WO2006022213A1 - 排気浄化装置 - Google Patents

排気浄化装置 Download PDF

Info

Publication number
WO2006022213A1
WO2006022213A1 PCT/JP2005/015189 JP2005015189W WO2006022213A1 WO 2006022213 A1 WO2006022213 A1 WO 2006022213A1 JP 2005015189 W JP2005015189 W JP 2005015189W WO 2006022213 A1 WO2006022213 A1 WO 2006022213A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
urea water
exhaust
catalyst
nox
Prior art date
Application number
PCT/JP2005/015189
Other languages
English (en)
French (fr)
Inventor
Ichiro Tsumagari
Takatoshi Furukawa
Yoshihide Takenaka
Koichi Machida
Shinya Sato
Original Assignee
Hino Motors, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004242290A external-priority patent/JP2006057576A/ja
Priority claimed from JP2004242291A external-priority patent/JP4267538B2/ja
Priority claimed from JP2004253907A external-priority patent/JP2006070771A/ja
Application filed by Hino Motors, Ltd. filed Critical Hino Motors, Ltd.
Priority to US11/574,072 priority Critical patent/US7765800B2/en
Publication of WO2006022213A1 publication Critical patent/WO2006022213A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9431Processes characterised by a specific device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/206Adding periodically or continuously substances to exhaust gases for promoting purification, e.g. catalytic material in liquid form, NOx reducing agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2067Urea
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/818Employing electrical discharges or the generation of a plasma
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an exhaust purification device applied to an engine such as a diesel engine.
  • Particulate matter (particulate matter) discharged from a diesel engine is mainly composed of soot made of carbonaceous matter and SOF component (Soluble Organic Fraction: soluble organic component) which has high boiling point hydrocarbon component power.
  • SOF component Soluble Organic Fraction: soluble organic component
  • a particulate filter is installed in the middle of the exhaust pipe through which exhaust gas flows. It has been done conventionally.
  • This type of particulate filter has a porous honeycomb structure made of a ceramic such as cordierite, and the inlets of each flow path partitioned in a lattice pattern are alternately sealed, and the inlets are sealed. In addition, the outlets of the channels are sealed, and only the exhaust gas that has permeated through the porous thin walls that define each channel is discharged downstream. I am trying to do it.
  • a selective reduction type catalyst having a property of selectively reacting NOx with a reducing agent in the presence of oxygen in the exhaust pipe through which exhaust gas flows is used. Equip and add the required amount of reducing agent upstream of the selective catalytic reduction catalyst to cause the reducing agent to undergo a reduction reaction with NOx (nitrogen oxide) in the exhaust gas on the selective catalytic reduction catalyst. There is one that can reduce the discharge concentration.
  • noble metal catalysts such as platinum and palladium
  • base metal catalysts such as vanadium, copper and iron oxides
  • the active temperature range of these selective catalytic reduction catalysts can be purified only in a part of the exhaust temperature range of diesel engines, which is generally narrow! Expansion of the active temperature range of reduced catalysts, especially improvement of low-temperature activity, will become a major issue in the future.
  • the present inventors have arranged an oxidation catalyst in the preceding stage of the selective catalytic reduction catalyst, and oxidized the NO in the exhaust gas by the oxidation catalyst to generate strong oxidizing power, such oxidation. of power
  • the reducing agent on the selective catalytic reduction catalyst By introducing strong NO to the selective catalytic reduction catalyst, the reducing agent on the selective catalytic reduction catalyst
  • Patent Document 1 JP 2002-161732 A
  • the urea water added to the selective catalytic reduction catalyst receives heat in the exhaust gas after the addition, and the following formula
  • the NOZNO ratio in the exhaust gas is about 1 to 1.
  • reaction rate slows down and the amount of leaked ammonia that passes through the selective catalytic reduction catalyst remains unreacted.
  • the NOx reduction rate drops at the specified exhaust temperature. I'm sorry.
  • the present invention has been made in view of the above circumstances, and in improving the low-temperature activity of the selective catalytic reduction catalyst by arranging an oxidation catalyst in the previous stage to generate NO having a strong oxidizing power,
  • the solid line shows the NOx reduction rate when the ratio of NO to NO is about 1: 1, and the broken line shows the normal N
  • the particulate soot and NO accumulated in the particulate filter react with each other to disrupt the balance of the NO and NO ratio, which is suitable for reducing NOx.
  • the present invention has been made in view of the above circumstances, and the ratio of NO to NO is controlled to control NO.
  • An object of the present invention is to provide an exhaust gas purification device that reduces X.
  • a first aspect of the present invention is a selective reduction catalyst that is provided in the middle of an engine exhaust pipe and that can selectively react NOx with ammonia even in the presence of oxygen.
  • An oxidation catalyst having a different NO oxidizing power which is equipped in parallel with the preceding stage of the reduction catalyst, and a branch flow path for distributing exhaust gas to each of the oxidation catalysts and merging them after passing through each of the oxidation catalysts;
  • Exhaust distribution means for adjusting the distribution amount of the exhaust gas to each oxidation catalyst in the branch flow path so that the NOZNO ratio in the exhaust gas is about 1 to 1.5;
  • Urea water addition means for selectively adding urea water to either one of the front and rear positions of the selective catalytic reduction catalyst, and an exhaust gas branched from the exhaust pipe upstream from the branch flow path and downstream from the selective catalytic reduction catalyst
  • a first flow path configuration in which exhaust gas from the engine power flows through a normal exhaust pipe path, and a selective reduction type catalyst through which the exhaust gas flows from the engine through the first communication pipe.
  • an exhaust gas purification apparatus configured to be able to appropriately switch between the second flow path configuration in which each oxidation catalyst is caused to flow backward and flow to the second connecting pipe via the flow path switching means.
  • the first flow path configuration is adopted so that the exhaust gas from the engine flows through the normal exhaust pipe path, and the exhaust distribution means distributes the exhaust gas to each oxidation catalyst. Adjust the amount so that the NOZNO ratio in the exhaust gas is about 1 to 1.5,
  • the temperature range in which the optimum NOZNO ratio for the NOx reduction reaction can be maintained due to the catalytic properties of the acid catalyst is narrow and limited, the distribution range of the exhaust gas to each oxidation catalyst can be adjusted by the exhaust distribution means, so that the temperature range in which the optimal NOZNO ratio can be maintained is significantly expanded.
  • the low temperature activity of the selective catalytic reduction catalyst is significantly improved as compared with the case of using the oxidation catalyst alone.
  • the drop in the NOx reduction rate due to excessive NO production is a selective reduction catalyst.
  • the flow of exhaust gas from the engine is made to flow back to the second connecting pipe through the selective reduction catalyst and each oxidation catalyst through the first series of connecting pipes, and urea water adding means If the urea water is added to the inlet side of the selective catalytic reduction catalyst by switching the urea aqueous solution by the engine exhaust gas of engine power is introduced prior to the selective catalytic reduction catalyst, and the selective catalytic reduction catalyst remains unreacted.
  • the ammonia that has passed through is treated with each oxidation catalyst and is no longer produced as ammonia.
  • the selective catalytic reduction catalyst that can be switched from the first flow path configuration to the second flow path configuration has a high catalyst bed temperature, which means that the engine load is relatively high and the operation state is reached. Therefore, under the operating conditions where the catalyst bed temperature of such a selective catalytic reduction catalyst becomes high, the exhaust gas space velocity (SV: space velocity distribution system device in unit time) The value obtained by dividing the inflowing fluid volume by the in-device fluid volume) has also increased! The ammonia can easily pass through the selective catalytic reduction catalyst without any reaction! It becomes the operating condition!
  • a temperature sensor for detecting the catalyst bed temperature of the selective reduction catalyst is provided, and the catalyst bed temperature is equal to or lower than a predetermined temperature based on a detection signal of the temperature sensor.
  • the first flow path configuration can be selected and the second flow path configuration can be selected when the catalyst bed temperature exceeds a predetermined temperature.
  • the second aspect of the present invention is a selective reduction catalyst that is installed in the middle of an exhaust pipe of an engine and that can selectively react NOx with ammonia even in the presence of oxygen, and the selective reduction catalyst.
  • the plasma generator to regulate the ratio of NO to NO in the exhaust gas.
  • the present invention relates to an exhaust gas purification device comprising a control device for adding urea water to the urea water adding means.
  • a rotation sensor that detects an engine speed a load sensor that detects an engine load, and a NOx sensor that detects a NOx concentration are provided. It is preferable that the plasma generator and the Z or urea water addition means are controlled based on the detection value from at least one of the sensor, the load sensor, and the NOx sensor.
  • the plasma generator is configured to adjust the amount of NO generated by controlling the amount of power.
  • a rotation sensor that detects the number of revolutions of the engine
  • a load sensor that detects the load of the engine
  • a NOx sensor that detects the NOx concentration
  • the plasma generator and Z or urea water addition means can be controlled easily, and NOx It is possible to perform the reduction process more appropriately.
  • the plasma generator is configured to adjust the amount of NO generated by controlling the amount of power.
  • a third aspect of the present invention is a selective reduction catalyst that is provided in the middle of an exhaust pipe of an engine and that can selectively react NOx with ammonia even in the presence of oxygen, and an inlet side of the selective reduction catalyst
  • a urea water addition means for adding urea water as a reducing agent to the exhaust gas a particulate filter that is provided upstream of the addition of the urea water addition means and traps soot in the exhaust gas, and the particulate filter Discharge into exhaust gas upstream to generate NO
  • the present invention relates to an exhaust emission control device comprising a control device capable of controlling a horrada generating device for each temperature region and adding urea water to the urea water adding means and oxidizing soot in a particulate filter. Is.
  • control of the plasma generator is configured to keep the balance of the ratio of NO and NO while oxidizing the soot in the particulate filter.
  • a rotation sensor that detects the engine speed a temperature sensor that detects the exhaust temperature, and a NOx sensor that detects the NOx concentration are provided.
  • the detected value from the rotation sensor and the temperature sensor as well as the NOx sensor It is preferable that the plasma generator is controlled based on the above.
  • an acid catalyst is provided upstream of the plasma generator.
  • the influence of the particulate filter can be suppressed and the NOx reduction can be achieved. Furthermore, since the plasma generator is controlled for each temperature region, the NOx reduction process can be performed in consideration of the temperature effect in each temperature region. [0038] Further, when the control of the plasma generator is configured so as to acidify the soot in the particulate filter and maintain the balance of the ratio of NO to NO, the particulate filter
  • a rotation sensor that detects the engine speed
  • a temperature sensor that detects the exhaust temperature
  • a NOx sensor that detects the NOx concentration
  • the detected values from the rotation sensor and the temperature sensor as well as the NOx sensor are provided. If the plasma generator is configured to be controlled based on the above, it can be processed appropriately taking into account the effect of temperature and the ratio of NO to NO.
  • an oxidation catalyst is installed in parallel in the preceding stage of the selective reduction catalyst, and the distribution amount of the exhaust gas to each oxidation catalyst is adjusted appropriately by the exhaust distribution means,
  • the NO / NO ratio should be about 1 to 1.5, which is optimal for NOx reduction reactions.
  • the low-temperature activity of the selective catalytic reduction catalyst can be significantly improved as compared with the case where the acid catalyst is used alone.
  • switching from the first flow path configuration to the second flow path configuration allows exhaust gas to flow back through the selective reduction catalyst and each oxidation catalyst, so that the selective reduction catalyst passes through unreacted.
  • the ammonia can be treated with each oxidation catalyst to avoid the risk of being discharged outside the vehicle in the state of ammonia, and there is no need to install an additional oxidation catalyst for leak ammonia prevention. Therefore, the deterioration of the mountability to the vehicle It can also be avoided.
  • the ratio of NO to NO is controlled by the plasma generator, so urea water is added by the urea water adding means.
  • soot is oxidized, the influence of soot on the particulate filter can be suppressed. Furthermore, since the plasma generator is controlled for each temperature region, it is possible to perform NOx reduction and acid treatment in consideration of the influence of temperature in each temperature region. Can be played.
  • FIG. 1 is a block diagram showing an embodiment of the first aspect of the present invention.
  • FIG. 2 is a block diagram in which the first channel form force in FIG. 1 is switched to the second channel form.
  • FIG. 3 is a schematic view showing an embodiment of the second aspect of the present invention.
  • FIG. 4 is a graph showing the relationship between power and NO generation.
  • FIG. 6 is a schematic view showing an example of the third aspect of the present invention.
  • FIG. 7 is a graph showing the relationship between electric power and NO generation amount.
  • FIG. 8 is a conceptual diagram showing a 3D map for obtaining plasma power.
  • FIG. 9 is a graph showing changes in the control method depending on the temperature region.
  • Injection nozzle (urea water addition means) Injection nozzle (urea water addition means) Urea water tank (urea water addition means) Urea water supply pipe (urea water addition means) Urea water
  • FIG. 1 and FIG. 2 show an embodiment of the first aspect of the present invention.
  • Reference numeral 1 in FIG. 1 denotes an engine that is a diesel engine, which is discharged from each cylinder cover of the engine 1.
