WO2006025200A1 - Vibration detection device - Google Patents

Vibration detection device Download PDF

Info

Publication number
WO2006025200A1
WO2006025200A1 PCT/JP2005/014629 JP2005014629W WO2006025200A1 WO 2006025200 A1 WO2006025200 A1 WO 2006025200A1 JP 2005014629 W JP2005014629 W JP 2005014629W WO 2006025200 A1 WO2006025200 A1 WO 2006025200A1
Authority
WO
WIPO (PCT)
Prior art keywords
armature
vibration
induction coil
circuit unit
magnetic circuit
Prior art date
Application number
PCT/JP2005/014629
Other languages
French (fr)
Japanese (ja)
Inventor
Masayoshi Sugiyama
Yoshio Imahori
Fuminobu Izawa
Isao Fushimi
Eiji Matsuyama
Original Assignee
Star Micronics Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Star Micronics Co., Ltd. filed Critical Star Micronics Co., Ltd.
Publication of WO2006025200A1 publication Critical patent/WO2006025200A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H11/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
    • G01H11/02Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by magnetic means, e.g. reluctance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H1/00Measuring characteristics of vibrations in solids by using direct conduction to the detector

Definitions

  • the present invention relates to an apparatus for detecting vibration, and more particularly to a configuration capable of obtaining excellent linearity even when downsized.
  • vibration detection device vibration detection sensor
  • a piezoelectric type or electrostatic type is known.
  • Examples of the piezoelectric type include those described in Patent Document 1, and examples of the force electrostatic type include those described in Patent Document 2.
  • Patent Document 1 Japanese Patent Laid-Open No. 9 304171
  • Patent Document 2 Japanese Patent Laid-Open No. 10-9934
  • the piezoelectric vibration detection device uses a piezoelectric element, and therefore, when the device is downsized, the size of the piezoelectric element must be reduced.
  • the piezoelectric element outputs external stress as electric charges generated by the piezoelectric effect, and when this is miniaturized, the area of the piezoelectric element is reduced and the resonance frequency is increased.
  • the sensitivity will inevitably decrease.
  • an external electronic circuit charge amplifier, integrator, etc.
  • the electrostatic vibration detector has a complicated diaphragm and weight structure, and there are limits to miniaturization. Therefore, an object of the present invention is to provide a vibration detection device that can be downsized, can select a frequency band with good linearity, and high sensitivity.
  • the vibration detection device of the present invention includes a magnetic circuit unit that forms a dc magnetic field between a pair of magnetic poles that are arranged to face each other at a predetermined interval, and an induction coil that is disposed adjacent to the magnetic circuit unit. And a armature disposed between the magnetic poles and through the induction coil, and a change in signal current flowing in the induction coil due to the stagnation vibration of the armature It detects as.
  • the armature has elasticity and shape that can vibrate, and is made of a magnetic material.
  • the shape of the armature can be a thin plate structure in which stagnation vibration is likely to occur.
  • the material constituting the armature include iron, permalloy, and the like, a mixture of these materials, and a composite material.
  • the armature may be composed of a composite of these magnetic materials and a non-magnetic material.
  • the armature In a state where no vibration is applied from the outside, the armature is in a mechanical equilibrium state in a DC magnetic field (static magnetic field) between the magnetic poles constituted by the N pole and the S pole.
  • a DC magnetic field static magnetic field
  • the vibration is transmitted to the armature, and the armature stagnates and vibrates. Since the armature is in a magnetized state due to a DC magnetic field, this vibration causes an induced current to flow through the induction coil.
  • the armature vibrates using external vibration as a driving force, it is detected as an induced current flowing in the induction coil. In this way, external vibration can be extracted as an electrical signal.
  • the armature is arranged between the magnetic poles and through the induction coil, the length of the armature can be ensured even if the lateral width and height of the device are shortened. . Therefore, even if the device is downsized, it is possible to realize a structure in which the armature is easily vibrated by external vibration. In other words, it is possible to realize a vibration system that reacts even with weak vibrations with good linearity.
  • the resonance frequency of the vibration system including the armature includes the shape, thickness, material (elasticity, hardness), mass, fixing structure of the armature vibration detection device, the mass of the weight serving as the armature load, Alternatively, it can be adjusted relatively freely by combining these two or more elements. For this reason, it is possible to easily realize performance that matches the frequency of the vibration to be detected.
  • a second configuration of the vibration detection device of the present invention is a magnetic circuit unit that forms a DC magnetic field between a pair of magnetic poles arranged to face each other at a predetermined interval, and is disposed adjacent to the magnetic circuit unit.
  • An induction coil arranged between the magnetic poles and through the induction coil, one end fixed to the magnetic circuit unit, a weight attached to the other end of the armature, and the magnetic circuit
  • the unit and the induction coil are fixed inside.
  • one end of the armature is fixed directly or indirectly to the magnetic circuit unit of the vibration detection device and further to the housing (housing), and a weight is fixed to the other end of the armature. Is done.
  • the weight vibrates relative to the magnetic circuit unit and the nosing, and at that time, vibrations are generated in the armature.
  • This stagnation vibration of the armature induces an induced current in the induction coil, and this induced current force can also detect the vibration applied to the housing.
  • the second configuration is a structure for detecting relative vibration of the weight with respect to the housing
  • a sealed structure in which a vibration detection mechanism such as a armature or weight is housed in the housing can be provided. That is, a structure in which the movable part is not exposed to the outside of the apparatus can be obtained. For this reason, it is possible to increase the reliability in an inferior environment such as an environment where the temperature changes drastically, a high humidity environment, or an environment where dust or oil exists.
  • the armature can be protected by selecting the shape and material of the weight.
  • a third configuration of the vibration detecting device of the present invention is a magnetic circuit unit that forms a DC magnetic field between a pair of magnetic poles arranged to face each other at a predetermined interval, and is arranged adjacent to the magnetic circuit unit.
  • An induction coil arranged between the magnetic poles and through the induction coil, one end of which is fixed to the magnetic circuit unit, a drive pin attached to the other end of the armature, and the magnetic circuit
  • the vibration transmitted to the movable contact portion vibrates the armature via the drive pin, thereby detecting the vibration.
  • a fourth configuration of the vibration detection device of the present invention includes a magnetic circuit unit that forms a DC magnetic field between a pair of magnetic poles arranged to face each other at a predetermined interval, and the magnetic circuit unit housed inside the magnetic circuit unit.
  • the magnetic circuit unit and the induction coil are supported and fixed to the housing via the armature.
  • the magnetic circuit unit and the induction coil function as a weight of the armature.
  • the armature performs stagnation vibration with the fixed part to the housing as a fulcrum.
  • the magnetic circuit unit and the induction coil oscillate as a weight, causing the armature to stagnate and generate vibration.
  • the vibrating portion (vibration system) can be housed in the housing, the reliability of the device can be increased as in the case of the second configuration.
  • the magnetic circuit unit and the induction coil are used as weights, it is not necessary to place an independent dedicated weight. Therefore, the vibration detection sensor is lighter than the second structure described above. ⁇ ⁇ ⁇ ⁇ and further downsizing can be pursued.
  • an AC bias voltage is applied to the induction coil.
  • vibration detection sensitivity can be increased.
  • the armature vibrates, and the compliance of the armature (a physical quantity representing the softness of the elastic body) increases. As a result, the resonance frequency of the armature is lowered, and the detection sensitivity to external vibration can be increased in a band below this resonance frequency.
  • the use of the AC bias voltage is an effect of lowering the resonance frequency of the armature (resonance frequency of the vibration system), and therefore is particularly effective when the frequency of the measurement signal is lower than the resonance frequency of the vibration system. Become. Even when an AC bias voltage having a frequency other than the frequency satisfying the above condition is applied, the effect of increasing the sensitivity can be obtained.
  • the method of covering the induction coil with the AC bias voltage is to change the frequency of the AC bias voltage. By selecting, it can also be understood as a technique to bring the frequency band where high sensitivity is obtained on the sensor side closer to the vibration frequency band of the detection target.
  • the method of applying the AC bias voltage described above is advantageous in that the frequency band in which the vibration detection sensor can exhibit high sensitivity can be easily adjusted after the sensor is manufactured.
  • the vibration detection device of the present invention preferably includes a plurality of armatures, and the plurality of armatures preferably have different resonance frequencies.
  • a plurality of vibration system resonance frequencies can be set, and vibration detection sensitivity in a wide frequency range can be ensured.
  • vibration is detected by the stagnation vibration of the armature penetrating between the magnetic poles and the adjacent induction coil, so that it is possible to provide a vibration detection device with good linearity even if it is downsized. .
  • FIG. 1 is a diagram showing an outline of a vibration detection apparatus according to a first embodiment.
  • Fig. 1 (a) is a cross-sectional view seen from the side, showing the cross-sectional state taken along BB 'in Fig. 1 (b).
  • Fig. 1 (b) shows the inside of the device viewed from above with the top cover removed.
  • Figure 1 (c) is a perspective view showing the inside of the device as seen from the front (in the direction of the weight).
  • FIG. 2 is a perspective view showing an exploded state of the vibration detection apparatus shown in FIG.
  • This vibration detection device includes a housing 101 constituted by a lid 101a and a housing case 101b, an armature 102, permanent magnets 103 and 104, a magnet support member 105, an induction coil 106, a weight 107, magnet fixing members 108 and 109, Signal output terminals 110 and 111, frame 112, A terminal holding part 113 is provided.
  • the housing 101 has a structure in which a cover 101a is covered with a housing case 101b whose upper surface is open.
  • the armature 102 has a plate-like structure made of a magnetic metal, a weight 107 made of a metal material or the like is fixed to one end thereof, and the other end is integrally formed with the frame 112.
  • the weight 107 is supported by a plate-like armature 102 whose one end is integrally formed with the frame 112! Therefore, the armature 10 02 is clamped with the bending point from the frame 112 as a fulcrum, so that FIG. It can vibrate up and down in a).
