIG. 6 shows Comparative Example 3, and FIG.
  • Example 6 containing soot and SiO as essential components contained only Al 2 O in the glass.
  • Comparative example 2 comparative example 3 containing only SiO in the glass component, and glass It can be seen that foaming can be remarkably reduced as compared with Comparative Example 4 containing ZrO. This shows that it is necessary to contain alumina and silica as essential components in accordance with the present invention in order to reduce foaming during glass production.
  • the coating material of this example was able to reduce the volatilization loss of platinum as in Examples 1-5.
  • This example is an example according to the first embodiment of the present invention.
  • Example 6 spray the above slurry on the bottom and outside sides of the platinum crucible while the inner surface of the sand crucible platinum crucible (diameter 46 mm, height 40 mm) is heated by hot air gun. Painted. After coating so that the film thickness after firing was 500 / zm, it was dried at 80 ° C to form a slurry coating material layer.
  • This example is an example using a paste-form coating material according to the second embodiment of the present invention.
  • a sintered product of the product was prepared.
  • silica particles those having an average particle diameter of 20 m were used, and as the alumina particles, those used in Example 6 were used.
  • the sintering condition was 1500 ° C for 24 hours, and the obtained sintered body was pulverized to obtain a pulverized product having an average particle size of about 20 m.
  • alumina fiber (97 wt% A1 O-3 wt%
  • a paste was prepared by adding and mixing to a solution of 9% by weight of rosin rosin.
  • the proportion of the aqueous methylcellulose resin solution was 40 parts by weight with respect to 100 parts by weight of the total of the pulverized product and alumina fiber.
  • the paste was applied to the outer bottom surface and the outer side surface of a sandblasted platinum crucible (diameter 46 mm, height 40 mm). The position where the paste was applied was the same as in Example 6. After pasting the paste, it was fired at 1500 ° C for 5 hours. After firing, the temperature was lowered to 1300 ° C. At this temperature, the platinum crucible was filled with aluminoborosilicate glass (OA-10), and then the temperature was raised. The temperature was raised to 1500 ° C at a temperature rate of 10 ° CZ and held at 1500 ° C for 1 hour. The interfacial foaming state at this time was evaluated and shown in Table 5.
  • OA-10 aluminoborosilicate glass
  • Example 10 As shown in Table 5, it can be seen that also in Example 10 using the paste-type coating material according to the second embodiment of the present invention, foaming during glass production can be reduced. In addition, the paste of this example was not cracked after firing. Further, as in Example 15, the volatilization loss of platinum could be reduced.
  • This example is an example according to the third embodiment of the present invention.
  • OA-10 is used as the glass component, and alumina particles are used as Al O.
  • a slurry-like coating material was prepared using colloidal silica as SiO.
  • Example 6 The same alumina particles and colloidal silica as in Example 6 were used.
  • the numbers in parentheses shown in the column of colloidal silica in Table 6 are the blending ratio of colloidal silica as a solution.
  • organic Indah a 1.5 wt 0/0 aqueous solution of methyl cellulose ⁇ , used at the mixing ratio shown in Table 6, were prepared three kinds of slurries al bl and cl.
  • the obtained sintered compact was mixed with an organic binder and an aluminum naphtha to prepare three types of pastes a3, b3 and c3.
  • Sand blasted platinum crucible (diameter 46mm, height 40mm) with the inner surface heated by hot air gun, on the bottom and outer sides of the platinum crucible, the slurry-like coating materials shown in Table 6 al, bl And cl were spray-coated and then dried at 80 ° C. to form a slurry coating material layer.
  • pastes a3, b3 and c3 shown in Table 8 were applied onto the slurry coating material layer formed as described above, and then dried to form a protective coating material layer.
  • the platinum crucible on which the slurry coating material layer and the protective coating material layer were formed as described above was heated to the respective test temperatures at a heating rate of 10 ° CZ, and the temperature was maintained for 5 hours.
  • the slurry coating material layer and the protective coating material layer were baked by holding.
  • the thickness of the slurry coating fired layer of the fired coating obtained in each example was 500 m
  • the thickness of the protective coating fired layer was 5 mm.
  • the platinum crucible of Examples 11 to 13 having the coating fired film formed as described above Is filled with aluminoborosilicate glass (OA-10) with the temperature lowered to 200 ° C lower than the test temperature, then heated up to the test temperature at a heating rate of 10 ° CZ, and then at each test temperature. Hold for 1 hour.
  • Table 9 shows the state of interfacial foaming.
  • the coating material of this example was able to reduce the volatilization loss of platinum as in Examples 1-5.
  • FIG. 3 is an explanatory diagram showing the configuration of the glass manufacturing facility.
  • the glass production facility 1 includes a substantially rectangular melting tank 2 serving as a molten glass supply source, a clarification tank 3 provided on the downstream side of the dissolution tank 2, and a stirring tank 4 provided on the downstream side of the clarification tank 3. And a molding device 5 provided on the downstream side of the stirring tank 4, and the dissolution tank 2, the clarification tank 3, the stirring tank 4, and the molding apparatus 5 are connected by communication channels 6, 7, and 8, respectively. Has been.
  • the dissolution tank 2 has a bottom wall, a side wall, and a ceiling wall, and each of these walls is formed of a refractory material.
  • the dissolution tank 2 is provided with a burner, an electrode, etc., and can melt the glass raw material.
  • An outlet is formed on the downstream side wall of the dissolution tank 2, and the dissolution tank 2 and the clarification tank 3 communicate with each other via a narrow communication channel 6 having the outlet at the upstream end. ing.
  • the clarification tank 3 has a bottom wall, a side wall, and a ceiling wall.
  • the inner wall surface of the bottom wall and the side wall (at least the inner wall surface part in contact with the molten glass) is made of platinum or a platinum alloy, A protective refractory is installed outside.
  • the downstream end of the outflow passage 6 is open on the upstream side wall.
  • This clarification tank 3 is a part where glass clarification is mainly performed, and fine bubbles contained in the glass are expanded and floated by the clarification gas released from the clarifier, and are removed from the glass.
  • An outlet is formed on the downstream side wall of the clarification tank 3, and the stirring tank 4 communicates with the downstream side of the clarification tank 3 via a narrow communication channel 7 having the outlet at the upstream end.
  • the stirring vessel 4 has a bottom wall, a side wall, and a ceiling wall.
  • the inner wall surface of the bottom wall and the side wall (at least the inner wall surface part in contact with the molten glass) is made of platinum or a platinum alloy, and a protective refractory is installed on the outside.
  • the stirring tank 4 is a part where the molten glass is stirred mainly by a stirrer or the like and homogenized.
  • An outflow port is formed on the downstream side wall of the stirring tank 4, and the molding device 5 communicates with the downstream side of the stirring tank 4 through a narrow communication channel 8 having the outflow port at the upstream end.
  • a plate glass forming apparatus such as a downdraw forming apparatus, an updraw forming apparatus, or a float forming apparatus is used.
  • a float forming apparatus is used.
  • an overflow downdraw apparatus is suitable.
  • the communication channel 6 connecting the dissolution tank 2 and the clarification tank 3 is formed of a refractory, while the other communication channel, that is, the connection connecting the clarification tank 3 and the stirring tank 4 is used.
  • the flow path 7 and the communication flow path 8 that connects the stirring tank 4 and the molding device 5 are formed of platinum or a platinum alloy, and a protective refractory is installed on the outside thereof.
  • the glass according to the third embodiment of the present invention is formed on the outer surface of a glass production facility (here, clarification tank 2 to communication channel 8) made of platinum or a platinum alloy in the production facility.
  • a coating firing film in which a protective coating fired layer was formed on a single coating fired film, that is, a slurry coating fired layer was formed.
  • the coating materials of Examples 11 to 13 can be suitably used.
  • a method for producing display glass using the glass production equipment having the above-described configuration is as follows.
  • a glass raw material is prepared.
  • the glass raw material thus prepared is put into the melting tank 2 and melted and vitrified.
  • the glass is heated upward by the burner flame.
  • the molten glass vitrified in the melting tank 2 is guided to the clarification tank 3 through the communication channel 6.
  • the molten glass contains initial bubbles generated during the vitrification reaction.
  • the initial bubbles are lifted and removed by the clarified gas released by the fining agent component force.
  • the molten glass clarified in the clarification tank 3 is guided to the stirring tank through the communication channel 7.
  • the glass is stirred and homogenized by a rotating stirrer.
  • the molten glass homogenized in the stirring vessel 4 is guided to the forming device 5 through the communication channel 8 and formed into a plate shape. In this way, a display glass can be obtained.
  • the communication channel 6 from the dissolution tank 2 to the clarification tank 3 corresponds to the operating temperature range of 1450 ° C to 1600 ° C
  • the communication flow from the clarification tank 3, the clarification tank 3 to the stirring tank 4 The passage 7 and the stirring tank 4 correspond to the working temperature range of 1250 ° C to 1450 ° C
  • the stirring tank 4 and the connecting flow path 8 to the forming device 5 are the working temperature of 1000 ° C to 1250 ° C. Corresponds to the area.
  • the apparatus according to the present embodiment is naturally applicable to the manufacture of glass other than display glass.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Glass Compositions (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Catalysts (AREA)

Abstract

 白金または白金合金からなる白金材料の表面をコーティングするための材料であって、アルミナとシリカとを含む耐火材料成分と、ガラス成分とを含む白金材料用のコーティング材。