  • the middle of exhaust pipe 3 through which exhaust gas 2 circulates (the line shown by a thick solid line in the figure; the thickness of this solid line is for distinguishing the line and does not indicate the difference in flow path diameter! /)
  • a selective catalytic reduction catalyst 4 that has the property of selectively reacting NOx with ammonia even in the presence of oxygen.
  • oxidation catalyst 5A with strong NO oxidation power and oxidation catalyst 5B with low NO oxidation power are equipped in parallel.
  • the exhaust gas 2 is distributed to the respective oxidation catalysts 5A and 5B through the branch flow path 6 to be merged on the inlet side of the selective reduction catalyst 4, and the ratio of the distribution amount is branched. It is controlled by a valve 7 (exhaust gas distribution means) provided on one side of the flow path 6.
  • injection nozzles 8 and 9 for adding a reducing agent to the exhaust gas 2 are installed at the front and rear positions of the selective catalytic reduction catalyst 4, and are provided at the required locations with the injection nozzles 8 and 9, respectively.
  • the urea water tank 10 is connected by a urea water supply pipe 11 (a line indicated by a thin solid line in FIG. 1) that branches into a bifurcated line on the way.
  • a urea water supply pipe 11 constitutes urea water addition means.
  • a supply pump 13 for feeding urea water 12 in the urea water tank 10 to the injection nozzles 8 and 9 as a reducing agent is provided in the middle of the urea water supply pipe 11.
  • a supply pump 13 for feeding urea water 12 in the urea water tank 10 to the injection nozzles 8 and 9 as a reducing agent is provided in the middle of the urea water supply pipe 11.
  • the urea water 12 is selectively supplied to either one of the injection nozzles 8 and 9.
  • a first connecting pipe 16 (a line indicated by a solid line in the figure; branched from the exhaust pipe 3 upstream from the branch flow path 6 and connected to the exhaust pipe 3 downstream from the selective catalytic reduction catalyst 4; The thickness of this solid line is for distinguishing the line and does not indicate the difference in flow path diameter), and from the exhaust pipe 3 between the branch point at the start of the first connecting pipe 16 and the branch flow path 6.
  • the second connecting pipe 17 that branches off and connects to the exhaust pipe 3 downstream from the connection point at the end of the first connecting pipe 16 (in the figure)
  • the line indicated by the solid solid line; the thickness of this solid line distinguishes the line and does not indicate the difference in flow path diameter), and the exhaust gas 2 from the engine 1 is sent to the normal exhaust pipe 3
  • the first flow path configuration (see Fig. 1) that flows through the path and the flow of exhaust gas 2 from the engine 1 through the first connecting pipe 16 causes the selective reduction catalyst 4 and the oxidation catalysts 5A and 5B to flow backward to form a second series.
  • the second flow path configuration (see FIG. 2) flowing to the entangled tube 17 is configured to be appropriately switched through a flow path switching means including valves 18, 19, 20, and 21.
  • the selective reduction catalyst 4 and the oxidation catalysts 5A, 5B are equipped with temperature sensors 22, 23, 24 so that the respective catalyst bed temperatures can be detected. , 24 Detected signal force Input to the control unit 25 that forms the engine control computer (ECU Electronic Control Unit).
  • control device 25 when the catalyst bed temperature of the selective catalytic reduction catalyst 4 is not more than a predetermined temperature based on the detection signal of the temperature sensor 22, the first flow path configuration is selected and the When the catalyst bed temperature exceeds the predetermined temperature, a control signal is output to each of the valves 18, 19, 20, 21 so that the second flow path configuration can be selected.
  • the valve 14 of the urea water supply pipe 11 is opened by a control signal from the control device 25, and the urea water is supplied from the injection nozzle 8. 12 is injected
  • the valve 15 of the urea water supply pipe 11 is opened by the control signal from the control device 25 and the urea from the injection nozzle 9 Water 12 is jetted.
  • control device 25 is responsible for controlling the engine 1, the rotational speed and load of the engine 1 are grasped by detection signals from a rotation sensor and an accelerator sensor (not shown). Therefore, based on the current operating state determined from these, the map power for valve opening control of valve 7 Opening so that the NOZNO ratio in exhaust gas 2 is about 1 to 1.5
  • the degree is read out and outputted to the valve 7 as a control signal so that the distribution amount of the exhaust gas 2 to the acid catalyst 5A, 5B is adjusted.
  • the NOZNO ratio can be maintained at 1 to 1.5 if the exhaust gas 2 is diverted to the acid catalyst 5B side with weak NO acid power.
  • the opening control of the valve 7 for realizing this distribution amount is set in advance as a two-dimensional map such as the engine speed and load, this two-dimensional map power engine By simply reading the control opening based on the rotational speed and load of 1, it is possible to suppress the generation of excessive NO by the acid catalyst.
  • the opening degree of the valve 7 is determined so that the NOZNO ratio in the exhaust gas 2 is about 1 to 1.5.
  • the temperature of the opening degree of the valve 7 based on the actually measured values of the temperature sensors 23 and 24 attached to the oxidation catalysts 5 and 5, respectively.
  • the control device 25 opens the valves 18 and 21 and closes the valves 19 and 20 to adopt the first flow path configuration, Exhaust gas 2 flows through the normal exhaust pipe 3 path, and the distribution amount of exhaust gas 2 to each of the acid catalyst 5 ⁇ and 5 ⁇ ⁇ ⁇ is reduced by valve 7 so that the NOZNO ratio in exhaust gas 2 is about 1 to 1.5. While adjusting as
  • the distribution range of the exhaust gas 2 to each oxidation catalyst 5A, 5B can be adjusted with the valve 7, so that the temperature range in which the optimum NOZNO ratio is maintained is significantly expanded.
  • the low-temperature activity of the selective catalytic reduction catalyst 4 is significantly improved as compared with the case where the oxidation catalyst is used alone.
  • the NO / NO ratio has a relatively high impact on the NOx reduction rate.
  • the control device 25 opens the valves 19, 20 and closes the valves 18, 21 to switch from the first flow path configuration to the second flow path configuration, and the flow of the exhaust gas 2 from the engine 1 is changed to the first communication pipe 16
  • the selective catalytic reduction catalyst 4 and the oxidation catalysts 5A, 5B are caused to flow backward through the second communication pipe 17, and the control device 25 opens the valve 15 and closes the valve 14 to close the selective catalytic reduction catalyst 4 from the injection nozzle 9.
  • urea water 12 is added to the inlet side, the exhaust gas 2 from the engine 1 is introduced prior to the selective catalytic reduction catalyst 4, and the ammonia that has passed through the selective catalytic reduction catalyst 4 unreacted is converted into each of the acid catalysts. Treated with catalysts 5A and 5B and no longer discharged as ammonia.
  • the state where the catalyst bed temperature of the selective catalytic reduction catalyst 4 that can be switched from the first flow path configuration to the second flow path configuration is an operation state where the load of the engine 1 is relatively high. Therefore, under such operating conditions that the catalyst bed temperature of the selective catalytic reduction catalyst 4 becomes high, the space velocity of the exhaust gas 2 (SV: space velocity distribution system device) is increased by increasing the load. The value obtained by dividing the volume of fluid flowing in per unit time by the volume of fluid in the apparatus) is also increasing, and ammonia easily passes through the selective catalytic reduction catalyst 4 unreacted, resulting in operating conditions!
  • SV space velocity distribution system device
  • the oxidation of leaked ammonia is performed by reusing the oxidation catalysts 5A and 5B that were used in the production process, so there is no need to install a new acid catalyst for preventing leaked ammonia. In this case, the possibility that the mountability on the vehicle is bad is avoided in advance.
  • an oxidation catalyst is arranged in the previous stage to generate NO having a strong oxidizing power.
  • the oxidation catalytic converters 5A and 5B are installed in parallel in the preceding stage of the selective catalytic reduction catalyst 4, and the oxidation catalyst 5A and 5B are provided in pairs.
  • the NOZNO ratio is NOx.
  • switching from the first flow path configuration to the second flow path configuration allows the exhaust gas 2 to flow back through the selective reduction catalyst 4 and the oxidation catalysts 5A and 5B.
  • the ammonia that has passed through unreacted 4 can be treated with each of the oxidation catalysts 5A and 5B to avoid the risk of being discharged out of the vehicle in the ammonia state. Since an additional acid catalyst is not required, it is possible to avoid a bad mounting property on the vehicle.
  • the first aspect of the present invention is not limited to the above-described embodiment, and the exhaust distribution means may not necessarily be a valve as shown in the illustrated example. It is also possible to provide a valve with an adjustable distribution amount at the junction, or to provide a separate valve for each branch flow path, and to detect the catalyst bed temperature of the selective catalytic reduction catalyst
  • the temperature sensor may detect the exhaust temperature at the inlet or outlet of the selective catalytic reduction catalyst as a substitute value for the catalyst bed temperature, and, in addition, within the scope without departing from the gist of the present invention. Of course, various changes can be obtained.
  • FIGS. 3 and 4 show an embodiment of the second aspect of the present invention.
  • reference numeral 31 indicates a diesel engine which is a diesel engine.
  • the turbocharger 32 is provided, and the intake air 34 guided from the air cleaner 33 is sent to the compressor 32a of the turbocharger 32 through the intake pipe 35, and the intake air 34 pressurized by the compressor 32a is further supplied to the intercooler.
  • the engine is cooled by being sent to 36, and the intake air 34 is further led from the intercooler 36 to the intake manifold 37, where the diesel engine It is distributed to 31 cylinders 38 (Fig. 3 illustrates the case of inline 6 cylinders).
  • the exhaust gas 39 exhausted from each cylinder 38 of the diesel engine 31 is sent to the turbine 32b of the turbocharger 32 via the exhaust manifold 40, and the exhaust gas 39 driving the turbine 32b. Is discharged through the exhaust pipe 41 to the outside of the vehicle.
  • an EGR pipe 42 connects between one end portion of the exhaust cylinder 40 in the direction in which the cylinders 38 are arranged and one end portion of the intake pipe 35 connected to the intake manifold 37.
  • Part of the exhaust gas 39 extracted from the exhaust manifold 40 is recirculated to the intake pipe 35 via the water-cooled EGR cooler 43 and EGR valve 44, and is recirculated from the exhaust side to the intake side.
  • Generation of NOx can be reduced by reducing the combustion temperature by suppressing the combustion of fuel in each cylinder 38 with the circulated exhaust gas 39.
  • a selective reduction catalyst 46 held by a casing 45 is provided in the middle of the exhaust pipe 41.
  • the selective reduction catalyst 46 is formed as a honeycomb structure of a flow-through type, It has the property of allowing NOx to react selectively with ammonia even in the presence of oxygen.
  • a conventionally known catalyst such as a noble metal catalyst such as platinum or palladium or a base metal catalyst such as vanadium, copper or iron oxide.
  • an injection nozzle 47 is installed in the exhaust pipe 41 upstream of the casing 45, and a urea water supply line 49 connects between the injection nozzle 47 and a urea water tank 48 provided at a required location.
  • the urea water 51 (reducing agent) in the urea water tank 48 is added to the upstream side of the selective catalytic reduction catalyst 46 via the injection nozzle 47 by driving the supply pump 50 installed in the middle of the urea water supply line 49.
  • the injection nozzle 47, the urea water tank 48, the urea water supply line 49, and the supply pump 50 constitute a urea water adding device 52.
  • a mixer 53 for evenly spreading the spray of the urea water 51 is provided. Further, immediately after the selective catalytic reduction catalyst 46 in the casing 45, an NH slip catalyst 54 that oxidizes surplus ammonia as a countermeasure against leak ammonia is provided. Equipped.
  • a plasma generator 55 that discharges into the exhaust gas 39 and generates plasma is disposed.
  • the plasma generator 55 has a structure in which a plurality of electrodes (not shown) connected to a power source 56 are arranged to face each other and can discharge between each other, and NO is oxidized to NO by generating plasma. Like to do.
  • the amount of NO generated is determined by the plasm as shown in Fig. 4.
  • It can be controlled by adjusting the amount of electric power that generates power.
  • the plasma generator 55 is an ON-OFF switch having an electrical or mechanical contact for facilitating the power control of plasma generation, and switching such as a pulse may be performed. In some cases, the applied voltage is kept constant, the amount of electricity is adjusted by controlling the switching interval, and plasma is generated.
  • the power source 56 a DC power source, a high frequency power source, or a Norse power source can be applied. In addition, NO
  • the electrodes of the plasma generator 55 may have various shapes such as a plate shape, a rod shape, and a cylindrical shape as long as the distance between them can be set almost uniformly.
  • the operation of the plasma generator 55, the operation of the urea water addition device 52, the operation of the EGR valve 44 for recirculating the exhaust gas 39, the fuel injection device 57 for injecting fuel into each cylinder 38 The operation is executed in response to command signals 56a, 52a, 44a, and 57a from a control device 58 constituting an engine control computer (ECU).
  • ECU engine control computer
  • a rotation speed signal 59a of the rotation sensor 59 in the engine 31 and an accelerator sensor 60 (load sensor) for detecting the accelerator opening as a load of the engine 31 are provided.
  • a detection signal 67a from an air flow meter 67 for measuring the intake air amount is input between the compressor 33 and the compressor 32a.
  • the current rotational speed of the engine 31 is read based on the rotational speed signal 59a from the rotational sensor 59, and the accelerator sensor 60
  • the current fuel injection amount is converted based on the load signal 60a from the NOx sensor, and further based on the detection signals 61a and 62a of the NOx sensors 61 and 62, the temperature sensors 63 and 64, and the detection signals 63a and 64a of the force, etc.
  • the rotation center the rotation center
  • the controller 58 After estimating the temperature, flow rate, NO concentration, N concentration, O concentration, etc., the controller 58
  • the ratio of NO to NO in the exhaust gas 39 is about 1
  • NO generation f (plasma energy, temperature, flow velocity, NO concentration, N concentration, O concentration)
  • Plasma energy f (power, distance between electrode plates, dielectric constant (body))
  • the distance between the electrode plates and the dielectric constant (body) are invariable numbers depending on the device settings.
  • the plasma energy can be controlled by changing the voltage and frequency.
  • the power source may use a high frequency pulse.