  • the armature 102 and the weight 107 fixed to one end thereof function as a vibration system.
  • the material constituting the weight 107 is not limited to metal, and may be a composite material or the like.
  • the shape, material, and mass of the weight 107 are selected by (1) preventing a large impact from being applied to the armature at the time of overamplitude, and (2) considering sensitivity adjustment.
  • the permanent magnets 103 and 104 are fixed to the magnet support member 105 by the magnet fixing members 108 and 109 in a state where the different magnetic poles are opposed to each other, and constitute a magnetic circuit unit.
  • a frame 112 is fixed to the magnet support member 105, and the magnet support member 105 is fixed to the inside of the housing 101.
  • the induction coil 106 has a structure in which a conducting wire is wound around the magnet fixing members 108 and 109 in a coil shape.
  • the permanent magnets 103 and 104 and the induction coil 106 are fixed to the housing 101 using the magnet support member 105.
  • the weight 107 is indirectly fixed to the magnetic circuit unit, the induction coil 106 and the housing 101 via the armature 102 which can be held. Therefore, the stagnation vibration of the armature 102 following the vibration of the weight 107 is a relative vibration motion with respect to the magnetic circuit cut and the induction coil 106 having the permanent magnets 103 and 104 as constituent elements.
  • the housing 101 is brought into contact with a part of the outer surface of an appropriate vibration detection object, and the signal voltage generated at the signal output terminals 110 and 111 is detected.
  • the weight 107 extends in a plate shape and is supported with respect to the housing 101 by the armature 102 that can be squeezed. Therefore, when the external force is transmitted to the housing 101, the weight 107 is three-dimensional. Cannot follow the typical vibration, and the housing 101 is shown in Fig. 1 (a). Vibrates relatively downward. Since the movement of the weight 107 is restricted in the vertical direction in FIG. 1 (a), the vibration component transmitted to the housing 101 contributes to the vibration of the weight 107 in the moving direction of the weight 107. It is a component that matches
  • the vibration of the weight 107 is accompanied by the stagnation vibration of the armature 102. Since the armature 102 is magnetized by a DC magnetic field between the permanent magnets 103 and 104, when the armature 102 vibrates, the state of the magnetic field in the induction coil 106 changes accordingly, and the induction coil according to the change. An induced current flows through 106.
  • this induced current corresponds to the vibration of armature 102, and the vibration of armature is caused by the vibration applied to housing 101, the vibration transmitted from outside to this housing 101 is affected by this induced current. Can be evaluated.
  • the structure shown in FIGS. 1 and 2 can secure the length from the bending point (vibration fulcrum) of the armature 102 to the weight 107, so that the amplitude of the weight 107 can be secured. Therefore, high linearity can be obtained even when the entire apparatus is downsized.
  • the movable part can be structured not to be exposed on the surface, it can be mechanically strong.
  • deformation of armature can be prevented by selecting the shape and material of the weight.
  • the vibration detection device of the present embodiment connects one end of the armature to a movable contact portion provided on the surface of the housing, instead of the weight in the configuration of the first embodiment.
  • the vibration received by the movable contact portion is transmitted to the armature.
  • FIG. 3 is a cross-sectional view showing an outline of a vibration detection apparatus according to the second embodiment.
  • Fig. 3 (a) is a cross-sectional view seen from the side, showing the cross-sectional state taken along CC 'in Fig. 3 (b).
  • Figure 3 (b) is a top view.
  • Figure 3 (c) shows the inside of the device from the front (in the direction of the movable contact). It is a perspective view which shows a mode that the part was seen.
  • FIG. 4 is a perspective view showing an exploded state of the vibration detecting device shown in FIG.
  • This vibration detection device includes a housing 301 constituted by a lid 301a and a housing case 301b, an armature 302, permanent magnets 303 and 304, a magnet support member 305, an induction coil 306, magnet fixing members 308 and 309, signal output Terminals 310 and 311, a frame 312, a terminal holding part 313, a drive pin 322, a movable contact part 321 and an overamplitude prevention part 323 are provided.
  • the permanent magnets 303 and 304 are fixed to the magnet support member 305 by the magnet fixing members 308 and 309 in a state where the different magnetic poles are arranged to face each other.
  • a frame 312 is fixed to the magnet support member 305, and the magnet support member 305 is fixed in the housing 301 by this structure.
  • the induction coil 306 has a structure in which a conducting wire is wound around the magnet fixing members 308 and 309 in a coil shape.
  • One end of the armature 302 is integrated with the frame 312, and the other end is connected to the movable contact portion 321 via a drive pin 322.
  • an over-amplitude preventing portion 323 protruding in an edge shape is formed at the opening of the housing 301 where the movable contact portion 321 is disposed. The presence of the excessive amplitude prevention unit 323 limits the movable range of the movable contact unit 321 and prevents the armature 302 from having an amplitude exceeding a set limit.
  • the vibration detection device of the present embodiment fixes a permanent magnet and an induction coil to a housing via an armature, and causes the permanent magnet and the induction coil to function as a weight (load mass).
  • the present invention relates to a configuration for rubbing and vibrating an armature.
  • FIG. 5 is a cross-sectional view showing an outline of the vibration detection device of the present embodiment.
  • Figure 5 (a) is a side view It is a cross-sectional view seen from the direction, showing the state of the cross section cut along DD ′ in FIG. 5 (b).
  • FIG. 5 (b) is a top view showing a state in which the inside of the housing is visible with the lid of the housing removed.
  • This vibration detection device includes a housing 501, a armature 502, permanent magnets 503 and 504, a magnet support member 505, an induction coil 506, a signal output terminal 510, a frame 512, a terminal including a lid 501a and a housing case 501b. Has holding part 513 and connection wiring 514
  • the permanent magnets 503 and 504 and the induction coin 506 are fixed to the frame 512, and the frame 512 is integrated with the armature 502.
  • the other end of the armature 502 is fixed to the housing 501. That is, the frame 512 is fixed to the housing 501 via the armature 502. That is, in this structure, a frame 512 that functions as a weight is integrated with one end of the armature 502, and the other end of the armature 502 is fixed to the housing 501.
  • the shape of the fixing portion of the armature 502 to the housing 501 is preferably determined in consideration of supporting the masses of the permanent magnets 504 and 504 and the induction coil 506 and the like.
  • the other end integrated with the frame 512 vibrates using the end portion of the armature 502 fixed to the housing 501 as a fulcrum. During this vibration, the armature 502 causes a stagnation vibration.
  • the stagnation vibration of the armature 502 induces an induction current in the induction coil 506, and the induction current is taken out from the signal output terminal 510 via the connection wiring 514. By evaluating this induced current, vibration transmitted to the housing 501 can be detected as an electrical signal.
  • this structure also includes another signal output terminal paired with the signal output terminal 510, and a connection wiring from the induction coil 506 to this signal output terminal.
  • the structure shown in Fig. 5 can realize a structure in which the vibration detection part including the armature is sealed in the housing, so that the reliability in use in an environment with a high humidity and a lot of dust is high. Can do.
  • the surface of the device can be covered with a housing, a vibration detection device that is less likely to fail during use or handling can be obtained.
  • FIG. 6 is a block diagram illustrating an example of a vibration detection system.
  • the vibration detection system shown in FIG. 6 includes a vibration detection sensor 601, an oscillation circuit 602, a noise resistor 603, a low-pass filter (LPF) 604, and an output terminal 605.
  • LPF low-pass filter
  • the vibration detection sensor 601 is a vibration detection device using the present invention, and has the configuration described in the first to third embodiments, for example.
  • the oscillation circuit 602 has a function of applying an AC bias voltage to the induction coil of the vibration detection sensor 601.
  • the oscillation circuit 602 outputs a frequency that is higher than the frequency of the vibration detected by the vibration detection sensor 601.
  • the bias resistor 603 is a resistor for impedance matching between the vibration detection sensor 601 and the oscillation circuit 602.
  • the low-pass filter 604 has a function of blocking the AC noise signal output from the oscillation circuit 602 so as not to appear in the output.
  • an induction current flows through the induction coil in the vibration detection sensor 601 and appears at the output terminal 605 via the low-pass filter 604.
  • the output signal appearing at the output terminal 605 is amplified as appropriate by an amplification amplifier (not shown) and used as a vibration detection signal.
  • a frequency force higher than the frequency band of vibration to be detected and the resonance frequency of the vibration system of the vibration detection sensor 601 is preferably selected.
  • the frequency of the AC bias voltage is a frequency range exceeding 2 kHz. Selected.
  • the armature may be divided into a plurality of pieces, and a weight may be arranged on each of the divided plurality of armatures.
  • a weight may be arranged on each of the divided plurality of armatures.
  • Examples of an arrangement in which a plurality of armatures are arranged include a variation in which a plurality of independent armatures are arranged, a structure in which the armatures are branched structures, and a weight is fixed to each branch portion.
  • the present invention can be used in applications where it is necessary to detect vibration as an electrical signal.
  • FIG. 1 is a side sectional view, a top view, and a front view showing an outline of a vibration detecting apparatus of an embodiment.
  • FIG. 2 is an exploded perspective view showing an outline of the vibration detection device of the embodiment.
  • FIG. 3 is a side sectional view, a top view, and a front view showing an outline of the vibration detecting apparatus of the embodiment.
  • FIG. 4 is an exploded perspective view showing an outline of the vibration detection device of the embodiment.
  • FIG. 5 is a side sectional view and a top view showing an outline of the vibration detecting apparatus of the embodiment.
  • FIG. 6 is a block diagram showing an example of a vibration detection system.
  • Magnet fixing member 310 ... Signal output terminal, 311 ... Signal output terminal, 312 ... Frame, 313 ... Terminal holding part, 321 ... Moving contact part, 322 ... Drive pin, 323 ... Over-amplitude prevention part, 501a ... Lid, 501b ... Accommodating case, 501 ... Nosing, 502 ... armature, 503 "Permanent magnet, 504" Permanent magnet 505 ... Magnet support member, 506 ... Inductive coil, 510 ... Signal output terminal, 512 ... Frame, 5 13 ... Terminal holding part, 514 ... Connection wiring, 601 ... Vibration detection sensor, 602 ... ⁇ Oscillator circuit, 60 3 "'Nias ⁇ :, 604 ⁇ One frequency, 605 ⁇ ⁇ ⁇ Output H.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