Description

白金材料用コーティング材及び該コ一ティング材が被覆された白金材料 並びにガラス製造装置
技術分野
[0001] 本発明は、ガラス製造装置等、高温環境下で使用される白金材料を被覆するため のコーティング材に関する。 背景技術
[0002] 光学ガラス、ディスプレイ用ガラス等の高品位のガラスを製造するための装置 (攪拌 槽、溶解槽、清澄槽等)の構成材料としては、一般に白金材料が使用されている。こ れら塔槽類の構成材料に白金材料が用いられるのは、白金は融点が高ぐ大気中で 酸化物層を形成しないため劣化せず、装置稼動時に変形、損傷のおそれが低いこと に加え、化学的安定性にも優れ、溶融状態のガラスを汚染するおそれが低いことに よる。そして、この白金材料としては、白金の他、白金 ロジウム合金等の白金合金 が広く使用されている (ガラス工業に適用可能な白金材料としては、特許文献 1の従 来の技術の欄に詳細が記載されている。 ) o
[0003] ガラス製造工程における装置温度は、その処理内容により異なる力 1200-160 0°Cと 1000°C以上の高温環境下にある。白金材料は、上記特性力もこのような高温 環境下でも装置内部の溶融ガラスを汚染することなぐ長期間十分な耐久性を維持 することができる。
[0004] し力しながら、上記高温環境下では、装置の外表面における挙動に関して一つ問 題がある。この問題とは、白金材料中の白金が気体酸化物である白金酸化物(PtO
2
)を生成することにより揮発損失することである。この白金の揮発損失は、通常使用に ぉ 、て白金装置重量の数%に及び、局部的に揮発量の多!、部位では白金材料の 強度、安定性を直接害する要因となる。また、揮発した白金は、ガラス製造装置周囲 に設置された耐火材、断熱材に付着することから、白金回収精製の対象となる部材 が多大となる。更に、高価な白金材料が回収困難な空間に揮散することによる損失も 大きなものである。 [0005] また、白金部材を用いたガラス製造装置においては、ガラス製造時に、ガラス中の 水分に起因する泡が、白金部材の界面に発生するという問題があった (特許文献 2な ど)。これは、ガラス中の水が分解し、分解により生成した水素が白金部材を透過して 外部に放出され、その結果、白金部材の界面近傍に酸素濃度が高いガラスが存在 することになり、これによつて酸素の泡が発生することによるものであると考えられる。
[0006] 特許文献 3においては、上記のガラス製造時における泡の発生の問題を解決する ため、白金部材の外側表面に、水素不透過性のガラス系被膜を設けることが提案さ れている。
しかしながら、本発明者等が、特許文献 3に開示されたガラス系被膜を検討したとこ ろ、ガラス製造時における泡の発生を十分に低減することができるものではな力つた 特許文献 1:特開平 10— 280070号公報
特許文献 2:特表 2001— 503008号公報
特許文献 3:特表 2004 - 523449号公報
発明の開示
[0007] 本発明の第 1の目的は、高温環境下で使用される白金材料を被覆するために好適 な材料を提供することにある。
本発明の第 2の目的は、ガラス製造時におけるガラス中の水分に起因する泡の発 生を低減することができる白金材料用コーティング材を提供することにある。
[0008] 高温で使用される白金材料のコーティング材に要求される特性を整理すると、第 1 に高温環境下で溶融、変形することがないことに加え、ある程度の柔軟性を有し基材 となる白金材料の変形に追従することができることが必要である。装置の稼動、停止 時においては、構成材料の熱膨張、収縮が生じることから、単に強度の高い硬質なコ 一ティング材では、寸法変化に追従できずに割れ、変形を生じさせその機能を失うこ ととなる力 である。そして、第 2に緻密な膜質を有し、ピンホール等の欠陥を生じ難 い成分であることが必要である。欠陥の存在は、使用過程におけるコーティング材の 損傷に繋がるだけではなぐ基材と外気とが接触する要因にもなり、基材からの白金 の揮発損失が十分抑制されな!、からである。 [0009] 従って、一般的な耐火材として知られる金属酸ィ匕物等は、強度、高温環境下での 安定性という観点では使用可能と考えられるが、柔軟性に乏しぐまた、融点が高い ために焼成により緻密な膜にすることが困難であり本発明で目的とする特性は具備し ていない。
本発明者等は、以上の前提条件を踏まえつつ、好適なコーティング材の構成につ いて検討を行い、その結果、アルミナ、シリカの結晶性の金属酸ィ匕物にガラス成分を 加えた材料にぉ 、て、上記した条件を具備することができるとして本発明に想到した
[0010] また、アルミナ及びシリカを耐火材料の必須成分として含み、これにガラス成分をカロ えたコーティング材カ ガラス製造時におけるガラス中の水分に起因する泡の発生を 有効に低減し得ることを見出し本発明に到達した。
即ち、本発明は、白金又は白金合金力もなる白金材料の表面をコーティングするた めの材料であって、アルミナとシリカとを含む耐火材料成分と、ガラス成分とを含む白 金材料用のコーティング材である。
[0011] 本発明におけるコーティング材は、アルミナ粒子と、ガラス成分と、シリカ粒子及び Z又はコロイダルシリカとを含むものである。以下、本発明に従う第 1〜第 4の実施形 態に共通する技術的事項については、「本発明」として説明する場合がある。
本発明に従う好ましい第 1の実施形態においては、シリカの少なくとも一部としてコ ロイダルシリカを用いる。従って、アルミナ粒子と、ガラス成分と、コロイダルシリカと、 さらに必要に応じてシリカ粒子とを含むコ一ティング材である。
[0012] 本発明に従う第 1の実施形態においては、アルミナ粒子とガラス成分、或いはさらに シリカ粒子が予め混合されていてもよい。すなわち、アルミナ粒子とガラス成分、或い はさらにシリカ粒子を混合し、これを焼結した焼結体を粉砕した粉砕物と、コロイダル シリカとを用いてコーティング材としてもよい。
本発明に従う第 1の実施形態においては、コーティング材をスラリーの形態とするこ とが好ましい。すなわち、アルミナ粒子と、ガラス成分と、コロイダルシリカ、或いはさら にシリカ粒子とを含むスラリーをコーティング材とすることが好ましい。上記のように、 アルミナ粒子とガラス成分、或いはさらにシリカ粒子の混合物の焼結体を粉砕した粉 砕物を用いる場合には、該粉砕物とコロイダルシリカとを含むスラリーをコーティング 材として用いる。
[0013] スラリーには、メチルセルロースなどの水溶性高分子を有機バインダーとして含有さ せることが好ましい。有機バインダーの含有量としては、スラリー中の無機の固形分 1 00重量部に対し、 0. 5〜: LO重量部の範囲内が好ましぐさらに好ましくは 1〜5重量 部の範囲内である。
本発明におけるスラリー形態のコーティング材を白金材料にコーティングする方法 としては、スラリーを白金材料の表面に塗布した後、焼成する方法が挙げられる。スラ リーを白金材料の表面に塗布した後、例えば、 40〜95°Cの温度で乾燥させることが 好ましい。また、白金材料を加熱しながらスラリーを塗布してもよい。スラリーは、スプ レー方式で塗布することが好ま 、。
[0014] 本発明において、コーティング材を白金材料の表面に塗布した後焼成する際の焼 成温度としては、 1200°C〜1600°Cの温度範囲内であることが好ましい。白金材料 が使用される環境温度を利用して焼成する場合には、その使用温度が焼成温度とな る。例えば、ガラス製造装置において使用する白金材料の場合、白金材料から形成 された部材の内部を通過する溶融ガラスにより白金材料の部材が加熱されるので、 白金材料表面に塗布されたコーティング材層は、その温度で焼成される。
[0015] 本発明の第 1の実施形態におけるコーティング焼成被膜は、アルミナ粒子と、ガラス 成分と、コロイダルシリカ、或いはさらにシリカ粒子とを含むコーティング材を白金材料 の表面に塗布した後、焼成すること〖こより得られるものである。シリカの少なくとも一部 としてコロイダルシリカを用いているため、コロイダルシリカが無機バインダーとしての 役割を示す。このため、第 1の実施形態のコーティング焼成被膜は、緻密な焼成被膜 として形成することができる。従って、水素不透過性に優れた被膜とすることができ、 ガラス製造時におけるガラス中の泡の発生を有効に低減することができる。水素不透 過性が必要とされる用途においては、この第 1の実施形態のコーティング焼成被膜を 形成することが特に好ましい。また、白金の揮発損失も有効に低減させることができる
[0016] コロイダルシリカは微小粒子であるため、焼成後においてガラス成分と区別すること ができなくなり、ガラス成分中に消失した状態となる。従って、このような焼成被膜に おいては、ガラス成分とコロイダルシリカ成分力もなるマトリックス相に、アルミナ粒子 が分散相として分散した状態となる。なおコーティング材にシリカ粒子を含有した場合 には、アルミナ粒子とともにシリカ粒子も分散相として分散した状態となる。
[0017] 本発明の第 1の実施形態に従うコーティング焼成被膜の厚みは、 100〜1000 m であることが好ましぐさらに好ましくは 200〜 1000 mであり、さらに好ましくは 500 〜1000 ;ζ ΐηである。コーティング焼成被膜の膜厚が薄くなりすぎると、水素遮蔽性が 不十分になる場合がある。また、コーティング焼成被膜の厚みを厚くしすぎると、厚み に比例した効果が得られず、経済的に不利なものとなる。