  • the amount of NO produced is adjusted to the temperature, flow rate, NO concentration, N concentration, and O concentration.
  • the amount of added water 51 is calculated based on the detection signals 61a and 62a from the NOx sensors 61 and 62 and detected from the temperature sensors 63 and 64, etc. It is confirmed that the exhaust gas temperature is within the activation temperature range of the selective catalytic reduction catalyst 46 by signals 63a and 64a, and urea water 51 is injected from the injection nozzle 47 of the urea water addition device 52 by the command signal 52a from the control device 58. Reduce NOx.
  • the plasma generator 55 oxidizes NO in the exhaust gas 39 to NO and controls the ratio of NO to NO. 51 Additives
  • a rotation sensor 59 for detecting the rotation speed of the engine 31, an accelerator sensor 60 (load sensor) for detecting the load of the engine 31, and NOx sensors 61 and 62 for detecting NOx concentration are provided.
  • Plasma based on rotation signal 59a (detection value), load signal 60a (detection value), and detection signals 61a and 62a (detection value) of at least one force from rotation sensor 59 and accelerator sensor 60 and NOx sensors 61 and 62 If the generator 55 and the Z or urea water 51 addition means are configured to be controlled, the ratio of NO to NO can be detected appropriately.
  • the device 55 and Z or urea water 51 addition means can be easily controlled to reduce NOx suitably.
  • the plasma generator 55 adjusts the generation amount of NO by controlling the electric energy. Once configured, NO generation is facilitated and the NO to NO ratio is controlled, thus reducing NOx
  • the second aspect of the present invention is not limited to the above-described embodiments. If plasma is oxidized to NO and the ratio of NO to NO is controlled by plasma, the plasma generation method and
  • the processing procedure of NOx is not particularly limited, and the control of the plasma generator and the urea water addition device may be controlled by command signals from other sensors. It goes without saying that various changes can be made without departing from the scope.
  • FIGS. 6 to 9 show an embodiment of the third aspect of the present invention.
  • Reference numeral 71 in FIG. 6 denotes a diesel engine that is a diesel engine.
  • the turbocharger 72 is provided, and the intake air 74 guided from the air cleaner 73 is sent to the compressor 72a of the turbocharger 72 through the intake pipe 75, and the intake air 74 pressurized by the compressor 72a is further supplied to the intercooler.
  • the engine is sent to 76 and cooled, and the intake air 74 is further guided from the intercooler 76 to the intake manifold 77, and each cylinder 78 of the diesel engine 71 (FIG. 6 illustrates the case of inline 6 cylinders). ).
  • the exhaust gas 79 discharged from each cylinder 78 of the diesel engine 71 is sent to the turbine 72b of the turbocharger 72 through the exhaust manifold 80, and the exhaust gas 79 driving the turbine 72b is sent. Is discharged to the outside of the vehicle through the exhaust pipe 81.
  • an EGR pipe 82 connects between one end portion of the cylinders 78 in the arrangement direction of the exhaust manifold 80 and one end portion of the intake pipe 75 connected to the intake manifold 77, Part of the exhaust gas 79 extracted from the exhaust manifold 80 is recirculated to the intake pipe 75 via the water-cooled EGR cooler 83 and EGR valve 84, and recirculated from the exhaust side to the intake side.
  • the generated exhaust gas 79 suppresses the combustion of fuel in each cylinder 78 and lowers the combustion temperature so that the generation of NOx can be reduced.
  • a selective reduction catalyst 86 held by a casing 85 is provided in the middle of the exhaust pipe 81.
  • the selective reduction catalyst 86 is a flow-through type hard cam structure. It has the property that NOx can be selectively reacted with ammonia even in the presence of oxygen.
  • conventionally known catalysts such as noble metal catalysts such as platinum and palladium and base metal catalysts such as vanadium, copper and iron oxides can be employed.
  • an injection nozzle 87 is installed in the exhaust pipe 81 upstream of the casing 85, and a urea water supply line 89 connects between the injection nozzle 87 and a urea water tank 88 provided at a required location.
  • the urea water 91 (reducing agent) in the urea water tank 88 is added to the upstream side of the selective catalytic reduction catalyst 86 via the injection nozzle 87 by driving the supply pump 90 installed in the middle of the urea water supply line 89.
  • the injection nozzle 87, the urea water tank 88, the urea water supply line 89, and the supply pump 90 constitute a urea water adding device 92.
  • a mixer 93 is provided between the casing 85 and the addition position of the urea water 91 by the urea water addition device 92 (opening position of the injection nozzle 87) and the casing 85. Further, immediately after the selective reduction catalyst 86 in the casing 85, an NH slip catalyst 94 that oxidizes surplus ammonia as a countermeasure against leak ammonia is provided.
  • a plasma generator 95 that discharges into the exhaust gas 79 and generates plasma is disposed.
  • the plasma generator 95 has a structure in which a plurality of electrodes (not shown) connected to a power source 96 are arranged opposite to each other and can discharge between each other. By generating plasma, NO is oxidized to NO. Like to do.
  • the amount of NO generated is determined by the plasm as shown in Fig. 7.
  • It can be controlled by adjusting the amount of electric power that generates power.
  • the plasma generator 95 is an ON-OFF switch having an electrical or mechanical contact for facilitating the power control of the plasma generation, and switching such as a pulse may be performed.
  • the applied voltage is kept constant, the amount of electricity is adjusted by controlling the switching interval, and plasma is generated.
  • the power source 96 a DC power source, a high frequency power source, or a Norse power source can be applied. Furthermore, in order to increase the production rate of NO,
  • the power source 96 of the plasma generator 95 has a computer built therein so that the instructed power can be supplied.
  • the electrodes of the plasma generator 95 may have various shapes such as a plate shape, a rod shape, and a cylindrical shape as long as the distance between them can be set almost uniformly.
  • a particulate filter 98 held by a casing 97 is provided in an exhaust pipe 81 between the plasma generator 95 and the urea water 91 addition position (opening position of the injection nozzle 87).
  • This particulate filter 98 has a porous hard cam structure that also has a ceramic force such as cordierite, and the inlets of each flow path partitioned in a grid are alternately sealed, and the inlets are sealed.
  • the outlets of the flow paths are sealed, and only the exhaust gas that has permeated through the porous thin walls defining the flow paths is discharged downstream. It is made to do.
  • the exhaust pipe 81 between the plasma generator 95 and the turbine 72b of the turbocharger 72 is provided upstream of the plasma generator 95 so as to improve the low-temperature activity of the selective catalytic reduction catalyst 86.
  • the acid catalyst 100 held by the casing 99 is equipped.
  • the acid catalyst 100 is mixed with platinum / acid aluminum (alumina) and supported on a stainless steel metal carrier or the like. It has a structure.
  • the acid catalyst 100 and the plasma generator 95 may be provided separately as shown in FIG. 6. However, the acid catalyst is attached to the plasma generator 95, and the acid catalyst is attached.
  • a plasma generator may also be used, and a particulate filter 98 may also be added and combined, and an acid generator catalyst and a particulate filter plus plus a plasma generator (plasma DPF with an acid catalyst) may be used.
  • the operation of the plasma generator 95, the operation of the urea water addition device 92, the operation of the EGR valve 84 for recirculating the exhaust gas 79, the fuel injection device 101 for injecting fuel into each cylinder 78 The operation is executed in response to command signals 96a, 92a, 84a, 101a from a control device 102 constituting an engine control computer (ECU Electronic Control Unit).
  • ECU Electronic Control Unit an engine control computer
  • the engine speed signal 103a from the rotation sensor 103 in the engine 71 and the load from the accelerator sensor 104 (load sensor) that detects the accelerator opening as the load of the engine 71 are detected.
  • the detection signal 109a from the temperature sensor 109 that detects the intake air temperature at the inlet side of the intake manifold 77 and the inlet side of the intake manifold 77
  • the detection signal 110a from the supercharging pressure sensor 110 that detects the supercharging pressure is input, and the detection signal 11 la from the air flow meter 111 that measures the intake air amount between the air cleaner 73 and the compressor 72a is input
  • the current rotational speed of the engine 71 is read based on the rotational speed signal 103a from the rotational sensor 103, and the NOx sensor 105, The NOx concentration is read based on the detection signals 105a and 106a from 106, and the exhaust gas temperature is read based on the detection signals 107a and 108a from the temperature sensors 107 and 108, as shown in FIG.
  • Plasma power for generating plasma in the plasma generator 95 is determined by a 3D map (3D map) consisting of engine speed, NOx concentration, and exhaust temperature power.
  • the control method of the control device varies depending on the temperature range for the determined plasma power.
  • An example of a specific control method in the temperature range is as follows.
  • the temperature range is 130 ° from the lower limit temperature. Temperature range up to C (temperature range I in Fig. 9), temperature range from 130 ° C to 180 ° C (temperature range II in Fig. 9), temperature range from 180 ° C to 270 ° C (Fig. 9) Temperature range of III), temperature range of 270 ° C force up to 450 ° C (temperature range of IV in Fig. 9), temperature range of 450 ° C to 600 ° C (temperature range of V in Fig. 9) The temperature range is from 600 ° C to the upper limit temperature (the temperature range of VI in Fig. 9).
  • the temperature range from the lower limit temperature to 130 ° C is a region that does not contribute to NOx reduction even when plasma is generated by the plasma generation device 95, and it supplies power. I try not to.
  • the temperature range from 130 ° C to 180 ° C is N even if plasma is generated by the plasma generator 95 as in the previous temperature range. Although it is a region that is not involved in the reduction of Ox, electric power is supplied to maintain the temperature of the exhaust gas at a predetermined temperature so that the selective reduction catalyst 86 is brought into the active temperature region by the heat of plasma generation. Furthermore, in the temperature range from 180 ° C to 270 ° C (temperature range III in Fig.
  • urea water 91 is added by the urea water adding device 92. This is an area where it is necessary to improve the reduction of NOx, and power for generating NO is supplied by the plasma generator 95 to reduce NOx. Furthermore, the 270 ° C force is also in the temperature range up to 450 ° C ( Figure 9).
  • IV temperature range is a region where the generation of NO may be less than that of the selective catalytic reduction catalyst 86 where the catalytic activity of the selective catalytic reduction catalyst 86 is high, but the soot needs to be acidified.
  • Power to generate NO is supplied by plasma generator 95 to oxidize soot.
  • the temperature range from 270 ° C to 450 ° C requires less power than the temperature range from 180 ° C to 270 ° C as shown in Fig. 9. Also, in the temperature range from 450 ° C to 600 ° C (the temperature range of V in the figure), NO is not necessary for the selective catalytic reduction catalyst 86 in which the selective catalytic reduction catalyst 86 is more active. This is the area where the soot needs to be acidified reliably.
  • the temperature range up to the upper limit temperature of 600 ° C force (temperature range VI in the figure) is the region where soot naturally oxidizes.
  • NO is appropriately generated by the plasma generator 95.
  • the current rotational speed of the engine 71 is read out, and on the basis of the load signal 104a from the accelerator sensor 104, the current fuel injection amount is converted, and the NOx sensors 105, 106 force, etc.
  • Detection signal 105a, 106a, temperature sensor 107, 108 Based on detection signal 107a, 108a, temperature, flow rate, NO concentration, N concentration, O concentration, etc. are estimated.
  • the rotation sensor 103, the accelerator sensor 104, the NOx sensors 105, 106, the temperature sensors 107, 108, etc. update the data as needed to detect the temperature and flow velocity as the operating state of the engine 71 changes. Responds to changes in NO concentration, N concentration, O concentration, etc.
  • the controller 102 After estimating the temperature, flow velocity, NO concentration, N concentration, O concentration, etc., the controller 102
  • Generating plasma by adjusting the power of generator 95, oxidizing a predetermined amount of NO to NO
  • NO generation f (plasma energy, temperature, flow velocity, NO concentration, N concentration, O concentration)
  • Plasma energy f (power, distance between electrode plates, dielectric constant (body))
  • the distance between the electrode plates and the dielectric constant (body) are invariable numbers depending on the device settings.
  • the plasma energy can be controlled by changing the voltage and frequency.
  • the power source may use a high frequency pulse.
  • the amount of NO produced matches the temperature, flow rate, NO concentration, N concentration, and O concentration.
  • the amount of urea water 91 added is calculated based on the detection signals 105a and 106a from the NOx sensors 105 and 106, and the detection signal from the temperature sensors 107 and 108, etc. 107a and 108a confirm that the exhaust temperature is within the active temperature range of the selective catalytic reduction catalyst 86, and the command signal 92a from the control device 102 causes the urea water 91 to be injected from the injection nozzle 87 of the urea water addition device 92. Injects and reduces NOx.
  • the plasma generator 95 oxidizes NO in the exhaust gas to NO and controls the ratio of NO to NO.
  • the influence of the particulate filter 98 can be suppressed and the NOx can be reduced.
  • NOx reduction is performed in consideration of the influence of the temperature in each temperature region, and power consumption is reduced along with processing of the acid. Can do.
  • control of the plasma generator 95 is configured so that the soot in the particulate filter 98 is oxidized and the balance of the ratio of NO to NO is maintained.
  • a rotation sensor 103 for detecting the rotation speed of the engine 71 temperature sensors 107 and 108 for detecting the temperature of the exhaust gas, and NOx sensors 105 and 106 for detecting the NOx concentration are provided. And the temperature sensor 107, 108 and the NOx sensor 105, 106 force, etc.
  • the plasma generator 95 and Z or the urea water addition device 92 can be easily controlled to reduce the NOx more appropriately.
  • the third aspect of the present invention is not limited to the above-described embodiments, so long as the soot is oxidized by plasma and the ratio of NO to NO is controlled, the control method, plasma
  • the generation method and NOx treatment procedure are not particularly limited, and the plasma generator and urea water addition device can be controlled by command signals from other sensors.
  • the plasma generator and urea water addition device can be controlled by command signals from other sensors.
  • various modifications can be made without departing from the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