[PROBLEMS] To provide a vibration detection device that is small and has excellent linearity. [MEANS FOR SOLVING PROBLEMS] A vibration detection device has, in a housing (101), magnets (103, 104) constructing a magnetic circuit unit that forms a DC magnetic field between a pair of magnetic poles arranged opposite to each other with a predetermined interval, an induction coil (106) provided adjacent to the magnetic circuit unit, and an armature (102) provided so as to penetrate between the magnetic poles and inside the induction coil. A weight (107) is fixed to one end of the armature (102), and the other end of the armature (102) is fixed relative to the housing (101). When vibration is transmitted from the outside to the housing (101), the weight (107) moves in a reciprocating manner, and the armature (102) vibrates in a flexural manner. The flexural vibration of the armature (107) causes an induction current to be induced in the induction coil (106), and the current is outputted to signal output terminals (110, 111) as a detection signal of the vibration.

Description

明 細 書  Specification
振動検出装置  Vibration detector
技術分野  Technical field
[0001] 本発明は、振動を検出する装置に係り、特に小型化しても優れたリニアリティを得る ことができる構成に関する。  TECHNICAL FIELD [0001] The present invention relates to an apparatus for detecting vibration, and more particularly to a configuration capable of obtaining excellent linearity even when downsized.
背景技術  Background art
[0002] 振動検出装置 (振動検出センサ)としては、圧電型ゃ静電型のものが知られている。  [0002] As a vibration detection device (vibration detection sensor), a piezoelectric type or electrostatic type is known.
圧電型としては、例えば特許文献 1に記載されたもの力 静電型としては、例えば特 許文献 2に記載されたものがある。  Examples of the piezoelectric type include those described in Patent Document 1, and examples of the force electrostatic type include those described in Patent Document 2.
[0003] 特許文献 1 :特開平 9 304171号公報  Patent Document 1: Japanese Patent Laid-Open No. 9 304171
特許文献 2:特開平 10— 9934号公報  Patent Document 2: Japanese Patent Laid-Open No. 10-9934
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] 圧電型の振動検出装置は、圧電素子を用いる関係上、装置を小型化した場合、圧 電素子の寸法を小さくしなくてはならない。し力しながら、圧電素子は外部からの応 力を圧電効果により発生する電荷として出力するものであり、これを小型化した場合 、圧電素子の面積が小さくなり、さらに共振周波数が高くなるため、必然的に感度が 低下してしまう。なお、この感度の低下を補うには、外付けの電子回路 (電荷増幅器、 積分器等)が必要になり、構成が複雑ィ匕し、さらにコスト高になってしまう。また静電型 の振動検出装置は、ダイヤフラムや錘の構造が複雑であり、小型化するのには限界 があった。そこで、本発明は、小型化が可能で、リニアリティが良ぐしかも感度の高い 周波数帯域を選択することが可能な振動検出装置を提供することを目的とする。 課題を解決するための手段 [0004] The piezoelectric vibration detection device uses a piezoelectric element, and therefore, when the device is downsized, the size of the piezoelectric element must be reduced. However, the piezoelectric element outputs external stress as electric charges generated by the piezoelectric effect, and when this is miniaturized, the area of the piezoelectric element is reduced and the resonance frequency is increased. The sensitivity will inevitably decrease. To compensate for this decrease in sensitivity, an external electronic circuit (charge amplifier, integrator, etc.) is required, which complicates the configuration and further increases the cost. In addition, the electrostatic vibration detector has a complicated diaphragm and weight structure, and there are limits to miniaturization. Therefore, an object of the present invention is to provide a vibration detection device that can be downsized, can select a frequency band with good linearity, and high sensitivity. Means for solving the problem
[0005] 本発明の振動検出装置は、所定の間隔をおいて対向配置された一対の磁極間に直 流磁界を形成する磁気回路ユニットと、この磁気回路ユニットに隣接して配置された 誘導コイルと、前記磁極間および前記誘導コイル内を貫通して配置されたァーマチ ャとを備え、前記ァーマチヤの橈み振動を前記誘導コイルに流れる信号電流の変化 として検出することを特徴とする。 [0005] The vibration detection device of the present invention includes a magnetic circuit unit that forms a dc magnetic field between a pair of magnetic poles that are arranged to face each other at a predetermined interval, and an induction coil that is disposed adjacent to the magnetic circuit unit. And a armature disposed between the magnetic poles and through the induction coil, and a change in signal current flowing in the induction coil due to the stagnation vibration of the armature It detects as.
[0006] ァーマチヤは、振動が可能な程度の弾性および形状を有し、磁性材料から構成され る。例えば、ァーマチヤの形状として、橈み振動が発生し易い、薄板構造を挙げるこ とができる。ァーマチヤを構成する材質としては、鉄、パーマロイ等やこれら材料を混 合したものや複合ィ匕したものを挙げることができる。また、これらの磁性材料を非磁性 材料と複合ィ匕したものによりァーマチヤを構成してもよい。  [0006] The armature has elasticity and shape that can vibrate, and is made of a magnetic material. For example, the shape of the armature can be a thin plate structure in which stagnation vibration is likely to occur. Examples of the material constituting the armature include iron, permalloy, and the like, a mixture of these materials, and a composite material. The armature may be composed of a composite of these magnetic materials and a non-magnetic material.
[0007] 外部から振動が加わらない状態において、ァーマチヤは、 N極および S極により構成 される磁極間の直流磁界 (静磁界)中において、力学的な平衡状態にある。ここで、 外部から振動が加わると、ァーマチヤにその振動が伝わり、ァーマチヤが橈み振動す る。ァーマチヤは直流磁界により帯磁状態にあるので、この振動が発生することで、 誘導コイルに誘導電流が流れる。つまり、外部振動を駆動力としてァーマチヤが振動 すると、それが誘導コイルに流れる誘導電流として検出される。こうして、外部振動を 電気信号として取り出すことができる。  [0007] In a state where no vibration is applied from the outside, the armature is in a mechanical equilibrium state in a DC magnetic field (static magnetic field) between the magnetic poles constituted by the N pole and the S pole. Here, when vibration is applied from the outside, the vibration is transmitted to the armature, and the armature stagnates and vibrates. Since the armature is in a magnetized state due to a DC magnetic field, this vibration causes an induced current to flow through the induction coil. In other words, when the armature vibrates using external vibration as a driving force, it is detected as an induced current flowing in the induction coil. In this way, external vibration can be extracted as an electrical signal.
[0008] 上記構成においては、磁極間および誘導コイル内を貫通してァーマチヤが配置され た構造であるので、装置の横幅、高さを短くしても、ァーマチヤの長さを確保すること ができる。そのため、装置を小型化してもァーマチヤが外部振動を受けて振動し易い 構造を実現することができる。つまり、微弱な振動であってもリニアリティ良く反応する 振動系を実現することができる。  [0008] In the above configuration, since the armature is arranged between the magnetic poles and through the induction coil, the length of the armature can be ensured even if the lateral width and height of the device are shortened. . Therefore, even if the device is downsized, it is possible to realize a structure in which the armature is easily vibrated by external vibration. In other words, it is possible to realize a vibration system that reacts even with weak vibrations with good linearity.
[0009] また、ァーマチヤを含めた振動系の共振周波数は、ァーマチヤの形状、厚み、材質( 弾性、硬度)、質量、ァーマチヤの振動検出装置への固定構造、ァーマチヤの負荷と なる錘の質量、あるいはこれらの 2つ以上の要素の組み合わせによって比較的自由 に調整することができる。そのため、検出対象となる振動の周波数に合わせた性能を 容易に実現することができる。  [0009] Further, the resonance frequency of the vibration system including the armature includes the shape, thickness, material (elasticity, hardness), mass, fixing structure of the armature vibration detection device, the mass of the weight serving as the armature load, Alternatively, it can be adjusted relatively freely by combining these two or more elements. For this reason, it is possible to easily realize performance that matches the frequency of the vibration to be detected.
[0010] 本発明の振動検出装置の第 2の構成は、所定の間隔をおいて対向配置された一対 の磁極間に直流磁界を形成する磁気回路ユニットと、この磁気回路ユニットに隣接し て配置された誘導コイルと、前記磁極間および前記誘導コイル内を貫通して配置さ れ、一端が前記磁気回路ユニットに固定されたァーマチヤと、このァーマチヤの他端 に取り付けられた錘と、前記磁気回路ユニットおよび前記誘導コイルをその内部に固 定支持するハウジングとを備えたことを特徴とする。 [0010] A second configuration of the vibration detection device of the present invention is a magnetic circuit unit that forms a DC magnetic field between a pair of magnetic poles arranged to face each other at a predetermined interval, and is disposed adjacent to the magnetic circuit unit. An induction coil arranged between the magnetic poles and through the induction coil, one end fixed to the magnetic circuit unit, a weight attached to the other end of the armature, and the magnetic circuit The unit and the induction coil are fixed inside. And a housing for constant support.