[0018] 本発明において用いるアルミナ粒子の平均粒子径は、 1〜: LOO /z mの範囲内であ ることが好ましぐさらに好ましくは 3〜80 mの範囲内である。また、シリカとしてシリ 力粒子を用いる場合、その平均粒子径は 1〜: L00 μ mの範囲内であることが好ましく 、さらに好ましくは 3〜80 mの範囲内である。平均粒子径が大きくなりすぎると、ガ ラス成分を含んでいても緻密な膜が得られない場合がある。また、平均粒子径が小さ すぎると、被膜に強度を与えるフィラーとしての役割が失われてしまう場合がある。
[0019] シリカとしてコロイダルシリカを用いる場合、その平均粒子径は 10〜100nmの範囲 内であることが好ましぐさらに好ましくは 10〜50nmの範囲内であり、さらに好ましく は 10〜30nmの範囲内である。コロイダルシリカは、上述のように、コーティング材に おいて無機バインダーとして働くものであり、コロイダルシリカを用いることによりより緻 密な被膜を形成することができる。
[0020] 本発明において用いるガラス成分としては、特に制限されるものではないが、アル カリフリーガラスの製造装置に適用する場合には、アルカリフリーであることが望まれ る。これは、白金装置にクラックが生じても装置内部のガラス (製品)にアルカリ成分が 混入しな ヽことが絶対条件となることから、コーティング材を構成するガラス成分もァ ルカリフリーであることが好ましいからである。尚、本発明において、アルカリフリーと は、アルカリ成分の含有量が 0. 1重量%以下であることを意味する。このようなガラス 成分としては、例えば、硼珪酸ガラス、アルミノ硼珪酸ガラスが挙げられる。
[0021] 本発明にお ヽて、ガラス成分、アルミナ、及びシリカの各構成成分の好ま 、含有 量としては、固形分基準でガラス成分 20〜70重量%、アルミナ 15〜55重量%、シリ 力 10〜50重量0 /0であり、ガラス成分 30〜70重量0 /0、アルミナ 15〜45重量0 /0、シリ 力 10〜30重量%の範囲のものがさらに好ましい。なお、コロイダルシリカを用いる場 合にも、シリカ成分の合量が上記と同様の含有量であることが好ましい。
[0022] また、コーティング材における各成分の含有量は、コーティング材が使用される使 用温度によっても好ましい範囲がある。後述するように、ガラス製造設備における白 金材料が用いられる箇所の温度は、大きく分けて 1000〜1250°C、 1250〜1450°C 、及び 1450〜1600°Cの 3つの温度領域に分けられる。 1000〜1250°Cの温度領 域では、ガラス成分 35〜70重量% (好ましくは 40〜65重量0 /0)、アルミナ成分 10〜 40重量% (好ましくは 15〜35重量%)、シリカ成分 10〜50重量% (好ましくは 10〜 30重量%、さらに好ましくは 15〜25重量%)の含有量であることが好ましい。また、 1 250〜1450°Cの温度領域では、ガラス成分 20〜60重量% (好ましくは 25〜45重 量%)、アルミナ成分 20〜60重量% (好ましくは 30〜55重量%)、シリカ成分 10〜5 0重量%(好ましくは 10〜30重量%、さらに好ましくは 15〜25重量%)の含有量であ ることが好ましい。 1450〜1600°Cの温度領域では、ガラス成分 15〜40重量% (好 ましくは 15〜35重量0 /0)、アルミナ成分 35〜70重量0 /0 (好ましくは 40〜65重量0 /0) 、シリカ成分 10〜50重量% (好ましくは 10〜30重量%、さらに好ましくは 15〜25重 量0 /0)の含有量であることが好まし 、。
[0023] 本発明に従う好ま 、第 2の実施形態のコーティング材は、シリカとしてシリカ粒子 を用いるものである。その他のガラス成分及びアルミナ成分については、上記の第 1 の実施形態と同様のものを用いることができる。
本発明に従う第 2の実施形態のコーティング材は、スラリーの形態であってもよいし 、ペーストまたはグリーンシートの形態であってもよい。ペーストまたはグリーンシート の形態にすることにより、膜厚の厚い被膜を形成することが可能となる。
[0024] 本発明に従う第 2の実施形態にお 、ては、アルミナ粒子と、シリカ粒子と、ガラス成 分を予め混合し、焼結させておいてもよい。すなわち、アルミナ粒子とシリカ粒子とガ ラス成分の混合物の焼結体を粉砕した粉砕物を用いてコーティング材を作製してもよ い。 [0025] 本発明の第 2の実施形態におけるペーストまたはグリーンシートは、アルミナ粒子と シリカ粒子とガラス成分とを含んでいるものである。上述のように、これらの粒子を予 め混合した混合物の焼結体を粉砕した粉砕物を含んで 、てもよ 、。
本発明に従う第 2の実施形態におけるペーストまたはグリーンシートには、アルミナ 粒子として、繊維状のアルミナ粒子(アルミナファイバー)が含まれていることが好まし い。このようなアルミナファイバーをペーストまたはグリーンシートに含ませることにより 、ペーストまたはグリーンシートを白金材料の表面に貼り付けて焼成した後の焼成被 膜において割れ等が生じに《なる。アルミナファイバーの含有量としては、ペースト またはグリーンシートの固形分中において、 0. 1〜30重量%の範囲内であることが 好ましい。アルミナファイバ一としては、 A1 0が 50重量%以上、好ましくは 70重量%以
2 3
上であり、繊維長は 0.1〜100mm、好ましくは lmm〜50mmであり、繊維径は 0.1 μ m〜 50 μ m、好ましくは 1〜20 μ mである。 Al 0が 50重量%未満では耐熱性が低ぐガラス
2 3
成分と容易に反応し、繊維を入れた効果が期待できない。繊維長については 0.1mm 未満では粒子と変わらず、 50mmより長いと均一に混合しにくい。繊維径については 0 Λ μ m未満では耐熱性が期待できず、 50 m以上では均一な分散が困難である。
[0026] また、本発明に従う第 2の実施形態のペーストまたはグリーンシートには、メチルセ ルロースなどの水溶性高分子を有機バインダーとして含有させてもょ ヽ。有機バイン ダ一の含有量は、ペーストまたはグリーンシート中の無機の固形分 100重量部に対し て、 0. 5〜10重量部の範囲内であることが好ましぐさらに好ましくは 1〜5重量部の 範囲内である。
本発明の第 2の実施形態のコーティング材としては、スラリーの形態のものであって もよい。このようなスラリーは、アルミナ粒子と、シリカ粒子と、ガラス成分とを混合して 含有するスラリーである。
[0027] 本発明の第 2の実施形態に従うコーティング方法は、上記本発明の第 2の実施形 態のコーティング材を白金材料の表面に塗布する力または貼り付けた後、焼成するこ とを特徴としている。
焼成温度等の条件については第 1の実施形態と同様である。
[0028] 本発明の第 2の実施形態に従うコーティング焼成被膜は、上記本発明の第 2の実 施形態のコーティング材を白金材料の表面に塗布する力または貼り付けた後、焼成 すること〖こよって得られることを特徴として ヽる。
本発明の第 2の実施形態におけるコーティング焼成被膜は、一般に、ガラス成分か らなるマトリックス相に、アルミナ粒子及びシリカ粒子が分散相として分散した形態を 有している。図 1は、本発明の第 2の実施形態におけるコーティング焼成被膜を示す 模式図である。図 1 (a)は、 1300°C程度の比較的低温で焼成された焼成被膜を示し ており、ガラス成分力 なるマトリックス中に、アルミナ粒子及びシリカ粒子が分散して いる。図 1 (b)は、 1500°Cを超える高温領域で焼成した焼成被膜を示しており、分散 相であるアルミナ粒子及びシリカ粒子が部分的にマトリックス相に溶解し、これにより マトリックス相はアルミナ及びシリカリッチのガラス成分となっている。これにより、マトリ ックス相の熱的安定性が向上し、このコーティング材は 1500°C以上の高温下で柔軟 性を有しつつ、変形やタレを生じさせることなく基材を良好な状態で被覆することがで きる。
[0029] 本発明の第 2の実施形態に従いペーストまたはグリーンシートを用いて形成したコ 一ティング焼成被膜の厚みは、 1〜: LOmmの範囲であることが好ましぐさらに好まし くは 2〜5mmの範囲である。また、スラリーを用いて形成した場合のコーティング焼成 被膜の厚みは、上記の第 1の実施形態の場合と同様である。
本発明に従う好ましい第 3の実施形態は、白金材料の表面に、本発明の第 1の実 施形態におけるスラリーを塗布してスラリーコーティング材層を形成し、該スラリーコ 一ティング材層の上に、本発明の第 2の実施形態に従うペーストまたはグリーンシート を貼り付けて保護コーティング材層を形成することを特徴としている。
[0030] 本発明の第 3の実施形態に従うコーティング方法は、上記のようにスラリーコーティ ング材層を形成し、その上に保護コーティング材層を形成した後、焼成することを特 徴としている。焼成温度等の焼成条件は、本発明の第 1の実施形態と同様である。 本発明の第 3の実施形態に従うコーティング焼成被膜におけるスラリーコーティング 層の部分 (スラリーコーティング焼成層)の厚みは、 100〜1000 mの範囲であるこ と力 子ましく、さらに好ましくは 200〜 1000 mの範囲であり、さらに好ましくは 500 〜 1000 mの範囲である。また、保護コーティング層の部分 (保護コーティング焼成 層)の厚みは、 1〜: LOmmの範囲であることが好ましぐさらに好ましくは 2〜5mmの 範囲である。
[0031] 本発明の第 3の実施形態における焼成後のスラリーコーティング焼成層は、例えば 、ガラス成分とコロイダルシリカ成分力もなるマトリックス相に、アルミナ粒子が分散相 として分散した状態である。また、焼成後の保護コーティング焼成層は、例えば、ガラ ス成分力 なるマトリックス相に、アルミナ粒子及びシリカ粒子が分散相として分散し た状態である。
本発明の第 3の実施形態に従うコーティング焼成被膜は、本発明の第 1の実施形 態に従うコ一ティング焼成被膜と同様のスラリ一コーティング焼成層を有し、その上に 膜厚の厚 ヽ保護コーティング焼成層を設けたものである。白金材料を直接被覆する スラリーコーティング焼成層が本発明の第 1の実施形態の焼成被膜と同様のものであ るので、水素不透過性に優れており、ガラス製造時におけるガラス中の泡の発生を有 効に低減することができる。また、その上を被覆する保護コーティング焼成層は膜厚 の厚いコーティング焼成被膜であるので、高温環境下における白金材料を有効に保 護し、白金が揮発損失するのを抑制することができる。
[0032] 焼成の際の焼成温度等の焼成条件は、上記の第 1の実施形態の焼成温度等の焼 成条件と同じであり、焼成は、スラリーコーティング材層の上に保護コーティング材層 を形成した後に、スラリーコーティング材層と保護コーティング材層とを同時に焼成す ることが好ましい。
また、本発明の第 3の実施形態において、スラリーコーティング材層と保護コーティ ング材層は、ガラス成分、シリカ成分、及びアルミナ成分の割合が実質的に同じにな るようにそれぞれの層が形成されて!、てもよ 、し、異なって!/ヽても良!、。
[0033] 本発明に従う第 4の実施形態は、白金材料に接する第 1の被覆層と該第 1の被覆 層上の第 2の被覆層とからなる 2層構造を有し、第 1の被覆層力 アルミナとシリカとの 混合物よりなり、第 2の被覆層が、ガラス成分カゝらなることを特徴としている。
本発明の第 4の実施形態のコーティング焼成膜は、上記 2層構造を有するコーティ ング材層を焼成することにより得られる。焼成温度等の焼成条件は、上記第 1の実施 形態と同様である。第 4の実施形態のコーティング焼成被膜は、主に高温環境下に おける白金の揮発損失を抑制することを目的に設けられるものである。第 1の被覆層 であるアルミナとシリカとの混合物がコーティング材としての基本的な機能を発揮し、 高温環境下でも損傷することなく基材である白金材料を被覆する。そして、ガラス成 分力ゝらなる第 2の被覆層は、第 1の被覆層をさらに被覆することにより基材と外気との 遮断を完全なものとし、高温下でも柔軟性を有しながら第 1の被覆層を被覆、保持し 、第 1の被覆層が剥離するのを抑制する。
[0034] 図 2は、本発明の第 4の実施形態のコーティング焼成被膜を示す模式図である。図 2 (a)に示すように、 1300°C程度の焼成温度では、 2層構造を維持し基材を被覆して いる。し力しながら、図 2 (b)に示すように、 1500°Cを超えると、第 1被覆層と第 2被覆 層とが反応し、 2層構造ではなく単層の被覆層となる。これにより、アルミナ濃度及び シリカ濃度の高くなつたガラス成分力もなる層となる。
[0035] 本発明の第 4の実施形態にぉ 、て、各被覆層の組成は、アルミナとシリカとの混合 層(第 1の被覆層)は、アルミナ 15〜88重量%、シリカ 12〜85重量%とするのが好ま しい。アルミナ 88重量%を上回ると 1500°C以上の高温でガラス相との反応が生じた 際に欠陥が生じやすくなり、シリカが 85重量%を上回ると熱膨張率の低下により剥離 が発生し易くなるからである。一方、ガラス成分層(第 2の被覆層)については、 1種類 のガラスよりなるものでも良いが、複数種のガラスを混合したものを適用しても良い。 第 2の被覆層となるガラスの量は、アルミナとシリカとの混合層に対して略 1: 1とする のが好ましい。ガラス相が過剰になると、高温環境下で反応する際余剰のガラス成分 が生じ、この余剰のガラス成分によるダレが生じるおそれがある力もである。
[0036] 各層の膜厚は、第1の被覆層にっぃては50〜500 111、特に 50〜250 /z mとする の力 子まし!/、。また、第2の被覆層にっ ヽては50〜500 111、特に 50〜250 /ζ πιとす るのが好ましい。第 1被覆層と第 2被覆層を合わせて 100 m未満とすると酸ィ匕防止 に必要な緻密質の膜とならない可能性があり、 1000 mを超えると大幅な温度変動 が発生した際に剥離'脱落の可能性が高くなるからである。
[0037] 以上のように、本発明のコーティング材は、アルミナ、シリカ、ガラス成分を必須成分 とするものであるが、これらの成分以外に、必要に応じて、ジルコ-ァ、チタ-ァ、ムラ イト等の他のセラミック成分を含んでもょ 、。 本発明において、基材となる白金材料としては、特に限定はなぐ純白金の他、白 金合金にも適用可能である。白金合金としては、白金 ロジウム合金、白金 金合 金、白金 パラジウム合金、白金 イリジウム合金、白金一ルテニウム合金が挙げら れる。また、固溶体合金のみならず強化白金と称される粒子分散強化型の白金合金 に対しても本発明のコ一ティング材は適用可能である。
[0038] 本発明の白金材料は、上記本発明の第 1の実施形態、第 2の実施形態、第 3の実 施形態、または第 4の実施形態に従うコーティング材が被覆された、またはコーティン グ焼成被膜が表面に形成されたことを特徴とする白金または白金合金からなる白金 材料である。コーティング材が被覆された白金材料は、コーティング材を塗布または 貼り付けて被覆した後、焼成する前の状態の白金材料を示している。コーティング焼 成被膜が表面に形成された白金材料は、被覆したコーティング材を焼成した後の白 金材料を示している。
[0039] 本発明のガラス製造装置は、上記本発明の第 1の実施形態、第 2の実施形態、第 3 の実施形態、または第 4の実施形態に従うコーティング材が被覆された、またはコー ティング焼成被膜が形成された白金材料を構成材料とすることを特徴とするガラス製 造装置である。上記と同様に、コーティング材が被覆された白金材料を構成材料とす るガラス製造装置は、コーティング材を焼成する前の状態を示しており、コーティング 焼成被膜が形成された白金材料を構成材料とするガラス製造装置は、コーティング 材を焼成した後の状態を示して 、る。
[0040] 本発明によれば、 1000°C以上の高温環境下でも白金の揮発損失を生じさせること なぐその優れた高温特性を維持することができる。
また、本発明によれば、ガラス製造時における泡の発生を低減することができる。 図面の簡単な説明
[0041] [図 1]図 1は、本発明の第 2の実施形態に従う一実施例のコーティング焼成被膜を模 式的に示す図である。
[図 2]図 2は、本発明の第 4の実施形態に従う一実施例のコーティング焼成被膜を模 式的に示す図である。
[図 3]図 3は、ガラス製造装置の装置構成の一例を示す図である。 [図 4]図 4は、実施例 6の界面発泡状態を示す図である。
[図 5]図 5は、比較例 2の界面発泡状態を示す図である。
[図 6]図 6は、比較例 3の界面発泡状態を示す図である。
[図 7]図 7は、比較例 4の界面発泡状態を示す図である。
符号の説明
[0042] 1…ガラス製造設備
2…溶解槽
3…清澄槽
4…攪拌槽
5…成形装置
6、 7、 8…連絡流路
発明を実施するための最良の形態
[0043] 以下、本発明に従う実施例を比較例と共に説明する。
(実施例 1〜4及び比較例 1)
本実施例は、本発明の第 1の実施形態に従うスラリー形態のコーティング材を用い た実施例である。
[0044] ここでは、ガラス成分をマトリックス相とし、アルミナ、シリカを分散相として分散させ たコーティング材 (焼成被膜)を白金合金基材上に製造し、基材からの白金の揮発損 失の有無を検討した。本実施形態では各成分の含有量が異なる 4種類のコーティン グ材を製造した。まず、製造するコーティング材の組成に応じた原料ゾル (スラリー)を 製造した。
[0045] 原料ゾル (スラリー)に用いたアルミナ、シリカは、脱イオン型コロイド溶液 (アルカリ フリー)の状態のもの(コロイダルシリカ)を用いた。分散相となるアルミナ、シリカは、 本実施形態のようにアルミナ、シリカの少なくともいずれかがコロイド溶液由来のもの が好ましい。一方、ガラス成分としては、 日本電気硝子株式会社製アルカリフリーア ルミノ硼珪酸ガラス(材質名 OA- 10 組成(重量0 /0): SiO 60%、 B O 10%、 A
2 2 3
1 O 15%、 CaO
2 3
[0046] 5%、 SrO 5%、 BaO 2%)及び日本電気硝子株式会社製アルカリフリーアルミノ 硼珪酸ガラス (材質名 EF 組成(重量。/。): SiO 55%、 B O 6%、A1 0 14%、
2 2 3 2 3
CaO + MgO 24%を使用した。そして、原料ゾル (スラリー)の製造は、ガラスと、ァ ルミナ、シリカのコロイド溶液を固体重量の 2倍の水に懸濁させ、更に、メチルセル口 ースを固体重量に対して 3重量%添加し、攪拌して原料ゾルとした。
[0047] 基材には Pt— 10wt%Rh合金の平板を試験片として用いた(寸法: 75mm口 X 1.
