WO2006030582A1 - 通信制御方法、移動通信システム、基地局及び回線制御局 - Google Patents

通信制御方法、移動通信システム、基地局及び回線制御局 Download PDF

Info

Publication number
WO2006030582A1
WO2006030582A1 PCT/JP2005/013279 JP2005013279W WO2006030582A1 WO 2006030582 A1 WO2006030582 A1 WO 2006030582A1 JP 2005013279 W JP2005013279 W JP 2005013279W WO 2006030582 A1 WO2006030582 A1 WO 2006030582A1
Authority
WO
WIPO (PCT)
Prior art keywords
station
base station
mobile station
common pilot
pilot channel
Prior art date
Application number
PCT/JP2005/013279
Other languages
English (en)
French (fr)
Inventor
Naoto Ishii
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to US11/574,384 priority Critical patent/US20070224987A1/en
Priority to EP05766171A priority patent/EP1791271A4/en
Priority to CN2005800314949A priority patent/CN101023603B/zh
Priority to JP2006535066A priority patent/JP4677990B2/ja
Publication of WO2006030582A1 publication Critical patent/WO2006030582A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/086Weighted combining using weights depending on external parameters, e.g. direction of arrival [DOA], predetermined weights or beamforming

Definitions

  • the present invention relates to a communication control method, a mobile communication system, a base station, and a line control station, and in particular, a communication control method using a CDMA (Code Division Multiple Access) cellular system, a mobile communication system, a base station, and The circuit control station.
  • CDMA Code Division Multiple Access
  • phase reference a physical channel called a phase reference is required in the mobile station to demodulate data transmitted from the base station. It becomes.
  • this physical channel as reference phase information, a correction amount for correcting channel fluctuation (fading) is estimated.
  • W-CDMA Wide-band Code Division
  • P-CPICH Primary Common Pilot Channel
  • S-CPI CH Secondary Common Pilot Channel
  • dedicated physical channel pilot symbols individual pilot
  • S-CPICH can be used as a phase reference only when it is permitted by the circuit control station to use it as a phase reference.
  • individual pilots are always available as Phase Reference. The method of using Phase Reference is disclosed in 3GPP (3rd Generation Partnership Project) specification TS25.331 v5.1.0 (2002-06).
  • phase reference is set to P— according to the power applied by the base station connected to the mobile station. There is a problem that it is not possible to switch from CPICH to individual pilot.
  • S-CPICH that has undergone the same channel fluctuation as communication data may be used as a phase reference.
  • the purpose is to provide a communication control method, a mobile communication system, a base station and a line control station.
  • the mobile station An object is to provide a communication control method, a mobile communication system, a base station, and a line control station that can apply an individual pilot as a phase reference.
  • the present invention provides:
  • a base station that transmits / receives data using an adaptive antenna having a plurality of antenna beams, a mobile station that transmits / receives data to / from the base station, and a channel control station that controls a radio channel of the mobile station
  • a communication control method in a mobile communication system the step of requesting the base station power to the line control station for a common pilot channel to be transmitted for each of the plurality of antenna beams for use as reference phase information;
  • An optimum common pilot channel is selected from a plurality of common pilot channels that are notified of the line control station power with a mobile station that transmits and receives data, and an antenna beam that transmits the common pilot channel; Transmitting data to the mobile station using the same antenna beam, and notifying the mobile station via the base station power and the line control station of the common pilot channel;
  • the base station detects the reception timing of the common pilot channel optimum for the mobile station from the position of the mobile station, and transmits the same antenna beam as the antenna beam transmitted at the reception timing. And transmitting the data to the mobile station, and notifying the reception timing of the reception timing to the mobile station via the base station power and the line control station, and the base station power being notified via the line control station. And demodulating data transmitted from the base station at the mobile station using a common pilot channel based on reception timing as the reference phase information.
  • the mobile station Transmitting the data from the base station to the mobile station using the same antenna beam as the antenna beam transmitting the plurality of common pilot channels notified of the line control station power;
  • the mobile station selects the common pilot channel having the best reception quality from among the plurality of common pilot channels transmitted from the base station, and reports the common pilot channel to the base station. Setting as the reference phase information;
  • mobile communication comprising a base station that transmits and receives data to and from the mobile station by an adaptive antenna having an antenna beam for each mobile station, and a channel control station that controls a radio channel of the mobile station
  • a base station that transmits and receives data to and from the mobile station by an adaptive antenna having an antenna beam for each mobile station, and a channel control station that controls a radio channel of the mobile station
  • a base station that transmits / receives data using an adaptive antenna having a plurality of antenna beams, a mobile station that transmits / receives data to / from the base station, and a line that controls a radio channel of the mobile station
  • a communication control method in a mobile communication system comprising a control station,
  • the mobile station sets the dedicated pilot channel as the reference phase information according to the instruction from the line control station, and demodulates the data transmitted from the base station using the dedicated pilot channel as the reference phase information.
  • mobile communication comprising a base station that transmits and receives data to and from the mobile station by an adaptive antenna having an antenna beam for each mobile station, and a channel control station that controls the radio channel of the mobile station A communication control method in a system,
  • the mobile station sets the dedicated pilot channel as the reference phase information according to the instruction from the line control station, and demodulates the data transmitted from the base station using the dedicated pilot channel as the reference phase information. A step of performing.
  • a base station that transmits / receives data using an adaptive antenna having a plurality of antenna beams, a mobile station that transmits / receives data to / from the base station, and a line that controls a radio channel of the mobile station
  • a mobile communication system having a control station In a mobile communication system having a control station,
  • the base station requests the line control station for a common pilot channel transmitted for each of the plurality of antenna beams for use as reference phase information
  • the line control station sets the common pilot channel in response to a request from the base station, notifies the common pilot channel to the base station and the mobile station, and the mobile station notifies from the line control station.
  • the transmitted common pilot channel is used as the reference phase information to demodulate data transmitted from the base station.
  • the line control station allocates the common pilot channels corresponding to the number of the antenna beams notified of the base station power, and notifies the base stations of the common pilot channels,
  • the base station selects an optimum common pilot channel with a mobile station that transmits and receives data from among the plurality of common pilot channels notified from the line control station, and transmits the common pilot channel. And transmitting data to the mobile station using the same antenna beam as the antenna beam, and notifying the mobile station of the common pilot channel via the line control station,
  • the mobile station is a common pilot notified from the base station via the line control station.
  • the data transmitted from the base station is demodulated using the channel as the reference phase information.
  • the base station detects the reception timing of the common pilot channel optimum for the mobile station from the position of the mobile station, and transmits the same antenna beam as the antenna beam transmitted at the reception timing. In addition to transmitting data to the mobile station, the reception timing is notified to the mobile station via the circuit control station,
  • the mobile station demodulates data transmitted from the base station using the common pilot channel as the reference phase information based on the reception timing notified from the base station via the line control station. .
  • the line control station allocates the common pilot channels corresponding to the number of the antenna beams notified of the base station power, and notifies the base stations of the common pilot channels,
  • the base station transmits data to the mobile station using the same antenna beam that transmits a plurality of common pilot channels notified from the line control station, and the mobile station is transmitted from the base station.
  • the medium power of the plurality of common pilot channels has the best reception quality, selects the common pilot channel, reports the common pilot channel to the base station, and sets the common pilot channel as the reference phase information.
  • the base station transmits data to the mobile station using an antenna beam transmitting a common pilot channel reported from the mobile station.
  • a mobile station a base station that transmits and receives data to and from the mobile station by an adaptive antenna having an antenna beam for each mobile station, and a line control that controls a radio channel of the mobile station
  • a mobile communication system comprising a station,
  • the base station requests the line control station for a common pilot channel transmitted for each antenna beam for use as reference phase information
  • the line control station sets the common pilot channel for each mobile station in response to a request from the base station, notifies the base station and the mobile station of the common pilot channel,
  • the mobile station demodulates the data transmitted from the base station using the common pilot channel notified from the line control station as the reference phase information.
  • a base station that transmits and receives data using an adaptive antenna having a plurality of antenna beams, a mobile station that transmits and receives data to and from the base station, and a line that controls a radio channel of the mobile station
  • a mobile communication system having a control station In a mobile communication system having a control station,
  • the base station reports to the channel control station that an adaptive antenna is applied, and the channel control station instructs the mobile station to set a dedicated pilot channel as reference phase information,
  • the mobile station sets an individual pilot channel as the reference phase information according to an instruction from the line control station, and demodulates data transmitted from the base station using the dedicated pilot channel as the reference phase information. To do.
  • a mobile station a base station that transmits and receives data to and from the mobile station by an adaptive antenna having an antenna beam for each mobile station, and a line control that controls a radio channel of the mobile station
  • a mobile communication system comprising a station,
  • the base station reports to the channel control station that an adaptive antenna is applied, and the channel control station instructs the mobile station to set a dedicated pilot channel as reference phase information,
  • the mobile station sets an individual pilot channel as the reference phase information according to an instruction from the line control station, and demodulates data transmitted from the base station using the dedicated pilot channel as the reference phase information. To do.
  • the line control is performed.
  • a common pilot channel is set in response to a request from the base station, and the set common pilot channel is notified to the base station and the mobile station.
  • data is transmitted and received using an antenna beam that transmits the common pilot channel notified from the line control station.
  • the common pilot channel notified from the line control station is used as reference phase information.
  • the data transmitted from the base station is demodulated.
  • the present invention provides a common pilot channel that is transmitted for each antenna beam, in a mobile station that is communicating with a base station to which an adaptive antenna is applied, that is subjected to the same channel variation as communication data.
  • S—CPICH can be used as Phase Reference, which is reference phase information.
  • FIG. 1 is a diagram showing an embodiment of a mobile communication system of the present invention.
  • FIG. 2 is a diagram showing a configuration of the base station shown in FIG. 1 in the first embodiment.
  • FIG. 3 is a diagram showing the configuration of the mobile station shown in FIG. 1 in the first embodiment.
  • FIG. 4 is a flowchart for explaining the operation of the mobile station in the first embodiment of the mobile communication system shown in FIG.
  • FIG. 5 is a flowchart for explaining the operation at the time of initial setting of the base station in the first embodiment of the mobile communication system shown in FIG. 1.
  • FIG. 6 is a flowchart for explaining the operation of the base station in the steady state in the first embodiment of the mobile communication system shown in FIG. 1.
  • FIG. 7 is a flowchart for explaining the operation of the line control unit in the first embodiment of the mobile communication system shown in FIG. 1.
  • FIG. 8 is a sequence chart for explaining the flow of control signals in the first embodiment of the mobile communication system shown in FIG. 1.
  • FIG. 9 is a diagram showing a configuration of the base station shown in FIG. 1 in the second embodiment.
  • FIG. 10 is a flowchart for explaining the operation of the mobile station in the second embodiment of the mobile communication system shown in FIG. 1.
  • FIG. 11 is a flowchart for explaining the operation of the base station in the second embodiment of the mobile communication system shown in FIG. 1.
  • FIG. 12 is a flowchart for explaining the operation of the line control unit in the second embodiment of the mobile communication system shown in FIG. 1.
  • FIG. 13 is a sequence chart for explaining the flow of control signals in the second embodiment of the mobile communication system shown in FIG. 1.
  • FIG. 14 is a diagram showing a configuration of the base station shown in FIG. 1 in the third embodiment.
  • FIG. 15 is a diagram showing a configuration of the mobile station shown in FIG. 1 in the third embodiment.
  • FIG. 16 is a flowchart for explaining the operation of the mobile station in the third embodiment of the mobile communication system shown in FIG. 1.
  • ⁇ 17] is a flowchart for explaining the operation at the time of initial setting of the base station in the third embodiment of the mobile communication system shown in FIG.
  • FIG. 18 is a flowchart for explaining the operation of the base station in the steady state in the third embodiment of the mobile communication system shown in FIG. 1.
  • FIG. 19 is a flowchart for explaining the operation of the line control unit in the third embodiment of the mobile communication system shown in FIG. 1.
  • FIG. 20 is a sequence chart for explaining the flow of control signals in the third embodiment of the mobile communication system shown in FIG. 1.
  • FIG. 21 is a diagram showing another embodiment of the mobile communication system of the present invention.
  • FIG. 22 is a diagram showing a configuration of the base station shown in FIG. 21 in the fourth embodiment.
  • FIG. 23 is a flowchart for explaining the operation of the mobile station in the fourth embodiment of the mobile communication system shown in FIG.
  • FIG. 24 is a flowchart for explaining the operation of the base station in the fourth embodiment of the mobile communication system shown in FIG.
  • FIG. 25 is a flowchart for explaining the operation of the line control station in the fourth embodiment of the mobile communication system shown in FIG. 21.
  • FIG. 26 is a sequence chart for explaining the flow of control signals in the fourth embodiment of the mobile communication system shown in FIG.
  • FIG. 27 In the mobile communication system shown in FIG. 1, the operation of the mobile station when the base station power S-CPICH generator shown in FIG. 2 is deleted and the base station power CPICH is not transmitted is shown. It is a flowchart for demonstrating.
  • the base station configuration power S— 10 is a flowchart for explaining the operation of a base station when the CPICH generation unit is deleted and base station power CPICH is not transmitted.
  • FIG. 29 Operation of the line control station in the mobile communication system shown in FIG. 1 when the base station power S-CPICH generator shown in FIG. 2 is deleted and the base station power CPICH is not transmitted. It is a flowchart for demonstrating.
  • FIG. 1 is a diagram showing an embodiment of a mobile communication system of the present invention.
  • this embodiment is composed of a line control station 1, a base station 2, and a mobile station 3, and uses a direct spreading code division multiple access system for radio access.
  • DL— downlink individual data channel
  • UL-DPDCH uplink dedicated data channel
  • the base station 2 uses a downlink dedicated control channel (DL—DPCCH) and an uplink dedicated control channel (UL—DPCCH) to exchange channel control signals with the mobile station 3.
  • DL—DPCCH downlink dedicated control channel
  • UL—DPCCH uplink dedicated control channel
  • the channel control station 1 controls the radio channel of the mobile station 3, and sets a control channel for exchanging channel control signals between the base station 2 and the mobile station 3. Also, user data is sent and received to / from base station 2 by wire, S-CPICH is allocated in response to a request from base station 2, and the allocated S-CPICH is notified to base station 2 and mobile station 3. It has a function.
  • the base station 2 uniformly transmits the first downlink common pilot channel (P—CPICH) to the mobile station 3 in the same cell using the omnidirectional antenna pattern 4.
  • P—CPICH first downlink common pilot channel
  • S-CPICH second downlink common pilot channel
  • the number of antenna beams is three in this embodiment. The present invention is not limited to this.
  • the base station 2 selects one antenna beam according to the medium mobile station 3 of the plurality of antenna beams 5-1 to 5-3 and receives the received data. And control signals using the selected antenna beam, DL—DPDCH and DL, respectively — Transmit to mobile station 3 via DPCCH.
  • FIG. 2 is a diagram showing a configuration of the base station 2 shown in FIG. 1 in the first embodiment.
  • the present invention is not limited to this, with the number of antennas, users, and antenna beams being 3, 2, and 3, respectively.
  • the antenna beams 5-1 to 5-5 are shown in FIG. 2, in the base station 2 in the present embodiment.
  • the duplexer 121-1 to 121-3 separates the upstream signal and the downstream signal. Uplink signals received via antennas 111 1 to 113-3 are separated by duplexers 121-1 to 121-3 and input to distributors 131-1 to 1 31-3 for each antenna for distribution.
  • the devices 131-1 to 131-3 are distributed to the same number as the users and input to the signal receiving units 140-1 and 140-2 for each user.
  • the signal receiving unit 140-1 includes a user direction detector 141 and a user data demodulating unit 142, and the signal receiving unit 140-2 has the same configuration.
  • the signal generation unit 150-1 includes a user data synthesis unit 151 and an antenna beam forming unit 152.
  • the signal generation unit 150-2 has the same configuration.
  • User direction detector 141 calculates the received power of the upstream signal at antennas 111 1 to L 11 3, and the antenna beam power corresponding to antennas 111 1 to 111 3 that obtains the maximum power also indicates the direction of mobile station 3. To detect. The detected direction of the mobile station 3 is sent to the signal generators 150-1 and 150-2 for each mobile station 3, and is used when a downlink signal is generated. When the user direction detector 141 detects that the direction of the mobile station 3 has changed due to the above-described processing, the user direction detector 141 notifies the line control station 1 to that effect. On the other hand, the data received via the antenna 111 1-: L 11 3 with the maximum power is input to the user data demodulator 14 2, demodulated, and sent to the line control station 1.
  • the user data sent from the line control station 1 is input to the signal generators 15 0-1 and 150-2 for each user.
  • the user data input to the signal generators 150-1 and 150-2 are combined with the control signal by the user data combiner 151 and output.
  • the combined signal output from the user data combining unit 151 is transmitted to the antenna 111-1 to L 11-3 according to the direction of the mobile station 3 notified from the user direction detecting unit 141 in the antenna beam forming unit 152. By multiplying the weight of each antenna 111 1 ⁇ : converted to signal for each L 11 3 It is.
  • S-CPICH used as Phase Reference which is reference phase information is different in the number of S-CPICH generators 160-1 to 160-3 depending on the number of S-CPICH generators 160-1 to 160-3.
  • the antenna beams 5-1 to 5-3 are transmitted in one-to-one correspondence.
  • the S CPICH generation unit 160-1 includes an S-CPICH generation unit 161 and an antenna beam forming unit 162, and the S-CPICH generation units 160-2 and 160-3 have the same configuration.
  • the S-CPICH generated by the S-CPICH generation unit 161 is provided to the antenna beam forming unit 162.
  • the antenna beam forming unit 162 uses the S-CPICH generated by the S-CPICH generation unit 161 V, Thus, an antenna signal is formed.
  • the antenna signals respectively formed by the signal generators 150-1 and 150-2 and the S-CPICH generators 160-1 to 160-3 are added to the antennas by the adders 132-1 to 132-3, respectively.
  • 11 1 1 ⁇ Carried out every L 11 3 and transmitted via the transmission / reception common unit 121-1 ⁇ 121-3 and the antenna 111-1 ⁇ : L 11-3.
  • FIG. 3 is a diagram showing a configuration of the mobile station 3 shown in FIG. 1 in the first embodiment.
  • this embodiment includes an antenna 112, a duplexer 122, a data demodulator 180, a phase reference detector 170, and a data modulator 180.
  • the transmission / reception duplexer 122 separates the upstream signal and the downstream signal. Downlink signals received via the antenna 112 and separated by the duplexer 122 are input to the phase reference detector 170 and the data demodulator 181, respectively.
  • the phase reference detector 170 detects an instruction from the line control station 1 from the downlink signals separated by the duplexer 122 and determines which physical channel should be applied to the phase reference. Information on the determined phase reference is sent to the data demodulator 190.
  • the data demodulator 190 calculates the channel fluctuation due to fading according to the information sent from the phase reference detector 170, and receives the uplink signal received via the antenna 112 and separated by the duplexer 122. The data is demodulated.
  • data transmitted from mobile station 3 to base station 2 is modulated by data modulation section 190 and then transmitted from antenna 112 via duplexer 122.
  • FIG. 4 is a flowchart for explaining the operation of mobile station 3 in the first embodiment of the mobile communication system shown in FIG.
  • the mobile station 3 confirms an instruction from the line control station 1 regarding Phase Reference (step S101). If there is no instruction from the line control station 1, P—CPICH is used as the Phase Reference. In addition, S as Phase Reference
  • step S102 When an instruction to use CPICH is received from line control station 1, S—CPICH according to the instruction is set in Phase Reference (step S102), and data demodulation is performed using the set S—CPICH (step S). 103).
  • step S 104 it is confirmed whether or not there is an instruction regarding Phase Reference from the line control station 1 until data reception is completed.