[0011] 上記第 2の構成によれば、ァーマチヤの一端が、振動検出装置の磁気回路ユニット、 さらにハウジング (筐体)に対して直接あるいは間接的に固定され、ァーマチヤの他 端に錘が固定される。この構成においては、ハウジングに外部振動が加わると、錘が 磁気回路ユニットおよびノヽウジングに対して相対的に振動し、その際、ァーマチヤに 橈み振動が発生する。このァーマチヤの橈み振動は、誘導コイルに誘導電流を誘起 し、この誘導電流力もハウジングに加わった振動を検知することができる。  [0011] According to the second configuration, one end of the armature is fixed directly or indirectly to the magnetic circuit unit of the vibration detection device and further to the housing (housing), and a weight is fixed to the other end of the armature. Is done. In this configuration, when external vibration is applied to the housing, the weight vibrates relative to the magnetic circuit unit and the nosing, and at that time, vibrations are generated in the armature. This stagnation vibration of the armature induces an induced current in the induction coil, and this induced current force can also detect the vibration applied to the housing.
[0012] 上記第 2の構成は、錘のハウジングに対する相対的な振動を検出する構造であるの で、ァーマチヤや錘といった振動検出機構をハウジング内に納めた密閉構造とするこ とができる。すなわち、装置の外部に可動部分が露出しない構造とすることができる。 このため、温度変化が激しい環境、高湿度な環境、塵や油が存在している環境とい つた劣悪な環境における信頼性を高くすることができる。また、物理的な衝撃に対し ては、錘の形状、材質等の選択によりァーマチヤを保護することができる。  [0012] Since the second configuration is a structure for detecting relative vibration of the weight with respect to the housing, a sealed structure in which a vibration detection mechanism such as a armature or weight is housed in the housing can be provided. That is, a structure in which the movable part is not exposed to the outside of the apparatus can be obtained. For this reason, it is possible to increase the reliability in an inferior environment such as an environment where the temperature changes drastically, a high humidity environment, or an environment where dust or oil exists. In addition, against physical impact, the armature can be protected by selecting the shape and material of the weight.
[0013] また、上記第 2の構成によれば、錘の重量や形状を調整することで、振動の検出感度 や検出周波数の調整を容易に行うことができる。  [0013] Further, according to the second configuration, it is possible to easily adjust the vibration detection sensitivity and the detection frequency by adjusting the weight and shape of the weight.
[0014] 本発明の振動検出装置の第 3の構成は、所定の間隔をおいて対向配置された一対 の磁極間に直流磁界を形成する磁気回路ユニットと、この磁気回路ユニットに隣接し て配置された誘導コイルと、前記磁極間および前記誘導コイル内を貫通して配置さ れ、一端が前記磁気回路ユニットに固定されたァーマチヤと、このァーマチヤの他端 に取り付けられたドライブピンと、前記磁気回路ユニットおよび前記誘導コイルをその 内部に固定支持するハウジングと、前記ドライブピンに接続され、前記ハウジングの 表面に配置された可動接触部とを備えたことを特徴とする。  [0014] A third configuration of the vibration detecting device of the present invention is a magnetic circuit unit that forms a DC magnetic field between a pair of magnetic poles arranged to face each other at a predetermined interval, and is arranged adjacent to the magnetic circuit unit. An induction coil arranged between the magnetic poles and through the induction coil, one end of which is fixed to the magnetic circuit unit, a drive pin attached to the other end of the armature, and the magnetic circuit A housing for fixing and supporting the unit and the induction coil therein, and a movable contact portion connected to the drive pin and disposed on the surface of the housing.
[0015] 第 3の構成によれば、可動接触部に伝わった振動は、ドライブピンを介してァーマチ ャを振動させ、それにより振動の検出が行われる。  [0015] According to the third configuration, the vibration transmitted to the movable contact portion vibrates the armature via the drive pin, thereby detecting the vibration.
[0016] 本発明の振動検出装置の第 4の構成は、所定の間隔をおいて対向配置された一対 の磁極間に直流磁界を形成する磁気回路ユニットと、この磁気回路ユニットを内部に 納めたハウジングと、前記磁気回路ユニットに隣接して配置された誘導コイルと、前 記磁極間および前記誘導コイル内を貫通して配置され、一端が前記磁気回路ュニッ トに固定され、他端が前記ハウジングに固定されたァーマチヤとを備え、前記磁気回 路ユニットおよび前記誘導コイルは、前記ァーマチヤを介して前記ハウジングに支持 固定されて 、ることを特徴とする。 [0016] A fourth configuration of the vibration detection device of the present invention includes a magnetic circuit unit that forms a DC magnetic field between a pair of magnetic poles arranged to face each other at a predetermined interval, and the magnetic circuit unit housed inside the magnetic circuit unit. A housing, an induction coil disposed adjacent to the magnetic circuit unit, and disposed between the magnetic poles and through the induction coil, one end of the magnetic circuit unit. And the other end is fixed to the housing. The magnetic circuit unit and the induction coil are supported and fixed to the housing via the armature.
[0017] 第 4の構成においては、磁気回路ユニットおよび誘導コイルがァーマチヤの錘として 機能する。すなわち、ハウジングに外部力 振動が伝わると、ァーマチヤは、ハウジン グへの固定部分を支点とした橈み振動を行う。この際、磁気回路ユニットおよび誘導 コイルが錘として振動運動し、ァーマチヤに橈み振動を生じさせる。  [0017] In the fourth configuration, the magnetic circuit unit and the induction coil function as a weight of the armature. In other words, when external force vibration is transmitted to the housing, the armature performs stagnation vibration with the fixed part to the housing as a fulcrum. At this time, the magnetic circuit unit and the induction coil oscillate as a weight, causing the armature to stagnate and generate vibration.
[0018] この構成においては、振動する部分 (振動系)をハウジング内に収納される構造とで きるので、第 2の構成の場合と同様に装置としての信頼性を高くすることができる。ま たこの構成においては、磁気回路ユニットと誘導コイルを錘として利用するので、独 立した専用の錘を配置する必要がなぐそのため、前述した第 2の構造に比較して、 振動検出センサの軽量ィ匕および小型化をさらに追求することができる。  [0018] In this configuration, since the vibrating portion (vibration system) can be housed in the housing, the reliability of the device can be increased as in the case of the second configuration. In this configuration, since the magnetic circuit unit and the induction coil are used as weights, it is not necessary to place an independent dedicated weight. Therefore, the vibration detection sensor is lighter than the second structure described above.匕 さ ら に and further downsizing can be pursued.
[0019] 以上説明した本発明の振動検出装置において、誘導コイルに交流バイアス電圧を加 える構成とすることは好ましい。誘導コイルに交流バイアス電圧を加えることで、振動 の検出感度を高くすることができる。  In the vibration detection device of the present invention described above, it is preferable that an AC bias voltage is applied to the induction coil. By applying an AC bias voltage to the induction coil, vibration detection sensitivity can be increased.
[0020] 誘導コイルに交流バイアス電圧を加えると、ァーマチヤが振動し、ァーマチヤのコンプ ライアンス (弾性体の柔らかさを表す物理量)が上昇する。その結果、ァーマチヤの共 振周波数が低くなり、この共振周波数以下の帯域において、外部振動に対する検出 感度を高くすることができる。  When an AC bias voltage is applied to the induction coil, the armature vibrates, and the compliance of the armature (a physical quantity representing the softness of the elastic body) increases. As a result, the resonance frequency of the armature is lowered, and the detection sensitivity to external vibration can be increased in a band below this resonance frequency.
[0021] 交流バイアス電圧の周波数は、振動系の共振周波数に近い程、コンプライアンスの 上昇が大きくなるため、感度も上昇する。したがって、誘導コイルにカ卩える交流バイァ ス電圧の周波数は、測定信号に影響のない範囲で振動系の共振周波数に近い周波 数を選択することが望まし 、。  [0021] As the frequency of the AC bias voltage is closer to the resonance frequency of the vibration system, the increase in compliance increases, and the sensitivity also increases. Therefore, it is desirable to select a frequency close to the resonance frequency of the vibration system within the range that does not affect the measurement signal as the frequency of the AC bias voltage that can be applied to the induction coil.
[0022] また、交流バイアス電圧の利用は、ァーマチヤの共振周波数 (振動系の共振周波数) を低くする作用であるので、測定信号の周波数が振動系の共振周波数よりも低い場 合に特に有効となる。なお、上記の条件を満たす周波数以外の周波数の交流バイァ ス電圧を加えた場合でもあっても感度上昇の効果は得ることができる。  [0022] In addition, the use of the AC bias voltage is an effect of lowering the resonance frequency of the armature (resonance frequency of the vibration system), and therefore is particularly effective when the frequency of the measurement signal is lower than the resonance frequency of the vibration system. Become. Even when an AC bias voltage having a frequency other than the frequency satisfying the above condition is applied, the effect of increasing the sensitivity can be obtained.
[0023] この誘導コイルに交流バイアス電圧をカ卩える方法は、交流バイアス電圧の周波数を 選択することで、センサ側で高感度が得られる周波数帯域を検出対象の振動周波数 帯域に近づける手法として理解することもできる。 [0023] The method of covering the induction coil with the AC bias voltage is to change the frequency of the AC bias voltage. By selecting, it can also be understood as a technique to bring the frequency band where high sensitivity is obtained on the sensor side closer to the vibration frequency band of the detection target.
[0024] 上述した交流バイアス電圧を加える方法は、振動検出センサが高感度を発揮できる 周波数帯域をセンサの製造後に簡便に調整することができる点で優位性がある。  [0024] The method of applying the AC bias voltage described above is advantageous in that the frequency band in which the vibration detection sensor can exhibit high sensitivity can be easily adjusted after the sensor is manufactured.
[0025] このように、誘導コイルに交流バイアス電圧を加えることで、バイアス周波数よりも低 ヽ 周波数に対する振動の検出感度を高くすることができる。また、上述した原理から明 らかなように、交流バイアス電圧の電圧を高くした方がその効果を高くすることができ る。  [0025] In this way, by applying an AC bias voltage to the induction coil, it is possible to increase the detection sensitivity of vibration with respect to a lower frequency than the bias frequency. Further, as is clear from the principle described above, the effect can be enhanced by increasing the AC bias voltage.
[0026] なお、直流バイアスをカ卩えた場合は、交流ノ ィァス電圧をカ卩える場合とメカニズムが 異なり、上述した作用効果は得られない。  [0026] It should be noted that when the DC bias is supported, the mechanism is different from the case where the AC noise voltage is supported, and the above-described operational effects cannot be obtained.
[0027] 本発明の振動検出装置において、ァーマチヤを複数備えており、この複数のァーマ チヤは、互いに異なる共振周波数を示す構成とすることは好ましい。この態様によれ ば、例えば、振動系の共振周波数を複数設定することができ、広い周波数範囲にお ける振動の検出感度を確保することができる。また例えば、特定の帯域に感度のピー クを意図的に持たせるといった設定を行うことができる。  [0027] The vibration detection device of the present invention preferably includes a plurality of armatures, and the plurality of armatures preferably have different resonance frequencies. According to this aspect, for example, a plurality of vibration system resonance frequencies can be set, and vibration detection sensitivity in a wide frequency range can be ensured. In addition, for example, it is possible to make a setting such that a specific peak has a sensitivity peak intentionally.
発明の効果  The invention's effect
[0028] 本発明によれば、磁極間と隣接した誘導コイル間を貫通したァーマチヤの橈み振動 により振動を検出するので、小型化してもリニアリティの良い振動検出装置を提供す ることがでさる。  [0028] According to the present invention, vibration is detected by the stagnation vibration of the armature penetrating between the magnetic poles and the adjacent induction coil, so that it is possible to provide a vibration detection device with good linearity even if it is downsized. .
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0029] (第 1の実施形態) 図 1は、第 1の実施形態である振動検出装置の概要を示す図で ある。図 1 (a)は側面方向から見た断面図であり、図 1 (b)の B— B'で切った断面の状 態が示されている。図 1 (b)は、上蓋を外し、上方向から装置内部を見た様子を示す 図である。図 1 (c)は、前方 (錘の方向)から装置の内部を見た様子を示す透視図で ある。図 2は、図 1に示す振動検出装置の分解状態を示す斜視図である。  First Embodiment FIG. 1 is a diagram showing an outline of a vibration detection apparatus according to a first embodiment. Fig. 1 (a) is a cross-sectional view seen from the side, showing the cross-sectional state taken along BB 'in Fig. 1 (b). Fig. 1 (b) shows the inside of the device viewed from above with the top cover removed. Figure 1 (c) is a perspective view showing the inside of the device as seen from the front (in the direction of the weight). FIG. 2 is a perspective view showing an exploded state of the vibration detection apparatus shown in FIG.
[0030] この振動検出装置は、蓋 101aと収容ケース 101bにより構成されるハウジング 101、 ァーマチヤ 102、永久磁石 103および 104、磁石支持部材 105、誘導コイル 106、錘 107、磁石固定部材 108および 109、信号出力端子 110および 111、フレーム 112、 端子保持部 113を備えて ヽる。 [0030] This vibration detection device includes a housing 101 constituted by a lid 101a and a housing case 101b, an armature 102, permanent magnets 103 and 104, a magnet support member 105, an induction coil 106, a weight 107, magnet fixing members 108 and 109, Signal output terminals 110 and 111, frame 112, A terminal holding part 113 is provided.
[0031] ハウジング 101は、上面が開放された収容ケース 101bに蓋 101aを被せた構造を有 している。ァーマチヤ 102は、磁性金属により構成された板状の構造を有し、その一 端に金属材料等により構成される錘 107が固定され、他端がフレーム 112と一体構 成となっている。錘 107は、一端がフレーム 112と一体ィ匕された板状のァーマチヤ 10 2によって支持されて!、るので、フレーム 112からの屈曲点を支点としてァーマチヤ 1 02力橈むことで、図 1 (a)における上下方向に振動ことができる。この構造において は、ァーマチヤ 102とその一端に固定された錘 107とが振動系として機能する。  [0031] The housing 101 has a structure in which a cover 101a is covered with a housing case 101b whose upper surface is open. The armature 102 has a plate-like structure made of a magnetic metal, a weight 107 made of a metal material or the like is fixed to one end thereof, and the other end is integrally formed with the frame 112. The weight 107 is supported by a plate-like armature 102 whose one end is integrally formed with the frame 112! Therefore, the armature 10 02 is clamped with the bending point from the frame 112 as a fulcrum, so that FIG. It can vibrate up and down in a). In this structure, the armature 102 and the weight 107 fixed to one end thereof function as a vibration system.
[0032] 錘 107を構成する材質は、金属に限定されず、榭脂ゃ複合材料等であってもよい。  [0032] The material constituting the weight 107 is not limited to metal, and may be a composite material or the like.
また、錘 107の形状、材質および質量は、(1)過振幅時にァーマチヤに大きな衝撃 が加わらないようにし、さらに(2)感度調整を考慮することで選択される。  The shape, material, and mass of the weight 107 are selected by (1) preventing a large impact from being applied to the armature at the time of overamplitude, and (2) considering sensitivity adjustment.
[0033] 永久磁石 103および 104は、互いに異なる磁極が対向するように配置された状態で 、マグネット支持部材 105に磁石固定部材 108および 109によって固定され、磁気回 路ユニットを構成している。また、マグネット支持部材 105には、フレーム 112が固定 され、さらにマグネット支持部材 105は、ハウジング 101の内側に固定されている。ま た、誘導コイル 106は、磁石固定部材 108および 109に導線がコイル状に巻かれた 構造となっている。  [0033] The permanent magnets 103 and 104 are fixed to the magnet support member 105 by the magnet fixing members 108 and 109 in a state where the different magnetic poles are opposed to each other, and constitute a magnetic circuit unit. A frame 112 is fixed to the magnet support member 105, and the magnet support member 105 is fixed to the inside of the housing 101. The induction coil 106 has a structure in which a conducting wire is wound around the magnet fixing members 108 and 109 in a coil shape.
[0034] この構造においては、永久磁石 103および 104、さらに誘導コイル 106がマグネット 支持部材 105を利用してハウジング 101に対して固定されている。他方、錘 107は、 橈むことが可能なァーマチヤ 102を介して間接的に磁気回路ユニット、誘導コイル 10 6およびハウジング 101に対して固定されている。よって、錘 107の振動に従うァーマ チヤ 102の橈み振動は、永久磁石 103および 104を構成要素とする磁気回路ュ-ッ トおよび誘導コイル 106に対する相対的な振動運動となる。  In this structure, the permanent magnets 103 and 104 and the induction coil 106 are fixed to the housing 101 using the magnet support member 105. On the other hand, the weight 107 is indirectly fixed to the magnetic circuit unit, the induction coil 106 and the housing 101 via the armature 102 which can be held. Therefore, the stagnation vibration of the armature 102 following the vibration of the weight 107 is a relative vibration motion with respect to the magnetic circuit cut and the induction coil 106 having the permanent magnets 103 and 104 as constituent elements.
[0035] 使用に際しては、適当な振動検出対象物にハウジング 101をその外面の一部を接触 させた状態とし、信号出力端子 110および 111に発生する信号電圧を検出する。  [0035] In use, the housing 101 is brought into contact with a part of the outer surface of an appropriate vibration detection object, and the signal voltage generated at the signal output terminals 110 and 111 is detected.
[0036] 錘 107は、板状に延在し、橈むことが可能なァーマチヤ 102によってハウジング 101 に対して支持されているので、ハウジング 101に外部力も振動が伝わると、錘 107は その 3次元的な振動には追従できず、ハウジング 101に対して図 1 (a)に示される上 下方向に相対的に振動する。なお、錘 107の動きは、図 1 (a)における上下方向に制 限されているので、ハウジング 101に伝わる振動の振幅成分の内、錘 107の振動に 寄与するのは、錘 107の可動方向に一致する成分である。 [0036] The weight 107 extends in a plate shape and is supported with respect to the housing 101 by the armature 102 that can be squeezed. Therefore, when the external force is transmitted to the housing 101, the weight 107 is three-dimensional. Cannot follow the typical vibration, and the housing 101 is shown in Fig. 1 (a). Vibrates relatively downward. Since the movement of the weight 107 is restricted in the vertical direction in FIG. 1 (a), the vibration component transmitted to the housing 101 contributes to the vibration of the weight 107 in the moving direction of the weight 107. It is a component that matches
[0037] 上述のように錘 107の振動は、ァーマチヤ 102の橈み振動を伴う。ァーマチヤ 102は 、永久磁石 103および 104の間における直流磁界によって帯磁しているので、ァー マチヤ 102が振動すると、誘導コイル 106内における磁界の状態がそれに応じて変 動し、その変動に従い誘導コイル 106に誘導電流が流れる。  [0037] As described above, the vibration of the weight 107 is accompanied by the stagnation vibration of the armature 102. Since the armature 102 is magnetized by a DC magnetic field between the permanent magnets 103 and 104, when the armature 102 vibrates, the state of the magnetic field in the induction coil 106 changes accordingly, and the induction coil according to the change. An induced current flows through 106.
[0038] この誘導電流はァーマチヤ 102の振動に対応したものであり、またァーマチヤの振動 はハウジング 101に加わる振動に起因するものであるから、この誘導電流からハウジ ング 101に外部から伝わった振動を評価することができる。  [0038] Since this induced current corresponds to the vibration of armature 102, and the vibration of armature is caused by the vibration applied to housing 101, the vibration transmitted from outside to this housing 101 is affected by this induced current. Can be evaluated.
[0039] 図 1および図 2に示す構造は、ァーマチヤ 102の屈曲点(振動の支点)から錘 107ま での長さを確保することができるので、錘 107の振幅を確保することができる。そのた め、装置全体を小型化した場合であっても高いリニアリティを得ることができる。  The structure shown in FIGS. 1 and 2 can secure the length from the bending point (vibration fulcrum) of the armature 102 to the weight 107, so that the amplitude of the weight 107 can be secured. Therefore, high linearity can be obtained even when the entire apparatus is downsized.