Omm) 0そして、裏面力 ^ホットエアーガンにて加熱しながら原料ゾルをスターラーで 攪拌しつつスプレーノズルに供給し、ゾルを試験片に繰り返しスプレー、 200 /z mの 厚さまで塗布した。ゾルを両面に塗布後、電気炉中で 1300°Cで焼成し、コーティン グ材 (焼成被膜)を製造した。
[0048] コーティング材 (焼成被膜)を形成した試験片について、白金の揮発損失の有無を 検討した。この検討は、試験片を外気中 1300°C、 1500°Cで 100時間加熱し、加熱 後の重量変化を測定することにより行った。その結果を表 1に示す。表 1にはコーティ ング材 (焼成被膜)を形成して 、な 、Pt— 10wt%Rh合金の試験結果をあわせて示 す。
[0049] [表 1]
Figure imgf000015_0001
表 1から、各実施例で形成したコーティング材 (焼成被膜)により被覆された白金合 金では白金損失が生ぜず、優れた保護作用を有することが確認された。これは、 15 00°C以上の高温においても同様である。一方、コーティング材 (焼成被膜)で被覆し ていない白金合金では、 1300°C、 1500°C何れにおいても 0. lg以上の白金損失が 生じ、その量は、温度上昇と共に増大することが確認された。 [0051] (実施例 5)
本実施例は、本発明の第 4の実施形態に従う実施例である。
ここでは 2層構造のコーティング材 (焼成被膜)を製造した。まず、第 1の被覆層とし て、アルミナとシリカとを含む原料ゾル (スラリー)を基材上に塗布した (アルミナ 53. 1 重量%、シリカ 46. 9重量%)。ここでの原料ゾルの溶媒、調整方法は、実施例 1〜4 と同様であり配合量のみ調整した。また、その塗布方法は、実施例 1〜4同様、スプレ 一塗布により行った。そして、ゾルの塗布後、乾燥、焼成して第 1被覆層を形成した( 厚さ 150 πι)。
[0052] 第 1被覆層形成後、その上に第 2被覆層を形成した。この第 2被覆層は、ガラス成 分として OA— 10、 EF (共に日本電気硝子株式会社製)を 50重量%ずつ含むガラス 成分層とした。第 2の被覆層の形成工程は、上記と同様ゾルのスプレー塗布により行 い、その膜厚は 150 /z mとした。
以上のコ一ティング材 (焼成被膜)を形成した試験片について、実施例 1〜4と同様 の方法で白金の揮発損失の有無を検討した。その結果を表 2に示す。
[0053] [表 2]
Figure imgf000016_0001
[0054] 表 2から、実施例:!〜 4と同様、コーティング材 (焼成被膜)により被覆された白金合 金では白金損失が生じないことが確認された。尚、このコーティング材 (焼成被膜)は 、 1300°Cでは 2層構造を維持していた力 1500°Cで単層に変化していることが確認 された。但し、 1500°Cにお 、てもその保護作用は失われな 、ことが確認された。
[0055] (実施例 6及び比較例 2〜4)
本実施例は、本発明の第 1の実施形態に従う実施例である。
表 3に示すガラス成分、 Al O、 SiO、及び ZrOの組成となるようにスラリーを調製 した。ガラス成分としては、 OA— 10 (平均粒子径 7 m)を用い、 Al Oとしては、ァ
2 3
ルミナ粒子(平均粒子径 50 m)を用い、 SiOとしては、コロイダルシリカ(シリカのコ
2
ロイド溶液:平均粒子径 20nm)を用い、 ZrOとしては、ジルコユア粒子(平均粒子径
2
6 m)を用いた。固体重量の 2倍の水に懸濁させ、メチルセルロースを固体重量に 対して 3重量%となるように添加し、スラリーを調製した。
[0056] 〔白金ルツボへのスラリーの塗布〕
サンドブラスト処理済の白金ルツボ(直径 46mm、高さ 40mm)の内面をホットエア 一ガンにより加熱した状態で、白金ルツボの外側の底面及び外側の側面にスラリー をスプレー塗装にて塗布した。側面は、底面から 25mmの高さの位置まで塗布した。
80°Cで乾燥した後、白金ルツボを 1500°Cで 5時間焼成することにより、コーティング 材層を焼成した。コーティング焼成被膜の厚みは 500 mであった。
[0057] 〔界面発泡試験〕
上記コーティング材の焼成後、 1300°Cまで温度を下げた状態でアルミノ硼珪酸ガ ラス(OA— 10)を白金ルツボ内に充填し、 1500°Cまで 10°CZ分の昇温速度で昇温 した。 1500°Cで 1時間保持した。
白金ルツボ内において、ほとんど発泡が認められないものを〇とし、発泡が多くみら れるものを Xとして界面発泡状態を評価し、評価結果を表 3に示した。
[0058] なお、白金ルツボ内におけるガラスの発泡状態の写真を図 4〜図 7に示す。図 4は 実施例 6、図 5は比較例 2、図 6は比較例 3、図 7は比較例 4である。
[0059] [表 3]
Figure imgf000017_0001
[0060] 表 3に示す結果及び図 4〜図 7から明らかなように、本発明に従いガラス成分に、 A1
Ο及び SiOを必須成分として含有させた実施例 6は、ガラスに Al Oのみを含有さ
2 3 2 2 3
せた比較例 2、ガラス成分に SiOのみを含有させた比較例 3、及びガラスに SiO及 び ZrOを含有させた比較例 4に比べ、発泡を著しく低減できることがわかる。このこと から、ガラス製造時における発泡を低減させるためには、本発明に従いアルミナ及び シリカを必須成分として含有させることが必要であることがわかる。
また、本実施例のコーティング材は、実施例 1〜5と同様に、白金の揮発損失を低 減できるものであった。
[0061] (実施例 7〜9)
本実施例は、本発明の第 1の実施形態に従う実施例である。
表 4に示す実施例 7〜9の組成のスラリー溶液を調製した。ガラス成分、 Al O及び
SiOとしては、実施例 6で使用したのと同じものを用いた。
〔白金ルツボへのコーティング材の塗布〕
サンドブラスト処理済の白金ルツボ(直径 46mm、高さ 40mm)の内面をホットエア 一ガンにより加熱した状態で、白金ルツボの外側の底面及び外側の側面に、実施例 6と同様にして、上記スラリーをスプレー塗装した。焼成後の膜厚が 500 /z mとなるよ うに塗装した後、 80°Cで乾燥し、スラリーコーティング材層を形成した。
[0062] 上記のようにして、スラリーコーティング材層を形成した白金ルツボを、試験温度で 5時間焼成した後、試験温度より 200°C低い温度に下げた後、アルミノ硼珪酸ガラス( OA— 10)を白金ルツボ内に充填し、実施例 7〜9については表 4に示す試験温度ま で昇温速度 10°CZ分で昇温し、その後各試験温度で 1時間保持した。このときの界 面発泡状態を表 4に示す。
[0063] [表 4]
Figure imgf000018_0001
表 4に示す結果から明らかなように、本発明に従い、ガラス成分に Al O及び SiO を必須成分として含有させたコーティング材を塗布した実施例 7〜9にお ヽては、ガラ ス製造時における発泡を低減することができる。また、表 4に示すように、使用温度領 域が高くなるにつれて、ガラス成分を減少させ、アルミナ成分を増カロさせることにより、 高い使用温度領域に耐え得る耐熱性をコーティング材に付与することができる。 本実施例のコーティング材は、実施例 1〜5と同様に、白金の揮発損失を低減でき るものであった。
[0065] (実施例 10)
本実施例は、本発明の第 2の実施形態に従うペースト形態のコーティング材を用い た実施例である。
表 5に示すように、 37. 5重量0 /0のガラス成分(OA— 10)、 39. 0重量0 /0のアルミナ (Al O )粒子、及び 23. 5重量%のシリカ(SiO )粒子を用いて、まずこれらの混合
2 3 2
物の焼結体を作製した。シリカ粒子としては、平均粒子径 20 mのものを用い、アル ミナ粒子としては、実施例 6で使用したものを用いた。焼結条件は、 1500°C24時間 とし、得られた焼結体を粉砕して平均粒子径 20 m程度の粉砕物とした。
[0066] 得られた粉砕物 100重量部に対し、アルミナファイバー(97重量%A1 O—3重量
2 3
%SiO、平均繊維長 10mm、平均繊維径 3 m)を 5重量部となるように、メチルセル
2
ロース榭脂を 9重量%となるように溶解した水溶液に添加して混合しペーストを作製し た。メチルセルロース榭脂水溶液の割合は、粉砕物とアルミナファイバーの合計 100 重量部に対し、 40重量部となるようにした。
[0067] 〔白金ルツボへのペーストの貼り付け〕
サンドブラスト処理済の白金ルツボ(直径 46mm、高さ 40mm)の外側の底面及び 外側の側面に、上記ペーストを貼り付けた。ペーストを貼り付ける位置は、実施例 6と 同様の位置とした。ペーストを貼り付けた後、 1500°Cで 5時間焼成し、焼成後 1300 °Cに温度を下げ、この温度で白金ルツボ内に、アルミノ硼珪酸ガラス (OA— 10)を充 填し、その後昇温速度 10°CZ分で 1500°Cまで温度を上げ、 1500°Cで 1時間保持 した。このときの界面発泡状態を評価し、表 5に示した。
[0068] [表 5] 難例 10
OA-10 (粉末) 35.7wt% (37.5 t%)
A Os (粉末) 37.1wt%(39.0wt%)
Si02 (粉末) 22.4wt%(23.5wt%)
97%Al203-3%Si02 (ァルミナフ Λ' -) 4.8wt%(5.0wt%)
100wt% (105wt%)
界面発泡状態 〇
[0069] 表 5に示すように、本発明の第 2の実施形態に従うペースト形態のコーティング材を 用いた実施例 10においても、ガラス製造時における発泡を低減できることがわかる。 また、本実施例のペーストは、焼成後もひび割れ等が生じることのないものであった。 また、実施例 1 5と同様に、白金の揮発損失を低減できるものであった。
[0070] (実施例 11 13)
本実施例は、本発明の第 3の実施形態に従う実施例である。
〔スラリー形態のコーティング材の調製〕
表 6に示すように、ガラス成分として OA— 10を用い、 Al Oとしてアルミナ粒子を用
2 3
い、 SiOとしてコロイダルシリカを用いてスラリー形態のコーティング材を調製した。な
2
お、アルミナ粒子及びコロイダルシリカは、実施例 6と同様のものを用いた。表 6のコロ ィダルシリカの欄に示す( )内の数値は、コロイダルシリカの溶液としての配合割合 である。有機 インダーとして、メチルセルロース榭脂の 1. 5重量0 /0水溶液を、表 6に 示す配合割合で用い、 3種類のスラリー al bl及び clを調製した。
[0071] [表 6]
Figure imgf000020_0001
〔ペーストの調製〕
表 7に示す割合でガラス成分 (OA— 10)、 Al O及び SiOを混合し、混合物を 15
2 3 2
00°Cで 24時間焼結し、得られた焼結体を粉砕することにより、焼結体粉砕物 a2 b2 及び c2を調製した。 [0073] [表 7]
Figure imgf000021_0001
[0074] 次に、得られた焼結体粉砕物に対し、表 8に示すように、有機バインダー及びアルミ ナフアイバーを混合して、 3種類のペースト a3、 b3及び c3を調製した。
[0075] [表 8]
Figure imgf000021_0002
[0076] 〔白金ルツボへのコーティング材の塗布〕
サンドブラスト処理済の白金ルツボ(直径 46mm、高さ 40mm)の内面をホットエア 一ガンにより加熱した状態で、白金ルツボの外側の底面及び外側の側面に、表 6に 示すスラリー形態のコーティング材 al、 bl及び clをそれぞれスプレー塗装した後、 8 0°Cで乾燥し、スラリーコ一ティング材層を形成した。
次に、表 8に示すペースト a3、 b3及び c3を、上記のようにして形成したスラリーコー ティング材層の上に貼り付けた後、乾燥させて、保護コーティング材層を形成した。
[0077] 次に、上記のようにしてスラリーコーティング材層及び保護コーティング材層を形成 した白金ルツボを、昇温速度 10°CZ分でそれぞれの試験温度まで昇温し、 5時間そ の温度を保持することによりスラリーコーティング材層及び保護コーティング材層を焼 成した。なお、各実施例において得られた焼成被膜のスラリーコーティング焼成層の 厚みは 500 mであり、保護コーティング焼成層の厚みは 5mmであった。
以上のようにして、コーティング焼成被膜を形成した実施例 11〜13の白金ルツボ を、試験温度より 200°C低い温度に下げた状態で、アルミノ硼珪酸ガラス (OA— 10) を充填し、その後試験温度まで昇温速度 10°CZ分で昇温し、その後各試験温度で 1時間保持した。このときの界面発泡状態を表 9に示す。
[0078] [表 9]
Figure imgf000022_0001
[0079] 表 9に示す結果力も明らかなように、本発明の第 3の実施形態に従う実施例 11〜1 3においては、ガラス製造時における発泡を低減できることがわかる。
また、本実施例のコーティング材は、実施例 1〜5と同様に、白金の揮発損失を低 減できるものであった。
[0080] <ガラス製造設備への適用例 >
次に、本発明を適用したガラスの製造設備、及び、この装置によるディスプレイ用ガ ラスの製造方法に関して行った実施例を説明する。まず、ガラス製造設備の構成を 説明する。図 3は、ガラス製造設備の構成を示す説明図である。
ガラス製造設備 1は、溶融ガラスの供給源となる略矩形の溶解槽 2と、該溶解槽 2の 下流側に設けられた清澄槽 3と、清澄槽 3の下流側に設けられた攪拌槽 4と、攪拌槽 4の下流側に設けられた成形装置 5とを有し、溶解槽 2、清澄槽 3、攪拌槽 4、及び、 成形装置 5は、それぞれ連絡流路 6、 7、 8によって接続されている。
[0081] 溶解槽 2は、底壁、側壁、及び、天井壁を有し、これらの各壁は耐火物で形成され る。溶解槽 2は、バーナー、電極等が設けられ、ガラス原料を溶融することができる。 溶解槽 2の下流側の側壁には、流出口が形成されており、該流出口を上流端に有す る幅狭の連絡流路 6を介して溶解槽 2と清澄槽 3とが連通している。
[0082] 清澄槽 3は、底壁、側壁、及び、天井壁を有して 、る。底壁及び側壁の内壁面 (少 なくとも溶融ガラスと接触する内壁面部位)は、白金又は白金合金で形成され、その 外側には保護耐火物が設置されている。清澄槽 3は、上流側の側壁に流出路 6の下 流端が開口している。この清澄槽 3は、主としてガラスの清澄が行われる部位であり、 ガラス中に含まれる微細な泡が、清澄剤から放出される清澄ガスにより拡大浮上され 、ガラスから除去される。清澄槽 3の下流側の側壁には、流出口が形成され、流出口 を上流端に有する幅狭の連絡流路 7を介して清澄槽 3の下流側に攪拌槽 4が連通し ている。
[0083] 攪拌槽 4は、底壁、側壁、及び、天井壁を有している。底壁及び側壁の内壁面 (少 なくとも溶融ガラスと接触する内壁面部位)は、白金又は白金合金で形成され、その 外側には保護耐火物が設置されている。攪拌槽 4は主としてスターラー等により溶融 ガラスを攪拌し、均質ィ匕する部位である。
攪拌槽 4の下流側の側壁には、流出口が形成され、流出口を上流端に有する幅狭 の連絡流路 8を介して攪拌槽 4の下流側に成形装置 5が連通している。
[0084] 成形装置 5は、例えばディスプレイ用ガラスの成形の場合、ダウンドロー成形装置、 アップドロー成形装置、フロート成形装置等の板ガラス成形装置が使用される。特に 液晶用板ガラスの場合、オーバーフローダウンドロー装置が好適である。
また、溶解槽 2と清澄槽 3とを接続する連絡流路 6は、耐火物で形成されており、一 方、その他の連絡流路、即ち、清澄槽 3と撹拌槽 4とを接続する連絡流路 7、及び、攪 拌槽 4と成形装置 5とを接続する連絡流路 8は、白金又は白金合金で形成され、その 外側には保護耐火物が設置されている。
[0085] 本実施例では、上記製造設備において、白金又は白金合金からなるガラス製造設 備 (ここでは清澄槽 2〜連絡流路 8)の外表面に、本発明の第 3の実施形態に従うコ 一ティング焼成被膜、すなわちスラリーコーティング焼成層の上に保護コーティング 焼成層を形成したコーティング焼成被膜を形成した。このようなコーティング焼成被膜 としては、例えば実施例 11〜 13のコーティング材が好適に使用できる。
[0086] そして、以上のような構成を有するガラス製造設備を用いてディスプレイ用ガラスを 製造する方法は、以下のようになる。
まず、ガラス原料を調合する。例えば、 SiO -A1 O -B O— RO (ROは MgO
2 2 3 2 3 、 C aO、 BaO、 SrO及び ZnOの 1種以上)系の組成を有するガラスとなるように、具体的 には、質量百分率で SiO 50〜70%、Α1 Ο 10〜25%、 B O 5〜20%、 MgO
2 2 3 2 3
0〜10%、CaO 3〜15%、BaO 0〜10%、 SrO 0〜10%、 ZnO 0〜10%、T iO 0〜5%、P O 0〜5%含有するアルカリフリーガラスとなるようにガラス原料を
2 2 5
調合する。また上記以外にも清澄剤等種々の成分を添加可能である。
[0087] 続 ヽて調合したガラス原料を溶解槽 2に投入し、溶融、ガラス化する。溶解槽 2内で は、バーナーの燃焼炎によりガラスを上方力も加熱する。上記 SiO -A1 O -B O
2 2 3 2 3
—RO系ガラスの場合、 1500〜1650°C程度でガラスを溶融する。
溶解槽 2でガラス化された溶融ガラスは、連絡流路 6を通って清澄槽 3へ導かれる。 溶融ガラス中には、ガラス化反応時に発生した初期泡が含まれているが、清澄槽 3で は、この初期泡を、清澄剤成分力 放出された清澄ガスにより拡大浮上させて除去 する。
[0088] 清澄槽 3で清澄された溶融ガラスは、連絡流路 7を通って攪拌槽へ導かれる。攪拌 槽 4では、回転するスターラーによってガラスが攪拌され均質化される。
攪拌槽 4で均質化された溶融ガラスは、連絡流路 8を通って成形装置 5へ導かれ、 板状に成形される。このようにしてディスプレイ用ガラスを得ることができる。
[0089] 一般に、溶解槽 2から清澄槽 3への連絡流路 6は、 1450°C〜1600°Cの使用温度 域に相当し、清澄槽 3、清澄槽 3から攪拌槽 4への連絡流路 7、及び攪拌槽 4は、 12 50°C〜1450°Cの使用温度域に相当し、攪拌槽 4力も成形装置 5への連絡流路 8は 、 1000°C〜1250°Cの使用温度域に相当する。
本実施例のガラス製造装置では、上記のガラスの製造方法の実施に際して、長期 間の装置の稼動後であっても製造装置力もの白金の揮発損失が抑制されていた。そ の結果、製造装置の強度や安定性が長期に亘つて維持されていた。また、ガラス製 造時の泡の発生を低減することができた。尚、本実施例に係る装置は、ディスプレイ 用ガラス以外のガラスの製造にも当然に適用可能である。

Claims

請求の範囲
[I] 白金又は白金合金力 なる白金材料の表面をコーティングするための材料であつ て、
アルミナとシリカとを含む耐火材料成分と、ガラス成分とを含む白金材料用のコーテ イング材。
[2] ガラス成分は、アルカリを含まな 、硼珪酸ガラス、アルミノ硼珪酸ガラスである請求 項 1に記載の白金材料用のコーティング材。
[3] アルミナ、シリカ、ガラス成分の含有量は、アルミナ 15〜55重量%、シリカ 10〜50 重量%、ガラス成分 20〜70重量%である請求項 1または 2に記載の白金材料用のコ 一ティング材。
[4] シリカの少なくとも一部力 コロイダルシリカである請求項 1〜3のいずれか 1項に記 載の白金材料用のコーティング材。
[5] アルミナ粒子と、ガラス成分と、コロイダルシリカとを含むことを特徴とする請求項 4に 記載の白金材料用のコーティング材。
[6] アルミナ粒子とガラス成分の混合物の焼結体を粉砕した粉砕物と、コロイダルシリカ とを含むことを特徴とする請求項 4に記載の白金材料用のコーティング材。
[7] アルミナ粒子と、ガラス成分と、シリカ粒子とを含むスラリー力 なることを特徴とする 請求項 1〜 3の 、ずれか 1項に記載の白金材料用のコーティング材。
[8] アルミナ粒子と、ガラス成分と、コロイダルシリカとを含むスラリー力もなることを特徴 とする請求項 5に記載の白金材料用のコーティング材。
[9] アルミナ粒子とガラス成分の混合物の焼結体を粉砕した粉砕物と、コロイダルシリカ とを含むスラリー力 なることを特徴とする請求項 6に記載の白金材料用のコーティン グ材。
[10] スラリーが有機バインダーを含むことを特徴とする請求項 7〜9の 、ずれか 1項に記 載の白金材料用のコーティング材。
[II] アルミナ粒子とシリカ粒子とガラス成分の混合物の焼結体を粉砕した粉砕物を含む ことを特徴とする請求項 1〜3のいずれか 1項に記載の白金材料用のコーティング材
[12] アルミナ粒子とシリカ粒子とガラス成分とを含むペーストまたはグリーンシートからな ることを特徴とする請求項 1〜3のいずれか 1項に記載の白金材料用のコーティング 材。
[13] アルミナ粒子とシリカ粒子とガラス成分の混合物の焼結体を粉砕した粉砕物を含む ペーストまたはグリーンシートからなることを特徴とする請求項 11に記載の白金材料 用のコーティング材。
[14] アルミナ粒子の少なくとも一部が繊維状のアルミナ粒子であることを特徴とする請求 項 12または 13に記載の白金材料用のコ一ティング材。
[15] ペーストまたはグリーンシートが有機バインダーを含むことを特徴とする請求項 12
〜14のいずれか 1項に記載の白金材料用のコーティング材。
[16] 請求項 1〜15のいずれか 1項に記載のコーティング材を白金材料の表面に塗布す るカゝまたは貼り付けた後、焼成することを特徴とする白金材料のコーティング方法。
[17] 請求項 7〜: LOのいずれか 1項に記載のスラリーを白金材料の表面に塗布した後、 焼成することを特徴とする請求項 16に記載の白金材料のコーティング方法。
[18] スラリーを白金材料の表面にスプレーで塗布することを特徴とする請求項 17に記載 の白金材料のコーティング方法。
[19] 請求項 12〜15のいずれか 1項に記載のペーストまたはグリーンシートを白金材料 の表面に貼り付けた後、焼成することを特徴とする請求項 16に記載の白金材料のコ 一ティング方法。
[20] 請求項 7〜: LOのいずれか 1項に記載のスラリーを白金材料の表面に塗布してスラリ 一コーティング層を形成し、該スラリーコーティング層の上に、請求項 12〜15のいず れカ 1項に記載のペーストまたはグリーンシートを貼り付けて保護コーティング層を形 成した後、焼成することを特徴とする請求項 16に記載の白金材料のコーティング方 法。
[21] 白金材料の表面をブラスト処理した後、コーティング材を塗布または貼り付けること を特徴とする請求項 16〜20のいずれ力 1項に記載の白金材料のコーティング方法。
[22] 白金または白金合金からなる白金材料の表面をコーティングする焼成被膜であつ て、 請求項 1〜 3、 7及び 11の 、ずれか 1項に記載のコーティング材を白金材料の表面 に塗布する力または貼り付けた後、焼成することによって得られることを特徴とする白 金材料のコーティング焼成被膜。
[23] 白金または白金合金からなる白金材料の表面をコーティングする焼成被膜であつ て、
ガラス成分力もなるマトリックス相に、アルミナ粒子及びシリカ粒子が分散相として分 散してなることを特徴とする白金材料のコーティング焼成被膜。
[24] 白金または白金合金からなる白金材料の表面をコーティングする焼成被膜であつ て、
請求項 4〜6及び 8〜10のいずれか 1項に記載のコーティング材を白金材料の表 面に塗布した後、焼成することにより得られることを特徴とする白金材料のコーティン グ焼成被膜。
[25] 白金または白金合金からなる白金材料の表面をコーティングする焼成被膜であつ て、
ガラス成分とコロイダルシリカ成分力もなるマトリックス相に、アルミナ粒子が分散相 として分散してなることを特徴とする白金材料のコーティング焼成被膜。
[26] 白金または白金合金からなる白金材料の表面をコーティングする焼成被膜であつ て、
請求項 12〜15のいずれか 1項に記載のペーストまたはグリーンシートを白金材料 の表面に貼り付けた後、焼成することにより得られることを特徴とする白金材料のコー ティング焼成被膜。
[27] 白金または白金合金からなる白金材料の表面をコーティングする焼成被膜であつ て、
請求項 7〜: LOのいずれか 1項に記載のスラリーを白金材料の表面に塗布してスラリ 一コーティング層を形成し、該スラリーコーティング層の上に、請求項 12〜15のいず れカ 1項に記載のペーストまたはグリーンシートを貼り付けて保護コーティング層を形 成した後、焼成することにより得られることを特徴とする白金材料のコーティング焼成 被膜。
[28] 前記スラリーコーティング層にお 、て、ガラス成分とコロイダルシリカ成分力 なるマ トリックス相に、アルミナ粒子が分散相として分散していることを特徴とする請求項 27 に記載の白金材料のコーティング焼成被膜。
[29] 前記保護コーティング層において、ガラス成分力もなるマトリックス相に、アルミナ粒 子及びシリカ粒子が分散相として分散していることを特徴とする請求項 27または 28 に記載の白金材料のコーティング焼成被膜。
[30] 白金または白金合金からなる白金材料の表面をコーティングする焼成被膜であつ て、
アルミナとシリカとの混合物よりなる、白金材料に接する第 1の被覆層と、該被覆層 上のガラス成分力もなる第 2の被覆層とからなる 2層構造を有するコーティング材を焼 成することにより得られることを特徴とする白金材料のコーティング焼成被膜。
[31] 請求項 1〜15のいずれか 1項に記載のコーティング材が被覆されたことを特徴とす る白金または白金合金力 なる白金材料。
[32] 請求項 22〜29のコーティング焼成被膜が表面に形成されたことを特徴とする白金 または白金合金カゝらなる白金材料。
[33] 白金または白金合金からなる白金材料を構成材料とするガラス製造装置であって、 外表面に請求項 1〜15のいずれ力 1項に記載のコーティング材が被覆されたことを 特徴とするガラス製造装置。
[34] 白金または白金合金からなる白金材料を構成材料とするガラス製造装置であって、 外表面に請求項 22〜29のコーティング焼成被膜が形成されたことを特徴とするガ ラス製造装置。
PCT/JP2005/016757 2004-09-13 2005-09-12 白金材料用コーティング材及び該コーティング材が被覆された白金材料並びにガラス製造装置 WO2006030738A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2005800355188A CN101044265B (zh) 2004-09-13 2005-09-12 铂材料用涂敷材料、覆盖有该涂敷材料的铂材料和玻璃制造装置
JP2006535874A JP4316615B2 (ja) 2004-09-13 2005-09-12 白金材料用コーティング材及び該コーティング材が被覆された白金材料並びにガラス製造装置
US11/662,503 US20080090087A1 (en) 2004-09-13 2005-09-12 Coating Material For Platinum Material, Platinum Material Coated With Such Coating Material, And Glass Manufacturing Apparatus
KR1020077005786A KR101314889B1 (ko) 2004-09-13 2005-09-12 백금 재료용 코팅재 및 이 코팅재가 피복된 백금 재료그리고 유리 제조 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-265720 2004-09-13
JP2004265720 2004-09-13

Publications (1)

Publication Number Publication Date
WO2006030738A1 true WO2006030738A1 (ja) 2006-03-23

Family

ID=36059991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/016757 WO2006030738A1 (ja) 2004-09-13 2005-09-12 白金材料用コーティング材及び該コーティング材が被覆された白金材料並びにガラス製造装置

Country Status (6)

Country Link
US (1) US20080090087A1 (ja)
JP (2) JP4316615B2 (ja)
KR (1) KR101314889B1 (ja)
CN (1) CN101044265B (ja)
TW (1) TWI428473B (ja)
WO (1) WO2006030738A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008266092A (ja) * 2007-04-24 2008-11-06 Asahi Glass Co Ltd ガラス製造装置および製造方法
WO2009044090A1 (en) * 2007-10-05 2009-04-09 Johnson Matthey Public Limited Company Improved metal protection
JP2009285631A (ja) * 2008-05-30 2009-12-10 Tdk Corp ガラス膜の形成方法
JP2010150103A (ja) * 2008-12-26 2010-07-08 Nippon Electric Glass Co Ltd 白金材料容器の乾燥被膜及びその形成方法
WO2011136109A1 (ja) * 2010-04-28 2011-11-03 旭硝子株式会社 溶融ガラス処理装置、その製造方法、およびその用途
JP2012509239A (ja) * 2008-11-19 2012-04-19 アレヴァ・エヌセー 金属製坩堝の構成部材をガラス及びセラミックの混合物でコーティングする方法
JP2012136398A (ja) * 2010-12-27 2012-07-19 Covalent Materials Corp シリコン単結晶引上げ用シリカガラスルツボ
JP2013539744A (ja) * 2010-10-11 2013-10-28 ヘレーウス マテリアルズ テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト 白金及び白金合金からの蒸発速度の低下
JP2020056091A (ja) * 2018-10-04 2020-04-09 株式会社フルヤ金属 揮発抑制部品及びその製造方法
JP2020524216A (ja) * 2017-06-19 2020-08-13 コーニング インコーポレイテッド 耐火性物品、酸化還元反応を防止するためのコーティング組成物、及び耐火性物品の製造方法
JP2020152589A (ja) * 2019-03-18 2020-09-24 イビデン株式会社 立体成型体及びコート層付き金属基材の製造方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090176430A1 (en) * 2008-01-07 2009-07-09 Wang Wadelee Method of making white light source by violet-LED
WO2011118375A1 (ja) * 2010-03-25 2011-09-29 日本電気硝子株式会社 ガラス製造容器用充填材、ガラス製造容器用充填材層、ガラス製造装置及びガラス製造装置の製造方法
DE102010047898B4 (de) * 2010-10-11 2013-06-06 Heraeus Materials Technology Gmbh & Co. Kg Bauteil aus Platin oder einer Platinlegierung und Verfahren zur Abdampfraten-Verringerung von Bauteilen aus Platin oder Platinlegierungen
JP2012121740A (ja) * 2010-12-06 2012-06-28 Nippon Electric Glass Co Ltd ガラス製造装置及びそれを用いたガラス製造方法
KR101859247B1 (ko) * 2011-03-28 2018-05-18 아사히 가라스 가부시키가이샤 용융 유리 유지용 내화물 및 용융 유리 유지용 내화물을 사용한 유리 제조 장치 및 상기 유리 제조 장치를 사용한 유리 제조 방법
CN103030359A (zh) * 2012-12-03 2013-04-10 彩虹显示器件股份有限公司 高温环境下使用的铂材料的涂敷材料及其制备方法
CN104150771B (zh) * 2013-08-27 2018-02-23 东旭集团有限公司 一种用于铂金通道的涂敷材料
US10501358B2 (en) 2015-05-06 2019-12-10 Corning Incorporated Apparatus and methods for processing molten material
KR20180125117A (ko) * 2017-05-12 2018-11-22 코닝 인코포레이티드 내화 물품, 내화 물품 코팅용 조성물 및 내화 물품의 제조 방법
JP7266866B2 (ja) * 2019-07-31 2023-05-01 アーテック株式会社 ガラスコーティング層形成方法及びこれにより得られるガラスコーティング層
KR20210081554A (ko) * 2019-12-24 2021-07-02 코닝 인코포레이티드 유리 제조 장치 및 용융 물질 가공 방법
DE102020205046A1 (de) * 2020-04-21 2021-10-21 Schott Ag Vorrichtung zum Schmelzen und Läutern von Glas sowie Verfahren zum Herstellen einer solchen Vorrichtung
CN115490413B (zh) * 2022-07-28 2024-01-05 湖南兆湘光电高端装备研究院有限公司 一种防护铂金通道的方法
CN115558892A (zh) * 2022-10-14 2023-01-03 上海奥莱雅康医疗科技有限公司 一种含铂的涂层