  • FIG. 5 is a flowchart for explaining the operation at the time of initial setting of the base station 2 in the first embodiment of the mobile communication system shown in FIG.
  • the base station 2 At the time of initial setting, the base station 2 first notifies the line control station 1 of the number of antenna beams that can be transmitted in the cell, and requests the same number of S-CPICHs from the line control station 1. (Step S105).
  • CPICH is assigned to each antenna beam and transmission is started on the downlink (step S10 6).
  • FIG. 6 is a flowchart for explaining the operation of base station 2 in the steady state in the first embodiment of the mobile communication system shown in FIG.
  • the base station 2 waits until a line connection request is received from the mobile station 3 (step S 107).
  • step S108 the signal strength of the uplink is detected (step S108), and the antenna with the largest antenna gain in the direction of the mobile station 3 is detected.
  • S—CPICH transmitted by na-beam is selected, and the antenna beam is set as a downlink antenna beam (step S 109).
  • step S109 the S-CPICH information set in step S109 is notified to the line control station 1 (step S110).
  • Step S111 the process returns to Step S110, and information on S-CPICH assigned to the switched antenna beam is notified to the line control station 1.
  • step S11 3 the direction detection result of the mobile station 3 is monitored until the communication is completed.
  • FIG. 7 is a flowchart for explaining the operation of the line control unit 1 in the first embodiment of the mobile communication system shown in FIG.
  • the line control unit 1 assigns the same number of S-CPICHs as the requested number (step S114).
  • step S115 when the S—CPICH information assigned to the mobile station 3 in the base station 2 is received from the base station 2 (step S116), the information is received from the base station 2.
  • An instruction to apply the taken S—CPICH as a phase reference is transmitted to mobile station 3 (step S117).
  • the line control station 1 always waits for notification of S-CPICH setting or change from the base station 2 until communication is completed.
  • FIG. 8 is a sequence chart for explaining the flow of control signals in the first embodiment of the mobile communication system shown in FIG.
  • base station 2 notifies channel control station 1 of the number of transmittable antenna beams. , Send a request to allocate the same number of S-CPICHs.
  • the line control station 1 assigns S-CPICH in response to a request from the base station 2 and notifies the assigned S-CPICH to the base station 2.
  • the base station 2 sets S-CPICH that the mobile station 3 should use as Phase Reference according to the direction of the mobile station 3 that has a connection request, and performs line control on the set S-CPICH. Notify station 1.
  • line control station 1 transmits to mobile station 3 an instruction to apply S-CPICH set in base station 2 as Phase Reference.
  • the mobile station 3 performs the S-CPIC set in the base station 2.
  • the base station 2 periodically detects the antenna beam used for transmission to the mobile station 3, and notifies the line control station 1 to change the antenna beam when changing the antenna beam. To do.
  • the line control station 1 When the line control station 1 receives the antenna beam change notification from the base station 2, it instructs the mobile station 3 to change the Phase Reference.
  • the mobile station 3 When the mobile station 3 receives an instruction to change the phase reference from the line control station 1, the mobile station 3 demodulates data using the received S-CPICH as the phase reference.
  • base station 2 assigns a different S-CPIC H to each antenna beam, transmits data with the antenna beam closest to the direction of mobile station 3, and information on S-CPICH Therefore, mobile station 3 can use S-CPICH, which has obtained the same channel fluctuation as the data, as a phase reference.
  • the system configuration in this embodiment is composed of a line control unit 1, a base station 2, and a mobile station 3, as shown in FIG.
  • the base station 2 uniformly transmits the first downlink common pilot channel (P—CPICH) to the mobile station 3 in the same cell using the non-directional antenna pattern 4. It also has a plurality of antenna beams 5-1 to 5-3 that divide the inside of the cell. 1 to 5—The second downlink common pilot channel (S—CPICH), which is different for every three, is transmitted by switching the antenna beam in order at a constant cycle.
  • the base station 2 receives data from the line control station 1, the base station 2 selects one of the antenna beams for the plurality of antenna beams 5-1 to 5-3 and the mobile station 3 and receives it. Data and control signals are transmitted to mobile station 3 using DL-DPDCH and DL-DPCCH, respectively, using the selected antenna beam.
  • FIG. 9 is a diagram showing a configuration of the base station 2 shown in FIG. 1 in the second embodiment.
  • the present invention is not limited to this, with the number of antennas, users, and antenna beams being 3, 2, and 3, respectively.
  • the base station 2 in the present embodiment is different from that shown in FIG. 2 only in the configuration of the S-CPIC H generation unit 260.
  • the S-CPICH generation unit 206 in this embodiment switches the antenna beam and converts it to an antenna signal at a certain time with the S-CPICH generation unit 261 that generates the S-CPICH instructed by the channel control station 1
  • the antenna beam switching unit 263 is one, regardless of the number of antenna beams.
  • FIG. 10 is a flowchart for explaining the operation of mobile station 3 in the second embodiment of the mobile communication system shown in FIG.
  • the mobile station 3 confirms an instruction from the line control station 1 regarding Phase Reference (step S201). If there is no instruction from the line control station 1, P—CPICH is used as the Phase Reference. If an instruction to use S-CPICH as a phase reference is received from the line control station 1, the S-CPICH according to the instruction is set as the phase reference (step S202).
  • reception timing is notified of the slot number or frame number and cycle by the control information transmitted from the line control station 1, and based on that information S—CPICH reception timing is detected (step S203).
  • step S204 the amount of phase correction by fading is obtained using S-CPICH as a phase reference, and data transmitted from the base station is demodulated (step S204).
  • FIG. 11 is a flowchart for explaining the operation of base station 2 in the second embodiment of the mobile communication system shown in FIG.
  • the base station 2 requests one S-CPICH from the line control station 1.
  • Base station 2 to which CPICH is assigned transmits S CPICH while switching the antenna beam at regular intervals.
  • Base station 2 sets an antenna beam used for the downlink from the direction of receiving the uplink of mobile station 3 to be connected (step S206).
  • the base station 2 notifies the mobile station 3 of the S—CPICH reception timing information (slot number or frame number and period) via the circuit control station 1 (step S208). .
  • the direction of the mobile station 3 is periodically detected using an uplink signal while performing communication using the set antenna beam, and the direction of the currently used antenna beam and the mobile station 3 is detected.
  • Check if the antenna beam matches step S209). If they do not match, switch to the antenna beam obtained by detecting the direction of mobile station 3 (step S210), and return to the processing in step S208.
  • the information about the S—CPICH reception timing (slot number or frame number and cycle) by the switched beam is reported via the line control station 1.
  • step S21 Do the detection result in the direction of the mobile station 3 is monitored until the communication is completed.
  • step S21 Do the optimal S-CPICH reception timing for the mobile station 3 is detected.
  • FIG. 12 shows a line control unit in the second embodiment of the mobile communication system shown in FIG.
  • the line control unit 1 receives an S-CPICH assignment request from the base station 2 as an initial operation.
  • S-CPICH is allocated as required (step S212).
  • step S213 when information on the reception timing of S—CPICH of mobile station 3 is notified from base station 2 (step S214), mobile station 3 receives Phase Reference As well, an instruction to apply S—CPICH is transmitted and information on reception timing is also transmitted (step S215).
  • FIG. 13 is a sequence chart for explaining the flow of control signals in the second embodiment of the mobile communication system shown in FIG.
  • base station 2 issues a request to line control station 1 to allocate one S-CPICH.
  • the line control station 1 allocates S-CPICH to the base station 2 and notifies the base station 2 of it.
  • the base station 2 should receive the phase reference S
  • the line control station 1 When the line control station 1 receives the S-CPICH reception timing of the mobile station 3 from the base station 2, it sends an instruction to use the S-CPICH and the reception timing to the mobile station 3 in the Phase Reference. To do.
  • the mobile station 3 Upon receiving an instruction to change the phase reference from the line control station 1, the mobile station 3 demodulates the received S-CPICH as the phase reference at the designated reception timing.
  • the base station 2 periodically checks the antenna beam used for transmission to the mobile station 3, and changes the antenna beam to the line control station 1 when changing the antenna beam. Then, the reception timing is notified.
  • the channel control station 1 receives the antenna beam change notification from the base station 2, it transmits an instruction to the mobile station 3 to change the reception timing of Phase Reference.
  • the base station 2 temporally switches the antenna beam for transmitting the S-CPICH, transmits data with the antenna beam closest to the direction of the mobile station 3, and performs data transmission.
  • the mobile station 3 is notified of the timing for transmitting the S-CPICH at the same time as the antenna beam being used, so the mobile station 3 should use the S-CPICH that has obtained the same channel fluctuation as the data as the phase reference. Can do.
  • the system configuration in this embodiment is composed of a line control unit 1, a base station 2, and a mobile station 3, as shown in FIG.
  • FIG. 14 is a diagram illustrating a configuration of the base station 2 illustrated in FIG. 1 according to the third embodiment.
  • base station 2 in the present embodiment has a configuration in which signal receiving sections 340-1 and 340-2 are different from those shown in FIG.
  • the user direction detector 141 notifies the direction of the mobile station 3 to the signal generation units 150-1 and 150-2, but in this embodiment, no notification is made.
  • the phase reference candidate detection unit 343 is added to the signal reception units 340-1, 34 0-2, and the individual control information power output from the user data demodulation unit 342 is the maximum received power reported by the mobile station 3.
  • S—CPICH is detected.
  • the phase reference candidate detection unit 343 notifies the direction in which the S—CPIC H notified from the mobile station 3 is transmitted to the antenna beam forming unit 352 in the signal generation unit 350-1, 350-2. Based on the output of the phase reference candidate detection unit 343, the signal generation units 350-1 and 350-2 form an antenna beam and convert user data into an antenna signal.
  • FIG. 15 is a diagram showing a configuration of the mobile station 3 shown in FIG. 1 in the third embodiment.
  • the mobile station 3 in this embodiment is different from the one shown in FIG.
  • the reference detection unit 370 measures the received power of all S-CPICHs notified from the line control station 1, and inputs the S-CPICH information that maximizes the power to the data modulation unit 390 for data modulation.
  • the S-CPICH information obtained from phase reference detection section 370 is transmitted as individual control data together with the data, so that the received power is maximized for base station 2. S The only difference is the reporting of CPICH.
  • FIG. 16 is a flowchart for explaining the operation of mobile station 3 in the third embodiment of the mobile communication system shown in FIG.
  • Step S301 When the mobile station 3 is notified by the line control station 1 that the base station 2 is performing power-eam-forming, and acquires the S-CPICH information transmitted by the antenna beam at a certain period ( Step S301), compares the received sensitivity (received power) for each acquired S—CPICH, finds the S—CPICH to be received with the highest power (step S302), and thus the best received quality ⁇ S-CPICH Select.
  • step S303 If the S-CPICH, which was the maximum until measurement, is different from the S-CPICH obtained by the measurement (step S303), that fact is reported to the base station 2 via the individual data line. At the same time, S-CPICH after comparison is set as Phase Reference (step S304).
  • step S305 the data transmitted from the base station 2 is demodulated.
  • S-CPICH sensitivity comparison is performed periodically while continuing data demodulation until communication is completed (step S306).
  • FIG. 17 is a flowchart for explaining the operation at the time of initial setting of the base station 2 in the third embodiment of the mobile communication system shown in FIG.
  • the base station 2 At the time of initial setting, the base station 2 first notifies the line control station 1 that beam-forming is being performed, and notifies the line control station 1 of the number of antenna beams and uses it for the phase reference.
  • step S308 After the S-CPICH assigned by the channel control station 1 is notified, the S-CPICH is assigned and transmission is started on the downlink (step S308).
  • FIG. 18 is a flowchart for explaining the operation of base station 2 in the steady state in the third embodiment of the mobile communication system shown in FIG. [0125]
  • Base station 2 first detects the uplink power of mobile station 3 and detects the direction of mobile station 3, sets an antenna beam having an antenna pattern to be transmitted in the direction of mobile station 3, and sets the antenna pattern.
  • the data is transmitted to the mobile station 3 using the network (step S309).
  • the reported antenna beam transmitting the S-CPICH and the current data are obtained.
  • the antenna beams transmitted are compared (step S311), and if they match, the communication is continued without switching the beams. If the two do not match, the beam transmitting data is switched to the beam reported by the mobile station 3 and transmitted (step S312).
  • the beam switching determination is continued using the S-CPICH information periodically reported from the mobile station 3 (step S313).
  • FIG. 19 shows a line control unit in the third embodiment of the mobile communication system shown in FIG.
  • the circuit control station 1 allocates S-CPICH in response to a request from the base station 2 (step S31).
  • FIG. 20 is a sequence chart for explaining the flow of control signals in the third embodiment of the mobile communication system shown in FIG.
  • the base station 2 requests the S-CPICH from the line control station 1.
  • the circuit control station 1 After allocating the S-CPICH, the circuit control station 1 notifies the allocated S-CPICH to the base station 2 and notifies the mobile station 3 of the S-CPICH allocated to the base station 2.
  • Mobile station 3 performs quality measurement (reception power) on S-CPICH notified from circuit control station 1 and reports the measurement result to base station 2. Measurement results are reported at regular intervals during communication. In the period.
  • the base station 2 assigns different S-CPICH to each antenna beam, and uses the report on the reception quality of S-CPICH from the mobile station 3, so that the data and S CPICH are the same. Since transmission is performed using an antenna beam, mobile station 3 can use S-CPICH, which has obtained the same channel fluctuation as data, as a phase reference.
  • the base station 2 changes based on the information reported from the mobile station 3 without going through the line control station 1.
  • the switching time can be shortened compared to the case of changing the antenna beam. Further, since the information is not notified to the line control station 1, the load on the line control station 1 can be reduced.
  • FIG. 21 is a diagram showing another embodiment of the mobile communication system of the present invention.
  • this embodiment is the same as that shown in Fig. 1 except that it is composed of a line control station 1, a base station 2 and a mobile station 3.
  • the transmission method of the common pilot channel to be transmitted is different.
  • the base station 2 forms a different antenna beam 5 for each mobile station 3, and transmits the S-CPICH using the antenna beam 5. Therefore, the same number of antenna beams 5 that transmit S—CPICH are required as mobile station 3.
  • FIG. 22 is a diagram showing a configuration of the base station 2 shown in FIG. 21 in the fourth embodiment.
  • the base station 2 in this embodiment is different from the one shown in Fig. 2 in terms of S-CPI CH generation ⁇ 1-160-3 power S, signal generation ⁇ 450 1, 450- 2 is different only in that an S-CPICH generating unit 453 is provided and an antenna combining unit 444 is provided in place of the user direction detecting unit 141.
  • the S-CPICH generated by the S-CPICH generation unit 453 is input to the user data synthesis unit 451.
  • the user data combining unit 451 combines the data sent from the line control station 1 and the control information, and multiplexes the S-CPICH.
  • the multiplexed signal is input to the antenna beam forming unit 452 and converted into an antenna signal.
  • an antenna signal multiplexed with S-CPICH for each user is added to adders 432-1 to 432-. 3 is combined and transmitted through duplexers 421-1 to 421-3 and antennas 411-1 to 411-3.
  • the base station 2 has an antenna beam for each mobile station 3, and adaptively updates the antenna beam.
  • the antenna beam used in the antenna combining unit 444 is sent to the signal generating units 450-1 and 45 0-2, where the antenna beam used in the uplink is converted into the antenna beam used in the downlink and the antenna beam forming unit 452 converts the antenna beam. Used.
  • FIG. 23 is a flowchart for explaining the operation of mobile station 3 in the fourth embodiment of the mobile communication system shown in FIG.
  • the mobile station 3 confirms an instruction related to Phase Reference from the line control station 1 related to Phase Reference (step S401).
  • P-CPICH is used as Phase Reference.
  • an instruction to use S-CPICH as a phase reference is received from the line control unit 1, the S-CPICH according to the instruction is set as the phase reference (step S402), and the set S-CPICH is used.
  • the data transmitted from the base station 2 is demodulated (step S403).
  • FIG. 24 is a flowchart for explaining the operation of the base station 2 in the fourth embodiment of the mobile communication system shown in FIG.
  • Base station 2 first requests S-CPICH for each mobile station 3 connected to line control station 1 (step S405).
  • the antenna beam is converted from the antenna beam obtained for the uplink to the downlink, and an antenna beam is formed for each mobile station 3 (step S406).
  • FIG. 25 is a flowchart for explaining the operation of the channel control station 1 in the fourth embodiment of the mobile communication system shown in FIG.
  • the line control station 1 assigns a different S—CPICH to each mobile station 3 (step S409).
  • Step S410 After assigning S-CPICH to each mobile station 3, notify the base station 2 and mobile station 3 of the assigned S-CPICH information and apply the S-CPICH notified to Phase Reference. (Step S410).
  • FIG. 26 is a sequence chart for explaining the flow of control signals in the fourth embodiment of the mobile communication system shown in FIG.
  • base station 2 since base station 2 forms an antenna beam according to the direction of mobile station 3, and transmits the data and the S-CPICH antenna beam, the mobile station
  • the S-CPI CH generators 160-1 to 160-3 are deleted from the configuration of the base station 2 shown in FIG. 2, and the base station 2 does not transmit S-CPICH. It is disregarded because of its composition.
  • FIG. 27 shows the mobile communication system shown in FIG. 1, in which the S-CPICH generators 160-1 to 160-3 are deleted from the base station 2 configuration shown in FIG. 5 is a flowchart for explaining the operation of mobile station 3 in a configuration in which CPICH is not transmitted.
  • a pilot channel is set (step S501).
  • step S502 the fluctuation of the dedicated pilot channel power channel is estimated, the data transmitted from the base station 2 is demodulated (step S502), and repeated until the communication is completed (step S503).
  • FIG. 28 shows the mobile communication system shown in FIG. 1, in which the S-CPICH generators 160-1 to 160-3 are deleted from the base station 2 configuration shown in FIG. 5 is a flowchart for explaining the operation of the base station 2 when it is configured not to transmit CPICH.
  • Base station 2 notifies line control station 1 that Beam-forming is being applied (step S504).
  • the base station 2 detects the direction of the mobile station 3 from the uplink of the mobile station 3 at a constant cycle (step S505), and compares the detection result with the direction of the currently transmitted antenna beam. However, if they do not match, the antenna beam is updated (step SS507).
  • step S508 If the detection result matches the direction of the currently transmitted antenna beam, or after updating the antenna beam in step S507, data is transmitted to mobile station 3 using the antenna beam. (Step S508), the direction of mobile station 3 is detected until there is no more data! , While performing communication (step S509).
  • FIG. 29 shows the mobile communication system shown in FIG. 1, in which the S-CPICH generators 160-1 to 160-3 are deleted from the base station 2 configuration shown in FIG. Do not send CPICH 5 is a flowchart for explaining the operation of the line control station 1 in a case where the configuration is different.
  • step S510 When the line control station 1 is notified by the base station 2 that the base station 2 is applying beam-forming (step S510), the fact that the base station 2 is applying beam-forming. Then, the mobile station 3 is notified of the instruction to set the dedicated pilot channel as Phase Reference (step S511).
  • the line control station 1 informs the mobile station 3 that the base station 2 applies Beam-forming. Notice.
  • the line control station 1 instructs the mobile station 3 to apply the individual pilot as the phase reference, so that the phase reference that receives the same channel fluctuation as the data is obtained. be able to.
  • step S407 shown in the fourth embodiment S-CPICH is not multiplexed with data and S-CPICH is not transmitted from base station 2. The only difference is that the rest of the behavior is the same.
  • the line control station 1 instructs the mobile station 3 to apply the individual pipeline as a phase reference, and therefore obtains a phase reference that has undergone the same channel fluctuation as the data. Can do.
  • the base station 2 can transmit the phase reference using the same antenna beam as the data transmission to the mobile station 3. It is. Therefore, mobile station 3 is connected to base station 2 to which an adaptive antenna is applied. In this case, it is possible to select an optimum phase reference that represents the channel fluctuation.
  • the processing in the line control station 1 and the base station 2 is executed by the line control station 1 and the base station in addition to the above-described dedicated hardware.
  • the program may be recorded on a readable recording medium in 2 and the program recorded on the recording medium may be read by the line control station 1 and the base station 2 and executed.
  • the recording media readable by the line control station 1 and the base station 2 are built into the line control station 1 and the base station 2 as well as transferable recording media such as floppy disks, magneto-optical disks, DVDs, and CDs. Refers to HDD etc.
  • the program recorded on the recording medium is read by the control block, and the same processing as described above is performed under the control of the control block.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 Phase Referenceとして用いるためにS-CPICHが基地局(2)から回線制御局(1)に要求されると、回線制御局(1)において、基地局(2)からの要求に応じてS-CPICHが設定され、設定されたS-CPICHが基地局(2)及び移動局(3)に通知される。基地局(2)においては、回線制御局(1)から通知されたS-CPICHのアンテナビームを用いてデータを送受信され、移動局(3)においては、回線制御局(1)から通知されたS-CPICHがPhase Referenceとして用いられて基地局(2)から送信されてきたデータが復調される。