[0040] また、ハウジング 101内に振動系その他を納めた密閉構造を容易に実現することが できるので、水分や油分、さらには塵の進入による特性の劣化や動作不良が発生し 難ぐ高い信頼性を得ることができる。特に装置を小型化した場合、装置内の隙間の 寸法が小さくなり、塵の進入等による不都合が発生し易くなる力 ハウジングにより完 全密閉構造とすることで、この不都合を回避することができる。  [0040] Further, since a sealed structure in which the vibration system and the like are housed in the housing 101 can be easily realized, it is highly reliable that deterioration of characteristics and malfunction due to ingress of moisture, oil, and dust are unlikely to occur. Sex can be obtained. In particular, when the device is downsized, the size of the gap in the device is reduced, and the inconvenience due to the ingress of dust and the like is easily generated, and this inconvenience can be avoided by providing a completely sealed structure with the force housing.
[0041] また、可動部分が表面に露呈しない構造とできるので、機械的に丈夫なものとするこ とができる。また、物理的な衝撃等に対しては、錘の形状、材質等の選択によりァー マチヤの変形を防止することができる。  [0041] Further, since the movable part can be structured not to be exposed on the surface, it can be mechanically strong. In addition, for physical impacts, deformation of armature can be prevented by selecting the shape and material of the weight.
[0042] (第 2の実施形態) 本実施形態の振動検出装置は、第 1の実施形態の構成におけ る錘の代わりに、ハウジングの表面に設けられた可動接触部にァーマチヤの一端を 接続し、この可動接触部で受けた振動がァーマチヤに伝わる構造としたものである。  (Second Embodiment) The vibration detection device of the present embodiment connects one end of the armature to a movable contact portion provided on the surface of the housing, instead of the weight in the configuration of the first embodiment. The vibration received by the movable contact portion is transmitted to the armature.
[0043] 図 3は、第 2の実施形態である振動検出装置の概要を示す断面図である。図 3 (a)は 側面方向から見た断面図であり、図 3 (b)の C C'で切った断面の状態が示されて いる。図 3 (b)は、上面図である。図 3 (c)は、前方(可動接触部の方向)から装置の内 部を見た様子を示す透視図である。図 4は、図 3に示す振動検出装置の分解状態を 示す斜視図である。 FIG. 3 is a cross-sectional view showing an outline of a vibration detection apparatus according to the second embodiment. Fig. 3 (a) is a cross-sectional view seen from the side, showing the cross-sectional state taken along CC 'in Fig. 3 (b). Figure 3 (b) is a top view. Figure 3 (c) shows the inside of the device from the front (in the direction of the movable contact). It is a perspective view which shows a mode that the part was seen. FIG. 4 is a perspective view showing an exploded state of the vibration detecting device shown in FIG.
[0044] この振動検出装置は、蓋 301aと収容ケース 301bとにより構成されるハウジング 301 、ァーマチヤ 302、永久磁石 303および 304、磁石支持部材 305、誘導コイル 306、 磁石固定部材 308および 309、信号出力端子 310および 311、フレーム 312、端子 保持部 313、ドライブピン 322、可動接触部 321および過振幅防止部 323を備えて いる。  [0044] This vibration detection device includes a housing 301 constituted by a lid 301a and a housing case 301b, an armature 302, permanent magnets 303 and 304, a magnet support member 305, an induction coil 306, magnet fixing members 308 and 309, signal output Terminals 310 and 311, a frame 312, a terminal holding part 313, a drive pin 322, a movable contact part 321 and an overamplitude prevention part 323 are provided.
[0045] 永久磁石 303および 304は、互いに異なる磁極が対向するように配置された状態で 、マグネット支持部材 305に磁石固定部材 308および 309によって固定されている。 マグネット支持部材 305には、フレーム 312が固定され、この構造によりマグネット支 持部材 305は、ハウジング 301内に固定されている。また、誘導コイル 306は、磁石 固定部材 308および 309に導線がコイル状に巻かれた構造となっている。  The permanent magnets 303 and 304 are fixed to the magnet support member 305 by the magnet fixing members 308 and 309 in a state where the different magnetic poles are arranged to face each other. A frame 312 is fixed to the magnet support member 305, and the magnet support member 305 is fixed in the housing 301 by this structure. The induction coil 306 has a structure in which a conducting wire is wound around the magnet fixing members 308 and 309 in a coil shape.
[0046] ァーマチヤ 302の一端はフレーム 312と一体化され、他端はドライブピン 322を介し て可動接触部 321に接続されている。また、可動接触部 321が配置されたハウジン グ 301の開口部には、縁状に張り出した過振幅防止部 323が形成されている。過振 幅防止部 323が存在することで、可動接触部 321の可動範囲が制限され、ァーマチ ャ 302が設定された限界以上の振幅をすることが防止される。  One end of the armature 302 is integrated with the frame 312, and the other end is connected to the movable contact portion 321 via a drive pin 322. In addition, an over-amplitude preventing portion 323 protruding in an edge shape is formed at the opening of the housing 301 where the movable contact portion 321 is disposed. The presence of the excessive amplitude prevention unit 323 limits the movable range of the movable contact unit 321 and prevents the armature 302 from having an amplitude exceeding a set limit.
[0047] 可動接触部 321に外力が加わると、ドライブピン 322を介してァーマチヤ 302に力が 加わる。この力は、ァーマチヤ 302の固定されていない端部にカ卩わるので、了一マチ ャ 302は、フレーム 312からの屈曲点を支点として橈み変形する。  When an external force is applied to the movable contact portion 321, a force is applied to the armature 302 via the drive pin 322. Since this force is applied to the end of the armature 302 that is not fixed, the end of the armature 302 is bent and deformed with the bending point from the frame 312 as a fulcrum.
[0048] よって、可動接触部 321に振動が加わると、ドライブピン 322を介してァーマチヤ 302 に振動が伝わり、ァーマチヤ 302は橈み振動する。このァーマチヤ 302の橈み振動 に起因して誘導コイル 306に誘導電流が流れ、可動接触部 321に加わった振動が 電気的に検出される。  Accordingly, when vibration is applied to the movable contact portion 321, the vibration is transmitted to the armature 302 via the drive pin 322, and the armature 302 stagnates and vibrates. An induced current flows through the induction coil 306 due to the vibration of the armature 302, and the vibration applied to the movable contact portion 321 is electrically detected.
[0049] (第 3の実施形態) 本実施形態の振動検出装置は、ァーマチヤを介してハウジング に永久磁石と誘導コイルを固定し、永久磁石と誘導コイルを錘 (負荷質量)として機 能させて、ァーマチヤを橈み振動させる構成に関する。  [0049] (Third embodiment) The vibration detection device of the present embodiment fixes a permanent magnet and an induction coil to a housing via an armature, and causes the permanent magnet and the induction coil to function as a weight (load mass). The present invention relates to a configuration for rubbing and vibrating an armature.
[0050] 図 5は、本実施形態の振動検出装置の概要を示す断面図である。図 5 (a)は側面方 向から見た断面図であり、図 5 (b)の D— D'で切った断面の状態が示されている。図 5 (b)は、上面図であり、ハウジングの蓋部が外されて内部が見えている状態が示さ れている。 FIG. 5 is a cross-sectional view showing an outline of the vibration detection device of the present embodiment. Figure 5 (a) is a side view It is a cross-sectional view seen from the direction, showing the state of the cross section cut along DD ′ in FIG. 5 (b). FIG. 5 (b) is a top view showing a state in which the inside of the housing is visible with the lid of the housing removed.
[0051] この振動検出装置は、蓋 501aと収容ケース 501bにより構成されるハウジング 501、 ァーマチヤ 502、永久磁石 503および 504、磁石支持部材 505、誘導コイル 506、信 号出力端子 510、フレーム 512、端子保持部 513および接続配線 514を備えている  [0051] This vibration detection device includes a housing 501, a armature 502, permanent magnets 503 and 504, a magnet support member 505, an induction coil 506, a signal output terminal 510, a frame 512, a terminal including a lid 501a and a housing case 501b. Has holding part 513 and connection wiring 514
[0052] この構成において、永久磁石 503、 504、さらに誘導コィノレ 506は、フレーム 512に 対して固定され、このフレーム 512は、ァーマチヤ 502と一体化されている。そして、 ァーマチヤ 502の他端は、ハウジング 501に固定されている。つまり、フレーム 512は 、ァーマチヤ 502を介してハウジング 501に固定されている。つまりこの構造では、ァ 一マチヤ 502の一端に錘として機能するフレーム 512が一体化され、ァーマチヤ 502 の他端がハウジング 501に対して固定されて!、る。 In this configuration, the permanent magnets 503 and 504 and the induction coin 506 are fixed to the frame 512, and the frame 512 is integrated with the armature 502. The other end of the armature 502 is fixed to the housing 501. That is, the frame 512 is fixed to the housing 501 via the armature 502. That is, in this structure, a frame 512 that functions as a weight is integrated with one end of the armature 502, and the other end of the armature 502 is fixed to the housing 501.
[0053] なお、ァーマチヤ 502のハウジング 501への固定部分の形状は、永久磁石 504およ び 504、さらに誘導コイル 506等の質量を支持することを考慮して決定されることが望 ましい。  [0053] The shape of the fixing portion of the armature 502 to the housing 501 is preferably determined in consideration of supporting the masses of the permanent magnets 504 and 504 and the induction coil 506 and the like.
[0054] ハウジング 501に外部振動が伝わると、ァーマチヤ 502のハウジング 501に固定され た端部を支点として、フレーム 512と一体化された他端が振動する。この振動の際、 ァーマチヤ 502は橈み振動を起こす。  When external vibration is transmitted to the housing 501, the other end integrated with the frame 512 vibrates using the end portion of the armature 502 fixed to the housing 501 as a fulcrum. During this vibration, the armature 502 causes a stagnation vibration.
[0055] この構造は、ァーマチヤの振動を助長する錘を別途用意する必要がなぐ使用部品 を少なくすることができる。これにより、構造のシンプル化、部品数の削減を追求する ことができ、低コストィ匕を実現することができる。  [0055] With this structure, it is possible to reduce the number of parts used without having to separately prepare a weight for promoting the vibration of the armature. As a result, simplification of the structure and reduction of the number of parts can be pursued, and low cost can be realized.
[0056] 上記ァーマチヤ 502の橈み振動は、誘導コイル 506に誘導電流を誘起し、その誘導 電流は、接続配線 514を介して信号出力端子 510から取り出される。この誘導電流 を評価することで、ハウジング 501に伝わった振動を電気信号として検出することが できる。なお、図示していないが、この構造においては、信号出力端子 510と組となる もう一つの信号出力端子、およびこの信号出力端子への誘導コイル 506からの接続 配線も備えている。 [0057] 図 5に示す構造は、ハウジング内にァーマチヤを含む振動検出部分を密閉させた構 造を実現できるので、高湿度の環境や塵が多 、環境での使用における信頼性を高く することができる。また、装置の表面がハウジングで覆われた構造とできるので、使用 時や取り扱い時に不良が発生し難い振動検出装置を得ることができる。 The stagnation vibration of the armature 502 induces an induction current in the induction coil 506, and the induction current is taken out from the signal output terminal 510 via the connection wiring 514. By evaluating this induced current, vibration transmitted to the housing 501 can be detected as an electrical signal. Although not shown, this structure also includes another signal output terminal paired with the signal output terminal 510, and a connection wiring from the induction coil 506 to this signal output terminal. [0057] The structure shown in Fig. 5 can realize a structure in which the vibration detection part including the armature is sealed in the housing, so that the reliability in use in an environment with a high humidity and a lot of dust is high. Can do. In addition, since the surface of the device can be covered with a housing, a vibration detection device that is less likely to fail during use or handling can be obtained.
[0058] (第 4の実施形態) 本発明の振動検出装置を用いた振動検出システムの一例を説 明する。図 6は、振動検出システムの一例を示すブロック図である。図 6に示す振動 検出システムは、振動検出センサ 601、発振回路 602、 ノィァス抵抗 603、 ローパス フィルタ (LPF) 604および出力端子 605を備えて ヽる。  (Fourth Embodiment) An example of a vibration detection system using the vibration detection apparatus of the present invention will be described. FIG. 6 is a block diagram illustrating an example of a vibration detection system. The vibration detection system shown in FIG. 6 includes a vibration detection sensor 601, an oscillation circuit 602, a noise resistor 603, a low-pass filter (LPF) 604, and an output terminal 605.
[0059] 振動検出センサ 601は、本発明を用いた振動検出装置であり、例えば第 1〜3の実 施形態において説明した構成を有する。発振回路 602は、振動検出センサ 601の誘 導コイルに交流バイアス電圧を加える機能を有する。発振回路 602からは、振動検 出センサ 601にお 、て検出する振動の周波数より高 、周波数が出力される。バイァ ス抵抗 603は、振動検出センサ 601と発振回路 602とのインピーダンス整合を行うた めの抵抗である。ローパスフィルタ 604は、発振回路 602から出力される交流ノィァ ス信号を遮断し、出力に現れな ヽようにする機能を有する。  [0059] The vibration detection sensor 601 is a vibration detection device using the present invention, and has the configuration described in the first to third embodiments, for example. The oscillation circuit 602 has a function of applying an AC bias voltage to the induction coil of the vibration detection sensor 601. The oscillation circuit 602 outputs a frequency that is higher than the frequency of the vibration detected by the vibration detection sensor 601. The bias resistor 603 is a resistor for impedance matching between the vibration detection sensor 601 and the oscillation circuit 602. The low-pass filter 604 has a function of blocking the AC noise signal output from the oscillation circuit 602 so as not to appear in the output.
[0060] 振動検出センサ 601が振動を受けると、振動検出センサ 601内の誘導コイルに誘導 電流が流れ、それがローパスフィルタ 604を介して、出力端子 605に現れる。出力端 子 605に現れる出力信号は、図示しない増幅アンプ等によって適時増幅され、振動 の検出信号として利用される。  When the vibration detection sensor 601 receives vibration, an induction current flows through the induction coil in the vibration detection sensor 601 and appears at the output terminal 605 via the low-pass filter 604. The output signal appearing at the output terminal 605 is amplified as appropriate by an amplification amplifier (not shown) and used as a vibration detection signal.
[0061] 交流バイアス電圧の周波数は、検出対象となる振動の周波数帯域および振動検出 センサ 601の振動系の共振周波数よりも高い周波数力も選択されることが好ましい。 例えば、検出しょうとする振動の周波数が 100Hz〜lkHzの範囲であり、振動検出セ ンサ 601の振動系の共振周波数が 2kHzである場合、交流バイアス電圧の周波数は 、 2kHzを超えた周波数カゝら選択される。  As the frequency of the AC bias voltage, a frequency force higher than the frequency band of vibration to be detected and the resonance frequency of the vibration system of the vibration detection sensor 601 is preferably selected. For example, when the frequency of vibration to be detected is in the range of 100 Hz to lkHz and the resonance frequency of the vibration system of the vibration detection sensor 601 is 2 kHz, the frequency of the AC bias voltage is a frequency range exceeding 2 kHz. Selected.
[0062] (第 5の実施形態) 例えば第 1の実施形態において、ァーマチヤを複数に分割し、こ の分割された複数のァーマチヤのそれぞれに錘を配置してもよ 、。この構成にぉ ヽ ては、各ァーマチヤの寸法や錘の重量を設定することで、振動系の共振周波数を複 数設定でき、広い周波数範囲の振動に対応することが可能となる。 [0063] 複数のァーマチヤを配置する態様としては、独立したァーマチヤを複数配置する構 造、ァーマチヤを枝分かれ構造とし、この各枝部分に錘を固定した構造等のバリエ一 シヨンを挙げることができる。 産業上の利用可能性 (Fifth Embodiment) For example, in the first embodiment, the armature may be divided into a plurality of pieces, and a weight may be arranged on each of the divided plurality of armatures. In this configuration, by setting the dimensions of each armature and the weight of the weight, it is possible to set a plurality of resonance frequencies of the vibration system and to deal with vibrations in a wide frequency range. [0063] Examples of an arrangement in which a plurality of armatures are arranged include a variation in which a plurality of independent armatures are arranged, a structure in which the armatures are branched structures, and a weight is fixed to each branch portion. Industrial applicability
[0064] 本発明は、振動を電気信号として検出する必要がある用途に利用することができる。 [0064] The present invention can be used in applications where it is necessary to detect vibration as an electrical signal.
図面の簡単な説明  Brief Description of Drawings
[0065] [図 1]実施形態の振動検出装置の概要を示す側断面図、上面図および正面図であ る。  [0065] FIG. 1 is a side sectional view, a top view, and a front view showing an outline of a vibration detecting apparatus of an embodiment.
[図 2]実施形態の振動検出装置の概要を示す分解斜視図である。  FIG. 2 is an exploded perspective view showing an outline of the vibration detection device of the embodiment.
[図 3]実施形態の振動検出装置の概要を示す側断面図、上面図および正面図であ る。  FIG. 3 is a side sectional view, a top view, and a front view showing an outline of the vibration detecting apparatus of the embodiment.
圆 4]実施形態の振動検出装置の概要を示す分解斜視図である。  [4] FIG. 4 is an exploded perspective view showing an outline of the vibration detection device of the embodiment.
[図 5]実施形態の振動検出装置の概要を示す側断面図および上面図である。  FIG. 5 is a side sectional view and a top view showing an outline of the vibration detecting apparatus of the embodiment.
[図 6]振動検出システムの一例を示すブロック図である。  FIG. 6 is a block diagram showing an example of a vibration detection system.
符号の説明  Explanation of symbols
[0066] 101a…蓋、 101b…収容ケース、 101···ノヽウジング、 102···ァーマチヤ、 103···永 久磁石、 104···永久磁石、 105···磁石支持部材、 106…誘導コイル、 107···錘、 10 8…磁石固定部材、 109…磁石固定部材、 110…信号出力端子、 111…信号出力 端子、 112···フレーム、 113···端子保持部、 301a…蓋、 301b…収容ケース、 301 …ノヽウジング、 302···ァーマチヤ、 303···永久磁石、 304···永久磁石、 305···磁石 支持部材、 306···誘導コイル、 308…磁石固定部材、 309…磁石固定部材、 310··· 信号出力端子、 311…信号出力端子、 312···フレーム、 313…端子保持部、 321··· 可動接触部、 322···ドライブピン、 323…過振幅防止部、 501a…蓋、 501b…収容 ケース、 501···ノヽウジング、 502···ァーマチヤ、 503· "永久磁石、 504· "永久磁石、 505…磁石支持部材、 506···誘導コイル、 510…信号出力端子、 512…フレーム、 5 13···端子保持部、 514···接続配線、 601···振動検出センサ、 602···発振回路、 60 3"'ノ ィァス ^:、 604· 一ノ スフイノレ夕、 605···出力 チ。  [0066] 101a ... Lid, 101b ... Housing case, 101 ... Nosing, 102 ... Armature, 103 ... Permanent magnet, 104 ... Permanent magnet, 105 ... Magnet support member, 106 ... Inductive coil, 107 ··· weight, 10 8… Magnet fixing member, 109… Magnet fixing member, 110… Signal output terminal, 111… Signal output terminal, 112 ··· Frame, 113 ··· Terminal holding part, 301a… Lid, 301b ... Container case, 301 ... Nosinging, 302 ... Armature, 303 ... Permanent magnet, 304 ... Permanent magnet, 305 ... Magnet Support member, 306 ... Induction coil, 308 ... Magnet Fixing member, 309 ... Magnet fixing member, 310 ... Signal output terminal, 311 ... Signal output terminal, 312 ... Frame, 313 ... Terminal holding part, 321 ... Moving contact part, 322 ... Drive pin, 323 ... Over-amplitude prevention part, 501a ... Lid, 501b ... Accommodating case, 501 ... Nosing, 502 ... armature, 503 "Permanent magnet, 504" Permanent magnet 505 ... Magnet support member, 506 ... Inductive coil, 510 ... Signal output terminal, 512 ... Frame, 5 13 ... Terminal holding part, 514 ... Connection wiring, 601 ... Vibration detection sensor, 602 ... · Oscillator circuit, 60 3 "'Nias ^ :, 604 · One frequency, 605 · · · Output H.