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004523449A (ja) * 2000-11-30 2004-08-05 カール−ツァイス−スティフツング ガラス製造用被覆金属部品

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3397076A (en) * 1964-11-20 1968-08-13 Ritter Pfaudler Corp Semicrystallized ground coats and enameled articles manufactured therefrom
JPS62212228A (ja) * 1986-03-13 1987-09-18 Tanaka Kikinzoku Kogyo Kk 高温用白金容器
JPS632816A (ja) * 1986-06-20 1988-01-07 Tanaka Kikinzoku Kogyo Kk 高温用白金容器
JPH01201033A (ja) * 1988-02-04 1989-08-14 Canon Inc 溶融装置及び溶融容器
DE4136115C1 (ja) * 1991-11-02 1993-01-28 Schott Glaswerke, 6500 Mainz, De
US5629067A (en) * 1992-01-30 1997-05-13 Ngk Insulators, Ltd. Ceramic honeycomb structure with grooves and outer coating, process of producing the same, and coating material used in the honeycomb structure
US7032412B2 (en) * 2003-03-13 2006-04-25 Corning Incorporated Methods of manufacturing glass sheets with reduced blisters

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004523449A (ja) * 2000-11-30 2004-08-05 カール−ツァイス−スティフツング ガラス製造用被覆金属部品

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008266092A (ja) * 2007-04-24 2008-11-06 Asahi Glass Co Ltd ガラス製造装置および製造方法
WO2009044090A1 (en) * 2007-10-05 2009-04-09 Johnson Matthey Public Limited Company Improved metal protection
JP2010540778A (ja) * 2007-10-05 2010-12-24 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー 改良された金属保護
JP2009285631A (ja) * 2008-05-30 2009-12-10 Tdk Corp ガラス膜の形成方法
JP2012509239A (ja) * 2008-11-19 2012-04-19 アレヴァ・エヌセー 金属製坩堝の構成部材をガラス及びセラミックの混合物でコーティングする方法
JP2010150103A (ja) * 2008-12-26 2010-07-08 Nippon Electric Glass Co Ltd 白金材料容器の乾燥被膜及びその形成方法
CN102869621B (zh) * 2010-04-28 2014-12-24 旭硝子株式会社 熔融玻璃处理装置、其制造方法及其用途
CN102869621A (zh) * 2010-04-28 2013-01-09 旭硝子株式会社 熔融玻璃处理装置、其制造方法及其用途
WO2011136109A1 (ja) * 2010-04-28 2011-11-03 旭硝子株式会社 溶融ガラス処理装置、その製造方法、およびその用途
JP2013539744A (ja) * 2010-10-11 2013-10-28 ヘレーウス マテリアルズ テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト 白金及び白金合金からの蒸発速度の低下
JP2012136398A (ja) * 2010-12-27 2012-07-19 Covalent Materials Corp シリコン単結晶引上げ用シリカガラスルツボ
JP2020524216A (ja) * 2017-06-19 2020-08-13 コーニング インコーポレイテッド 耐火性物品、酸化還元反応を防止するためのコーティング組成物、及び耐火性物品の製造方法
JP7265998B2 (ja) 2017-06-19 2023-04-27 コーニング インコーポレイテッド 耐火性物品、酸化還元反応を防止するためのコーティング組成物、及び耐火性物品の製造方法
US11674211B2 (en) 2017-06-19 2023-06-13 Corning Incorporated Refractory article, coating composition for preventing redox reaction, and method of manufacturing a refractory article
JP7479526B2 (ja) 2017-06-19 2024-05-08 コーニング インコーポレイテッド 耐火性物品、酸化還元反応を防止するためのコーティング組成物、及び耐火性物品の製造方法
WO2020071260A1 (ja) * 2018-10-04 2020-04-09 株式会社フルヤ金属 揮発抑制部品及びその製造方法
JP2020056091A (ja) * 2018-10-04 2020-04-09 株式会社フルヤ金属 揮発抑制部品及びその製造方法
JP7228357B2 (ja) 2018-10-04 2023-02-24 株式会社フルヤ金属 揮発抑制部品及びその製造方法
US11993534B2 (en) 2018-10-04 2024-05-28 Furuya Metal Co., Ltd. Volatilization suppressing component, and method for manufacturing same
JP2020152589A (ja) * 2019-03-18 2020-09-24 イビデン株式会社 立体成型体及びコート層付き金属基材の製造方法
JP7304178B2 (ja) 2019-03-18 2023-07-06 イビデン株式会社 立体成型体及びコート層付き金属基材の製造方法

Also Published As

Publication number Publication date
CN101044265A (zh) 2007-09-26
TWI428473B (zh) 2014-03-01
JP4316615B2 (ja) 2009-08-19
TW200615399A (en) 2006-05-16
KR101314889B1 (ko) 2013-10-04
CN101044265B (zh) 2010-05-05
JP4769854B2 (ja) 2011-09-07
JP2009084697A (ja) 2009-04-23
JPWO2006030738A1 (ja) 2008-05-15
US20080090087A1 (en) 2008-04-17
KR20070053749A (ko) 2007-05-25

Similar Documents

Publication Publication Date Title
WO2006030738A1 (ja) 白金材料用コーティング材及び該コーティング材が被覆された白金材料並びにガラス製造装置
JP4393766B2 (ja) ガラス製造用被覆貴金属部品
CN102869621B (zh) 熔融玻璃处理装置、其制造方法及其用途
US7032412B2 (en) Methods of manufacturing glass sheets with reduced blisters
TW200406018A (en) Sealing material for sealing a closure of an electron tube, method for making such sealing material, and the electron tube having a closure sealed by such sealing material
JPH06317383A (ja) 断熱用耐火材料
JP2006076871A (ja) 硼珪酸板ガラス物品の製造装置、製造方法及び硼珪酸板ガラス物品
CN104150771B (zh) 一种用于铂金通道的涂敷材料
CN104163571A (zh) 一种铂金通道用涂敷材料
JP2010228942A (ja) ガラス製造装置の製造方法及びガラス製造装置
JP2008214152A (ja) ガラスペースト組成物
JP2020520875A (ja) 耐火物品、耐火物品を被覆するための組成物、および耐火物品を製造する方法
JP2006077318A (ja) ガラス製造装置の表面改質施工方法
JP5757116B2 (ja) ガラス製造容器用充填材、ガラス製造容器用充填材層、ガラス製造装置及びガラス製造装置の製造方法
KR20110036535A (ko) 유리 제조 장치 및 제조 방법
JP5458571B2 (ja) 白金材料容器の乾燥被膜及びその形成方法
JP7490382B2 (ja) グラスライニング用スラリー組成物及びグラスライニング製品の製造方法
JP2024052937A (ja) グラスライニング製品及びその製造方法
WO2011118375A1 (ja) ガラス製造容器用充填材、ガラス製造容器用充填材層、ガラス製造装置及びガラス製造装置の製造方法
CN114230180A (zh) 一种釉料和瓷面平滑的搪瓷钢板的制备方法
JP2011079685A (ja) ガラス製造容器用コーティング材、それが焼成されてなるガラス製造容器用焼成被膜、それを備えるガラス製造容器、それを備えるガラス製造装置及びそれを用いたガラスの製造方法
JP5347424B2 (ja) ガラス製造装置および製造方法
CN115893860A (zh) 旋转管涂料及其制备方法、旋转管及其制备方法
JP2001210452A (ja) 炭化珪素発熱体および該炭化珪素発熱体からなるフロートガラス製造用ヒータならびに該ヒータを使用するフロートガラスの製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006535874

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11662503

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020077005786

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 200580035518.8

Country of ref document: CN

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTHING OF LOSS OF RIGHTS PURSUANT TO RULE 69(1)EPC,EPO FORM 1205A DATED 14/06/07.

122 Ep: pct application non-entry in european phase

Ref document number: 05782120

Country of ref document: EP

Kind code of ref document: A1

WWP Wipo information: published in national office

Ref document number: 11662503

Country of ref document: US