Description

明 細 書
通信制御方法、移動通信システム、基地局及び回線制御局
技術分野
[0001] 本発明は、通信制御方法、移動通信システム、基地局及び回線制御局に関し、特 に、 CDMA (Code Division Multiple Access)セルラー方式を用いた通信制御方 法、移動通信システム、基地局及び回線制御局に関する。
背景技術
[0002] 従来より、直接拡散符号分割多元接続を用いた移動通信システムにおける下り回 線においては、移動局において、基地局から送信されてきたデータを復調するため に Phase Referenceと呼ばれる物理チャネルが必要となる。移動局においては、この 物理チャネルを基準位相情報として用いて、通信路変動 (フエ—ジング)を補正する ための補正量が推定されて 、る。
[0003] 例えば、次世代移動通信システムである W— CDMA (Wide-band Code Division
Multiple Access)においては、 Phase Referenceとして共通物理チャネルである P- CPICH (Primary Common Pilot Channel)が原則的に利用されている。また、 S-CPI CH (Secondary Common Pilot Channel)や、個別物理チャネルのパイロットシンポ ル (個別 Pilot)についても、 Phase Referenceとして利用することが可能である。但し、 S-CPICHについては、 Phase Referenceとして利用することが回線制御局によって許 可された場合のみ、 Phase Referenceとして利用することができる。また、個別 Pilotに ついては、 Phase Referenceとして常に利用可能となっている。このような Phase Refe renceの利用方法については、 3GPP (3rd Generation Partnership Project)仕様 書 TS25.331 v5.1.0 (2002-06)に開示されている。
[0004] ところで、基地局(BS:Base Station)が適応アンテナを用いて移動局とデータ通信 を行う、いわゆる Beam-formingにおいては、上り回線におけるデータ受信では、アン テナビームにより他の移動局からの信号を除去あるいは抑制することができるため、 受信品質を改善することができる。また、下り回線におけるデータ送信では、データ 送信領域がアンテナビームによって制限されるため、同一セル内の他の移動局から のマルチパス干渉の低減、並びに隣接セルの他の移動局からのセル間干渉の低減 を図ることができ、それにより、移動局における受信品質の改善を期待することができ る。そのため、適応アンテナは、上述したような接拡散符号分割多元接続を用いた移 動通信システムにお ヽても採用されて 、る(例えば、特許公開 1999— 266228号公 報参照。;)。なお、適応アンテナの動作原理については、電子情報通信学会誌 Vol. 81 No.12 pp. 1254- 1260 (1998年 12月)"ァダプティブアレーと移動通信 [1] "に開 示されている。
[0005] このような Beam— formingを適用する場合においては、 Beam— forming後の伝搬路 を表す物理チヤネノレを Phase Referenceとして用いることが望ましい。これは、 Beam— forming後の信号を受信する移動局には、アンテナ指向性により、セル内に一様に送 信される P—CPICHとは異なる伝播特性が位相変動に現れると考えられるためである 。従って、 Beam— formingを適用した基地局と接続する移動局においては、 Phase R eferenceとして P-CPICHではなぐアンテナビーム毎に送信が可能な S-CPICHまたは 個別 Pilotを適用することが必要である。
[0006] ここで、データチャネルと同一の指向性で送信されるノ ィロットチャネルを基地局か ら移動局に通知する技術が考えられている(例えば、特許公開 1999— 252002号 公報参照。 ) oこの技術においては、移動局において、データと共に送信されてくるパ ィロットチャネルを利用することができる。
[0007] 上述したように Phase Referenceとして S-CPICHを適用する場合においては、回線 制御局から移動局に対して Phase Referenceとして S— CPICHを利用するための指示 を出す必要があるが、現在、基地局と回線制御局との間で Phase Referenceに関する 情報のやり取りができない。そのため、回線制御局力も移動局に対して、 S— CPICH を Phase Referenceに利用するための指示を出すことができるものの、基地局におい て、回線制御局力も移動局に対して、 S— CPICHとしてどの符号を利用するための指 示が出されて 、るかと!/、う情報を認識することができな 、。
[0008] それにより、基地局において、 S— CPICHに対して Beam— formingを適用することが できず、また、 Beam— formingを適用されて送信されたデータを受信した移動局にお いては、 Phase Referenceとして S— CPICHを用いることができないという問題点があ る。
[0009] また、 Beam— forming適用時に個別 pilotを Phase Referenceとして用いるためには、 移動局において、接続している基地局が Beam— formingを適用しているかどうかを判 断する必要がある力 現在、この情報は回線制御局力 移動局に対して通知されて いないため、移動局において、接続している基地局が Beam— formingを適用している 力どう力に応じて、 Phase Referenceを P—CPICHから個別 pilotに切り替えることがで きないという問題点がある。
発明の開示
[0010] 本発明は、適応アンテナを適用している基地局と通信を行っている移動局におい て、通信データと同一の通信路変動を受けた S— CPICHを Phase Referenceとして利 用することができる通信制御方法、移動通信システム、基地局及び回線制御局を提 供することを目的とする。
[0011] また、適応アンテナを適用している基地局と通信を行っている移動通信システムに おいて、基地局が S— CPICHを Phase Referenceとして送信していない場合に、移動 局にお 、て Phase Referenceとして個別 pilotを適用することができる通信制御方法、 移動通信システム、基地局及び回線制御局を提供することを目的とする。
[0012] 上記目的を達成するために本発明は、
複数のアンテナビームを有する適応アンテナによってデータの送受信を行う基地局 と、該基地局との間にてデータの送受信を行う移動局と、前記移動局の無線回線を 制御する回線制御局とからなる移動通信システムにおける通信制御方法であって、 基準位相情報として用いるために前記複数のアンテナビーム毎に送信される共通 ノ ィロットチャネルを前記基地局力 前記回線制御局に要求するステップと、 前記基地局力 の要求に応じて前記回線制御局にて前記共通パイロットチャネル を設定し、該共通パイロットチャネルを前記基地局及び前記移動局に通知するステツ プと、
前記回線制御局力 通知された共通パイロットチャネルを前記基準位相情報として 用いて前記移動局にて前記基地局力 送信されてきたデータを復調するステップと を有する。 [0013] また、前記複数のアンテナビームの数を前記基地局から前記回線制御局に通知す るステップと、
前記基地局力 通知された前記アンテナビームの数分の前記共通パイロットチヤネ ルを前記回線制御局にて割り当て、該共通パイロットチャネルを前記回線制御局か ら前記基地局に通知するステップと、
前記回線制御局力 通知された複数の共通パイロットチャネルの中から、データを 送受信する移動局との間にて最適な共通パイロットチャネルを選択し、該共通パイ口 ットチャネルを送信しているアンテナビームと同じアンテナビームでデータを前記移 動局に送信するとともに、該共通パイロットチャネルを前記基地局力 前記回線制御 局を介して前記移動局に通知するステップと、
前記基地局力 前記回線制御局を介して通知された共通パイロットチャネルを前記 基準位相情報として用いて前記移動局にて前記基地局力 送信されてきたデータを 復調するステップとを有する。
[0014] また、前記基地局にて前記移動局の位置から該移動局にとって最適な前記共通パ ィロットチャネルの受信タイミングを検出し、該受信タイミングで送信して 、るアンテナ ビームと同じアンテナビームでデータを前記移動局に送信するとともに、該受信タイミ ングを前記基地局力 前記回線制御局を介して前記移動局に通知するステップと、 前記基地局力 前記回線制御局を介して通知された受信タイミングに基づいた共 通パイロットチャネルを前記基準位相情報として用いて前記移動局にて前記基地局 から送信されてきたデータを復調するステップとを有する。
[0015] また、前記複数のアンテナビームの数を前記基地局から前記回線制御局に通知す るステップと、
前記基地局力 通知された前記アンテナビームの数分の前記共通パイロットチヤネ ルを前記回線制御局にて割り当て、該共通パイロットチャネルを前記回線制御局か ら前記基地局に通知するステップと、
前記回線制御局力 通知された複数の共通パイロットチャネルを送信しているアン テナビームと同じアンテナビームでデータを前記基地局から前記移動局に送信する ステップと、 前記移動局にて前記基地局から送信された前記複数の共通パイロットチャネルの 中力も受信品質の最も良 、共通パイロットチャネル選択し、該共通パイロットチャネル を前記基地局に報告するとともに、該共通パイロットチャネルを前記基準位相情報と して設定するステップと、
前記移動局力も報告された共通パイロットチャネルを送信しているアンテナビーム を用いて前記基地局力 前記移動局にデータを送信するステップとを有する。
[0016] また、移動局毎にアンテナビームを有する適応アンテナによって前記移動局との間 にてデータの送受信を行う基地局と、前記移動局の無線回線を制御する回線制御 局とからなる移動通信システムにおける通信制御方法であって、
基準位相情報として用いるために前記アンテナビーム毎に送信される共通パイロッ トチャネルを前記基地局力 前記回線制御局に要求するステップと、
前記基地局力 の要求に応じて前記回線制御局にて前記移動局毎に前記共通パ ィロットチャネルを設定し、該共通パイロットチャネルを前記基地局及び前記移動局 に通知するステップと、
前記回線制御局力 通知された共通パイロットチャネルを前記基準位相情報として 用いて前記移動局にて前記基地局力 送信されてきたデータを復調するステップと を有する。
[0017] また、複数のアンテナビームを有する適応アンテナによってデータの送受信を行う 基地局と、該基地局との間にてデータの送受信を行う移動局と、前記移動局の無線 回線を制御する回線制御局とからなる移動通信システムにおける通信制御方法であ つて、
前記基地局にて適応アンテナを適用して 、ることを前記回線制御局に報告するス テツプと、
基準位相情報として個別パイロットチャネルを設定することを前記回線制御局から 前記移動局に指示するステップと、
前記移動局にて前記回線制御局からの指示に従って個別パイロットチャネルを前 記基準位相情報として設定し、前記個別パイロットチャネルを前記基準位相情報とし て用いて前記基地局から送信されてきたデータを復調するステップとを有する。 [0018] また、移動局毎にアンテナビームを有する適応アンテナによって前記移動局との間 にてデータの送受信を行う基地局と、前記移動局の無線回線を制御する回線制御 局とからなる移動通信システムにおける通信制御方法であって、
前記基地局にて適応アンテナを適用して 、ることを前記回線制御局に報告するス テツプと、
基準位相情報として個別パイロットチャネルを設定することを前記回線制御局から 前記移動局に指示するステップと、
前記移動局にて前記回線制御局からの指示に従って個別パイロットチャネルを前 記基準位相情報として設定し、前記個別パイロットチャネルを前記基準位相情報とし て用いて前記基地局から送信されてきたデータを復調するステップとを有する。
[0019] また、複数のアンテナビームを有する適応アンテナによってデータの送受信を行う 基地局と、該基地局との間にてデータの送受信を行う移動局と、前記移動局の無線 回線を制御する回線制御局とを有してなる移動通信システムにおいて、
前記基地局は、基準位相情報として用いるために前記複数のアンテナビーム毎に 送信される共通パイロットチャネルを前記回線制御局に要求し、
前記回線制御局は、前記基地局からの要求に応じて前記共通パイロットチャネルを 設定し、該共通パイロットチャネルを前記基地局及び前記移動局に通知し、 前記移動局は、前記回線制御局から通知された共通パイロットチャネルを前記基 準位相情報として用いて前記基地局から送信されてきたデータを復調する。
[0020] また、前記回線制御局は、前記基地局力 通知された前記アンテナビームの数分 の前記共通パイロットチャネルを割り当て、該共通パイロットチャネルを前記基地局に 通知し、
前記基地局は、前記回線制御局から通知された複数の共通パイロットチャネルの 中から、データを送受信する移動局との間にて最適な共通パイロットチャネルを選択 し、該共通ノ ィロットチャネルを送信して 、るアンテナビームと同じアンテナビームで データを前記移動局に送信するとともに、該共通パイロットチャネルを前記回線制御 局を介して前記移動局に通知し、
前記移動局は、前記基地局から前記回線制御局を介して通知された共通パイロッ トチャネルを前記基準位相情報として用いて前記基地局から送信されてきたデータ を復調する。
[0021] また、前記基地局は、前記移動局の位置から該移動局にとって最適な前記共通パ ィロットチャネルの受信タイミングを検出し、該受信タイミングで送信して 、るアンテナ ビームと同じアンテナビームでデータを前記移動局に送信するとともに、該受信タイミ ングを前記回線制御局を介して前記移動局に通知し、
前記移動局は、前記基地局から前記回線制御局を介して通知された受信タイミン グに基づ 、た共通パイロットチャネルを前記基準位相情報として用いて前記基地局 から送信されてきたデータを復調する。
[0022] また、前記回線制御局は、前記基地局力 通知された前記アンテナビームの数分 の前記共通パイロットチャネルを割り当て、該共通パイロットチャネルを前記基地局に 通知し、
前記基地局は、前記回線制御局から通知された複数の共通パイロットチャネルを 送信しているアンテナビームと同じアンテナビームでデータを前記移動局に送信し、 前記移動局は、前記基地局から送信された前記複数の共通パイロットチャネルの 中力も受信品質の最も良 、共通パイロットチャネル選択し、該共通パイロットチャネル を前記基地局に報告するとともに、該共通パイロットチャネルを前記基準位相情報と して設定し、
前記基地局は、前記移動局から報告された共通パイロットチャネルを送信している アンテナビームを用いて前記移動局にデータを送信する。
[0023] また、移動局と、該移動局毎にアンテナビームを有する適応アンテナによって前記 移動局との間にてデータの送受信を行う基地局と、前記移動局の無線回線を制御す る回線制御局とを有してなる移動通信システムにおいて、
前記基地局は、基準位相情報として用いるために前記アンテナビーム毎に送信さ れる共通パイロットチャネルを前記回線制御局に要求し、
前記回線制御局は、前記基地局からの要求に応じて前記移動局毎に前記共通パ ィロットチャネルを設定し、該共通パイロットチャネルを前記基地局及び前記移動局 に通知し、 前記移動局は、前記回線制御局から通知された共通パイロットチャネルを前記基 準位相情報として用いて前記基地局から送信されてきたデータを復調する。
[0024] また、複数のアンテナビームを有する適応アンテナによってデータの送受信を行う 基地局と、該基地局との間にてデータの送受信を行う移動局と、前記移動局の無線 回線を制御する回線制御局とを有してなる移動通信システムにおいて、
前記基地局は、適応アンテナを適用して 、ることを前記回線制御局に報告し、 前記回線制御局は、基準位相情報として個別パイロットチャネルを設定することを 前記移動局に指示し、
前記移動局は、前記回線制御局からの指示に従って個別パイロットチャネルを前 記基準位相情報として設定し、前記個別パイロットチャネルを前記基準位相情報とし て用いて前記基地局から送信されてきたデータを復調する。
[0025] また、移動局と、該移動局毎にアンテナビームを有する適応アンテナによって前記 移動局との間にてデータの送受信を行う基地局と、前記移動局の無線回線を制御す る回線制御局とを有してなる移動通信システムにおいて、
前記基地局は、適応アンテナを適用して 、ることを前記回線制御局に報告し、 前記回線制御局は、基準位相情報として個別パイロットチャネルを設定することを 前記移動局に指示し、
前記移動局は、前記回線制御局からの指示に従って個別パイロットチャネルを前 記基準位相情報として設定し、前記個別パイロットチャネルを前記基準位相情報とし て用いて前記基地局から送信されてきたデータを復調する。
[0026] 上記のように構成された本発明においては、基準位相情報として用いるために複 数のアンテナビーム毎に送信される共通パイロットチャネルが基地局から回線制御局 に要求されると、回線制御局において、基地局からの要求に応じて共通パイロットチ ャネルが設定され、設定された共通パイロットチャネルが基地局及び移動局に通知さ れる。基地局においては、回線制御局から通知された共通パイロットチャネルを送信 するアンテナビームを用いてデータを送受信され、移動局においては、回線制御局 力 通知された共通パイロットチャネルが基準位相情報として用いられて基地局から 送信されてきたデータが復調されることになる。 [0027] 本発明は、適応アンテナを適用している基地局と通信を行っている移動局におい て、通信データと同一の通信路変動を受け、アンテナビーム毎に送信される共通パ ィロットチャネルである S— CPICHを基準位相情報である Phase Referenceとして利用 することができる。
[0028] また、基地局が、アンテナビーム毎に送信される共通パイロットチャネルである S— C PICHを基準位相情報である Phase Referenceとして送信していない場合に、移動局 において、 Phase Referenceとして個別パイロットチャネルを用いることができる。 図面の簡単な説明
[0029] [図 1]本発明の移動通信システムの実施の一形態を示す図である。
[図 2]図 1に示した基地局の第 1の実施の形態における構成を示す図である。
[図 3]図 1に示した移動局の第 1の実施の形態における構成を示す図である。
[図 4]図 1に示した移動通信システムの第 1の実施の形態における移動局の動作を説 明するためのフローチャートである。
[図 5]図 1に示した移動通信システムの第 1の実施の形態における基地局の初期設 定時の動作を説明するためのフローチャートである。
[図 6]図 1に示した移動通信システムの第 1の実施の形態における基地局の定常状 態時の動作を説明するためのフローチャートである。
[図 7]図 1に示した移動通信システムの第 1の実施の形態における回線制御部の動 作を説明するためのフローチャートである。
[図 8]図 1に示した移動通信システムの第 1の実施の形態における制御信号の流れを 説明するためのシーケンスチャートである。
[図 9]図 1に示した基地局の第 2の実施の形態における構成を示す図である。
[図 10]図 1に示した移動通信システムの第 2の実施の形態における移動局の動作を 説明するためのフローチャートである。
[図 11]図 1に示した移動通信システムの第 2の実施の形態における基地局の動作を 説明するためのフローチャートである。
[図 12]図 1に示した移動通信システムの第 2の実施の形態における回線制御部の動 作を説明するためのフローチャートである。 [図 13]図 1に示した移動通信システムの第 2の実施の形態における制御信号の流れ を説明するためのシーケンスチャートである。
圆 14]図 1に示した基地局の第 3の実施の形態における構成を示す図である。
[図 15]図 1に示した移動局の第 3の実施の形態における構成を示す図である。
[図 16]図 1に示した移動通信システムの第 3の実施の形態における移動局の動作を 説明するためのフローチャートである。
圆 17]図 1に示した移動通信システムの第 3の実施の形態における基地局の初期設 定時の動作を説明するためのフローチャートである。
[図 18]図 1に示した移動通信システムの第 3の実施の形態における基地局の定常状 態時の動作を説明するためのフローチャートである。
[図 19]図 1に示した移動通信システムの第 3の実施の形態における回線制御部の動 作を説明するためのフローチャートである。
[図 20]図 1に示した移動通信システムの第 3の実施の形態における制御信号の流れ を説明するためのシーケンスチャートである。
圆 21]本発明の移動通信システムの他の実施の形態を示す図である。
圆 22]図 21に示した基地局の第 4の実施の形態における構成を示す図である。
[図 23]図 21に示した移動通信システムの第 4の実施の形態における移動局の動作を 説明するためのフローチャートである。
[図 24]図 21に示した移動通信システムの第 4の実施の形態における基地局の動作を 説明するためのフローチャートである。
[図 25]図 21に示した移動通信システムの第 4の実施の形態における回線制御局の 動作を説明するためのフローチャートである。
[図 26]図 21に示した移動通信システムの第 4の実施の形態における制御信号の流 れを説明するためのシーケンスチャートである。
[図 27]図 1に示した移動通信システムにおいて、図 2に示した基地局の構成力 S— CPICH生成部を削除し、基地局力 CPICHを送信しない構成とした場合における 移動局の動作を説明するためのフローチャートである。
[図 28]図 1に示した移動通信システムにおいて、図 2に示した基地局の構成力 S— CPICH生成部を削除し、基地局力 CPICHを送信しない構成とした場合における 基地局の動作を説明するためのフローチャートである。
[図 29]図 1に示した移動通信システムにおいて、図 2に示した基地局の構成力 S— CPICH生成部を削除し、基地局力 CPICHを送信しない構成とした場合における 回線制御局の動作を説明するためのフローチャートである。
発明を実施するための最良の形態
[0030] (第 1の実施の形態)
図 1は、本発明の移動通信システムの実施の一形態を示す図である。
[0031] 本形態は図 1に示すように、回線制御局 1と、基地局 2と、移動局 3とから構成されて おり、無線アクセスとして直接拡散符号分割多元接続方式を用いるものである。移動 局 3に送信されるデータがネットワークから回線制御局 1を経由して基地局 2に到着 すると、基地局 2から、回線制御局 1を経由して到着したデータが下り個別データチヤ ネル (DL— DPDCH)により移動局 3に送信される。また、移動局 3からは、上り個別デ ータチャネル(UL— DPDCH)によりデータが基地局 2に送信される。さらに、基地局 2 においては、移動局 3との間にて回線制御信号をやりとりするために下り個別制御チ ャネル(DL— DPCCH)と上り個別制御チャネル(UL— DPCCH)とが用いられる。
[0032] 回線制御局 1は、移動局 3の無線回線を制御し、また、基地局 2と移動局 3との間で 回線制御信号をやりとりするための制御回線を設定する。また、ュ—ザデータを有線 にて基地局 2との間で送受信し、基地局 2からの要求に応じて S— CPICHを割り当て、 割り当てた S— CPICHを基地局 2及び移動局 3に通知する機能を有する。
[0033] 基地局 2は、同一セル内の移動局 3に対して、第 1の下り共通パイロットチャネル(P — CPICH)を無指向性のアンテナパターン 4を用いて一様に送信する。また、セル内 を分割する複数のアンテナビーム 5— 1〜5— 3を有しており、このアンテナビーム 5— 1〜5— 3毎に異なる第 2の下り共通パイロットチャネル (S— CPICH)を送信する。なお 、アンテナビームの数は、本形態においては 3つとしている力 本発明はこれに限ら ない。また、基地局 2は、回線制御局 1からデータを受信した場合、複数のアンテナビ ーム 5— 1〜5— 3の中力 移動局 3に応じてアンテナビームを 1つ選択し、受信した データと制御信号とを、選択したアンテナビームを使ってそれぞれ DL— DPDCHと DL — DPCCHとにより移動局 3に送信する。
[0034] 図 2は、図 1に示した基地局 2の第 1の実施の形態における構成を示す図である。な お、本形態においては、アンテナ、ユーザ及びアンテナビームの数をそれぞれ、 3、 2 、 3とした力 本発明はこれに限らない。
[0035] 図 2に示すように、本形態における基地局 2においては、アンテナビーム 5— 1〜5
- 3のそれぞれに対応して複数のアンテナ 111— 1〜: L 11— 3及び送受共用器 121 — 1〜121— 3が設けられている。この送受共用器 121— 1〜121— 3により上り信号 と下り信号とが分離される。ァンテナ111 1〜113— 3を介して受信された上り信号 は、送受共用器 121— 1〜121— 3にて分離されてアンテナ毎に分配器 131— 1〜1 31— 3に入力され、分配器 131— 1〜131— 3により、ュ一ザと同じ数に分配されて ユーザ毎に信号受信部 140—1, 140— 2に入力される。信号受信部 140— 1は、ュ ザ方向検出器 141と、ユーザデータ復調部 142とから構成され、信号受信部 140 —2もこれと同一の構成である。また、信号生成部 150— 1は、ュ—ザデータ合成部 1 51と、アンテナビーム形成部 152とから構成され、信号生成部 150— 2もこれと同一 の構成である。ュ—ザ方向検出器 141は、アンテナ 111 1〜: L 11 3における上り 信号の受信電力を求め、最大の電力が得られるアンテナ 111 1〜111 3に対応 するアンテナビーム力も移動局 3の方向を検出する。検出された移動局 3の方向は移 動局 3毎に信号生成部 150— 1, 150— 2に送られ、下り信号を生成する際に利用さ れる。ユーザ方向検出器 141は、上述した処理によって移動局 3の方向が変化した ことを検出した場合、その旨を回線制御局 1に通知する。一方、最大の電力が得られ たアンテナ 111 1〜: L 11 3を介して受信されたデータはュ ザデータ復調部 14 2に入力されて復調され、回線制御局 1に送られる。
[0036] 一方、回線制御局 1から送られてきたユーザデータは、ユーザ毎に信号生成部 15 0- 1, 150— 2に入力される。信号生成部 150— 1, 150— 2に入力されたユーザデ ータは、ユーザデータ合成部 151において制御信号と合成されて出力される。ユー ザデータ合成部 151から出力された合成信号は、アンテナビーム形成部 152におい て、ュ—ザ方向検出部 141から通知された移動局 3の方向に応じたアンテナ 111— 1〜: L 11— 3毎の重みを乗じることでアンテナ 111 1〜: L 11 3毎の信号に変換さ れる。
[0037] また、基準位相情報である Phase Referenceとして用いられる S— CPICHは、 S— CPI CHと同数の S— CPICH生成部 160— 1〜160— 3によって異なるアンテナビーム 5— 1〜5— 3でこのアンテナビーム 5— 1〜5— 3と一対一で対応づけられて送信される。 S CPICH生成部 160— 1は、 S— CPICH発生部 161とアンテナビーム形成部 162と から構成されており、 S— CPICH生成部 160— 2, 160— 3もこれと同一の構成である 。 S— CPICH発生部 161にて生成された S— CPICHは、アンテナビーム形成部 162に 与えられ、アンテナビーム形成部 162において、 S— CPICH発生部 161にて生成され た S - CPICHを用 V、てアンテナ信号が形成される。
[0038] 信号生成部 150—1, 150— 2と S— CPICH生成部 160— 1〜 160— 3にてそれぞ れ形成されたアンテナ信号は、それぞれ加算器 132— 1〜132— 3によりアンテナ 11 1 1〜: L 11 3毎にカロ算され、送受共用部 121— 1〜121— 3及びアンテナ 111— 1〜: L 11— 3を介して送信される。
[0039] 図 3は、図 1に示した移動局 3の第 1の実施の形態における構成を示す図である。
[0040] 本形態は図 3に示すように、アンテナ 112と、送受共用器 122と、データ復調部 180 と、 Phase Reference検出部 170と、データ変調部 180とから構成されている。送受共 用器 122は、上り信号と下り信号とを分離する。アンテナ 112を介して受信され、送受 共用器 122にて分離された下り信号は、 Phase Reference検出部 170とデータ復調 部 181とにそれぞれ入力される。 Phase Reference検出部 170は、送受共用器 122 にて分離された下り信号の中から回線制御局 1からの指示を検出し、 Phase Referen ceにどの物理チャネルを適用すればよいかを判断する。判断された Phase Reference に関する情報はデータ復調部 190に送られる。データ復調部 190では、 Phase Refe rence検出部 170から送られてきた情報に従ってフエ―ジングによる通信路変動を計 算し、アンテナ 112を介して受信され、送受共用器 122にて分離された上り信号のデ ータの復調を行う。
[0041] 一方、移動局 3から基地局 2に送信されるデータは、データ変調部 190にて変調さ れた後、送受共用器 122を介してアンテナ 112から送信される。
[0042] 以下に、上記のように構成された移動通信システムにおける動作について説明する [0043] まず、移動局 3の動作について説明する。
[0044] 図 4は、図 1に示した移動通信システムの第 1の実施の形態における移動局 3の動 作を説明するためのフローチャートである。
[0045] まず、移動局 3は、データ通信を開始するにあたって、 Phase Referenceに関する回 線制御局 1からの指示を確認する (ステップ S 101)。回線制御局 1から指示がない場 合は、 Phase Referenceとして P— CPICHを利用する。また、 Phase Referenceとして S
— CPICHを利用する旨の指示を回線制御局 1から受信した場合は、その指示による S— CPICHを Phase Referenceに設定し (ステップ S102)、設定した S— CPICH用いて データ復調を行う(ステップ S 103)。
[0046] その後、データ受信が完了するまで回線制御局 1から Phase Referenceに関する指 示があるかどうかを確認する(ステップ S 104)。
[0047] 次に、基地局 2の動作について説明する。
[0048] 図 5は、図 1に示した移動通信システムの第 1の実施の形態における基地局 2の初 期設定時の動作を説明するためのフローチャートである。
[0049] 基地局 2は、初期設定時においてはまず、セル内に送信可能なアンテナビームの 数を回線制御局 1に通知し、その数と同数の S— CPICHを回線制御局 1に要求する( ステップ S 105)。
[0050] そして、回線制御局 1にて割り当てられた S— CPICHが通知された後、通知された S
— CPICHをアンテナビーム毎に割り当てて下り回線で送信を開始する (ステップ S10 6)。
[0051] 上述した初期設定が完了したら定常状態に移る。
[0052] 図 6は、図 1に示した移動通信システムの第 1の実施の形態における基地局 2の定 常状態時の動作を説明するためのフローチャートである。
[0053] 定常状態においては、基地局 2は、移動局 3からの回線接続の要求があるまで待 機する (ステップ S 107)。
[0054] 移動局 3から回線接続が要求された場合、まず、上り回線の信号力 移動局 3の方 向を検出し (ステップ S 108)、移動局 3の方向に最もアンテナ利得が大きくなるアンテ ナビームで送信される S— CPICHを選択し、また、そのアンテナビームを下り回線のァ ンテナビームとして設定する (ステップ S 109)。
[0055] また、ステップ S 109にて設定された S— CPICHの情報を回線制御局 1に通知する( ステップ S 110)。
[0056] その後、割り当てたアンテナビームにより移動局 3との間にてデータの送受信を行 いながら定期的に上り信号を使って移動局 3の方向を検出し、現在用いているアンテ ナビームと移動局 3の方向の検出により得られるアンテナビームとがー致しているか どうかを確認し (ステップ S 111)、両者が一致しなくなった場合、移動局 3の方向の検 出により得られるアンテナビームに切り替え (ステップ S112)、ステップ S110におけ る処理に戻り、切り替えたアンテナビームに割り当てられている S— CPICHに関する情 報を回線制御局 1に通知する。
[0057] そして、通信が終了するまで移動局 3の方向の検出結果を監視する (ステップ S11 3)。
[0058] 次に、回線制御局 1の動作について説明する。
[0059] 図 7は、図 1に示した移動通信システムの第 1の実施の形態における回線制御部 1 の動作を説明するためのフローチャートである。
[0060] 回線制御部 1は、初期動作として基地局 2から S— CPICHの割り当てが要求されたら 、要求された数と同数の S— CPICHを割り当てる(ステップ S 114)。
[0061] その後、通信が終了するまで (ステップ S115)、基地局 2にて移動局 3に割り当てた S— CPICHの情報を基地局 2から受け取った場合 (ステップ S116)、基地局 2から受 け取った S— CPICHを Phase Referenceとして適用する指示を移動局 3に送信する(ス テツプ S117)。初期設定が終了した回線制御局 1は、通信が終了するまで常に基地 局 2からの S— CPICHの設定または変更の通知を待ちつづける。
[0062] 次に、上述した回線制御局 1、基地局 2及び移動局 3での制御信号の流れを説明 する。
[0063] 図 8は、図 1に示した移動通信システムの第 1の実施の形態における制御信号の流 れを説明するためのシーケンスチャートである。
[0064] まず、基地局 2は、回線制御局 1に対して送信可能なアンテナビームの数を通知し 、同数の S - CPICHを割り当てるように要求を送信する。
[0065] すると、回線制御局 1は、基地局 2からの要求に応じて S— CPICHを割り当て、割り 当てた S— CPICHを基地局 2に通知する。
[0066] 次に、基地局 2は、接続要求のある移動局 3の方向に応じて、移動局 3が Phase Re ferenceとして利用すべき S— CPICHを設定し、設定した S— CPICHを回線制御局 1に 通知する。
[0067] すると、回線制御局 1は、基地局 2にて設定された S— CPICHを Phase Referenceと して適用する指示を移動局 3に送信する。
[0068] 移動局 3は、回線制御局 1からの指示に従って、基地局 2にて設定された S— CPIC
Hを Phase Referenceとして適用し、基地局 2から送信されてきたデータの復調を行う
[0069] その後、基地局 2は、定期的に移動局 3への送信に用いるアンテナビームを検出し て、アンテナビームを変更する場合には、回線制御局 1にアンテナビームを変更する ことを通知する。
[0070] 回線制御局 1は、基地局 2からアンテナビームの変更通知を受け取ったら、移動局 3に対して Phase Referenceを変更するように指示を出す。
[0071] 移動局 3は、回線制御局 1から Phase Referenceの変更の指示を受けた場合、指示 を受けた S— CPICHを Phase Referenceとしてデータの復調を行う。
[0072] 上述したように本形態においては、基地局 2がアンテナビーム毎に異なる S— CPIC Hを割り当て、移動局 3の方向に最も近 、アンテナビームでデータを送信するとともに S— CPICHに関する情報を移動局 3に通知するので、移動局 3はデータと同一の通 信路変動を得た S— CPICHを Phase Referenceとして利用することができる。
[0073] (第 2の実施の形態)
本形態におけるシステム構成は、図 1に示したものと同様に、回線制御部 1と、基地 局 2と、移動局 3とからなる。
[0074] 基地局 2は、同一セル内の移動局 3に対して、第 1の下り共通パイロットチャネル(P — CPICH)を無指向性のアンテナパターン 4を用いて一様に送信する。また、セル内 を分割する複数のアンテナビーム 5— 1〜5— 3を有しており、このアンテナビーム 5— 1〜5— 3毎に異なる第 2の下り共通パイロットチャネル(S— CPICH)を、アンテナビー ムを一定周期で順番に切り替えて送信する。なお、基地局 2は、回線制御局 1からデ ータを受信した場合、複数のアンテナビーム 5— 1〜5— 3の中力 移動局 3に対して アンテナビームを 1つ選択し、受信したデータと制御信号とを、選択したアンテナビー ムを使ってそれぞれ DL— DPDCHと DL— DPCCHとにより移動局 3に送信する。
[0075] 図 9は、図 1に示した基地局 2の第 2の実施の形態における構成を示す図である。な お、本形態においては、アンテナ、ユーザ及びアンテナビームの数をそれぞれ、 3、 2 、 3とした力 本発明はこれに限らない。
[0076] 本形態における基地局 2は図 9に示すように、図 2に示したものに対して、 S-CPIC H生成部 260の構成のみが異なるものである。
[0077] 本形態における S— CPICH生成部 206は、回線制御局 1から指示された S— CPICH を発生させる S— CPICH発生部 261と、一定時間でアンテナビームを切り替えてアン テナ信号に変換するアンテナビーム切り替え部 263とから構成され、アンテナビーム の数にかかわらず 1つである。
[0078] また、本形態における移動局 3の構成は、図 3に示したものと同一である。
[0079] 以下に、上記のように構成された移動通信システムにおける動作について説明する
[0080] まず、移動局 3の動作について説明する。
[0081] 図 10は、図 1に示した移動通信システムの第 2の実施の形態における移動局 3の 動作を説明するためのフローチャートである。
[0082] まず、移動局 3は、データ通信を開始するにあたって、 Phase Referenceに関する回 線制御局 1からの指示を確認する (ステップ S201)。回線制御局 1から指示がない場 合は、 Phase Referenceとして P— CPICHを利用する。また、 Phase Referenceとして S — CPICHを利用する旨の指示を回線制御局 1から受信した場合は、その指示による S— CPICHを Phase Referenceに設定する(ステップ S202)。
[0083] また、 S— CPICHは時分割で基地局 2から送信されるので、受信タイミングを同期さ せる必要がある。受信タイミングは、回線制御局 1から送信されてくる制御情報により 、スロット番号あるいはフレーム番号と周期とが通知されるので、その情報に基づいて S— CPICHの受信タイミングを検出する(ステップ S 203)。
[0084] そして、 S— CPICHを Phase Referenceとしてフエージングによる位相の補正量を求 め、基地局から送信されてくるデータの復調を行う(ステップ S204)。
[0085] その後、データ受信が完了するまで回線制御局 1から Phase Referenceに関する指 示があるかどうかを確認する(ステップ S205)。
[0086] 次に、基地局 2の動作について説明する。
[0087] 図 11は、図 1に示した移動通信システムの第 2の実施の形態における基地局 2の 動作を説明するためのフローチャートである。
[0088] まず、初期動作として、基地局 2は、回線制御局 1に S— CPICHを 1つ要求する。 S—
CPICHが割り当てられた基地局 2は一定時間毎にアンテナビームを切り替えながら S CPICHを送信する。
[0089] 基地局 2は、接続する移動局 3の上り回線を受信する方向から下り回線に用いるァ ンテナビームを設定する (ステップ S206)。
[0090] アンテナビームが設定されると、そのアンテナビームを使って既に送信を開始して いる S— CPICHのスロット番号またはフレーム番号を調べ、それにより、 S— CPICHの 移動局 3における受信タイミングを検出し (ステップ S207)、基地局 2は移動局 3に対 して S— CPICHの受信タイミングに関する情報 (スロット番号またはフレーム番号と周 期)を回線制御局 1を介して通知する (ステップ S208)。
[0091] その後、設定されたアンテナビームにより通信を行いながら定期的に上り信号を使 つて移動局 3の方向を検出し、現在用いているアンテナビームと移動局 3の方向の検 出により得られるアンテナビームとがー致しているかどうかを確認し (ステップ S209)、 両者が一致しなくなった場合、移動局 3の方向の検出により得られるアンテナビーム に切り替え (ステップ S210)、ステップ S208における処理に戻り、切り替えたビーム による S— CPICHの受信タイミングに関する情報 (スロット番号またはフレーム番号と 周期)を回線制御局 1を介して通知する。
[0092] そして、通信が終了するまで移動局 3の方向の検出結果を監視する (ステップ S21 D oこれにより、移動局 3にとつて最適な S— CPICHの受信タイミングを検出することに なる。 [0093] 次に、回線制御局 1の動作について説明する。
[0094] 図 12は、図 1に示した移動通信システムの第 2の実施の形態における回線制御部
1の動作を説明するためのフローチャートである。
[0095] 回線制御部 1は、初期動作として基地局 2から S— CPICHの割り当てが要求されたら
、要求に応じて S - CPICHを割り当てる(ステップ S 212)。
[0096] その後、通信が終了するまで (ステップ S213)、基地局 2から移動局 3の S— CPICH の受信タイミングに関する情報が通知された場合 (ステップ S214)、移動局 3に対し て、 Phase Referenceとして S— CPICHを適用する指示を送信するとともに受信タイミ ングに関する情報も送信する (ステップ S215)。
[0097] そして、移動局 3の通信が終了するまでこの動作を繰り返す。
[0098] 次に、上述した回線制御局 1、基地局 2及び移動局 3での制御信号の流れを説明 する。
[0099] 図 13は、図 1に示した移動通信システムの第 2の実施の形態における制御信号の 流れを説明するためのシーケンスチャートである。
[0100] まず、基地局 2は、回線制御局 1に対して 1つの S— CPICHを割り当てるように要求 を出す。
[0101] 回線制御局 1は、基地局 2から要求を受けた場合、基地局 2に対して S— CPICHを 割り当て、基地局 2に通知する。
[0102] また、基地局 2は、接続要求のある移動局 3が Phase Referenceとして受信すべき S
CPICHの受信タイミングを回線制御局 1に通知する。
[0103] 回線制御局 1は、基地局 2から移動局 3の S— CPICHの受信タイミングを受け取った 場合、移動局 3に対して Phase Referenceに S— CPICHを利用する指示と受信タイミン グを送信する。
[0104] 移動局 3は、回線制御局 1から Phase Referenceの変更の指示を受けたら、指示を 受けた S - CPICHを指定された受信タイミングで Phase Referenceとして復調を行う。
[0105] その後、基地局 2は、定期的に移動局 3への送信に用いるアンテナビームを確認し て、アンテナビームを変更する場合には、回線制御局 1にアンテナビームを変更する ことと新し 、受信タイミングを通知する。 [0106] 回線制御局 1は、基地局 2からアンテナビームの変更通知を受け取った場合、移動 局 3に対して Phase Referenceの受信タイミングを変更するように指示を送信する。
[0107] このように本形態においては、基地局 2が S— CPICHを送信するアンテナビームを 時間的に切り替え、移動局 3の方向に最も近いアンテナビームでデータを送信し、デ ータ送信をしているアンテナビームと同時刻に S— CPICHを送信するタイミングを移動 局 3に通知するので、移動局 3はデータと同一の通信路変動を得た S— CPICHを Pha se Referenceとして利用することができる。
[0108] (第 3の実施の形態)
本形態におけるシステム構成は、図 1に示したものと同様に、回線制御部 1と、基地 局 2と、移動局 3とからなる。
[0109] 図 14は、図 1に示した基地局 2の第 3の実施の形態における構成を示す図である。
[0110] 図 14に示すように本形態における基地局 2は、図 2に示したものに対して信号受信 部 340— 1, 340— 2が異なる構成となっている。図 2に示したものにおいては、ユー ザ方向検出器 141により、移動局 3の方向を信号生成部 150— 1, 150— 2に通知し ているが、本形態においては通知を行わない。その代わり、信号受信部 340—1, 34 0— 2に、 Phase Reference候補検出部 343を追加し、ュ—ザデータ復調部 342から 出力された個別制御情報力 移動局 3が報告する受信電力が最大となる S— CPICH を検出する。 Phase Reference候補検出部 343は、移動局 3から通知される S— CPIC Hが送信された方向を信号生成部 350— 1, 350— 2内のアンテナビーム形成部 352 に通知する。信号生成部 350— 1, 350— 2では、 Phase Reference候補検出部 343 の出力に基づき、アンテナビームを形成してユーザデータをアンテナ信号に変換す る。
[0111] 図 15は、図 1に示した移動局 3の第 3の実施の形態における構成を示す図である。
[0112] 本形態における移動局 3は図 15に示すように、図 3に示したものに対して、 Phase
Reference検出部 370にて、回線制御局 1から通知された全ての S— CPICHの受信電 力を測定し、電力が最大となる S— CPICHの情報をデータ変調部 390に入力し、デー タ変調部 390にて、 Phase Reference検出部 370から得られる S— CPICHの情報を個 別制御データとしてデータとともに送信することで基地局 2に受信電力が最大となる S CPICHを報告する点のみが異なるものである。
[0113] 以下に、上記のように構成された移動通信システムにおける動作について説明する
[0114] まず、移動局 3の動作について説明する。
[0115] 図 16は、図 1に示した移動通信システムの第 3の実施の形態における移動局 3の 動作を説明するためのフローチャートである。
[0116] 移動局 3は、回線制御局 1から基地局 2力 ¾eam— formingを行っていることが通知さ れ、アンテナビームで送信されている S— CPICHの情報を一定の周期で取得すると( ステップ S301)、取得した S— CPICH毎に受信感度 (受信電力)を比較し、最も大き な電力で受信する S— CPICHを求め(ステップ S302)、それにより、受信品質の最も 良 ヽ S - CPICHを選択する。
[0117] そして、測定するまで最大であった S— CPICHと測定して得られた S— CPICHとが異 なる場合は (ステップ S303)、その旨を基地局 2に個別データ回線を介して報告する とともに、 Phase Referenceとして比較後の S— CPICHを設定する(ステップ S304)。
[0118] そして、設定した S— CPICHを用いて、基地局 2から送信されてきたデータの復調を 行う(ステップ S305)。その後、通信が終了するまで、データの復調を続けながら定 期的に S— CPICHの感度比較を行う(ステップ S 306)。
[0119] 次に、基地局 2の動作について説明する。
[0120] 図 17は、図 1に示した移動通信システムの第 3の実施の形態における基地局 2の 初期設定時の動作を説明するためのフローチャートである。
[0121] 基地局 2は、初期設定時においてはまず、 Beam— formingを行っていることを回線 制御局 1に通知するとともに、アンテナビーム数を回線制御局 1に通知し、 Phase Ref erenceに用いる S— CPICHをアンテナビーム数分要求する(ステップ S 307)。
[0122] そして、回線制御局 1にて割り当てられた S— CPICHが通知された後、 S— CPICHを 割り当てて下り回線で送信を開始する (ステップ S308)。
[0123] 上述した初期設定が完了したら定常状態に移る。
[0124] 図 18は、図 1に示した移動通信システムの第 3の実施の形態における基地局 2の 定常状態時の動作を説明するためのフローチャートである。 [0125] 基地局 2は、まず、移動局 3の上り回線力 移動局 3の方向を検出し、移動局 3の方 向に送信するアンテナパタ ンを有するアンテナビームを設定し、このアンテナパタ ーンを用いて移動局 3にデータを送信する (ステップ S 309)。
[0126] そして、移動局 3から報告される受信電力が最大となる S— CPICHの情報を取得し た後(ステップ S310)、報告された S— CPICHを送信しているアンテナビームと現在 データを送信して ヽるアンテナビームを比較し (ステップ S311)、両者が一致した場 合は、ビームの切り替えは行わずに通信を継続する。もし、両者が一致しない場合は 、データを送信しているビームを、移動局 3から報告されたビームに切り替えて送信を 行う(ステップ S312)。
[0127] その後、通信が終了するまで、移動局 3から定期的に報告される S— CPICHの情報 を用いてビーム切り替えの判断を継続して行う(ステップ S313)。
[0128] 次に、回線制御局 1の動作について説明する。
[0129] 図 19は、図 1に示した移動通信システムの第 3の実施の形態における回線制御部
1の動作を説明するためのフローチャートである。
[0130] 回線制御局 1は、基地局 2からの要求に応じて S— CPICHを割り当て(ステップ S31
4)、割り当てた S— CPICHを基地局 2に通知する。
[0131] その後、移動局 3に対して、回線制御局 1が基地局 2に対して割り当てた全ての S—
CPICHを通知し、 Phase Referenceとして S— CPICHを適用することを指示する(ステ ップ S315)。
[0132] 次に、上述した回線制御局 1、基地局 2及び移動局 3での制御信号の流れを説明 する。
[0133] 図 20は、図 1に示した移動通信システムの第 3の実施の形態における制御信号の 流れを説明するためのシーケンスチャートである。
[0134] まず、基地局 2は、回線制御局 1に S— CPICHを要求する。
[0135] 回線制御局 1は、 S— CPICHを割り当てたら、割り当てた S— CPICHを基地局 2に通 知するとともに、基地局 2に割り当てた S— CPICHの情報を移動局 3に通知する。
[0136] 移動局 3は、回線制御局 1から通知された S— CPICHに対して品質測定 (受信電力 )を行い、測定結果を基地局 2に報告する。測定結果の報告は、通信中は一定の周 期で行う。
[0137] このように本形態においては、基地局 2がアンテナビーム毎に異なる S— CPICHを 割り当て、移動局 3からの S— CPICHの受信品質に関する報告を利用して、データと S CPICHを同じアンテナビームにより送信するので、移動局 3はデータと同一の通信 路変動を得た S— CPICHを Phase Referenceとして利用することができる。
[0138] また、本形態においては、アンテナビームの変更時に回線制御局 1を介さずに基地 局 2が移動局 3から報告される情報に基づいて変更を行うので、回線制御局 1を介し てアンテナビームを変更する場合に比べて切り替え時間を短くすることができる。また 、回線制御局 1に情報を通知しないので、回線制御局 1の負荷を低減することができ る。
[0139] (第 4の実施の形態)
図 21は、本発明の移動通信システムの他の実施の形態を示す図である。
[0140] 本形態は図 21に示すように、図 1に示したものに対して、回線制御局 1、基地局 2 及び移動局 3から構成される点は同一であるが、基地局 2が送信する共通パイロット チャネルの送信方法が異なる。本形態においては、基地局 2は、移動局 3毎に異なる アンテナビーム 5を形成し、そのアンテナビーム 5によって S— CPICHを送信する。従 つて、 S— CPICHを送信するアンテナビーム 5は移動局 3と同じ数だけ必要となる。
[0141] 図 22は、図 21に示した基地局 2の第 4の実施の形態における構成を示す図である
[0142] 本形態における基地局 2は図 22に示すように、図 2に示したものに対して、 S— CPI CH生成咅 1〜160— 3力 Sなく、信号生成咅450 1, 450— 2に S— CPICH発 生部 453が設けられている点と、ュ—ザ方向検出部 141の代わりにアンテナ合成部 444が設けられている点のみが異なるものである。
[0143] 信号生成部 450—1, 450— 2では、 S— CPICH発生部 453で生成した S— CPICH をュ—ザデータ合成部 451に入力する。ュ—ザデータ合成部 451では、回線制御局 1から送られてきたデータと制御情報とを合成し、 S— CPICHを多重する。多重された 信号はアンテナビーム形成部 452に入力され、アンテナ信号に変換される。
[0144] そして、ユーザ毎に S— CPICHを多重したアンテナ信号を加算器 432— 1〜432— 3により合成し、送受共用器 421— 1〜421— 3及びアンテナ 411— 1〜411— 3を介 して送信する。
[0145] また、基地局 2は、移動局 3毎にアンテナビームを持ち、適応的にアンテナビームを 更新する。アンテナ合成部 444で用いたアンテナビームは信号生成部 450—1, 45 0- 2に送られ、上り回線で用いたアンテナビームから下り回線で用いるアンテナビー ムに変換してアンテナビーム形成部 452で用いられる。
[0146] また、本形態における移動局 3の構成は、図 3に示したものと同一である。
[0147] 以下に、上記のように構成された移動通信システムにおける動作について説明する
[0148] まず、移動局 3の動作について説明する。
[0149] 図 23は、図 21に示した移動通信システムの第 4の実施の形態における移動局 3の 動作を説明するためのフローチャートである。
[0150] まず、移動局 3は、データ通信を開始するにあたって、 Phase Referenceに関する回 線制御局 1からの Phase Referenceに関する指示を確認する(ステップ S401)。回線 制御局 1から指示がない場合は、 Phase Referenceとして P—CPICHを利用する。また 、 Phase Referenceとして S— CPICHを利用する指示を回線制御部 1から受信した場 合は、その指示による S— CPICHを Phase Referenceに設定し (ステップ S402)、設定 した S— CPICHを用いて、基地局 2から送信されてきたデータの復調を行う(ステップ S403)。
[0151] その後、データ受信が完了するまでデータ復調を行う(ステップ S404)。
[0152] 次に、基地局 2の動作について説明する。
[0153] 図 24は、図 21に示した移動通信システムの第 4の実施の形態における基地局 2の 動作を説明するためのフローチャートである。
[0154] 基地局 2はまず、回線制御局 1に対して接続する移動局 3毎に S— CPICHを要求す る(ステップ S405)。
[0155] また、アンテナビームを、上り回線用に得られたアンテナビームから下り回線用に変 換し、移動局 3毎にアンテナビームを形成する(ステップ S406)。
[0156] そして、回線制御局 1により S— CPICHが割り当てられたら、この S— CPICHとュ一ザ データ信号とを多重して送信する (ステップ S407)。
[0157] その後、上述したステップ S406, S407における処理を通信終了まで継続して行う
(ステップ S408)。
[0158] 次に、回線制御局 1の動作について説明する。
[0159] 図 25は、図 21に示した移動通信システムの第 4の実施の形態における回線制御 局 1の動作を説明するためのフローチャートである。
[0160] 回線制御局 1は、基地局 2からの要求に応じて、移動局 3毎に異なる S— CPICHを 割り当てる (ステップ S409)。
[0161] そして、移動局 3毎に S— CPICHを割り当てたら、割り当てた S— CPICHの情報を基 地局 2及び移動局 3に通知し、 Phase Referenceに通知した S— CPICHを適用する指 示を行う(ステップ S410)。
[0162] 次に、上述した回線制御局 1、基地局 2及び移動局 3での制御信号の流れを説明 する。
[0163] 図 26は、図 21に示した移動通信システムの第 4の実施の形態における制御信号 の流れを説明するためのシーケンスチャートである。
[0164] 基地局 2が、回線制御局 1に S— CPICHの割り当て要求を送信すると、回線制御局
1は、移動局 3毎に S— CPICHを割り当て、割り当てた S— CPICHの情報を基地局 2に 通知するとともに、移動局 3に対して、割り当てた S— CPICHを Phase Referenceとして 適用することを指示する。
[0165] このように本形態においては、基地局 2が移動局 3の方向に応じたアンテナビーム を形成し、データと S— CPICHを形成したアンテナビームにより送信するので、移動局
3は同一の通信路変動を受けた S— CPICHを Phase Referenceとして利用することが できる。
[0166] (第 5の実施の形態)
図 1に示した移動通信システムにおいて、図 2に示した基地局 2の構成から S— CPI CH生成部 160— 1〜 160— 3を削除し、基地局 2が S - CPICHを送信しな 、構成とす ることち考免られる。
[0167] 以下に、上述した構成における移動通信システムにおける動作について説明する [0168] まず、移動局 3の動作について説明する。
[0169] 図 27は、図 1に示した移動通信システムにおいて、図 2に示した基地局 2の構成か ら S— CPICH生成部 160— 1〜160— 3を削除し、基地局 2力 — CPICHを送信しな い構成とした場合における移動局 3の動作を説明するためのフローチャートである。
[0170] 移動局 3は、回線制御局 1から基地局 2力 ¾eam— formingを適用しているという通知 と、 Phase Referenceとして個別パイロットチャネルを設定する指示とを受けた場合、 P hase Referenceとして個別パイロットチャネルを設定する(ステップ S501)。
[0171] そして、個別パイロットチャネル力 通信路の変動を推定し、基地局 2から送信され てきたデータの復調を行 ヽ (ステップ S502)、通信が終了するまで繰り返す (ステップ S503)。
[0172] 次に、基地局 2の動作について説明する。
[0173] 図 28は、図 1に示した移動通信システムにおいて、図 2に示した基地局 2の構成か ら S— CPICH生成部 160— 1〜160— 3を削除し、基地局 2力 — CPICHを送信しな い構成とした場合における基地局 2の動作を説明するためのフローチャートである。
[0174] 基地局 2は、回線制御局 1に Beam— formingを適用していることを通知する(ステツ プ S504)。
[0175] また、基地局 2は、移動局 3の上り回線から移動局 3の方向を一定の周期で検出し( ステップ S505)、検出結果と現在送信しているアンテナビームのよる方向とを比較し( ステップ S506)、両者が一致していない場合は、アンテナビームを更新する (ステツ プ SS507)。
[0176] 検出結果と現在送信しているアンテナビームのよる方向とがー致している場合、ま たは、ステップ S507にてアンテナビームを更新した後、そのアンテナビームでデータ を移動局 3に送信し (ステップ S508)、データがなくなるまで移動局 3の方向の検出を 行!、ながら通信を行う(ステップ S509)。
[0177] 次に、回線制御局 1の動作について説明する。
[0178] 図 29は、図 1に示した移動通信システムにおいて、図 2に示した基地局 2の構成か ら S— CPICH生成部 160— 1〜160— 3を削除し、基地局 2力 — CPICHを送信しな い構成とした場合における回線制御局 1の動作を説明するためのフローチャートであ る。
[0179] 回線制御局 1は、基地局 2が Beam— formingを適用していることを基地局 2から通知 されると(ステップ S510)、基地局 2が Beam— formingを適用している旨と、 Phase Ref erenceとして個別パイロットチャネルを設定する指示とを移動局 3に通知する(ステツ プ S511)。
[0180] 次に、本形態における制御信号の流れを説明する。
[0181] 基地局 2が Beam— formingを適用していることを回線制御局 1に通知すると、回線制 御局 1は、基地局 2が Beam— formingを適用していることを移動局 3に通知する。
[0182] このように本形態においては、回線制御局 1が移動局 3に Phase Referenceとして個 別パイロットを適用するように指示を出すので、データと同じ通信路変動を受けた Pha se Referenceを得ることができる。
[0183] (第 6の実施の形態)
図 21に示した移動通信システムにおいて、図 22に示した基地局 2の構成力も S - C
PICH発生部 453を削除し、基地局 2が S— CPICHを送信しない構成とすることも考え られる。
[0184] 本形態における移動局 3及び回線制御局 1の動作は、第 5の実施の形態に示した ものと同様である。
[0185] また、本形態における基地局 2の動作は、第 4の実施の形態に示したステップ S40 7にて、データに S— CPICHを多重せず、基地局 2から S— CPICHを送信しない点だ けが異なり、その他の動作は同じである。
[0186] また、制御信号のフローは第 5の実施の形態にて示したものと同一である。
[0187] 本形態においては、回線制御局 1が移動局 3に Phase Referenceとして個別パイ口 ットを適用するように指示を出すので、データと同じ通信路変動を受けた Phase Refer enceを得ることができる。
[0188] 上述した 6つの実施の形態にて説明したように、本発明においては、基地局 2は移 動局 3へのデータ送信と同じアンテナビームを用いて Phase Referenceを送信するこ とが可能である。従って、移動局 3は、適応アンテナを適用した基地局 2と接続してい る場合に、通信路変動を表す最適な Phase Referenceを選択することが可能となる。 なお、本発明においては、回線制御局 1及び基地局 2内の処理は上述の専用のハ 一ドウエアにより実現されるもの以外に、その機能を実現するためのプログラムを回線 制御局 1及び基地局 2にて読取可能な記録媒体に記録し、この記録媒体に記録され たプログラムを回線制御局 1及び基地局 2に読み込ませ、実行するものであっても良 い。回線制御局 1及び基地局 2にて読取可能な記録媒体とは、フロッピーディスク、 光磁気ディスク、 DVD、 CDなどの移設可能な記録媒体の他、回線制御局 1及び基 地局 2に内蔵された HDD等を指す。この記録媒体に記録されたプログラムは、例え ば、制御ブロックにて読み込まれ、制御ブロックの制御によって、上述したものと同様 の処理が行われる。

Claims

請求の範囲
[1] 複数のアンテナビームを有する適応アンテナによってデータの送受信を行う基地局 と、該基地局との間にてデータの送受信を行う移動局と、前記移動局の無線回線を 制御する回線制御局とからなる移動通信システムにおける通信制御方法であって、 基準位相情報として用いるために前記複数のアンテナビーム毎に送信される共通 ノ ィロットチャネルを前記基地局力 前記回線制御局に要求するステップと、 前記基地局力 の要求に応じて前記回線制御局にて前記共通パイロットチャネル を設定し、該共通パイロットチャネルを前記基地局及び前記移動局に通知するステツ プと、
前記回線制御局力 通知された共通パイロットチャネルを前記基準位相情報として 用いて前記移動局にて前記基地局力 送信されてきたデータを復調するステップと を有する通信制御方法。
[2] 請求項 1に記載の通信制御方法にお!、て、
前記複数のアンテナビームの数を前記基地局力 前記回線制御局に通知するステ ップと、
前記基地局力 通知された前記アンテナビームの数分の前記共通パイロットチヤネ ルを前記回線制御局にて割り当て、該共通パイロットチャネルを前記回線制御局か ら前記基地局に通知するステップと、
前記回線制御局力 通知された複数の共通パイロットチャネルの中から、データを 送受信する移動局との間にて最適な共通パイロットチャネルを選択し、該共通パイ口 ットチャネルを送信しているアンテナビームと同じアンテナビームでデータを前記移 動局に送信するとともに、該共通パイロットチャネルを前記基地局力 前記回線制御 局を介して前記移動局に通知するステップと、
前記基地局力 前記回線制御局を介して通知された共通パイロットチャネルを前記 基準位相情報として用いて前記移動局にて前記基地局力 送信されてきたデータを 復調するステップとを有する通信制御方法。
[3] 請求項 1に記載の通信制御方法にお!、て、
前記基地局にて前記移動局の位置から該移動局にとって最適な前記共通パイロッ トチャネルの受信タイミングを検出し、該受信タイミングで送信して ヽるアンテナビー ムと同じアンテナビームでデータを前記移動局に送信するとともに、該受信タイミング を前記基地局力 前記回線制御局を介して前記移動局に通知するステップと、 前記基地局力 前記回線制御局を介して通知された受信タイミングに基づいた共 通パイロットチャネルを前記基準位相情報として用いて前記移動局にて前記基地局 から送信されてきたデータを復調するステップとを有する通信制御方法。
[4] 請求項 1に記載の通信制御方法にお!、て、
前記複数のアンテナビームの数を前記基地局力 前記回線制御局に通知するステ ップと、
前記基地局力 通知された前記アンテナビームの数分の前記共通パイロットチヤネ ルを前記回線制御局にて割り当て、該共通パイロットチャネルを前記回線制御局か ら前記基地局に通知するステップと、
前記回線制御局力 通知された複数の共通パイロットチャネルを送信しているアン テナビームと同じアンテナビームでデータを前記基地局から前記移動局に送信する ステップと、
前記移動局にて前記基地局から送信された前記複数の共通パイロットチャネルの 中力も受信品質の最も良 、共通パイロットチャネル選択し、該共通パイロットチャネル を前記基地局に報告するとともに、該共通パイロットチャネルを前記基準位相情報と して設定するステップと、
前記移動局力も報告された共通パイロットチャネルを送信しているアンテナビーム を用いて前記基地局力 前記移動局にデータを送信するステップとを有する通信制 御方法。
[5] 移動局毎にアンテナビームを有する適応アンテナによって前記移動局との間にて データの送受信を行う基地局と、前記移動局の無線回線を制御する回線制御局とか らなる移動通信システムにおける通信制御方法であって、
基準位相情報として用いるために前記アンテナビーム毎に送信される共通パイロッ トチャネルを前記基地局力 前記回線制御局に要求するステップと、
前記基地局力 の要求に応じて前記回線制御局にて前記移動局毎に前記共通パ ィロットチャネルを設定し、該共通パイロットチャネルを前記基地局及び前記移動局 に通知するステップと、
前記回線制御局力 通知された共通パイロットチャネルを前記基準位相情報として 用いて前記移動局にて前記基地局力 送信されてきたデータを復調するステップと を有する通信制御方法。
[6] 複数のアンテナビームを有する適応アンテナによってデータの送受信を行う基地局 と、該基地局との間にてデータの送受信を行う移動局と、前記移動局の無線回線を 制御する回線制御局とからなる移動通信システムにおける通信制御方法であって、 前記基地局にて適応アンテナを適用して 、ることを前記回線制御局に報告するス テツプと、
基準位相情報として個別パイロットチャネルを設定することを前記回線制御局から 前記移動局に指示するステップと、
前記移動局にて前記回線制御局からの指示に従って個別パイロットチャネルを前 記基準位相情報として設定し、前記個別パイロットチャネルを前記基準位相情報とし て用いて前記基地局から送信されてきたデータを復調するステップとを有する通信 制御方法。
[7] 移動局毎にアンテナビームを有する適応アンテナによって前記移動局との間にて データの送受信を行う基地局と、前記移動局の無線回線を制御する回線制御局とか らなる移動通信システムにおける通信制御方法であって、
前記基地局にて適応アンテナを適用して 、ることを前記回線制御局に報告するス テツプと、
基準位相情報として個別パイロットチャネルを設定することを前記回線制御局から 前記移動局に指示するステップと、
前記移動局にて前記回線制御局からの指示に従って個別パイロットチャネルを前 記基準位相情報として設定し、前記個別パイロットチャネルを前記基準位相情報とし て用いて前記基地局から送信されてきたデータを復調するステップとを有する通信 制御方法。
[8] 複数のアンテナビームを有する適応アンテナによってデータの送受信を行う基地局 と、
該基地局との間にてデータの送受信を行う移動局と、
前記移動局の無線回線を制御する回線制御局とを有し、
前記基地局は、基準位相情報として用いるために前記複数のアンテナビーム毎に 送信される共通パイロットチャネルを前記回線制御局に要求し、
前記回線制御局は、前記基地局からの要求に応じて前記共通パイロットチャネルを 設定し、該共通パイロットチャネルを前記基地局及び前記移動局に通知し、 前記移動局は、前記回線制御局から通知された共通パイロットチャネルを前記基 準位相情報として用いて前記基地局から送信されてきたデータを復調する移動通信 システム。
[9] 請求項 8に記載の移動通信システムにお 、て、
前記回線制御局は、前記基地局から通知された前記アンテナビームの数分の前記 共通パイロットチャネルを割り当て、該共通ノィロットチャネルを前記基地局に通知し
前記基地局は、前記回線制御局から通知された複数の共通パイロットチャネルの 中から、データを送受信する移動局との間にて最適な共通パイロットチャネルを選択 し、該共通ノ ィロットチャネルを送信して 、るアンテナビームと同じアンテナビームで データを前記移動局に送信するとともに、該共通パイロットチャネルを前記回線制御 局を介して前記移動局に通知し、
前記移動局は、前記基地局から前記回線制御局を介して通知された共通パイロッ トチャネルを前記基準位相情報として用いて前記基地局から送信されてきたデータ を復調する移動通信システム。
[10] 請求項 8に記載の移動通信システムにおいて、
前記基地局は、前記移動局の位置から該移動局にとって最適な前記共通パイロッ トチャネルの受信タイミングを検出し、該受信タイミングで送信して ヽるアンテナビー ムと同じアンテナビームでデータを前記移動局に送信するとともに、該受信タイミング を前記回線制御局を介して前記移動局に通知し、
前記移動局は、前記基地局から前記回線制御局を介して通知された受信タイミン グに基づ 、た共通パイロットチャネルを前記基準位相情報として用いて前記基地局 から送信されてきたデータを復調する移動通信システム。
[11] 請求項 8に記載の移動通信システムにおいて、
前記回線制御局は、前記基地局から通知された前記アンテナビームの数分の前記 共通パイロットチャネルを割り当て、該共通ノィロットチャネルを前記基地局に通知し
前記基地局は、前記回線制御局から通知された複数の共通パイロットチャネルを 送信しているアンテナビームと同じアンテナビームでデータを前記移動局に送信し、 前記移動局は、前記基地局から送信された前記複数の共通パイロットチャネルの 中力も受信品質の最も良 、共通パイロットチャネル選択し、該共通パイロットチャネル を前記基地局に報告するとともに、該共通パイロットチャネルを前記基準位相情報と して設定し、
前記基地局は、前記移動局から報告された共通パイロットチャネルを送信している アンテナビームを用いて前記移動局にデータを送信する移動通信システム。
[12] 移動局と、
該移動局毎にアンテナビームを有する適応アンテナによって前記移動局との間に てデータの送受信を行う基地局と、
前記移動局の無線回線を制御する回線制御局とを有し、
前記基地局は、基準位相情報として用いるために前記アンテナビーム毎に送信さ れる共通パイロットチャネルを前記回線制御局に要求し、
前記回線制御局は、前記基地局からの要求に応じて前記移動局毎に前記共通パ ィロットチャネルを設定し、該共通パイロットチャネルを前記基地局及び前記移動局 に通知し、
前記移動局は、前記回線制御局から通知された共通パイロットチャネルを前記基 準位相情報として用いて前記基地局から送信されてきたデータを復調する移動通信 システム。
[13] 複数のアンテナビームを有する適応アンテナによってデータの送受信を行う基地局 と、 該基地局との間にてデータの送受信を行う移動局と、
前記移動局の無線回線を制御する回線制御局とを有し、
前記基地局は、適応アンテナを適用して 、ることを前記回線制御局に報告し、 前記回線制御局は、基準位相情報として個別パイロットチャネルを設定することを 前記移動局に指示し、
前記移動局は、前記回線制御局からの指示に従って個別パイロットチャネルを前 記基準位相情報として設定し、前記個別パイロットチャネルを前記基準位相情報とし て用いて前記基地局から送信されてきたデータを復調する移動通信システム。
[14] 移動局と、
該移動局毎にアンテナビームを有する適応アンテナによって前記移動局との間に てデータの送受信を行う基地局と、
前記移動局の無線回線を制御する回線制御局とを有し、
前記基地局は、適応アンテナを適用して 、ることを前記回線制御局に報告し、 前記回線制御局は、基準位相情報として個別パイロットチャネルを設定することを 前記移動局に指示し、
前記移動局は、前記回線制御局からの指示に従って個別パイロットチャネルを前 記基準位相情報として設定し、前記個別パイロットチャネルを前記基準位相情報とし て用いて前記基地局から送信されてきたデータを復調する移動通信システム。
[15] 複数のアンテナビームを有する適応アンテナによって移動局との間にてデータの送 受信を行う基地局であって、
基準位相情報として用いるために前記複数のアンテナビーム毎に送信される共通 パイロットチャネルを、前記移動局の無線回線を制御する回線制御局に要求し、前 記回線制御局から通知された共通パイロットチャネルを送信するアンテナビームを用 V、てデータを送受信する基地局。
[16] 請求項 15に記載の基地局において、
前記複数のアンテナビームの数を前記回線制御局に通知し、前記回線制御局から 通知された前記アンテナビーム毎の共通パイロットチャネルの中から、データを送受 信する移動局との間にて最適な共通パイロットチャネルを選択し、該共通パイロットチ ャネルを送信しているアンテナビームと同じアンテナビームでデータを前記移動局に 送信するとともに、該共通パイロットチャネルを前記回線制御局を介して前記移動局 に通知する基地局。
[17] 請求項 15に記載の基地局において、
前記移動局の位置から該移動局にとって最適な前記共通パイロットチャネルの受 信タイミングを検出し、該受信タイミングで送信して ヽるアンテナビームと同じアンテナ ビームでデータを前記移動局に送信するとともに、該受信タイミングを前記回線制御 局を介して前記移動局に通知する基地局。
[18] 請求項 15に記載の基地局において、
前記回線制御局力 通知された複数の共通パイロットチャネルを送信しているアン テナビームと同じアンテナビームでデータを前記移動局に送信し、当該基地局から 送信された前記複数の共通パイロットチャネルの中から受信品質の最もよ 、共通パ ィロットチャネルが前記移動局力も報告された場合に、報告された共通パイロットチヤ ネルを送信して 、るアンテナビームを用いて前記移動局にデータを送信する基地局
[19] 移動局毎にアンテナビームを有する適応アンテナによって前記移動局との間にて データの送受信を行う基地局であって、
基準位相情報として用いるために前記アンテナビーム毎に送信される共通パイロッ トチャネルを、前記移動局の無線回線を制御する回線制御局に要求し、前記回線制 御局から通知された共通パイロットチャネルを送信するアンテナビームを用いてデー タを送受信する基地局。
[20] 複数のアンテナビームを有する適応アンテナを具備する基地局との間にて前記適 応アンテナによってデータの送受信を行う移動局の無線回線を制御する回線制御局 であって、
前記基地局力 基準位相情報として用いるために前記複数のアンテナビーム毎に 送信される共通パイロットチャネルが要求された場合に、前記共通パイロットチャネル を設定し、該共通パイロットチャネルを前記基地局及び前記移動局に通知する回線 制御局。
[21] 請求項 20に記載の回線制御局において、
前記基地局力も前記アンテナビームの数が通知された場合に、通知された前記ァ ンテナビームの数分の前記共通パイロットチャネルを割り当て、該共通パイロットチヤ ネルを前記基地局に通知する回線制御局。
[22] 移動局毎にアンテナビームを有する適応アンテナを具備する基地局との間にて前 記適応アンテナによってデータの送受信を行う前記移動局の無線回線を制御する回 線制御局であって、
前記基地局力 基準位相情報として用いるために前記移動局毎のアンテナビーム 毎に送信される共通パイロットチャネルが要求された場合に、前記移動局毎に共通 パイロットチャネルを設定し、該共通パイロットチャネルを前記基地局及び前記移動 局に通知する回線制御局。
[23] 複数のアンテナビームを有する適応アンテナを具備する基地局との間にて前記適 応アンテナによってデータの送受信を行う移動局の無線回線を制御する回線制御局 であって、
前記適用アンテナを適用していることが前記基地局から報告された場合に、基準位 相情報として個別パイロットチャネルを設定することを前記移動局に指示する回線制 御局。
[24] 移動局毎にアンテナビームを有する適応アンテナを具備する基地局との間にて前 記適応アンテナによってデータの送受信を行う前記移動局の無線回線を制御する回 線制御局であって、
前記適用アンテナを適用していることが前記基地局から報告された場合に、基準位 相情報として個別パイロットチャネルを設定することを前記移動局に指示する回線制 御局。
[25] コンピュータに、
複数のアンテナビームを有する適応アンテナによって移動局との間にてデータの送 受信を行う基地局において、基準位相情報として用いるために前記複数のアンテナ ビーム毎に送信される共通パイロットチャネルを、前記移動局の無線回線を制御する 回線制御局に要求する手順と、 前記回線制御局力 通知された共通パイロットチャネルを送信するアンテナビーム を用いてデータを送受信する手順とを実行させるためのプログラム。
[26] 請求項 25に記載のプログラムにおいて、
コンピュータに、
前記複数のアンテナビームの数を前記回線制御局に通知する手順と、 前記回線制御局力 通知された前記アンテナビーム毎の共通パイロットチャネルの 中から、データを送受信する移動局との間にて最適な共通パイロットチャネルを選択 する手順と、
該共通ノ ィロットチャネルを送信しているアンテナビームと同じアンテナビームでデ ータを前記移動局に送信するとともに、該共通パイロットチャネルを前記回線制御局 を介して前記移動局に通知する手順とを実行させるためのプログラム。
[27] コンピュータに、
移動局毎にアンテナビームを有する適応アンテナによって前記移動局との間にて データの送受信を行う基地局にお 、て、基準位相情報として用いるために前記アン テナビーム毎に送信される共通パイロットチャネルを、前記移動局の無線回線を制御 する回線制御局に要求する手順と、
前記回線制御局力 通知された共通パイロットチャネルを送信するアンテナビーム を用いてデータを送受信する手順とを実行させるためのプログラム。
[28] コンピュータに、
複数のアンテナビームを有する適応アンテナを具備する基地局との間にて前記適 応アンテナによってデータの送受信を行う移動局の無線回線を制御する回線制御局 にお 、て、前記基地局力 基準位相情報として用いるために前記複数のアンテナビ ーム毎に送信される共通ノ ィロットチャネルが要求された場合に、前記共通パイロット チャネルを設定する手順と、
該共通パイロットチャネルを前記基地局及び前記移動局に通知する手順とを実行 させるためのプログラム。
[29] 請求項 28に記載のプログラムにおいて、
コンピュータに、 前記基地局力も前記アンテナビームの数が通知された場合に、通知された前記ァ ンテナビームの数分の前記共通パイロットチャネルを割り当てる手順と、
該共通ノィロットチャネルを前記基地局に通知する手順とを実行させるためのプロ グラム。
PCT/JP2005/013279 2004-09-17 2005-07-20 通信制御方法、移動通信システム、基地局及び回線制御局 WO2006030582A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US11/574,384 US20070224987A1 (en) 2004-09-17 2005-07-20 Communication Control Method, Mobile Communication System, Base Station, and Radio Network Controller
EP05766171A EP1791271A4 (en) 2004-09-17 2005-07-20 COMMUNICATION CONTROL METHOD, MOBILE COMMUNICATION SYSTEM, BASE STATION AND SWITCH CONTROL STATION
CN2005800314949A CN101023603B (zh) 2004-09-17 2005-07-20 通信控制方法、移动通信***、基站和无线电网络控制器
JP2006535066A JP4677990B2 (ja) 2004-09-17 2005-07-20 通信制御方法、移動通信システム、基地局及び回線制御局

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004271487 2004-09-17
JP2004-271487 2004-09-17

Publications (1)

Publication Number Publication Date
WO2006030582A1 true WO2006030582A1 (ja) 2006-03-23

Family

ID=36059843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/013279 WO2006030582A1 (ja) 2004-09-17 2005-07-20 通信制御方法、移動通信システム、基地局及び回線制御局

Country Status (6)

Country Link
US (1) US20070224987A1 (ja)
EP (1) EP1791271A4 (ja)
JP (1) JP4677990B2 (ja)
KR (1) KR100882058B1 (ja)
CN (1) CN101023603B (ja)
WO (1) WO2006030582A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018117248A1 (ja) * 2016-12-22 2018-06-28 三菱電機株式会社 通信システム
JP2022009642A (ja) * 2015-06-23 2022-01-14 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 送信方法、送信装置及び通信システム

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2219309B1 (en) * 2007-12-05 2016-01-06 Fujitsu Limited Transmitter, method for controlling transmission, and communication device
US8923318B2 (en) * 2008-10-02 2014-12-30 Telefonaktiebolaget L M Ericsson (Publ) Wireless communication system and method for assigning a channel in said wireless communication system
CN101511124A (zh) * 2009-03-09 2009-08-19 华为技术有限公司 功率均衡方法、基站及通信***
JP5267319B2 (ja) * 2009-05-18 2013-08-21 富士通株式会社 移動基地局、移動通信システムおよび移動通信方法
WO2015042855A1 (zh) * 2013-09-27 2015-04-02 华为技术有限公司 通信方法、基站和用户设备
US9474013B2 (en) * 2014-06-16 2016-10-18 Qualcomm Incorporated Method and apparatus for connection point discovery and association in a directional wireless network

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003244054A (ja) * 2002-02-21 2003-08-29 Ntt Docomo Inc 送信制御装置及び送信制御方法
JP2003259454A (ja) * 2002-03-05 2003-09-12 Ntt Docomo Inc 移動通信システムにおけるチャネル構成方法、無線基地局、移動局及び移動通信システム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3308835B2 (ja) * 1996-12-06 2002-07-29 株式会社日立製作所 無線通信システム
WO2002091779A1 (en) * 2001-05-04 2002-11-14 Nokia Corporation Admission control with directional antenna
CN1161907C (zh) * 2001-07-20 2004-08-11 华为技术有限公司 无线通信***下行反馈多天线发射方法与装置
CN1155184C (zh) * 2001-09-21 2004-06-23 华为技术有限公司 一种下行停顿间隙控制的实现方法
FI20021554A (fi) * 2001-12-28 2003-06-29 Nokia Corp Menetelmä kanavan estimoimiseksi ja radiojärjestelmä
SE0201102D0 (sv) * 2002-04-10 2002-04-10 Ericsson Telefon Ab L M Method in a communication network
WO2004017657A1 (en) * 2002-08-14 2004-02-26 Nokia Corporation Method and network device for wireless data transmission
US20050070285A1 (en) * 2003-09-29 2005-03-31 Telefonaktiebolaget Lm Ericsson (Publ) Handover for use with adaptive antennas

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003244054A (ja) * 2002-02-21 2003-08-29 Ntt Docomo Inc 送信制御装置及び送信制御方法
JP2003259454A (ja) * 2002-03-05 2003-09-12 Ntt Docomo Inc 移動通信システムにおけるチャネル構成方法、無線基地局、移動局及び移動通信システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1791271A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022009642A (ja) * 2015-06-23 2022-01-14 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 送信方法、送信装置及び通信システム
JP7355797B2 (ja) 2015-06-23 2023-10-03 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 送信方法、送信装置及び通信システム
WO2018117248A1 (ja) * 2016-12-22 2018-06-28 三菱電機株式会社 通信システム
JPWO2018117248A1 (ja) * 2016-12-22 2019-10-31 三菱電機株式会社 通信システム
JP7320948B2 (ja) 2016-12-22 2023-08-04 三菱電機株式会社 通信システム、基地局装置および通信端末装置

Also Published As

Publication number Publication date
JP4677990B2 (ja) 2011-04-27
JPWO2006030582A1 (ja) 2008-05-08
CN101023603B (zh) 2011-02-02
EP1791271A4 (en) 2012-04-11
KR20070041637A (ko) 2007-04-18
EP1791271A1 (en) 2007-05-30
KR100882058B1 (ko) 2009-02-10
US20070224987A1 (en) 2007-09-27
CN101023603A (zh) 2007-08-22

Similar Documents

Publication Publication Date Title
US6151512A (en) Communication system having optimum resource arrangements in a multi-sectored environment and method therefor
JP4516358B2 (ja) 無線基地局装置および無線通信方法
CA2287337C (en) System and method for dynamically increasing the capacity of a code division multiple access radio telecommunications network
KR101105012B1 (ko) 공간 분할 다중 액세스 빔들에 의한 직교 자원 재사용
US9426712B2 (en) Advanced handover for adaptive antennas
US6108323A (en) Method and system for operating a CDMA cellular system having beamforming antennas
WO2006030582A1 (ja) 通信制御方法、移動通信システム、基地局及び回線制御局
US20010033600A1 (en) Sectorized smart antenna system and method
US20110300887A1 (en) Controlling Cell Activation in a Radio Communication Network
JP2003514431A (ja) アンテナのアレイを使用したcdmaシステム内でのダウンリンク信号処理
JP2005065257A (ja) 無線セルラー遠隔通信システムにおけるビーム選択
US20090176492A1 (en) Communication system for transmitting data using cooperative communication relay
EP1562306A1 (en) Fast beam selection with macrodiversity
JP2005520386A (ja) ソフト・ハンドオフ領域の操作のためにアクティブ・セットを管理するアンテナ適応構成
WO2006084625A1 (en) Method and apparatus for controlling the transmission of radio links in a radio-communication system
JP2004201137A (ja) 指向性ビーム通信システム、指向性ビーム通信方法、基地局及び制御装置
CN101217819B (zh) 基于智能天线的移动台切换基站的方法
US7548527B2 (en) Securing a connection in a radio system
JP3046295B1 (ja) Cdma移動通信システム
JP3122425B2 (ja) Cdma移動通信システム
JP2002232341A (ja) 無線通信システム、スマートアンテナを有する無線基地局装置及び無線基地局装置と無線で通信する無線端末
JP4316805B2 (ja) 無線通信システムにおけるソフトハンドオフ使用を制御する方法及び装置
JP4009516B2 (ja) 移動通信システム、移動通信方法及び制御局

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006535066

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005766171

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11574384

Country of ref document: US

Ref document number: 2007224987

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580031494.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077006550

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005766171

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11574384

Country of ref document: US