Claims

請求の範囲 The scope of the claims
[1] 所定の間隔をおいて対向配置された一対の磁極間に直流磁界を形成する磁気回 路ユニットと、  [1] a magnetic circuit unit that forms a DC magnetic field between a pair of magnetic poles arranged to face each other at a predetermined interval;
この磁気回路ユニットに隣接して配置された誘導コイルと、  An induction coil disposed adjacent to the magnetic circuit unit;
前記磁極間および前記誘導コイル内を貫通して配置されたァーマチヤと を備え、  An armature disposed between the magnetic poles and through the induction coil,
前記ァーマチヤの橈み振動を前記誘導コイルに流れる信号電流の変化として検出 することを特徴とする振動検出装置。  A vibration detecting apparatus for detecting a stagnation vibration of the armature as a change in a signal current flowing through the induction coil.
[2] 所定の間隔をおいて対向配置された一対の磁極間に直流磁界を形成する磁気回 路ユニットと、  [2] a magnetic circuit unit that forms a DC magnetic field between a pair of magnetic poles arranged to face each other at a predetermined interval;
この磁気回路ユニットに隣接して配置された誘導コイルと、  An induction coil disposed adjacent to the magnetic circuit unit;
前記磁極間および前記誘導コイル内を貫通して配置され、一端が前記磁気回路ュ ニットに固定されたァーマチヤと、  An armature disposed between the magnetic poles and through the induction coil, and having one end fixed to the magnetic circuit unit;
このァーマチヤの他端に取り付けられた錘と、  A weight attached to the other end of the armature,
前記磁気回路ユニットおよび前記誘導コイルをその内部に固定支持するハウジン グと  A housing for fixing and supporting the magnetic circuit unit and the induction coil therein;
を備えたことを特徴とする振動検出装置。  A vibration detection apparatus comprising:
[3] 所定の間隔をおいて対向配置された一対の磁極間に直流磁界を形成する磁気回 路ユニットと、 [3] a magnetic circuit unit that forms a DC magnetic field between a pair of magnetic poles arranged to face each other at a predetermined interval;
この磁気回路ユニットに隣接して配置された誘導コイルと、  An induction coil disposed adjacent to the magnetic circuit unit;
前記磁極間および前記誘導コイル内を貫通して配置され、一端が前記磁気回路ュ ニットに固定されたァーマチヤと、  An armature that is disposed between the magnetic poles and through the induction coil and has one end fixed to the magnetic circuit unit;
このァーマチヤの他端に取り付けられたドライブピンと、  A drive pin attached to the other end of this armature,
前記磁気回路ユニットおよび前記誘導コイルをその内部に固定支持するハウジン グと、  A housing for fixing and supporting the magnetic circuit unit and the induction coil therein;
前記ドライブピンに接続され、前記ハウジングの表面に配置された可動接触部と を備えたことを特徴とする振動検出装置。  And a movable contact portion connected to the drive pin and disposed on a surface of the housing.
[4] 所定の間隔をおいて対向配置された一対の磁極間に直流磁界を形成する磁気回 路ユニットと、 [4] A magnetic circuit that forms a DC magnetic field between a pair of magnetic poles arranged to face each other at a predetermined interval. Road unit,
この磁気回路ユニットを内部に納めたハウジングと、  A housing containing the magnetic circuit unit inside;
前記磁気回路ユニットに隣接して配置された誘導コイルと、  An induction coil disposed adjacent to the magnetic circuit unit;
前記磁極間および前記誘導コイル内を貫通して配置され、一端が前記磁気回路ュ ニットに固定され、他端が前記ハウジングに固定されたァーマチヤと  An armature disposed between the magnetic poles and through the induction coil, one end fixed to the magnetic circuit unit and the other end fixed to the housing;
を備え、  With
前記磁気回路ユニットおよび前記誘導コイルは、前記ァーマチヤを介して前記ハウ ジングに支持固定されていることを特徴とする振動検出装置。  The vibration detection device, wherein the magnetic circuit unit and the induction coil are supported and fixed to the housing via the armature.
[5] 前記誘導コイルに交流バイアス電圧を加えることを特徴とする請求の範囲第 1項〜 第 4項のいずれかに記載の振動検出装置。 [5] The vibration detection device according to any one of [1] to [4], wherein an AC bias voltage is applied to the induction coil.
[6] 前記ァーマチヤを複数備えており、 [6] A plurality of the armatures are provided,
前記複数のァーマチヤは、互いに異なる共振周波数を示すことを特徴とする請求 の範囲第 1項〜第 4項のいずれかに記載の振動検出装置。  5. The vibration detecting apparatus according to claim 1, wherein the plurality of armatures exhibit different resonance frequencies.
PCT/JP2005/014629 2004-08-31 2005-08-10 Vibration detection device WO2006025200A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-252006 2004-08-31
JP2004252006A JP2006071319A (en) 2004-08-31 2004-08-31 Oscillation detecting apparatus

Publications (1)

Publication Number Publication Date
WO2006025200A1 true WO2006025200A1 (en) 2006-03-09

Family

ID=35999860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/014629 WO2006025200A1 (en) 2004-08-31 2005-08-10 Vibration detection device

Country Status (2)

Country Link
JP (1) JP2006071319A (en)
WO (1) WO2006025200A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110068390A (en) * 2018-05-15 2019-07-30 西安工业大学 Piezoelectricity and electromagnetic coupling vibrating sensor
CN112113657A (en) * 2019-06-21 2020-12-22 信利光电股份有限公司 System and method for acquiring resonance frequency of object to be measured

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102538940A (en) * 2012-01-10 2012-07-04 广东欧珀移动通信有限公司 Auto-induction vibration method of handheld equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5952430U (en) * 1983-04-08 1984-04-06 善工舎時計株式会社 Electromagnetic induction seismic device
JPS638628U (en) * 1986-07-04 1988-01-20
JPH1038675A (en) * 1996-07-29 1998-02-13 Tokyo Gas Co Ltd Acceleration seismograph device
JPH1038672A (en) * 1996-07-25 1998-02-13 Matsushita Electric Works Ltd Acceleration seismograph device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5952430U (en) * 1983-04-08 1984-04-06 善工舎時計株式会社 Electromagnetic induction seismic device
JPS638628U (en) * 1986-07-04 1988-01-20
JPH1038672A (en) * 1996-07-25 1998-02-13 Matsushita Electric Works Ltd Acceleration seismograph device
JPH1038675A (en) * 1996-07-29 1998-02-13 Tokyo Gas Co Ltd Acceleration seismograph device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110068390A (en) * 2018-05-15 2019-07-30 西安工业大学 Piezoelectricity and electromagnetic coupling vibrating sensor
CN110068390B (en) * 2018-05-15 2024-03-01 西安工业大学 Piezoelectric and electromagnetic coupling vibration sensor
CN112113657A (en) * 2019-06-21 2020-12-22 信利光电股份有限公司 System and method for acquiring resonance frequency of object to be measured

Also Published As

Publication number Publication date
JP2006071319A (en) 2006-03-16

Similar Documents

Publication Publication Date Title
JP2825664B2 (en) Sensor structure having L-shaped spring legs
US4887032A (en) Resonant vibrating structure with electrically driven wire coil and vibration sensor
KR20020064378A (en) Accelerometer
US4314202A (en) Flexural vibration sensor with magnetic field generating and sensing
JP5579190B2 (en) Piezoelectric acceleration sensor
WO2012026273A1 (en) Vibration sensor
US4677378A (en) Displacement sensor including a magnetically responsive member and a pair of piezoelectric elements
WO2006025200A1 (en) Vibration detection device
US11326937B2 (en) Energy harvesting apparatus and methods for detecting a vibratory signal
JP2743314B2 (en) Vibration detection element and vibration detector
US7975550B2 (en) Micromachined sensor for measuring vibration
JP4073335B2 (en) Vibration type level sensor
JPWO2003016920A1 (en) Drop impact measuring system and acceleration sensor element used in the drop impact measuring system
JPS58606B2 (en) Sound piece type level detection device
WO2021053883A1 (en) Pickup sensor and bone-conduction speaker
KR200412624Y1 (en) The sensor for the vibration
JPH0711446B2 (en) Acceleration sensor
JPH11142492A (en) Magnetometric sensor
JPH0731664Y2 (en) Speaker device
JP3564338B2 (en) Biological information detection sensor
JP2859844B2 (en) Microphone
JP3129118B2 (en) Acceleration sensor
JP2002188973A (en) Pressure sensor
WO2007088763A1 (en) Vibration measuring instrument
JPS6042340Y2 (en) vibration detection device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase