WO2006030714A1 - Liquid and method for removing deteriorated layer of copper containing copper oxide - Google Patents

Liquid and method for removing deteriorated layer of copper containing copper oxide Download PDF

Info

Publication number
WO2006030714A1
WO2006030714A1 PCT/JP2005/016652 JP2005016652W WO2006030714A1 WO 2006030714 A1 WO2006030714 A1 WO 2006030714A1 JP 2005016652 W JP2005016652 W JP 2005016652W WO 2006030714 A1 WO2006030714 A1 WO 2006030714A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
mass
parts
copper
residue
Prior art date
Application number
PCT/JP2005/016652
Other languages
French (fr)
Japanese (ja)
Inventor
Shingo Nakamura
Fumihiro Kamiya
Takehiko Kezuka
Takashi Kanemura
Mitsushi Itano
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Publication of WO2006030714A1 publication Critical patent/WO2006030714A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
    • H01L21/32136Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/0206Cleaning during device manufacture during, before or after processing of insulating layers
    • H01L21/02063Cleaning during device manufacture during, before or after processing of insulating layers the processing being the formation of vias or contact holes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/02068Cleaning during device manufacture during, before or after processing of conductive layers, e.g. polysilicon or amorphous silicon layers
    • H01L21/02071Cleaning during device manufacture during, before or after processing of conductive layers, e.g. polysilicon or amorphous silicon layers the processing being a delineation, e.g. RIE, of conductive layers

Definitions

  • the present invention relates to a semiconductor manufacturing process or a liquid crystal panel element, such as reworking of some processes such as formation of damascene and dual damascene structures in a Cu / Low-k multilayer wiring structure and lithography (rework), Copper oxide and / or dry etching regardless of the presence or absence of unnecessary materials such as resists, antireflection films, filling materials and dry etching residues by suppressing chemical etching on low-k films and silicon-containing films. And / or removal process for selectively removing the copper oxide layer including Cu oxide and Z or cuprate oxide in the Cu / low-k multilayer wiring structure formed during ashing) and the removal The present invention relates to a method of removing these using a liquid.
  • A1 or A1 alloy or the like was used as a wiring material, and an SiO film as an interlayer insulating film
  • Cu with a low resistance value is used as the wiring material, and a low-k film (low induction) with low wiring capacitance is used as an interlayer insulating film instead of the SiO film.
  • a Cu / low-k multilayer wiring structure using an electrical conductivity film has been developed.
  • a Cu / low-k multilayer wiring structure In a Cu / low-k multilayer wiring structure, first, grooves (trench) and holes (via holes) are formed in the low-k film by dry etching, and wiring materials such as copper are mainly used for the processed parts. Processing is performed by a so-called damascene method for forming a buried and wiring structure. Furthermore, in the dual damascene method, a trench and a via hole for wiring are simultaneously formed in a low-k film, and then a wiring material such as copper is embedded.
  • a via hole is formed first, followed by a via first process in which a trench for wiring is formed.
  • a trench for wiring is first formed, and then the via hole is formed.
  • an embedding material is often used. Biaho After the tool is formed by dry etching, a buried material is buried, lithography for forming a trench is performed, and dry etching is performed. Thereafter, the embedding material is selectively removed. On the other hand, no filling material is used in processes such as dual hard mask processes and triple hard mask processes.
  • ashing was performed with plasma containing oxygen radicals in order to remove unnecessary materials such as resist, antireflection film and etching residue.
  • a copper alteration layer containing copper oxide which is damaged by dry etching and / or ashing, is formed on the surface of the Cu metal wiring.
  • a metal such as near metal TaN or wiring material in a damascene or dual damascene trench or via hole
  • copper oxide or the above-mentioned copper altered layer is formed at the contact with the wiring layer such as Cu in the lower layer. If so, the resistance increases and causes a failure of the semiconductor device.
  • copper oxides and / or cuprates damaged by dry etching and / or ashing may be used.
  • the altered copper layer containing material must be removed selectively while suppressing Cu corrosion and chemical etching of the low-k film.
  • a copper-modified layer containing copper oxide and / or copper oxide that has been damaged by dry etching and / or ashing on the surface of the copper wiring is now commercially available. If a conventional polymer stripping solution such as a resist is used for removal, the films that make up the device, such as copper and silicon-containing films and low-k films, will be etched and cannot be removed selectively. Processing as designed is not possible. In particular, when unnecessary substances such as resist, antireflection film, filling material and dry etching residue coexist, these forces S are hindered and it is further difficult.
  • copper oxide and copper oxide formed by damage caused by dry etching or ashing and / or copper containing copper oxide damaged by dry etching and / or ashing Copper oxide can be removed by using hydrochloric acid or hydrofluoric acid diluted with water to remove the altered layer.
  • the altered copper layer containing cuprates contains a large amount of dissociated H + that is difficult to remove, so copper is easily corroded! /.
  • an undesired force copper oxide such as a resist, an antireflection film, a filling material, and a dry etching residue, and / or a copper altered layer containing copper oxide damaged by dry etching and / or ashing
  • the interlayer insulating film damaged by dry etching with these chemicals especially when the interlayer insulating film is porous low-k, it is etched significantly and cannot be processed as designed.
  • Patent Document 1 discloses a cleaning agent for a copper film after CMP, and does not mention removal of copper oxide generated after force etching or ashing.
  • Patent Document 1 only polycarboxylic acids such as citrate, malic acid, malonic acid, and succinic acid are exemplified as carboxylic acids that can be blended in the cleaning liquid.
  • Patent Document 2 describes a power copper oxide that describes a cleaning liquid for removing polymer residues. It is described for the removal of the copper altered layer containing !!
  • Patent Document 1 Special Table 2001— 521285
  • Patent Document 2 JP-A-10-256210
  • the present invention suppresses etching with a chemical solution on a silicon-containing film or a low-k film in the formation of a damascene or dual damascene structure in a Cu / low-k multilayer wiring structure, Alternatively, a removal solution for selectively removing the copper alteration layer containing the copper oxide of the Cu / low-k multilayer wiring structure damaged by dry etching and / or ashing while suppressing copper corrosion. It is to provide.
  • the present inventor uses a solution having a basic composition of monocarboxylic acid and water to form a cuprate film formed on the surface of copper in a short time and / or dry etching.
  • the present inventors have found that it is possible to remove a copper-altered layer containing a copper oxide having a Cu / low-k multilayer wiring structure damaged by ashing, and completed the present invention.
  • the present invention is a residue removal solution for a copper-altered layer containing a copper oxide having a Cu / low-k multilayer wiring structure, and a method for removing the residue from the copper-altered layer. And a residue removal treatment product
  • Monocarboxylic acid strength The residue removing solution according to any one of Items 1 to 8, which is at least one selected from the group force consisting of formic acid, acetic acid, propionic acid, butyric acid, and trifluoroacetic acid.
  • Fluorine compound power The residue removing liquid according to item 3 or 4, which is at least one selected from the group power of hydrogen fluoride and ammonium fluoride.
  • Sulfur-containing compounds with unshared electrons oxygen and Z or unshared electrons with nitrogen with unshared electrons Sulfides, mercaptans, thiocarboxylic acids, thioacetamides, thioureas, thiadiazoles, Item 7.
  • Polycarboxylic acid strength The group power consisting of oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, phosphoric acid, citrate, and tartaric acid. Residue removal solution.
  • the removal liquid of the present invention suppresses etching of the removal liquid on the silicon-containing film and the low-k film, and is formed on the surface of a copper thin film such as a copper wiring formed on the wafer, an electrode, a copper layer, or the like.
  • the copper oxide and / or the damaged layer containing copper oxide damaged by dry etching and / or ashing can be selectively removed with respect to copper.
  • the residue removing solution for a copper-altered layer containing a copper oxide having a Cu / low-k multilayer wiring structure of the present invention (hereinafter referred to as “the removing solution of the present invention”) is a copper oxide film and / or Copper altered layer containing copper oxide with Cu / low-k multilayer wiring structure damaged by dry etching and / or ashing (hereinafter may be abbreviated as “copper oxide film and / or copper altered layer residue”) It is characterized by a combination of its solubility in copper residues and its anticorrosive effect on copper.
  • the removal liquid of the present invention is suitable for removing cuprates formed on a copper surface in a wafer formed using copper (Cu) as a conductive metal.
  • copper oxide formed when oxygen-containing plasma is used during dry etching and Z or ashing is used during dry etching and Z or ashing
  • Another example is a natural oxide film formed by naturally oxidizing a metal when exposed to the atmosphere due to movement between processes.
  • copper oxides include CuO, Cu 0, Cu (OH) and the like. Damage caused by dry etching and / or ashing
  • the copper-altered layer containing copper oxide is an alteration made of a mixture of a copper oxide that has been damaged and / or fluorinated by dry etching and / or ashing, and a mixture thereof. Layer, with increased electrical resistance. This altered copper layer also has copper strength, which is oxidized and / or fluorinated copper oxide and wiring, so its electrical resistance is copper It becomes an insulating layer close to an oxide.
  • the thickness of the cuprate is not limited, it is usually about 1 to 80A, preferably about 1 to 40A.
  • the thickness of the damaged copper layer containing cuprate oxide damaged by dry etching and / or ashing is not limited and varies depending on the conditions due to dry etching or ashing. Usually, it is adjusted in the process so that the amount of cuprate is reduced as much as possible.
  • the thickness of the deteriorated copper layer is usually about 500 A or less, preferably about 1 to 300 A.
  • the removal solution of the present invention is obtained by mixing a monocarboxylic acid and water at a specific ratio, thereby maintaining a copper oxide film and / or dry etching and / or ashing while maintaining an anticorrosive effect on copper. Residue of damaged copper layer containing copper oxide (CuO, Cu 0, Cu (
  • the preferred monocarboxylic acid used in the present invention is infinitely soluble in water, even if the composition hardly changes due to evaporation or consumption of the components, A sufficient amount of monocarboxylic acid can be supplied to the cuprate film and / or the copper altered layer residue. Therefore, a very stable removal effect of the copper oxide film and / or the altered copper layer residue can be exhibited. Further, by increasing the amount of monocarboxylic acid, even when a resist containing an organic component, an antireflection film, a filling material, and a dry etching residue coexist, these can be removed simultaneously. Therefore, regardless of the presence or absence of such unnecessary materials, the copper oxide film and / or the copper altered layer residue can be removed.
  • polycarboxylic acid such as dicarboxylic acid or tricarboxylic acid, its salt, or monocarboxylic acid salt
  • the effect of dissolving the copper oxide film and / or the copper altered layer residue is small. It takes time to remove.
  • polycarboxylic acids such as dicarboxylic acids such as maleic acid form chelate with copper when used alone without the addition of monocarboxylic acid, and exhibit an effect of dissolving copper rather than an anticorrosive effect.
  • polycarboxylic acids such as dicarboxylic acids, salts thereof, and monocarboxylates.
  • NH resulting from the equilibrium of NH + NH + H + is complexed with copper.
  • the organic solvent added to the removal liquid of the present invention further improves the solubility of the resist containing a copper oxide film and / or a copper-modified layer residue and an organic component, an antireflection film, a filling material, and a dry etching residue. . Along with this, it has an effect of adjusting the balance between solubility and anticorrosion by providing an anticorrosion effect.
  • the fluorine compound may be added to add an effect of removing residues after dry etching and / or ashing including these.
  • a substance that dissolves copper may be added as a small amount of additive.
  • This additive is a substance that generates ions and molecules that form complexes with copper, such as ammonium monocarboxylic acid salts.
  • an anticorrosive agent may be added.
  • a surfactant may be added to bring the chemical solution into contact with the fine pattern.
  • the composition of the chemical solution of the present invention is determined by a method (process) for manufacturing a semiconductor device and a material (particularly an interlayer insulating film) used.
  • the main removal object of the removal liquid of the present invention is (1) copper oxide and / or a copper-modified layer, and (2) Si-containing residue.
  • ILDs interlayer dielectrics
  • ILD damage layers damaged by dry etching and / or ashing There are ILDs (interlayer dielectrics) such as k-films, silicon-containing films, and ILD damage layers damaged by dry etching and / or ashing.
  • Additional removal objects attached to the main objects include (3) inorganic embedding material residue, (4) resist residue, (5) anti-reflection film residue, and (6) organic embedding material residue.
  • a copper oxide layer and / or a copper altered layer after dry etching and / or ashing is used.
  • monocarboxylic acid and water are essential, and adjustments such as increasing the removal effect can be made by adding a fluorine compound or an organic solvent.
  • the removal liquid contains fluorine. It is desirable to include a compound.
  • an object having a Si-containing residue at the same time as the copper oxide and / or copper-modified layer it can be removed simultaneously with water and monocarboxylic acid alone.
  • a smaller amount of fluorine compound (water and monocarboxylic acid power) The Si-containing residue can be removed more easily by compounding with the removal solution of the invention (about 0.01 to 1 part by mass per 100 parts by mass).
  • Silicon-containing films, ILD (low-k films), and ILD damage layers are excluded when a fluorine compound is added. If there is a need to suppress these damages, do not contain fluorine compounds or use a small amount (0.1 parts by mass for 100 parts by mass of the removal solution of the present invention). The following) is preferable.
  • the organic solvent contains an organic component and improves the removal effect of residues (resist residue, BARC residue, organic embedding material residue, etc.), adjusts the dissociation of the fluorine compound, and controls the copper oxide.
  • the removal effect can be increased and the anticorrosion effect of copper can be imparted.
  • monocarboxylic acid has such an effect, and the organic solvent reinforces the effect of monocarboxylic acid.
  • the monocarboxylate needs to be a salt of a monocarboxylic acid that can be used in the removing solution. By covering this monocarboxylate, the dissociation of the monocarboxylic acid is suppressed and the removal effect is controlled. In the case where the monocarboxylate is not stably present, the organic base gives the same effect as the monocarboxylate in addition to the removal solution.
  • the monocarboxylic acid salt includes an ammonium salt of a monocarboxylic acid, a hydroxylamine salt of a monocarboxylic acid, a primary, secondary, tertiary or tertiary ammine salt of a monocarboxylic acid, A quaternary ammonium salt is exemplified, and an ammonium salt is preferable.
  • the organic base includes ammonia, hydroxylamine, primary, secondary or tertiary amine, quaternary ammonia such as TMAH (Tetramethylammonium hydroxide). Um.
  • the resist, the antireflection film, and the filling material contain a large amount of organic components in the generated residue due to dry etching and / or ashing, they can be increased by increasing the amount of monocarboxylic acid or organic solvent. Can be removed efficiently.
  • a film called a porous low-k or ultra low-k having a relative dielectric constant of around 2.4 or lower may be used as the low-k film. These films are easily etched by a chemical solution. Therefore, in such a case, it is preferable to add a small amount of fluorine compound such as hydrogen fluoride or not. Also, if a damaged layer is formed in the interlayer insulating film after dry etching and / or ashing, and it is desired to leave it without removing it, it is preferable not to add it with the power to reduce the fluorine compound. [0038] In one preferred embodiment of the present invention, at least one of sulfur-containing compounds having unshared electrons having oxygen having unshared electrons and Z or nitrogen having unshared electrons may be further added. These can be effective in preventing copper corrosion.
  • organic components such as a resist, an antireflection film, a filling material, and a residue generated with dry etching and / or ashing are increased by increasing the amount of the organic solvent.
  • Contained residues can be removed more easily, and by combination of hydrogen fluoride with water and organic solvent, contains silicon bonded to OH (Si—OH bond) and silicon bonded to Z or H (Si—H bond) Residues containing inorganic components such as inorganic filling materials, antireflection films, and Si-containing residues generated by dry etching and / or ashing can be removed more easily.
  • the interlayer insulating film such as a silicon-containing film or a low-k film and the damaged layer of these films formed during dry etching and / or ashing are removed.
  • Minimizing the etching by the liquid even if organic and inorganic dry etching residues such as resists, antireflection films and embedding materials, and unnecessary substances such as Si-containing residues coexist, they are simultaneously removed, It is possible to more selectively remove the copper-altered layer containing copper oxides and damaged by copper oxide and / or dry etching and / or ashing with respect to copper.
  • the removal liquid of the present invention contains a monocarboxylic acid and water as main components.
  • a monocarboxylic acid a water-soluble monocarboxylic acid is more preferable. This is because if it is water-soluble, the removal solution of the present invention remaining on the object to be treated such as a wafer can be easily removed by rinsing with pure water after treatment with the removal solution of the present invention.
  • Preferred water-soluble monocarboxylic acids include formic acid, acetic acid, propionic acid, butyric acid, isobutyric acid, monochrome oral acetic acid, dichloroacetic acid, trichlorodiacetic acid, monofluoroacetic acid, difluoroacetic acid, trifluoroacetic acid, a-cyclobutyric acid, ⁇ — Acetic acid, such as formic acid, acetic acid, propionic acid, butyric acid, and trifluoroacetic acid, among which acetic butyric acid, ⁇ -clobutyric acid, lactic acid, glycolic acid, pyruvic acid, dalyoxalic acid, acrylic acid, methacrylic acid, etc. Is most preferred.
  • the monocarboxylic acid is O.lmass% -80 mass%, preferably 1-80 mass%, more preferably 2.5-60 mass%, in the removing solution of the present invention comprising water and monocarboxylic acid. Water remains Amount. If the water and carboxylic acid are within the above range, the residue of the copper-modified layer containing the copper oxide of the Cu / low-k multilayer wiring structure can be removed quickly, but if it is outside the above range, The removal rate of the residue is rapidly reduced. The removal rate decreases if the amount of monocarboxylic acid is too much or too little.
  • Pure water is preferably used as the water.
  • a fluorine compound, an organic solvent, a monocarboxylate and an organic base may be used alone or in combination of two or more thereof.
  • the fluorine compound ammonium fluoride, hydrogen fluoride, and ammonium monohydrogen difluoride are preferable.
  • an aqueous ammonium fluoride solution and dilute hydrofluoric acid 50 mass% aqueous solution
  • concentration of the fluorine compound varies depending on the type and amount of interlayer insulating films such as silicon-containing films and low-k films, and interlayer insulating films damaged by dry etching and / or ashing.
  • the preferred compounding amount of the fluorine compound is 0.005 to 5.5 parts by mass, more preferably 0.01 to 3 parts by mass with respect to 100 parts by mass of the removal liquid of the present invention which also has water and monocarboxylic acid power.
  • the pH is 7 or less and it is as acidic as possible.
  • acidity becomes weaker NH increases than NH + NH + H + coconut, and it becomes easier to corrode copper by forming a complex with copper.
  • the organic solvent of the present invention is preferably an organic solvent that can be dissolved in an aqueous monocarboxylic acid solution.
  • organic solvent that can be dissolved in the monocarboxylic acid aqueous solution include ethers, esters, alcohols, amides, and sulfoxides.
  • Examples of the alcohol include methanol, ethanol, isopropyl alcohol, t-butanol, and fluorine-containing alcohol.
  • ethers include ethylene glycol monoethyl ether, diethylene glycol monomethylol ether, triethylene glycol monomono methyl ether, diethylene glycol monobutyl ether, triethylene glycol monobutinore etherol, diethylene glycol monoisobutyl ether, Alkylene glycol monoalkyl or aralkyl ethers such as tripropylene glycol monomethyl ether and diethylene glycol monobenzyl ether; dioxane, trioxane, diglyme, 1,2-dimethoxyethane, tetra Hydrofuran, jetyl ether, dimethoxymethane, dimethoxypronone, diethoxymethane, 1,1-dimethoxyethane, ethyleneglycololemethinoreethinoatenore, ethyleneglycololegetinoreethenore, diethyleneglycolenoresinetinoreno Tenole, diethylene glycol
  • esters include monocarboxylic acid alkyl esters such as methyl acetate, ethyl acetate, and butyl acetate, carbonates such as propylene carbonate, ethylene carbonate, jetyl carbonate, dimethyl carbonate, and ethyl methyl carbonate, ethylene sulfite, Examples thereof include ⁇ -butyrolatatone, tryptyl phosphate, and trimethyl phosphate.
  • amides include dimethylformamide (DMF), dimethylacetamide, hexamethylphosphoric triamide, ⁇ -methyl-2-pyrrolidone, 1,1,3,3-tetramethylurea, ⁇ -methylpropionamide and dimethyl.
  • DMF dimethylformamide
  • Examples of amides include imidazolidinone.
  • Examples of the sulfoxide include dimethyl sulfoxide (DMSO).
  • sulfur compounds such as sulfolane, dimethylthioformamide, ⁇ -methylthiopyrrolidone, and methanesulfonic acid can be preferably used.
  • organic solvents that are soluble in an aqueous monocarboxylic acid solution are methyl acetate, ethyl acetate, butyl acetate, propylene carbonate, ethylene carbonate, jetyl carbonate, dimethyl carbonate, ethyl methyl carbonate, ethylene sulfite, ⁇ -butyrolatatane, esters such as tributyl phosphate and trimethyl phosphate, dioxane, trioxane, 1,1-dimethoxyethane, 1,2-dimethoxyethane, tetrahydrofuran, dimethoxymethane, dimethoxypropane, diethoxymethane, diglyme, Ethers such as diethylene glycol jetyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether and polyethylene glycol dimethyl ether, acetone, dimethylform Amides, dimethylacetamide, dimethyl sulfate, ethylene s
  • diethylene glycol-monomonomethylol ether triethyleneglycol-monomonomethylol ether, polyethylene-glycol-monomonomethylol ether, diethylene Glycolol monobutinoyl ether, triethylene glycol monobutyl ether, diethylene glycol monoisobutyl ether, tripropylene glycol monomono methino ether, diethylene glycol monohexyl ether, diethylene glycol monobenzil ether, diethylene glycol High flash point organic solvents such as ethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether and polyethylene glycol dimethyl ether It is desirable to use.
  • Sulfur-containing compounds having oxygen and Z having unshared electrons and nitrogen having unshared electrons and having unshared electrons include sulfids, mercabtans, thiocarboxylic acids, thioacetamides, thioureas, and thiadiazoles. , Tetrazoles, triazines, thiazoles, thiophenes, pyrimidines, purines, thiazolines, and thiazolidines can also be exemplified, and the following compounds are preferred. In the column.
  • Examples of sulfides include thiodiglycol, 2,2'-thiodiacetic acid, and 3,3'-dithiodipropionic acid;
  • Mercaptans include mercaptoacetic acid, thiomalic acid, thiolactic acid, 3-mercapto Examples include lopionic acid, aminothiophenol, 2-mercaptoethanol, 3-mercapto-1,2-propandiol;
  • Thiocarboxylic acids include thiol acetic acid, 3-acetylethyl 2-methylpropanoic acid;
  • Thioacetamides include thioacetamide
  • Thioureas include thiourea, thiocarbohydrazide, guarthiourea, ethilentiourea, malolthiourea;
  • the thiadiazoles include 2,5-dimercapto-1,3,4-thiadiazole, 2-thioacetic acid-5-mercapto-1,3,4-thiadiazole, 2,5-dithioacetic acid-1,3,4-thiadiazole Can be mentioned;
  • Examples of tetrazoles include 1-methyl-5-mercapto-1H-tetrazole; examples of triazines include 2, 4, 6 trimercapto 1 S-triazine; examples of thiazoles include 4 thiazole carboxylic acid, 2 -Aminothiazole;
  • Thiazolidines include 2,4-thiazolidinedione, 2-thio-4-thiazolidone, 2-imino-
  • thiophenes examples include 2,5-thiophenedicarboxylic acid, 3-thiophenmalonic acid, and 2-thiophenecarboxylic acid.
  • Pyrimidines include 2 thiobarbituric acid, 2 thiocytosine, thiouracil, and 4 amino.
  • Examples of the purines include 2,5-dithiopurine and 6-mercaptopurine.
  • thiazolines examples include 2 amino-2 thiazoline and 2 thiazoline-2 thiol.
  • the interlayer insulating film is a low-k film, and includes, for example, a silicon oxide film (FSG film) containing fluorine, and the relative dielectric constant is larger than 1. It means an insulating film of about 4 or less, preferably about 3 or less, more preferably about 2.8 or less, and even more preferably about 2.6 or less.
  • FSG film silicon oxide film
  • low-k films examples include Black Diamond (trade name, manufactured by Applied Materials), Coral (trade name, manufactured by Novellus), LKD series (trade name, manufactured by JSR), Aurora (trade name, manufactured by ASM), HSG series (trade name, manufactured by Hitachi Chemical), Nanoglass (trade name, manufactured by Honeywell), IPS (trade name, manufactured by Catalytic Chemical), ZM (trade name, Dow Corning)
  • XLK (trade name, manufactured by Dow Corning)
  • FOx (trade name, manufactured by Dow Corning)
  • Orion trade name, manufactured by Tricon
  • NCS trade name, manufactured by Catalyst Kasei
  • SiLK (trade name) , Manufactured by Dow Corning).
  • the composition of the low-k film is, for example, a low dielectric constant film (Low-k film, including silicon bonded to OH (Si—OH bond) and silicon bonded to Z or H (Si—H bond)). And a silicon (Si) -containing compound such as SiOC, SiOC: H, etc. It may be composed mainly of polyallyl ether.
  • the low-k film is mainly generated by coating and organic plasma CVD.
  • coating the name of the film specific to the raw material is given, and in the case of organic plasma CVD, the name of the specific film is given depending on the raw material and equipment.
  • the silicon-containing film is a TEOS silicon oxide film formed by using tetraethoxysilane [TEO S: Si (OC H)] formed by oxidizing a silicon wafer, high density plasma (High Density
  • HDP silicon oxide film formed by Plasma mainly silanol [(OR) R Si (OH)] dissolved in mn 4-mn agent, spin-coated on the wafer and thermally cured to form SOG (Spin on glass), silicon oxide film, silicon nitride (SiN), silicon carbide (SiC), SiCN, etc.
  • SOG Spin on glass
  • SiN silicon nitride
  • SiC silicon carbide
  • SiCN SiCN
  • An insulating film barrier refers to a film formed at an interface between an interlayer insulating film and an interlayer insulating film, an interface between copper and an interlayer insulating film, or the like.
  • the resist includes KrF (Krypton F), ArF, F resist, etc.
  • the antireflection film and the embedding material include those containing an organic substance as a main component and those containing an inorganic substance such as silicon.
  • Antireflective coatings and fillers containing inorganic substances such as silicon indicate silicon, S-to-OH bonds and / or SH "[bonds, etc., and those damaged by plasma-ashing also fall under this category.
  • Antireflective coatings and implants containing H bonds are films with little or few Si-H bonds and many Si-H bonds.
  • Si-H absorption spectrum (2200-2300cm-) with significant Si-H absorption data as FT-IR measurement data, generally called HSQ (Hydrogen Silsesquioxane) Including.
  • HSQ Hydrophilicity Quadrature Si-OH bonds
  • films containing Si-H bonds especially those with little or no Si-CH bonds
  • the film having more Si—H bonds and / or Si—OH bonds can be effectively removed by the removing solution of the present invention. In the present invention, these can be effectively removed. Even when the antireflection film and the embedding material are mainly composed of an organic substance, the number of acceptors such as methanesulfonic acid is high and can be removed by using a solvent.
  • the etching residue generated in the dry etching process may include silicon nitride used for an insulating film barrier or the like.
  • silicon nitride used for an insulating film barrier or the like.
  • a gas containing nitrogen atoms or a mixed gas containing nitrogen and nitrogen is used by dry etching and / or atsin, nonvolatile silicon nitride containing silicon (Si—N) bonded to nitrogen is generated.
  • Such etching residues are also easily removed by the removing liquid of the present invention.
  • the preferred removal solution in the present invention is The following can be illustrated.
  • the fluorine compound, organic solvent, monocarboxylate or organic base which can be blended as necessary, is composed of monocarboxylic acid and water. 0 to 1 part by mass (fluorine compound); 0 to 25 parts by mass (organic solvent); 0 to 25 parts by mass (monocarboxylate or organic base) can be used.
  • Acetic acid and Z or trifluoroacetic acid water: tetramethylhydroxyammonium
  • Acetic acid and Z or trifluoroacetic acid water: dimethylformamide
  • the removal liquid include the following.
  • the fluorine compound, organic solvent, monocarboxylate or organic base is 100 parts by mass of the total amount of monocarboxylic acid and water. 0.005 to 5.5 parts by mass (fluorine compound); 0 to 25 parts by mass (organic solvent); 0 to 25 parts by mass (monocarboxylate or organic base) can be used.
  • the object to be removed is a copper oxide film and / or a copper-modified layer containing copper oxide and an inorganic embedded material residue damaged by dry etching and / or ashing
  • Preferred examples of the removing liquid include the following.
  • the fluorine compound, organic solvent, monocarboxylate or organic base is 100 parts by mass of the total amount of monocarboxylic acid and water.
  • 0.5 to 5.5 parts by mass (fluorine compound); 0 to 25 parts by mass (organic solvent); 0 to 25 parts by mass (monocarboxylate or organic base) can be used.
  • Hydrogen fluoride and Z or ammonium fluoride acetic acid and Z or trifluoroacetic acid: water
  • the removal target is a copper oxide film and / or a copper altered layer containing copper oxide damaged by dry etching and / or ashing, a resist residue, a BARC residue, and an organic filling material residue.
  • examples of the preferred removal liquid in the present invention include the following.
  • Acetic acid and Z or trifluoroacetic acid water: tetramethylhydroxyammonium
  • organic solvents that are constituents of the removal liquid may have an anticorrosive effect against copper.
  • water-soluble alcohols with 3 or more carbon atoms such as isopropyl alcohol and tert-butanol, acetic acid, formic acid, trifluoroacetic acid, methyl acetate, ethyl acetate, propylene carbonate, etc., which contain a carboxyl group (COOH) in the molecule
  • COOH carboxyl group
  • polycarboxylic acids such as oxalic acid, malonic acid, succinic acid, dartaric acid, adipic acid, malic acid, citrate and tartaric acid can be added to monocarboxylic acid to synergistically inhibit copper corrosion. can do.
  • anticorrosive is not limited, but for example, phenol, talesol, xylenol, pyrocatechol, resorcinol, hydroquinone, pyrogallol, 1, 2, 4 benzenetriol, salicyl alcohol, p-hydroxybenzyl alcohol, o-hydroxybenzyl alcohol, p-hydroxyl Phenethyl alcohol, p-aminophenol, m-aminophenol, diaminophenol, aminoresorcinol, p-hydroxybenzoic acid, o-hydroxybenzoic acid, 2,4-dihydroxybenzoic acid, 2,5-dihydroxybenzoic acid, 3 , 4-dihydroxybenzoic acid, 3,5-dihydroxybenzoic acid, aromatic hydroxy compounds such as these derivatives, benzotriazole, o trilltriazole, m tolyltriazole, p-toly
  • the concentration of the anticorrosive agent in the removal liquid in the present invention is not limited as long as the anticorrosive effect is obtained, but for example, about 0.1 to 20 mass%, preferably 0 with respect to the total amount of water and monocarboxylic acid. About 5 to 10 mass%.
  • An inert gas may be further dissolved in the removal liquid of the present invention.
  • the inert gas include nitrogen, helium, argon, neon, krypton, and xenon.
  • the method for dissolving the inert gas in the removal liquid is not limited, and can be performed by a generally used method.
  • an inert gas may be blown into the removal liquid.
  • the dissolved amount of the inert gas is not limited as long as the partial pressure of oxygen in the removal liquid can be reduced (for example, lower than the partial pressure of oxygen in saturated dissolved air). As a result of the reduction of the oxygen partial pressure in the removal liquid, it is possible to prevent copper oxide from which the copper oxide has been removed and copper corrosion.
  • the inert gas is not necessarily limited to these, and may be substantially inert to the removal liquid.
  • a gas that does not react with the removal liquid such as fluorocarbon gas, hydrocarbon, and carbon monoxide, can achieve the same effect of removing dissolved oxygen.
  • Oxidation and oxidation include oxidation 3 ⁇ 4 ⁇
  • the method of the present invention is used when forming a structure such as a damascene or dual damascene in a Cu / Low-k multilayer wiring structure and when using a copper film in a capacitor structure.
  • the removal solution of the present invention suppresses etching by the removal solution of the silicon-containing film or the low-k film, does not corrode copper, and forms a copper thin film such as a copper wiring, an electrode, a copper layer, etc. Copper oxide formed on the copper surface And / or a copper-altered layer containing a copper oxide that has been damaged by dry etching and / or ashing can be suitably used to selectively remove copper.
  • a low-k film is formed on a semiconductor substrate (for example, SiN, copper, TaN, SiC, etc.), and an antireflection film is formed. Then, a resist is formed, and then a pattern is formed by photolithography. After etching and ashing the low-k film according to the pattern, contact with the removing solution of the present invention is performed, and then copper oxide and / or etching and It is possible to remove a copper alteration layer containing copper oxide damaged by ashing.
  • a semiconductor substrate for example, SiN, copper, TaN, SiC, etc.
  • the removal liquid of the present invention has a hole or groove in the low-k film, the antireflection film, and the resist, and the resist (including altered resist material), the antireflection film, the embedding material, etc. are removed by ashing or the like.
  • This is a liquid that removes the copper-modified layer containing copper oxide, which has been damaged by dry etching and / or ashing, as the object to be treated in the removed state.
  • the polymer (etching gas polymer) and / or the residue after dry etching and / or ashing may adhere to the wall surface and Z or bottom surface of the hole of the low-k film obtained by dry etching. Yo ⁇ .
  • an insulating film barrier such as SiN, SiC, TaN film is formed on the low-k film, and the SiN, SiC, TaN film, etc. It is also possible to etch with the k film.
  • an antireflection film can be formed on the surface of the resist or between the resist and the insulating film barrier. Residues after dry etching and / or ashing of these antireflection films are copper oxide, and It can also be removed with an altered copper layer containing copper oxide that has been damaged by etching and / or ashing.
  • the low-k film and the resist usually have thicknesses of about 0.01 to 2 ⁇ m, about 0.001 to 0.2 ⁇ , and about 0.01 to 10 / ⁇ ⁇ , respectively. .
  • SiN film, SiC film, TaN film, antireflection film, etc. formed as necessary are usually about 0.01-2m, 0.001-0.2 ⁇ &, 0.01-10, respectively. / ⁇ ⁇ , 0.01 to 0 .: Thickness of about L m.
  • a large amount of oxygen radicals are removed in order to remove unnecessary materials such as resist, antireflection film, filling material and etching residue.
  • the low-k film is damaged. I will give it.
  • Oxygen radicals were reduced to such an extent that hydrogen plasma ashing, ashing using an inert gas such as He, and mixed gas plasma such as He / hydrogen, or oxygen-containing low-k films were not damaged.
  • the ashing may be performed with plasma. Even when ashing is performed, in order to reduce damage, a method called half ashing is used in which ashing is interrupted halfway and unnecessary materials such as resist, antireflection film, filling material and etching residue are not completely removed. Sometimes. When performing such plasma ashing, the optimum conditions such as temperature and time may differ from those when removing the resist directly without etching after etching even if the same removal solution is used. .
  • a method for removing a copper oxide layer using a removal solution of the present invention and / or a damaged copper layer including a copper oxide layer damaged by etching and / or ashing includes copper oxide, and / or Alternatively, it is possible to remove a copper-altered layer containing copper oxide that has been damaged by etching and / or ashing, and at a temperature and time that does not substantially damage a silicon-containing film or a low-k film. Is what you do.
  • the fact that the silicon-containing film and low-k film are not substantially damaged means that the physical properties of the silicon-containing film and low-k film before and after the treatment with the removal solution are used for semiconductor substrates, for example.
  • the silicon-containing film or low-k film is substantially affected (etched) at the interface between the resist and the silicon-containing film or low-k film.
  • the relative dielectric constant of the silicon-containing film or the low-k film is substantially unchanged before and after the treatment using the removal liquid. It means not changing.
  • the fact that the silicon-containing film or the low-k film is not substantially etched means that the etching amount of the silicon-containing film or the low-k film is preferably about 200 nm or less, more preferably about lOOnm or less, and further preferably about 50 nm or less. It means that.
  • the fact that the relative permittivity of the silicon-containing film and the low-k film before and after the treatment using the removal solution does not substantially change means that the change in the relative permittivity is preferably about 20% or less, more preferably 10%. % Or less, more preferably about 5% or less.
  • the treatment with the removing liquid can be performed, for example, by immersing the substrate after dry etching and / or ashing in the removing liquid of the present invention as a processing object.
  • the condition of immersion in the removal solution is that copper oxide and / or copper damaged layer containing copper oxides damaged by etching and / or ashing can be removed, copper corrosion is suppressed, and silicon is contained.
  • the film can be appropriately set according to the type and temperature of the removal solution.
  • the temperature of the removal liquid is, for example, about 10 to 60 ° C, preferably about 15 to 40 ° C.
  • the immersion time is not limited and can be appropriately selected. For example, about 0.5 to 60 minutes, preferably about 1 to 40 minutes can be exemplified.
  • the speed of stirring is not limited and can be appropriately selected.
  • the removal solution is brought into contact with the object to be treated, the copper oxide and / or the copper altered layer containing the cuprate oxide damaged by etching and / or ashing is removed.
  • the workpiece it is possible to clean the workpiece by supplying it with a rotating liquid while rotating it, and cleaning it by spraying the composition with the spray! /.
  • the treatment with the removing liquid of the present invention may be carried out by subjecting the resist, the antireflection film, and the filling material to the conditions such as etching and / or ashing, copper oxide such as etching and / or ashing residue, and / or If unnecessary materials that have been damaged by etching and / or ashing and that are an obstacle to the removal of the copper-modified layer containing copper oxide are difficult to peel off, ultrasonic cleaning is performed by, for example, immersing the object to be processed in a removal solution. You may go.
  • the method for removing a copper oxide of the present invention can be further performed by washing the wafer from which the cuprate is removed with pure water.
  • the removal liquid of the present invention can be washed away by this washing step. It is more preferable to use a process of cleaning with pure water in which an inert gas is dissolved instead of the process of simply cleaning with pure water.
  • the water reduces the oxygen partial pressure by dissolving the inert gas, it can effectively prevent the copper oxide and copper corrosion from which the copper oxide is removed. .
  • Dissolution of the inert gas in water can be performed in the same manner as in the case of dissolving the inert gas in the removal liquid.
  • a substantially inert gas atmosphere means a completely inert gas atmosphere. It may be in the air or in an atmosphere having an oxygen partial pressure lower than the oxygen partial pressure of air. It is preferable to remove the copper oxide under such conditions because the copper oxide from which the copper oxide has been removed and the corrosion of the copper can be more effectively prevented.
  • a semiconductor substrate in which a copper oxide layer and / or a damaged layer due to etching and / or ashing, which has been damaged by etching and / or ashing, has been removed using the removal solution of the present invention can be processed into various types of semiconductor devices in accordance with a commonly used method (for example, a method described in the detailed semiconductor CMP technology, edited by Toshiro Doi 2001), such as copper wiring.
  • the removal of the copper-altered layer containing porcelain and the corrosion of the copper were investigated using a film-formed wafer obtained by cutting a formed 8-inch wafer into a certain size.
  • the film thickness of copper oxide Cu 0 was measured by X-ray interferometry and confirmed to be about 33A.
  • 33A The film thickness of copper oxide Cu 0 was measured by X-ray interferometry and confirmed to be about 33A.
  • Cu oxides (CuO, Cu 0, Cu (OH), etc .; hereinafter referred to as “Cu 0”.
  • a wafer for measuring the amount of copper erosion was washed with a 0.1N aqueous solution of H 2 SO before use.
  • a wafer with a test pattern was produced as follows. Si substrate with porous low-k film (porous MSQ), insulating film barrier SiN film, silicon-containing antireflection film (BARC), and resist film formed by via etching and He / H plasma ashing Processing
  • porous low-k film porous MSQ
  • insulating film barrier SiN film silicon-containing antireflection film (BARC)
  • resist film formed by via etching and He / H plasma ashing Processing
  • the embedding material, porous low-k film used the following:
  • Embedding material Inorganic embedding containing Si, C, 0, H and having Si-OH, Si-CH, SHD bonds
  • Porous low-k film coating film containing Si, C, 0, H and having S-to-CH, S-to-O bond;
  • the experiment was performed by immersing a film-formed wafer or a patterned wafer in the removing solution of the present invention at 23 ° C. for 1 to 20 minutes with stirring (600 rpm). Thereafter, pure water was overflowed into a container filled with 1 liter of pure water at 2 liter / min, rinsed in the container for 1 to 5 minutes, and dried by N purge. Film thickness of the film-forming wafer before and after being immersed in the remover
  • the thickness difference (A) force was also determined for the porous low-k film etching amount and copper erosion amount.
  • the etching rate of porous low-k film is expressed as "A” when it is less than l A / min, "B” when it is l-5A / min, and “C” when it is 5A / min or more.
  • the corrosion rate of copper is expressed as “A” when the rate is 3 A / min or less, 3 to: “B” when LOA / min, or “C” when 10 A / min or more.
  • the removal time of the copper oxide film (CuxO) is 10 seconds or less, it is expressed as “A”, when it is 10-30 seconds, it is expressed as “B”, and when it is longer than 30 seconds, it is expressed as “C”.
  • Removal time of copper alteration layer containing copper oxides (labeled as “altered layer”) Force “A” for 60 seconds or less, “B” for 60 to 120 seconds, “180” for 180 seconds or more C ".
  • Table 6 and Table 7 show comparative examples.
  • Non-removable objects are the porous low-k film, the damaged layer of the porous low-k film, and copper.
  • the degree of etching of the porous low-k film can be determined from the cross-sectional shape of the wafer with the test pattern.
  • removal targets include resist residues, antireflection coating (BARC) residues, organic embedding material residues, inorganic embedding material residues, Si-containing residues, copper oxides on copper surfaces, and altered layer residues containing these (“copper surface residues "). The extent of these removals is indicated by the following symbols.
  • the damaged layer When the damaged layer is removed, the amount of force is rather strong, but since the machining dimension becomes larger than the design dimension, this is often not removed.
  • the cross-sectional shape of the side wall of the processed pattern in the dry etching becomes clearly visible, so that it is possible to determine the force / force of removing the damaged layer.
  • the case where the damaged layer is not removed is represented by “A”
  • the case where about half of the layer is removed is represented by “B”
  • the case where the damaged layer is completely removed is represented by “C”.
  • Etching residue (“resist residue”, “antireflection coating (BARC) residue” ”,“ Organic embedding material ”, and“ Inorganic embedding material residue ”) are removed within 3 minutes,“ A ”, when removed within 5 minutes,“ B ”, within 5 minutes If it can be removed, it is indicated by "C”.
  • the copper surface residue mainly exists at the bottom of the via hole, and the Si-containing residue often remains mainly on the side wall of the via hole. If these can be removed, “A”, and if not, “C” 3 ⁇ 4k.
  • any copper surface residue can be removed and the damage layer remains, and there is no problem in the cross-sectional shape.
  • Examples 33 to 37 since they contain a lot of acetic acid and organic solvent, the wafers with test patterns including “resist residue”, “antireflection coating (BARC) residue”, and “organic filling material” were removed. It is also possible to do this. As shown in Examples 32 and 33, when the amount of acetic acid is small, the removal time can be shortened by mixing a highly polar organic solvent.
  • Examples 38 to 47 show the results when a wafer with a test pattern containing a Si-containing residue was processed. By adding hydrogen fluoride (HF) as a fluoride, even if they coexist, these and the copper surface residue can be effectively removed.
  • Examples 49 to 53 are results when a wafer with a test pattern was processed with a residue of an inorganic embedding material remaining. A sufficient amount of acetic acid and hydrogen fluoride can be used to remove copper surface residues in the presence of these residues.
  • HF hydrogen fluoride
  • a wafer with a non-turn formed may have copper wiring portions that are very susceptible to corrosion, such as grains formed during the plating process, damage layers caused by dry etching or ashing. In such a part, a small part of the surface may corrode into cracks or pits by chemical treatment.
  • Oxygen with unshared electrons Sulfur-containing compounds with unshared electrons and nitrogen with z or unshared electrons have the effect of preventing such undue corrosion (Tables 5 and 7). When the sulfur-containing compound contains a carboxyl group, it also has the effect of removing copper surface residues.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

Disclosed is a liquid composed of a monocarboxylic acid and water which is used for removing residues of a deteriorated layer of copper which is damaged by dry etching and/or ashing and includes a copper oxide.

Description

明 細 書  Specification
銅酸化物を含む銅変質層の除去液及び除去方法  Removal liquid and removal method of copper deteriorated layer containing copper oxide
技術分野  Technical field
[0001] 本発明は、 Cu/Low-k多層配線構造におけるダマシン構造およびデュアルダマシ ン構造の形成、リソグラフィーなど一部のプロセスのやり直し (リワーク)などの半導体の 製造プロセスや液晶パネル素子にぉ 、て、 Low- k膜やシリコン含有膜に対する薬液 によるエッチングを抑制してレジスト、反射防止膜、埋め込み材およびドライエツチン グ残渣などの不要物の有無にかかわらず、銅酸化物、及び/又は、ドライエッチング 及び/又はアツシング 化)時に形成された、 Cu/low-k多層配線構造の銅酸化物及 び Z又は銅酸ィ匕物を含む銅変質層を選択的に除去するための除去液及び該除去 液を用いてこれらを除去する方法に関するものである。  [0001] The present invention relates to a semiconductor manufacturing process or a liquid crystal panel element, such as reworking of some processes such as formation of damascene and dual damascene structures in a Cu / Low-k multilayer wiring structure and lithography (rework), Copper oxide and / or dry etching regardless of the presence or absence of unnecessary materials such as resists, antireflection films, filling materials and dry etching residues by suppressing chemical etching on low-k films and silicon-containing films. And / or removal process for selectively removing the copper oxide layer including Cu oxide and Z or cuprate oxide in the Cu / low-k multilayer wiring structure formed during ashing) and the removal The present invention relates to a method of removing these using a liquid.
背景技術  Background art
[0002] 近年まで、配線材料として A1あるいは A1合金などを用い、層間絶縁膜として SiO膜  Until recently, A1 or A1 alloy or the like was used as a wiring material, and an SiO film as an interlayer insulating film
2 を使用する Al/SiO多層配線構造の半導体デバイスが中心に製作されてきた。現在  Semiconductor devices with Al / SiO multilayer wiring structures that use 2 have been mainly manufactured. Current
2  2
は、デバイスの微細化に伴う配線遅延を低減するため、配線材料として抵抗値の低 い Cuを用い、 SiO膜の代わりに層間絶縁膜として配線間容量の小さい low-k膜 (低誘  In order to reduce wiring delay due to device miniaturization, Cu with a low resistance value is used as the wiring material, and a low-k film (low induction) with low wiring capacitance is used as an interlayer insulating film instead of the SiO film.
2  2
電率膜)を用いる Cu/low-k多層配線構造が開発されて ヽる。  A Cu / low-k multilayer wiring structure using an electrical conductivity film has been developed.
[0003] Cu/low-k多層配線構造では、ドライエッチングにより、まず low-k膜に溝 (トレンチ)や 穴 (ビアホール)をカ卩ェし、その加工部分に主に銅などの配線材料を埋め込み、配線 構造を形成するダマシンといわれる方法により加工が行われる。さらに、デュアルダ マシン法においては、配線のためのトレンチとビアホールを同時に low-k膜に形成し 、その後、銅などの配線材料を埋め込む。  [0003] In a Cu / low-k multilayer wiring structure, first, grooves (trench) and holes (via holes) are formed in the low-k film by dry etching, and wiring materials such as copper are mainly used for the processed parts. Processing is performed by a so-called damascene method for forming a buried and wiring structure. Furthermore, in the dual damascene method, a trench and a via hole for wiring are simultaneously formed in a low-k film, and then a wiring material such as copper is embedded.
[0004] デュアルダマシン構造の形成には、ビアホールを先に形成した後、配線のための 溝を形成するビアファーストプロセス、この逆の順序で配線のためのトレンチを先に形 成した後、ビアホールを形成するトレンチファーストプロセス、その他にミドルファース トプロセス、デュアルハードマスクプロセス、トリプルハードマスクプロセスなどがある。  [0004] In forming a dual damascene structure, a via hole is formed first, followed by a via first process in which a trench for wiring is formed. In the reverse order, a trench for wiring is first formed, and then the via hole is formed. In addition, there are a trench first process, a middle hard process, a dual hard mask process, and a triple hard mask process.
[0005] ビアファーストのプロセスにおいては、埋め込み材が使用されることが多い。ビアホ ールをドライエッチングにより形成した後、埋め込み材を埋め込み、トレンチを形成す るためのリソグラフィーを行い、ドライエッチングする。その後、埋め込み材は選択的 に除去される。これに対して、デュアルハードマスクプロセス、トリプルハードマスクな どのプロセスでは、埋め込み材を使用しない。 [0005] In the via first process, an embedding material is often used. Biaho After the tool is formed by dry etching, a buried material is buried, lithography for forming a trench is performed, and dry etching is performed. Thereafter, the embedding material is selectively removed. On the other hand, no filling material is used in processes such as dual hard mask processes and triple hard mask processes.
[0006] Al/SiO多層配線構造では、配線のためのメタルエッチングやビアホール加工のた  [0006] In the Al / SiO multilayer wiring structure, metal etching and via hole processing for wiring are performed.
2  2
めのビアエッチング後には、レジスト、反射防止膜やエッチング残渣などの不要物を 除去するために酸素ラジカルを含んだプラズマによりアツシングを行って 、た。  After the via etching for etching, ashing was performed with plasma containing oxygen radicals in order to remove unnecessary materials such as resist, antireflection film and etching residue.
[0007] Cu/low-k多層配線構造では、多量の酸素ラジカルを含んだプラズマによりアツシン グを行うと、 low-k膜にダメージを与えてしまう。このため、多量の酸素ラジカルを含ん だプラズマアツシングを行わずに、水素プラズマアツシング、 Heなどの不活性ガスを 用いたアツシングおよび He/水素などの混合ガスプラズマ、もしくは酸素を含んで low -k膜にダメージを与えな 、ように酸素ラジカルを減らしたプラズマアツシングをした後 に、レジストやドライエッチング残渣などの不要物を除去することが望ましい。このよう なアツシング方法を用いても、レジスト、反射防止膜、ドライエッチング残渣および埋 め込み材が残る場合がある。さらには、ダマシン、デュアルダマシンなどの構造を形 成する際のドライエッチングおよび Z又はアツシング時に、このような酸素を含んだプ ラズマを用いた場合、或いはプロセス間の移動などにより大気に曝されることがあれ ば、 Cu金属配線の表面に銅酸化物、及び/又は、ドライエッチング及び/又はアツシ ングによる損傷を受けた、銅酸化物を含む銅変質層が形成される。ダマシン、デュア ルダマシン構造のトレンチやビアホールに、ノ リアメタルの TaNや配線材料のじ など の金属を埋め込む際に、下層部にある Cuなど配線層との接点に銅酸化物や前述の 銅変質層があると、抵抗が大きくなり半導体デバイスの不良の原因となる。さらに、半 導体回路のパターンのリソグラフィー (描画)をやり直すリワークの場合も含めて、この ような銅酸ィ匕物、及び/又は、ドライエッチング及び/又はアツシングによる損傷を受け た、銅酸ィ匕物を含む銅変質層は、 Cu腐食および Low-k膜の薬液によるエッチングを 抑制して選択的に取り除かなければならない。  [0007] In a Cu / low-k multilayer structure, if low temperature etching is performed by plasma containing a large amount of oxygen radicals, the low-k film will be damaged. For this reason, without plasma ashing containing a large amount of oxygen radicals, hydrogen plasma ashing, ashing using an inert gas such as He, and mixed gas plasma such as He / hydrogen, or oxygen containing low- It is desirable to remove unnecessary substances such as resist and dry etching residues after plasma ashing with reduced oxygen radicals so as not to damage the k film. Even if such an ashing method is used, a resist, an antireflection film, a dry etching residue and an embedding material may remain. Furthermore, during dry etching and Z or ashing when forming structures such as damascene and dual damascene, such oxygen-containing plasma is used, or exposure to the atmosphere due to movement between processes, etc. In some cases, a copper alteration layer containing copper oxide, which is damaged by dry etching and / or ashing, is formed on the surface of the Cu metal wiring. When embedding a metal such as near metal TaN or wiring material in a damascene or dual damascene trench or via hole, copper oxide or the above-mentioned copper altered layer is formed at the contact with the wiring layer such as Cu in the lower layer. If so, the resistance increases and causes a failure of the semiconductor device. Furthermore, including rework of semiconductor circuit pattern lithography (drawing), copper oxides and / or cuprates damaged by dry etching and / or ashing may be used. The altered copper layer containing material must be removed selectively while suppressing Cu corrosion and chemical etching of the low-k film.
[0008] 銅配線の表面に、このように形成された銅酸化物、及び/又は、ドライエッチング及 び/又はアツシングによる損傷を受けた、銅酸化物を含む銅変質層を、現在、市販さ れている従来のレジストなどのポリマー剥離液で除去しょうとすると、銅およびシリコン 含有膜、 Low-k膜などのデバイスを構成する膜がエッチングされてしまい、十分選択 的に除去できず、本来の設計寸法どおりの加工ができない。特にレジスト、反射防止 膜、埋め込み材およびドライエッチング残渣などの不要物が共存する場合、これら力 S 妨げとなって、いっそう困難である。 [0008] A copper-modified layer containing copper oxide and / or copper oxide that has been damaged by dry etching and / or ashing on the surface of the copper wiring is now commercially available. If a conventional polymer stripping solution such as a resist is used for removal, the films that make up the device, such as copper and silicon-containing films and low-k films, will be etched and cannot be removed selectively. Processing as designed is not possible. In particular, when unnecessary substances such as resist, antireflection film, filling material and dry etching residue coexist, these forces S are hindered and it is further difficult.
[0009] 例えば、銅酸ィ匕物およびドライエッチングやアツシングによる損傷を受けて形成され た、銅酸化物、及び/又は、ドライエッチング及び/又はアツシングによる損傷を受けた 、銅酸化物を含む銅変質層の除去に、水で希釈した塩酸やフッ酸を用いると、銅酸 化物を除去できる。しかしながら、銅酸ィ匕物を含む銅変質層は除去しにくぐ解離し た H+が多 、ため銅が腐食しやす!/、。  [0009] For example, copper oxide and copper oxide formed by damage caused by dry etching or ashing and / or copper containing copper oxide damaged by dry etching and / or ashing Copper oxide can be removed by using hydrochloric acid or hydrofluoric acid diluted with water to remove the altered layer. However, the altered copper layer containing cuprates contains a large amount of dissociated H + that is difficult to remove, so copper is easily corroded! /.
[0010] また、レジスト、反射防止膜、埋め込み材およびドライエッチング残渣などの不要物 力 銅酸化物、及び/又は、ドライエッチング及び/又はアツシングによる損傷を受け た、銅酸化物を含む銅変質層の周辺に共存する場合、水で希釈した塩酸ゃフッ酸で はこれらを取り除けないため、本来取り除くべき銅酸ィ匕物や前述の銅変質層も完全 に除去することが困難であり、均一な除去ができない。さらに、これらの薬液によりドラ ィエッチングによりダメージを受けた層間絶縁膜、特に層間絶縁膜がポーラス Low-k である場合に著しくエッチングされて、設計寸法通りに加工ができなくなる。  [0010] In addition, an undesired force copper oxide such as a resist, an antireflection film, a filling material, and a dry etching residue, and / or a copper altered layer containing copper oxide damaged by dry etching and / or ashing In the case of coexisting in the vicinity of water, it is difficult to completely remove the copper oxides and the above-mentioned copper-altered layer that should be removed because hydrochloric acid and hydrofluoric acid diluted with water cannot be removed. Cannot be removed. Furthermore, when the interlayer insulating film damaged by dry etching with these chemicals, especially when the interlayer insulating film is porous low-k, it is etched significantly and cannot be processed as designed.
[0011] このようにダマシンおよびデュアルダマシンを形成するあらゆるプロセスにおいて、 レジスト、反射防止膜、埋め込み材およびドライエッチング残渣などの不要物の有無 にかかわらず、 Low-k膜やシリコン含有膜に対する薬液によるエッチングを抑制して 銅酸化物、及び/又は、ドライエッチング及び/又はアツシングによる損傷を受けた、 銅酸化物を含む銅変質層を銅に対して選択除去する専用薬液はこれまで存在して Vヽな 、し、未だ開発されて 、な 、。 [0011] In any process that forms damascene and dual damascene in this way, regardless of the presence of unnecessary materials such as resists, antireflection coatings, burying materials, and dry etching residues, chemicals for low-k films and silicon-containing films are used. There has been a dedicated chemical solution that selectively removes copper-degraded layers containing copper oxide that have been damaged by copper oxide and / or dry etching and / or ashing while suppressing etching. Cunning, and still being developed.
[0012] 特許文献 1は、 CMP後の銅フィルムの洗浄剤を開示している力 エッチングないし アツシング後に生じる銅酸ィ匕物の除去については言及していない。また、特許文献 1 では、洗浄液中に配合可能なカルボン酸としてクェン酸、リンゴ酸、マロン酸、コハク 酸などのポリカルボン酸のみが例示されて 、る。 [0012] Patent Document 1 discloses a cleaning agent for a copper film after CMP, and does not mention removal of copper oxide generated after force etching or ashing. In Patent Document 1, only polycarboxylic acids such as citrate, malic acid, malonic acid, and succinic acid are exemplified as carboxylic acids that can be blended in the cleaning liquid.
[0013] 特許文献 2は、ポリマー残渣を除去するための洗浄液を記載している力 銅酸化物 を含む銅変質層の除去につ!、ては記載されて!、な!/、。 [0013] Patent Document 2 describes a power copper oxide that describes a cleaning liquid for removing polymer residues. It is described for the removal of the copper altered layer containing !!
特許文献 1:特表 2001— 521285  Patent Document 1: Special Table 2001— 521285
特許文献 2 :特開平 10— 256210  Patent Document 2: JP-A-10-256210
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0014] 本発明は、 Cu/low-k多層配線構造におけるダマシン、デュアルダマシン構造の形 成において、シリコン含有膜や Low-k膜に対して薬液によるエッチングを抑制し、銅 酸化物、及び/又は、ドライエッチング及び/又はアツシングによる損傷を受けた、 Cu/ low-k多層配線構造の銅酸化物を含む銅変質層を、銅の腐食を抑制し選択的に除 去するための除去液を提供することにある。 [0014] The present invention suppresses etching with a chemical solution on a silicon-containing film or a low-k film in the formation of a damascene or dual damascene structure in a Cu / low-k multilayer wiring structure, Alternatively, a removal solution for selectively removing the copper alteration layer containing the copper oxide of the Cu / low-k multilayer wiring structure damaged by dry etching and / or ashing while suppressing copper corrosion. It is to provide.
課題を解決するための手段  Means for solving the problem
[0015] 本発明者は、モノカルボン酸及び水を基本組成とする溶液を用いることにより、短 時間でかつ選択的に銅の表面に形成された銅酸ィ匕膜、及び/又は、ドライエッチング 及び/又はアツシングによる損傷を受けた、 Cu/low-k多層配線構造の銅酸化物を含 む銅変質層を除去できることを見出し、本発明を完成するに至った。  [0015] The present inventor uses a solution having a basic composition of monocarboxylic acid and water to form a cuprate film formed on the surface of copper in a short time and / or dry etching. In addition, the present inventors have found that it is possible to remove a copper-altered layer containing a copper oxide having a Cu / low-k multilayer wiring structure damaged by ashing, and completed the present invention.
[0016] 即ち、本発明は Cu/low-k多層配線構造の銅酸化物を含む銅変質層の残渣除去 液、該銅変質層の残渣を除去する方法。及び残渣除去処理物を提供するものである  That is, the present invention is a residue removal solution for a copper-altered layer containing a copper oxide having a Cu / low-k multilayer wiring structure, and a method for removing the residue from the copper-altered layer. And a residue removal treatment product
1. モノカルボン酸 0. 1〜80質量部と水 99. 9〜20質量部(水とモノカルボン酸の 合計が 100質量部)を含むドライエッチング及び Z又はアツシングによる損傷を受け た、 Cu/low-k多層配線構造の銅酸化物を含む銅変質層の残渣除去液。 1. Monocarboxylic acid 0.1 ~ 80 parts by weight and water 99.9 ~ 20 parts by weight (total of water and monocarboxylic acid is 100 parts by weight) damaged by dry etching and Z or ashing, Cu / Residue removal solution for altered copper layer containing copper oxide with low-k multilayer wiring structure.
2. モノカルボン酸(0. 1〜80質量部)と水(99. 9〜20質量部)の合計量 100質量 部に対し、 0.1-25質量部の有機溶媒をさらに含む項 1に記載の残渣除去液。  2. The item according to item 1, further comprising 0.1-25 parts by mass of an organic solvent with respect to 100 parts by mass of the total amount of monocarboxylic acid (0.1-80 parts by mass) and water (99.9-20 parts by mass). Residue removal solution.
3. モノカルボン酸(2〜70質量部)と水(98〜30質量部)の合計量 100質量部に 対し、 0.005-5.5質量部のフッ素化合物をさらに含む項 1に記載の残渣除去液。 3. The residue removal solution according to item 1, further comprising 0.005-5.5 parts by mass of a fluorine compound with respect to 100 parts by mass of the total amount of monocarboxylic acid (2-70 parts by mass) and water (98-30 parts by mass).
4. モノカルボン酸(2〜70質量部)と水(98〜30質量部)の合計量 100質量部に 対し、 0.005-5.5質量部のフッ素化合物および 0.1-25質量部の有機溶媒をさらに含む 項 1に記載の残渣除去液。 5. さらにモノカルボン酸塩および Zまたは有機塩基を含む項 1〜4の 、ずれかに 記載の残渣除去液。 4. To the total amount of 100 parts by mass of monocarboxylic acid (2 to 70 parts by mass) and water (98 to 30 parts by mass), 0.005-5.5 parts by mass of fluorine compound and 0.1-25 parts by mass of organic solvent are further included Item 2. A residue removal solution according to Item 1. 5. The residue removing solution according to any one of Items 1 to 4, further comprising a monocarboxylate and Z or an organic base.
6. さらに、非共有電子をもつ酸素及び Z又は非共有電子をもつ窒素を有する非共 有電子をもつ硫黄含有化合物を少なくとも 1種を含む、項 1〜5のいずれかに記載の 残渣除去液。  6. The residue removal solution according to any one of Items 1 to 5, further comprising at least one sulfur-containing compound having unshared electrons having oxygen having unshared electrons and Z or nitrogen having unshared electrons. .
7. さらに、界面活性剤を含む項 1〜6のいずれかに記載の残渣除去液。  7. The residue removing solution according to any one of Items 1 to 6, further comprising a surfactant.
8. さらに、防食剤を含む項 1〜7のいずれかに記載の残渣除去液。  8. The residue removing solution according to any one of Items 1 to 7, further comprising an anticorrosive.
9. モノカルボン酸力 ギ酸、酢酸、プロピオン酸、酪酸、トリフルォロ酢酸からなる群 力 選ばれる少なくとも一つである項 1〜8のいずれかに記載の残渣除去液。  9. Monocarboxylic acid strength The residue removing solution according to any one of Items 1 to 8, which is at least one selected from the group force consisting of formic acid, acetic acid, propionic acid, butyric acid, and trifluoroacetic acid.
10. フッ素化合物力 フッ化水素及びフッ化アンモ-ゥムカもなる群力 選ばれる 少なくとも一つである項 3または 4に記載の残渣除去液。  10. Fluorine compound power The residue removing liquid according to item 3 or 4, which is at least one selected from the group power of hydrogen fluoride and ammonium fluoride.
11. 有機溶媒が、アルコール類、エステル類、アミド類、エーテル類、スルホン類お よびスルホキシド類力 なる群力 選ばれる少なくとも一つである項 2または 4に記載 の残渣除去液。  11. The residue removal solution according to item 2 or 4, wherein the organic solvent is at least one selected from the group power of alcohols, esters, amides, ethers, sulfones and sulfoxides.
12. 有機溶媒が炭酸プロピレンである項 11に記載の残渣除去液。  12. The residue removing solution according to item 11, wherein the organic solvent is propylene carbonate.
13. 有機溶媒がジメチルホルムアミド (DMF)である項 11に記載の残渣除去液。 13. The residue removing solution according to item 11, wherein the organic solvent is dimethylformamide (DMF).
14. 非共有電子をもつ酸素及び Z又は非共有電子をもつ窒素を有する非共有電 子をもつ硫黄含有ィ匕合物力 スルフイド類、メルカブタン類、チォカルボン酸類、チォ ァセトアミド類、チォゥレア類、チアジアゾール類、テトラゾール類、トリアジン類、チア ゾール類、チォフェン類、ピリミジン類、プリン類、チアゾリン類およびチアゾリジン類 力 なる群力 選ばれる少なくとも 1種である項 6に記載の残渣除去液。 14. Sulfur-containing compounds with unshared electrons oxygen and Z or unshared electrons with nitrogen with unshared electrons Sulfides, mercaptans, thiocarboxylic acids, thioacetamides, thioureas, thiadiazoles, Item 7. The residue removing solution according to Item 6, which is at least one selected from the group forces of tetrazole, triazine, thiazole, thiophene, pyrimidine, purine, thiazoline and thiazolidine.
15. 非共有電子をもつ酸素及び Z又は非共有電子をもつ窒素を有する非共有電 子をもつ硫黄含有ィ匕合物力 2—アミノー 2—チアゾリン、メルカプト酢酸、 3-メルカプ トプロピオン酸、チォ乳酸及びチオリンゴ酸力 なる群力 選ばれる少なくとも 1種で ある項 14に記載の残渣除去液。  15. Sulfur-containing compounds with unshared electron oxygen and Z or unshared electron nitrogen with unshared electron 2-amino-2-thiazoline, mercaptoacetic acid, 3-mercaptopropionic acid, thiolactic acid Item 15. The residue-removing solution according to Item 14, which is at least one selected from the group power of thiomalic acid power.
16. 防食剤が、ポリカルボン酸である項 8に記載の残渣除去液。  16. The residue removing solution according to item 8, wherein the anticorrosive is a polycarboxylic acid.
17. ポリカルボン酸力 シユウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、リン ゴ酸、クェン酸及び酒石酸力 なる群力 選ばれる少なくとも 1種である項 16に記載 の残渣除去液。 17. Polycarboxylic acid strength The group power consisting of oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, phosphoric acid, citrate, and tartaric acid. Residue removal solution.
18. 項 1〜17のいずれかに記載の除去液と、表面上にドライエッチング及び Z又は アツシングによる損傷を受けた、 Cu/low-k多層配線構造の銅酸化物を含む銅変質 層を有する除去処理対象物とを接触させることにより、該銅変質層の残渣を除去する 方法。  18. A removal liquid according to any one of items 1 to 17 and a copper alteration layer containing copper oxide of a Cu / low-k multilayer wiring structure that is damaged by dry etching and Z or ashing on the surface. A method of removing the residue of the copper-altered layer by bringing it into contact with an object to be removed.
19. 項 18の方法によって得られた除去処理物。  19. A removal product obtained by the method of Item 18.
発明の効果  The invention's effect
[0017] 本発明の除去液は、シリコン含有膜や Low-k膜に対する除去液のエッチングを抑 制し、ウェハーに形成された銅配線等の銅薄膜、電極、銅層等の表面にできた銅酸 化物、及び/又は、ドライエッチング及び/又はアツシングによる損傷を受けた、銅酸 化物を含む銅変質層を、銅に対して選択的に除去することができる。  [0017] The removal liquid of the present invention suppresses etching of the removal liquid on the silicon-containing film and the low-k film, and is formed on the surface of a copper thin film such as a copper wiring formed on the wafer, an electrode, a copper layer, or the like. The copper oxide and / or the damaged layer containing copper oxide damaged by dry etching and / or ashing can be selectively removed with respect to copper.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 本発明の Cu/low-k多層配線構造の銅酸化物を含む銅変質層の残渣除去液 (以下 、「本発明の除去液」という。)は、銅酸化膜、及び/又は、ドライエッチング及び/又は アツシングによる損傷を受けた、 Cu/low-k多層配線構造の銅酸化物を含む銅変質 層(以下、「銅酸化膜及び/又銅変質層残渣」と略す場合がある)の残渣に対する溶 解性と銅に対する防食効果との組合せを特徴とする。  [0018] The residue removing solution for a copper-altered layer containing a copper oxide having a Cu / low-k multilayer wiring structure of the present invention (hereinafter referred to as "the removing solution of the present invention") is a copper oxide film and / or Copper altered layer containing copper oxide with Cu / low-k multilayer wiring structure damaged by dry etching and / or ashing (hereinafter may be abbreviated as “copper oxide film and / or copper altered layer residue”) It is characterized by a combination of its solubility in copper residues and its anticorrosive effect on copper.
[0019] 本発明の除去液は、導電性金属として、銅 (Cu)を用いて成膜したウェハーにおい て、銅表面上に形成された銅酸ィ匕物を除去するのに適している。  The removal liquid of the present invention is suitable for removing cuprates formed on a copper surface in a wafer formed using copper (Cu) as a conductive metal.
[0020] Cu/low-k多層配線構造の銅酸化物を含む銅変質層の構成成分としては、ドライエ ツチング及び Z又はアツシング時に酸素を含んだプラズマを用いた場合に形成され た銅酸化物、或いはプロセス間の移動などにより大気に曝された場合に、金属が自 然に酸化されてできた自然酸化膜等が挙げられる。例えば、銅酸ィ匕物としては CuO、 Cu 0、 Cu(OH)等が挙げられる。ドライエッチング及び/又はアツシングによる損傷を [0020] As a constituent component of the copper altered layer containing the copper oxide of the Cu / low-k multilayer wiring structure, copper oxide formed when oxygen-containing plasma is used during dry etching and Z or ashing, Another example is a natural oxide film formed by naturally oxidizing a metal when exposed to the atmosphere due to movement between processes. For example, copper oxides include CuO, Cu 0, Cu (OH) and the like. Damage caused by dry etching and / or ashing
2 2 twenty two
受けた、銅酸化物を含む銅変質層とは、ドライエッチング及び/又はアツシングにより 、損傷を受けて酸ィ匕および/またはフッ素化された銅酸ィ匕物とその銅との混合物から なる変質層であり、電気抵抗が増大したものである。この銅変質層は、酸化および/ま たはフッ素化された、銅酸ィ匕物および配線である銅力もなるので、その電気抵抗は銅 酸ィ匕物に近い絶縁層となる。銅酸ィ匕物の厚さも限定されないが、通常、 1〜80A程度 、好ましくは 1〜40 A程度が挙げられる。ドライエッチング及び/又はアツシングによる 損傷を受けた、銅酸ィ匕物を含む銅変質層の厚さもドライエッチングやアツシングによ る条件により変化して限定されない。通常は銅酸ィ匕物ができる限り少なくなるようにプ ロセス上で調整される。銅変質層の厚さは通常、 500A程度以下、好ましくは 1〜300 A程度が挙げられる。 The copper-altered layer containing copper oxide is an alteration made of a mixture of a copper oxide that has been damaged and / or fluorinated by dry etching and / or ashing, and a mixture thereof. Layer, with increased electrical resistance. This altered copper layer also has copper strength, which is oxidized and / or fluorinated copper oxide and wiring, so its electrical resistance is copper It becomes an insulating layer close to an oxide. Although the thickness of the cuprate is not limited, it is usually about 1 to 80A, preferably about 1 to 40A. The thickness of the damaged copper layer containing cuprate oxide damaged by dry etching and / or ashing is not limited and varies depending on the conditions due to dry etching or ashing. Usually, it is adjusted in the process so that the amount of cuprate is reduced as much as possible. The thickness of the deteriorated copper layer is usually about 500 A or less, preferably about 1 to 300 A.
[0021] 本発明の除去液は、モノカルボン酸と水を特定の比率で混合することにより、銅に 対する防食効果を維持したまま、銅酸化膜、及び/又は、ドライエッチング及び/又は アツシングによる損傷を受けた、銅酸化物を含む銅変質層の残渣 (CuO、 Cu 0、 Cu(  [0021] The removal solution of the present invention is obtained by mixing a monocarboxylic acid and water at a specific ratio, thereby maintaining a copper oxide film and / or dry etching and / or ashing while maintaining an anticorrosive effect on copper. Residue of damaged copper layer containing copper oxide (CuO, Cu 0, Cu (
2  2
OH)等の Cu以外の変質した成分)に対する溶解性を向上させることが可能である。  It is possible to improve the solubility in OH) and other modified components other than Cu.
2  2
[0022] さらには、本発明で使用する好ましいモノカルボン酸は水に対して無限に溶解する ため、成分の蒸発や消費されることによって、組成が変化しにくぐたとえ若干変化し たとしても、十分な量のモノカルボン酸を銅酸ィ匕膜及び/又は銅変質層残渣に対して 供給できる。そのため、非常に安定した銅酸化膜及び/又は銅変質層残渣の除去効 果を発現できる。また、モノカルボン酸の分量を増やすことにより、有機成分を含むレ ジスト、反射防止膜、埋め込み材およびドライエッチング残渣などが共存する場合で あっても、これらを同時に除去できる。したがって、このような不要物の有無にかかわ らず、銅酸ィ匕膜及び/又は銅変質層残渣を除去することができる。  [0022] Furthermore, since the preferred monocarboxylic acid used in the present invention is infinitely soluble in water, even if the composition hardly changes due to evaporation or consumption of the components, A sufficient amount of monocarboxylic acid can be supplied to the cuprate film and / or the copper altered layer residue. Therefore, a very stable removal effect of the copper oxide film and / or the altered copper layer residue can be exhibited. Further, by increasing the amount of monocarboxylic acid, even when a resist containing an organic component, an antireflection film, a filling material, and a dry etching residue coexist, these can be removed simultaneously. Therefore, regardless of the presence or absence of such unnecessary materials, the copper oxide film and / or the copper altered layer residue can be removed.
[0023] これに対して、ジカルボン酸やトリカルボン酸などのポリカルボン酸やその塩、モノ カルボン酸塩のみを用いた場合は、銅酸化膜及び/又は銅変質層残渣を溶解させる 効果が小さぐ除去するまでに時間がかかる。さらに、マレイン酸のようなジカルボン 酸などのポリカルボン酸は、モノカルボン酸を添加せず単独で使用すると銅とキレー トを形成し、防食効果よりも銅を溶解させる効果を発現する。ジカルボン酸などのポリ カルボン酸やその塩、モノカルボン酸塩の場合も同様である。例えばこれらのアンモ -ゥム塩を単独で用いた場合も、 NH + NH + H+ の平衡から生じる NHが銅と錯  [0023] On the other hand, when only polycarboxylic acid such as dicarboxylic acid or tricarboxylic acid, its salt, or monocarboxylic acid salt is used, the effect of dissolving the copper oxide film and / or the copper altered layer residue is small. It takes time to remove. Furthermore, polycarboxylic acids such as dicarboxylic acids such as maleic acid form chelate with copper when used alone without the addition of monocarboxylic acid, and exhibit an effect of dissolving copper rather than an anticorrosive effect. The same applies to polycarboxylic acids such as dicarboxylic acids, salts thereof, and monocarboxylates. For example, even when these ammonium salts are used alone, NH resulting from the equilibrium of NH + NH + H + is complexed with copper.
4 3 3 体を形成するため銅を溶解させやすく、銅酸化膜及び/又は銅変質層残渣を除去す るのに時間を要する。さらに、水に対する溶解量も少なぐ蒸発や消費されることによ つて、組成が変化しやすい。組成変化が起こると、安定した銅酸ィ匕膜及び/又は銅変 質層残渣を溶解除去する効果と防食の効果を発揮しにくい問題点がある。また、ジカ ルボン酸などのポリカルボン酸やその塩の溶解量には限りがあるため、有機成分を 含むレジスト、反射防止膜、埋め込み材およびドライエッチング残渣などを十分除去 できず、これらの不要物が存在すると、銅酸化膜及び/又は銅変質層残渣を除去す ることが困難になる。 4 3 3 It is easy to dissolve copper to form the body, and it takes time to remove the copper oxide film and / or the altered copper layer residue. Furthermore, the composition tends to change due to evaporation and consumption with a small amount dissolved in water. When composition changes occur, stable cuprate film and / or copper transformation There is a problem that it is difficult to exhibit the effect of dissolving and removing the layer residue and the anticorrosion effect. In addition, since the amount of polycarboxylic acid such as dicarboxylic acid and its salt is limited, resists containing organic components, antireflection films, filling materials and dry etching residues cannot be removed sufficiently, and these unnecessary substances are removed. In the presence of copper, it becomes difficult to remove the copper oxide film and / or the copper altered layer residue.
[0024] 本発明の除去液に添加する有機溶媒は、銅酸化膜及び/又は銅変質層残渣と有 機成分を含むレジスト、反射防止膜、埋め込み材およびドライエッチング残渣の溶解 性をさらに向上させる。これとともに防食効果を付与して、溶解性と防食のバランスを 調整する効果がある。  [0024] The organic solvent added to the removal liquid of the present invention further improves the solubility of the resist containing a copper oxide film and / or a copper-modified layer residue and an organic component, an antireflection film, a filling material, and a dry etching residue. . Along with this, it has an effect of adjusting the balance between solubility and anticorrosion by providing an anticorrosion effect.
[0025] フッ素化合物は、シリコン含有膜や low-k膜が Siを含有した膜である場合、これらを 含むドライエッチング及び/又はアツシング後の残渣を除去する効果を付加するため に加える場合がある。銅酸化膜及び/又は銅変質層残渣と配線材料の銅とが強固に 密着して!/ヽる場合には、銅を溶解させる物質を若干量の添加剤として加えてもょ ヽ。 この添加剤としては、モノカルボン酸アンモ-ゥム塩などの銅と錯体を形成するイオン や分子を発生させる物質である。さらに、銅の腐食を抑制しにくい場合は、防食剤を 添加してもよい。微細なパターンに対して、十分に薬液を接触させるために、界面活 性剤を添加する場合もある。具体的には、半導体デバイスが製造される方法 (プロセ ス)と使用される材料 (特に層間絶縁膜)により、本発明の薬液の組成が決定される。  [0025] When the silicon-containing film or the low-k film is a film containing Si, the fluorine compound may be added to add an effect of removing residues after dry etching and / or ashing including these. . If the copper oxide film and / or the copper-modified layer residue and the copper of the wiring material are in close contact with each other! / Slurry, a substance that dissolves copper may be added as a small amount of additive. This additive is a substance that generates ions and molecules that form complexes with copper, such as ammonium monocarboxylic acid salts. Furthermore, when it is difficult to suppress copper corrosion, an anticorrosive agent may be added. A surfactant may be added to bring the chemical solution into contact with the fine pattern. Specifically, the composition of the chemical solution of the present invention is determined by a method (process) for manufacturing a semiconductor device and a material (particularly an interlayer insulating film) used.
[0026] 本発明の除去液の主要除去対象物は、(1)銅酸化物及び/又は銅変質層、 (2) Si含 有残渣であり、一般的な非除去対象物としては、 Low-k膜などの ILD (層間絶縁膜)、 シリコン含有膜、およびドライエッチング及び/又はアツシングによりダメージを受けた I LDダメージ層がある。主要対象物に付随する付加的な除去対象物として、 (3)無機 埋め込み材残渣、 (4)レジスト残渣、(5)反射防止膜残渣、(6)有機埋め込み材残渣な どがある。  [0026] The main removal object of the removal liquid of the present invention is (1) copper oxide and / or a copper-modified layer, and (2) Si-containing residue. There are ILDs (interlayer dielectrics) such as k-films, silicon-containing films, and ILD damage layers damaged by dry etching and / or ashing. Additional removal objects attached to the main objects include (3) inorganic embedding material residue, (4) resist residue, (5) anti-reflection film residue, and (6) organic embedding material residue.
[0027] これらの対象物の除去は、水とモノカルボン酸を含む本発明の除去液により行うこと ができる力 該除去液にさらに他の成分をカ卩えてもよい。以下の表 1に特に好ましい 1 つの実施形態を示す。しかし、本発明の除去液の組成はこれらに限定されるもので はない。なお、表 1中「任意」とは、任意の配合量でよいとの意味である。 [0028] [表 1] [0027] The removal of these objects can be performed with the removal liquid of the present invention containing water and a monocarboxylic acid, and other components may be added to the removal liquid. Table 1 below shows one particularly preferred embodiment. However, the composition of the removal liquid of the present invention is not limited to these. In Table 1, “arbitrary” means that any compounding amount may be used. [0028] [Table 1]
Figure imgf000010_0001
Figure imgf000010_0001
[0029] 例えば、 Cu/Low-kデュアルダマシン構造の形成にお!、て、銅の腐食を抑制しなが ら、ドライエッチング及び/又はアツシング後の銅酸ィ匕物及び/又は銅変質層を除去 するためには、モノカルボン酸と水は必須であり、フッ素化合物、有機溶媒を添加す ることにより、除去効果を増大させるなどの調整をすることができる。  [0029] For example, in forming a Cu / Low-k dual damascene structure, while suppressing copper corrosion, a copper oxide layer and / or a copper altered layer after dry etching and / or ashing is used. In order to remove water, monocarboxylic acid and water are essential, and adjustments such as increasing the removal effect can be made by adding a fluorine compound or an organic solvent.
[0030] 除去対象物としてデバイスを構成する膜をドライエッチング及び/又はアツシングす ることにより生じた Siを含む残渣ゃ無機埋め込み材などの付加的な残渣が存在する 場合には、除去液にフッ素化合物を含むことが望ましい。 Si含有残渣を銅酸化物及 び/又は銅変質層と同時に有する対象物の場合、水とモノカルボン酸のみでも同時 除去は可能である力 フッ素化合物をさらに少量 (水とモノカルボン酸力 なる本発 明の除去液 100質量部に対し 0. 01 1質量部程度)配合することで、 Si含有残渣 の除去をより容易に行うことができる。また、無機埋み込み材残渣を銅酸化物及び/ 又は銅変質層と同時に有する対象物の場合、水とモノカルボン酸のみでの同時除去 は困難であり、フッ素化合物をさらに配合することで (水とモノカルボン酸力 なる本 発明の除去液 100質量部に対し 0. 005 5. 5質量部程度)、無機埋み込み材残渣 の除去をより容易に行うことができる。  [0030] If there is an additional residue such as an inorganic filling material or a residue containing Si generated by dry etching and / or ashing a film constituting the device as an object to be removed, the removal liquid contains fluorine. It is desirable to include a compound. In the case of an object having a Si-containing residue at the same time as the copper oxide and / or copper-modified layer, it can be removed simultaneously with water and monocarboxylic acid alone. A smaller amount of fluorine compound (water and monocarboxylic acid power) The Si-containing residue can be removed more easily by compounding with the removal solution of the invention (about 0.01 to 1 part by mass per 100 parts by mass). In addition, in the case of an object having an inorganic embedding material residue at the same time as copper oxide and / or a copper-modified layer, simultaneous removal with only water and monocarboxylic acid is difficult, and by adding a fluorine compound further ( Water and monocarboxylic acid power, which is about 0.005 5.5 parts by mass with respect to 100 parts by mass of the removal solution of the present invention), can remove inorganic embedding material residues more easily.
[0031] シリコン含有膜、 ILD(Low- k膜)、 ILDダメージ層は、フッ素化合物が配合されると除 去或いは損傷を受ける可能性があるので、これらの損傷を抑制する必要がある場合 には、フッ素化合物を含有しないか、或いは少量 (本発明の除去液 100質量部に対 し 0. 1質量部以下)配合するのが好ましい。 [0031] Silicon-containing films, ILD (low-k films), and ILD damage layers are excluded when a fluorine compound is added. If there is a need to suppress these damages, do not contain fluorine compounds or use a small amount (0.1 parts by mass for 100 parts by mass of the removal solution of the present invention). The following) is preferable.
[0032] 有機溶媒は、有機成分を含有して!/ヽる残渣 (レジスト残渣、 BARC残渣、有機埋み 込み材残渣など)の除去効果を高め、フッ素化合物の解離を調整し銅酸化物の除去 効果を増大させ、銅の防食効果を付与することができる。ただし、モノカルボン酸の みでもこのような効果を有しており、有機溶媒はモノカルボン酸の効果を補強するも のである。 [0032] The organic solvent contains an organic component and improves the removal effect of residues (resist residue, BARC residue, organic embedding material residue, etc.), adjusts the dissociation of the fluorine compound, and controls the copper oxide. The removal effect can be increased and the anticorrosion effect of copper can be imparted. However, only monocarboxylic acid has such an effect, and the organic solvent reinforces the effect of monocarboxylic acid.
[0033] モノカルボン酸塩は、除去液に使用可能なモノカルボン酸の塩であることが必要で ある。このモノカルボン酸塩をカ卩えることにより、モノカルボン酸の解離を抑制して、除 去効果を制御する。有機塩基はモノカルボン酸塩が安定に存在しない場合に、除去 液に加えて、モノカルボン酸塩と同様の効果を与える。  [0033] The monocarboxylate needs to be a salt of a monocarboxylic acid that can be used in the removing solution. By covering this monocarboxylate, the dissociation of the monocarboxylic acid is suppressed and the removal effect is controlled. In the case where the monocarboxylate is not stably present, the organic base gives the same effect as the monocarboxylate in addition to the removal solution.
[0034] モノカルボン酸塩としては、モノカルボン酸のアンモ-ゥム塩、モノカルボン酸のヒド ロキシルァミン塩、モノカルボン酸の第一級、第二級、第三級または第三級ァミン塩、 第四級アンモ-ゥム塩が挙げられ、好ましくはアンモ-ゥム塩である。  [0034] The monocarboxylic acid salt includes an ammonium salt of a monocarboxylic acid, a hydroxylamine salt of a monocarboxylic acid, a primary, secondary, tertiary or tertiary ammine salt of a monocarboxylic acid, A quaternary ammonium salt is exemplified, and an ammonium salt is preferable.
[0035] 有機塩基としては、アンモニア、ヒドロキシルァミン、第一級、第二級または第三級 ァミン、 TMAH(Tetramethylammonium hydroxideの略,水酸化テトラメチルアンモ-ゥ ム)などの第四級アンモ-ゥムが挙げられる。  [0035] The organic base includes ammonia, hydroxylamine, primary, secondary or tertiary amine, quaternary ammonia such as TMAH (Tetramethylammonium hydroxide). Um.
[0036] レジスト、反射防止膜および埋め込み材ゃドライエッチング及び/又はアツシングに 伴 、発生する残渣に有機成分が多く含まれて 、る場合、モノカルボン酸または有機 溶媒の量を増やすことにより、これらの残渣を効率的に除去できる。  [0036] When the resist, the antireflection film, and the filling material contain a large amount of organic components in the generated residue due to dry etching and / or ashing, they can be increased by increasing the amount of monocarboxylic acid or organic solvent. Can be removed efficiently.
[0037] また、デバイスの誘電率を下げるため Low-k膜として比誘電率が 2.4近傍あるいはそ れ以下のポーラス low-kあるいはウルトラ low-kと呼ばれる膜が使用される場合がある 。これら膜は薬液によりエッチングされやすい。したがって、このような場合にはフッ化 水素などのフッ素化合物を少量添加するか添加しないのが好ましい。また、ドライエツ チング及び/又はアツシング後に層間絶縁膜にダメージ層が形成されており、これを 取り除かずに残したい場合も、フッ素化合物を少なくする力、添加しないほうが好まし い。 [0038] 本発明の 1つの好ましい実施形態において、非共有電子をもつ酸素及び Z又は非 共有電子をもつ窒素を有する非共有電子をもつ硫黄含有化合物の少なくとも 1種を さらに添加することができる。これらは、銅の腐食を防止するのに有効であり得る。 [0037] In order to lower the dielectric constant of the device, a film called a porous low-k or ultra low-k having a relative dielectric constant of around 2.4 or lower may be used as the low-k film. These films are easily etched by a chemical solution. Therefore, in such a case, it is preferable to add a small amount of fluorine compound such as hydrogen fluoride or not. Also, if a damaged layer is formed in the interlayer insulating film after dry etching and / or ashing, and it is desired to leave it without removing it, it is preferable not to add it with the power to reduce the fluorine compound. [0038] In one preferred embodiment of the present invention, at least one of sulfur-containing compounds having unshared electrons having oxygen having unshared electrons and Z or nitrogen having unshared electrons may be further added. These can be effective in preventing copper corrosion.
[0039] このように本発明の除去液では、有機溶媒の配合量を増カロさせることにより、レジス ト、反射防止膜、埋め込み材およびドライエッチング及び/又はアツシングに伴い発生 する残渣などの有機成分含有残渣をより容易に除去できる、さらに、フッ化水素と水 及び有機溶媒の組合せにより、 OHと結合したシリコン (Si— OH結合)および Zまたは Hと結合したシリコン (Si— H結合)を含む無機埋め込み材および反射防止膜およびド ライエッチング及び/又はアツシングに伴い発生する Si含有残渣などの無機成分含有 残渣もより容易に除去できる。  [0039] As described above, in the removing liquid of the present invention, organic components such as a resist, an antireflection film, a filling material, and a residue generated with dry etching and / or ashing are increased by increasing the amount of the organic solvent. Contained residues can be removed more easily, and by combination of hydrogen fluoride with water and organic solvent, contains silicon bonded to OH (Si—OH bond) and silicon bonded to Z or H (Si—H bond) Residues containing inorganic components such as inorganic filling materials, antireflection films, and Si-containing residues generated by dry etching and / or ashing can be removed more easily.
[0040] したがって、上述の残渣除去の際には、シリコン含有膜や Low-k膜などの層間絶縁 膜やドライエッチング及び/又はアツシングの際に形成されたこれらの膜のダメージ層 に対して除去液によるそのエッチングを最小限に抑えて、レジスト、反射防止膜、埋 め込み材などの有機および無機のドライエッチング残渣、 Si含有残渣などの不要物 が共存しても、これらを同時に除去し、銅酸化物、及び/又は、ドライエッチング及び/ 又はアツシングによる損傷を受けた、銅酸ィ匕物を含む銅変質層の除去を銅に対して より選択的に除去することが可能である。  [0040] Therefore, when removing the above-mentioned residue, the interlayer insulating film such as a silicon-containing film or a low-k film and the damaged layer of these films formed during dry etching and / or ashing are removed. Minimizing the etching by the liquid, even if organic and inorganic dry etching residues such as resists, antireflection films and embedding materials, and unnecessary substances such as Si-containing residues coexist, they are simultaneously removed, It is possible to more selectively remove the copper-altered layer containing copper oxides and damaged by copper oxide and / or dry etching and / or ashing with respect to copper.
[0041] 本発明の除去液は、モノカルボン酸及び水を主成分として含む。モノカルボン酸と しては、水溶性のモノカルボン酸がより好ましい。水溶性であると、本発明の除去液 で処理したあと、純水でリンスすることにより、ウェハーなどの被処理物に残った本発 明の除去液を容易に取り除くことができるためである。好ましい水溶性のモノカルボン 酸としては、ギ酸、酢酸、プロピオン酸、酪酸、イソ酪酸、モノクロ口酢酸、ジクロロ酢 酸、トリクロ口酢酸、モノフルォロ酢酸、ジフルォロ酢酸、トリフルォロ酢酸、 a クロ口 酪酸、 β—クロ口酪酸、 γ—クロ口酪酸、乳酸、グリコール酸、ピルビン酸、ダリオキサ ル酸、アクリル酸、メタクリル酸など、その中でも、ギ酸、酢酸、プロピオン酸、酪酸、ト リフルォロ酢酸がさらに好ましぐ酢酸が最も好ましい。 [0041] The removal liquid of the present invention contains a monocarboxylic acid and water as main components. As the monocarboxylic acid, a water-soluble monocarboxylic acid is more preferable. This is because if it is water-soluble, the removal solution of the present invention remaining on the object to be treated such as a wafer can be easily removed by rinsing with pure water after treatment with the removal solution of the present invention. Preferred water-soluble monocarboxylic acids include formic acid, acetic acid, propionic acid, butyric acid, isobutyric acid, monochrome oral acetic acid, dichloroacetic acid, trichlorodiacetic acid, monofluoroacetic acid, difluoroacetic acid, trifluoroacetic acid, a-cyclobutyric acid, β— Acetic acid, such as formic acid, acetic acid, propionic acid, butyric acid, and trifluoroacetic acid, among which acetic butyric acid, γ-clobutyric acid, lactic acid, glycolic acid, pyruvic acid, dalyoxalic acid, acrylic acid, methacrylic acid, etc. Is most preferred.
[0042] モノカルボン酸は、水とモノカルボン酸からなる本発明の除去液において、 O.lmass %- 80mass%であり、好ましくは、 1- 80mass%、より好ましくは 2.5- 60mass%である。水は残 量である。水とカルボン酸が上記の範囲内にあると、 Cu/low-k多層配線構造の銅酸 化物を含む銅変質層の残渣を速やかに除去することができるが、上記の範囲外にな ると、該残渣の除去速度が急速に遅くなる。モノカルボン酸の量が多すぎても少なす ぎても除去速度が低下する。 [0042] The monocarboxylic acid is O.lmass% -80 mass%, preferably 1-80 mass%, more preferably 2.5-60 mass%, in the removing solution of the present invention comprising water and monocarboxylic acid. Water remains Amount. If the water and carboxylic acid are within the above range, the residue of the copper-modified layer containing the copper oxide of the Cu / low-k multilayer wiring structure can be removed quickly, but if it is outside the above range, The removal rate of the residue is rapidly reduced. The removal rate decreases if the amount of monocarboxylic acid is too much or too little.
[0043] 水としては純水を使用するのが好ましい。 [0043] Pure water is preferably used as the water.
[0044] また、フッ素化合物、有機溶媒、モノカルボン酸塩および有機塩基を単独で、ある いはこれらを 2種以上混合して用いることもできる。  [0044] In addition, a fluorine compound, an organic solvent, a monocarboxylate and an organic base may be used alone or in combination of two or more thereof.
[0045] フッ素化合物としては、フッ化アンモ-ゥム、フッ化水素、一水素二フッ化アンモ- ゥムが好ましい。本発明の 1つの実施形態ではフッ化アンモニゥム水溶液、希フッ酸( 50mass%水溶液)を用いることができる。フッ素化合物の濃度は、シリコン含有膜、 Low -k膜などの層間絶縁膜およびドライエッチング及び/又はアツシングによりダメージ を受けた層間絶縁膜の種類と量により異なる。フッ素化合物の好ましい配合量は、水 とモノカルボン酸力もなる本発明の除去液 100質量部に対し 0.005質量部〜 5.5質量 部であり、より好ましくは 0.01〜3質量部である。フッ化アンモ-ゥムを添加する場合に は、 pHが 7以下で、できるだけ酸性域である場合が好ましい。酸性度が弱くなると、 N H + NH + H+〖こより NHが増加して、銅と錯体を作り、銅を腐食しやすくなるからで [0045] As the fluorine compound, ammonium fluoride, hydrogen fluoride, and ammonium monohydrogen difluoride are preferable. In one embodiment of the present invention, an aqueous ammonium fluoride solution and dilute hydrofluoric acid (50 mass% aqueous solution) can be used. The concentration of the fluorine compound varies depending on the type and amount of interlayer insulating films such as silicon-containing films and low-k films, and interlayer insulating films damaged by dry etching and / or ashing. The preferred compounding amount of the fluorine compound is 0.005 to 5.5 parts by mass, more preferably 0.01 to 3 parts by mass with respect to 100 parts by mass of the removal liquid of the present invention which also has water and monocarboxylic acid power. In the case of adding ammonium fluoride, it is preferable that the pH is 7 or less and it is as acidic as possible. When acidity becomes weaker, NH increases than NH + NH + H + coconut, and it becomes easier to corrode copper by forming a complex with copper.
4 3 3 4 3 3
ある。  is there.
[0046] 本発明の有機溶媒は、モノカルボン酸水溶液に溶解可能な有機溶媒であるのが好 ましい。モノカルボン酸水溶液に溶解可能な有機溶媒としては、エーテル、エステル 、アルコール、アミド、スルホキシドなどが挙げられる。  [0046] The organic solvent of the present invention is preferably an organic solvent that can be dissolved in an aqueous monocarboxylic acid solution. Examples of the organic solvent that can be dissolved in the monocarboxylic acid aqueous solution include ethers, esters, alcohols, amides, and sulfoxides.
[0047] アルコールとしては、メタノール、エタノール、イソプロピルアルコール、 t-ブタノール 、フッ素含有アルコール等が挙げられる。  [0047] Examples of the alcohol include methanol, ethanol, isopropyl alcohol, t-butanol, and fluorine-containing alcohol.
[0048] エーテルとしては、エチレングリコールモノェチルエーテル、ジエチレングリコール モノメチノレエーテル、トリエチレングリコーノレモノメチノレエーテル、ジエチレングリコー ルモノブチルエーテル、トリエチレングリコーノレモノブチノレエーテノレ、ジエチレングリコ ールモノイソブチルエーテル、トリプロピレングリコールモノメチルエーテル、ジェチレ ングリコールモノべンジルエーテルなどのアルキレングリコールモノアルキルまたはァ ラルキルエーテル;ジォキサン、トリオキサン、ジグライム、 1,2-ジメトキシェタン、テトラ ヒドロフラン、ジェチルエーテル、ジメトキシメタン、ジメトキシプロノ ン、ジエトキシメタ ン、 1,1-ジメトキシェタン、エチレングリコーノレメチノレエチノレエーテノレ、エチレングリコ ーノレジェチノレエーテノレ、ジエチレングリコーノレジメチノレエーテノレ、ジエチレングリコー ルメチルェチルエーテル、ジエチレングリコールジェチルエーテル、トリエチレングリ コーノレジメチノレエーテノレ、トリエチレングリコーノレェチノレメチノレエーテノレ、トリエチレン グリコールジェチルエーテル、テトラエチレングリコールジメチルエーテル、テトラエチ レングリコーノレジェチノレエーテノレ、ポリエチレングリコーノレジメチノレエーテノレ、ェチレ ングリコーノレモノメチノレエーテノレアセテート、エチレングリコーノレモノェチノレエーテノレ アセテート、ジエチレングリコールモノメチルエーテルアセテート及びジエチレングリコ ールモノェチルエーテルアセテート等が挙げられる。 [0048] Examples of ethers include ethylene glycol monoethyl ether, diethylene glycol monomethylol ether, triethylene glycol monomono methyl ether, diethylene glycol monobutyl ether, triethylene glycol monobutinore etherol, diethylene glycol monoisobutyl ether, Alkylene glycol monoalkyl or aralkyl ethers such as tripropylene glycol monomethyl ether and diethylene glycol monobenzyl ether; dioxane, trioxane, diglyme, 1,2-dimethoxyethane, tetra Hydrofuran, jetyl ether, dimethoxymethane, dimethoxypronone, diethoxymethane, 1,1-dimethoxyethane, ethyleneglycololemethinoreethinoatenore, ethyleneglycololegetinoreethenore, diethyleneglycolenoresinetinoreno Tenole, diethylene glycol methyl ethyl ether, diethylene glycol jetyl ether, triethylene glycol resin methinore ethenore, triethylene glycol eno retino methino ree tenole, triethylene glycol cetyl ether, tetraethylene glycol dimethyl ether, tetraethyl Lenglycolole chinenoreethenole, polyethyleneglycolenoresin methinoreatenore, ethylene gluconolemonomethinoreteate acetate, ethylene glycol Examples thereof include ricono-remonoethylenoleethenole acetate, diethylene glycol monomethyl ether acetate, and diethylene glycol monoethyl ether acetate.
[0049] エステルとしては、酢酸メチル、酢酸ェチル、酢酸ブチルなどのモノカルボン酸アル キルエステル、炭酸プロピレン、炭酸エチレン、ジェチルカーボネート、ジメチルカ一 ボネート、ェチルメチルカーボネートなどのカーボネート類、亜硫酸エチレン、 γ—ブ チロラタトン、リン酸トリプチル、リン酸トリメチル等が挙げられる。  [0049] Examples of esters include monocarboxylic acid alkyl esters such as methyl acetate, ethyl acetate, and butyl acetate, carbonates such as propylene carbonate, ethylene carbonate, jetyl carbonate, dimethyl carbonate, and ethyl methyl carbonate, ethylene sulfite, Examples thereof include γ-butyrolatatone, tryptyl phosphate, and trimethyl phosphate.
[0050] アミドとしては、ジメチルホルムアミド(DMF)、ジメチルァセトアミド、へキサメチルリ ン酸トリアミド、 Ν-メチル -2-ピロリドン、 1,1, 3,3-テトラメチル尿素、 Ν-メチルプロピオ ンアミド及びジメチルイミダゾリジノンなどが挙げられる。  [0050] Examples of amides include dimethylformamide (DMF), dimethylacetamide, hexamethylphosphoric triamide, Ν-methyl-2-pyrrolidone, 1,1,3,3-tetramethylurea, Ν-methylpropionamide and dimethyl. Examples include imidazolidinone.
[0051] スルホキシドとしては、ジメチルスルホキシド(DMSO)が例示される。  [0051] Examples of the sulfoxide include dimethyl sulfoxide (DMSO).
[0052] さらに、本発明の有機溶媒としてスルホラン、ジメチルチオホルムアミド及び Ν-メチ ルチオピロリドン、メタンスルホン酸などの硫黄ィ匕合物などが好ましく使用できる。  [0052] Further, as the organic solvent of the present invention, sulfur compounds such as sulfolane, dimethylthioformamide, メ -methylthiopyrrolidone, and methanesulfonic acid can be preferably used.
[0053] その中でも、モノカルボン酸水溶液に溶解性の有機溶媒である、酢酸メチル、酢酸 ェチル、酢酸ブチル、炭酸プロピレン、炭酸エチレン、ジェチルカーボネート、ジメチ ルカーボネート、ェチルメチルカーボネート、亜硫酸エチレン、 γ —ブチロラタトン、リ ン酸トリブチル及びリン酸トリメチルなどのエステル、ジォキサン、トリオキサン、 1,1-ジ メトキシェタン、 1,2-ジメトキシェタン、テトラヒドロフラン、ジメトキシメタン、ジメトキシプ 口パン、ジエトキシメタン、ジグライム、ジエチレングリコールジェチルエーテル、トリエ チレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル及び ポリエチレングリコールジメチルエーテルなどのエーテル、アセトン、ジメチルホルム アミド、ジメチルァセトアミド、ジメチルスルホキシド、メタンスルホン酸及び無水酢酸が さらに好ましい。 [0053] Among them, organic solvents that are soluble in an aqueous monocarboxylic acid solution are methyl acetate, ethyl acetate, butyl acetate, propylene carbonate, ethylene carbonate, jetyl carbonate, dimethyl carbonate, ethyl methyl carbonate, ethylene sulfite, γ-butyrolatatane, esters such as tributyl phosphate and trimethyl phosphate, dioxane, trioxane, 1,1-dimethoxyethane, 1,2-dimethoxyethane, tetrahydrofuran, dimethoxymethane, dimethoxypropane, diethoxymethane, diglyme, Ethers such as diethylene glycol jetyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether and polyethylene glycol dimethyl ether, acetone, dimethylform Amides, dimethylacetamide, dimethyl sulfoxide, methanesulfonic acid and acetic anhydride are more preferred.
[0054] さらに、酢酸メチル、酢酸ェチル、炭酸プロピレン、炭酸エチレン、ジェチルカーボ ネート、ジメチルカーボネート、ェチルメチルカーボネート、ジォキサン、 1,2-ジメトキ シェタン、ジグライム、ジエチレングリコールジェチルエーテル、トリエチレングリコー ルジメチルエーテル、テトラエチレングリコールジメチルエーテル、アセトン、ジメチル ホルムアミド、ジメチルァセトアミド、ジメチルスルホキシド、メタンスルホン酸および無 水酢酸がさらに 、つそう好まし 、。これらの中で炭酸プロピレンが最も好まし 、。  [0054] Further, methyl acetate, ethyl acetate, propylene carbonate, ethylene carbonate, jetyl carbonate, dimethyl carbonate, ethyl methyl carbonate, dioxane, 1,2-dimethychetan, diglyme, diethylene glycol jetyl ether, triethylene glycol dimethyl ether, Tetraethylene glycol dimethyl ether, acetone, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, methanesulfonic acid and anhydrous acetic acid are more preferred. Of these, propylene carbonate is the most preferred.
[0055] さらに、本発明の除去液を使用する環境において引火する恐れのある場合は、ジ エチレングリコーノレモノメチノレエーテル、トリエチレングリコーノレモノメチノレエーテル、 ポリエチレングリコーノレモノメチノレエーテル、ジエチレングリコーノレモノブチノレエーテ ル、トリエチレングリコールモノブチルエーテル、ジエチレングリコールモノイソブチル エーテル、トリプロピレングリコーノレモノメチノレエーテル、ジエチレングリコーノレモノへ キシルエーテル、ジエチレングリコールモノべンジルエーテル、ジエチレングリコール ジェチノレエーテノレ、トリエチレングリコールジメチルエーテル、テトラエチレングリコー ルジメチルエーテル及びポリエチレングリコールジメチルエーテルなどの高引火点の 有機溶媒を使用することが望ましい。  [0055] Further, in the case where there is a possibility of igniting in the environment where the removing liquid of the present invention is used, diethylene glycol-monomonomethylol ether, triethyleneglycol-monomonomethylol ether, polyethylene-glycol-monomonomethylol ether, diethylene Glycolol monobutinoyl ether, triethylene glycol monobutyl ether, diethylene glycol monoisobutyl ether, tripropylene glycol monomono methino ether, diethylene glycol monohexyl ether, diethylene glycol monobenzil ether, diethylene glycol High flash point organic solvents such as ethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether and polyethylene glycol dimethyl ether It is desirable to use.
[0056] いずれも半導体や液晶のプロセスにおいて、金属等の汚染を引き起こさない純度 であることが重要である。  [0056] In any of the processes of semiconductors and liquid crystals, it is important that the purity is such that it does not cause contamination of metals or the like.
[0057] 非共有電子をもつ酸素及び Z又は非共有電子をもつ窒素を有する非共有電子を もつ硫黄含有化合物としては、スルフイド類、メルカブタン類、チォカルボン酸類、チ オアセトアミド類、チォゥレア類、チアジアゾール類、テトラゾール類、トリアジン類、チ ァゾール類、チォフェン類、ピリミジン類、プリン類、チアゾリン類およびチアゾリジン 類力 なる群力も選ばれる少なくとも 1種を例示でき、具体的には以下の化合物を好 ましく ί列示でさる。  [0057] Sulfur-containing compounds having oxygen and Z having unshared electrons and nitrogen having unshared electrons and having unshared electrons include sulfids, mercabtans, thiocarboxylic acids, thioacetamides, thioureas, and thiadiazoles. , Tetrazoles, triazines, thiazoles, thiophenes, pyrimidines, purines, thiazolines, and thiazolidines can also be exemplified, and the following compounds are preferred. In the column.
[0058] スルフイド類としては、チォジグリコール、 2, 2' -チォ二酢酸、 3, 3' -ジチォジプ ロピオン酸が挙げられる;  [0058] Examples of sulfides include thiodiglycol, 2,2'-thiodiacetic acid, and 3,3'-dithiodipropionic acid;
メルカプタン類としては、メルカプト酢酸、チォリンゴ酸、チォ乳酸、 3—メルカプトプ ロピオン酸、アミノチォフエノール、 2-メルカプトエタノール、 3-メルカプト- 1, 2-プロ パンジオールが挙げられる; Mercaptans include mercaptoacetic acid, thiomalic acid, thiolactic acid, 3-mercapto Examples include lopionic acid, aminothiophenol, 2-mercaptoethanol, 3-mercapto-1,2-propandiol;
チォカルボン酸類としては、チオール酢酸、 3 ァセチルチオ 2 メチルプロパン 酸が挙げられる;  Thiocarboxylic acids include thiol acetic acid, 3-acetylethyl 2-methylpropanoic acid;
チオアセトアミド類としては、チオアセトアミドが挙げられる;  Thioacetamides include thioacetamide;
チォゥレア類としては、チォ尿素、チォカルボヒドラジド、グァ-ルチオゥレア、ェチ レンチォ尿素、マロ-ルチオ尿素が挙げられる;  Thioureas include thiourea, thiocarbohydrazide, guarthiourea, ethilentiourea, malolthiourea;
チアジアゾール類としては、 2,5-ジメルカプト- 1,3,4-チアジアゾール、 2-チォ酢酸- 5-メルカプト- 1,3,4-チアジアゾール、 2,5-ジチォ酢酸- 1,3,4-チアジアゾールが挙げ られる;  The thiadiazoles include 2,5-dimercapto-1,3,4-thiadiazole, 2-thioacetic acid-5-mercapto-1,3,4-thiadiazole, 2,5-dithioacetic acid-1,3,4-thiadiazole Can be mentioned;
テトラゾール類としては、 1-メチル -5-メルカプト- 1H-テトラゾールが挙げられる; トリアジン類としては、 2, 4, 6 トリメルカプト一 S トリァジンが挙げられる; チアゾール類としては、 4 チアゾールカルボン酸、 2-ァミノチアゾールが挙げられ る;  Examples of tetrazoles include 1-methyl-5-mercapto-1H-tetrazole; examples of triazines include 2, 4, 6 trimercapto 1 S-triazine; examples of thiazoles include 4 thiazole carboxylic acid, 2 -Aminothiazole;
チアゾリジン類としては、 2,4-チアゾリジンジオン、 2-チォ- 4-チアゾリドン、 2-ィミノ- Thiazolidines include 2,4-thiazolidinedione, 2-thio-4-thiazolidone, 2-imino-
4-チアゾリジノンが挙げられる。 4-thiazolidinone is mentioned.
[0059] チォフェン類は、 2,5-チォフェンジカルボン酸、 3-チォフェンマロン酸、 2-チォフエ ンカルボン酸が挙げられる。 [0059] Examples of thiophenes include 2,5-thiophenedicarboxylic acid, 3-thiophenmalonic acid, and 2-thiophenecarboxylic acid.
[0060] ピリミジン類は、 2 チォバルビツル酸、 2 チオシトシン、チォゥラシル、 4 ァミノ[0060] Pyrimidines include 2 thiobarbituric acid, 2 thiocytosine, thiouracil, and 4 amino.
—6 ヒドロキシ一 2—メルカプトピリミジンが挙げられる。 —6 Hydroxy-2-mercaptopyrimidine.
[0061] プリン類は、 2,5-ジチォプリン、 6-メルカプトプリンが挙げられる。 [0061] Examples of the purines include 2,5-dithiopurine and 6-mercaptopurine.
[0062] チアゾリン類は、 2 アミノー 2 チアゾリン、 2 チアゾリンー2 チオールが挙げら れる。 [0062] Examples of thiazolines include 2 amino-2 thiazoline and 2 thiazoline-2 thiol.
[0063] 本明細書において、層間絶縁膜とは、 Low-k膜のことであり、例えばフッ素を含んだ シリコン酸ィ匕膜 (FSG膜)も包含され、比誘電率が、 1より大きぐ 4以下程度、好ましく は 3以下程度、より好ましくは 2. 8以下程度、さらに好ましくは 2. 6以下程度の絶縁 膜を意味する。 Low-k膜としては、例えば、 Black Diamond (商品名、アプライドマテリ アルズ社製)、コーラル (商品名、 Novellus社製)、 LKDシリーズ (商品名、 JSR社製)、 オーロラ (商品名、 ASM社製)、 HSGシリーズ (商品名、 日立化成社製)、 Nanoglass ( 商品名、 Honeywell社製)、 IPS (商品名、触媒化成社製)、 Z M (商品名、 Dow Corning [0063] In this specification, the interlayer insulating film is a low-k film, and includes, for example, a silicon oxide film (FSG film) containing fluorine, and the relative dielectric constant is larger than 1. It means an insulating film of about 4 or less, preferably about 3 or less, more preferably about 2.8 or less, and even more preferably about 2.6 or less. Examples of low-k films include Black Diamond (trade name, manufactured by Applied Materials), Coral (trade name, manufactured by Novellus), LKD series (trade name, manufactured by JSR), Aurora (trade name, manufactured by ASM), HSG series (trade name, manufactured by Hitachi Chemical), Nanoglass (trade name, manufactured by Honeywell), IPS (trade name, manufactured by Catalytic Chemical), ZM (trade name, Dow Corning)
3  Three
社製)、 XLK (商品名、 Dow Corning社製)、 FOx (商品名、 Dow Corning社製)、 Orion (商品名 Tricon社製)、 NCS (商品名、触媒化成社製)、 SiLK (商品名、 Dow Corning社 製)などが挙げられる。  ), XLK (trade name, manufactured by Dow Corning), FOx (trade name, manufactured by Dow Corning), Orion (trade name, manufactured by Tricon), NCS (trade name, manufactured by Catalyst Kasei), SiLK (trade name) , Manufactured by Dow Corning).
[0064] Low-k膜の組成としては例えば OHと結合したシリコン (Si—OH結合)および Zまた は Hと結合したシリコン (Si— H結合)を含む低誘電率膜 (Low-k膜、 SiOC, SiOC:Hなど の組成を示した形で表現されることもある)などのシリコン (Si)含有ィ匕合物などが挙げら れる。ポリアリルエーテルなどを主成分とするものであってもよ 、。  [0064] The composition of the low-k film is, for example, a low dielectric constant film (Low-k film, including silicon bonded to OH (Si—OH bond) and silicon bonded to Z or H (Si—H bond)). And a silicon (Si) -containing compound such as SiOC, SiOC: H, etc. It may be composed mainly of polyallyl ether.
[0065] Low-k膜は主に塗布と有機プラズマ CVDにより生成される。塗布の場合は原料固 有の膜の名称がつけられ、有機プラズマ CVDの場合は原料と装置により固有の膜の 名称がつけられる。  [0065] The low-k film is mainly generated by coating and organic plasma CVD. In the case of coating, the name of the film specific to the raw material is given, and in the case of organic plasma CVD, the name of the specific film is given depending on the raw material and equipment.
[0066] シリコン含有膜とは、シリコンウェハーを酸ィ匕して形成したテトラエトキシシラン [TEO S : Si(OC H ) ]を用いて形成した TEOSシリコン酸ィ匕膜、高密度プラズマ (High Density [0066] The silicon-containing film is a TEOS silicon oxide film formed by using tetraethoxysilane [TEO S: Si (OC H)] formed by oxidizing a silicon wafer, high density plasma (High Density
2 5 4 2 5 4
Plasma)で形成された HDPシリコン酸化膜、主にシラノール [(OR) R Si(OH) ]を溶 m n 4-m-n 剤に溶かし、ウェハー上にスピン塗布して熱硬化させて形成した SOG(Spin on Glass) とよばれるシリコン酸ィ匕膜、シリコン窒化物 (SiN)、炭化シリコン (SiC)、 SiCNなどが挙げ られる。これらは絶縁膜バリアなどで使用される場合がある。絶縁膜バリアとは、層間 絶縁膜と層間絶縁膜の界面や銅と層間絶縁膜の界面などに形成される膜を示す。  HDP silicon oxide film formed by Plasma), mainly silanol [(OR) R Si (OH)] dissolved in mn 4-mn agent, spin-coated on the wafer and thermally cured to form SOG (Spin on glass), silicon oxide film, silicon nitride (SiN), silicon carbide (SiC), SiCN, etc. These may be used in an insulating film barrier or the like. An insulating film barrier refers to a film formed at an interface between an interlayer insulating film and an interlayer insulating film, an interface between copper and an interlayer insulating film, or the like.
[0067] レジストとしては、 KrF (クリプトンエフ)、 ArF、 Fレジスト等が挙げられる力 これに限 [0067] The resist includes KrF (Krypton F), ArF, F resist, etc.
2  2
定されるものではない。  It is not specified.
[0068] 反射防止膜および埋め込み材は、有機物を主成分とするものとシリコンなどの無機 物を含むものなどがある。シリコンなどの無機物を含む反射防止膜および埋め込み 材とはシリコン、 Sト OH結合および/又は SH" [結合などを含むものを示し、プラズマァ ッシングによりダメージを受けたものもこれに該当する。 Si-H結合を含む反射防止膜 および埋め込み材とは、 Si-CH結合がない或いは少なぐ Si-H結合が多い膜であり  [0068] The antireflection film and the embedding material include those containing an organic substance as a main component and those containing an inorganic substance such as silicon. Antireflective coatings and fillers containing inorganic substances such as silicon indicate silicon, S-to-OH bonds and / or SH "[bonds, etc., and those damaged by plasma-ashing also fall under this category. Antireflective coatings and implants containing H bonds are films with little or few Si-H bonds and many Si-H bonds.
3  Three
、 FT- IR測定データとして有意な Si-H吸収スペクトル (2200〜2300cm— を有する SiOx CyHzで示される膜であり、一般に HSQ(Hydrogen Silsesquioxane)と呼ばれているもの も含む。 Si-OH結合を含む膜、 Si-H結合を含む膜、特に Si-CH結合がない或いは少 , Si-H absorption spectrum (2200-2300cm-) with significant Si-H absorption data as FT-IR measurement data, generally called HSQ (Hydrogen Silsesquioxane) Including. Films containing Si-OH bonds, films containing Si-H bonds, especially those with little or no Si-CH bonds
3  Three
なぐ Si-H結合及び/又は Si-OH結合が多い膜ほど本発明の除去液により有効に除 去できる。本発明では、これらを効果的に除去することができる。反射防止膜および 埋め込み材が有機物を主成分とするものの場合であっても、メタンスルホン酸のよう なァクセプター数が高 、溶媒を用いると除去可能である。  The film having more Si—H bonds and / or Si—OH bonds can be effectively removed by the removing solution of the present invention. In the present invention, these can be effectively removed. Even when the antireflection film and the embedding material are mainly composed of an organic substance, the number of acceptors such as methanesulfonic acid is high and can be removed by using a solvent.
[0069] ドライエッチングプロセスに伴い発生するエッチング残渣には、絶縁膜バリアなどで 使用されるシリコン窒化物を含む場合がある。ドライエッチングおよび/またはアツシン 、て、窒素原子を含有するガスや窒素および窒素を添加した混合ガスを用い ると、窒素と結合したシリコン (Si-N)を含む不揮発性のシリコン窒化物を生じる。この 様なエッチング残渣も本発明の除去液で除去しやすい。 [0069] The etching residue generated in the dry etching process may include silicon nitride used for an insulating film barrier or the like. When a gas containing nitrogen atoms or a mixed gas containing nitrogen and nitrogen is used by dry etching and / or atsin, nonvolatile silicon nitride containing silicon (Si—N) bonded to nitrogen is generated. Such etching residues are also easily removed by the removing liquid of the present invention.
(0除去対象物が銅酸化膜、及び/又は、ドライエッチング及び/又はアツシングによる 損傷を受けた、銅酸化物を含む銅変質層が大半を占める場合、本発明における好ま しい除去液としては、以下のものが例示できる。  (0 When the object to be removed is mostly a copper oxide film and / or a copper-modified layer containing copper oxide damaged by dry etching and / or ashing, the preferred removal solution in the present invention is The following can be illustrated.
モノカルボン酸:水 = 0.1〜80mass%: 99.9〜20mass%であって、必要に応じて配合可 能な成分であるフッ素化合物、有機溶媒、モノカルボン酸塩または有機塩基は、モノ カルボン酸と水の合計量を 100質量部として、各々 0〜1質量部(フッ素化合物);0〜 25質量部 (有機溶媒); 0〜25質量部 (モノカルボン酸塩または有機塩基)使用できる  Monocarboxylic acid: water = 0.1 to 80 mass%: 99.9 to 20 mass%, and the fluorine compound, organic solvent, monocarboxylate or organic base, which can be blended as necessary, is composed of monocarboxylic acid and water. 0 to 1 part by mass (fluorine compound); 0 to 25 parts by mass (organic solvent); 0 to 25 parts by mass (monocarboxylate or organic base) can be used.
[0070] 好ま 、除去液の具体例を以下に示す (ただし、モノカルボン酸と水の合計量は 10 0質量部である): [0070] Preferable examples of the removing liquid are shown below (however, the total amount of monocarboxylic acid and water is 100 parts by mass):
•酢酸及び Z又はトリフルォロ酢酸:水 = 0.1〜80質量部: 99.9〜20質量部; • Acetic acid and Z or trifluoroacetic acid: water = 0.1-80 parts by mass: 99.9-20 parts by mass;
•酢酸:水:酢酸アンモニゥム = 0.1〜80質量部: 99.9〜20質量部: 1〜25質量部;• Acetic acid: Water: Ammonium acetate = 0.1-80 parts by mass: 99.9-20 parts by mass: 1-25 parts by mass;
•酢酸及び Z又はトリフルォロ酢酸:水:テトラメチルヒドロキシアンモ -ゥム Acetic acid and Z or trifluoroacetic acid: water: tetramethylhydroxyammonium
=0.1〜80質量部: 99.9〜20質量部: 1〜25質量部;  = 0.1-80 parts by mass: 99.9-20 parts by mass: 1-25 parts by mass;
•酢酸及び Z又はトリフルォロ酢酸:水:炭酸プロピレン  • Acetic acid and Z or trifluoroacetic acid: water: propylene carbonate
=0.1〜80質量部: 99.9〜20質量部: 1〜25質量部;  = 0.1-80 parts by mass: 99.9-20 parts by mass: 1-25 parts by mass;
•酢酸及び Z又はトリフルォロ酢酸:水:ジメチルホルムアミド  Acetic acid and Z or trifluoroacetic acid: water: dimethylformamide
=0.1〜80質量部: 99.9〜20質量部: 1〜25質量部; などが挙げられる。 = 0.1-80 parts by mass: 99.9-20 parts by mass: 1-25 parts by mass; Etc.
GO除去対象物が銅酸化膜、及び/又は、ドライエッチング及び/又はアツシングによ る損傷を受けた、銅酸化物を含む銅変質層と Si含有残渣を含む場合、本発明におけ る好まし 、除去液としては、以下のものが例示できる。  When the GO removal target contains a copper oxide film and / or a copper-modified layer containing copper oxide and a Si-containing residue damaged by dry etching and / or ashing, it is preferable in the present invention. Examples of the removal liquid include the following.
モノカルボン酸:水 = 2〜75mass% : 98〜25mass%でぁって、フッ素化合物、有機溶 媒、モノカルボン酸塩または有機塩基は、モノカルボン酸と水の合計量を 100質量部 として、各々 0.005〜5.5質量部(フッ素化合物);0〜25質量部(有機溶媒);0〜25質 量部(モノカルボン酸塩または有機塩基)使用できる。 Monocarboxylic acid: water = 2 to 75 mass%: 98 to 25 mass%, and the fluorine compound, organic solvent, monocarboxylate or organic base is 100 parts by mass of the total amount of monocarboxylic acid and water. 0.005 to 5.5 parts by mass (fluorine compound); 0 to 25 parts by mass (organic solvent); 0 to 25 parts by mass (monocarboxylate or organic base) can be used.
好ま 、除去液の具体例を以下に示す (ただし、モノカルボン酸と水の合計量は 10 0質量部である):  Preferably, specific examples of the removal liquid are shown below (however, the total amount of monocarboxylic acid and water is 100 parts by mass):
•フッ化水素及び Z又はフッ化アンモニゥム:酢酸及び Z又はトリフルォロ酢酸:水 • Hydrogen fluoride and Z or ammonium fluoride: acetic acid and Z or trifluoroacetic acid: water
=0.005〜5.5質量部: 2〜75質量部: 98〜25質量部; = 0.005-5.5 parts by mass: 2-75 parts by mass: 98-25 parts by mass;
•フッ化水素及び Z又はフッ化アンモ-ゥム:酢酸:水:酢酸アンモ-ゥム  • Hydrogen fluoride and Z or ammonium fluoride: acetic acid: water: ammonium acetate
=0.005〜5.5質量部: 2〜75質量部: 98〜25質量部: 1〜25質量部;  = 0.005-5.5 parts by mass: 2-75 parts by mass: 98-25 parts by mass: 1-25 parts by mass;
•フッ化水素及び Z又はフッ化アンモニゥム:酢酸及び Z又はトリフルォロ酢酸:水: テトラメチルヒドロキシアンモ -ゥム  • Hydrogen fluoride and Z or ammonium fluoride: acetic acid and Z or trifluoroacetic acid: water: tetramethylhydroxyammonium
=0.005〜5.5質量部: 2〜30質量部: 98〜70mass%: 1〜25質量部;  = 0.005 to 5.5 parts by mass: 2 to 30 parts by mass: 98 to 70 mass%: 1 to 25 parts by mass;
•フッ化水素及び Z又はフッ化アンモニゥム:酢酸及び Z又はトリフルォロ酢酸:水: 炭酸プロピレン=0.005〜5.5質量部:2〜7(^&33% : 98〜3(^&33% : 1〜25質量部; • Hydrogen fluoride and Z or ammonium fluoride: Acetic acid and Z or trifluoroacetic acid: Water: Propylene carbonate = 0.005-5.5 parts by mass: 2-7 (^ & 33%: 98-3 (^ & 33%: 1-25 parts by mass) ;
•フッ化水素及び Z又はフッ化アンモニゥム:酢酸及び Z又はトリフルォロ酢酸:水: ジメチルホルムアミド =0.005〜5.5質量部: 2〜75質量部: 98〜25質量部: 1〜25質量 部; • Hydrogen fluoride and Z or ammonium fluoride: acetic acid and Z or trifluoroacetic acid: water: dimethylformamide = 0.005 to 5.5 parts by mass: 2 to 75 parts by mass: 98 to 25 parts by mass: 1 to 25 parts by mass;
などが挙げられる。 Etc.
(iii)除去対象物が銅酸化膜、及び/又は、ドライエッチング及び/又はアツシングによ る損傷を受けた、銅酸化物を含む銅変質層であり、層間絶縁膜にダメージ層が存在 する場合、本発明における好ましい除去液としては、以下のものが例示できる。  (iii) When the object to be removed is a copper oxide film and / or a copper altered layer containing copper oxide damaged by dry etching and / or ashing, and a damage layer exists in the interlayer insulating film Examples of preferable removal liquid in the present invention include the following.
モノカルボン酸:水 = 2〜75mass%: 98〜25mass% (好ましくは 2〜50mass%: 98〜50 mass%)であって、フッ素化合物、有機溶媒、モノカルボン酸塩または有機塩基は、モ ノカルボン酸と水の合計量を 100質量部として、各々 0〜0.1質量部(フッ素化合物); 0〜25質量部(有機溶媒);0〜25質量部(モノカルボン酸塩または有機塩基)使用で きる。 Monocarboxylic acid: water = 2 to 75 mass%: 98 to 25 mass% (preferably 2 to 50 mass%: 98 to 50 mass%), and the fluorine compound, organic solvent, monocarboxylate or organic base is When the total amount of nocarboxylic acid and water is 100 parts by mass, 0 to 0.1 parts by mass (fluorine compound); 0 to 25 parts by mass (organic solvent); 0 to 25 parts by mass (monocarboxylate or organic base) wear.
[0072] 好ま 、除去液の具体例を以下に示す (ただし、モノカルボン酸と水の合計量は 10 0質量部である):  [0072] Preferably, specific examples of the removal liquid are shown below (however, the total amount of monocarboxylic acid and water is 100 parts by mass):
•フッ化水素及び Z又はフッ化アンモニゥム:酢酸及び Z又はトリフルォロ酢酸:水 • Hydrogen fluoride and Z or ammonium fluoride: acetic acid and Z or trifluoroacetic acid: water
= 0〜0.1質量部: 2〜50質量部: 98〜50質量部; = 0 to 0.1 parts by mass: 2 to 50 parts by mass: 98 to 50 parts by mass;
•フッ化水素及び Z又はフッ化アンモ-ゥム:酢酸:水:酢酸アンモ-ゥム  • Hydrogen fluoride and Z or ammonium fluoride: acetic acid: water: ammonium acetate
= 0〜0.1質量部: 2〜50質量部: 98〜50質量部: 1〜25質量部;  = 0-0.1 parts by mass: 2-50 parts by mass: 98-50 parts by mass: 1-25 parts by mass;
•フッ化水素及び Z又はフッ化アンモニゥム:酢酸及び Z又はトリフルォロ酢酸:水: テトラメチルヒドロキシアンモ -ゥム  • Hydrogen fluoride and Z or ammonium fluoride: acetic acid and Z or trifluoroacetic acid: water: tetramethylhydroxyammonium
= 0〜0.1質量部: 2〜50質量部: 98〜50質量部: 1〜25質量部;  = 0-0.1 parts by mass: 2-50 parts by mass: 98-50 parts by mass: 1-25 parts by mass;
•フッ化水素及び Z又はフッ化アンモニゥム:酢酸及び Z又はトリフルォロ酢酸:水: 炭酸プロピレン =0〜0.1質量部: 2〜50質量部: 98〜50質量部: 1〜25質量部; • Hydrogen fluoride and Z or ammonium fluoride: acetic acid and Z or trifluoroacetic acid: water: propylene carbonate = 0 to 0.1 parts by mass: 2 to 50 parts by mass: 98 to 50 parts by mass: 1 to 25 parts by mass;
•フッ化水素及び Z又はフッ化アンモニゥム:酢酸及び Z又はトリフルォロ酢酸:水: ジメチルホルムアミド =0〜0.1質量部: 2〜50質量部: 98〜50質量部: 1〜25質量部; などが挙げられる。 • Hydrogen fluoride and Z or ammonium fluoride: acetic acid and Z or trifluoroacetic acid: water: dimethylformamide = 0 to 0.1 parts by mass: 2 to 50 parts by mass: 98 to 50 parts by mass: 1 to 25 parts by mass; It is done.
(iv)除去対象物が銅酸化膜、及び/又は、ドライエッチング及び/又はアツシングによ る損傷を受けた、銅酸化物を含む銅変質層と無機埋め込み材残渣である場合、本発 明における好ま 、除去液としては、以下のものが例示できる。  (iv) When the object to be removed is a copper oxide film and / or a copper-modified layer containing copper oxide and an inorganic embedded material residue damaged by dry etching and / or ashing, Preferred examples of the removing liquid include the following.
[0073] モノカルボン酸:水 = 2〜75mass%: 98〜25mass%であって、フッ素化合物、有機溶 媒、モノカルボン酸塩または有機塩基は、モノカルボン酸と水の合計量を 100質量部 として、各々 0.5〜5.5質量部 (フッ素化合物);0〜25質量部 (有機溶媒);0〜25質量 部(モノカルボン酸塩または有機塩基)使用できる。  [0073] Monocarboxylic acid: water = 2 to 75 mass%: 98 to 25 mass%, and the fluorine compound, organic solvent, monocarboxylate or organic base is 100 parts by mass of the total amount of monocarboxylic acid and water. As above, 0.5 to 5.5 parts by mass (fluorine compound); 0 to 25 parts by mass (organic solvent); 0 to 25 parts by mass (monocarboxylate or organic base) can be used.
[0074] 好ま 、除去液の具体例を以下に示す (ただし、モノカルボン酸と水の合計量は 10 0質量部である):  [0074] Preferably, specific examples of the removal liquid are shown below (however, the total amount of monocarboxylic acid and water is 100 parts by mass):
フッ化水素及び Z又はフッ化アンモニゥム:酢酸及び Z又はトリフルォロ酢酸:水  Hydrogen fluoride and Z or ammonium fluoride: acetic acid and Z or trifluoroacetic acid: water
=0.5〜5.5質量部: 2〜75質量部: 98〜25質量部; フッ化水素及び z又はフッ化アンモ-ゥム:酢酸:水:酢酸アンモ-ゥム = 0.5-5.5 parts by mass: 2-75 parts by mass: 98-25 parts by mass; Hydrogen fluoride and z or ammonium fluoride: Acetic acid: Water: Ammonium acetate
= 0.5〜5.5質量部: 2〜75質量部: 98〜25質量部: 1〜25質量部; フッ化水素及び Z又はフッ化アンモニゥム:酢酸及び Z又はトリフルォロ酢酸:水:テ トラメチルヒドロキシアンモ -ゥム  = 0.5-5.5 parts by mass: 2-75 parts by mass: 98-25 parts by mass: 1-25 parts by mass; hydrogen fluoride and Z or ammonium fluoride: acetic acid and Z or trifluoroacetic acid: water: tetramethylhydroxyammonium − Um
= 0.5〜5.5質量部: 2〜75質量部: 98〜25質量部: 1〜25質量部; • フッ化水素及び Z又はフッ化アンモニゥム:酢酸及び Z又はトリフルォロ酢酸:水: 炭酸プロピレン  = 0.5 to 5.5 parts by mass: 2 to 75 parts by mass: 98 to 25 parts by mass: 1 to 25 parts by mass; • Hydrogen fluoride and Z or ammonium fluoride: acetic acid and Z or trifluoroacetic acid: water: propylene carbonate
=0.5〜5.5質量部: 2〜75質量部: 98〜25質量部: 1〜25質量部;  = 0.5-5.5 parts by mass: 2-75 parts by mass: 98-25 parts by mass: 1-25 parts by mass;
• フッ化水素及び Z又はフッ化アンモニゥム:酢酸及び Z又はトリフルォロ酢酸:水: ジメチルホルムアミド  • Hydrogen fluoride and Z or ammonium fluoride: acetic acid and Z or trifluoroacetic acid: water: dimethylformamide
= 0.5〜5.5質量部: 2〜75質量部: 98〜25質量部: 1〜25質量部; などが挙げられる。  = 0.5-5.5 parts by mass: 2-75 parts by mass: 98-25 parts by mass: 1-25 parts by mass;
(V)除去対象物が銅酸化膜、及び/又は、ドライエッチング及び/又はアツシングによ る損傷を受けた、銅酸化物を含む銅変質層と、レジスト残渣、 BARC残渣および有機 埋め込み材残渣である場合、本発明における好ましい除去液としては、以下のもの が例示できる。  (V) The removal target is a copper oxide film and / or a copper altered layer containing copper oxide damaged by dry etching and / or ashing, a resist residue, a BARC residue, and an organic filling material residue. In some cases, examples of the preferred removal liquid in the present invention include the following.
[0075] モノカルボン酸:水=40〜8(^&33% : 60〜2(^&33%でぁって、有機溶媒、モノカル ボン酸塩または有機塩基は、モノカルボン酸と水の合計量を 100質量部として、各々 0.5〜5.5質量部(フッ素化合物);0〜25質量部(有機溶媒);0〜25質量部(モノカル ボン酸塩または有機塩基)使用できる。  [0075] Monocarboxylic acid: water = 40-8 (^ & 33%: 60-2 (^ & 33%, organic solvent, monocarbonate or organic base is the total amount of monocarboxylic acid and water As 100 parts by mass, 0.5 to 5.5 parts by mass (fluorine compound); 0 to 25 parts by mass (organic solvent); 0 to 25 parts by mass (monocarbonate or organic base) can be used.
[0076] 好ま 、除去液の具体例を以下に示す (ただし、モノカルボン酸と水の合計量は 10 0質量部である):  [0076] Preferably, specific examples of the removal liquid are shown below (however, the total amount of monocarboxylic acid and water is 100 parts by mass):
•酢酸及び Z又はトリフルォロ酢酸:水 =40〜80質量部: 60〜20質量部;  • Acetic acid and Z or trifluoroacetic acid: water = 40-80 parts by mass: 60-20 parts by mass;
•酢酸:水:酢酸アンモニゥム =40〜80質量部: 60〜20質量部: 1〜25質量部; • Acetic acid: water: ammonium acetate = 40-80 parts by mass: 60-20 parts by mass: 1-25 parts by mass;
•酢酸及び Z又はトリフルォロ酢酸:水:テトラメチルヒドロキシアンモ -ゥム Acetic acid and Z or trifluoroacetic acid: water: tetramethylhydroxyammonium
=40〜80質量部: 60〜20質量部: 1〜25質量部;  = 40-80 parts by mass: 60-20 parts by mass: 1-25 parts by mass;
•酢酸及び Z又はトリフルォロ酢酸:水:炭酸プロピレン  • Acetic acid and Z or trifluoroacetic acid: water: propylene carbonate
=40〜80質量部: 60〜20質量部: 1〜25質量部; •酢酸及び z又はトリフルォロ酢酸:水:ジメチルホルムアミド = 40-80 parts by mass: 60-20 parts by mass: 1-25 parts by mass; • Acetic acid and z or trifluoroacetic acid: water: dimethylformamide
=40〜80質量部: 60〜20質量部: 1〜25質量部;  = 40-80 parts by mass: 60-20 parts by mass: 1-25 parts by mass;
防食剤 Anticorrosive
本発明において、除去液の構成要素である有機溶媒の中には銅に対して、防食効 果を有するものも存在し得る。例えば、イソプロピルアルコール、 tert-ブタノールなど の炭素数 3以上の水溶性アルコール、酢酸、ギ酸、トリフルォロ酢酸、酢酸メチル、酢 酸ェチル、炭酸プロピレンなどの分子中にカルボキシル基 (COOH)を含むものや力 ルポキシエステル (一 C(=0)0—)を形成している物質、ジメトキシェタンなど分子中に 酸素原子を二つ有する物質などが銅に対して防食作用が大きい。  In the present invention, some organic solvents that are constituents of the removal liquid may have an anticorrosive effect against copper. For example, water-soluble alcohols with 3 or more carbon atoms such as isopropyl alcohol and tert-butanol, acetic acid, formic acid, trifluoroacetic acid, methyl acetate, ethyl acetate, propylene carbonate, etc., which contain a carboxyl group (COOH) in the molecule Substances that form lupoxyesters (one C (= 0) 0-), substances that have two oxygen atoms in the molecule, such as dimethoxyethane, have a large anticorrosive action against copper.
また、シユウ酸、マロン酸、コハク酸、ダルタル酸、アジピン酸、リンゴ酸、クェン酸およ び酒石酸などのポリカルボン酸は、モノカルボン酸に添加することにより、相乗的に 銅の腐食を抑制することができる。 In addition, polycarboxylic acids such as oxalic acid, malonic acid, succinic acid, dartaric acid, adipic acid, malic acid, citrate and tartaric acid can be added to monocarboxylic acid to synergistically inhibit copper corrosion. can do.
これらを含めて、さらに銅の腐食を防止するために、除去液中に防食剤を添加する ことも可能である。防食剤の種類は限定されないが、例えば、フエノール、タレゾール 、キシレノール、ピロカテコール、レゾルシノール、ヒドロキノン、ピロガロール、 1, 2, 4 ベンゼントリオール、サリチルアルコール、 p ヒドロキシベンジルアルコール、 o— ヒドロキシベンジルアルコール、 p ヒドロキシフエネチルアルコール、 p アミノフエノ ール、 m—ァミノフエノール、ジァミノフエノール、アミノレゾルシノール、 p ヒドロキシ 安息香酸、 o ヒドロキシ安息香酸、 2, 4 ジヒドロキシ安息香酸、 2, 5 ジヒドロキ シ安息香酸、 3, 4—ジヒドロキシ安息香酸、 3, 5—ジヒドロキシ安息香酸、これらの誘 導体等などの芳香族ヒドロキシ化合物、ベンゾトリァゾール、 o トリルトリァゾール、 m トリルトリァゾール、 p—トリルトリァゾール、カルボキシベンゾトリァゾール、 1ーヒドロ キシベンゾトリァゾール、ニトロべンゾトリァゾール、ジヒドロキシプロピルべンゾトリァゾ ール、これらの誘導体等のトリァゾール化合物、シクロデキストリン、 D—ソルビトール 、ァラビトール、マン-トール、蔗糖、アミロース (澱粉)、アミロぺクチン、これらの誘導 体等の糖類、 1 プロパンチオール、 1 デカンチオール、 n—へキサデシルメル力 プタン、 α トルエンチオール、フリフリルメルカプタン、ァリルメルカブタン、これらの 誘導体等のチオール類、などが挙げられる。また、 2 ブチン 1, 4ージオール、 3, 5 ジメチルー 1一へキシン 3 オール、 2—メチルー 3 ブチン 2 オール、 3 ーメチルー 1 ペンチン 3 オール、 3, 6 ジメチルー 4ーォクチン 3, 6 ジォ ール、 2, 4, 7, 9—テトラメチル— 5 デシン— 4, 7 ジオール、 2, 5 ジメチル— 3 一へキシン 2, 5 ジオール、これらの誘導体等のアセチレンアルコール、ァスコル ビン酸、キノリノール、これらの誘導体等の還元剤等も防食剤として使用できる。 In addition to these, it is also possible to add an anticorrosive to the removal solution in order to prevent copper corrosion. The type of anticorrosive is not limited, but for example, phenol, talesol, xylenol, pyrocatechol, resorcinol, hydroquinone, pyrogallol, 1, 2, 4 benzenetriol, salicyl alcohol, p-hydroxybenzyl alcohol, o-hydroxybenzyl alcohol, p-hydroxyl Phenethyl alcohol, p-aminophenol, m-aminophenol, diaminophenol, aminoresorcinol, p-hydroxybenzoic acid, o-hydroxybenzoic acid, 2,4-dihydroxybenzoic acid, 2,5-dihydroxybenzoic acid, 3 , 4-dihydroxybenzoic acid, 3,5-dihydroxybenzoic acid, aromatic hydroxy compounds such as these derivatives, benzotriazole, o trilltriazole, m tolyltriazole, p-tolyltriazole, carboxyben Triazole compounds such as zotriazole, 1-hydroxybenzotriazole, nitrobenzotriazole, dihydroxypropyl benzotriazole, and derivatives thereof, cyclodextrin, D-sorbitol, arabitol, man-tol, sucrose, amylose (starch), amylope Cutin, saccharides such as derivatives thereof, 1 propanethiol, 1 decanethiol, n-hexadecyl mercaptane, α-toluenethiol, furfuryl mercaptan, allyl mercaptan, thiols such as derivatives thereof, etc. . Also 2 butyne 1,4-diol, 3, 5 Dimethyl-1 monohexyne 3 ol, 2-methyl-3 butyne 2 ol, 3-methyl-1 pentyne 3 ol, 3, 6 dimethyl 4-octyne 3, 6 diol, 2, 4, 7, 9-tetramethyl-5 Decyne-4,7 diol, 2,5 dimethyl-3 monohexene 2,5 diol, acetylene alcohols such as derivatives thereof, ascorbic acid, quinolinol, reducing agents such as derivatives thereof can also be used as anticorrosives.
[0078] 上記防食剤の中でも、防食効果の点から、ピロカテコール、ピロガロール、ベンゾト リアゾール、 D-ソルビトール、フタル酸、 2 ブチン 1,4ージオール、ァスコルビン酸 、キノリノール、 1 プロパンチオール、それらの誘導体等が好ましい。  [0078] Among the above anticorrosives, pyrocatechol, pyrogallol, benzotriazole, D-sorbitol, phthalic acid, 2-butyne 1,4-diol, ascorbic acid, quinolinol, 1 propanethiol, their derivatives, etc. Is preferred.
[0079] 本発明における除去液中の防食剤の濃度は、防食効果が得られれば限定されな いが、例えば、水とモノカルボン酸の合計量に対して 0.1〜20mass%程度、好ましくは 0 .5〜10mass%程度が挙げられる。  [0079] The concentration of the anticorrosive agent in the removal liquid in the present invention is not limited as long as the anticorrosive effect is obtained, but for example, about 0.1 to 20 mass%, preferably 0 with respect to the total amount of water and monocarboxylic acid. About 5 to 10 mass%.
その他,  Other,
本発明の除去液に、さらに不活性ガスを溶解させてもよい。不活性ガスとしては、窒 素、ヘリウム、アルゴン、ネオン、クリプトン、キセノン等が挙げられる。除去液に不活 性ガスを溶解させる方法としては限定されず、一般的に用いられて ヽる方法で行うこ とができる。例えば、除去液に不活性ガスを吹き込めばよい。不活性ガスの溶解量は 限定されず、除去液中の酸素分圧を (例えば、飽和溶解した空気の酸素分圧よりも) 低下させることができればよい。除去液中の酸素分圧が低下する結果、銅酸化物が 除去された銅の酸ィ匕および銅の腐食を防止することができる。不活性ガスは必ずしも これらに限られるものではなぐ実質上、除去液に対して不活性であれば良い。例え ば、フルォロカーボンガス、炭化水素、一酸ィ匕炭素など、除去液と反応しないガスで あれば、溶存酸素を除去する同様の効果が得られる。  An inert gas may be further dissolved in the removal liquid of the present invention. Examples of the inert gas include nitrogen, helium, argon, neon, krypton, and xenon. The method for dissolving the inert gas in the removal liquid is not limited, and can be performed by a generally used method. For example, an inert gas may be blown into the removal liquid. The dissolved amount of the inert gas is not limited as long as the partial pressure of oxygen in the removal liquid can be reduced (for example, lower than the partial pressure of oxygen in saturated dissolved air). As a result of the reduction of the oxygen partial pressure in the removal liquid, it is possible to prevent copper oxide from which the copper oxide has been removed and copper corrosion. The inert gas is not necessarily limited to these, and may be substantially inert to the removal liquid. For example, a gas that does not react with the removal liquid, such as fluorocarbon gas, hydrocarbon, and carbon monoxide, can achieve the same effect of removing dissolved oxygen.
酸化 び/ は 酸化 を含むき ¾ ^ の 去  Oxidation and oxidation include oxidation ¾ ^
本発明の方法は、 Cu/Low-k多層配線構造において、ダマシン、デュアルダマシン などの構造を形成する場合およびキャパシタ構造において銅の膜を使用する場合な どにおいて使用される。この様な場合において本発明の除去液は、シリコン含有膜 や Low-k膜の除去液によるエッチングを抑制し、銅を腐食させず、銅配線等の銅薄 膜、電極、銅層等が形成されたウェハーにおいて、その銅表面に形成された銅酸ィ匕 物、及び/又は、ドライエッチング及び/又はアツシングによる損傷を受けた、銅酸ィ匕 物を含む銅変質層を銅に対して選択的に除去するのに好適に使用できる。 The method of the present invention is used when forming a structure such as a damascene or dual damascene in a Cu / Low-k multilayer wiring structure and when using a copper film in a capacitor structure. In such a case, the removal solution of the present invention suppresses etching by the removal solution of the silicon-containing film or the low-k film, does not corrode copper, and forms a copper thin film such as a copper wiring, an electrode, a copper layer, etc. Copper oxide formed on the copper surface And / or a copper-altered layer containing a copper oxide that has been damaged by dry etching and / or ashing can be suitably used to selectively remove copper.
[0080] Cu/Low-k多層配線構造にぉ 、て、例えば、半導体基板 (例えば、 SiN、銅、 TaN、 S iCなど)上に Low-k膜を形成、反射防止膜を成膜して、次いでレジストを形成、その後 フォトリソグラフィ一によりパターンを形成、当該パターンに従って Low-k膜をエツチン グおよびアツシングした後、本発明の除去液に接触させることにより銅酸化物、及び/ 又は、エッチング及び/又はアツシングによる損傷を受けた、銅酸化物を含む銅変質 層を除去することができる。  [0080] In a Cu / Low-k multilayer wiring structure, for example, a low-k film is formed on a semiconductor substrate (for example, SiN, copper, TaN, SiC, etc.), and an antireflection film is formed. Then, a resist is formed, and then a pattern is formed by photolithography. After etching and ashing the low-k film according to the pattern, contact with the removing solution of the present invention is performed, and then copper oxide and / or etching and It is possible to remove a copper alteration layer containing copper oxide damaged by ashing.
[0081] 従って、本発明の除去液は、 Low-k膜、反射防止膜及びレジストに穴もしくは溝が 開き、レジスト (レジストの変質物を含む)、反射防止膜、埋め込み材などをアツシング などにより除去された状態の被処理物として、当該銅酸化物、及び/又は、ドライエツ チング及び/又はアツシングによる損傷を受けた、銅酸化物を含む銅変質層を除去 する液である。なお、ドライエッチングにより得られた Low-k膜の穴の壁面及び Z又は 底面にポリマー(エッチングガスの重合物)及び/又はドライエッチング及び/又はアツ シング後の残渣が付着したものであってもよ ヽ。基板上に Low-k膜を形成した後には 、必要に応じて Low-k膜上に SiN、 SiC、 TaN膜などの絶縁膜バリアを形成し、該 SiN、 S iC、TaN膜などを Low-k膜と共にエッチングすることもできる。  Therefore, the removal liquid of the present invention has a hole or groove in the low-k film, the antireflection film, and the resist, and the resist (including altered resist material), the antireflection film, the embedding material, etc. are removed by ashing or the like. This is a liquid that removes the copper-modified layer containing copper oxide, which has been damaged by dry etching and / or ashing, as the object to be treated in the removed state. It should be noted that the polymer (etching gas polymer) and / or the residue after dry etching and / or ashing may adhere to the wall surface and Z or bottom surface of the hole of the low-k film obtained by dry etching. Yo ヽ. After forming the low-k film on the substrate, if necessary, an insulating film barrier such as SiN, SiC, TaN film is formed on the low-k film, and the SiN, SiC, TaN film, etc. It is also possible to etch with the k film.
[0082] また、レジストの表面上あるいはレジストと絶縁膜バリア間には、反射防止膜を形成 することができ、これら反射防止膜のドライエッチング及び/又はアツシング後の残渣 は、銅酸化物、及び/又は、エッチング及び/又はアツシングによる損傷を受けた、銅 酸ィ匕物を含む銅変質層と共に除去することができる。  [0082] Further, an antireflection film can be formed on the surface of the resist or between the resist and the insulating film barrier. Residues after dry etching and / or ashing of these antireflection films are copper oxide, and It can also be removed with an altered copper layer containing copper oxide that has been damaged by etching and / or ashing.
[0083] Low- k膜及びレジストは、通常、それぞれ 0. 01〜2 μ m程度、 0. 001〜0. 2 μ ηι 程度、 0. 01〜10 /ζ πι程度の厚みを有している。また、必要に応じて形成される SiN 膜、 SiC膜、 TaN膜、反射防止膜なども、通常、それぞれ 0. 01〜2 m程度、 0. 001 〜0. 2 μ &, 0. 01〜10 /ζ πι、0. 01〜0.: L m程度の厚みを有している。  [0083] The low-k film and the resist usually have thicknesses of about 0.01 to 2 μm, about 0.001 to 0.2 μηι, and about 0.01 to 10 / ζ πι, respectively. . In addition, SiN film, SiC film, TaN film, antireflection film, etc. formed as necessary are usually about 0.01-2m, 0.001-0.2μ &, 0.01-10, respectively. / ζ πι, 0.01 to 0 .: Thickness of about L m.
[0084] 本発明の方法では、エッチング後、本発明の除去液に接触させる前に、レジスト、 反射防止膜、埋め込み材およびエッチング残渣などの不要物を除去するために、多 量の酸素ラジカルを含んだプラズマによりアツシングを行うと、 Low-k膜にダメージを 与えてしまう。このダメージを無くすため、アツシングを行わないか、あるいは減らすた め、多量の酸素ラジカルを含んだプラズマアツシングを行わずに、必要に応じて、実 質的に Low-k膜にダメージを与えない程度に、水素プラズマアツシング、 Heなどの不 活性ガスを用いたアツシングおよび He/水素などの混合ガスプラズマ、もしくは酸素を 含んでも Low-k膜にダメージを与えな ヽように酸素ラジカルを減らしたプラズマでアツ シングを行ってもよい。アツシングを行った場合でも、ダメージを軽減するため、途中 でアツシングを中断してレジスト、反射防止膜、埋め込み材およびエッチング残渣な どの不要物を完全に取り除かないハーフアツシングと呼ばれる手法が用いられる場 合もある。この様なプラズマアツシングを行う場合には、同じ除去液を用いた場合であ つても、エッチング後アツシングせずに直接レジストを除去する場合とは温度、時間な どの最適条件が異なる場合がある。 [0084] In the method of the present invention, after etching, before contacting with the removing solution of the present invention, a large amount of oxygen radicals are removed in order to remove unnecessary materials such as resist, antireflection film, filling material and etching residue. When ashing is performed with the contained plasma, the low-k film is damaged. I will give it. To eliminate this damage, do not perform ashing or reduce it, do not perform plasma ashing with a large amount of oxygen radicals, and do not substantially damage the low-k film as necessary. Oxygen radicals were reduced to such an extent that hydrogen plasma ashing, ashing using an inert gas such as He, and mixed gas plasma such as He / hydrogen, or oxygen-containing low-k films were not damaged. The ashing may be performed with plasma. Even when ashing is performed, in order to reduce damage, a method called half ashing is used in which ashing is interrupted halfway and unnecessary materials such as resist, antireflection film, filling material and etching residue are not completely removed. Sometimes. When performing such plasma ashing, the optimum conditions such as temperature and time may differ from those when removing the resist directly without etching after etching even if the same removal solution is used. .
本発明の除去液を用いた銅酸ィ匕物、及び/又は、エッチング及び/又はアツシング による損傷を受けた、銅酸ィ匕物を含む銅変質層の除去方法は、銅酸化物、及び/又 は、エッチング及び/又はアツシングによる損傷を受けた、銅酸化物を含む銅変質層 を除去でき、且つ、シリコン含有膜や Low-k膜に実質的にダメージを与えない程度の 温度及び時間で行うものである。シリコン含有膜や Low-k膜に実質的にダメージを与 えないとは、除去液を用いた処理前後のシリコン含有膜や Low-k膜の物性が、例え ば半導体基板に用いられたときにその性能に影響を与えない程度しか変化していな いこと、例えば、レジストとシリコン含有膜や Low-k膜の界面において実質的にシリコ ン含有膜や Low-k膜を侵す (エッチングする)ことなく、被処理物の膜の積層方向に おける断面形状を実質的に変化させないようなもの、或いは、除去液を用いた処理 前後にシリコン含有膜や Low-k膜の比誘電率が実質的に変化しないことをいう。実質 的にシリコン含有膜や Low-k膜をエッチングしな 、とは、シリコン含有膜や Low-k膜の エッチング量力 好ましくは 200nm以下程度、より好ましくは lOOnm以下程度、さら に好ましくは 50nm以下程度であることをいう。除去液を用いた処理前後のシリコン含 有膜や Low-k膜の比誘電率が実質的に変化しないとは、比誘電率の変化が、好まし くは 20%以下程度、より好ましくは 10%以下程度、さらに好ましくは 5%以下程度で あることをいう。 [0086] 除去液での処理は、例えば、ドライエッチング及び/又はアツシング後の基板を被処 理物として本発明の除去液に浸漬することにより行うことができる。除去液への浸漬 条件は、銅酸化物、及び/又は、エッチング及び/又はアツシングによる損傷を受けた 、銅酸ィ匕物を含む銅変質層が除去でき、銅の腐食を抑えて、シリコン含有膜や Low- k膜に実質的にダメージを与えなければ特に限定されることはなぐ除去液の種類や 温度に応じて適宜設定することができる。例えば、除去液の温度は、例えば 10〜60 °C程度、好ましくは 15〜40°C程度にするのがよい。浸漬時間としても限定されず適宜 選択することができるが、例えば、 0.5分〜 60分程度、好ましくは 1分〜 40分程度が例 示できる。また、必要に応じて、撹拌下の除去液にゥヱハーを浸漬してもよい。撹拌 の速度も限定されず、適宜選択することができる。 A method for removing a copper oxide layer using a removal solution of the present invention and / or a damaged copper layer including a copper oxide layer damaged by etching and / or ashing includes copper oxide, and / or Alternatively, it is possible to remove a copper-altered layer containing copper oxide that has been damaged by etching and / or ashing, and at a temperature and time that does not substantially damage a silicon-containing film or a low-k film. Is what you do. The fact that the silicon-containing film and low-k film are not substantially damaged means that the physical properties of the silicon-containing film and low-k film before and after the treatment with the removal solution are used for semiconductor substrates, for example. For example, the silicon-containing film or low-k film is substantially affected (etched) at the interface between the resist and the silicon-containing film or low-k film. In other words, the relative dielectric constant of the silicon-containing film or the low-k film is substantially unchanged before and after the treatment using the removal liquid. It means not changing. The fact that the silicon-containing film or the low-k film is not substantially etched means that the etching amount of the silicon-containing film or the low-k film is preferably about 200 nm or less, more preferably about lOOnm or less, and further preferably about 50 nm or less. It means that. The fact that the relative permittivity of the silicon-containing film and the low-k film before and after the treatment using the removal solution does not substantially change means that the change in the relative permittivity is preferably about 20% or less, more preferably 10%. % Or less, more preferably about 5% or less. The treatment with the removing liquid can be performed, for example, by immersing the substrate after dry etching and / or ashing in the removing liquid of the present invention as a processing object. The condition of immersion in the removal solution is that copper oxide and / or copper damaged layer containing copper oxides damaged by etching and / or ashing can be removed, copper corrosion is suppressed, and silicon is contained. As long as the film and the low-k film are not substantially damaged, there is no particular limitation, and the film can be appropriately set according to the type and temperature of the removal solution. For example, the temperature of the removal liquid is, for example, about 10 to 60 ° C, preferably about 15 to 40 ° C. The immersion time is not limited and can be appropriately selected. For example, about 0.5 to 60 minutes, preferably about 1 to 40 minutes can be exemplified. Moreover, you may immerse a wafer in the removal liquid under stirring as needed. The speed of stirring is not limited and can be appropriately selected.
[0087] また、除去液を被処理物に接触させれば銅酸化物、及び/又は、エッチング及び/ 又はアツシングによる損傷を受けた、銅酸ィ匕物を含む銅変質層の除去を行うことがで きるので、例えば、被処理物を回転させながらその上力 液を供給して洗浄してもよ Vヽし、被処理物に組成物をスプレーで吹付け続けて洗浄してもよ!/、。  [0087] Further, if the removal solution is brought into contact with the object to be treated, the copper oxide and / or the copper altered layer containing the cuprate oxide damaged by etching and / or ashing is removed. For example, it is possible to clean the workpiece by supplying it with a rotating liquid while rotating it, and cleaning it by spraying the composition with the spray! /.
[0088] 本発明の除去液での処理は、レジスト、反射防止膜および埋め込み材の種類ゃェ ツチング及び/又はアツシングなどの条件によりエッチング及び/又はアツシング残渣 などの銅酸化物、及び/又は、エッチング及び/又はアツシングによる損傷を受けた、 銅酸化物を含む銅変質層の除去するための障害となる不要物が剥離しにくい場合、 例えば被処理物を除去液に浸漬して超音波洗浄を行ってもよい。  [0088] The treatment with the removing liquid of the present invention may be carried out by subjecting the resist, the antireflection film, and the filling material to the conditions such as etching and / or ashing, copper oxide such as etching and / or ashing residue, and / or If unnecessary materials that have been damaged by etching and / or ashing and that are an obstacle to the removal of the copper-modified layer containing copper oxide are difficult to peel off, ultrasonic cleaning is performed by, for example, immersing the object to be processed in a removal solution. You may go.
[0089] 本発明の銅酸化物の除去方法は、さらに、銅酸ィ匕物を除去したウェハーを、純水で 洗浄することにより行うことができる。この洗浄工程により本発明の除去液を洗い流す ことができる。単に純水で洗浄する工程の代わりに不活性ガスを溶解させた純水で 洗浄する工程を用いるとより好ましい。また、この水は不活性ガスを溶解させることに より酸素分圧を低下させているので、銅酸ィ匕物が除去された銅の酸ィ匕および銅の腐 食を有効に防ぐことができる。不活性ガスの水への溶解は、不活性ガスの除去液へ の溶解の場合と同様に行うことができる。  [0089] The method for removing a copper oxide of the present invention can be further performed by washing the wafer from which the cuprate is removed with pure water. The removal liquid of the present invention can be washed away by this washing step. It is more preferable to use a process of cleaning with pure water in which an inert gas is dissolved instead of the process of simply cleaning with pure water. In addition, since the water reduces the oxygen partial pressure by dissolving the inert gas, it can effectively prevent the copper oxide and copper corrosion from which the copper oxide is removed. . Dissolution of the inert gas in water can be performed in the same manner as in the case of dissolving the inert gas in the removal liquid.
[0090] 本発明において、銅酸ィ匕物の除去においても、実質的に不活性ガス雰囲気下で行 うことが好ましい。実質的に不活性ガス雰囲気下というのは、完全に不活性ガス雰囲 気下でもよいし、空気の酸素分圧よりも酸素分圧が低い雰囲気下でもよい。このよう な条件下で銅酸ィ匕物の除去を行うことにより、銅酸ィ匕物を除去した銅の酸ィ匕および 銅の腐食をより有効に防止できるので好ましい。 [0090] In the present invention, it is preferable that the removal of cuprates is carried out in an inert gas atmosphere. A substantially inert gas atmosphere means a completely inert gas atmosphere. It may be in the air or in an atmosphere having an oxygen partial pressure lower than the oxygen partial pressure of air. It is preferable to remove the copper oxide under such conditions because the copper oxide from which the copper oxide has been removed and the corrosion of the copper can be more effectively prevented.
[0091] 本発明除去液を用いて銅酸ィ匕物、及び/又は、エッチング及び/又はアツシングに よる損傷を受けた、銅酸ィ匕物を含む銅変質層の除去を行った半導体基板は、例えば 、銅配線をするなど、慣用されている方法 (例えば、詳説半導体 CMP技術、土肥俊郎 編著 2001年 に記載された方法)に従って、様々な種類の半導体装置へと加工 することができる。  [0091] A semiconductor substrate in which a copper oxide layer and / or a damaged layer due to etching and / or ashing, which has been damaged by etching and / or ashing, has been removed using the removal solution of the present invention, For example, it can be processed into various types of semiconductor devices in accordance with a commonly used method (for example, a method described in the detailed semiconductor CMP technology, edited by Toshiro Doi 2001), such as copper wiring.
実施例  Example
[0092] 以下に実施例を示し、本発明の特徴を一層明確にする。本発明はこれら実施例に 限定されるものではない。  [0092] The following examples illustrate the features of the present invention more clearly. The present invention is not limited to these examples.
[0093] 本発明の除去液を用いて処理した場合のポーラス Low-k膜等のエッチングによる 膜の減少、銅酸ィ匕物及びドライエッチングやアツシングによる損傷を受けて形成され た、銅酸ィ匕物を含む銅変質層の除去及び銅の腐食を、成膜した 8インチウェハーを 一定の大きさに切り出した成膜ウェハーを用いて調べた。 [0093] A cuprate solution formed by etching with a porous low-k film or the like when treated with the removal liquid of the present invention, a copper oxide layer, or a damage caused by dry etching or ashing. The removal of the copper-altered layer containing porcelain and the corrosion of the copper were investigated using a film-formed wafer obtained by cutting a formed 8-inch wafer into a certain size.
[0094] 使用した成膜ウェハーを以下に示す。 [0094] The film formation wafer used is shown below.
膜厚 1000 A、 30mm X 30mm銅のスパッタ成膜ウェハー、  1000 A, 30 mm x 30 mm copper sputtered wafer,
膜厚 5000 A、 15mm X 10mmのポーラス Low- k膜ウェハー、  5000 A, 15 mm x 10 mm porous low-k film wafer,
銅酸化物 Cu 0の膜厚は X線干渉法により測定し約 33Aであることを確認した。約 33 The film thickness of copper oxide Cu 0 was measured by X-ray interferometry and confirmed to be about 33A. About 33
Aまでを Cuの酸ィ匕物(CuO、 Cu 0、 Cu(OH)等。以下、「Cu 0」と記載する場合もある Up to A, Cu oxides (CuO, Cu 0, Cu (OH), etc .; hereinafter referred to as “Cu 0”.
2 2  twenty two
。)、 33 以上を01として、それぞれ除去速度及び腐食速度を求めた。  . ), 33 and above were taken as 01, and the removal rate and corrosion rate were obtained respectively.
[0095] さらに Cu 0の除去性を確認するため、人為的に Cu 0を厚く成膜して、その膜の除 去液による除去時間を測定した。 Cu 0は、 Cu上の自然酸ィ匕膜を除去した後、 30%の 過酸ィ匕水素水で酸ィ匕して成膜した。 [0095] Further, in order to confirm the removability of Cu 0, a thick Cu 0 film was artificially formed, and the removal time of the film with the removing solution was measured. Cu 0 was formed by removing the natural acid film on Cu and then oxidizing with 30% hydrogen peroxide solution.
[0096] 銅の侵食量を測定するためのウェハーは、使用前に、 0.1Nの H SO水溶液で、銅の [0096] A wafer for measuring the amount of copper erosion was washed with a 0.1N aqueous solution of H 2 SO before use.
2 4  twenty four
酸ィ匕膜約 33Aと銅の一部を除去した。  About 33A of oxide film and a part of copper were removed.
[0097] 銅酸化物、及び/又は、ドライエッチング及び/又はアツシングによる損傷を受けた、 銅酸化物を含む銅変質層のサンプルウェハーは、銅のスパッタ成膜ウェハーをフル ォロカーボンプラズマでエッチング処理した後、 H /Heおよび 0プラズマでアツシング [0097] A sample wafer of a copper-altered layer containing copper oxide, damaged by copper oxide and / or dry etching and / or ashing, is full of a sputter-deposited wafer of copper. Etching with fluorocarbon plasma followed by ashing with H / He and 0 plasma
2 2  twenty two
処理した。  Processed.
[0098] さらに、テストパターン付きウェハーにより、レジスト、反射防止膜及び埋め込み材ゃ ドライエッチング及び/又はアツシングに伴い発生するエッチング残渣が共存する場 合、これらの除去と銅酸ィ匕及びドライエッチングやアツシングによる損傷を受けて形成 された、銅酸ィ匕物を含む銅変質層と見なせる銅表面上の残渣の除去及びパターン の形状の変化を調べた。  [0098] Furthermore, if the resist, antireflection film, and filling material coexist with the etching residue generated by dry etching and / or ashing due to the test pattern wafer, these removal, cuprate and dry etching, The removal of the residue on the copper surface, which can be regarded as a copper alteration layer containing copper oxides, formed by damage due to ashing, and the change in the shape of the pattern were investigated.
[0099] テストパターン付きウェハーは、次のようにして作製した。ポーラス Low-k膜 (ポーラ ス MSQ)、絶縁膜バリアである SiN膜、シリコンを含有する反射防止膜 (BARC)、レジス ト膜が形成された Si基板について、ビアエッチングと He/Hプラズマでアツシング処理 [0099] A wafer with a test pattern was produced as follows. Si substrate with porous low-k film (porous MSQ), insulating film barrier SiN film, silicon-containing antireflection film (BARC), and resist film formed by via etching and He / H plasma ashing Processing
2  2
を行い、その後、埋め込み材を充填して、再度、リソグラフィー、トレンチエッチング、 He/Hプラズマでアツシングを行った。 SiN膜の表面上に若干のレジスト(表面のレジ After that, the filling material was filled, and ashing was performed again by lithography, trench etching, and He / H plasma. Some resist on the surface of the SiN film (surface resist
2 2
ストがドライエッチング処理により変質したものを含む)反射防止膜 (BARC)及びドライ エッチング残渣を有し、ビアやトレンチ内にも埋め込み材が若干残った銅配線形成 前のデュアルダマシン構造の被処理物を得た。これをさらに、ドライエッチングして、 ビアホール底の SiNを除去して Cuを露出させた。この状態の被処理物を 0プラズマで  (Dusts that have undergone dry etching treatment) (anti-reflective coating (BARC)) and dry etching residue, dual damascene structure to be processed before formation of copper wiring with some filling material remaining in vias and trenches Got. This was further dry etched to remove the SiN at the bottom of the via hole and expose the Cu. The workpiece in this state is zero plasma
2 アツシングして、被処理物の Cu表面は酸ィ匕された状態にした。  2 After ashing, the Cu surface of the workpiece was oxidized.
埋め込み材、ポーラス Low-k膜は、以下のものを用いた:  The embedding material, porous low-k film, used the following:
埋め込み材: Si,C,0,Hを含み、 Si-OH、 Si-CH、 SHD結合を有する無機系の埋め込  Embedding material: Inorganic embedding containing Si, C, 0, H and having Si-OH, Si-CH, SHD bonds
3  Three
み材および Siを含有しない有機系の埋め込み材;  Organic filling material containing no filler and Si;
ポーラス Low- k膜: Si,C,0,Hを含み、 Sト CH、 Sト 0結合を有する塗布膜;  Porous low-k film: coating film containing Si, C, 0, H and having S-to-CH, S-to-O bond;
3  Three
実験は、成膜ウェハーあるいはパターン付きウェハーを、本発明の除去液に 23°Cで 1〜20分間、撹拌下 (600rpm)に浸漬することにより行った。その後、 1リットルの純水 を満たした容器に 2リットル/ minで純水をオーバーフローさせて、その容器の中で 1〜 5分間リンスし、 Nパージで乾燥した。除去液に浸漬する前後の成膜ウェハーの膜厚  The experiment was performed by immersing a film-formed wafer or a patterned wafer in the removing solution of the present invention at 23 ° C. for 1 to 20 minutes with stirring (600 rpm). Thereafter, pure water was overflowed into a container filled with 1 liter of pure water at 2 liter / min, rinsed in the container for 1 to 5 minutes, and dried by N purge. Film thickness of the film-forming wafer before and after being immersed in the remover
2  2
を測定し、その膜厚差(A)力もポーラス Low-k膜のエッチング量および銅の侵食量 を求めた。  The thickness difference (A) force was also determined for the porous low-k film etching amount and copper erosion amount.
[0100] 銅酸化物、及び/又は、ドライエッチング及び/又はアツシングによる損傷を受けた、 銅酸化物被膜を含む銅変質層のサンプルゥヱハーは、その表面を XPS (X-ray Photo electron Spectroscopy)で調べて銅と結合した F (フッ素)のピークが検出されるかどう かで、ドライエッチング及び/又はアツシングによる損傷を受けて形成された、銅酸ィ匕 物を含む銅変質層の有無を調べた。銅と結合した Fが検出された場合には変質層が 存在していると見なした。テストパターンのレジスト、反射防止膜及び埋め込み材ゃド ライエッチング及び/又はアツシングに伴 、発生するエッチング残渣、銅表面上の残 渣除去の具合や断面形状は電子顕微鏡 (SEM)を用いて観察した。 [0100] Copper oxide and / or damaged by dry etching and / or ashing, The sample wafer of a copper-altered layer containing a copper oxide film is examined by XPS (X-ray Photoelectron Spectroscopy) to determine whether F (fluorine) peaks bonded to copper are detected. The presence / absence of a copper-altered layer containing cuprate oxide formed by damage due to ashing was examined. When F combined with copper was detected, it was considered that an altered layer was present. Test pattern resist, antireflection film and filling material Etching residue generated during dry etching and / or ashing, residue removal on copper surface, and cross-sectional shape were observed using an electron microscope (SEM). .
[0101] 成膜ウェハーを使用した場合のポーラス Low-k膜のエッチング速度、銅の腐食速度 、銅酸化膜 (Cu 0)の除去時間および銅酸ィ匕物を含む銅変質層 (「変質層」と表示)の 除去時間を調べた結果を表 2に、比較例を表 3に示す。表中の TMAH (Tetramethyla mmonium hydroxideの略)は水酸化テトラメチルアンモ-ゥム、 PCは炭酸プロピレン、 DMFはジメチルホルムアミド、 DMSOはジメチルスルホキシド、 AcOEtは酢酸ェチルを 表す。 [0101] Porous low-k film etching rate, copper corrosion rate, copper oxide film (Cu 0) removal time, and copper alteration layer containing copper oxides (“altered layer”) Table 2 shows the results of examining the removal time of “)” and Table 3 shows a comparative example. In the table, TMAH (abbreviation of Tetramethylammonium hydroxide) is tetramethylammonium hydroxide, PC is propylene carbonate, DMF is dimethylformamide, DMSO is dimethylsulfoxide, and AcOEt is ethyl acetate.
[0102] ポーラス Low-k膜のエッチング速度力 l A/min以下の場合は" A"、 l〜5A/minの 場合は" B"、 5A/min以上は" C"で表した。銅の腐食速度は、 3A/min以下の場合は "A"、 3〜: LOA/minの場合は" B"、 10A/min以上の場合は" C"で表した。銅酸化膜 (CuxO)の除去時間が、 10秒以下の場合は" A"、 10〜30秒の場合は" B"、 30秒以 上の場合は" C"で表した。銅酸ィ匕物を含む銅変質層 (「変質層」と表示)の除去時間 力 60秒以下の場合は" A"、 60〜120秒の場合は" B"、 180秒以上の場合は" C" した。  [0102] The etching rate of porous low-k film is expressed as "A" when it is less than l A / min, "B" when it is l-5A / min, and "C" when it is 5A / min or more. The corrosion rate of copper is expressed as “A” when the rate is 3 A / min or less, 3 to: “B” when LOA / min, or “C” when 10 A / min or more. When the removal time of the copper oxide film (CuxO) is 10 seconds or less, it is expressed as “A”, when it is 10-30 seconds, it is expressed as “B”, and when it is longer than 30 seconds, it is expressed as “C”. Removal time of copper alteration layer containing copper oxides (labeled as “altered layer”) Force “A” for 60 seconds or less, “B” for 60 to 120 seconds, “180” for 180 seconds or more C ".
[0103] 比較例 1〜比較例 4に対して、実施例 1〜実施例 23では、ポーラス Low-k膜のエツ チング速度および銅の腐食速度が小さぐなおかつ銅の酸化膜 Cu 0の除去時間お よび銅酸ィ匕物を含む銅変質層の除去時間が短 、。ポーラス Low-k膜のエッチングと 銅の腐食を抑えて、銅酸ィ匕物およびこれを含有する変質層を短時間で除去できるこ とが明らかである。  [0103] In contrast to Comparative Examples 1 to 4, in Examples 1 to 23, the etching rate of the porous low-k film and the corrosion rate of copper are low, and the removal time of the copper oxide film Cu 0 is low. And the removal time of the copper alteration layer containing copper oxides is short. It is clear that the etching of the porous low-k film and the corrosion of copper can be suppressed, and the cuprate oxide and the altered layer containing it can be removed in a short time.
[0104] なお、表 2〜表 5中、水と酢酸の合計量を 100質量部とし、その他の成分は、水と酢 酸の合計量(100質量部)に対し配合した量を質量部で示す。  [0104] In Tables 2 to 5, the total amount of water and acetic acid is 100 parts by mass, and the other components are blended with respect to the total amount of water and acetic acid (100 parts by mass). Show.
[0105] [表 2]
Figure imgf000030_0001
[0105] [Table 2]
Figure imgf000030_0001
[0106] [表 3] [0106] [Table 3]
Figure imgf000030_0002
Figure imgf000030_0002
[0107] 本発明の除去液を用いてパターン付きウェハーを処理した場合の実施例を表 4、表 [0107] Examples when the wafer with a pattern was processed using the removing liquid of the present invention are shown in Tables 4 and
5に、比較例を表 6,表 7に示す。 Table 6 and Table 7 show comparative examples.
[0108] [表 4] 亍ストパターン付きウェハー 含有量( S量部) 処理 [0108] [Table 4] Wafer content with a strike pattern (S part) Processing
 Fruit
時間  Time
施 非除去対象物 除去対象物  Non-removable object Removable object
例 ンモ  Example
水 HF »酸ア  Water HF »Acid
TMAH ダメージ レシ'スト  TMAH damage recipe
^酸 有機溶媒 min BARC 有機埋め込 無機埋込 Si含有 痢表面 形状 ニゥム 層 m 残渣 残渣 み材残 ¾ み材残淹 残渣 残淹 ^ Acid Organic solvent min BARC Organic embedding Inorganic embedding Si-containing diarrhea surface shape Nyum layer m residue residue residue residue residue residue residue residue residue
24 99.0 0 1.0 0 0 4.7 PC 3.0 A A - - - - A A24 99.0 0 1.0 0 0 4.7 PC 3.0 A A----A A
25 98.9 0 1.1 0 0 11.1 PC 3.0 A A - - - - A A25 98.9 0 1.1 0 0 11.1 PC 3.0 A A----A A
26 97.5 0 2.5 0 0 0 - 3.0 A A - - - - - A A26 97.5 0 2.5 0 0 0-3.0 A A-----A A
27 97.4 0 2.6 0 0 4.7 PC 1.5 A A - - - - - A A27 97.4 0 2.6 0 0 4.7 PC 1.5 A A-----A A
28 97.4 0 2.6 0 0 5.3 DMF 1.5 A A - - - - A A28 97.4 0 2.6 0 0 5.3 DMF 1.5 A A----A A
29 97.4 0 2.6 2,6 0.0 0 - 1.5 A A - - - - - A A29 97.4 0 2.6 2,6 0.0 0-1.5 A A-----A A
30 94.9 0 5.1 0 2.6 0 - 1.5 A A - - - - - A A30 94.9 0 5.1 0 2.6 0-1.5 A A-----A A
31 80.0 0 20.0 0 0 0 - 3.0 A A - - - - A A31 80.0 0 20.0 0 0 0-3.0 A A----A A
32 60.0 0 40.0 0 0 0 - 5.0 A A B & B - - A A32 60.0 0 40.0 0 0 0-5.0 A A B & B--A A
33 50.0 0 50.0 0 0 25.0 D SO 3.0 A A A A A - - A A33 50.0 0 50.0 0 0 25.0 D SO 3.0 A A A A A--A A
34 40.0 0 60.0 0 0 0 - 3.0 A A A A A - - A A34 40.0 0 60.0 0 0 0-3.0 A A A A A--A A
35 15.8 0 84.2 5.3 0 0 2.5 A A A A A - - A A35 15.8 0 84.2 5.3 0 0 2.5 A A A A A--A A
36 11.1 0 88.9 0 0 11.1 PC 1.5 A A A A A - - A A36 11.1 0 88.9 0 0 11.1 PC 1.5 A A A A A--A A
37 20.0 0 80.0 0 0 0 - 3.0 A A A A A - A A37 20.0 0 80.0 0 0 0-3.0 A A A A A-A A
38 97.47 1.0 2.53 0 0 0 - 3.0 A A - - - - A A A38 97.47 1.0 2.53 0 0 0-3.0 A A----A A A
39 97.3 1.1 2.7 2.7 0 5.5 PC 1.0 A A - - - - A A A39 97.3 1.1 2.7 2.7 0 5.5 PC 1.0 A A----A A A
40 97.5 0.1 2.5 0 0 0 - 3.0 B A - - - - A A A40 97.5 0.1 2.5 0 0 0-3.0 B A----A A A
41 89.4 1.1 10.6 0 5.3 0 - 2.5 A A - - - A A A41 89.4 1.1 10.6 0 5.3 0-2.5 A A---A A A
42 79.8 1.0 20.2 0 0 0 - 3.0 A A - - - A A A42 79.8 1.0 20.2 0 0 0-3.0 A A---A A A
43 80.0 0.1 20.0 0 0 0 - 3.0 A A - - - - A A A43 80.0 0.1 20.0 0 0 0-3.0 A A----A A A
44 59.6 1.0 40.4 0 0 0 - 3.0 A A - - - - A A A44 59.6 1.0 40.4 0 0 0-3.0 A A----A A A
45 60.0 0.1 40.0 0 0 0 - 3.0 B A - - - A A A45 60.0 0.1 40.0 0 0 0-3.0 B A---A A A
46 25.5 1.1 74.5 0 0 5.3 PC 1.5 A A - - - A A A46 25.5 1.1 74.5 0 0 5.3 PC 1.5 A A---A A A
47 29.8 0.1 70.2 0 0 0 - 3.0 A A - - - - A A A47 29.8 0.1 70.2 0 0 0-3.0 A A----A A A
48 95.0 0.5 5.0 0 0 0 - 3.0 - A - - - A - A A48 95.0 0.5 5.0 0 0 0-3.0-A---A-A A
49 59.8 0.5 40.2 0 0 0 - 5.0 - A 8 & - A - A A49 59.8 0.5 40.2 0 0 0-5.0-A 8 &-A-A A
50 58.8 3.1 41.2 0 0 0 - 5.0 - A B B A - A A50 58.8 3.1 41.2 0 0 0-5.0-A B B A-A A
51 29.6 0.5 70.4 0 0 0 - 4.0 - A A A - A - A A51 29.6 0.5 70.4 0 0 0-4.0-A A A-A-A A
52 11.9 0.6 88.1 0 0 25.1 AcOEt 3.0 - A A A - A - A A52 11.9 0.6 88.1 0 0 25.1 AcOEt 3.0-A A A-A-A A
53 27.8 3.1 72.2 0 0 0 - 3.0 A A A - A - A A 109] [表 5] 53 27.8 3.1 72.2 0 0 0-3.0 A A A-A-A A 109] [Table 5]
Figure imgf000031_0001
Figure imgf000031_0001
[0110] [表 6] 処理 テストパターン付きウェハー 比 含有量 ( mass% ) [0110] [Table 6] Processing Wafer with test pattern Content (mass%)
時間  Time
較 非除去対象物 除去対象物  Non-removable object Removable object
例 断面 Example Cross section
HF 醉酸アンモ 有機溶媒その HF Ammonium oxalate Organic solvent
水 TMAH ダメージ レシ'スト  Water TMAH Damage Resist
min BARC 埋め込 無機埋込 Si含有 銅表面 形状 ニゥム 他 銅 有機  min BARC embedding Inorganic embedding Si-containing copper surface Shape Nimu Other copper Organic
層 残渣 残遼 み材残淹 み材残 ¾ 残 残 Layer Residue Residue Residue Residue Residue Residue ¾ Residue
5 99.0 0 1.0 0 0 0 - 3.0 A C - - - - - A C5 99.0 0 1.0 0 0 0-3.0 A C-----A C
6 100.0 0 0 1.0 0 0 - 3.0 A B - - - A C6 100.0 0 0 1.0 0 0-3.0 A B---A C
7 100.0 0 0 0 0 0.4 HCI 3.0 A C - - - C c7 100.0 0 0 0 0 0.4 HCI 3.0 A C---C c
8 100.0 0.2 0 0 0 0 - 3.0 C C - - C c8 100.0 0.2 0 0 0 0-3.0 C C--C c
9 70.0 0.0 30.0 0 0 0 5.0 A A C C C - - A c9 70.0 0.0 30.0 0 0 0 5.0 A A C C C--A c
10 97.4 1.0 2.6 0 0 0 - 3.0 A A - - - - C A c 10 97.4 1.0 2.6 0 0 0-3.0 A A----C A c
[0111] [表 7] [0111] [Table 7]
Figure imgf000032_0002
Figure imgf000032_0002
[0112] 非除去対象物は、ポーラス Low-k膜、ポーラス Low-k膜のダメージ層及び銅である 。ポーラス Low- k膜のエッチングの程度は、テストパターン付きウェハーの断面形状 で知ることができる。除去対象物としては、レジスト残渣、反射防止膜 (BARC)残渣、 有機埋め込み材残渣、無機埋め込み材残渣、 Si含有残渣および銅表面の銅酸化物 およびこれを含有する変質層残渣(「銅表面残渣」と記載)が挙げられる。これらの除 去の程度を以下の記号で示した。 [0112] Non-removable objects are the porous low-k film, the damaged layer of the porous low-k film, and copper. The degree of etching of the porous low-k film can be determined from the cross-sectional shape of the wafer with the test pattern. Examples of removal targets include resist residues, antireflection coating (BARC) residues, organic embedding material residues, inorganic embedding material residues, Si-containing residues, copper oxides on copper surfaces, and altered layer residues containing these (“copper surface residues "). The extent of these removals is indicated by the following symbols.
[0113] ダメージ層を除去すると、わず力 量であるが、設計寸法に対して加工寸法が大き くなるため、これを除去しない場合が多い。ダメージ層が除去された場合には、ドライ エッチングにおける加工パターンの側壁の断面形状が明確に見えるようになるため、 ダメージ層が除去された力否力を判断することができる。ダメージ層が除去されてい ない場合を" A,,、約半分程度除去されている場合を" B"、完全に除去されている場 合を" C"で表した。  [0113] When the damaged layer is removed, the amount of force is rather strong, but since the machining dimension becomes larger than the design dimension, this is often not removed. When the damaged layer is removed, the cross-sectional shape of the side wall of the processed pattern in the dry etching becomes clearly visible, so that it is possible to determine the force / force of removing the damaged layer. The case where the damaged layer is not removed is represented by “A”, the case where about half of the layer is removed is represented by “B”, and the case where the damaged layer is completely removed is represented by “C”.
[0114] 銅の腐食は、腐食が進行しているものほど、表面が荒れて凹凸が明確になる。表面 が腐食していないものを" A"、腐食が見え始めてレ、るものを" B"、腐食して [MI凸が明 らカに見えて 、るものを" C"とした。  [0114] As the corrosion of copper progresses, the surface becomes rougher and the unevenness becomes clearer. “A” indicates that the surface is not corroded, “B” indicates that corrosion begins to appear, “B” indicates that corrosion has occurred, and “C” indicates that the MI convexity is clearly visible.
[0115] レジスト、
Figure imgf000032_0001
[0115] Resist,
Figure imgf000032_0001
されることにより発生するエッチング残渣 (「レジスト残渣」、「反射防止膜 (BARC)残渣 」、「有機埋め込み材」及び「無機埋め込み材残渣」とそれぞれ表示した)を 3分以内 に除去できている場合は" A"、 5分以内に除去できた場合は" B"、 5分以内に除去で きて 、な 、場合は" C"で示した。 Etching residue ("resist residue", "antireflection coating (BARC) residue" ”,“ Organic embedding material ”, and“ Inorganic embedding material residue ”) are removed within 3 minutes,“ A ”, when removed within 5 minutes,“ B ”, within 5 minutes If it can be removed, it is indicated by "C".
[0116] 銅表面残渣は、主にビアホール底に存在し、 Si含有残渣は、主にビアホール側壁 に残る場合が多い。これらが除去できた場合は" A"、除去できていないものを" C"で ¾kし 7こ。 [0116] The copper surface residue mainly exists at the bottom of the via hole, and the Si-containing residue often remains mainly on the side wall of the via hole. If these can be removed, “A”, and if not, “C” ¾k.
[0117] 断面形状がほぼ設計寸法どおりである場合は" A"、絶縁膜バリアやポーラス Low-k 膜に段差等が生じている場合は" C"とした。  [0117] When the cross-sectional shape was almost the same as the design dimension, "A" was designated, and when a step or the like was generated in the insulating film barrier or the porous low-k film, "C" was designated.
[0118] 比較例 5〜10に対して、実施例 24〜53では、いずれも銅表面残渣が除去でき、ダ メージ層も残した状態で、断面形状にも問題がない。実施例 33〜37では、酢酸およ び有機溶媒を多く含んでいるため、「レジスト残渣」、「反射防止膜 (BARC)残渣」、「 有機埋め込み材」を含むテストパターン付きウェハーのこれらを除去することも可能で ある。実施例 32、 33に示すように、酢酸の量が少ない場合は、極性の大きな有機溶 媒を混合することにより、除去時間を短くできる。  [0118] In contrast to Comparative Examples 5 to 10, in Examples 24 to 53, any copper surface residue can be removed and the damage layer remains, and there is no problem in the cross-sectional shape. In Examples 33 to 37, since they contain a lot of acetic acid and organic solvent, the wafers with test patterns including “resist residue”, “antireflection coating (BARC) residue”, and “organic filling material” were removed. It is also possible to do this. As shown in Examples 32 and 33, when the amount of acetic acid is small, the removal time can be shortened by mixing a highly polar organic solvent.
[0119] 実施例 38〜47では、 Si含有残渣を含んだテストパターン付きウェハーを処理した 場合の結果である。フッ化物としてフッ化水素 (HF)を添加することにより、これらが共 存した場合であっても、これらと銅表面残渣を有効に除去できる。実施例 49〜53は 、無機埋め込み材の残渣が残って 、るテストパターン付きウェハーを処理した場合の 結果である。酢酸とフッ化水素の量が十分あると、これらの残渣が存在した状況で、 銅表面残渣も除去できることがわ力る。  [0119] Examples 38 to 47 show the results when a wafer with a test pattern containing a Si-containing residue was processed. By adding hydrogen fluoride (HF) as a fluoride, even if they coexist, these and the copper surface residue can be effectively removed. Examples 49 to 53 are results when a wafer with a test pattern was processed with a residue of an inorganic embedding material remaining. A sufficient amount of acetic acid and hydrogen fluoride can be used to remove copper surface residues in the presence of these residues.
[0120] この実施例では、モノカルボン酸として、酢酸を用いた力 トリフルォロ酢酸を混合さ せた場合や用いた場合には、このような除去効果は増大することも確認した。蟻酸、 プロピオン酸、酪酸などでも同様の効果があることを確認している力 酢酸を主成分 にした場合力 Sもつとも扱 、やす 、。  [0120] In this example, it was also confirmed that such a removal effect increases when force trifluoroacetic acid using acetic acid is mixed or used as the monocarboxylic acid. The power that has been confirmed to have the same effect with formic acid, propionic acid, butyric acid, etc.
[0121] ノターンを形成したウェハーは、その作製方法の違いにより、メツキ処理時に形成さ れるグレインやドライエッチングやアツシングによるダメージ層など、非常に腐食しや すい銅配線部分が存在する場合がある。このような部分は、薬液処理により、表面の わずかな一部が亀裂状やピット状に腐食することがある。非共有電子をもつ酸素及 び z又は非共有電子をもつ窒素を有する非共有電子をもつ硫黄含有化合物は、こ のようなわず力な腐食を防ぐ効果がある (表 5、表 7)。硫黄含有化合物にカルボキシ ル基を含む場合には、銅表面残渣除去の効果も併せ持つ。 [0121] Depending on the manufacturing method, a wafer with a non-turn formed may have copper wiring portions that are very susceptible to corrosion, such as grains formed during the plating process, damage layers caused by dry etching or ashing. In such a part, a small part of the surface may corrode into cracks or pits by chemical treatment. Oxygen with unshared electrons Sulfur-containing compounds with unshared electrons and nitrogen with z or unshared electrons have the effect of preventing such undue corrosion (Tables 5 and 7). When the sulfur-containing compound contains a carboxyl group, it also has the effect of removing copper surface residues.

Claims

請求の範囲 The scope of the claims
[I] モノカルボン酸 0. 1〜80質量部と水 99. 9〜20質量部(水とモノカルボン酸の合計 力 S 100質量部)を含むドライエッチング及び Z又はアツシングによる損傷を受けた、 C u/low-k多層配線構造の銅酸化物を含む銅変質層の残渣除去液。  [I] Monocarboxylic acid 0.1 to 80 parts by weight and water 99.9 to 20 parts by weight (total force of water and monocarboxylic acid S 100 parts by weight) damaged by dry etching and Z or ashing, Residue removal liquid for copper altered layer containing copper oxide with Cu / low-k multilayer wiring structure.
[2] モノカルボン酸(0. 1〜80質量部)と水(99. 9〜20質量部)の合計量 100質量部に 対し、 0.1-25質量部の有機溶媒をさらに含む請求項 1に記載の残渣除去液。  [2] The organic solvent according to claim 1, further comprising 0.1-25 parts by mass of an organic solvent with respect to 100 parts by mass of the total amount of monocarboxylic acid (0.1-80 parts by mass) and water (99.9-20 parts by mass). The residue removal liquid as described.
[3] モノカルボン酸(2〜70質量部)と水(98〜30質量部)の合計量 100質量部に対し、[3] For a total amount of 100 parts by mass of monocarboxylic acid (2 to 70 parts by mass) and water (98 to 30 parts by mass),
0.005-5.5質量部のフッ素化合物をさらに含む請求項 1に記載の残渣除去液。 The residue removing liquid according to claim 1, further comprising 0.005-5.5 parts by mass of a fluorine compound.
[4] モノカルボン酸(2〜70質量部)と水(98〜30質量部)の合計量 100質量部に対し、[4] For a total amount of 100 parts by mass of monocarboxylic acid (2 to 70 parts by mass) and water (98 to 30 parts by mass),
0.005-5.5質量部のフッ素化合物および 0.1-25質量部の有機溶媒をさらに含む請求 項 1に記載の残渣除去液。 The residue removing solution according to claim 1, further comprising 0.005-5.5 parts by mass of a fluorine compound and 0.1-25 parts by mass of an organic solvent.
[5] さらにモノカルボン酸塩および Zまたは有機塩基を含む請求項 1〜4のいずれかに 記載の残渣除去液。 [5] The residue removing solution according to any one of claims 1 to 4, further comprising a monocarboxylate and Z or an organic base.
[6] さらに、非共有電子をもつ酸素及び Z又は非共有電子をもつ窒素を有する非共有 電子をもつ硫黄含有ィ匕合物を少なくとも 1種を含む、請求項 1〜5のいずれか〖こ記載 の残渣除去液。  [6] The composition according to any one of claims 1 to 5, further comprising at least one sulfur-containing compound having an unshared electron having oxygen and Z or nitrogen having an unshared electron and an unshared electron. Residue removing liquid as described.
[7] さらに、界面活性剤を含む請求項 1〜6のいずれかに記載の残渣除去液。  [7] The residue removing liquid according to any one of claims 1 to 6, further comprising a surfactant.
[8] さらに、防食剤を含む請求項 1〜7のいずれか〖こ記載の残渣除去液。  [8] The residue removing solution according to any one of claims 1 to 7, further comprising an anticorrosive.
[9] モノカルボン酸力 ギ酸、酢酸、プロピオン酸、酪酸、トリフルォロ酢酸力 なる群から 選ばれる少なくとも一つである請求項 1〜8のいずれかに記載の残渣除去液。  [9] The residue removing liquid according to any one of [1] to [8], which is at least one selected from the group consisting of formic acid, acetic acid, propionic acid, butyric acid, and trifluoroacetic acid.
[10] フッ素化合物力 フッ化水素及びフッ化アンモニゥムカ なる群力 選ばれる少なくと も一つである請求項 3または 4に記載の残渣除去液。 [10] The residue-removing solution according to claim 3 or 4, which is at least one selected from the group power of fluorine compound power and hydrogen fluoride and ammonium fluoride.
[I I] 有機溶媒が、アルコール類、エステル類、アミド類、エーテル類、スルホン類およびス ルホキシド類力 なる群力 選ばれる少なくとも一つである請求項 2または 4に記載の 残渣除去液。  [I I] The residue removal solution according to claim 2 or 4, wherein the organic solvent is at least one selected from the group forces of alcohols, esters, amides, ethers, sulfones and sulfoxides.
[12] 有機溶媒が炭酸プロピレンである請求項 11に記載の残渣除去液。  12. The residue removing solution according to claim 11, wherein the organic solvent is propylene carbonate.
[13] 有機溶媒がジメチルホルムアミド (DMF)である請求項 11に記載の残渣除去液。  [13] The residue removing solution according to [11], wherein the organic solvent is dimethylformamide (DMF).
[14] 非共有電子をもつ酸素及び Z又は非共有電子をもつ窒素を有する非共有電子をも つ硫黄含有化合物が、スルフイド類、メルカブタン類、チォカルボン酸類、チオアセト アミド類、チォゥレア類、チアジアゾール類、テトラゾール類、トリアジン類、チアゾー ル類、チォフェン類、ピリミジン類、プリン類、チアゾリン類およびチアゾリジン類からな る群力 選ばれる少なくとも 1種である請求項 6に記載の残渣除去液。 [14] Oxygen with unshared electron and Z or nitrogen with unshared electron Sulfur-containing compounds from sulfides, mercabtans, thiocarboxylic acids, thioacetamides, thioureas, thiadiazoles, tetrazoles, triazines, thiazoles, thiophenes, pyrimidines, purines, thiazolines and thiazolidines The residue removing liquid according to claim 6, wherein the group removing force is at least one selected.
[15] 非共有電子をもつ酸素及び Z又は非共有電子をもつ窒素を有する非共有電子をも つ硫黄含有化合物が、 2—アミノー 2—チアゾリン、メルカプト酢酸、 3-メルカプトプロ ピオン酸、チォ乳酸及びチオリンゴ酸力 なる群力 選ばれる少なくとも 1種である請 求項 14に記載の残渣除去液。 [15] Sulfur-containing compounds with oxygen with unshared electrons and Z or nitrogen with unshared electrons and with unshared electrons are 2-amino-2-thiazoline, mercaptoacetic acid, 3-mercaptopropionic acid, thiolactic acid. The residue removal solution according to claim 14, which is at least one selected from the group power of thiomalic acid power.
[16] 防食剤が、ポリカルボン酸である請求項 8に記載の残渣除去液。 16. The residue removing liquid according to claim 8, wherein the anticorrosive is a polycarboxylic acid.
[17] ポリカルボン酸力 シユウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、リンゴ酸、 クェン酸及び酒石酸力もなる群力 選ばれる少なくとも 1種である請求項 16に記載の 残渣除去液。 [17] The residue-removing solution according to claim 16, which is at least one selected from the group powers including polycarboxylic acid power, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, malic acid, citrate and tartaric acid.
[18] 請求項 1〜17のいずれかに記載の除去液と、表面上にドライエッチング及び Z又は アツシングによる損傷を受けた、 Cu/low-k多層配線構造の銅酸化物を含む銅変質 層を有する除去処理対象物とを接触させることにより、該銅変質層の残渣を除去する 方法。  [18] A copper alteration layer containing the removal liquid according to any one of claims 1 to 17 and a copper oxide having a Cu / low-k multilayer wiring structure, which is damaged by dry etching and Z or ashing on the surface. A method of removing a residue of the copper-altered layer by bringing it into contact with an object to be removed.
[19] 請求項 18の方法によって得られた除去処理物。  [19] The removal-treated product obtained by the method of claim 18.
PCT/JP2005/016652 2004-09-15 2005-09-09 Liquid and method for removing deteriorated layer of copper containing copper oxide WO2006030714A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004268396 2004-09-15
JP2004-268396 2004-09-15
JP2005-160442 2005-05-31
JP2005160442A JP2006114872A (en) 2004-09-15 2005-05-31 Removing liquid and removing method of copper deteriorated layer containing copper oxide

Publications (1)

Publication Number Publication Date
WO2006030714A1 true WO2006030714A1 (en) 2006-03-23

Family

ID=36059967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/016652 WO2006030714A1 (en) 2004-09-15 2005-09-09 Liquid and method for removing deteriorated layer of copper containing copper oxide

Country Status (3)

Country Link
JP (1) JP2006114872A (en)
TW (1) TW200620446A (en)
WO (1) WO2006030714A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016157714A (en) * 2015-02-23 2016-09-01 富士フイルム株式会社 Etchant, etching method and manufacturing method of semiconductor substrate product
WO2017068849A1 (en) * 2015-10-23 2017-04-27 株式会社Adeka Etching fluid composition and etching method
CN111485263A (en) * 2019-01-25 2020-08-04 上海新阳半导体材料股份有限公司 Lead frame deoxidant, preparation method and application thereof

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007140193A1 (en) * 2006-05-25 2007-12-06 Honeywell International Inc. Selective tantalum carbide etchant, methods of production and uses thereof
JP5159066B2 (en) * 2006-08-24 2013-03-06 ダイキン工業株式会社 Residue removing liquid after semiconductor dry process and residue removing method using the same
WO2008023753A1 (en) * 2006-08-24 2008-02-28 Daikin Industries, Ltd. Solution for removing residue after semiconductor dry process and method of removing the residue using the same
KR101101104B1 (en) * 2006-08-24 2012-01-03 다이킨 고교 가부시키가이샤 Solution for removing residue after semiconductor dry process and method of removing the residue using the same
JP2008210990A (en) * 2007-02-26 2008-09-11 Fujifilm Corp Cleaning agent for semiconductor device, and cleaning method of semiconductor device using the same
JP2011016975A (en) * 2009-06-12 2011-01-27 Asahi Kasei Corp Etchant for copper oxide and etching method for copper oxide using the same
TWI561615B (en) 2012-07-24 2016-12-11 Ltc Co Ltd Composition for removal and prevention of formation of oxide on surface of metal wiring
JP6029419B2 (en) * 2012-11-02 2016-11-24 ダイキン工業株式会社 Residue removing liquid after semiconductor dry process and residue removing method using the same
JP6468716B2 (en) * 2014-04-04 2019-02-13 東京応化工業株式会社 Lithographic cleaning liquid and substrate etching method
KR102379127B1 (en) * 2022-01-05 2022-03-25 (주)뉴이스트 Cleaning Composition for Copper Removal, and Method of Cleaning Semiconductor Manufacturing Equipment Using Cleaning Composition for Copper Removal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002299300A (en) * 2001-03-30 2002-10-11 Kaijo Corp Substrate treatment method
JP2003512741A (en) * 1999-10-15 2003-04-02 アーチ・スペシャルティ・ケミカルズ・インコーポレイテッド Novel composition for selective etching of oxides on metals

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003512741A (en) * 1999-10-15 2003-04-02 アーチ・スペシャルティ・ケミカルズ・インコーポレイテッド Novel composition for selective etching of oxides on metals
JP2002299300A (en) * 2001-03-30 2002-10-11 Kaijo Corp Substrate treatment method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016157714A (en) * 2015-02-23 2016-09-01 富士フイルム株式会社 Etchant, etching method and manufacturing method of semiconductor substrate product
WO2017068849A1 (en) * 2015-10-23 2017-04-27 株式会社Adeka Etching fluid composition and etching method
JP2017084873A (en) * 2015-10-23 2017-05-18 株式会社Adeka Etchant composition and etching method
CN108352318A (en) * 2015-10-23 2018-07-31 株式会社Adeka Etchant and engraving method
CN108352318B (en) * 2015-10-23 2022-02-18 株式会社Adeka Etching liquid composition and etching method
CN111485263A (en) * 2019-01-25 2020-08-04 上海新阳半导体材料股份有限公司 Lead frame deoxidant, preparation method and application thereof
CN111485263B (en) * 2019-01-25 2023-02-17 上海新阳半导体材料股份有限公司 Lead frame deoxidant, preparation method and application thereof

Also Published As

Publication number Publication date
TW200620446A (en) 2006-06-16
JP2006114872A (en) 2006-04-27

Similar Documents

Publication Publication Date Title
WO2006030714A1 (en) Liquid and method for removing deteriorated layer of copper containing copper oxide
US8759268B2 (en) Solution for removing residue after semiconductor dry process and method of removing the residue using the same
JP4434950B2 (en) Stripping solution
KR100685738B1 (en) Removing composition for an insulation material, method of removing an insulation layer and method of recycling a substrate using the same
KR102405637B1 (en) Semiconductor element cleaning solution that suppresses damage to tungsten-containing materials, and method for cleaning semiconductor element using same
JP4918939B2 (en) Residue removing liquid after semiconductor dry process and residue removing method using the same
TWI668305B (en) Cleaning liquid containing alkaline earth metal for cleaning semiconductor element and method for cleaning semiconductor element using the cleaning liquid
WO2008050785A1 (en) Liquid composition for removing photoresist residue and polymer residue
JP5146445B2 (en) Cleaning composition and method for manufacturing semiconductor device
JP4776191B2 (en) Photoresist residue and polymer residue removal composition, and residue removal method using the same
JP7184044B2 (en) Cleaning liquid, cleaning method, and semiconductor wafer manufacturing method
TWI652747B (en) Cleaning liquid for semiconductor element capable of suppressing damage of tantalum-containing material and method for cleaning semiconductor element using the cleaning liquid
US20060091355A1 (en) Solution and method for removing ashing residue in Cu/low-k multilevel interconnection structure
JP4766114B2 (en) Residue removing liquid after semiconductor dry process and residue removing method using the same
JP2008516419A (en) Use of ozone for processing wafer-like objects
JP5159066B2 (en) Residue removing liquid after semiconductor dry process and residue removing method using the same
JP5278434B2 (en) Residue removing liquid after semiconductor dry process and residue removing method using the same
JP6217659B2 (en) Residue removing liquid after semiconductor dry process and residue removing method using the same
JP6029419B2 (en) Residue removing liquid after semiconductor dry process and residue removing method using the same
JP2005217114A (en) Residue cleaning agent for copper wiring
TW201827585A (en) Cleaning formulations for removing residues on semiconductor substrates

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase