WO2008023753A1 - Solution for removing residue after semiconductor dry process and method of removing the residue using the same - Google Patents

Solution for removing residue after semiconductor dry process and method of removing the residue using the same Download PDF

Info

Publication number
WO2008023753A1
WO2008023753A1 PCT/JP2007/066336 JP2007066336W WO2008023753A1 WO 2008023753 A1 WO2008023753 A1 WO 2008023753A1 JP 2007066336 W JP2007066336 W JP 2007066336W WO 2008023753 A1 WO2008023753 A1 WO 2008023753A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
residue
solution according
film
removing solution
Prior art date
Application number
PCT/JP2007/066336
Other languages
French (fr)
Japanese (ja)
Inventor
Shingo Nakamura
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to JP2008530947A priority Critical patent/JP4766114B2/en
Publication of WO2008023753A1 publication Critical patent/WO2008023753A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/0206Cleaning during device manufacture during, before or after processing of insulating layers
    • H01L21/02063Cleaning during device manufacture during, before or after processing of insulating layers the processing being the formation of vias or contact holes
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/22Organic compounds
    • C11D7/26Organic compounds containing oxygen
    • C11D7/265Carboxylic acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/22Organic compounds
    • C11D7/32Organic compounds containing nitrogen
    • C11D7/3209Amines or imines with one to four nitrogen atoms; Quaternized amines
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/42Stripping or agents therefor
    • G03F7/422Stripping or agents therefor using liquids only
    • G03F7/423Stripping or agents therefor using liquids only containing mineral acids or salts thereof, containing mineral oxidizing substances, e.g. peroxy compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76814Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics post-treatment or after-treatment, e.g. cleaning or removal of oxides on underlying conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53228Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being copper
    • H01L23/53238Additional layers associated with copper layers, e.g. adhesion, barrier, cladding layers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D2111/00Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
    • C11D2111/10Objects to be cleaned
    • C11D2111/14Hard surfaces
    • C11D2111/22Electronic devices, e.g. PCBs or semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a chemical solution for removing residues formed during dry etching and / or ashing (ashing) in a semiconductor device manufacturing process, and a semiconductor device that removes these residues using the chemical solution It relates to the manufacturing method. In particular, it relates to residue removal solutions used in the manufacture of Cu / Low-k multilayer wiring structures.
  • semiconductor devices having an Al / SiO multilayer wiring structure that uses A1 or A1 alloy as a wiring material and a SiO film as an interlayer insulating film have been mainly manufactured.
  • low-k film low dielectric constant film
  • Many semiconductor devices with Cu / Low-k multi-layer wiring structure using these are manufactured.
  • Cu / Low-k multilayer wiring structures are processed by a method called damascene.
  • a trench (trench) or hole (via hole) is processed in an interlayer insulating film substrate, and a wiring material such as Cu is embedded in the additional portion to form a wiring structure.
  • trenches and via holes for wiring are continuously formed on an interlayer insulating film substrate made of a low-k film or the like, and then a wiring material such as Cu is embedded.
  • a via hole is formed first, followed by a via first process in which a trench for wiring is formed.
  • a trench for wiring is first formed, and then a trench for forming a via hole is formed.
  • a via hole is formed in an interlayer insulating film substrate by dry etching, and then a filling agent is buried and planarized. Then, lithography for forming the trench is performed and dry etching is performed. Thereafter, the resist and the filling agent that are no longer needed are removed from the substrate on which the trenches and via holes are formed by ashing or the like. [0006] However, even after this process, unnecessary substances that cannot be completely removed (hereinafter referred to as "residues after the dry process”) remain on the substrate.
  • Cu which is a wiring material
  • a low-k film of an interlayer insulating film may be damaged by a dry process using plasma such as dry etching or ashing.
  • plasma such as dry etching or ashing.
  • a Cu oxide film is formed on the surface of the Cu metal wiring.
  • the low-k film is often damaged by the dry process. When washed with a polymer stripping solution, it is easily etched to cause pattern dimension changes. Furthermore, the semiconductor device cleaning apparatus is changing from a batch type apparatus to a single wafer type apparatus. For this reason, it has become difficult to completely remove the residue after the drive process, which adheres strongly to the Cu / Low-k structure, in a short time by the conventional method using a stripping solution. In addition, although corrosion of the Cu butter due to cleaning is not observed, cracks are often generated along the grain boundaries on the Cu surface when observed in detail. These small Cu surface cracks are likely to adversely affect the performance of force devices. In addition, the growth of Cu oxide film due to exposure of the wafers processed after the cleaning process to the atmosphere also causes device failures.
  • the present invention can suppress cracks on the Cu surface without damaging the Cu and low-k films, and can remove residues after the dry process in a short time.
  • the purpose is to provide a chemical solution. It is another object of the present invention to provide a semiconductor device manufacturing method using the same.
  • Patent Document 1 JP-A-11 316464
  • Patent Document 2 Japanese Patent Laid-Open No. 2004-94203
  • Patent Document 3 Japanese Patent Laid-Open No. 2005-347587
  • Patent Document 4 Japanese Unexamined Patent Publication No. 2006-11297
  • the inventor uses an aqueous solution containing a strong acid capable of forming a complex or chelate with Cu, a polycarboxylic acid salt, and water as basic compositions without damaging the Cu and low-k films. ⁇ Suppresses cracks on the Cu surface and removes residues after the dry process that adheres strongly in a short time. I found that I can leave. Based on this knowledge, further studies have been made and the present invention has been completed.
  • the present invention provides the following removal solution for residues present in a semiconductor substrate after dry etching and / or ashing, and a method for manufacturing a semiconductor device using the residue removal solution.
  • Item 1 A solution for removing residues present on a semiconductor substrate after dry etching and / or ashing, comprising a strong acid capable of forming a complex or chelate with Cu, a polycarboxylate, and water. Residue removing liquid.
  • Item 2 The residue removing solution according to Item 1, which is a Bronsted acid having a strong acidity S capable of forming a complex or chelate with Cu and a pKa at 25 ° C of 3 or less.
  • Item 3 Strong acidity capable of forming a complex or chelate with Cu. At least one selected from the group consisting of trifluoroacetic acid, hydrobromic acid, perchloric acid, sulfuric acid, oxalic acid, malonic acid, and citrate. Item 3. A residue removal solution according to item 1 or 2.
  • Item 4 Polycarboxylic acid salt: oxalic acid, malonic acid, succinic acid, gnoretaric acid, adipic acid
  • Item 5 The concentration of the strong acid capable of forming a complex or chelate with Cu in the residue removing solution is 0.;! To 5% by weight, and the concentration of the polycarboxylate is 0.;! To 20% by weight.
  • the residue removing solution according to any one of Items 4 to 4;
  • Item 6 The residue removing solution according to any one of Items 1 to 5, wherein the pH is 4 to 6.5.
  • Item 7 The residue removing solution according to any one of Items 5 to 5, further containing an organic compound.
  • Item 8. The organic compound is at least one selected from the group consisting of polycarbonyls, hydroxyketones, esters, C3 or higher alcohols, C3 or higher aldehydes, polyethers, and sulfones.
  • Item 8. A residue removal solution according to Item 7.
  • Item 9 The residue removing solution according to Item 7 or 8, wherein the pH is 4 to 7.
  • Item 10 The concentration of the strong acid capable of forming a complex or chelate with Cu in the residue removing solution is 0. Item 7-9, which is 5% by weight, the concentration of polycarboxylate is 0.;! ⁇ 20% by weight, and the concentration of organic compound is 0.5-60% by weight. Residue removal solution.
  • Item 11 The residue removing solution according to any one of Items 10 to 10, further containing a fluorine compound.
  • Item 12 The compound power according to Item 11, which is hydrogen fluoride or fluoride salt of ammonia, hydroxylamine, primary, secondary or tertiary amine, quaternary ammonium or polyamine. Residue removal solution.
  • Item 13 The residue removing solution according to any one of Items 1 to 12, further comprising a Cu crack inhibitor and / or a Cu antioxidant.
  • Item 14 A method for removing residues present on a semiconductor substrate after dry etching and / or ashing, wherein the semiconductor substrate after dry etching and / or ashing is selected from the items 1 to 13; A method for removing residues, comprising contacting with a residue removing solution.
  • Item 15 The residue removing method according to Item 14, which is a semiconductor substrate having Cu as a wiring material and having a low dielectric constant film (Low-k film) as an interlayer insulating material.
  • a method for manufacturing a semiconductor device comprising: (1) dry etching and / or etching a semiconductor substrate having Cu as a wiring material and having a low dielectric constant film (Low-k film) as an interlayer insulating material.
  • a manufacturing method comprising: a step of ashing; and (2) bringing the semiconductor substrate treated in (1) above into contact with the residue removing solution according to any one of Items;!
  • the residue removing solution of the present invention is characterized by containing, as basic compositions, a strong acid capable of forming a complex or chelate with Cu (hereinafter also referred to as “strong acid”), a polycarboxylate, and water. Furthermore, by adding organic compounds, surfactants, fluorine compounds, crack inhibitors, antioxidants, etc., it is possible to add more excellent functions.
  • the target of the residue removing solution of the present invention is mainly a Cu oxide film and a residue after the dry process.
  • Cu oxide film As the Cu oxide film, Cu oxide formed during dry etching and / or ashing, or when the metal is naturally oxidized when exposed to the atmosphere due to movement between processes, etc.
  • the natural oxide film of Cu that has been made is listed. These compositions, CuO, is rich Cu 2 0, Cu (OH) and the like.
  • Residues after the dry pro-process are Cu oxide films on the Cu surface of the Cu / Low-k multilayer wiring structure and / or dry on the wafer formed using Cu as the conductive metal. It consists of a modified Cu material containing Cu oxide formed by etching and / or ashing. This residue adheres mainly to the Cu wiring on which the pattern is formed, to the side wall of the pattern formed with an interlayer insulating film such as a low-k film, and to the surface of the interlayer insulating film substrate.
  • the residue formed on Cu is an altered residue composed of a mixture of Cu oxide and its Cu oxidized and / or fluorinated by dry etching and / or ashing. The residue has a high electrical resistance and forms an insulating layer close to Cu oxide.
  • Residue adhering to the side wall of the pattern formed by the interlayer insulating film such as low-k film is dry etching of stopper film such as SiN, low-k film, filling agent, etc. Sputtered by, and may contain Si or organic matter. Residues on the surface of the interlayer insulating film substrate can be removed by dry etching in addition to organic substances such as resists, anti-reflective films and filling agents that could not be removed by ashing, and residues in processes using inorganic masks. It can be inferred that it contains some Si and Cu alterations coming from the bottom of the holes and trenches.
  • the interlayer insulating film mainly means a low-k film (low dielectric constant film), but also includes, for example, a silicon oxide film (FSG film) containing fluorine. .
  • Ratio of interlayer insulation film The dielectric constant is usually greater than 1 and about 4 or less, preferably about 3 or less, more preferably about 2.8 or less, and even more preferably about 2.6 or less.
  • Low-k films are mainly produced by coating or plasma CVD.
  • LKD series (trade name, manufactured by JSR), HSG series (trade name, manufactured by Hitachi Chemical), Nanoglass (trade name, manufactured by Honeywell), IPS (trade name) , Catalyst Chemicals), ZM (trade name, Dow Corning), XLK (trade name, Dow Coming), FOx (trade name, Dow Corning), Orion (trade name, Tricon), NCS (Trade name, manufactured by Catalyst Kasei), SiLK (trade name, manufactured by Dow Coming), etc.
  • inorganic SOG film HSG: hydrogenated silsesquioxane film
  • organic SOG film MSQ film: methyl silsesquioxane film
  • poly Coating film organic polymer film) containing allyl ether as the main component
  • Black Diamond (trade name, manufactured by Applied Materials), Coral (trade name, manufactured by Novellus), Aurora (trade name, manufactured by ASM)
  • the resist includes, but is not limited to, KrF (krypton F), ArF, F resist and the like.
  • the embedding agent is an organic compound that also functions as an antireflection film.
  • a strong acid capable of forming a complex or chelate with Cu is a Bronsted acid having a pKa at 25 ° C of 3 or less (preferably 2 or less, more preferably 0 to 2), and a hydrogen ion H + And a structure (part) that forms a chelate or complex with Cu, and has the function of removing residues after the dry process.
  • Examples monochrome mouth acid, dichloroacetic acid, trichloroacetic port acetate, a - black port butyrate, beta black port butyrate, gamma black port butyrate, Monofuruoro acetate, Jifuruoro acetate, halogen-containing carboxylic acids such as Torifuruoro acetate, Examples thereof include inorganic acids such as hydrobromic acid, perchloric acid and sulfuric acid, and polycarboxylic acids such as oxalic acid, malonic acid, tartaric acid and citrate.
  • oxalic acid, malonic acid, citrate, and trifluoroacetic acid are preferred, with oxalic acid, malonic acid, citrate, trifluoroacetic acid, hydrobromic acid, and perchloric acid being preferred.
  • the concentration of the strong acid in the residue removing solution can be appropriately selected according to the amount and quality of the residue after the dry process to be removed.
  • the concentration of the strong acid is generally about 0.;! To 10% by weight, preferably 0.;! To 5% by weight, and more preferably 0.;! To 3% by weight. These The lower the concentration, the more the residue after the dry process is removed, and the higher the concentration, the easier the removal of the residue. 5% by weight or less is desirable from the viewpoint of cost effectiveness.
  • the polycarboxylate has a function of reducing damage to the low-k film, interacting with a strong acid, preventing corrosion of Cu, and removing a residue after a dry process containing Cu.
  • the amine salt of polycarboxylic acid is highly effective in suppressing cracks on the Cu surface.
  • polycarboxylate examples include oxalic acid, malonic acid, succinic acid, dartaric acid, adipic acid, malic acid, tartaric acid, diammonium hydrogen citrate, ammonium dihydrogen citrate, kenic acid, and the like. And salts formed from bases such as ammonia, hydroxylamine, primary, secondary or tertiary amine, quaternary ammonium, and polyamine.
  • bases such as ammonia, hydroxylamine, primary, secondary or tertiary amine, quaternary ammonium, and polyamine.
  • polycarboxylic acids such as malonic acid, diammonium hydrogen citrate, dihydrogen quanate, and kenic acid, and ammonia, primary, secondary or tertiary amines, quaternary ammonia, polyamines, etc.
  • a salt formed from the base examples include oxalic acid, malonic acid, succinic acid, dartaric acid, adipic acid, mal
  • malonic acid ammonium dihydrogen ammonium, ammonium dihydrogen ammonium, or ammonium salt of polycarboxylic acid such as citrate, methylamine salt, ethylamine salt, propylamine salt, butyramine Salt, dimethylamine salt, jetylamine salt, trimethyloleamine salt, triethylamine salt, propanediamine salt, triethylenetetramine salt, tetramethylammonium hydroxide salt, choline salt and the like.
  • polycarboxylic acid such as citrate, methylamine salt, ethylamine salt, propylamine salt, butyramine Salt, dimethylamine salt, jetylamine salt, trimethyloleamine salt, triethylamine salt, propanediamine salt, triethylenetetramine salt, tetramethylammonium hydroxide salt, choline salt and the like.
  • malonic acid ammonium salt methylamine salt, ethylamine salt, tetramethylammonium hydroxide salt or choline salt
  • methylammine salt, ethyllamine salt tetramethylammonium hydroxide hydrogen diammonium citrate salt Or dicholine ammonium salt
  • ammonium salt, methylamine salt, ethylamine salt, tetramethyl hydroxide Ammonium salt or choline salt is most preferred.
  • the polycarboxylate may be used in the form of crystals, or an aqueous solution obtained by mixing and neutralizing the above acid and base in water.
  • concentration of the polycarboxylate in the residue removal solution is generally from 0.;! To 20% by weight, preferably from 0.5 to; 10% by weight, more preferably from! To 5% by weight.
  • the molar ratio of strong acid (strong acid / polycarboxylic acid salt) that can form a salt is preferably about 0.3 to 1, and more preferably 0.35 to 0.8. If this ratio is less than 0.3, Cu will be corroded, and if it exceeds 1, the ability to remove residues after the dry process tends to decrease.
  • An organic compound (particularly a water-soluble organic compound) may be further added to the residue removing solution of the present invention.
  • This organic compound reduces the corrosion of Cu by strong acid, and after the dry process such as the surface residue of the interlayer insulation film substrate that adheres to the sidewall of the pattern formed by the interlayer insulation film such as low-k film The effect of removing the residue is added.
  • organic compounds include hydrophilic or water-soluble neutral organic compounds such as polycarbonyls, hydroxyketones, esters, C3 or higher alcohols, C3 or higher aldehydes, and polyethers. And sulfones are preferred.
  • polycarbonyls examples include 2,3 butanedione, 2,4 pentadione, methylglyoxal, acetylacetone, and the like.
  • 2, 3 butaneji examples include 2, 3 butaneji
  • hydroxyketones include acetoin, acetone alcohol, diacetone alcohol and the like. Of these, acetoin and acetone alcohol are preferred.
  • esters include monocarboxylic acid esters such as methyl acetate, ethyl acetate, methyl propionate, and ethyl propionate; dimethyl oxalate, cetyl oxalate, dimethyl malonate, jetyl malonate, and succinic acid.
  • Polycarboxylic acid esters such as dimethyl; Carbonic acid esters such as dimethyl carbonate and jetyl carbonate; Cyclic esters such as propylene carbonate, ethylene carbonate, and butyrolatatane; Keto acid esters such as methyl acetate acetate and ethyl acetate, methyl lactate, ethyl lactate, Oxyesters such as butyl lactate; Ethylene glycol monomethenoate etherate acetate, Ethylene glycol monomethinoate noate acetate, Ethylene glycol nolemono-n-butinoleethenoate acetate, Diethylene glycol monomethyl acetate Ruasetato, acetate diethylene glycol monomethyl E chill ether, acetic acid diethylene glycol Honoré mono - n - butyl Honoré ether Honoré ethyleneglycidyl Kono registration ⁇ diacetate (ethylene diacetate), propylene glycol monomethyl ether
  • C3 or higher alcohols include monoalcohols having a hydrophobic group such as a long chain (eg, C3-6) alkynole group such as isopropyl alcohol, 1-butanol, tert-butyl alcohol, and isobutyl alcohol; ethylene glycol Diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, poly (propylene glycol), glycerin, 2-amino-2-ethyl-1, 3-propanediol, 2-amino -2-methyl-1,3-propanediol, 1,2-cyclohexanediol, 2,2-dimethyl-1,3-propanediol, 2,5-dimethyleno-2,5-hexanediol, 2, 3-naphthalenediol, 1,2-butanediol, 1,3-butanediol, 1,4
  • Preferable examples include isopropylenoleanolone, 1-butanolenore, isobutinoleanole, diethyleneglycol, dipropylene glycol, triethyleneglycol, tetraethylenedaricol and the like.
  • C3 or higher aldehydes examples include propionaldehyde, butanal, and pen. Tanal and the like can be mentioned.
  • Polyethers include, for example, dimethoxymethane, diethoxymethane, dimethoxyethane, dimethoxypropane, ethylene glyconoresin methinoleatenore, ethyleneglycoleno methinoreino enoenoate, ethylene glycono lesino oleore.
  • Etherenole ethylene glycolenoresi-n-butyl ether, diethylene glycol dimethyl ether, diethylene glycol methino ethino ree eno enore, diethylene glycol ole techno eno eno enore, diethylene glycol noreno tere-n-butyl ether, triethylene glycol dimethyl ether, triethylene glycol eno Reethino Remethino Reethenore, Triethylene Glycono Resetino Reethenore, Tetraethylene Glycono Resin Metino Reethenore, Tetraethylene Glycol Bruno Leger Chino les ether Honoré, like polyethylene Chi glycol dimethyl ether.
  • Preferable examples include ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, diethylene glycol dimethylolate nore, triethyleneglycolino methinoleatenole, tetraethyleneglycol dimethyl ether and the like.
  • sulfones examples include sulfolane and dimethyl sulfone.
  • the concentration of the organic compound in the residue removing solution is generally 60% by weight or less, preferably 0.5 to 60% by weight, more preferably 2 to 40% by weight, particularly preferably 3 to 30% by weight. It is.
  • a fluorine compound may be further added to the residue removing solution, which increases the effect of removing residues adhering to the side wall of the pattern formed by the interlayer insulating film such as the low-k film. It is.
  • This residue is a result of dry etching of a stopper film such as SiN, a low-k film, a filling agent, etc. due to the power of the Cu-modified material, and may contain Si or organic matter! / is there.
  • Si and organic substances are contained in the residue, Cu oxide can be removed without adding a fluorine compound if Cu oxide is the main constituent.
  • interlayer insulation films such as low-k films that have been damaged by plasma during the dry process are easily etched by fluorine compounds and may not be processed as designed. For this reason, it is preferable to add a small amount of a fluorine compound in order to add a higher removal effect when the residue cannot be removed sufficiently or when it remains uncertain whether it has been removed or not.
  • Examples of the fluorine compound include hydrogen fluoride or fluoride salts such as ammonia, hydroxylamine, primary, secondary or tertiary amine, quaternary ammonium or polyamine. It is done. Specifically, hydrogen fluoride, ammonium fluoride, ammonium monohydrogen difluoride, methylamine fluoride, fluorinated tyramine, decylamine fluoride, triethylenetetramine fluoride, tetramethylammonium fluoride and the like are preferable. One or two or more fluorine compounds may be used. As one embodiment of the present invention, for example, an aqueous ammonium fluoride solution or dilute hydrofluoric acid (50% by weight aqueous solution) can be suitably used.
  • the concentration of the fluorine compound in the residue removal solution is appropriately selected according to the type and amount of the interlayer insulating film such as the silicon-containing film and the low-k film and the interlayer insulating film damaged by the dry process. can do.
  • the concentration of the fluorine compound is 5% by weight or less, preferably 0.001 to 5% by weight, and more preferably 0.01 to 3% by weight.
  • the residue removal solution should not contain a fluorine compound or contain a small amount (1 wt% or less). Is preferred. If the concentration is less than 0.001% by weight, the effect of removing residues may be reduced.
  • a surfactant may be further added to the residue removing solution of the present invention. This is because the surfactant increases the wettability with respect to the hydrophobic interlayer insulating film and allows the chemical solution to spread uniformly according to the pattern shape.
  • the type is not particularly limited, such as a cationic system, an anionic system, or a nonionic system.
  • the concentration of surfactant in the residue removal solution is generally 0.00001. -5% by weight, preferably 0.0001-3% by weight. If it is less than 0.00001% by weight, the surface activity effect is small. If it is more than 5% by weight, the effect is not changed.
  • Anti-cracking agent may be further added to the residue removing solution of the present invention.
  • Anti-cracking agents include sulfur-containing compounds with unshared electrons having oxygen with unshared electrons and / or nitrogen with unshared electrons, sulfides, mercabtans, thiocarboxylic acids, thioacetamides, thiourea. And thiadiazoles, tetrazoles, triazines, thiazoles, thiophenes, pyrimidines, purines, thiazolines and thiazolidines. Specifically, the following compounds can be preferably exemplified.
  • Examples of the sulfides include thiodiglycol, 2,2'-thiodiacetic acid, 3,3'-dithiodipropionic acid, and the like.
  • mercaptans examples include mercaptoacetic acid, thiomalic acid, thiolactic acid, 3-mercaptopropionic acid, aminothiophenol, 2-mercaptoethanol, 3-mercapto-1, 2-propanediol, and the like.
  • thiocarboxylic acids examples include thiolacetic acid, 3-acetylethylthio-2-methylpropanoic acid, and the like.
  • Examples of the thioacetamides include thioacetamide.
  • thioureas examples include thiourea, thiocarbohydrazide, guanylthiourea, ethylenethiourea, malonylthiourea, and the like.
  • thiadiazoles examples include 2,5-dimercapto-1,3,4-thiadiazole, 2-thioacetic acid-5-mercapto-1,3,4-thiadiazole, 2,5-dithioacetic acid-1 , 3,4-Chiasia zone.
  • Examples of the tetrazole include 1-methyl-5-mercapto-tetrazole and the like.
  • triazines examples include 2,4,6-trimercapto-S-triazine.
  • thiazoles examples include 4-thiazolecarboxylic acid, 2-aminothiazole and the like.
  • thiophenes examples include 2,5-thiophenedicarboxylic acid and 3-thiophenmalone. Acid, 2-thiophenecarboxylic acid and the like.
  • the pyrimidines include, for example, 2-thiobarbituric acid, 2-thiocytosine, thiouracil.
  • purines examples include 2,5-dithiopurine and 6-mercaptopurine.
  • thiazolines examples include 2-amino-2-thiazoline, 2-thiazoline-2-thiol, and the like.
  • thiazolidines examples include 2,4-thiazolidinedione, 2-thio-4-thiazolidone,
  • Examples include 2-imino-4-thiazolidinone.
  • the anti-cracking agent can be used supplementarily, and its concentration is, for example, 0.0
  • An antioxidant may be further added to the residue removing solution of the present invention.
  • examples of the antioxidant include benzotriazole.
  • the concentration is, for example, 0.00001-3 weight
  • % Preferably 0.0005 to 1% by weight.
  • the ratio of water contained in the residue removing solution of the present invention is usually 40 to 99.5 weight in the residue removing solution.
  • % Preferably about 70 to 99% by weight, and is determined by the force determined according to the amount (concentration) of components other than water.
  • the pH of the removing solution of the present invention is 4-7. If the pH is less than 4, the surface of the low-k film damaged by the dry process is likely to be altered, and if the pH is more than 7, Cu is easily corroded.
  • the pH is preferably 4 to 6.5. The pH is adjusted by the amount of strong acid, polycarboxylate and, if necessary, the organic compound.
  • the concentration of the strong acid is about 0.;! To 5% by weight (preferably 0.3-3 weight
  • the concentration of polycarboxylate is about 0 ⁇ ;! ⁇ 20% by weight (preferably 0 ⁇ 5 ⁇
  • the pH is about 4 to 6.5 (preferably about 4 to 6).
  • the molar ratio of strong acid to polycarbonate is about 0.3 to 1 (preferably about 0.35 to 0.8).
  • the concentration of the strong acid is about 0.; (Preferably about 0.3 to 3% by weight), and the concentration of the polycarboxylate is about 0.5 to 20% by weight (preferably about 0.75 to about 10% by weight).
  • the concentration of is 0.5 to 60% by weight (preferably 2 to 40% by weight, more preferably 3 to 30% by weight).
  • the pH is about 4-7 (preferably about 4-6).
  • the molar ratio of strong acid to polycarboxylate is about 0.3 to 1 (preferably about 0.30 to 0.8).
  • the residue removal method of the present invention mainly removes residues present in a semiconductor substrate after a dry process (dry etching and / or etching) in the formation process of a capacitor structure such as damascene or dual damascene. It is a method of removing. Specifically, the residue present on the semiconductor substrate having a Cu / Low-k multilayer wiring structure after the dry process is removed using the residue removing liquid described above.
  • the present invention also provides a method for manufacturing a semiconductor device.
  • the manufacturing method includes (1) dry etching and / or assembling a semiconductor substrate having Cu as a wiring material and having a low dielectric constant film (Low-k film) as an interlayer insulating material, and (2) The method includes the step of bringing the semiconductor substrate treated in (1) into contact with the residue removing liquid.
  • Low-k film low dielectric constant film
  • an insulating film barrier such as a SiN, SiC, or TaN film is formed on the low-k film as necessary. Etching the film together with the low-k film.
  • the residue removal process is performed by bringing a semiconductor substrate, which is an object to be processed, into contact with a residue removal solution.
  • the method for contacting the residue removing liquid can be appropriately set according to the type and temperature of the residue removing liquid.
  • a contact method for example, a batch type in which a large amount of processing object (wafer) stored in a cassette is immersed in a tank for storing chemical liquid, and cleaning is performed by applying the chemical liquid on the rotated processing object (wafer).
  • Various contact methods such as a single wafer type and a spray type in which a chemical solution is continuously sprayed on a workpiece (wafer) to be cleaned are used.
  • the temperature of the residue removing solution is, for example, about 10 to 60 ° C, preferably about 15 to 40 ° C.
  • the contact time is not particularly limited and can be appropriately selected. For example, 0.5 to 60 minutes Minutes, preferably about 1 to 40 minutes.
  • the wafer may be immersed in a residue removing liquid under stirring as necessary.
  • the speed of stirring is not limited and can be appropriately selected. Unnecessary material is difficult to peel off
  • the object to be treated may be immersed in a residue removal solution and subjected to ultrasonic cleaning! /.
  • the Cu oxide removal method of the present invention can be performed by washing the wafer from which Cu oxide and / or the residue after the dry process have been removed with pure water. This washing process can wash away the residue removal solution.
  • the semiconductor substrate from which the Cu oxide and / or the residue after the dry process has been removed using the residue removing solution of the present invention is a commonly used method such as Cu wiring (for example, a detailed semiconductor) It can be processed into various kinds of semiconductor devices (devices) according to CMP technology, edited by Toshiro Dohi, edited by 2001).
  • the residue removing solution of the present invention suppresses etching of silicon-containing films and low-k films, and can remove strongly adhered residues after dry process and Cu oxide film in a short time without Cu corrosion. In particular, it has the effect of suppressing the slight cracking of the Cu surface that could not be solved by conventional polymer stripping solutions that cause less damage to low-k films.
  • a wafer with a test pattern having a Cu / Low-k dual damascene structure formed by a via-first process was used to investigate the removal of residues and the change in pattern shape after the dry process.
  • the low-k film of Cu / Low-k dual damascene structure is a SiOC film formed by plasma CVD, and the insulating film barrier is a SiN film. Residues after the dry process adhere firmly and are difficult to remove. A large amount of residue is present at the bottom of the via hole, and is slightly observed on the side wall of the via hole and the low-k substrate surface.
  • the wafer with the test pattern was immersed in the chemical solutions shown in Examples and Comparative Examples at 25 ° C for 1 to 3 minutes under stirring (about 600 rpm), rinsed with running ultrapure water, and dried.
  • the residue removal treatment after the dry process was performed.
  • the residue removal state and cross-sectional shape after the dry process were observed with an electron microscope (SEM) for 12 via holes. Furthermore, in order to judge the presence or absence of Cu surface cracks, 60 via holes were observed from above with an electron microscope (SEM). The cross section was also observed with SEM as needed.
  • Table 2 Comparative Examples are shown in Table 4 and Table 6.
  • Tables 3, 5 and 7 show the results of testing using these chemicals.
  • Table 1 shows the test criteria.
  • Examples 1 to 21 are residue removal solutions composed of strong acid and polycarboxylate
  • Examples 22 to 25 are residue removal solutions obtained by adding NH F and organic compounds in addition to strong acid and polycarboxylate. is there.
  • Table 3 shows the results of testing using the chemical solutions of Examples 1 to 25.
  • the polycarboxylic acid salt is a methylolamine salt, an ethylamine salt, a jetylamine salt, a triethylenetetramine salt, a tetramethylammonium hydroxide salt, or a choline salt. Even if is used, the same effect is exhibited.
  • Example 22 in place of propylene glycolenomethenoylethenoate acetate, acetoin, ethylene glycol diacetate (ethylene diacetate), diethylene glycol, triethylene glycol dimethyl ether, methyl acetoacetate, acetic acid The same effect was obtained when diethylene glycol monoethyl ether was used.
  • the oxidation state of Cu was determined by measuring the humidity of a Cu blanket wafer immersed in a chemical solution at 27 ° C.
  • Table 4 shows the component compositions of the residue removal solutions of Comparative Examples 1-9. Comparative Example;! P H of the residue-removing solution of 1-9 was formulated to be about 2.
  • Comparative Examples 1 to 9 all have insufficient Cu crack prevention. In other items in Table 5, those with a rating of C or less indicate poor performance. Therefore, all the chemical solutions shown in Table 4 are not preferred as residue removal solutions.
  • Table 6 shows the component compositions of the residue removal solutions of Comparative Examples 10 to 17;

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Emergency Medicine (AREA)
  • Health & Medical Sciences (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Drying Of Semiconductors (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)

Abstract

It is intended to provide a solution for removing the residue after dry process, which makes it possible to regulate the formation of a minute crack on a Cu surface without damaging Cu and a low-k film that cannot be achieved by the existing polymer-based removal solutions. Also, it is intended to establish a method of producing a semiconductor device with the use of the solution. More specifically speaking, a solution for removing the residue remaining on a semiconductor substrate after dry etching and/or ashing characterized by comprising a strong acid capable of forming a complex or a chelate with Cu, a polycarboxylic acid salt and water; and a method of removing the residue remaining on a semiconductor substrate after dry etching and/or ashing with the use of this solution for removing the residue.

Description

明 細 書  Specification
半導体ドライプロセス後の残渣除去液及びそれを用いた残渣除去方法 技術分野  Residue removing liquid after semiconductor dry process and residue removing method using the same
[0001] 本発明は、半導体デバイスの製造工程におけるドライエッチング及び/又はアツシ ング (灰化)時に形成された残渣を除去するための薬液、及び該薬液を用いてこれら の残渣を除去する半導体デバイスの製造方法に関する。特に、 Cu/Low-k多層配線 構造の製造に使用される残渣除去液に関する。  The present invention relates to a chemical solution for removing residues formed during dry etching and / or ashing (ashing) in a semiconductor device manufacturing process, and a semiconductor device that removes these residues using the chemical solution It relates to the manufacturing method. In particular, it relates to residue removal solutions used in the manufacture of Cu / Low-k multilayer wiring structures.
背景技術  Background art
[0002] 従来、配線材料として A1あるいは A1合金などを用い層間絶縁膜として SiO膜を使用 する Al/SiO多層配線構造の半導体デバイスが中心に製作されてきた。近年は、半 導体デバイスの微細化に伴う配線遅延を低減するため、抵抗値の低レ、配線材料で ある Cuと配線間容量の小さい層間絶縁膜である Low-k膜 (低誘電率膜)とを用いる C u/Low-k多層配線構造の半導体デバイスが多く製作されている。  Conventionally, semiconductor devices having an Al / SiO multilayer wiring structure that uses A1 or A1 alloy as a wiring material and a SiO film as an interlayer insulating film have been mainly manufactured. In recent years, low-k film (low dielectric constant film) is an interlayer insulating film with low resistance and low wiring capacitance to reduce wiring delay due to miniaturization of semiconductor devices. Many semiconductor devices with Cu / Low-k multi-layer wiring structure using these are manufactured.
[0003] Cu/Low-k多層配線構造では、ダマシンと呼ばれる方法により加工が行われる。こ の加工方法では、層間絶縁膜基板に溝 (トレンチ)や穴 (ビアホール)を加工し、その加 ェ部分に Cuなどの配線材料を埋め込み、配線構造を形成する。  [0003] Cu / Low-k multilayer wiring structures are processed by a method called damascene. In this processing method, a trench (trench) or hole (via hole) is processed in an interlayer insulating film substrate, and a wiring material such as Cu is embedded in the additional portion to form a wiring structure.
[0004] さらに、デュアルダマシンという方法においては、配線のためのトレンチとビアホー ルを Low-k膜などからなる層間絶縁膜基板に連続して形成し、その後、 Cuなどの配 線材料を埋め込む。デュアルダマシン構造の形成には、ビアホールを先に形成した 後、配線のための溝を形成するビアファーストプロセス、この逆の順序で配線のため のトレンチを先に形成した後、ビアホールを形成するトレンチファーストプロセス、その 他にミドルファーストプロセス、デュアルハードマスクプロセスなどがある。  [0004] Furthermore, in a method called dual damascene, trenches and via holes for wiring are continuously formed on an interlayer insulating film substrate made of a low-k film or the like, and then a wiring material such as Cu is embedded. In forming a dual damascene structure, a via hole is formed first, followed by a via first process in which a trench for wiring is formed. In the reverse order, a trench for wiring is first formed, and then a trench for forming a via hole is formed. There are first process, middle first process, dual hard mask process and so on.
[0005] 例えば、ビアファーストなどのプロセスでは、ドライエッチングにより層間絶縁膜基板 にビアホールを形成した後、埋め込み剤を埋め込み平坦化する。これに、トレンチを 形成するためのリソグラフィーを行いドライエッチングする。その後、トレンチやビアホ ールが形成された該基板から、不要となったレジストや埋め込み剤をアツシングなど により取り除く。 [0006] しかしながら、このプロセスを経ても、基板上には完全に取り除けない不要物 (以下 、これらを「ドライプロセス後の残渣」という)が残存してしまう。 For example, in a process such as via first, a via hole is formed in an interlayer insulating film substrate by dry etching, and then a filling agent is buried and planarized. Then, lithography for forming the trench is performed and dry etching is performed. Thereafter, the resist and the filling agent that are no longer needed are removed from the substrate on which the trenches and via holes are formed by ashing or the like. [0006] However, even after this process, unnecessary substances that cannot be completely removed (hereinafter referred to as "residues after the dry process") remain on the substrate.
[0007] また、ドライエッチング、アツシングなどのプラズマを用いたドライプロセスにより、配 線材料である Cuや層間絶縁膜の Low-k膜がダメージを受けることがある。さらには、 プロセス間の移動などにより該基板が大気に曝されると、 Cu金属配線の表面に Cu酸 化膜が形成されてしまう。  [0007] In addition, Cu, which is a wiring material, and a low-k film of an interlayer insulating film may be damaged by a dry process using plasma such as dry etching or ashing. Further, when the substrate is exposed to the atmosphere due to movement between processes, a Cu oxide film is formed on the surface of the Cu metal wiring.
[0008] ダマシン構造のトレンチやビアホールに、ノ リアメタルの TaNや配線材料の Cuなど の金属を埋め込む際に、ドライプロセス後の残渣ゃ Cu酸化膜などが存在すると、半 導体デバイスの不良の原因となる。そのため、通常、これらの残渣は、ポリマー剥離 液を用いて除去される。また、ダメージを受けた Low-k膜は、本来よりも構造上弱くな つているため、薬液などによりエッチングされ、パターン寸法変化を起こしやすい。し たがって、これらの残渣を取り除く際には、薬液により Cuを腐食することなぐかつ Lo w-k膜のエッチングを抑制する必要がある。  [0008] When a metal such as TaN of the rare metal or Cu of the wiring material is embedded in the trench or via hole of the damascene structure, if a residue such as a Cu oxide film exists after the dry process, it may cause a defect in the semiconductor device. Become. Therefore, these residues are usually removed using a polymer stripping solution. In addition, the damaged low-k film is structurally weaker than the original, so it is easily etched by chemicals and changes the pattern dimensions. Therefore, when removing these residues, it is necessary to prevent the corrosion of Cu by the chemical solution and to suppress the etching of the low-k film.
[0009] これらのドライプロセス後の残渣ゃ Cu酸化膜を、現在、市販されている従来のポリ マー剥離液やエッチング液で除去しょうとすると加工上の問題が生じる。例えば、水 で希釈した塩酸やフッ酸を用いると残渣を除去できる力 解離した H+が多いため Cu が腐食しやすい。さらに、ドライエッチングによりダメージを受けた層間絶縁膜 (特に、 ポーラス Low-k層間絶縁膜)である場合には、エッチングされて表面状態が変質した り、設計寸法通りの加工ができなくなったりする。 [0009] The removal of the residual Cu oxide film after these dry processes with a conventional polymer stripping solution or etching solution currently on the market causes processing problems. For example, if hydrochloric acid or hydrofluoric acid diluted with water is used, Cu can be easily corroded because of the large amount of dissociated H + that can remove residues. Furthermore, in the case of an interlayer insulating film damaged by dry etching (especially a porous low-k interlayer insulating film), the surface state may be altered by etching, and processing according to the design dimension may not be possible.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0010] デバイス構造の微細化や Low-k膜の種類の違いなどにより、ドライプロセスの多様 化が進んでいる。例えば、従来のレジストマスクを用いたドライエッチング及び酸素プ ラズマを用いたアツシングだけでなぐハードマスクによるドライエッチング及び He/H プラズマを用いたアツシングなどのドライプロセスが用いられてきてレ、る。このような変 化の中で、 Cuや Low-k膜にダメージを与えずに、ドライプロセス後の残渣ゃ Cu酸化 膜を選択的に除去することが望まれている。  [0010] The diversification of dry processes is progressing due to miniaturization of device structures and differences in the types of low-k films. For example, dry processes such as dry etching using a conventional resist mask and ashing using a hard mask and ashing using He / H plasma have been used. Under such changes, it is desired to selectively remove Cu oxide film after the dry process without damaging Cu or low-k film.
[0011] しかし、 Low-k膜はドライプロセスによりダメージを受けている場合が多いため、ポリ マー剥離液で洗浄するとエッチングされてパターン寸法変化を起こしやすい。さらに 、半導体デバイスの洗浄装置が、バッチ式装置から枚葉式装置へ変化しつつある。 そのため、従来の剥離液を用いた方法では、 Cu/Low-k構造に強く付着したドライブ ロセス後の残渣を、短時間で完全に除去することは困難になってきた。また、洗浄に よる Cuバルタの腐食は見られないが、詳細に観察すると Cu表面の粒界に沿って亀裂 が生じている場合が多い。このようなわずかな Cu表面の亀裂が力 デバイスの性能に 悪影響を与える可能性が高い。さらに、洗浄プロセス後に処理されたウェハーが大気 中に暴露されることにより、 Cu酸化膜が成長することもデバイスの不具合の原因とな [0011] However, the low-k film is often damaged by the dry process. When washed with a polymer stripping solution, it is easily etched to cause pattern dimension changes. Furthermore, the semiconductor device cleaning apparatus is changing from a batch type apparatus to a single wafer type apparatus. For this reason, it has become difficult to completely remove the residue after the drive process, which adheres strongly to the Cu / Low-k structure, in a short time by the conventional method using a stripping solution. In addition, although corrosion of the Cu butter due to cleaning is not observed, cracks are often generated along the grain boundaries on the Cu surface when observed in detail. These small Cu surface cracks are likely to adversely affect the performance of force devices. In addition, the growth of Cu oxide film due to exposure of the wafers processed after the cleaning process to the atmosphere also causes device failures.
[0012] Cu/Low-k多層配線構造の形成において、塩酸やフッ酸等の従来の薬液を用いた 場合には、 Cuの腐食と Low-k膜のエッチングを抑制し、かつドライプロセス後の残渣 や Cu酸化膜を選択的に除去することは困難であった。 [0012] When conventional chemicals such as hydrochloric acid and hydrofluoric acid are used in the formation of Cu / Low-k multilayer wiring structures, Cu corrosion and low-k film etching are suppressed, and after the dry process. It was difficult to selectively remove residues and Cu oxide film.
[0013] 近年、 Cu/Low-k多層配線構造向けのポリマー剥離液が開発されてきている(例え ば、特許文献;!〜 4)。しかし、これらのポリマー剥離液では、 Low-k膜にダメージを与 えずに、 Cuの腐食を抑制して、ドライプロセス後の残渣を短時間で完全に除去するこ とは難しい。さらに Cu表面の亀裂を抑制することはいつそう困難を伴う。  [0013] In recent years, polymer stripping solutions for Cu / Low-k multilayer wiring structures have been developed (for example, patent documents;! To 4). However, with these polymer stripping solutions, it is difficult to completely remove the residue after the dry process in a short time by suppressing Cu corrosion without damaging the low-k film. In addition, suppressing cracks on the Cu surface is always difficult.
[0014] 本発明は、このような現状に鑑み、 Cuと Low-k膜にダメージを与えずに、 Cu表面の 亀裂の抑制が可能であり、ドライプロセス後の残渣を短時間で除去することができる 薬液を提供することを目的とする。また、これを用いた半導体デバイスの製造方法を 提供することを目的とする。  [0014] In view of such a current situation, the present invention can suppress cracks on the Cu surface without damaging the Cu and low-k films, and can remove residues after the dry process in a short time. The purpose is to provide a chemical solution. It is another object of the present invention to provide a semiconductor device manufacturing method using the same.
特許文献 1 :特開平 11 316464号公報  Patent Document 1: JP-A-11 316464
特許文献 2:特開 2004— 94203号公報  Patent Document 2: Japanese Patent Laid-Open No. 2004-94203
特許文献 3:特開 2005— 347587号公報  Patent Document 3: Japanese Patent Laid-Open No. 2005-347587
特許文献 4:特開 2006— 11297号公報  Patent Document 4: Japanese Unexamined Patent Publication No. 2006-11297
課題を解決するための手段  Means for solving the problem
[0015] 発明者は、 Cuと錯体又はキレートを形成し得る強酸と、ポリカルボン酸塩と、水とを 基本組成として含む水溶液を用いることにより、 Cuおよび Low-k膜にダメージを与え ずに、 Cu表面の亀裂を抑制して、強く付着したドライプロセス後の残渣を短時間で除 去できることを見出した。かかる知見に基づき、さらに検討を加えて本発明を完成す るに至った。 [0015] The inventor uses an aqueous solution containing a strong acid capable of forming a complex or chelate with Cu, a polycarboxylic acid salt, and water as basic compositions without damaging the Cu and low-k films.・ Suppresses cracks on the Cu surface and removes residues after the dry process that adheres strongly in a short time. I found that I can leave. Based on this knowledge, further studies have been made and the present invention has been completed.
[0016] 即ち、本発明は以下のドライエッチング及び/又はアツシング後の半導体基板に存 在する残渣の除去液、及び該残渣除去液を用いた半導体デバイスの製造方法を提 供する。  [0016] That is, the present invention provides the following removal solution for residues present in a semiconductor substrate after dry etching and / or ashing, and a method for manufacturing a semiconductor device using the residue removal solution.
[0017] 項 1. ドライエッチング及び/又はアツシング後の半導体基板に存在する残渣の 除去液であって、 Cuと錯体又はキレートを形成し得る強酸とポリカルボン酸塩と水と を含むことを特徴とする残渣除去液。  Item 1. A solution for removing residues present on a semiconductor substrate after dry etching and / or ashing, comprising a strong acid capable of forming a complex or chelate with Cu, a polycarboxylate, and water. Residue removing liquid.
[0018] 項 2. Cuと錯体又はキレートを形成し得る強酸力 S、 25°Cでの pKaが 3以下である ブレンステッド酸である項 1に記載の残渣除去液。 [0018] Item 2. The residue removing solution according to Item 1, which is a Bronsted acid having a strong acidity S capable of forming a complex or chelate with Cu and a pKa at 25 ° C of 3 or less.
[0019] 項 3. Cuと錯体又はキレートを形成し得る強酸力 トリフルォロ酢酸、臭化水素酸、 過塩素酸、硫酸、シユウ酸、マロン酸及びクェン酸からなる群より選ばれる少なくとも 1 種である項 1又は 2に記載の残渣除去液。 [0019] Item 3. Strong acidity capable of forming a complex or chelate with Cu. At least one selected from the group consisting of trifluoroacetic acid, hydrobromic acid, perchloric acid, sulfuric acid, oxalic acid, malonic acid, and citrate. Item 3. A residue removal solution according to item 1 or 2.
[0020] 項 4. ポリカルボン酸塩力 シユウ酸、マロン酸、コハク酸、グノレタル酸、アジピン酸[0020] Item 4. Polycarboxylic acid salt: oxalic acid, malonic acid, succinic acid, gnoretaric acid, adipic acid
、リンゴ酸、酒石酸、クェン酸水素アンモニゥム、及びクェン酸からなる群より選ばれ る少なくとも 1種のポリカルボン酸と、アンモニア、ヒドロキシルァミン、第一級、第二級 又は第三級ァミン、第四級アンモニゥム、及びポリアミンからなる群より選ばれる少な くとも 1種の塩基とから形成される塩である項 1〜3のいずれかに記載の残渣除去液。 , Malic acid, tartaric acid, ammonium hydrogen citrate, and at least one polycarboxylic acid selected from the group consisting of citrate, ammonia, hydroxylamine, primary, secondary or tertiary amine, Item 4. The residue removing solution according to any one of Items 1 to 3, which is a salt formed from a quaternary ammonium and at least one base selected from the group consisting of polyamines.
[0021] 項 5. 残渣除去液中の Cuと錯体又はキレートを形成し得る強酸の濃度が 0. ;!〜 5 重量%であり、ポリカルボン酸塩の濃度が 0. ;!〜 20重量%である項;!〜 4のいずれ かに記載の残渣除去液。 [0021] Item 5. The concentration of the strong acid capable of forming a complex or chelate with Cu in the residue removing solution is 0.;! To 5% by weight, and the concentration of the polycarboxylate is 0.;! To 20% by weight. The residue removing solution according to any one of Items 4 to 4;
[0022] 項 6· pHが 4〜6. 5である項 1〜5のいずれかに記載の残渣除去液。 Item [0022] Item 6. · The residue removing solution according to any one of Items 1 to 5, wherein the pH is 4 to 6.5.
[0023] 項 7. さらに有機化合物を含む項;!〜 5のいずれかに記載の残渣除去液。 [0023] Item 7. The residue removing solution according to any one of Items 5 to 5, further containing an organic compound.
[0024] 項 8. 有機化合物が、ポリカルボニル類、ヒドロキシケトン類、エステル類、 C3以上 のアルコール類、 C3以上のアルデヒド類、ポリエーテル類、及びスルホン類からなる 群より選ばれる少なくとも 1種である項 7に記載の残渣除去液。 [0024] Item 8. The organic compound is at least one selected from the group consisting of polycarbonyls, hydroxyketones, esters, C3 or higher alcohols, C3 or higher aldehydes, polyethers, and sulfones. Item 8. A residue removal solution according to Item 7.
[0025] 項 9. pHが 4〜7であることを特徴とする項 7又は 8に記載の残渣除去液。 [0025] Item 9. The residue removing solution according to Item 7 or 8, wherein the pH is 4 to 7.
[0026] 項 10. 残渣除去液中の Cuと錯体又はキレートを形成し得る強酸の濃度が 0. ;!〜 5重量%であり、ポリカルボン酸塩の濃度が 0. ;!〜 20重量%であり、有機化合物の 濃度が 0. 5〜60重量%である項 7〜9の!/、ずれかに記載の残渣除去液。 [0026] Item 10. The concentration of the strong acid capable of forming a complex or chelate with Cu in the residue removing solution is 0. Item 7-9, which is 5% by weight, the concentration of polycarboxylate is 0.;! ~ 20% by weight, and the concentration of organic compound is 0.5-60% by weight. Residue removal solution.
[0027] 項 11. さらにフッ素化合物を含む項;!〜 10のいずれかに記載の残渣除去液。 Item 11. The residue removing solution according to any one of Items 10 to 10, further containing a fluorine compound.
[0028] 項 12. フッ素化合物力 フッ化水素、或いは、アンモニア、ヒドロキシルァミン、第 一級、第二級若しくは第三級ァミン、第四級アンモニゥム又はポリアミンのフッ化物塩 である項 11に記載の残渣除去液。 Item 12. The compound power according to Item 11, which is hydrogen fluoride or fluoride salt of ammonia, hydroxylamine, primary, secondary or tertiary amine, quaternary ammonium or polyamine. Residue removal solution.
[0029] 項 13. さらに Cuの亀裂防止剤及び/又は Cuの酸化防止剤を含む項 1〜12のい ずれかに記載の残渣除去液。 Item [0029] Item 13. The residue removing solution according to any one of Items 1 to 12, further comprising a Cu crack inhibitor and / or a Cu antioxidant.
[0030] 項 14. ドライエッチング及び/又はアツシング後の半導体基板に存在する残渣を 除去する方法であって、ドライエッチング及び/又はアツシング後の半導体基板を、 項 1〜; 13のいずれかに記載の残渣除去液と接触させることを特徴とする残渣の除去 方法。 [0030] Item 14. A method for removing residues present on a semiconductor substrate after dry etching and / or ashing, wherein the semiconductor substrate after dry etching and / or ashing is selected from the items 1 to 13; A method for removing residues, comprising contacting with a residue removing solution.
[0031] 項 15. 配線材料として Cuを有し層間絶縁材料として低誘電率膜 (Low-k膜)を有 する半導体基板である項 14に記載の残渣除去方法。  [0031] Item 15. The residue removing method according to Item 14, which is a semiconductor substrate having Cu as a wiring material and having a low dielectric constant film (Low-k film) as an interlayer insulating material.
[0032] 項 16. 半導体デバイスの製造方法であって、(1)配線材料として Cuを有し層間絶 縁材料として低誘電率膜 (Low-k膜)を有する半導体基板をドライエッチング及び/ 又はアツシングする工程、及び(2)上記(1)で処理された半導体基板を項;!〜 13の いずれかに記載の残渣除去液と接触させる工程を含むことを特徴とする製造方法。  Item 16. A method for manufacturing a semiconductor device, comprising: (1) dry etching and / or etching a semiconductor substrate having Cu as a wiring material and having a low dielectric constant film (Low-k film) as an interlayer insulating material. A manufacturing method comprising: a step of ashing; and (2) bringing the semiconductor substrate treated in (1) above into contact with the residue removing solution according to any one of Items;!
[0033] 以下、本発明を詳述する。  [0033] The present invention is described in detail below.
[0034] 半導体ドライプロセス後の残淹除去液  [0034] Residue removal solution after semiconductor dry process
本発明の残渣除去液は、 Cuと錯体又はキレートを形成し得る強酸 (以下「強酸」とも 呼ぶ)と、ポリカルボン酸塩と、水とを基本組成として含むことを特徴とする。さらに、有 機化合物、界面活性剤、フッ素化合物、亀裂防止剤、酸化防止剤などを添加するこ とにより、より優れた機能を追加することが可能である。  The residue removing solution of the present invention is characterized by containing, as basic compositions, a strong acid capable of forming a complex or chelate with Cu (hereinafter also referred to as “strong acid”), a polycarboxylate, and water. Furthermore, by adding organic compounds, surfactants, fluorine compounds, crack inhibitors, antioxidants, etc., it is possible to add more excellent functions.
[0035] 本発明の残渣除去液の対象物は、主として Cu酸化膜及びドライプロセス後の残渣 である。  [0035] The target of the residue removing solution of the present invention is mainly a Cu oxide film and a residue after the dry process.
[0036] Cu酸化膜としては、ドライエッチング及び/又はアツシング時に形成された Cu酸化 物、或いはプロセス間の移動などにより大気に曝された場合に、金属が自然に酸化 されてできた Cuの自然酸化膜等が挙げられる。これらの組成としては、 CuO、 Cu20、 Cu(OH)等が多く含まれる。 [0036] As the Cu oxide film, Cu oxide formed during dry etching and / or ashing, or when the metal is naturally oxidized when exposed to the atmosphere due to movement between processes, etc. The natural oxide film of Cu that has been made is listed. These compositions, CuO, is rich Cu 2 0, Cu (OH) and the like.
[0037] ドライプロプロセス後の残渣は、導電性金属として、 Cuを用いて成膜したウェハーに おいて、 Cu/Low-k多層配線構造の Cu表面上の Cu酸化膜、及び/又は、ドライエッチ ング及び/又はアツシングにより形成された Cu酸化物を含む Cu変質物からなる。こ の残渣は、主にパターンが形成された Cu配線上や Low-k膜などの層間絶縁膜で形 成されたパターンの側壁および層間絶縁膜基板表面に付着する。 Cu上に形成され る残渣は、ドライエッチング及び/又はアツシングにより、酸化及び/又はフッ素化さ れた Cu酸化物とその Cuとの混合物からなる変質物残渣である。該残渣は電気抵抗 が大きく、 Cu酸化物に近い絶縁層を形成する。  [0037] Residues after the dry pro-process are Cu oxide films on the Cu surface of the Cu / Low-k multilayer wiring structure and / or dry on the wafer formed using Cu as the conductive metal. It consists of a modified Cu material containing Cu oxide formed by etching and / or ashing. This residue adheres mainly to the Cu wiring on which the pattern is formed, to the side wall of the pattern formed with an interlayer insulating film such as a low-k film, and to the surface of the interlayer insulating film substrate. The residue formed on Cu is an altered residue composed of a mixture of Cu oxide and its Cu oxidized and / or fluorinated by dry etching and / or ashing. The residue has a high electrical resistance and forms an insulating layer close to Cu oxide.
[0038] Low-k膜などの層間絶縁膜で形成されたパターンの側壁に付着する残渣は、 Cu変 質物のほ力、に SiNなどのストッパー膜や Low-k膜、埋め込み剤などがドライエッチング でスパッタリングされたものであり、 Siや有機物を含んでいる場合がある。また、層間 絶縁膜基板表面の残渣は、アツシングすることにより除去しきれなかったレジスト、反 射防止膜および埋め込み剤などの有機物や、無機マスクを用いたプロセスでの残留 物に加え、ドライエッチングの際にホールやトレンチの底から飛来した若干の Siや Cu 変質物を含んだものであると推測できる。  [0038] Residue adhering to the side wall of the pattern formed by the interlayer insulating film such as low-k film is dry etching of stopper film such as SiN, low-k film, filling agent, etc. Sputtered by, and may contain Si or organic matter. Residues on the surface of the interlayer insulating film substrate can be removed by dry etching in addition to organic substances such as resists, anti-reflective films and filling agents that could not be removed by ashing, and residues in processes using inorganic masks. It can be inferred that it contains some Si and Cu alterations coming from the bottom of the holes and trenches.
[0039] これらのドライプロセス後の残渣を短時間で除去するためには、上記した強酸とポリ カルボン酸塩と水が必要である。これにより、 Low-k膜へのダメージを低減させ、わず 力、な Cu表面の亀裂の発生を抑制することができる。更に亀裂防止効果を付与したい 場合には、ポリカルボン酸のアミン塩を使用することが好ましい。 Low-k膜などの層間 絶縁膜で形成されたパターンの側壁に付着する残渣を除去しにくい場合には、有機 化合物(特に水溶性有機化合物)や若干のフッ素化合物を添加すると除去効果が増 す。 Cu表面の亀裂を生じさせない効果をいつそう付加するために、亀裂防止剤を添 カロしてもよい。これらの残渣を除去した後に、 Cu表面上に酸化膜を成長させたくない 場合には、さらに酸化防止剤を添加することもできる。  [0039] In order to remove the residue after these dry processes in a short time, the above-mentioned strong acid, polycarboxylate and water are required. As a result, damage to the low-k film can be reduced and the occurrence of cracks on the Cu surface can be suppressed. Further, when it is desired to provide a crack preventing effect, it is preferable to use an amine salt of polycarboxylic acid. If it is difficult to remove the residue adhering to the sidewall of the pattern formed by the interlayer insulation film such as a low-k film, the removal effect is increased by adding organic compounds (especially water-soluble organic compounds) or some fluorine compounds. . An anti-cracking agent may be added at any time to add an effect that does not cause the Cu surface to crack. If you do not want to grow an oxide film on the Cu surface after removing these residues, you can add more antioxidants.
[0040] 本明細書において、層間絶縁膜とは、主に Low-k膜 (低誘電率膜)のことを意味す るが、例えばフッ素を含んだシリコン酸化膜 (FSG膜)も包含される。層間絶縁膜の比 誘電率は、通常 1より大きぐ 4程度以下、好ましくは 3程度以下、より好ましくは 2. 8 程度以下、さらに好ましくは 2. 6程度以下である。なお、 Low-k膜は主に塗布または プラズマ CVDにより生成される。 In this specification, the interlayer insulating film mainly means a low-k film (low dielectric constant film), but also includes, for example, a silicon oxide film (FSG film) containing fluorine. . Ratio of interlayer insulation film The dielectric constant is usually greater than 1 and about 4 or less, preferably about 3 or less, more preferably about 2.8 or less, and even more preferably about 2.6 or less. Low-k films are mainly produced by coating or plasma CVD.
[0041] Low-k膜として具体的には、 LKDシリーズ(商品名、 JSR社製)、 HSGシリーズ(商品 名、 日立化成社製)、 Nanoglass (商品名、 Honeywell社製)、 IPS (商品名、触媒化成 社製)、 Z M (商品名、 Dow Corning社製)、 XLK (商品名、 Dow Coming社製)、 FOx ( 商品名、 Dow Corning社製)、 Orion (商品名 Tricon社製)、 NCS (商品名、触媒化成社 製)、 SiLK (商品名、 Dow Coming社製)などの無機 SOG膜(HSG :水素化シルセスキォ キサン)、有機 SOG膜(MSQ膜:メチルシルセスキォキサン膜)、ポリアリルエーテルな どを主成分とする塗布膜 (有機ポリマー膜)、 Black Diamond (商品名、アプライドマテ リアルズ社製)、コーラル(商品名、 Novellus社製)、オーロラ(商品名、 ASM社製)に 代表されるプラズマ CVD膜などがある力 これらに限定されるものではない。 [0041] Specifically, as the low-k film, LKD series (trade name, manufactured by JSR), HSG series (trade name, manufactured by Hitachi Chemical), Nanoglass (trade name, manufactured by Honeywell), IPS (trade name) , Catalyst Chemicals), ZM (trade name, Dow Corning), XLK (trade name, Dow Coming), FOx (trade name, Dow Corning), Orion (trade name, Tricon), NCS (Trade name, manufactured by Catalyst Kasei), SiLK (trade name, manufactured by Dow Coming), etc., inorganic SOG film (HSG: hydrogenated silsesquioxane film), organic SOG film (MSQ film: methyl silsesquioxane film), poly Coating film (organic polymer film) containing allyl ether as the main component, Black Diamond (trade name, manufactured by Applied Materials), Coral (trade name, manufactured by Novellus), Aurora (trade name, manufactured by ASM) A force with a typical plasma CVD film is not limited to these.
[0042] レジストとしては、 KrF (クリプトンエフ)、 ArF、 Fレジスト等が挙げられる力 これに限 定されるものではない。埋め込み剤は、反射防止膜の機能を兼ねる有機化合物を用 いること力 Sでさる。 [0042] The resist includes, but is not limited to, KrF (krypton F), ArF, F resist and the like. The embedding agent is an organic compound that also functions as an antireflection film.
[0043] Cuと錯体又はキレートを形成し得る強酸は、 25°Cでの pKaが 3以下 (好ましくは 2以 下、より好ましくは 0〜2)であるブレンステッド酸であり、水素イオン H+と、 Cuとキレート あるいは錯体を形成する構造 (部分)とを有し、ドライプロセス後の残渣を除去する機 能を有する。 [0043] A strong acid capable of forming a complex or chelate with Cu is a Bronsted acid having a pKa at 25 ° C of 3 or less (preferably 2 or less, more preferably 0 to 2), and a hydrogen ion H + And a structure (part) that forms a chelate or complex with Cu, and has the function of removing residues after the dry process.
[0044] 具体例としては、モノクロ口酢酸、ジクロロ酢酸、トリクロ口酢酸、 a—クロ口酪酸、 β クロ口酪酸、 γ クロ口酪酸、モノフルォロ酢酸、ジフルォロ酢酸、トリフルォロ酢酸 などのハロゲン含有カルボン酸、臭化水素酸、過塩素酸、硫酸などの無機酸、シユウ 酸、マロン酸、酒石酸、クェン酸などのポリカルボン酸等が挙げられる。このうち、シュ ゥ酸、マロン酸、クェン酸、トリフルォロ酢酸、臭化水素酸、過塩素酸が好ましぐシュ ゥ酸、マロン酸、クェン酸、トリフルォロ酢酸がより好ましい。 [0044] Examples, monochrome mouth acid, dichloroacetic acid, trichloroacetic port acetate, a - black port butyrate, beta black port butyrate, gamma black port butyrate, Monofuruoro acetate, Jifuruoro acetate, halogen-containing carboxylic acids such as Torifuruoro acetate, Examples thereof include inorganic acids such as hydrobromic acid, perchloric acid and sulfuric acid, and polycarboxylic acids such as oxalic acid, malonic acid, tartaric acid and citrate. Of these, oxalic acid, malonic acid, citrate, and trifluoroacetic acid are preferred, with oxalic acid, malonic acid, citrate, trifluoroacetic acid, hydrobromic acid, and perchloric acid being preferred.
[0045] 残渣除去液中における強酸の濃度は、除去するドライプロセス後の残渣の量や質 に応じて適宜選択することができる。強酸の濃度は、一般に 0. ;!〜 10重量%程度で あり、好ましくは 0. ;!〜 5重量%、さらに好ましくは、 0. ;!〜 3重量%である。これらの 濃度が低いほどドライプロセス後の残渣が除去しに《なり、濃度が高いほど残渣の 除去が容易となる。対費用効果の観点から 5重量%以下が望ましい。 [0045] The concentration of the strong acid in the residue removing solution can be appropriately selected according to the amount and quality of the residue after the dry process to be removed. The concentration of the strong acid is generally about 0.;! To 10% by weight, preferably 0.;! To 5% by weight, and more preferably 0.;! To 3% by weight. these The lower the concentration, the more the residue after the dry process is removed, and the higher the concentration, the easier the removal of the residue. 5% by weight or less is desirable from the viewpoint of cost effectiveness.
[0046] ポリカルボン酸塩は、 Low-k膜へのダメージを低減させるとともに、強酸と相互作用 し Cuの腐食を防止し、 Cuを含有するドライプロセス後の残渣を除去する働きを有する 。特に、ポリカルボン酸のアミン塩は、 Cu表面の亀裂を抑制する効果が高い。  [0046] The polycarboxylate has a function of reducing damage to the low-k film, interacting with a strong acid, preventing corrosion of Cu, and removing a residue after a dry process containing Cu. In particular, the amine salt of polycarboxylic acid is highly effective in suppressing cracks on the Cu surface.
[0047] ポリカルボン酸塩としては、例えば、シユウ酸、マロン酸、コハク酸、ダルタル酸、ァ ジピン酸、リンゴ酸、酒石酸、クェン酸水素二アンモニゥム、クェン酸二水素アンモニ ゥム、クェン酸等のポリカルボン酸と、アンモニア、ヒドロキシルァミン、第一級、第二 級又は第三級ァミン、第四級アンモニゥム、ポリアミン等の塩基とから形成される塩が 挙げられる。好ましくは、マロン酸、クェン酸水素二アンモニゥム、クェン酸二水素ァ ンモニゥム、クェン酸等のポリカルボン酸と、アンモニア、第一級、第二級又は第三級 ァミン、第四級アンモニゥム、ポリアミン等の塩基とから形成される塩が挙げられる。  [0047] Examples of the polycarboxylate include oxalic acid, malonic acid, succinic acid, dartaric acid, adipic acid, malic acid, tartaric acid, diammonium hydrogen citrate, ammonium dihydrogen citrate, kenic acid, and the like. And salts formed from bases such as ammonia, hydroxylamine, primary, secondary or tertiary amine, quaternary ammonium, and polyamine. Preferably, polycarboxylic acids such as malonic acid, diammonium hydrogen citrate, dihydrogen quanate, and kenic acid, and ammonia, primary, secondary or tertiary amines, quaternary ammonia, polyamines, etc. And a salt formed from the base.
[0048] より具体的には、マロン酸、クェン酸水素二アンモニゥム、クェン酸二水素アンモニ ゥム、又はクェン酸等のポリカルボン酸のアンモニゥム塩、メチルァミン塩、ェチルアミ ン塩、プロピルアミン塩、ブチルァミン塩、ジメチルァミン塩、ジェチルァミン塩、トリメ チノレアミン塩、トリエチルァミン塩、プロパンジァミン塩、トリエチレンテトラミン塩、水酸 化テトラメチルアンモニゥム塩、コリン塩等が挙げられる。  [0048] More specifically, malonic acid, ammonium dihydrogen ammonium, ammonium dihydrogen ammonium, or ammonium salt of polycarboxylic acid such as citrate, methylamine salt, ethylamine salt, propylamine salt, butyramine Salt, dimethylamine salt, jetylamine salt, trimethyloleamine salt, triethylamine salt, propanediamine salt, triethylenetetramine salt, tetramethylammonium hydroxide salt, choline salt and the like.
[0049] これらの中で、マロン酸のアンモニゥム塩、メチルァミン塩、ェチルァミン塩、水酸化 テトラメチルアンモニゥム塩又はコリン塩;クェン酸水素二アンモニゥムのメチルァミン 塩、ェチルァミン塩、水酸化テトラメチルアンモニゥム塩又はコリン塩;クェン酸二水素 アンモニゥムのメチルァミン塩、ェチルァミン塩、水酸化テトラメチルアンモニゥム塩又 はコリン塩;及び、クェン酸のアンモニゥム塩、メチルァミン塩、ェチルァミン塩、水酸 化テトラメチルアンモニゥム塩、又はコリン塩が最も好ましレ、。  [0049] Among them, malonic acid ammonium salt, methylamine salt, ethylamine salt, tetramethylammonium hydroxide salt or choline salt; methylammine salt, ethyllamine salt, tetramethylammonium hydroxide hydrogen diammonium citrate salt Or dicholine ammonium salt; methylamine salt, ethylamine salt, tetramethylammonium hydroxide salt or choline salt of ammonium; and ammonium salt, methylamine salt, ethylamine salt, tetramethyl hydroxide Ammonium salt or choline salt is most preferred.
[0050] ポリカルボン酸塩は、結晶の形態で用いても良いし、上記の酸と塩基を水中で混合 して中和して得られる水溶液を用いても良い。残渣除去液中のポリカルボン酸塩の 濃度は、一般に 0.;!〜 20重量%であり、好ましくは、 0. 5〜; 10重量%、より好ましく は;!〜 5重量%である。  [0050] The polycarboxylate may be used in the form of crystals, or an aqueous solution obtained by mixing and neutralizing the above acid and base in water. The concentration of the polycarboxylate in the residue removal solution is generally from 0.;! To 20% by weight, preferably from 0.5 to; 10% by weight, more preferably from! To 5% by weight.
[0051] また、残渣除去液中に含まれる、ポリカルボン酸塩に対する Cuと錯体又はキレート を形成し得る強酸のモル比(強酸/ポリカルボン酸塩)が、 0. 3〜1程度であることが 好ましく、特に 0. 35〜0. 8であることが好ましい。この比が 0. 3未満では Cuを腐食 しゃすくなり、 1を超えるとドライプロセス後の残渣を除去する能力が低下する傾向が あるためである。 [0051] Cu and complex or chelate for polycarboxylate contained in the residue removal solution The molar ratio of strong acid (strong acid / polycarboxylic acid salt) that can form a salt is preferably about 0.3 to 1, and more preferably 0.35 to 0.8. If this ratio is less than 0.3, Cu will be corroded, and if it exceeds 1, the ability to remove residues after the dry process tends to decrease.
[0052] 本発明の残渣除去液中には、さらに有機化合物(特に水溶性有機化合物)を添カロ してもよい。この有機化合物は、強酸による Cuへの腐食を低減し、 Low-k膜などの層 間絶縁膜で形成されたパターンの側壁に付着する残渣ゃ層間絶縁膜基板の表面残 渣などのドライプロセス後の残渣を除去する効果を付与する。  [0052] An organic compound (particularly a water-soluble organic compound) may be further added to the residue removing solution of the present invention. This organic compound reduces the corrosion of Cu by strong acid, and after the dry process such as the surface residue of the interlayer insulation film substrate that adheres to the sidewall of the pattern formed by the interlayer insulation film such as low-k film The effect of removing the residue is added.
[0053] 有機化合物としては、親水性乃至水溶性の中性有機化合物が挙げられ、例えば、 ポリカルボニル類、ヒドロキシケトン類、エステル類、 C3以上のアルコール類、 C3以 上のアルデヒド類、ポリエーテル類、スルホン類などが好ましい。  [0053] Examples of organic compounds include hydrophilic or water-soluble neutral organic compounds such as polycarbonyls, hydroxyketones, esters, C3 or higher alcohols, C3 or higher aldehydes, and polyethers. And sulfones are preferred.
[0054] ポリカルボニル類としては、例えば、 2, 3 ブタンジオン、 2, 4 ペンタジオン、メチ ルグリオキサール、ァセチルアセトンなどが挙げられる。好ましくは、 2, 3 ブタンジ  [0054] Examples of polycarbonyls include 2,3 butanedione, 2,4 pentadione, methylglyoxal, acetylacetone, and the like. Preferably 2, 3 butaneji
[0055] ヒドロキシケトン類としては、例えば、ァセトイン、アセトンアルコール、ジアセトンアル コールなどが挙げられる。好ましくは、ァセトイン、アセトンアルコールである。 [0055] Examples of hydroxyketones include acetoin, acetone alcohol, diacetone alcohol and the like. Of these, acetoin and acetone alcohol are preferred.
[0056] エステル類としては、例えば、酢酸メチル、酢酸ェチル、プロピオン酸メチル、プロピ オン酸ェチル等のモノカルボン酸エステル;シユウ酸ジメチル、シユウ酸ジェチル、マ ロン酸ジメチル、マロン酸ジェチル、コハク酸ジメチル等のポリカルボン酸エステル; 炭酸ジメチル、炭酸ジェチルなどの炭酸エステル;炭酸プロピレン、炭酸エチレン、 Ύ ブチロラタトンなどの環状エステル;ァセト酢酸メチル、ァセト酢酸ェチルなどの ケト酸エステル;乳酸メチル、乳酸ェチル、乳酸ブチルなどのォキシエステル;ェチレ ングリコーノレモノメチノレエーテノレァセタート、エチレングリコーノレモノェチノレエーテノレ ァセタート、エチレングリコーノレモノ- n-ブチノレエーテノレァセタート、ジエチレングリコ ールモノメチルエーテルァセタート、酢酸ジエチレングリコールモノェチルエーテル、 酢酸ジエチレングリコーノレモノ- n-ブチノレエーテノレ、エチレングリコーノレジァセタート( 二酢酸エチレン)、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プ ロピレングリコールモノェチルエーテルアセテート等のアルコキシエステルなどが挙げ られる。好ましくは、炭酸プロピレン、 γ—ブチ口ラタトン、二酢酸エチレン、 PGMEA、 ァセト酢酸メチル、ァセト酢酸ェチル、乳酸ェチル等が挙げられる。 [0056] Examples of esters include monocarboxylic acid esters such as methyl acetate, ethyl acetate, methyl propionate, and ethyl propionate; dimethyl oxalate, cetyl oxalate, dimethyl malonate, jetyl malonate, and succinic acid. Polycarboxylic acid esters such as dimethyl; Carbonic acid esters such as dimethyl carbonate and jetyl carbonate; Cyclic esters such as propylene carbonate, ethylene carbonate, and butyrolatatane; Keto acid esters such as methyl acetate acetate and ethyl acetate, methyl lactate, ethyl lactate, Oxyesters such as butyl lactate; Ethylene glycol monomethenoate etherate acetate, Ethylene glycol monomethinoate noate acetate, Ethylene glycol nolemono-n-butinoleethenoate acetate, Diethylene glycol monomethyl acetate Ruasetato, acetate diethylene glycol monomethyl E chill ether, acetic acid diethylene glycol Honoré mono - n - butyl Honoré ether Honoré ethyleneglycidyl Kono registration § diacetate (ethylene diacetate), propylene glycol monomethyl ether acetate (PGMEA), profile propylene glycol monomethyl E Chill Examples include alkoxy esters such as ether acetate It is done. Preferable examples include propylene carbonate, γ-butyrate ratatone, ethylene diacetate, PGMEA, methyl acetate acetate, ethyl acetate, and ethyl lactate.
[0057] C3以上のアルコール類としては、例えば、イソプロピルアルコール、 1-ブタノール、 tert-ブチルアルコール、イソブチルアルコールなどの長鎖(例えば C3〜6)アルキノレ 基などの疎水基をもつモノアルコール;エチレングリコールジエチレングリコール、トリ エチレングリコーノレ、テトラエチレングリコーノレ、ポリエチレングリコーノレ、プロピレング リコール、ジプロピレングリコール、ポリ(プロピレングリコール)、グリセリン、 2-ァミノ- 2 -ェチル- 1 , 3-プロパンジオール、 2-ァミノ- 2-メチル - 1 , 3-プロパンジオール、 1 , 2 -シクロへキサンジオール、 2, 2-ジメチル - 1 , 3-プロパンジオール、 2, 5-ジメチノレ- 2, 5-へキサンジオール、 2, 3-ナフタレンジオール、 1 , 2-ブタンジオール、 1 , 3-ブ タンジオール、 1 , 4-ブタンジオール、 2-ブチン- 1 , 4-ジオール、 2-ブテン- 1 , 4-ジ オール、 1 , 3-プロパンジオール、 1 , 2-プロパンジオール、 DL- 1 , 2-へキサンジォ 一ノレ、 2, 5-へキサンジォーノレ、 1 , 2-ベンゼンジォーノレ、 2, 4-ペンタンジォーノレ、 2 -メチノレ- 2, 4-ペンタンジオールなどのポリアルコーノレ;エチレングリコールモノメチル エーテノレ、エチレングリコーノレモノェチノレエーテノレ、エチレングリコーノレモノ- n-ブチ ノレエーテノレ、エチレングリコーノレモノフエニノレエーテノレ、ジエチレングリコーノレモノメ チルエーテル、ジエチレングリコールモノェチルエーテル、ジエチレングリコールモノ イソブチルエーテル、ジエチレングリコールモノ- n-ブチルエーテル、ジエチレングリ コールモノべンジルエーテル、ジエチレングリコールモノへキシルエーテル、ジェチレ ングリコーノレモノべンジノレエーテノレ、トリエチレングリコーノレモノメチノレエーテノレ、トリエ チレングリコーノレモノブチノレエーテノレ、 トリプロピレングリコーノレモノメチノレエーテノレ、 テトラエチレンダリコールモノメチルエーテル、テトラエチレンダリコールモノ- n-ドデシ ノレエーテノレ、ヘプタエチレングリコーノレモノ- n-ドデシノレエーテノレ、ポリエチレングリコ ールモノメチルエーテルなどのアルコキシアルコールが挙げられる。好ましくは、イソ プロピノレアノレコーノレ、 1ーブタノ一ノレ、イソブチノレアノレコーノレ、ジエチレングリコ一ノレ、 ジプロピレングリコール、トリエチレングリコール、テトラエチレンダリコール等が挙げら れる。 [0057] Examples of C3 or higher alcohols include monoalcohols having a hydrophobic group such as a long chain (eg, C3-6) alkynole group such as isopropyl alcohol, 1-butanol, tert-butyl alcohol, and isobutyl alcohol; ethylene glycol Diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, poly (propylene glycol), glycerin, 2-amino-2-ethyl-1, 3-propanediol, 2-amino -2-methyl-1,3-propanediol, 1,2-cyclohexanediol, 2,2-dimethyl-1,3-propanediol, 2,5-dimethyleno-2,5-hexanediol, 2, 3-naphthalenediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanedio 2-butyne-1,4-diol, 2-butene-1,4-diol, 1,3-propanediol, 1,2-propanediol, DL-1, 2-hexanediol, 2, Polyalkanols such as 5-hexanediol, 1,2-benzenediol, 2,4-pentanediol, 2-methinole-2,4-pentanediol; ethylene glycol monomethyl etherol, ethylene glycololmono Ethino reeenore, ethylene glycol mono-n-buteno eno enore, ethylene glyco eno mono mono eno ether, diethylene glycol mono mono ether, diethylene glycol mono ether, diethylene glycol mono isobutyl ether, diethylene glycol mono n-butyl ether, Diethylene glycol monobenzil ether, diethylene glycol Hexyl ether, Jetyleneglycolenomonobenzenoreethenore, Triethyleneglycololemonomethinoleethenore, Triethyleneglycololemonobutinoreethenore, Tripropyleneglycololemonomethinoreethenore, Tetraethylenedaricolmonomethyl Examples thereof include alkoxy alcohols such as ether, tetraethylenedaricol mono-n-dodecinorenotere, heptaethyleneglycololemono-n-dodecinoreutere, and polyethylene glycol monomethyl ether. Preferable examples include isopropylenoleanolone, 1-butanolenore, isobutinoleanole, diethyleneglycol, dipropylene glycol, triethyleneglycol, tetraethylenedaricol and the like.
[0058] C3以上のアルデヒド類としては、例えば、プロピオンアルデヒド、ブタナール、ペン タナール等が挙げられる。 [0058] Examples of C3 or higher aldehydes include propionaldehyde, butanal, and pen. Tanal and the like can be mentioned.
[0059] ポリエーテル類としては、例えば、ジメトキシメタン、ジエトキシメタン、ジメトキシエタ ン、ジメトキシプロパン、エチレングリコーノレジメチノレエーテノレ、エチレングリコーノレメ チノレエチノレエーテノレ、エチレングリコーノレジェチノレエーテノレ、エチレングリコーノレジ- n-ブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールメ チノレエチノレエーテノレ、ジエチレングリコーノレジェチノレエーテノレ、ジエチレングリコー ノレジ- n-ブチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリ コーノレエチノレメチノレエーテノレ、トリエチレングリコーノレジェチノレエーテノレ、テトラエチ レングリコーノレジメチノレエーテノレ、テトラエチレングリコーノレジェチノレエーテノレ、ポリエ チレングリコールジメチルエーテルなどが挙げられる。好ましくは、エチレングリコール ジメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジ ェチノレエーテノレ、トリエチレングリコーノレジメチノレエーテノレ、テトラエチレングリコーノレ ジメチルエーテル等が挙げられる。 [0059] Polyethers include, for example, dimethoxymethane, diethoxymethane, dimethoxyethane, dimethoxypropane, ethylene glyconoresin methinoleatenore, ethyleneglycoleno methinoreino enoenoate, ethylene glycono lesino oleore. Etherenole, ethylene glycolenoresi-n-butyl ether, diethylene glycol dimethyl ether, diethylene glycol methino ethino ree eno enore, diethylene glycol ole techno eno eno enore, diethylene glycol noreno tere-n-butyl ether, triethylene glycol dimethyl ether, triethylene glycol eno Reethino Remethino Reethenore, Triethylene Glycono Resetino Reethenore, Tetraethylene Glycono Resin Metino Reethenore, Tetraethylene Glycol Bruno Leger Chino les ether Honoré, like polyethylene Chi glycol dimethyl ether. Preferable examples include ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, diethylene glycol dimethylolate nore, triethyleneglycolino methinoleatenole, tetraethyleneglycol dimethyl ether and the like.
[0060] スルホン類としては、例えば、スルホラン、ジメチルスルホン等が挙げられる。 [0060] Examples of the sulfones include sulfolane and dimethyl sulfone.
[0061] 上記の有機化合物のうち、 2, 3—ブタンジオン、 2, 4—ペンタジオン、ァセトイン、 炭酸プロピレン、 γ —ブチロラタトン、エチレングリコールジァセタート (二酢酸ェチレ ン)、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、イソプロピルアル コーノレ、 1ーブタノ一ノレ、イソブチノレアノレコーノレ、ジエチレングリコ一ノレ、ジプロピレン グリコール、トリエチレングリコール、テトラエチレンダリコール、酢酸ジエチレングリコ ールモノェチルエーテル、エチレングリコールモノメチルエーテルアセテート、ェチレ ングリコールモノェチルエーテルアセテート、エチレングリコールジメチルエーテル、 ジエチレングリコールジメチルエーテル、ジエチレングリコールジェチルエーテル、ト リエチレングリコーノレジメチノレエーテノレ、テトラエチレングリコーノレジメチノレエーテノレ、 ァセト酢酸メチル、ァセト酢酸ェチル、乳酸ェチルが好適である。 [0061] Among the above organic compounds, 2,3-butanedione, 2,4-pentadione, acetoin, propylene carbonate, γ-butyrolatatone, ethylene glycol diacetate (ethylene diacetate), propylene glycol monomethyl ether acetate ( PGMEA), isopropyl alcohol, 1-butanol alcohol, isobutino alcohol alcohol, diethylene glycol alcohol, dipropylene glycol, triethylene glycol, tetraethylene dallicol, diethylene glycol monoethyl ether, ethylene glycol monomethyl ether acetate, Ethylene glycol monoethyl ether acetate, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, diethylene glycol jetyl ether, triethylene glycol Norresimetinoleatenole, tetraethyleneglycoloseretinomethineatere, methyl acetoacetate, ethyl acetoacetate and ethyl lactate are preferred.
[0062] 残渣除去液中の有機化合物の濃度は、一般に 60重量%以下、好ましくは 0. 5〜6 0重量%であり、より好ましくは 2〜40重量%、特に好ましくは 3〜30重量%である。  [0062] The concentration of the organic compound in the residue removing solution is generally 60% by weight or less, preferably 0.5 to 60% by weight, more preferably 2 to 40% by weight, particularly preferably 3 to 30% by weight. It is.
[0063] 残渣除去液には、さらにフッ素化合物を添加してもよぐこれにより Low-k膜などの 層間絶縁膜で形成されたパターンの側壁に付着する残渣を除去する効果が高めら れる。この残渣は、 Cu変質物のほ力、に、 SiNなどのストッパー膜、 Low-k膜、埋め込み 剤などがドライエッチングでスパッタリングされたものであり、 Siや有機物を含んで!/、る 場合がある。しかし、たとえ残渣中に Siや有機物を含んでいたとしても、 Cu酸化物が 主な構成物である場合には、通常フッ素化合物を添加しなくても除去できる。また、ド ライプロセスでプラズマダメージを受けた Low-k膜などの層間絶縁膜では、フッ素化 合物によりエッチングされやすく設計寸法どおりの加工ができなくなる場合もある。そ のため、残渣が十分に除去できない場合や除去できたかどうか不安が残る場合に、 より高い除去効果を付加するために、少量のフッ素化合物を添加するのが好ましい。 [0063] A fluorine compound may be further added to the residue removing solution, which increases the effect of removing residues adhering to the side wall of the pattern formed by the interlayer insulating film such as the low-k film. It is. This residue is a result of dry etching of a stopper film such as SiN, a low-k film, a filling agent, etc. due to the power of the Cu-modified material, and may contain Si or organic matter! / is there. However, even if Si and organic substances are contained in the residue, Cu oxide can be removed without adding a fluorine compound if Cu oxide is the main constituent. In addition, interlayer insulation films such as low-k films that have been damaged by plasma during the dry process are easily etched by fluorine compounds and may not be processed as designed. For this reason, it is preferable to add a small amount of a fluorine compound in order to add a higher removal effect when the residue cannot be removed sufficiently or when it remains uncertain whether it has been removed or not.
[0064] フッ素化合物としては、例えば、フッ化水素、或いは、アンモニア、ヒドロキシルアミ ン、第一級、第二級若しくは第三級ァミン、第四級アンモニゥム又はポリアミン等のフ ッ化物塩などが挙げられる。具体的には、フッ化水素、フッ化アンモニゥム、一水素二 フッ化アンモニゥム、フッ化メチルァミン、フッ化工チルァミン、フッ化ジェチルァミン、 フッ化トリエチレンテトラミン、フッ化テトラメチルアンモニゥム等が好ましい。フッ素化 合物は、 1種であっても又は 2種以上であってもよい。本発明の 1つの実施形態として 、例えば、フッ化アンモユウム水溶液、希フッ酸(50重量%水溶液)を好適に用いるこ と力 Sできる。 [0064] Examples of the fluorine compound include hydrogen fluoride or fluoride salts such as ammonia, hydroxylamine, primary, secondary or tertiary amine, quaternary ammonium or polyamine. It is done. Specifically, hydrogen fluoride, ammonium fluoride, ammonium monohydrogen difluoride, methylamine fluoride, fluorinated tyramine, decylamine fluoride, triethylenetetramine fluoride, tetramethylammonium fluoride and the like are preferable. One or two or more fluorine compounds may be used. As one embodiment of the present invention, for example, an aqueous ammonium fluoride solution or dilute hydrofluoric acid (50% by weight aqueous solution) can be suitably used.
[0065] 残渣除去液中のフッ素化合物の濃度は、シリコン含有膜、 Low-k膜などの層間絶 縁膜およびドライプロセスによりプラズマダメージを受けた層間絶縁膜の種類と量に 応じて、適宜選択することができる。フッ素化合物の濃度は、 5重量%以下、好ましく は 0.001〜5重量%であり、より好ましくは 0.01〜3重量%である。  [0065] The concentration of the fluorine compound in the residue removal solution is appropriately selected according to the type and amount of the interlayer insulating film such as the silicon-containing film and the low-k film and the interlayer insulating film damaged by the dry process. can do. The concentration of the fluorine compound is 5% by weight or less, preferably 0.001 to 5% by weight, and more preferably 0.01 to 3% by weight.
[0066] 層間絶縁膜のプラズマダメージを受けた部分がエッチングされるのを抑制する必要 がある場合には、残渣除去液にはフッ素化合物を含めないか、或いは少量(1重量 %以下)含めるのが好ましい。濃度が 0.001重量%未満であると残渣を除去する効果 が低下する場合がある。  [0066] If it is necessary to suppress etching of the plasma damaged portion of the interlayer insulating film, the residue removal solution should not contain a fluorine compound or contain a small amount (1 wt% or less). Is preferred. If the concentration is less than 0.001% by weight, the effect of removing residues may be reduced.
[0067] 本発明の残渣除去液には、さらに界面活性剤を添加することもできる。界面活性剤 は、疎水性の層間絶縁膜に対して濡れ性を増し、パターンの形状に応じて薬液が均 一にいきわたるようにするためである。その種類は、カチオン系、ァニオン系、ノニォ ン系など特に限定されない。残渣除去液中の界面活性剤の濃度は、一般に 0.00001 〜5重量%、好ましくは 0.0001〜3重量%である。 0.00001重量%より少ないと界面活 性効果が小さぐ 5重量%より多くても、その効果に変化はない。 [0067] A surfactant may be further added to the residue removing solution of the present invention. This is because the surfactant increases the wettability with respect to the hydrophobic interlayer insulating film and allows the chemical solution to spread uniformly according to the pattern shape. The type is not particularly limited, such as a cationic system, an anionic system, or a nonionic system. The concentration of surfactant in the residue removal solution is generally 0.00001. -5% by weight, preferably 0.0001-3% by weight. If it is less than 0.00001% by weight, the surface activity effect is small. If it is more than 5% by weight, the effect is not changed.
[0068] 本発明の残渣除去液には、さらに亀裂防止剤を添加することもできる。亀裂防止剤 としては、非共有電子をもつ酸素及び/又は非共有電子をもつ窒素を有する非共有 電子をもつ硫黄含有化合物が挙げられ、スルフイド類、メルカブタン類、チォカルボ ン酸類、チオアセトアミド類、チォゥレア類、チアジアゾール類、テトラゾール類、トリア ジン類、チアゾール類、チォフェン類、ピリミジン類、プリン類、チアゾリン類およびチ ァゾリジン類からなる群から選ばれる少なくとも 1種の硫黄含有化合物を例示できる。 具体的には、以下の化合物を好ましく例示できる。  [0068] An anti-cracking agent may be further added to the residue removing solution of the present invention. Anti-cracking agents include sulfur-containing compounds with unshared electrons having oxygen with unshared electrons and / or nitrogen with unshared electrons, sulfides, mercabtans, thiocarboxylic acids, thioacetamides, thiourea. And thiadiazoles, tetrazoles, triazines, thiazoles, thiophenes, pyrimidines, purines, thiazolines and thiazolidines. Specifically, the following compounds can be preferably exemplified.
[0069] スルフイド類としては、例えば、チォジグリコール、 2, 2' -チォ二酢酸、 3, 3' -ジ チォジプロピオン酸等が挙げられる。  [0069] Examples of the sulfides include thiodiglycol, 2,2'-thiodiacetic acid, 3,3'-dithiodipropionic acid, and the like.
[0070] メルカプタン類としては、例えば、メルカプト酢酸、チォリンゴ酸、チォ乳酸、 3-メル カプトプロピオン酸、アミノチォフエノール、 2-メルカプトエタノール、 3-メルカプト- 1 , 2-プロパンジオール等が挙げられる。  [0070] Examples of mercaptans include mercaptoacetic acid, thiomalic acid, thiolactic acid, 3-mercaptopropionic acid, aminothiophenol, 2-mercaptoethanol, 3-mercapto-1, 2-propanediol, and the like.
[0071] チォカルボン酸類としては、例えば、チオール酢酸、 3-ァセチルチオ- 2-メチルプ 口パン酸等が挙げられる。  [0071] Examples of the thiocarboxylic acids include thiolacetic acid, 3-acetylethylthio-2-methylpropanoic acid, and the like.
[0072] チオアセトアミド類としては、例えば、チオアセトアミド等が挙げられる。  [0072] Examples of the thioacetamides include thioacetamide.
[0073] チォゥレア類としては、例えば、チォ尿素、チォカルボヒドラジド、グァニルチオウレ ァ、エチレンチォ尿素、マロ二ルチオ尿素等が挙げられる。  [0073] Examples of the thioureas include thiourea, thiocarbohydrazide, guanylthiourea, ethylenethiourea, malonylthiourea, and the like.
[0074] チアジアゾール類としては、例えば、 2,5-ジメルカプト- 1,3,4-チアジアゾール、 2-チ ォ酢酸- 5-メルカプト- 1,3,4-チアジアゾール、 2,5-ジチォ酢酸- 1,3,4-チアジアゾー ル等が挙げられる。  [0074] Examples of thiadiazoles include 2,5-dimercapto-1,3,4-thiadiazole, 2-thioacetic acid-5-mercapto-1,3,4-thiadiazole, 2,5-dithioacetic acid-1 , 3,4-Chiasia zone.
[0075] テトラゾール類としては、例えば、 1-メチル -5-メルカプト- -テトラゾール等が挙げ られる。  [0075] Examples of the tetrazole include 1-methyl-5-mercapto-tetrazole and the like.
[0076] トリアジン類としては、例えば、 2, 4, 6-トリメルカプト- S-トリァジン等が挙げられる。  [0076] Examples of triazines include 2,4,6-trimercapto-S-triazine.
[0077] チアゾール類としては、例えば、 4-チアゾールカルボン酸、 2-ァミノチアゾール等 が挙げられる。 [0077] Examples of thiazoles include 4-thiazolecarboxylic acid, 2-aminothiazole and the like.
[0078] チォフェン類としては、例えば、 2,5-チォフェンジカルボン酸、 3-チォフェンマロン 酸、 2-チォフェンカルボン酸等が挙げられる。 [0078] Examples of thiophenes include 2,5-thiophenedicarboxylic acid and 3-thiophenmalone. Acid, 2-thiophenecarboxylic acid and the like.
[0079] ピリミジン類としては、例えば、 2-チォバルビツル酸、 2-チォシトシン、チォゥラシル[0079] The pyrimidines include, for example, 2-thiobarbituric acid, 2-thiocytosine, thiouracil.
、 4-ァミノ- 6-ヒドロキシ -2-メルカプトピリミジン等が挙げられる。 4-amino-6-hydroxy-2-mercaptopyrimidine and the like.
[0080] プリン類としては、例えば、 2,5-ジチォプリン、 6-メルカプトプリン等が挙げられる。 [0080] Examples of the purines include 2,5-dithiopurine and 6-mercaptopurine.
[0081] チアゾリン類は、 2-ァミノ- 2-チアゾリン、 2-チアゾリン- 2-チオール等が挙げられる[0081] Examples of thiazolines include 2-amino-2-thiazoline, 2-thiazoline-2-thiol, and the like.
Yes
[0082] チアゾリジン類としては、例えば、 2,4-チアゾリジンジオン、 2-チォ -4-チアゾリドン、 [0082] Examples of thiazolidines include 2,4-thiazolidinedione, 2-thio-4-thiazolidone,
2-ィミノ- 4-チアゾリジノン等が挙げられる。 Examples include 2-imino-4-thiazolidinone.
[0083] これらの中で最も好ましいのは、 2-ァミノ- 2-チアゾリン、メルカプト酢酸、 3-メルカプ トプロピオン酸、チォ乳酸又はチォリンゴ酸である。 [0083] Among these, 2-amino-2-thiazoline, mercaptoacetic acid, 3-mercaptopropionic acid, thiolactic acid or thiomalic acid is most preferable.
[0084] 本発明において亀裂防止剤は補足的に用いることができ、その濃度は、例えば 0.0[0084] In the present invention, the anti-cracking agent can be used supplementarily, and its concentration is, for example, 0.0
0001〜3重量%、好ましくは 0.00005〜1重量%である。 0001 to 3% by weight, preferably 0.00005 to 1% by weight.
[0085] 本発明の残渣除去液には、さらに酸化防止剤を添加することもできる。酸化防止剤 としては、ベンゾトリアゾールなどが挙げられる。その濃度は、例えば 0.00001〜3重量[0085] An antioxidant may be further added to the residue removing solution of the present invention. Examples of the antioxidant include benzotriazole. The concentration is, for example, 0.00001-3 weight
%、好ましくは 0.0005〜1重量%である。 %, Preferably 0.0005 to 1% by weight.
[0086] 本発明の残渣除去液に含まれる水の割合は、残渣除去液中、通常 40〜99.5重量[0086] The ratio of water contained in the residue removing solution of the present invention is usually 40 to 99.5 weight in the residue removing solution.
%程度、好ましくは 70〜99重量%程度であり、水以外の成分の配合量 (濃度)に応 じて決定すること力でさる。 %, Preferably about 70 to 99% by weight, and is determined by the force determined according to the amount (concentration) of components other than water.
[0087] 本発明の除去液の pHは 4〜7である。 pHが 4未満であるとドライプロセスでダメージ をうけた Low-k膜表面が変質しやすくなり、 pHが 7を超えると Cuを腐食しやすくなる。 好ましくは pH4〜6. 5である。 pHは、強酸とポリカルボン酸塩、必要に応じ有機化合 物の分量により調整する。 [0087] The pH of the removing solution of the present invention is 4-7. If the pH is less than 4, the surface of the low-k film damaged by the dry process is likely to be altered, and if the pH is more than 7, Cu is easily corroded. The pH is preferably 4 to 6.5. The pH is adjusted by the amount of strong acid, polycarboxylate and, if necessary, the organic compound.
[0088] 例えば、 Cuと錯体又はキレートを形成し得る強酸と、ポリカルボン酸塩と、水とを含 む残渣除去液の場合、強酸の濃度は 0. ;!〜 5重量%程度(好ましくは 0. 3〜3重量[0088] For example, in the case of a residue removing solution containing a strong acid capable of forming a complex or chelate with Cu, a polycarboxylic acid salt, and water, the concentration of the strong acid is about 0.;! To 5% by weight (preferably 0.3-3 weight
%程度)であり、ポリカルボン酸塩の濃度は 0· ;!〜 20重量%程度(好ましくは 0· 5〜The concentration of polycarboxylate is about 0 ·;! ~ 20% by weight (preferably 0 · 5 ~
10重量%程度)である。 pHは 4〜6. 5程度(好ましくは 4〜6程度)である。ポリカル ボン酸塩に対する強酸のモル比は、 0. 3〜1程度(好ましくは 0. 35-0. 8程度)で ある。 [0089] また、 Cuと錯体又はキレートを形成し得る強酸と、ポリカルボン酸塩と、有機化合物 と、水とを含む残渣除去液の場合、強酸の濃度は 0. ;!〜 5重量%程度(好ましくは 0 . 3〜3重量%程度)であり、ポリカルボン酸塩の濃度は 0. 5〜20重量%程度(好まし くは 0. 75〜; 10重量%程度)であり、有機化合物の濃度は 0. 5〜60重量% (好ましく は 2〜40重量%、より好ましくは 3〜30重量%)である。 pHは 4〜7程度(好ましくは 4 〜6程度)である。ポリカルボン酸塩に対する強酸のモル比は、 0. 3〜1程度(好まし くは 0. 35-0. 8程度)である。 10% by weight). The pH is about 4 to 6.5 (preferably about 4 to 6). The molar ratio of strong acid to polycarbonate is about 0.3 to 1 (preferably about 0.35 to 0.8). [0089] In the case of a residue removal solution containing a strong acid capable of forming a complex or chelate with Cu, a polycarboxylic acid salt, an organic compound, and water, the concentration of the strong acid is about 0.; (Preferably about 0.3 to 3% by weight), and the concentration of the polycarboxylate is about 0.5 to 20% by weight (preferably about 0.75 to about 10% by weight). The concentration of is 0.5 to 60% by weight (preferably 2 to 40% by weight, more preferably 3 to 30% by weight). The pH is about 4-7 (preferably about 4-6). The molar ratio of strong acid to polycarboxylate is about 0.3 to 1 (preferably about 0.30 to 0.8).
[0090] Cu酸化物及び/又はドライプロセス後の残液の除去  [0090] Removal of Cu oxide and / or residual liquid after dry process
本発明の残渣除去方法は、主として、ダマシン、デュアルダマシンなどの構造ゃキ ャパシタ構造の形成工程にぉレ、て、ドライプロセス(ドライエッチング及び/又はアツ シング)後の半導体基板に存在する残渣を除去する方法である。具体的には、ドライ プロセス後の Cu/Low-k多層配線構造を有する半導体基板に存在する残渣を、上記 の残渣除去液を用いて除去する。  The residue removal method of the present invention mainly removes residues present in a semiconductor substrate after a dry process (dry etching and / or etching) in the formation process of a capacitor structure such as damascene or dual damascene. It is a method of removing. Specifically, the residue present on the semiconductor substrate having a Cu / Low-k multilayer wiring structure after the dry process is removed using the residue removing liquid described above.
[0091] 本発明は半導体デバイスの製造方法をも提供する。該製造方法は(1)配線材料と して Cuを有し層間絶縁材料として低誘電率膜 (Low-k膜)を有する半導体基板をドラ ィエッチング及び/又はアツシングする工程、及び(2)上記(1)で処理された半導体 基板を上記の残渣除去液と接触させる工程を含むことを特徴とする。  The present invention also provides a method for manufacturing a semiconductor device. The manufacturing method includes (1) dry etching and / or assembling a semiconductor substrate having Cu as a wiring material and having a low dielectric constant film (Low-k film) as an interlayer insulating material, and (2) The method includes the step of bringing the semiconductor substrate treated in (1) into contact with the residue removing liquid.
[0092] なお、基板上に Low-k膜を形成した後、必要に応じて Low-k膜上に SiN、 SiC、 TaN 膜などの絶縁膜バリアが形成されるが、該 SiN、 SiC、 TaN膜などは、 Low-k膜と共にェ ツチングすることあでさる。  [0092] Note that after forming a low-k film on a substrate, an insulating film barrier such as a SiN, SiC, or TaN film is formed on the low-k film as necessary. Etching the film together with the low-k film.
[0093] 残渣除去の処理は、被処理物である半導体基板を残渣除去液に接触させて行う。  The residue removal process is performed by bringing a semiconductor substrate, which is an object to be processed, into contact with a residue removal solution.
残渣除去液への接触方法は、残渣除去液の種類や温度に応じて適宜設定すること ができる。接触方法としては、例えば、薬液をためた槽に、カセットに入った多量の被 処理物(ウェハー)を浸漬させるバッチ式、回転させた被処理物(ウェハー)の上から 薬液をかけて洗浄する枚葉式、被処理物(ウェハー)に薬液をスプレーで吹付け続け て洗浄するスプレー式等、種々の接触方法が用いられる。  The method for contacting the residue removing liquid can be appropriately set according to the type and temperature of the residue removing liquid. As a contact method, for example, a batch type in which a large amount of processing object (wafer) stored in a cassette is immersed in a tank for storing chemical liquid, and cleaning is performed by applying the chemical liquid on the rotated processing object (wafer). Various contact methods such as a single wafer type and a spray type in which a chemical solution is continuously sprayed on a workpiece (wafer) to be cleaned are used.
[0094] 残渣除去液の温度は、例えば 10〜60°C程度、好ましくは 15〜40°C程度にするのが よい。接触時間も特に限定されず適宜選択することができるが、例えば、 0.5分〜 60 分程度、好ましくは 1分〜 40分程度である。 [0094] The temperature of the residue removing solution is, for example, about 10 to 60 ° C, preferably about 15 to 40 ° C. The contact time is not particularly limited and can be appropriately selected. For example, 0.5 to 60 minutes Minutes, preferably about 1 to 40 minutes.
[0095] また、バッチ式の場合は、必要に応じて、撹拌下の残渣除去液にウェハーを浸漬し てもよい。撹拌の速度も限定されず、適宜選択することができる。不要物が剥離しにく[0095] In the case of a batch type, the wafer may be immersed in a residue removing liquid under stirring as necessary. The speed of stirring is not limited and can be appropriately selected. Unnecessary material is difficult to peel off
V、場合には、例えば被処理物を残渣除去液に浸漬して超音波洗浄を行ってもよ!/、。 V. In some cases, for example, the object to be treated may be immersed in a residue removal solution and subjected to ultrasonic cleaning! /.
[0096] 本発明の Cu酸化物の除去方法は、さらに、 Cu酸化物及び/又はドライプロセス後 の残渣を除去したウェハーを、純水で洗浄することにより行うことができる。この洗浄 工程により残渣除去液を洗い流すことができる。 [0096] The Cu oxide removal method of the present invention can be performed by washing the wafer from which Cu oxide and / or the residue after the dry process have been removed with pure water. This washing process can wash away the residue removal solution.
[0097] 本発明の残渣除去液を用いて Cu酸化物及び/又はドライプロセス後の残渣の除 去を行った半導体基板は、例えば、 Cu配線をするなど慣用されている方法 (例えば、 詳説半導体 CMP技術、土肥俊郎 編著 2001年 に記載された方法)に従って、様 々な種類の半導体装置(デバイス)へと加工することができる。 The semiconductor substrate from which the Cu oxide and / or the residue after the dry process has been removed using the residue removing solution of the present invention is a commonly used method such as Cu wiring (for example, a detailed semiconductor) It can be processed into various kinds of semiconductor devices (devices) according to CMP technology, edited by Toshiro Dohi, edited by 2001).
発明の効果  The invention's effect
[0098] 本発明の残渣除去液は、シリコン含有膜や Low-k膜に対するエッチングを抑制し、 Cu腐食をすることなぐ強く付着したドライプロセス後の残渣と Cu酸化膜を短時間で 除去できる。特に、 Low-k膜に対するダメージがより小さぐ従来のポリマー剥離液で 解決し得なかったわずかな Cu表面の亀裂を抑制する効果も有する。  [0098] The residue removing solution of the present invention suppresses etching of silicon-containing films and low-k films, and can remove strongly adhered residues after dry process and Cu oxide film in a short time without Cu corrosion. In particular, it has the effect of suppressing the slight cracking of the Cu surface that could not be solved by conventional polymer stripping solutions that cause less damage to low-k films.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0099] 以下に実施例を示し、本発明の特徴を明確にする。本発明はこれら実施例に限定 されるものではない。 [0099] The following examples illustrate the characteristics of the present invention. The present invention is not limited to these examples.
[0100] ドライプロセス後の残渣の除去及びパターンの形状の変化を調べるために、ビアフ アーストプロセスにより形成された Cu/Low-kデュアルダマシン構造を持つテストパタ ーン付きウェハーを用いた。 Cu/Low-kデュアルダマシン構造の Low-k膜はプラズマ CVDにより形成された SiOC膜であり、絶縁膜バリアは SiN膜である。ドライプロセス後 の残渣は強固に付着して除去しにくいものである。残渣はビアホール底に多く存在し 、ビアホール側壁と Low-k基板表面に若干みられる。  [0100] A wafer with a test pattern having a Cu / Low-k dual damascene structure formed by a via-first process was used to investigate the removal of residues and the change in pattern shape after the dry process. The low-k film of Cu / Low-k dual damascene structure is a SiOC film formed by plasma CVD, and the insulating film barrier is a SiN film. Residues after the dry process adhere firmly and are difficult to remove. A large amount of residue is present at the bottom of the via hole, and is slightly observed on the side wall of the via hole and the low-k substrate surface.
[0101] このテストパターン付きウェハーを、実施例および比較例で示した薬液に 25°Cで 1 〜3分間、撹拌下 (約 600rpm)に浸漬した後、超純水の流水でリンス、乾燥してドライ プロセス後の残渣除去処理を行った。 [0102] この残渣除去処理の後、 12個のビアホールについて、ドライプロセス後の残渣除去 の状態と断面形状を、電子顕微鏡(SEM)で観察した。さらに、 Cu表面亀裂の有無を 判断するために、 60個のビアホールを上方から電子顕微鏡 (SEM)で観察した。必要 に応じて断面も SEMで観察した。 [0101] The wafer with the test pattern was immersed in the chemical solutions shown in Examples and Comparative Examples at 25 ° C for 1 to 3 minutes under stirring (about 600 rpm), rinsed with running ultrapure water, and dried. The residue removal treatment after the dry process was performed. [0102] After this residue removal treatment, the residue removal state and cross-sectional shape after the dry process were observed with an electron microscope (SEM) for 12 via holes. Furthermore, in order to judge the presence or absence of Cu surface cracks, 60 via holes were observed from above with an electron microscope (SEM). The cross section was also observed with SEM as needed.
[0103] また、テストパターン付きウェハーを用いた評価では見つけにくい Cuおよび Low-k 膜に対するダメージを調べるため、これらを成膜したブランケットウェハーを実施例お よび比較例の薬液に 10分間浸漬して、これらのエッチング速度を求めた。 Low-k膜に ついては、表面状態の変化を調べるため、薬液の浸漬前後の接触角を測定し比較し た。接触角の変化の大きい場合には昇温脱離分析 (TDS)において、水の吸着量が増 加する相関関係が得られている。すなわち、接触角の変化は Low-k膜の最表面の変 化を反映している。なお、接触角は、接触角計を用いて測定した。  [0103] In addition, in order to investigate damage to Cu and low-k films that are difficult to find by evaluation using a wafer with a test pattern, the blanket wafers on which these were formed were immersed in the chemical solutions of Examples and Comparative Examples for 10 minutes. These etching rates were determined. For the low-k film, the contact angle before and after immersion of the chemical was measured and compared to examine changes in the surface state. When the change in the contact angle is large, a correlation that increases the amount of adsorbed water is obtained in thermal desorption analysis (TDS). That is, the change in contact angle reflects the change in the outermost surface of the low-k film. The contact angle was measured using a contact angle meter.
[0104] 表 2に実施例を、表 4及び表 6に比較例を例示した。これらの薬液を用いてテストし た結果を表 3、表 5及び表 7に示す。テスト結果の判定基準を、表 1に示す。  Examples are shown in Table 2, and Comparative Examples are shown in Table 4 and Table 6. Tables 3, 5 and 7 show the results of testing using these chemicals. Table 1 shows the test criteria.
[0105] [表 1]  [0105] [Table 1]
Figure imgf000018_0001
Figure imgf000018_0001
( * ) 「浅い亀裂」 とは幅及び深さが約 lOnm未満の亀裂を意味し、 「深い亀裂」 とは幅 及び深さが約 20nmを超える亀裂を意味し、 「通常亀裂」 とは幅及び深さが約 l Onm〜約 20nmの亀裂を意味する。 実施例;!〜 25  (*) `` Shallow crack '' means a crack with a width and depth less than about lOnm, `` Deep crack '' means a crack with a width and depth greater than about 20 nm, and `` normal crack '' means a width And a crack with a depth of about lOnm to about 20nm. Examples;! ~ 25
実施例 1〜21は強酸とボリカルボン酸塩からなる残渣除去液であり、実施例 22〜2 5は強酸とポリカルボン酸塩に加えて、 NH F及び有機化合物を加えた残渣除去液で ある。 Examples 1 to 21 are residue removal solutions composed of strong acid and polycarboxylate, and Examples 22 to 25 are residue removal solutions obtained by adding NH F and organic compounds in addition to strong acid and polycarboxylate. is there.
[0107] Cu表面上の残渣が強酸とポリカルボン酸塩からなる残渣除去液だけでは除去しに くい場合に、有機化合物及び NH を添加すると残渣除去効果が助長される。また、 パターン側壁の残渣が取れにくい場合に NH Fを添加し、基板表面の残渣が除去し  [0107] When the residue on the Cu surface is difficult to remove only with a residue removal solution consisting of a strong acid and a polycarboxylate, the addition of an organic compound and NH promotes the residue removal effect. If it is difficult to remove the residue on the pattern side wall, NH F is added to remove the residue on the substrate surface.
4  Four
にくい場合には有機化合物を添加すると残渣除去効果が増す。  If it is difficult to add an organic compound, the residue removal effect is increased.
[0108] [表 2]  [0108] [Table 2]
Figure imgf000019_0001
Figure imgf000019_0001
[0109] 実施例 1〜25の薬液を用いてテストした結果を表 3に示す。 [0109] Table 3 shows the results of testing using the chemical solutions of Examples 1 to 25.
[0110] 表 3に示したテストパターン付きウェハーを用いた評価の結果から、実施例:!〜 25 の残渣除去液は、パターン形状を変化させないだけでなぐ Cu表面の僅かな亀裂も 生じることなく、残渣除去性能に優れていることが明らかである。ブランケットウェハー を用いた評価の結果から、 Cuと Low-k膜のエッチング速度は小さぐ Low-k膜の接触 角も変化してレ、なレ、ことから、 Cu腐食や Low-k膜の残渣除去液によるダメージがなレヽ ことを示している。 [0110] From the results of evaluation using wafers with test patterns shown in Table 3, Examples:! To 25 It is clear that this residue removal solution is excellent in residue removal performance without causing slight cracks on the Cu surface as well as not changing the pattern shape. As a result of evaluation using blanket wafers, the etching rate of Cu and low-k film is small, and the contact angle of low-k film also changes, so that Cu corrosion and low-k film residue This indicates that there is no damage caused by the removal liquid.
[0111] 実施例 1及び 21において、トリフルォロ酢酸の代わりに、シユウ酸、マロン酸、クェン 酸を用いても同様の効果を示した。  [0111] In Examples 1 and 21, the same effect was obtained even when oxalic acid, malonic acid, or citrate was used instead of trifluoroacetic acid.
[0112] 実施例 3〜; 13、実施例 17〜25において、トリフルォロ酢酸の代わりに、シユウ酸、 マロン酸、クェン酸を用いても同様の効果を示す。 [0112] In Examples 3 to 13 and Examples 17 to 25, the same effect can be obtained by using oxalic acid, malonic acid, or citrate instead of trifluoroacetic acid.
[0113] 実施例 1及び 2において、マロン酸塩の代わりに、クェン酸水素二アンモニゥム塩、 クェン酸二水素アンモニゥム塩、クェン酸塩を用いても同様の効果を示した。 [0113] In Examples 1 and 2, the same effect was obtained by using oxalic acid hydrogen diammonium salt, quaternary acid dihydrogen ammonium salt, and kennate instead of malonate.
[0114] 実施例 3〜7、実施例 14〜25において、マロン酸塩の代わりに、クェン酸水素ユア ンモニゥム塩、クェン酸二水素アンモニゥム塩、クェン酸塩を用いても同様の効果を 示す。 [0114] In Examples 3 to 7 and Examples 14 to 25, the same effect can be obtained by using a hydrogen citrate hydrogen salt, a dihydrogen ammonium salt, or a squenate in place of the malonate.
[0115] 実施例 14〜25において、ポリカルボン酸の塩として、アンモニゥム塩の代わりに、メ チノレアミン塩、ェチルァミン塩、ジェチルァミン塩、トリエチレンテトラミン塩、水酸化テ トラメチルアンモニゥム塩、コリン塩を用いても同様の効果を示す。  [0115] In Examples 14 to 25, instead of the ammonium salt, the polycarboxylic acid salt is a methylolamine salt, an ethylamine salt, a jetylamine salt, a triethylenetetramine salt, a tetramethylammonium hydroxide salt, or a choline salt. Even if is used, the same effect is exhibited.
[0116] 実施例 22において、プロピレングリコーノレモノェチノレエーテノレアセテートの代わり に、ァセトイン、エチレングリコールジァセタート (二酢酸エチレン)、ジエチレングリコー ル、トリエチレングリコールジメチルエーテル、ァセト酢酸メチル、酢酸ジエチレングリ コールモノェチルエーテルを用レ、ても同様の効果を示した。  [0116] In Example 22, in place of propylene glycolenomethenoylethenoate acetate, acetoin, ethylene glycol diacetate (ethylene diacetate), diethylene glycol, triethylene glycol dimethyl ether, methyl acetoacetate, acetic acid The same effect was obtained when diethylene glycol monoethyl ether was used.
[0117] 実施例 23〜25において、プロピレングリコールモノェチルエーテルアセテート、炭 酸プロピレン、乳酸ェチル、プロピオンアルデヒドの代わりに、ァセトイン、エチレング リコールジァセタート (二酢酸エチレン)、ジエチレングリコール、トリエチレングリコール ジメチノレエ一テル、ァセト酢酸メチル、酢酸ジエチレングリコールモノェチルエーテノレ を用いても同様の効果を示す。  [0117] In Examples 23 to 25, in place of propylene glycol monoethyl ether acetate, propylene carbonate, ethyl lactate, and propionaldehyde, acetoin, ethylene glycol diacetate (ethylene diacetate), diethylene glycol, triethylene glycol The same effect can be obtained by using dimethylol ether, methyl acetate acetate, or diethylene glycol monoethyl etherate.
[0118] 実施例;!〜 25は、濃度を増加させた場合には、その効果を増し、濃度を半分に減 少させた場合においてもその効果を十分に発揮する。 [0119] [表 3] [0118] Examples;! To 25 increase the effect when the concentration is increased, and sufficiently exert the effect even when the concentration is decreased by half. [0119] [Table 3]
Figure imgf000021_0001
Figure imgf000021_0001
[0120] 実施例 1、実施例 6、実施例 7に示したそれぞれの薬液に対して、 Cuの亀裂防止剤 として 3-メルカプトプロピオン酸 lppmを添加した場合、表 3の Cu表面亀裂の評価は" B"から" A"に改善できた。 3-メルカプトプロピオン酸の代わりに、チォ乳酸、 2-ァミノ- 2-チアゾリン、 2,4,6_トリメルカプト- s-トリァジンなどを lppm添加した場合も同様の効 果を示した。 [0120] When 1 ppm of 3-mercaptopropionic acid was added as a Cu crack inhibitor to each of the chemical solutions shown in Example 1, Example 6, and Example 7, the evaluation of Cu surface cracks in Table 3 was Improved from "B" to "A". Similar effects were obtained when lppm was added instead of 3-mercaptopropionic acid, such as thiolactic acid, 2-amino-2-thiazoline, 2,4,6_trimercapto-s-triazine.
[0121] 実施例 1〜7に示したそれぞれの薬液に対して、 Cuの酸化防止剤としてべンゾトリ ァゾールを、それぞれ 5ppmを添加した場合、添加していない場合に比べて、 Cuの酸 化を防止することができた。 [0121] With respect to each of the chemical solutions shown in Examples 1 to 7, when 5 ppm of benzotriazole was added as a Cu antioxidant, compared to the case where it was not added, Cu acid was added. Could be prevented.
[0122] Cuの酸化状態を判断は、薬液に浸漬した Cuのブランケットウェハーを、 27°Cで湿度[0122] The oxidation state of Cu was determined by measuring the humidity of a Cu blanket wafer immersed in a chemical solution at 27 ° C.
80%以上の状態に 24時間以上保持した後に XPS (光電子分光法)により CuOに由来す る Cuピークを觀察することにより fiつた。 After holding at 80% or more for 24 hours or longer, XPS (photoelectron spectroscopy) was used to observe the Cu peak derived from CuO.
[0123] 以上のように、 Cu亀裂防止剤、 Cu酸化防止剤を添加することにより、亀裂防止効果[0123] As described above, the addition of Cu crack inhibitors and Cu antioxidants prevents cracks.
、酸化防止効果を付与できることがわかる。他の実施例についても同様の効果がある と考えること力 Sできる。 It can be seen that an antioxidant effect can be imparted. It is possible to think that other examples have similar effects.
[0124] 比較例:!〜 9 [0124] Comparative example:! ~ 9
比較例 1〜9の残渣除去液の成分組成を表 4に示す。比較例;!〜 9の残渣除去液 の PHは約 2になるように調合した。 Table 4 shows the component compositions of the residue removal solutions of Comparative Examples 1-9. Comparative Example;! P H of the residue-removing solution of 1-9 was formulated to be about 2.
[0125] [表 4] [0125] [Table 4]
Figure imgf000022_0001
Figure imgf000022_0001
[0126] 比較例 1〜9は全て Cu亀裂防止が不十分である。表 5のその他の項目においても 評価が C以下のものはその性能が劣ることを示している。したがって、表 4に示した薬 液は全て残渣除去液としては好ましくない。 [0126] Comparative Examples 1 to 9 all have insufficient Cu crack prevention. In other items in Table 5, those with a rating of C or less indicate poor performance. Therefore, all the chemical solutions shown in Table 4 are not preferred as residue removal solutions.
[0127] 具体的には、比較例 1〜3に示すように強酸のみでは、 Cuの腐食が激しい。比較例 4〜9のように強酸と有機化合物と必要に応じ NH Fとを含んでいてもポリカルボン酸  [0127] Specifically, as shown in Comparative Examples 1 to 3, Cu corrosion is severe with strong acids alone. Even if it contains a strong acid, an organic compound, and NH F as required, as in Comparative Examples 4 to 9, polycarboxylic acid
4  Four
塩を含まない場合には、 Cu表面の亀裂を抑えることはできない。 [0128] [表 5] Without salt, Cu surface cracks cannot be suppressed. [0128] [Table 5]
Figure imgf000023_0001
Figure imgf000023_0001
[0129] 比較例 10〜: 17  [0129] Comparative Examples 10 to 17
比較例 10〜; 17の残渣除去液の成分組成を表 6に示す,  Table 6 shows the component compositions of the residue removal solutions of Comparative Examples 10 to 17;
[0130] [表 6] [0130] [Table 6]
Figure imgf000023_0002
Figure imgf000023_0002
[0131] 比較例 10〜; 13のように強酸の場合では Cu表面の亀裂が激しい。比較例 14のよう に強酸とポリカルボン酸の場合や、比較例 15のように強酸とモノカルボン酸塩(酢酸 アンモニゥム)の場合では Cu表面の亀裂が激しい。また、比較例 16, 17のようにポリ カルボン酸の塩のみでは Cuの腐食が激し!/、。 [0131] In the case of strong acid as in Comparative Examples 10 and 13; In the case of strong acid and polycarboxylic acid as in Comparative Example 14 and in the case of strong acid and monocarboxylic acid salt (ammonium acetate) as in Comparative Example 15, cracks on the Cu surface are severe. Also, as in Comparative Examples 16 and 17, Cu corrosion is severe with polycarboxylic acid salts only!
[0132] 従って、比較例 10〜; 17の薬液は、全て残渣除去液として好ましくない。 [0133] [表 7] Therefore, all of the chemical solutions of Comparative Examples 10 to 17 are not preferable as the residue removing solution. [0133] [Table 7]
Figure imgf000024_0001
Figure imgf000024_0001
[0134] 以上の結果より、実施例の薬液では、強酸とポリカルボン酸塩の相互作用により、 C uの腐食が制御され、特に Cu表面の亀裂が抑制されることが理解できる。そのため、 残渣除去液として好適である。 From the above results, it can be understood that in the chemical solutions of Examples, the corrosion of Cu is controlled by the interaction between the strong acid and the polycarboxylate, and in particular, the crack on the Cu surface is suppressed. Therefore, it is suitable as a residue removal solution.

Claims

請求の範囲 The scope of the claims
[I] ドライエッチング及び/又はアツシング後の半導体基板に存在する残渣の除去液 であって、 Cuと錯体又はキレートを形成し得る強酸とポリカルボン酸塩と水とを含むこ とを特徴とする残渣除去液。  [I] A solution for removing residues present on a semiconductor substrate after dry etching and / or ashing, comprising a strong acid capable of forming a complex or chelate with Cu, a polycarboxylate, and water Residue removal solution.
[2] Cuと錯体又はキレートを形成し得る強酸力 25°Cでの pKaが 3以下であるブレンス テッド酸である請求項 1に記載の残渣除去液。  [2] The residue removing solution according to claim 1, which is a Bronsted acid having a strong acidity capable of forming a complex or a chelate with Cu and a pKa of 3 or less at 25 ° C.
[3] Cuと錯体又はキレートを形成し得る強酸力 トリフルォロ酢酸、臭化水素酸、過塩素 酸、硫酸、シユウ酸、マロン酸及びクェン酸からなる群より選ばれる少なくとも 1種であ る請求項 1又は 2に記載の残渣除去液。 [3] Strong acidity capable of forming a complex or chelate with Cu. At least one selected from the group consisting of trifluoroacetic acid, hydrobromic acid, perchloric acid, sulfuric acid, oxalic acid, malonic acid and citrate. The residue removing solution according to 1 or 2.
[4] ポリカルボン酸塩力 S、シユウ酸、マロン酸、コハク酸、グノレタル酸、アジピン酸、リンゴ 酸、酒石酸、クェン酸水素アンモニゥム、及びクェン酸からなる群より選ばれる少なく とも 1種のポリカルボン酸と、アンモニア、ヒドロキシルァミン、第一級、第二級又は第 三級ァミン、第四級アンモニゥム、及びポリアミンからなる群より選ばれる少なくとも 1 種の塩基とから形成される塩である請求項 1〜3のいずれかに記載の残渣除去液。 [4] Polycarboxylic acid strength S, oxalic acid, malonic acid, succinic acid, gnoretaric acid, adipic acid, malic acid, tartaric acid, ammonium hydrogen citrate, and at least one polycarboxylic acid A salt formed from a carboxylic acid and at least one base selected from the group consisting of ammonia, hydroxylamine, primary, secondary or tertiary amine, quaternary ammonium, and polyamine. Item 4. A residue removing solution according to any one of Items 1 to 3.
[5] 残渣除去液中の Cuと錯体又はキレートを形成し得る強酸の濃度が 0. ;!〜 5重量% であり、ポリカルボン酸塩の濃度が 0. ;!〜 20重量%である請求項;!〜 4のいずれか に記載の残渣除去液。 [5] The concentration of strong acid capable of forming a complex or chelate with Cu in the residue removal solution is 0.;! To 5% by weight, and the concentration of polycarboxylate is 0.;! To 20% by weight. Item 6! The residue removing solution according to any one of! To 4.
[6] pHが 4〜6. 5である請求項;!〜 5のいずれかに記載の残渣除去液。 [6] The residue removing solution according to any one of [5] to [5] above, wherein the pH is 4 to 6.5.
[7] さらに有機化合物を含む請求項;!〜 5のいずれかに記載の残渣除去液。  [7] The residue removing solution according to any one of [5] to [5], further containing an organic compound.
[8] 有機化合物が、ポリカルボニル類、ヒドロキシケトン類、エステル類、 C3以上のアル コール類、 C3以上のアルデヒド類、ポリエーテル類、及びスルホン類からなる群より 選ばれる少なくとも 1種である請求項 7に記載の残渣除去液。 [8] The organic compound is at least one selected from the group consisting of polycarbonyls, hydroxyketones, esters, C3 or higher alcohols, C3 or higher aldehydes, polyethers, and sulfones. Item 8. A residue removing solution according to Item 7.
[9] pHが 4〜7であることを特徴とする請求項 7又は 8に記載の残渣除去液。 [9] The residue removal solution according to claim 7 or 8, wherein the pH is 4-7.
[10] 残渣除去液中の Cuと錯体又はキレートを形成し得る強酸の濃度が 0. ;!〜 5重量% であり、ポリカルボン酸塩の濃度が 0. ;!〜 20重量%であり、有機化合物の濃度が 0. [10] The concentration of the strong acid capable of forming a complex or chelate with Cu in the residue removal solution is 0.;! To 5% by weight, the concentration of the polycarboxylate is 0.;! To 20% by weight, Organic compound concentration is 0.
5〜60重量%である請求項 7〜9のいずれかに記載の残渣除去液。 The residue removing solution according to any one of claims 7 to 9, which is 5 to 60% by weight.
[I I] さらにフッ素化合物を含む請求項 1〜; 10のいずれかに記載の残渣除去液。  [I I] The residue removing solution according to any one of claims 1 to 10, further comprising a fluorine compound.
[12] フッ素化合物が、フッ化水素、或いは、アンモニア、ヒドロキシルァミン、第一級、第 二級若しくは第三級ァミン、第四級アンモニゥム又はポリアミンのフッ化物塩である請 求項 11に記載の残渣除去液。 [12] Fluorine compound is hydrogen fluoride or ammonia, hydroxylamine, primary, primary 12. The residue removing solution according to claim 11, which is a fluoride salt of secondary or tertiary amine, quaternary ammonium or polyamine.
[13] さらに Cuの亀裂防止剤及び/又は Cuの酸化防止剤を含む請求項 1〜; 12のいず れかに記載の残渣除去液。 13. The residue removing solution according to any one of claims 1 to 12, further comprising a Cu crack inhibitor and / or a Cu antioxidant.
[14] ドライエッチング及び/又はアツシング後の半導体基板に存在する残渣を除去する 方法であって、ドライエッチング及び/又はアツシング後の半導体基板を、請求項 1[14] A method of removing a residue present on a semiconductor substrate after dry etching and / or ashing, wherein the semiconductor substrate after dry etching and / or ashing is the method of claim 1.
〜; 13のいずれかに記載の残渣除去液と接触させることを特徴とする残渣の除去方 法。 ~; A method for removing a residue, wherein the residue is brought into contact with the residue removing solution according to any one of 13 to 13.
[15] 配線材料として Cuを有し層間絶縁材料として低誘電率膜 (Low-k膜)を有する半導 体基板である請求項 14に記載の残渣除去方法。  15. The residue removing method according to claim 14, wherein the residue substrate is a semiconductor substrate having Cu as a wiring material and having a low dielectric constant film (Low-k film) as an interlayer insulating material.
[16] 半導体デバイスの製造方法であって、(1)配線材料として Cuを有し層間絶縁材料 として低誘電率膜 (Low-k膜)を有する半導体基板をドライエッチング及び/又はアツ シングする工程、及び(2)上記(1)で処理された半導体基板を請求項 1〜; 13のいず れかに記載の残渣除去液と接触させる工程を含むことを特徴とする製造方法。  [16] A method for manufacturing a semiconductor device, comprising: (1) dry etching and / or ashing a semiconductor substrate having Cu as a wiring material and having a low dielectric constant film (Low-k film) as an interlayer insulating material And (2) a step of bringing the semiconductor substrate treated in (1) above into contact with the residue removing solution according to any one of claims 1 to 13;
PCT/JP2007/066336 2006-08-24 2007-08-23 Solution for removing residue after semiconductor dry process and method of removing the residue using the same WO2008023753A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008530947A JP4766114B2 (en) 2006-08-24 2007-08-23 Residue removing liquid after semiconductor dry process and residue removing method using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-228405 2006-08-24
JP2006228405 2006-08-24

Publications (1)

Publication Number Publication Date
WO2008023753A1 true WO2008023753A1 (en) 2008-02-28

Family

ID=39106837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/066336 WO2008023753A1 (en) 2006-08-24 2007-08-23 Solution for removing residue after semiconductor dry process and method of removing the residue using the same

Country Status (3)

Country Link
JP (1) JP4766114B2 (en)
TW (2) TWI399426B (en)
WO (1) WO2008023753A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010024093A1 (en) * 2008-08-25 2010-03-04 ダイキン工業株式会社 Solution for removal of residue after semiconductor dry processing and residue removal method using same
JP2013101224A (en) * 2011-11-08 2013-05-23 Nagase Chemtex Corp Resist residue-removing composition
US8669217B2 (en) 2010-03-25 2014-03-11 Fujifilm Corporation Cleaning composition, cleaning process, and process for producing semiconductor device
CN110383426A (en) * 2017-03-06 2019-10-25 福吉米株式会社 The manufacturing method of the surface treatment method and semiconductor substrate of surface treating composition and its manufacturing method and use surface treating composition
US11899369B2 (en) 2016-06-03 2024-02-13 Fujifilm Corporation Treatment liquid, method for washing substrate, and method for removing resist

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11316464A (en) * 1998-02-27 1999-11-16 Kanto Chem Co Inc Photoresist stripping liquid composition
JP2005210082A (en) * 2003-12-24 2005-08-04 Kao Corp Composition for semiconductor device cleaning
JP2006114872A (en) * 2004-09-15 2006-04-27 Daikin Ind Ltd Removing liquid and removing method of copper deteriorated layer containing copper oxide
JP2006173180A (en) * 2004-12-13 2006-06-29 Kao Corp Release agent composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11316464A (en) * 1998-02-27 1999-11-16 Kanto Chem Co Inc Photoresist stripping liquid composition
JP2005210082A (en) * 2003-12-24 2005-08-04 Kao Corp Composition for semiconductor device cleaning
JP2006114872A (en) * 2004-09-15 2006-04-27 Daikin Ind Ltd Removing liquid and removing method of copper deteriorated layer containing copper oxide
JP2006173180A (en) * 2004-12-13 2006-06-29 Kao Corp Release agent composition

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010024093A1 (en) * 2008-08-25 2010-03-04 ダイキン工業株式会社 Solution for removal of residue after semiconductor dry processing and residue removal method using same
JP5278434B2 (en) * 2008-08-25 2013-09-04 ダイキン工業株式会社 Residue removing liquid after semiconductor dry process and residue removing method using the same
KR101354419B1 (en) * 2008-08-25 2014-01-22 다이킨 고교 가부시키가이샤 Solution for removal of residue after semiconductor dry processing and residue removal method using same
US8747564B2 (en) 2008-08-25 2014-06-10 Daikin Industries, Ltd. Solution for removal of residue after semiconductor dry process and residue removal method using same
US8669217B2 (en) 2010-03-25 2014-03-11 Fujifilm Corporation Cleaning composition, cleaning process, and process for producing semiconductor device
US9396926B2 (en) 2010-03-25 2016-07-19 Fujifilm Corporation Cleaning composition, cleaning process, and process for producing semiconductor device
JP2013101224A (en) * 2011-11-08 2013-05-23 Nagase Chemtex Corp Resist residue-removing composition
US11899369B2 (en) 2016-06-03 2024-02-13 Fujifilm Corporation Treatment liquid, method for washing substrate, and method for removing resist
CN110383426A (en) * 2017-03-06 2019-10-25 福吉米株式会社 The manufacturing method of the surface treatment method and semiconductor substrate of surface treating composition and its manufacturing method and use surface treating composition
CN110383426B (en) * 2017-03-06 2023-05-09 福吉米株式会社 Surface treatment composition, method for producing same, surface treatment method using surface treatment composition, and method for producing semiconductor substrate

Also Published As

Publication number Publication date
JP4766114B2 (en) 2011-09-07
TW200833824A (en) 2008-08-16
TW201249972A (en) 2012-12-16
TWI399426B (en) 2013-06-21
JPWO2008023753A1 (en) 2010-01-14

Similar Documents

Publication Publication Date Title
JP4766115B2 (en) Residue removing liquid after semiconductor dry process and residue removing method using the same
EP1602714B1 (en) Post-dry etching cleaning liquid composition and process for fabricating semiconductor device
TWI416282B (en) Composition for removing a photoresist residue and polymer residue, and residue removal process using same
US20080006305A1 (en) Resist, Barc and Gap Fill Material Stripping Chemical and Method
KR102388074B1 (en) Alkaline earth metal-containing cleaning solution for cleaning semiconductor element, and method for cleaning semiconductor element using same
JP5146445B2 (en) Cleaning composition and method for manufacturing semiconductor device
CN106796878B (en) Cleaning liquid for semiconductor element with suppressed damage of material containing tungsten, and method for cleaning semiconductor element using same
JP2011503899A (en) Composition for removing metal hard mask etching residue from a semiconductor substrate
WO2006030714A1 (en) Liquid and method for removing deteriorated layer of copper containing copper oxide
JP2006011297A (en) Removing composition for photoresist residue and polymer residue
JP7184044B2 (en) Cleaning liquid, cleaning method, and semiconductor wafer manufacturing method
US20060091355A1 (en) Solution and method for removing ashing residue in Cu/low-k multilevel interconnection structure
JP4766114B2 (en) Residue removing liquid after semiconductor dry process and residue removing method using the same
JP5159066B2 (en) Residue removing liquid after semiconductor dry process and residue removing method using the same
KR101354419B1 (en) Solution for removal of residue after semiconductor dry processing and residue removal method using same
JP6217659B2 (en) Residue removing liquid after semiconductor dry process and residue removing method using the same
JP6029419B2 (en) Residue removing liquid after semiconductor dry process and residue removing method using the same
KR101406761B1 (en) Cleaning solution composition and the cleaning method therewith
JP2009218439A (en) Residue removing liquid to be used after semiconductor dry process, and residue removing method using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07792914

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008530947

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07792914

Country of ref document: EP

Kind code of ref document: A1