 選択還元型触媒の前段に配置した酸化触媒による過剰なNO2の生成を抑制してNOx低減率の落ち込み現象を回避する。   エンジン1の排気管3途中に酸素共存下でも選択的にNOxをアンモニアと反応させ得る選択還元型触媒4を装備し、その前段に各酸化触媒5A,5Bを並列に対で装備し、排気温度が低い運転状態で各酸化触媒5A,5Bへの排気ガス2の分配量を排気ガス2中のNO/NO2比が約1~1.5となるように調整する。また、NO/NO2比のNOx低減率への影響が少なくなる排気温度の高い運転条件下で増えるリークアンモニア対策として、流路を切り替えて排気ガス2を選択還元型触媒4及び各酸化触媒5A,5Bを逆流させて流し、前記選択還元型触媒4を未反応のまま通過したアンモニアを各酸化触媒5A,5Bにて酸化処理する。

Description

排気浄化装置
技術分野
[0001] 本発明は、ディーゼルエンジン等のエンジンに適用される排気浄ィ匕装置に関する。
背景技術
[0002] ディーゼルエンジンから排出されるパティキュレート(Particulate Matter :粒子状物 質)は、炭素質から成る煤と、高沸点炭化水素成分力 成る SOF分 (Soluble Organic Fraction :可溶性有機成分)とを主成分とし、更に微量のサルフェート (ミスト状硫酸 成分)を含んだ組成を成すものである力 この種のパティキュレートの低減対策として は、排気ガスが流通する排気管の途中に、パティキュレートフィルタを装備することが 従来より行われている。
[0003] この種のパティキュレートフィルタは、コージエライト等のセラミックから成る多孔質の ハニカム構造となっており、格子状に区画された各流路の入口が交互に目封じされ、 入口が目封じされて ヽな 、流路につ!/、ては、その出口が目封じされるようになってお り、各流路を区画する多孔質薄壁を透過した排気ガスのみが下流側へ排出されるよ うにしてある。
[0004] そして、排気ガス中のパティキュレートは、前記多孔質薄壁の内側表面に捕集され て堆積するので、 目詰まりにより排気抵抗が増加しないうちにパティキュレートを適宜 に燃焼除去してパティキュレートフィルタの再生を図る必要がある力 通常のディーゼ ルエンジンの運転状態においては、パティキュレートが自己燃焼するほどの高い排 気温度が得られる機会が少ないため、例えば白金等の貴金属系の酸ィ匕触媒をパテ ィキュレートフィルタに一体的に担持させたり、パティキュレートフィルタの前段に酸ィ匕 触媒を別体で配置するようにした触媒再生型のパティキュレートフィルタを採用するこ とが検討されている。
[0005] 即ち、このような触媒再生型のパティキュレートフィルタを採用すれば、捕集された パティキュレートの酸化反応が促進されて着火温度が低下し、従来より低い排気温度 でもパティキュレートを燃焼除去することが可能となるのである。 [0006] 又、排気ガス中における NOx低減対策としては、排気ガスが流通する排気管の途 中に、酸素共存下でも選択的に NOxを還元剤と反応させる性質を備えた選択還元 型触媒を装備し、該選択還元型触媒の上流側に必要量の還元剤を添加して該還元 剤を選択還元型触媒上で排気ガス中の NOx (窒素酸化物)と還元反応させ、これに より NOxの排出濃度を低減し得るようにしたものがある。
[0007] 例えば、この種の選択還元型触媒としては、白金,パラジウム等の貴金属触媒や、 バナジウム,銅,鉄の酸ィ匕物等の卑金属触媒が前述した如き性質を有するものとして 既に知られているが、これらの選択還元型触媒の活性温度域は一般的に狭ぐディ ーゼルエンジンの排気温度範囲の一部でしか NOxを浄化できて!/、な!/、のが現状で あり、選択還元型触媒の活性温度域の拡大、特に低温活性の向上が今後の大きな 課題となっている。
[0008] そこで、本発明者らは、選択還元型触媒の前段に酸化触媒を配置して該酸化触媒 により排気ガス中の NOを酸化して酸化力の強い NOを生成し、このような酸化力の
2
強い NOを選択還元型触媒に導くことにより該選択還元型触媒上での還元剤による
2
還元反応を促進し、通常の選択還元型触媒の単独使用の場合より低い温度域から 還元反応が起こるようにすることを創案するに到った (例えば、特許文献 1参照)。 特許文献 1 :特開 2002— 161732号公報
[0009] 尚、プラント等における工業的な排煙脱硝処理の分野では、還元剤にアンモニア( NH )を用いて NOxを還元浄化する手法の有効性が既に広く知られて ヽるところで
3
あるが、自動車の場合には、アンモニアのような有毒な物質を搭載して走行すること に関し安全確保が困難であるため、近年においては、毒性のない尿素水を還元剤と して使用することが研究されて 、る。
発明の開示
発明が解決しょうとする課題
[0010] し力しながら、本発明者らによる鋭意研究の結果、選択還元型触媒の前段に酸ィ匕 触媒を装備することで前記選択還元型触媒の低温活性を良化できる反面、この種の 酸化触媒が所定の排気温度でピークを成すような山形の触媒特性を有するものであ るために、そのピークを成す排気温度近辺にて過剰に NOが生成されてしまって NO X低減率が落ち込む現象が生じるという知見が得られた。
[0011] 即ち、選択還元型触媒に添加された尿素水は、その添加後に排気ガス中で熱を受 けて次式
[化 1]
(NH ) CO + H 0→2NH +CO
2 2 2 3 2
によりアンモニアと炭酸ガスに分解されるので、このアンモニアにより NOxが還元浄 化されることになるが、排気ガス中の NOxの大半を占める NOに対し酸ィ匕触媒により NOが増やされていくと、最も反応速度の早い次式
2
[化 2]
NO + NO + 2NH→2N + 3H O
2 3 2 2
による還元反応が促されて良好な NOxの低減ィ匕が図られることになる。
[0012] そして、この還元反応を促すにあたっては、排気ガス中の NOZNO比が約 1〜1.
2
5に近いことが重要となるが、酸化触媒により所定の排気温度にて過剰に NOが生
2 成されてしまうと、 NOの比率よりも NOの比率の方が大きく上まわってしまい、この N
2
oの過剰分は、次式
2
[化 3]
6NO +8NH→7N + 12H O
2 3 2 2
で反応することになるため、反応速度が鈍化して選択還元型触媒を未反応のまま通 過してしまうリークアンモニアが増加し、結果的に NOxの低減率が所定の排気温度 で落ち込みを生じてしまって ヽた。
[0013] 尚、ここで付言しておくと、 NOの比率よりも NOの比率が下まわっている間は、次
2
[化 4]
6NO+4NH→5N +6H O
3 2 2
或いは、次式
[化 5]
4NO+4NH +0→4N +6H O
3 2 2 2
によっても排気ガス中の NOxが還元浄ィ匕されることになる。 [0014] 本発明は、上述の実情に鑑みてなされたものであり、前段に酸化触媒を配置して酸 化力の強い NOを生成することで選択還元型触媒の低温活性を向上するにあたり、
2
前記酸化触媒による過剰な NOの生成を抑制して NOx低減率の落ち込み現象を回
2
避し得るようにすることを目的として!/、る。
[0015] 又、還元剤にアンモニア (NH )を用いて NOxを還元浄ィ匕する還元反応には、
3
[化 6]
NO + NO + 2NH→2N + 3H O
2 3 2 2
[化 7]
4NO+4NH +0→3N +6H O
3 2 2 2
[化 8]
2NO +4NH +0→3N +6H O
2 3 2 2 2
[化 9]
8NH +6NO→7N + 12H O
3 2 2 2
があり、上から下へ順に反応速度が遅くなるため、最も反応速度が早い [ィヒ 6]の還元 反応で処理し得るよう、排気ガス中の NOと NOの比を約 1 : 1に近くに制御して図 5の
2
如く低温でも良好な NOxの低減ィ匕を図ることが求められる。ここで図 5において、実 線は NOと NOの比が約 1: 1の場合の NOxの低減率を示し、破線は通常の場合の N
2
Oxの低減率を示している。
[0016] 一方、排気ガス中の NOxの成分はその殆どが NOであることから、 NOと NOの比
2 を制御する際には、 NOから NOを生成することが考えられるが、 NOを NOに酸ィ匕
2 2 する酸化触媒は温度に依存するため、エンジンの運転状態に影響を受け、 NOと N Oの比を制御することができな 、と 、う問題があった。
2
[0017] 又、 気ガス中の NOと NOの比を約 1 : 1に近くに制御しても、パティキュレートフィ
2
ルタを備えて排気ガスを処理する際には、パティキュレートフィルタに溜ったパティキ ュレートの煤と NOとが反応して NOと NOの比のバランスが崩れ、 NOxの低減を適
2 2
切に行うことができな 、と 、う問題があった。
[0018] 本発明は、上述の実情に鑑みてなされたものであり、 NOと NOの比を制御して NO
2
Xの低減ィ匕を行う排気浄ィ匕装置を提供することを目的としている。又、パティキュレート フィルタを備えた状態で NOと NOの比を制御して NOxの低減ィ匕を行う排気浄ィ匕装
2
置を提供することを目的として!、る。
課題を解決するための手段
[0019] 上記目的を達成するため、本発明の第一の局面は、エンジンの排気管途中に装備 されて酸素共存下でも選択的に NOxをアンモニアと反応させ得る選択還元型触媒と 、該選択還元型触媒の前段に並列に対で装備された NO酸化力の異なる酸化触媒 と、該各酸化触媒に対し排気ガスを振り分けて流し且つ前記各酸化触媒を通過した 後に合流せしめる分岐流路と、該分岐流路の各酸化触媒への排気ガスの分配量を 排気ガス中の NOZNO比が約 1〜1. 5となるように調整する排気分配手段と、前記
2
選択還元型触媒の前後位置の何れか一方に対し選択的に尿素水を添加する尿素 水添加手段と、前記分岐流路より上流の排気管から分岐して前記選択還元型触媒よ り下流の排気管に接続する第一連絡管と、該第一連絡管始端の分岐箇所と前記分 岐流路との間の排気管から分岐して前記第一連絡管終端の接続箇所より下流の排 気管に接続する第二連絡管とを備え、エンジン力ゝらの排気ガスを通常の排気管経路 で流す第一流路形態と、エンジンからの排気ガスの流れを第一連絡管を介し選択還 元型触媒及び各酸化触媒を逆流させて第二連絡管へ流す第二流路形態とを流路 切替手段を介し適宜に切り替え得るように構成してなる排気浄ィヒ装置、〖こ係るもので ある。
[0020] 而して、排気温度が低い運転状態で第一流路形態を採用してエンジンからの排気 ガスを通常の排気管経路で流し、排気分配手段により各酸化触媒への排気ガスの分 配量を排気ガス中の NOZNO比が約 1〜1. 5となるように調整しながら尿素水添カロ
2
手段により選択還元型触媒の入側に尿素水を添加すると、酸ィ匕力の強い NOによる
2 反応速度の早 ヽ還元反応が促されて効率良く NOxの低減化が図られる結果、通常 の選択還元型触媒の単独使用の場合より低い温度域力 還元反応が起こるようにな り、し力も、所定の排気温度での NOの過剰生成が前記 NOZNO比の調整により
2 2
抑制されることで NOx低減率の落ち込み現象が未然に回避される。
[0021] 更に、選択還元型触媒の前段に酸化触媒を単独で配置した場合には、その酸ィ匕 触媒の触媒特性により NOxの還元反応に最適な NOZNO比が維持できる温度範 囲が狭く限定されてしまうが、各酸化触媒への排気ガスの分配量を排気分配手段で 調整できることにより、最適な NOZNO比が維持される温度範囲が著しく拡張される
2
ので、選択還元型触媒の低温活性が酸化触媒の単独使用の場合よりも大幅に向上 されること〖こなる。
[0022] ただし、 NOの過剰生成による NOx低減率の落ち込み現象は、選択還元型触媒
2
の触媒床温度が比較的低い温度領域にある時に見られる現象であり、これより高い 触媒床温度に移行すれば、選択還元型触媒の触媒活性が十分に高まることにより N O/NO比が NOx低減率に及ぼす影響は軽微なものとなり、流路切替手段により第
2
一流路形態力 第二流路形態に切り替えても高い NOx低減率が維持されることにな る。
[0023] 依って、 NOZNO比の NOx低減率への影響が少な 、比較的高!、温度領域で第
2
一流路形態から第二流路形態に切り替え、エンジンからの排気ガスの流れを第一連 絡管を介し選択還元型触媒及び各酸化触媒を逆流させて第二連絡管へ流し、尿素 水添加手段により尿素水の添加位置を切り替えて選択還元型触媒の入側に尿素水 を添加すると、エンジン力 の排気ガスが選択還元型触媒に先行して導入され、該 選択還元型触媒を未反応のまま通過したアンモニアが各酸化触媒にて処理されてァ ンモニァとして 出されなくなる。
[0024] 即ち、第一流路形態から第二流路形態に切り替えることが可能な選択還元型触媒 の触媒床温度が高 、状態とは、エンジン負荷が比較的高 、運転状態となって 、るこ とを意味して 、るので、このような選択還元型触媒の触媒床温度が高くなる運転条件 下では、負荷上昇により排気ガスの空間速度(SV: space velocity流通系装置に単 位時間に流入する流体容積を装置内流体容積で割った値)も高まって!/、て、アンモ ニァが選択還元型触媒を未反応のまま通過し易!、運転条件になって!/、る。
[0025] このため、選択還元型触媒の触媒床温度が高くなる運転条件下で第二流路形態を 採用すれば、アンモニアが選択還元型触媒を未反応のまま通過し易くなつて!、る運 転条件下で適切なリークアンモニア対策が採られることになり、し力も、そのリークアン モニァ対策を実施するにあたり、第一流路形態で NOZNO比を調整するために用
2
V、られて 、た各酸ィ匕触媒を再利用してリークアンモニアの酸ィ匕処理を行うようにして いるので、新たにリークアンモニア対策用の酸ィ匕触媒を追加装備しなくても済み、車 輛への搭載性が悪ィ匕する虞れが未然に回避されることになる。
[0026] また、本発明の第一の局面では、選択還元型触媒の触媒床温度を検出する温度 センサを備え、該温度センサの検出信号に基づき前記触媒床温度が所定温度以下 となっている場合に第一流路形態を選択し且つ前記触媒床温度が所定温度を超え て ヽる場合に第二流路形態を選択し得るように構成することが可能である。
[0027] 一方、本発明の第二の局面は、エンジンの排気管途中に装備されて酸素共存下で も選択的に NOxをアンモニアと反応させ得る選択還元型触媒と、該選択還元型触媒 の入側で排気ガス中に還元剤として尿素水を添加する尿素水添加手段と、該尿素 水添加手段の添加より上流で排気ガス中に放電して NOを発生させるプラズマ発生
2
装置と、前記排気ガス中の NOと NOの比を調整するよう前記プラズマ発生装置を制
2
御して前記尿素水添加手段に尿素水の添加を行わしめる制御装置とを備えてなる排 気浄化装置、に係るものである。
[0028] 又、本発明の第二の局面では、エンジンの回転数を検出する回転センサと、ェンジ ンの負荷を検出する負荷センサと、 NOx濃度を検出する NOxセンサとを備え、これ ら回転センサ及び負荷センサ並びに NOxセンサの少なくとも一つからの検出値に基 づきプラズマ発生装置及び Z又は尿素水添加手段を制御するように構成することが 好ましい。
[0029] 更に、プラズマ発生装置は電力量の制御により NOの生成量を調整するように構
2
成されることが好ましい。
[0030] 而して、このようにすれば、プラズマ発生装置により排気ガス中の NOを NOに酸ィ匕
2 して NOと NOの比を制御するので、尿素水添加手段により尿素水を添加する場合
2
であっても NOxの低減ィ匕を好適に行うことができる。
[0031] 又、エンジンの回転数を検出する回転センサと、エンジンの負荷を検出する負荷セ ンサと、 NOx濃度を検出する NOxセンサとを備え、これら回転センサ及び負荷セン サ並びに NOxセンサの少なくとも一つ力 の検出値に基づきプラズマ発生装置及び Z又は尿素水添加手段を制御するように構成すると、 NOと NOの
2 比を適切に検出 し得るので、プラズマ発生装置及び Z又は尿素水添加手段を容易に制御し、 NOx の低減ィ匕を一層好適に行うことができる。
[0032] 更に、プラズマ発生装置は電力量の制御により NOの生成量を調整するように構
2
成されると、 NOの生成を容易にして NOと NOの比を制御するので、 NOxの低減化
2 2
を一層好適に行うことができる。
[0033] 本発明の第三の局面は、エンジンの排気管途中に装備されて酸素共存下でも選 択的に NOxをアンモニアと反応させ得る選択還元型触媒と、該選択還元型触媒の 入側で排気ガス中に還元剤として尿素水を添加する尿素水添加手段と、該尿素水 添加手段の添加より上流に装備されて排気ガス中の煤を捕捉するパティキュレートフ ィルタと、該パティキュレートフィルタより上流で排気ガス中に放電して NOを発生さ
2 せるプラズマ発生装置と、前記排気ガス中の NOと NOの比を調整するよう前記ブラ
2
ズマ発生装置を温度領域ごとに制御して前記尿素水添加手段に尿素水の添加を行 しめる共にパティキュレートフィルタ中の煤を酸ィ匕し得る制御装置とを備えてなる排気 浄化装置、に係るものである。
[0034] 又、プラズマ発生装置の制御は、パティキュレートフィルタ中の煤を酸ィ匕させると共 に、 NOと NOの比のバランスを維持するよう構成されることが好ましい。
2
[0035] 更に、エンジンの回転数を検出する回転センサと、排気温度を検出する温度センサ と、 NOx濃度を検出する NOxセンサとを備え、これら回転センサ及び温度センサ並 びに NOxセンサからの検出値に基づきプラズマ発生装置を制御するように構成する ことが好ましい。
[0036] 更に又、プラズマ発生装置の上流に酸ィ匕触媒を装備することが好ましい。
[0037] 而して、このようにすれば、プラズマ発生装置により排気ガス中の NOを NOに酸ィ匕
2 して NOと NOの比を制御するので、尿素水添加手段により尿素水を添加する場合
2
であっても NOxの低減ィ匕を行うことができる。又、同時にパティキュレートフィルタを備 えた状態であっても、排気ガス中の NOと NOの比を調整して NOによりパティキユレ
2 2
ートフィルタの煤を酸ィ匕させるので、パティキュレートフィルタの煤の影響を抑制し、 N Oxの低減ィ匕を行うことができる。更に、プラズマ発生装置を温度領域ごとに制御する ので、それぞれの温度領域における温度の影響を考慮して NOxの低減ィヒゃ煤の酸 化の処理を行うことができる。 [0038] 又、プラズマ発生装置の制御は、パティキュレートフィルタ中の煤を酸ィ匕させると共 に、 NOと NOの比のバランスを維持するよう構成されると、パティキュレートフィルタ
2
の煤の影響を一層抑制し、 NOxの低減ィ匕を好適に行うことができる。
[0039] 更に、エンジンの回転数を検出する回転センサと、排気温度を検出する温度センサ と、 NOx濃度を検出する NOxセンサとを備え、これら回転センサ及び温度センサ並 びに NOxセンサからの検出値に基づきプラズマ発生装置を制御するように構成する と、 NOと NOの比や温度の影響を考慮して適切に処理し得るので、プラズマ発生装
2
置及び Z又は尿素水添加手段を容易に制御し、 NOxの低減ィ匕を一層好適に行うこ とがでさる。
[0040] 更に又、プラズマ発生装置の上流に酸化触媒を装備すると、酸化触媒で NOを生
2 成して選択還元型触媒へ流下させるので、 NOと NOの比を容易に制御し、 NOxの
2
低減ィ匕を一層好適に行うことができる。
発明の効果
[0041] 上記した本発明の排気浄ィ匕装置の第一の局面によれば、下記の如き種々の優れ た効果を奏し得る。
[0042] (I)前段に酸ィ匕触媒を配置して酸ィ匕力の強い NOを生成することで選択還元型触
2
媒の低温活性を向上するにあたり、該選択還元型触媒の前段に酸化触媒を並列に 対で装備し、その各酸化触媒への排気ガスの分配量を排気分配手段で適宜に調整 することによって、 NO/NO比が NOxの還元反応に最適な約 1〜1. 5となるように
2
維持することができるので、 NOの過剰生成を確実に抑制し得て NOx低減率の落ち
2
込み現象を確実に回避することができ、しかも、選択還元型触媒の低温活性を酸ィ匕 触媒の単独使用の場合よりも大幅に向上することができる。
[0043] (II) NO/NO比の NOx低減率への影響が少なくなる運転条件下で増えるリーク
2
アンモニア対策として、第一流路形態から第二流路形態に切り替えて排気ガスを選 択還元型触媒及び各酸化触媒を逆流させて流すことができるので、前記選択還元 型触媒を未反応のまま通過したアンモニアを各酸化触媒にて処理してアンモニアの 状態のまま車外に排出される虞れを回避することができ、し力も、新たにリークアンモ ユア対策用の酸化触媒を追加装備しなくても済むことから車輛への搭載性の悪化を 未然に回避することもできる。
[0044] 又、上記した本発明の排気浄ィ匕装置の第二の局面によれば、プラズマ発生装置に より NOと NOの比を制御するので、尿素水添加手段により尿素水の添加を行っても
2
NOxの低減ィ匕を好適に行うことができるという優れた効果を奏し得る。
[0045] 更に、上記した本発明の排気浄ィ匕装置の第三の局面によれば、プラズマ発生装置 により NOと NOの比を制御するので、尿素水添加手段により尿素水の添加を行って
2
も NOxの低減ィ匕を行うことができる。又、同時に NOによりパティキュレートフィルタの
2
煤を酸化させるので、パティキュレートフィルタの煤の影響を抑制することができる。 更に、プラズマ発生装置を温度領域ごとに制御するので、それぞれの温度領域にお ける温度の影響を考慮して NOxの低減ィ匕ゃ煤の酸ィ匕の処理を行うことができるという 優れた効果を奏し得る。
図面の簡単な説明
[0046] [図 1]本発明の第一の局面の実施例を示すブロック図である。
[図 2]図 1の第一流路形態力 第二流路形態に切り替えたブロック図である。
[図 3]本発明の第二の局面の実施例を示す概略図である。
[図 4]電力と NO生成量の関係を示したグラフである。
2
[図 5]NOx低減率にっ 、て NOと NOの比が約 1: 1の場合 (実線)と従来の場合 (破
2
線)を比較したグラフである。
[図 6]本発明の第三の局面の実施例を示す概略図である。
[図 7]電力と NO生成量の関係を示すグラフである。
2
[図 8]プラズマ電力を求める 3Dマップを示す概念図である。
[図 9]温度領域による制御方法の変化を示すグラフである。
符号の説明
[0047] 1 エンジン
2 排気ガス
3 排気管
4 選択還元型触媒
5A 酸化触媒 B 酸化触媒
分岐流路
バルブ (排気分配手段)
噴射ノズル (尿素水添加手段) 噴射ノズル (尿素水添加手段) 尿素水タンク (尿素水添加手段) 尿素水供給管 (尿素水添加手段) 尿素水
供給ポンプ (尿素水添加手段) 第一連絡管
第二連絡管
バルブ (流路切替手段)
バルブ (流路切替手段)
バルブ (流路切替手段)
バルブ (流路切替手段)
温度センサ
ディーゼルエンジン(エンジン) 排気ガス
排気管
選択還元型触媒
尿素水(還元剤)
尿素水添加装置 (尿素水添加手段) プラズマ発生装置
制御装置
回転センサ
a 回転数信号 (検出値)
ァクセノレセンサ(負荷センサ)a 負荷信号 (検出値) NOxセンサ
a 検出信号 (検出値)
NOxセンサ
a 検出信号 (検出値)
ディーゼノレエンジン(エンジン) 排気ガス
排気管
選択還元型触媒
尿素水(還元剤)
尿素水添加装置 (尿素水添加手段) プラズマ発生装置
パティキュレートフィルタ
0 酸化触媒
2 制御装置
3 回転センサ
3a 回転数信号 (検出値)
4 アクセルセンサ(負荷センサ)4a 負荷信号 (検出値)
5 NOxセンサ
5a 検出信号 (検出値)
6 NOxセンサ
6a 検出信号 (検出値)
7 温度センサ
7a 検出信号 (検出値)
8 温度センサ
8a 検出信号 (検出値)
9 温度センサ
9a 検出信号 (検出値) 発明を実施するための最良の形態
[0048] 以下、本発明の第一の局面の実施例を図面を参照しつつ説明する。
[0049] 図 1及び図 2は本発明の第一の局面の実施例を示すもので、図 1中における符号 1 はディーゼル機関であるエンジンを示し、該エンジン 1の各シリンダカゝら排出された排 気ガス 2が流通する排気管 3 (図中に太実線で示すライン;この実線の太さはラインを 区別するためのもので流路径の違 、を示すものではな!/、)の途中に、酸素共存下で も選択的に NOxをアンモニアと反応させる性質を備えた選択還元型触媒 4が装備さ れている。
[0050] この選択還元型触媒 4の前段には、 NO酸化力の異なる二つの酸化触媒 5 A, 5B ( NO酸化力の強い酸化触媒 5Aと NO酸化力の弱い酸化触媒 5B)が並列に装備され 、これら各酸化触媒 5A, 5Bに対し分岐流路 6により排気ガス 2を振り分けて流して選 択還元型触媒 4の入側で合流せしめるようにしてあり、その分配量の比率については 、分岐流路 6の一方に設けたバルブ 7 (排気分配手段)により制御されるようになって いる。
[0051] また、前記選択還元型触媒 4の前後位置には、還元剤を排気ガス 2中に添加する ための噴射ノズル 8, 9が設置され、該各噴射ノズル 8, 9と所要場所に設けた尿素水 タンク 10との間が、途中で二股条に分岐する尿素水供給管 11 (図 1中に細実線で示 すライン)により接続されており、これら噴射ノズル 8, 9、尿素水タンク 10、尿素水供 給管 11により尿素水添加手段が構成されて 、る。
[0052] そして、尿素水供給管 11の途中には、尿素水タンク 10内の尿素水 12を還元剤とし て噴射ノズル 8, 9に向け送り出す供給ポンプ 13が装備されており、尿素水供給管 1 1における常時閉のバルブ 14, 15の何れか一方のみを開作動させることで噴射ノズ ル 8 , 9の何れか一方に対し選択的に尿素水 12が供給されるようになって 、る。
[0053] 更に、前記分岐流路 6より上流の排気管 3から分岐して前記選択還元型触媒 4より 下流の排気管 3に接続する第一連絡管 16 (図中に中実線で示すライン;この実線の 太さはラインを区別するためのもので流路径の違いを示すものではない)と、該第一 連絡管 16始端の分岐箇所と前記分岐流路 6との間の排気管 3から分岐して前記第 一連絡管 16終端の接続箇所より下流の排気管 3に接続する第二連絡管 17 (図中に 中実線で示すライン;この実線の太さはラインを区別するためのもので流路径の違い を示すものではない)とが付設されており、エンジン 1からの排気ガス 2を通常の排気 管 3経路で流す第一流路形態(図 1参照)と、エンジン 1からの排気ガス 2の流れを第 一連絡管 16を介し選択還元型触媒 4及び各酸化触媒 5A, 5Bを逆流させて第二連 絡管 17へ流す第二流路形態(図 2参照)とがバルブ 18, 19, 20, 21から成る流路切 替手段を介し適宜に切り替えられるように構成されて 、る。
[0054] また、前記選択還元型触媒 4及び各酸化触媒 5A, 5Bには、夫々の触媒床温度を 検出し得るよう温度センサ 22, 23, 24が装着されており、これら温度センサ 22, 23, 24からの検出信号力 エンジン制御コンピュータ(ECU Electronic Control Unit)を 成す制御装置 25に入力されるようになって!/、る。
[0055] そして、この制御装置 25においては、前記温度センサ 22の検出信号に基づき選 択還元型触媒 4の触媒床温度が所定温度以下となっている場合に第一流路形態を 選択し且つ前記触媒床温度が前記所定温度を超えている場合に第二流路形態を選 択し得るよう前記各バルブ 18, 19, 20, 21へ向け制御信号が出力されるようにして ある。
[0056] ここで、前記制御装置 25にて第一流路形態が選択された場合には、尿素水供給 管 11のバルブ 14が制御装置 25からの制御信号により開けられて噴射ノズル 8から 尿素水 12が噴射され、前記制御装置 25にて第二流路形態が選択された場合には、 尿素水供給管 11のバルブ 15が制御装置 25からの制御信号により開けられて噴射ノ ズル 9から尿素水 12が噴射されるようになっている。
[0057] 更に、前記制御装置 25では、エンジン 1の制御を担っていることから、該エンジン 1 の回転数や負荷が図示しない回転センサやアクセルセンサからの検出信号により把 握されるようになっているので、これらから判断される現在の運転状態に基づきバル ブ 7の開度制御用マップ力 排気ガス 2中の NOZNO比が約 1〜1. 5となるような開
2
度が読み出され、これがバルブ 7に向け制御信号として出力されて各酸ィ匕触媒 5A, 5Bへの排気ガス 2の分配量が調整されるようになって 、る。
[0058] つまり、現在のエンジン 1の運転状態が把握できれば、その排気ガス 2の流量ゃ排 気温度等が概ね推定できるので、現在の運転状態における排気ガス 2の全量を NO 酸ィ匕力の強い酸ィ匕触媒 5Aに通した場合に NOZNO比がどのように変化するかが
2
予備実験データ等との照合により判り、し力も、どのような運転状態の時に NOの比率 よりも NOの比率の方が上まわってしまう力、更には、 NOの比率よりも NOの比率の
2 2 方が上まわってしまう場合に、 NO酸ィ匕力の弱い酸ィ匕触媒 5B側へ排気ガス 2をどの 程度の分配量で迂回させれば NOZNO比が 1〜1. 5に維持できるかが予備実験
2
データ等との照合力 判るので、この分配量を実現するためのバルブ 7の開度制御 をエンジン 1の回転数と負荷などの二次元マップとして予め設定しておけば、この二 次元マップ力 エンジン 1の回転数と負荷に基づき制御開度を読み出すだけで酸ィ匕 触媒による過剰な NOの生成を抑制することが可能となるのである。
2
[0059] ただし、排気ガス 2中の NOZNO比が約 1〜1· 5となるようなバルブ 7の開度を決
2
定するにあたっては、各酸化触媒 5Α, 5Βに装着した温度センサ 23, 24の実測値に 基づ 、てバルブ 7の開度を適宜に温度補正することが好ま 、。
[0060] 而して、図 1に示す如ぐ排気温度が低い運転状態で制御装置 25によりバルブ 18 , 21を開け且つバルブ 19, 20を閉じて第一流路形態を採用し、エンジン 1からの排 気ガス 2を通常の排気管 3経路で流し、バルブ 7により各酸ィ匕触媒 5Α, 5Βへの排気 ガス 2の分配量を排気ガス 2中の NOZNO比が約 1〜1. 5となるように調整しながら
2
噴射ノズル 8から選択還元型触媒 4の入側に尿素水 12を添加すると、酸化力の強!ヽ NOによる反応速度の早!ヽ還元反応が促されて効率良く NOxの低減化が図られる
2
結果、通常の選択還元型触媒 4の単独使用の場合より低い温度域力 還元反応が 起こるようになり、しかも、所定の排気温度での NOの過剰生成が前記 NOZNO比
2 2 の調整により抑制されることで NOx低減率の落ち込み現象が未然に回避される。
[0061] 更に、選択還元型触媒 4の前段に酸ィ匕触媒を単独で配置した場合には、その酸ィ匕 触媒の触媒特性により NOxの還元反応に最適な NOZNO比が維持できる温度範
2
囲が狭く限定されてしまうが、各酸化触媒 5A, 5Bへの排気ガス 2の分配量をバルブ 7で調整できることにより、最適な NOZNO比が維持される温度範囲が著しく拡張さ
2
れるので、選択還元型触媒 4の低温活性が酸化触媒の単独使用の場合よりも大幅に 向上されること〖こなる。
[0062] ただし、 NOの過剰生成による NOx低減率の落ち込み現象は、選択還元型触媒 4 の触媒床温度が比較的低い温度領域にある時に見られる現象であり、これより高い 触媒床温度に移行すれば、選択還元型触媒 4の触媒活性が十分に高まることにより NO/NO比が NOx低減率に及ぼす影響は軽微なものとなり、バルブ 18, 19, 20,
2
21により第一流路形態力 第二流路形態に切り替えても高い NOx低減率が維持さ れること〖こなる。
[0063] 依って、図 2に示す如ぐ NO/NO比の NOx低減率への影響が少ない比較的高
2
い温度領域で制御装置 25によりバルブ 19, 20を開け且つバルブ 18, 21を閉じて第 一流路形態から第二流路形態に切り替え、エンジン 1からの排気ガス 2の流れを第一 連絡管 16を介し選択還元型触媒 4及び各酸化触媒 5A, 5Bを逆流させて第二連絡 管 17へ流し、制御装置 25によりバルブ 15を開け且つバルブ 14を閉じて噴射ノズル 9から選択還元型触媒 4の入側に尿素水 12を添加すると、エンジン 1からの排気ガス 2が選択還元型触媒 4に先行して導入され、該選択還元型触媒 4を未反応のまま通 過したアンモニアが各酸ィ匕触媒 5A, 5Bにて処理されてアンモニアとして排出されな くなる。
[0064] 即ち、第一流路形態から第二流路形態に切り替えることが可能な選択還元型触媒 4の触媒床温度が高い状態とは、エンジン 1の負荷が比較的高い運転状態となって V、ることを意味して 、るので、このような選択還元型触媒 4の触媒床温度が高くなる運 転条件下では、負荷上昇により排気ガス 2の空間速度(SV: space velocity流通系装 置に単位時間に流入する流体容積を装置内流体容積で割った値)も高まっていて、 アンモニアが選択還元型触媒 4を未反応のまま通過し易 、運転条件になって!/、る。
[0065] このため、選択還元型触媒 4の触媒床温度が高くなる運転条件下で第二流路形態 を採用すれば、アンモニアが選択還元型触媒 4を未反応のまま通過し易くなつている 運転条件下で適切なリークアンモニア対策が採られることになり、し力も、そのリーク アンモニア対策を実施するにあたり、第一流路形態で NOZNO比を調整するため
2
に用いられて ヽた各酸化触媒 5 A, 5Bを再利用してリークアンモニアの酸化処理を 行うようにしているので、新たにリークアンモニア対策用の酸ィ匕触媒を追加装備しなく ても済み、車輛への搭載性が悪ィ匕する虞れが未然に回避されることになる。
[0066] 従って、上記実施例によれば、前段に酸化触媒を配置して酸化力の強い NOを生 成することで選択還元型触媒 4の低温活性を向上するにあたり、該選択還元型触媒 4の前段に酸化触媒 5A, 5Bを並列に対で装備し、その各酸ィ匕触媒 5A, 5Bへの排 気ガス 2の分配量をバルブ 7で適宜に調整することによって、 NOZNO比が NOxの
2
還元反応に最適な約 1〜1. 5となるように維持することができるので、 NOの過剰生
2 成を確実に抑制し得て NOx低減率の落ち込み現象を確実に回避することができ、し カゝも、選択還元型触媒 4の低温活性を酸化触媒の単独使用の場合よりも大幅に向上 することができる。
[0067] 更に、 NO/NO比の NOx低減率への影響が少なくなる運転条件下で増えるリー
2
クアンモニア対策として、第一流路形態から第二流路形態に切り替えて排気ガス 2を 選択還元型触媒 4及び各酸化触媒 5A, 5Bを逆流させて流すことができるので、前 記選択還元型触媒 4を未反応のまま通過したアンモニアを各酸化触媒 5A, 5Bにて 処理してアンモニアの状態のまま車外に排出される虞れを回避することができ、しか も、新たにリークアンモニア対策用の酸ィ匕触媒を追加装備しなくても済むことから車 輛への搭載性の悪ィ匕を未然に回避することもできる。
[0068] 尚、本発明の第一の局面は、上述の実施例にのみ限定されるものではなぐ排気 分配手段は必ずしも図示例の如きバルブとしなくても良ぐ例えば、分岐流路の分岐 箇所や合流箇所に分配量を調整可能なバルブとして設けたり、分岐流路の夫々の 流路に個別にバルブを設けたりしても良いこと、また、選択還元型触媒の触媒床温 度を検出する温度センサは、選択還元型触媒の入口又は出口の排気温度を触媒床 温度の代用値として検出するものであっても良いこと、その他、本発明の要旨を逸脱 しな 、範囲内にお 、て種々変更をカ卩ぇ得ることは勿論である。
[0069] 以下、本発明の第二の局面の実施例を図面を参照しつつ説明する。
[0070] 図 3、図 4は本発明の第二の局面の実施例を示すもので、図 3中における符号 31 はディーゼル機関であるディーゼルエンジンを示し、ここに図示して 、るエンジン 31 では、ターボチャージャ 32が備えられており、エアクリーナ 33から導いた吸気 34が吸 気管 35を介し前記ターボチャージャ 32のコンプレッサ 32aへと送られ、該コンプレツ サ 32aで加圧された吸気 34が更にインタークーラ 36へと送られて冷却され、該インタ 一クーラ 36から更に吸気マ-ホールド 37へと吸気 34が導かれてディーゼルエンジン 31の各気筒 38 (図 3では直列 6気筒の場合を例示している)に分配されるようになつ ている。
[0071] 更に、このディーゼルエンジン 31の各気筒 38から排出された排気ガス 39は、排気 マ-ホールド 40を介しターボチャージャ 32のタービン 32bへと送られ、該タービン 32 bを駆動した排気ガス 39が排気管 41を介し車外へ排出されるようにしてある。
[0072] また、排気マ-ホールド 40における各気筒 38の並び方向の一端部と、吸気マ-ホ 一ルド 37に接続されている吸気管 35の一端部との間を EGRパイプ 42で接続し、排 気マ-ホールド 40から抜き出した排気ガス 39の一部を水冷式の EGRクーラ 43及び EGRバルブ 44を介して吸気管 35に再循環するようになっており、排気側から吸気側 へ再循環された排気ガス 39で各気筒 38内での燃料の燃焼を抑制して燃焼温度を 下げることにより NOxの発生を低減し得るようにしてある。
[0073] 更に、排気管 41の途中には、ケーシング 45により抱持された選択還元型触媒 46 が装備されており、この選択還元型触媒 46は、フロースルー方式のハニカム構造物 として形成され、酸素共存下でも選択的に NOxをアンモニアと反応させ得るような性 質を有している。ここで、前記選択還元型触媒 46には、白金,パラジウム等の貴金属 触媒や、バナジウム,銅,鉄の酸化物等の卑金属触媒といった従来周知の触媒を採 用することが可能であるが、 SOをサルフェート (硫酸塩)に酸化し易い貴金属触媒を
2
採用するよりも、比較的酸ィ匕力の弱い卑金属触媒を採用する方がより好ましい。
[0074] 又、ケーシング 45より上流側の排気管 41には噴射ノズル 47が設置され、噴射ノズ ル 47と所要場所に設けた尿素水タンク 48との間が尿素水供給ライン 49により接続さ れており、該尿素水供給ライン 49の途中に装備した供給ポンプ 50の駆動により尿素 水タンク 48内の尿素水 51 (還元剤)を噴射ノズル 47を介し選択還元型触媒 46の上 流側に添カ卩し得るようになつていて、これら噴射ノズル 47と尿素水タンク 48と尿素水 供給ライン 49と供給ポンプ 50とにより尿素水添加装置 52が構成されている。
[0075] そして、この尿素水添加装置 52による尿素水 51の添加位置(噴射ノズル 47の開口 位置)とケーシング 45との間には、尿素水 51の噴霧を均等に拡散するミキサ 53が設 けられており、又、前記ケーシング 45内における選択還元型触媒 46の直後には、リ ークアンモニア対策として余剰のアンモニアを酸化処理する NHスリップ触媒 54が 装備されている。
[0076] 一方、尿素水 51の添加位置(噴射ノズル 47の開口位置)より上流側の排気管 41に は、排気ガス 39中に放電してプラズマを発生させるプラズマ発生装置 55が配設され ており、プラズマ発生装置 55は、電源 56に接続された複数の電極(図示せず)を対 向配置して相互間に放電を行い得る構造を備え、プラズマを発生させることによって NOを NOに酸化するようにしている。ここで、 NO生成量は、図 4に示す如ぐプラズ
2 2
マを発生させる電力量の調整により制御可能になっている。
[0077] 又、プラズマ発生装置 55は、プラズマ発生の電源制御を容易にするために電気的 もしくはメカ-カルな接点をもつ ON— OFFスィッチで、パルスのような切り替えを行 つても良ぐこの場合には印可電圧を一定にし、スイッチング間隔を制御することによ り電気量を調整し、プラズマを発生させることになる。電源 56は、直流電源、高周波 電源、ノ ルス電源も適用可能である。更に、 NOの
2 生成率を上げるために、電極に 酸化触媒を付け、電極間に酸化触媒を塗った誘電体 (図示せず)を挟むことが好まし い。更に又、プラズマ発生装置 55の電源 56には、指示された電力を供給し得るよう に内部にコンピュータを内蔵することが好ましい。又、プラズマ発生装置 55の電極は 相互間距離がほぼ一様に設定できるものであれば、板型、ロッド型、円筒型等の様 々な形状でも良い。
[0078] ここで、前記プラズマ発生装置 55の作動、前記尿素水添加装置 52の作動、排気ガ ス 39を再循環させる EGRバルブ 44の作動、各気筒 38に燃料を噴射する燃料噴射 装置 57の作動は、エンジン制御コンピュータ(ECU : Electronic Control Unit)を成す 制御装置 58からの指令信号 56a, 52a, 44a, 57aを受けて実行されるようになって いる。
[0079] 他方、この制御装置 58においては、前記エンジン 31での回転センサ 59力 の回 転数信号 59aと、アクセル開度をエンジン 31の負荷として検出するアクセルセンサ 6 0 (負荷センサ)からの負荷信号 60aと、プラズマ発生装置 55と尿素水 51の添加位置 の間、及びケーシング 45より下流側の適宜位置で排気ガス 39中の NOx濃度を検出 する NOxセンサ 61, 62からの検出信号 61a, 62aと、ケーシング 45の入側及び出側 で排気温度を検出する温度センサ 63, 64からの検出信号 63a, 64aと、吸気マ-ホ 一ルド 37の入側で吸気温度を検出する温度センサ 65からの検出信号 65aと、吸気 マ-ホールド 37の入側で過給圧を検出する過給圧センサ 66からの検出信号 66aと 、エアクリーナ 33とコンプレッサ 32aとの間で吸入空気量を計測するエアフローメータ 67からの検出信号 67aとが入力されるようになっている。ここで、制御装置 58におい ては、更に外部に配置した外気温センサ(図示せず)からの検出信号が入力されるよ うにしてもよい。
[0080] 以下、本発明の第二の局面の実施例の作用を説明する。
[0081] 排気ガス 39中の NOxを浄ィ匕する際には、初めに、回転センサ 59からの回転数信 号 59aに基づいて現在のエンジン 31の回転数が読み出されると共に、アクセルセン サ 60からの負荷信号 60aに基づいて現在の燃料噴射量が換算され、更に、 NOxセ ンサ 61, 62力らの検出信号 61a, 62a,温度センサ 63, 64力らの検出信号 63a, 64 aに基づいて、温度、流速、 NO濃度、 N濃度、 O濃度等を推定する。ここで、回転セ
2 2
ンサ 59、アクセルセンサ 60、 NOxセンサ 61, 62、温度センサ 63, 64等は、随時、デ ータを更新検出することにより、エンジン 31の運転状態の変化に伴って温度、流速、 NO濃度、 N濃度、 O濃度等に変化があっても対応し得るようになつている。又、 EG
2 2
Rバルブ 44で排気ガス 39を再循環させた際には、エンジン 31出口で NOの量も変
2 化するが、同様に、データを更新検出して対応し得るようになつている。
[0082] 温度、流速、 NO濃度、 N濃度、 O濃度等を推定した後には、制御装置 58により、
2 2
マップ等を介してどの程度 NOを生成すれば排気ガス 39中の NOと NOの比が約 1
2 2
: 1になるの力判断し、プラズマ発生装置 55の電力を調整してプラズマを発生させ、 所定量の NOを NOに酸化する。
2
[0083] ここで、プラズマ発生装置 55による NOの生成は、
2
[数 1]
NOの生成 =f (プラズマのエネルギー、温度、流速、 NO濃度、 N濃度、 O濃度)
2 2 2 の関数で処理されており、温度、流速、 NO濃度、 N濃度、 O濃度はエンジン 31の
2 2
運転状態により変化するため、プラズマのエネルギーを適宜調整して ヽる。
又、プラズマのエネノレギ一は、
[数 2] プラズマのエネルギー =f (電力、極板間距離、誘電率 (体))
の関数で求まり、極板間距離と誘電率 (体)は装置の設定により不可変の数になって いる。
更に、電力は、
[数 3]
電力 =f (印可電圧、周波数 (電流量))
である。つまり、プラズマのエネルギーは、電圧と周波数を変えることによって制御可 能である。ここで、電源は、高周波、パルスを用いても良い。
[0084] このため、 NOの生成量は、温度、流速、 NO濃度、 N濃度、 O濃度に合わせて、
2 2 2
電力、つまり電圧と周波数 (電流量)を調整することによって求まる。
[0085] プラズマ発生装置 55により NOを NOに酸化して排気ガス 39中の NOと NOの比
2 2 を約 1 : 1にした後には、 NOxセンサ 61, 62からの検出信号 61a, 62aに基づいて尿 素水 51の添力卩量を算出すると共に、温度センサ 63, 64等からの検出信号 63a, 64a により排気温度が選択還元型触媒 46の活性温度領域であることを確認し、制御装置 58からの指令信号 52aにより尿素水添加装置 52の噴射ノズル 47から尿素水 51を噴 射し、 NOxを低減する。
[0086] 而して、このように排気浄ィ匕装置を構成すれば、プラズマ発生装置 55により排気ガ ス 39中の NOを NOに酸化して NOと NOの比を制御するので、尿素水 51添加手段
2 2
により尿素水 51を添加する場合であっても NOxの低減ィ匕を好適に行うことができる。
[0087] 又、エンジン 31の回転数を検出する回転センサ 59と、エンジン 31の負荷を検出す るアクセルセンサ 60 (負荷センサ)と、 NOx濃度を検出する NOxセンサ 61, 62とを 備え、これら回転センサ 59及びアクセルセンサ 60並びに NOxセンサ 61, 62の少な くとも一つ力もの回転数信号 59a (検出値)、負荷信号 60a (検出値)、検出信号 61a , 62a (検出値)に基づきプラズマ発生装置 55及び Z又は尿素水 51添加手段を制 御するように構成すると、 NOと NOの比を適切に検出し得るので、プラズマ発生装
2
置 55及び Z又は尿素水 51添加手段を容易に制御し、 NOxの低減化を好適に行うこ とがでさる。
[0088] 更に、プラズマ発生装置 55は電力量の制御により NOの生成量を調整するように 構成されると、 NOの生成を容易にして NOと NOの比を制御するので、 NOxの低減
2 2
化を好適に行うことができる。
[0089] 尚、本発明の第二の局面は上記実施例にのみ限定されるものではなぐプラズマに より NOを NOに酸化して NOと NOの比を制御するならば、プラズマの発生方法及
2 2
び NOxの処理手順は特に限定されるものではな 、こと、プラズマ発生装置及び尿素 水添加装置の制御は他のセンサからの指令信号によって制御しても良いこと、その 他、本発明の要旨を逸脱しない範囲内において種々変更をカ卩ぇ得ることは勿論であ る。
[0090] 以下、本発明の第三の局面の実施例を図面を参照しつつ説明する。
[0091] 図 6〜図 9は本発明の第三の局面の実施例を示すもので、図 6中における符号 71 はディーゼル機関であるディーゼルエンジンを示し、ここに図示して 、るエンジン 71 では、ターボチャージャ 72が備えられており、エアクリーナ 73から導いた吸気 74が吸 気管 75を介し前記ターボチャージャ 72のコンプレッサ 72aへと送られ、該コンプレツ サ 72aで加圧された吸気 74が更にインタークーラ 76へと送られて冷却され、該インタ 一クーラ 76から更に吸気マ-ホールド 77へと吸気 74が導かれてディーゼルエンジン 71の各気筒 78 (図 6では直列 6気筒の場合を例示している)に分配されるようになつ ている。
[0092] 更に、このディーゼルエンジン 71の各気筒 78から排出された排気ガス 79は、排気 マ-ホールド 80を介しターボチャージャ 72のタービン 72bへと送られ、該タービン 72 bを駆動した排気ガス 79が排気管 81を介し車外へ排出されるようにしてある。
[0093] 又、排気マ-ホールド 80における各気筒 78の並び方向の一端部と、吸気マ-ホー ルド 77に接続されている吸気管 75の一端部との間を EGRパイプ 82で接続し、排気 マ-ホールド 80から抜き出した排気ガス 79の一部を水冷式の EGRクーラ 83及び E GRバルブ 84を介して吸気管 75に再循環するようになっており、排気側から吸気側 へ再循環された排気ガス 79で各気筒 78内での燃料の燃焼を抑制して燃焼温度を 下げることにより NOxの発生を低減し得るようにしてある。
[0094] 更に、排気管 81の途中には、ケーシング 85により抱持された選択還元型触媒 86 が装備されており、この選択還元型触媒 86は、フロースルー方式のハ-カム構造物 として形成され、酸素共存下でも選択的に NOxをアンモニアと反応させ得るような性 質を有している。ここで、前記選択還元型触媒 86には、白金,パラジウム等の貴金属 触媒や、バナジウム,銅,鉄の酸化物等の卑金属触媒といった従来周知の触媒を採 用することが可能であるが、 SOをサルフェート (硫酸塩)に酸化し易い貴金属触媒を
2
採用するよりも、比較的酸ィ匕力の弱い卑金属触媒を採用する方がより好ましい。
[0095] 又、ケーシング 85より上流側の排気管 81には噴射ノズル 87が設置され、噴射ノズ ル 87と所要場所に設けた尿素水タンク 88との間が尿素水供給ライン 89により接続さ れており、該尿素水供給ライン 89の途中に装備した供給ポンプ 90の駆動により尿素 水タンク 88内の尿素水 91 (還元剤)を噴射ノズル 87を介し選択還元型触媒 86の上 流側に添カ卩し得るようになつていて、これら噴射ノズル 87と尿素水タンク 88と尿素水 供給ライン 89と供給ポンプ 90とにより尿素水添加装置 92が構成されている。
[0096] そして、この尿素水添加装置 92による尿素水 91の添加位置(噴射ノズル 87の開口 位置)とケーシング 85との間には、尿素水 91の噴霧を均等に拡散するミキサ 93が設 けられており、又、前記ケーシング 85内における選択還元型触媒 86の直後には、リ ークアンモニア対策として余剰のアンモニアを酸化処理する NHスリップ触媒 94が
3
装備されている。
[0097] 一方、尿素水 91の添加位置(噴射ノズル 87の開口位置)より上流側の排気管 81に は、排気ガス 79中に放電してプラズマを発生させるプラズマ発生装置 95が配設され ており、プラズマ発生装置 95は、電源 96に接続された複数の電極(図示せず)を対 向配置して相互間に放電を行い得る構造を備え、プラズマを発生させることによって NOを NOに酸化するようにしている。ここで、 NO生成量は、図 7に示す如ぐプラズ
2 2
マを発生させる電力量の調整により制御可能になっている。
[0098] 又、プラズマ発生装置 95は、プラズマ発生の電源制御を容易にするために電気的 もしくはメカ-カルな接点をもつ ON— OFFスィッチで、パルスのような切り替えを行 つても良ぐこの場合には印可電圧を一定にし、スイッチング間隔を制御することによ り電気量を調整し、プラズマを発生させることになる。電源 96は、直流電源、高周波 電源、ノ ルス電源も適用可能である。更に、 NOの生成率を上げるために、電極に
2
酸化触媒を付け、電極間に酸化触媒を塗った誘電体 (図示せず)を挟むことが好まし い。更に又、プラズマ発生装置 95の電源 96には、指示された電力を供給し得るよう に内部にコンピュータを内蔵することが好ましい。又、プラズマ発生装置 95の電極は 相互間距離がほぼ一様に設定できるものであれば、板型、ロッド型、円筒型等の様 々な形状でも良い。
[0099] 更に、プラズマ発生装置 95と尿素水 91の添加位置(噴射ノズル 87の開口位置)と の間の排気管 81には、ケーシング 97に抱持されたパティキュレートフィルタ 98が装 備されており、このパティキュレートフィルタ 98は、コージエライト等のセラミック力も成 る多孔質のハ-カム構造となっており、格子状に区画された各流路の入口が交互に 目封じされ、入口が目封じされて 、な 、流路につ!/、ては、その出口が目封じされるよ うになっており、各流路を区画する多孔質薄壁を透過した排気ガスのみが下流側へ 排出されるようにしてある。
[0100] 更に又、プラズマ発生装置 95とターボチャージャ 72のタービン 72bとの間の排気 管 81には、プラズマ発生装置 95の上流に装備されて選択還元型触媒 86の低温活 性を向上させるよう、ケーシング 99により抱持された酸ィ匕触媒 100が装備されており 、この酸ィ匕触媒 100は、白金に酸ィ匕アルミニウム (アルミナ)を混合してステンレス製 のメタル担体等に担持させた構造となっている。ここで、酸ィ匕触媒 100とプラズマ発 生装置 95は、図 6の如く別々に備えられても良いが、酸ィ匕触媒をプラズマ発生装置 9 5に付設してまとめ、酸ィ匕触媒付きプラズマ発生装置にしても良いし、更にパティキュ レートフィルタ 98も付設してまとめ、酸ィ匕触媒及びパティキュレートフィルタ付きプラス、 マ発生装置 (酸ィ匕触媒付きプラズマ DPF)にしても良 ヽ。
[0101] ここで、前記プラズマ発生装置 95の作動、前記尿素水添加装置 92の作動、排気ガ ス 79を再循環させる EGRバルブ 84の作動、各気筒 78に燃料を噴射する燃料噴射 装置 101の作動は、エンジン制御コンピュータ(ECU Electronic Control Unit)を成 す制御装置 102からの指令信号 96a, 92a, 84a, 101aを受けて実行されるようにな つている。
[0102] 他方、この制御装置 102においては、前記エンジン 71での回転センサ 103からの 回転数信号 103aと、アクセル開度をエンジン 71の負荷として検出するアクセルセン サ 104 (負荷センサ)からの負荷信号 104aと、ケーシング 97と尿素水 91の添加位置 の間、及びケーシング 85より下流側の適宜位置で排気ガス 79中の NOx濃度を検出 する NOxセンサ 105, 106力らの検出信号 105a, 106aと、ケーシング 85の入側及 び出側で排気温度を検出する温度センサ 107, 108からの検出信号 107a, 108aと 、吸気マ-ホールド 77の入側で吸気温度を検出する温度センサ 109からの検出信 号 109aと、吸気マ二ホールド 77の入側で過給圧を検出する過給圧センサ 110から の検出信号 110aと、エアクリーナ 73とコンプレッサ 72aとの間で吸入空気量を計測 するエアフローメータ 111からの検出信号 11 laとが入力されるようになって!/、る。ここ で、制御装置 102においては、更に外部に配置した外気温センサ(図示せず)からの 検出信号が入力されるようにしてもよ!ヽ。
[0103] 以下、本発明の第三の局面の実施例の作用を説明する。
[0104] 排気ガス 79中の NOxを浄ィ匕する際には、初めに、回転センサ 103からの回転数信 号 103aに基づいて現在のエンジン 71の回転数が読み出されると共に、 NOxセンサ 105, 106からの検出信号 105a, 106aに基づいて NOx濃度が読み出され、更に、 温度センサ 107, 108からの検出信号 107a, 108aに基づいて排気ガスの温度が読 み出され、図 8に示す如きエンジン回転数、 NOx濃度、排気温度力 なる 3Dマップ( 3次元マップ)により、プラズマ発生装置 95でプラズマを発生させるプラズマ電力が決 定される。
[0105] ここで、決定されるプラズマ電力は温度領域によって制御装置の制御方法が異なつ ており、具体的な温度領域における制御方法の一例を示すと、温度領域は、下限温 度から 130°Cまでの温度領域(図 9では Iの温度領域)、 130°Cから 180°Cまでの温度 領域(図 9では IIの温度領域)、 180°Cから 270°Cまでの温度領域(図 9では IIIの温 度領域)、 270°C力 450°Cまでの温度領域(図 9では IVの温度領域)、 450°Cから 6 00°Cまでの温度領域(図 9では Vの温度領域)、 600°Cから上限温度までの温度領 域(図 9では VIの温度領域)に分かれている。
[0106] 下限温度から 130°Cまでの温度領域(図 9では Iの温度領域)は、プラズマ発生装 置 95によりプラズマを発生させても NOxの低減に関与しない領域であり、電力を供 給しないようにしている。又、 130°Cから 180°Cまでの温度領域(図 9では IIの温度領 域)は、先の温度領域と同様にプラズマ発生装置 95によりプラズマを発生させても N Oxの低減に関与しな 、領域であるが、プラズマの発生の熱で選択還元型触媒 86を 活性温度領域にするよう排気ガスの温度を所定温度に維持する電力を供給している 。更に、 180°Cから 270°Cまでの温度領域(図 9では IIIの温度領域)は、煤を酸ィ匕さ せる必要はないが、尿素水添加装置 92により尿素水 91を添カ卩し、 NOxの低減を向 上させる必要がある領域であり、 NOxの低減のためにプラズマ発生装置 95により NO を生成する電力を供給している。更に又、 270°C力も 450°Cまでの温度領域(図 9で
2
は IVの温度領域)は、選択還元型触媒 86の活性が高ぐ選択還元型触媒 86に対し て、 NOの生成は少くても良いが、煤を酸ィ匕させる必要がある領域であり、 NOにより
2 2 煤を酸化させるためにプラズマ発生装置 95により NOを生成する電力を供給してい
2
る。なお、 270°C力 450°Cまでの温度領域は図 9に示すく 180°Cから 270°Cまでの 温度領域より少ない電力で良い。又、 450°Cから 600°Cまでの温度領域(図では Vの 温度領域)は、選択還元型触媒 86の活性が更に高ぐ選択還元型触媒 86に対して NOの生成は不要である力 煤を確実に酸ィ匕させる必要がある領域であり、 NOによ
2 2 り煤の酸ィ匕を促進するためにプラズマ発生装置 95により NOを生成する電力を供給
2
している。更に、 600°C力も上限温度までの温度領域(図では VIの温度領域)は、煤 が自然に酸化する領域であり、 NO
2は不要であるため電力を供給しないようにしてい る。
これらの温度領域において、プラズマ発生装置 95により NOが適宜生成されており
2
、具体例を、 180°Cから 270°Cまでの温度領域(図では IIIの温度領域)の場合で説 明すると、プラズマ発生装置 95で NOを生成する際には、回転センサ 103からの回
2
転数信号 103aに基づいて現在のエンジン 71の回転数が読み出されると共に、ァク セルセンサ 104からの負荷信号 104aに基づ 、て現在の燃料噴射量が換算され、 N Oxセンサ 105, 106力らの検出信号 105a, 106a,温度センサ 107, 108力らの検 出信号 107a, 108aに基づいて、温度、流速、 NO濃度、 N濃度、 O濃度等を推定
2 2
する。ここで、回転センサ 103、アクセルセンサ 104、 NOxセンサ 105, 106、温度セ ンサ 107, 108等は、随時、データを更新検出することにより、エンジン 71の運転状 態の変化に伴って温度、流速、 NO濃度、 N濃度、 O濃度等に変化があっても対応
2 2
し得るようになつている。又、 EGRバルブ 84で排気ガス 79を再循環させた際には、 エンジン 71出口で NOの量も変化するが、同様に、データを更新検出して対応し得
2
るようになっている。
[0108] 温度、流速、 NO濃度、 N濃度、 O濃度等を推定した後には、制御装置 102により
2 2
、NOxセンサ 105, 106の検出信号(検出値) 105a, 106aを介して、又はエンジン 7 1の回転数とアクセル開度 (燃料噴射量)とを入力したマップを介して、どの程度 NO
2 を生成すれば排気ガス 79中の NOと NOの比が約 1 : 1になるのか判断し、プラズマ
2
発生装置 95の電力を調整してプラズマを発生させ、所定量の NOを NOに酸化する
2
[0109] ここで、プラズマ発生装置 95による NOの生成は、
2
NOの生成 =f (プラズマのエネルギー、温度、流速、 NO濃度、 N濃度、 O濃度)
2 2 2 の関数で処理されており、温度、流速、 NO濃度、 N濃度、 O濃度はエンジン 71の
2 2
運転状態により変化するため、プラズマのエネルギーを適宜調整して ヽる。
又、プラズマのエネノレギ一は、
[数 5]
プラズマのエネルギー =f (電力、極板間距離、誘電率 (体))
の関数で求まり、極板間距離と誘電率 (体)は装置の設定により不可変の数になって いる。
更に、電力は、
[数 6]
電力 =f (印可電圧、周波数 (電流量))
である。つまり、プラズマのエネルギーは、電圧と周波数を変えることによって制御可 能である。ここで、電源は、高周波、パルスを用いても良い。
[0110] このため、 NOの生成量は、温度、流速、 NO濃度、 N濃度、 O濃度に合わせて、
2 2 2
電力、つまり電圧と周波数 (電流量)を調整することによって求まる。
[0111] プラズマ発生装置 95により NOを NOに酸化して排気ガス 79中の NOと NOの比
2 2 を約 1 : 1にした後には、 NOxセンサ 105, 106等からの検出信号 105a, 106aに基 づいて尿素水 91の添加量を算出すると共に、温度センサ 107, 108等からの検出信 号 107a, 108aにより排気温度が選択還元型触媒 86の活性温度領域であることを確 認し、制御装置 102からの指令信号 92aにより尿素水添加装置 92の噴射ノズル 87 カゝら尿素水 91を噴射し、 NOxを低減する。
[0112] 而して、このように排気浄ィ匕装置を構成すれば、プラズマ発生装置 95により排気ガ ス中の NOを NOに酸化して NOと NOの比を制御するので、尿素水添加装置 92に
2 2
より尿素水を添加する場合であっても NOxの低減ィ匕を行うことができる。又、同時に パティキュレートフィルタ 98を備えた状態であっても、温度領域の区分けにより排気 ガス中の NOと NOの比を調整して NOによりパティキュレートフィルタ 98の煤を酸化
2 2
させるので、パティキュレートフィルタ 98の煤の影響を抑制し、 NOxの低減ィ匕を行うこ とができる。更に、プラズマ発生装置 95を温度領域ごとに制御するので、それぞれの 温度領域における温度の影響を考慮して NOxの低減ィヒゃ煤の酸ィヒの処理を行うと 共に消費電力を低減することができる。
[0113] 又、プラズマ発生装置 95の制御は、パティキュレートフィルタ 98中の煤を酸ィ匕させ ると共に、 NOと NOの比のバランスを維持するよう構成されると、パティキュレートフィ
2
ルタ 98の煤の影響を一層抑制し、 NOxの低減ィ匕を好適に行うことができる。
[0114] 更に、エンジン 71の回転数を検出する回転センサ 103と、排気ガスの温度を検出 する温度センサ 107, 108と、 NOx濃度を検出する NOxセンサ 105, 106とを備え、 これら回転センサ 103及び温度センサ 107, 108並びに NOxセンサ 105, 106力ら の検出値に基づきプラズマ発生装置 95を制御するように構成すると、 NOと NOの比
2 や温度の影響を考慮して適切に処理し得るので、プラズマ発生装置 95及び Z又は 尿素水添加装置 92を容易に制御し、 NOxの低減ィ匕を一層好適に行うことができる。
[0115] 更に又、プラズマ発生装置 95の上流に装備される酸ィ匕触媒 100を備えると、酸ィ匕 触媒 100で NOを生成して選択還元型触媒 86へ流下させるので、 NOと NOの比を
2 2 容易に制御し、 NOxの低減ィ匕を一層好適に行うことができる。
[0116] 尚、本発明の第三の局面は、上述の実施例にのみ限定されるものではなぐプラズ マにより煤を酸化させると共に NOと NOの比を制御するならば、制御方法、プラズマ
2
の発生方法及び NOxの処理手順は特に限定されるものではな ヽこと、プラズマ発生 装置及び尿素水添加装置の制御は他のセンサからの指令信号によって制御しても 良いこと、その他、本発明の要旨を逸脱しない範囲内において種々変更をカ卩ぇ得る ことは勿論である。

Claims

請求の範囲
[1] エンジンの排気管途中に装備されて酸素共存下でも選択的に NOxをアンモニアと 反応させ得る選択還元型触媒と、該選択還元型触媒の前段に並列に対で装備され た NO酸化力の異なる酸化触媒と、該各酸化触媒に対し排気ガスを振り分けて流し 且つ前記各酸化触媒を通過した後に合流せしめる分岐流路と、該分岐流路の各酸 化触媒への排気ガスの分配量を排気ガス中の NOZNO比が約 1〜1. 5となるよう
2
に調整する排気分配手段と、前記選択還元型触媒の前後位置の何れか一方に対し 選択的に尿素水を添加する尿素水添加手段と、前記分岐流路より上流の排気管か ら分岐して前記選択還元型触媒より下流の排気管に接続する第一連絡管と、該第一 連絡管始端の分岐箇所と前記分岐流路との間の排気管から分岐して前記第一連絡 管終端の接続箇所より下流の排気管に接続する第二連絡管とを備え、エンジンから の排気ガスを通常の排気管経路で流す第一流路形態と、エンジンからの排気ガスの 流れを第一連絡管を介し選択還元型触媒及び各酸化触媒を逆流させて第二連絡 管へ流す第二流路形態とを流路切替手段を介し適宜に切り替え得るように構成して なる排気浄化装置。
[2] 選択還元型触媒の触媒床温度を検出する温度センサを備え、該温度センサの検 出信号に基づき前記触媒床温度が所定温度以下となっている場合に第一流路形態 を選択し且つ前記触媒床温度が所定温度を超えている場合に第二流路形態を選択 し得るように構成してなる請求項 1に記載の排気浄化装置。
[3] エンジンの排気管途中に装備されて酸素共存下でも選択的に NOxをアンモニアと 反応させ得る選択還元型触媒と、該選択還元型触媒の入側で排気ガス中に還元剤 として尿素水を添加する尿素水添加手段と、該尿素水添加手段の添加より上流で排 気ガス中に放電して NOを発生させるプラズマ発生装置と、前記排気ガス中の NOと
2
NOの比を調整するよう前記プラズマ発生装置を制御して前記尿素水添加手段に
2
尿素水の添加を行わしめる制御装置とを備えてなる排気浄ィ匕装置。
[4] エンジンの回転数を検出する回転センサと、エンジンの負荷を検出する負荷センサ と、 NOx濃度を検出する NOxセンサとを備え、これら回転センサ及び負荷センサ並 びに NOxセンサの少なくとも一つからの検出値に基づきプラズマ発生装置及び Z又 は尿素水添加手段を制御するように構成した請求項 3に記載の排気浄ィ匕装置。
[5] プラズマ発生装置は電力量の制御により NOの生成量を調整するように構成され
2
た請求項 3に記載の排気浄化装置。
[6] エンジンの排気管途中に装備されて酸素共存下でも選択的に NOxをアンモニアと 反応させ得る選択還元型触媒と、該選択還元型触媒の入側で排気ガス中に還元剤 として尿素水を添加する尿素水添加手段と、該尿素水添加手段の添加より上流に装 備されて排気ガス中の煤を捕捉するパティキュレートフィルタと、該パティキュレートフ ィルタより上流で排気ガス中に放電して NOを発生させるプラズマ発生装置と、前記
2
排気ガス中の NOと NOの比を調整するよう前記プラズマ発生装置を温度領域ごとに
2
制御して前記尿素水添加手段に尿素水の添加を行しめる共にパティキュレートフィ ルタ中の煤を酸ィ匕し得る制御装置とを備えてなる排気浄ィ匕装置。
[7] プラズマ発生装置の制御は、パティキュレートフィルタ中の煤を酸ィ匕させると共に、 NOと NOの比のバランスを維持するよう構成された請求項 6に記載の排気浄ィ匕装置
2
[8] エンジンの回転数を検出する回転センサと、排気温度を検出する温度センサと、 N Ox濃度を検出する NOxセンサとを備え、これら回転センサ及び温度センサ並びに N Oxセンサ力 の検出値に基づきプラズマ発生装置を制御するように構成した請求項 6に記載の排気浄ィ匕装置。
[9] プラズマ発生装置の上流に酸ィ匕触媒を装備した請求項 6に記載の排気浄ィ匕装置。
PCT/JP2005/015189 2004-08-23 2005-08-22 排気浄化装置 WO2006022213A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/574,072 US7765800B2 (en) 2004-08-23 2005-08-22 Exhaust gas purification apparatus

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2004-242291 2004-08-23
JP2004242290A JP2006057576A (ja) 2004-08-23 2004-08-23 排気浄化装置
JP2004-242290 2004-08-23
JP2004242291A JP4267538B2 (ja) 2004-08-23 2004-08-23 排気浄化装置
JP2004253907A JP2006070771A (ja) 2004-09-01 2004-09-01 排気浄化装置
JP2004-253907 2004-09-01

Publications (1)

Publication Number Publication Date
WO2006022213A1 true WO2006022213A1 (ja) 2006-03-02

Family

ID=35967425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/015189 WO2006022213A1 (ja) 2004-08-23 2005-08-22 排気浄化装置

Country Status (2)

Country Link
US (1) US7765800B2 (ja)
WO (1) WO2006022213A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008135805A1 (en) * 2007-05-02 2008-11-13 Perkins Engines Company Limited Exhaust treatment system implementing selective doc bypass
US20100300080A1 (en) * 2007-10-09 2010-12-02 Axel Peters Device for Post-Treatment of Exhaust Gases of a Lean Burning Internal Combustion Engine

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007009139A1 (de) * 2005-07-19 2007-01-25 Avl List Gmbh Abgasstrang einer brennkraftmaschine
JP4274270B2 (ja) * 2007-06-26 2009-06-03 いすゞ自動車株式会社 NOx浄化システム及びNOx浄化システムの制御方法
JP2009091909A (ja) * 2007-10-04 2009-04-30 Hino Motors Ltd 排気浄化装置
US9863297B2 (en) * 2007-12-12 2018-01-09 Basf Corporation Emission treatment system
US9993771B2 (en) 2007-12-12 2018-06-12 Basf Corporation Emission treatment catalysts, systems and methods
KR100999614B1 (ko) * 2007-12-14 2010-12-08 기아자동차주식회사 배기 가스 내의 질소산화물 저감 장치
US8635853B2 (en) * 2008-01-25 2014-01-28 Caterpillar Inc. Exhaust reduction system having oxygen and temperature control
US8607553B2 (en) * 2008-02-15 2013-12-17 Caterpillar Inc. Exhaust system implementing selective catalyst flow control
US7971430B2 (en) 2008-04-04 2011-07-05 Ford Global Technologies, Llc Diesel turbine SCR catalyst
US8161731B2 (en) * 2008-05-12 2012-04-24 Caterpillar Inc. Selective catalytic reduction using controlled catalytic deactivation
US20100154392A1 (en) * 2008-12-18 2010-06-24 Caterpillar Inc. Adjusting nitrogen oxide ratios in exhaust gas
JP5620696B2 (ja) * 2010-03-11 2014-11-05 日野自動車株式会社 排気浄化装置
FR2981862A3 (fr) * 2011-10-27 2013-05-03 Renault Sa Controle du ratio no2/nox pour la scr par procede plasma
EP2918805B1 (en) 2012-11-07 2017-06-21 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device for internal-combustion engine
DK178097B1 (en) * 2013-10-31 2015-05-18 Man Diesel & Turbo Deutschland A combustion engine system
FR3071871B1 (fr) * 2017-09-29 2020-02-07 Continental Automotive France Procede de reduction catalytique selective avec desorption d'ammoniac a partir d'une cartouche dans une ligne d'echappement
US10828604B2 (en) * 2018-12-08 2020-11-10 Deere & Company Exhaust gas treatment system and method with non-thermal plasma generator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001525902A (ja) * 1997-05-16 2001-12-11 シーメンス アクチエンゲゼルシヤフト 酸素を含有する排ガス中の酸化有害物質を除去するための方法および装置ならびにこれにより駆動されるエンジン
JP2003041927A (ja) * 2001-07-31 2003-02-13 Toyota Motor Corp 排気ガス浄化装置
JP2003201825A (ja) * 2001-10-31 2003-07-18 Mitsubishi Heavy Ind Ltd エンジン排ガスの処理方法およびその装置
JP2003239728A (ja) * 2002-02-14 2003-08-27 Hino Motors Ltd 排気浄化装置
JP2003531721A (ja) * 2000-05-04 2003-10-28 シーメンス アクチエンゲゼルシヤフト 排ガス浄化方法及び装置
JP2003314251A (ja) * 2002-04-19 2003-11-06 Toyota Motor Corp 内燃機関の排気浄化装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3119088B2 (ja) * 1994-09-16 2000-12-18 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP2002161732A (ja) 2000-11-30 2002-06-07 Hino Motors Ltd 排気浄化装置
WO2003054364A2 (en) * 2001-12-20 2003-07-03 Johnson Matthey Public Limited Company Method and apparatus for filtering partriculate matter and selective catalytic reduction of nox
KR20060012642A (ko) * 2003-05-22 2006-02-08 히노 지도샤 가부시키가이샤 배기정화장치
US7240484B2 (en) * 2003-12-29 2007-07-10 Delphi Technologies, Inc. Exhaust treatment systems and methods for using the same
DE102005031816A1 (de) * 2005-07-06 2007-01-18 Emitec Gesellschaft Für Emissionstechnologie Mbh Verfahren zur Reduzierung des Partikel- und Stickoxidanteils im Abgasstrom einer Verbrennungskraftmaschine und entsprechende Abgasaufbereitungseinheit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001525902A (ja) * 1997-05-16 2001-12-11 シーメンス アクチエンゲゼルシヤフト 酸素を含有する排ガス中の酸化有害物質を除去するための方法および装置ならびにこれにより駆動されるエンジン
JP2003531721A (ja) * 2000-05-04 2003-10-28 シーメンス アクチエンゲゼルシヤフト 排ガス浄化方法及び装置
JP2003041927A (ja) * 2001-07-31 2003-02-13 Toyota Motor Corp 排気ガス浄化装置
JP2003201825A (ja) * 2001-10-31 2003-07-18 Mitsubishi Heavy Ind Ltd エンジン排ガスの処理方法およびその装置
JP2003239728A (ja) * 2002-02-14 2003-08-27 Hino Motors Ltd 排気浄化装置
JP2003314251A (ja) * 2002-04-19 2003-11-06 Toyota Motor Corp 内燃機関の排気浄化装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008135805A1 (en) * 2007-05-02 2008-11-13 Perkins Engines Company Limited Exhaust treatment system implementing selective doc bypass
US20100300080A1 (en) * 2007-10-09 2010-12-02 Axel Peters Device for Post-Treatment of Exhaust Gases of a Lean Burning Internal Combustion Engine
US9803528B2 (en) * 2007-10-09 2017-10-31 Audi Ag Device for post-treatment of exhaust gases of a lean burning internal combustion engine

Also Published As

Publication number Publication date
US20070243115A1 (en) 2007-10-18
US7765800B2 (en) 2010-08-03

Similar Documents

Publication Publication Date Title
WO2006022213A1 (ja) 排気浄化装置
US7802419B2 (en) Exhaust gas post treatment system
US8713922B2 (en) Engine exhaust purification device
US8833059B2 (en) Motor-vehicle internal combustion engine with exhaust-gas recirculation
EP2826974B1 (en) Exhaust gas purification device
US7937933B2 (en) Exhaust gas post treatment system
CN101676530B (zh) 用于再生设置在内燃机排气管路中的颗粒过滤器的方法和装置
EP2543837B1 (en) Exhaust gas purification apparatus of an internal combustion engine
JP5804376B2 (ja) 内燃機関の排気浄化装置
US20100199643A1 (en) Exhaust gas purification system
US20150275722A1 (en) Device and method for regenerating a particulate filter arranged in the exhaust section of an internal combustion engine
US20100077739A1 (en) Exhaust system implementing dual stage SCR
JP4432917B2 (ja) 内燃機関の排気浄化装置
CN104285048A (zh) 废气净化***以及废气净化方法
KR20130003980A (ko) 배기 가스 정화 장치 및 이를 포함하는 배기 장치
JP4224383B2 (ja) 排気浄化装置
JP5258426B2 (ja) エンジンの排気浄化装置
CN102966413A (zh) 后处理***
JP2007051924A (ja) 排ガスのNH3及びNOxの計測装置
JP5975320B2 (ja) 内燃機関の排気浄化装置
JP4529822B2 (ja) 内燃機関の排気浄化装置
EP2410144B1 (en) Method of Controlling NOx Emissions in an Internal Combustion Engine
EP1999346B1 (en) Device for purification of exhaust gas
KR101671526B1 (ko) 엔진의 후처리 장치
JP2006070771A (ja) 排気浄化装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11574072

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 11574072

Country of ref document: US