WO2006022201A1 - ロボットの評価システム及び評価方法 - Google Patents

ロボットの評価システム及び評価方法 Download PDF

Info

Publication number
WO2006022201A1
WO2006022201A1 PCT/JP2005/015134 JP2005015134W WO2006022201A1 WO 2006022201 A1 WO2006022201 A1 WO 2006022201A1 JP 2005015134 W JP2005015134 W JP 2005015134W WO 2006022201 A1 WO2006022201 A1 WO 2006022201A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot
sensor
output
state quantity
unit
Prior art date
Application number
PCT/JP2005/015134
Other languages
English (en)
French (fr)
Inventor
Hideo Nagata
Yasuyuki Inoue
Original Assignee
Kabushiki Kaisha Yaskawa Denki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Yaskawa Denki filed Critical Kabushiki Kaisha Yaskawa Denki
Priority to EP05780443A priority Critical patent/EP1803536A1/en
Priority to JP2006531872A priority patent/JPWO2006022201A1/ja
Priority to US11/661,136 priority patent/US20070288124A1/en
Publication of WO2006022201A1 publication Critical patent/WO2006022201A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1694Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/088Controls for manipulators by means of sensing devices, e.g. viewing or touching devices with position, velocity or acceleration sensors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40547End effector position using accelerometers in tip

Definitions

  • the present invention relates to an evaluation system for measuring a state quantity of a tip of a robot in an orthogonal coordinate system, particularly a position, a velocity, and a calorie velocity, and an evaluation method thereof.
  • the state of the hand of the robot especially the position, velocity, acceleration, or angle, angular velocity, and angular acceleration are accurate. It is important to measure well, but since the movable range of the hand of the serial link type robot is wide, the freedom of movement of the hand is also 6 degrees of freedom of orthogonality and rotation and multiple degrees of freedom, so it is measured with high accuracy. It is difficult to do.
  • a passive link 3-axis robot having a rotation angle sensor is attached to the robot hand, and the position of the robot hand to be measured is measured.
  • a passive link 3-axis robot having a rotation angle sensor is attached to the robot hand, and the position of the robot hand to be measured is measured.
  • the posture change of the robot hand to be measured is absorbed by the universal joint, and only the position change is calculated by the value of the rotation angle sensor and the link length force.
  • markers and LEDs are placed on the measurement target, and the images are continuously captured by two or more cameras and synthesized by a dedicated controller to obtain a continuous three-dimensional position.
  • This is a configuration that uses relative position information such as an acceleration sensor at the heel position where it cannot be photographed.
  • vibration is measured by an acceleration sensor attached to the arm, and the robot's natural vibration is measured by FFT analysis.
  • the prediction formula for calculating the natural frequency is obtained in advance as a function of the natural frequency, the position of the robot arm, and the mass of the workpiece.
  • a multi-sensor measurement head with three perpendicular surfaces with non-contact sensors is opposed to a target with three perpendicular surfaces, and the relative movement of the target is based on the cubic localization measurement principle.
  • There is a method that calculates the pose and measures the position and direction data simultaneously for example, see Patent Document 4).
  • the robot's own parameter correction method includes an external sensor that acquires information on the work object and an internal sensor that acquires the position and orientation information of the robot. There is also a method for modeling recognition errors from information sources.
  • Patent Document 1 Japanese Utility Model Publication No. 07-0331295 (Claim 1, Fig. 1)
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-050356 (Claim 1, FIG. 1)
  • Patent Document 3 Japanese Patent Laid-Open No. 06-278080 (Claim 1, Fig. 1)
  • Patent Document 4 Japanese Patent Laid-Open No. 08-090465 (Claim 1, Fig. 1)
  • Patent Document 5 Japanese Patent Laid-Open No. 11 197834 (Claim 1, FIG. 1)
  • Patent Document 6 Patent 3442941 (Claim 1, Fig. 1)
  • an image obtained by photographing an object to be measured with two or more cameras and an acceleration sensor or gyro sensor force is expensive.
  • vibration is measured by an acceleration sensor attached to the arm, and the robot's natural vibration is measured by FFT analysis.
  • Robot performance evaluation Evaluate the absolute hand position, velocity and acceleration, or angle, angular velocity and angular acceleration in the Cartesian coordinate system during movement. It cannot be measured and evaluated.
  • the method of modeling the recognition error by measuring the same state quantity during linear motion by the external sensor and the internal sensor cannot evaluate the performance of the robot hand.
  • the motion performance of the robot's hand cannot be evaluated by converting the acceleration signal into the acceleration of each axis using a Jacobian transpose matrix through a low-pass filter and feeding it back to the speed command.
  • the present invention has been made in view of the problem of power, and does not require a complicated calibration, and has a simple system configuration in real time with high accuracy in a non-contact manner. It is an object of the present invention to provide a robot evaluation system and method for measuring a state quantity, particularly a position, velocity and acceleration, or an angle, angular velocity and angular acceleration. Target.
  • Another object is to display the combined output value of the robot hand command value and the sensor value on the operation pendant so that the operator can evaluate the response of the robot hand in real time.
  • the servo gain adjustment of each axis servo motor, speed loop gain adjustment, and detection of abnormal robot operation can be performed even from a remote location.
  • the present invention in order to solve the above problems, the present invention is as follows.
  • an angle detection is provided on the arm of the robot and detects a motion state amount of the arm and a joint angle of each axis servo motor of the robot.
  • a first sensor calculation unit that converts a state quantity of the sensor into a state quantity of an orthogonal coordinate system; a second sensor calculation unit that converts a joint angle of the angle detector into a state quantity of an orthogonal coordinate system;
  • An output combining unit that combines the output of the first sensor calculation unit and the output of the second sensor calculation unit;
  • the sensor is an acceleration sensor.
  • the sensor is a gyro sensor.
  • the robot evaluation system according to claim 4 is characterized in that the servo gain of each axis servo motor of the robot is adjusted based on an output combined value that is an output of the output combining unit.
  • an orthogonal command value obtained by converting a joint command of each axis servo motor into a position, velocity, and acceleration in an orthogonal coordinate system and an output that is an output of the output combining unit. The composite value is displayed on a screen of an operation pendant connected to the control device of the robot.
  • a state quantity of a sensor provided in the robot arm and detecting the movement state quantity of the arm is represented by a state quantity in the Cartesian coordinate system.
  • the joint angle measured by the angle detector connected to the servo motor of each axis of the robot is converted to the state quantity of the Cartesian coordinate system as the second step.
  • the first sensor output value and the second sensor output value are synthesized to obtain an output composite value.
  • the servo gain of each axis servo motor of the robot is adjusted based on the output composite value. It is what.
  • the state quantity of the orthogonal coordinate system is converted to the state quantity of the joint coordinate system, and the speed loop gain of each axis servo motor is obtained. Is to adjust.
  • the orthogonal instruction value and the output combined value are transmitted to a remote place through a communication unit. To do.
  • each axis servo motor of the robot a mechanism unit connected to the servo motor, a motor control unit for driving the servo motor based on a command
  • a simulation unit having a motor model simulating the servo motor, a mechanism model unit simulating the mechanism unit, and a control model unit simulating the motor control unit
  • Roboter A sensor for detecting a movement state quantity of the arm, a first sensor calculation unit for converting the state quantity of the sensor into a state quantity of an orthogonal coordinate system, and a joint model angle that is an output of the simulation unit
  • a second sensor calculation unit that converts a response or a model mechanical position response into a state quantity in an orthogonal coordinate system, and an output combining unit that combines the output of the first sensor calculation unit and the output of the second sensor calculation unit. It is characterized by having.
  • a state quantity of a sensor provided in the robot arm for detecting a movement state quantity of the arm is represented by a state quantity in an orthogonal coordinate system.
  • the first sensor output value is obtained by converting to a servo motor for each axis of the robot, a mechanism connected to the servo motor, and a motor control unit that drives the servo motor based on a command.
  • the same command as that of the actual machine unit is input to the simulation unit by the simulation unit configured by the motor model, the mechanism model unit, and the control model unit, each simulating the actual machine unit configured by
  • a joint model angle response or a model mechanical position response is obtained
  • the joint model angle response or the model mechanical position is obtained.
  • the response is converted into a state quantity in the Cartesian coordinate system to obtain the second sensor output value
  • the fourth step the first sensor output value and the second sensor output value are synthesized, and the output composite value is obtained. It is characterized by seeking.
  • the state quantity of the orthogonal coordinate system is calculated by using the sensor for detecting the movement state quantity provided in the robot arm and the state quantity of the angle detector force of each axis of the robot.
  • each axis servo motor can be easily adjusted.
  • the command value of the robot hand and the sensor Since the output composite value obtained by combining the values can be displayed on the operation pendant, the operator can evaluate the response of the robot's hand in real time.
  • the state quantity of the angle detector force for each axis of the robot and the sensor for detecting the movement state quantity provided on the robot arm is converted into the state quantity of the orthogonal coordinate system.
  • the state quantity of the hand of the robot can be measured with a simple system configuration without contact and with high accuracy and without requiring complicated calibration.
  • the state quantity of the sensor for detecting the movement state quantity provided on the robot arm and the angle detector force of each axis of the robot is changed to the state quantity of the orthogonal coordinate system. By converting and synthesizing, it is possible to adjust the servo gain of each axis servo motor of the state quantity force of the hand of the robot.
  • the robot evaluation method of the eighth aspect it is possible to adjust the speed loop gain of each axis servo motor by converting the state quantity of the orthogonal coordinate system into the state quantity of the joint coordinate system.
  • servo gain adjustment and operation abnormality detection can be performed from a remote location. It can be performed.
  • the state quantity of the angle detector force for each axis of the robot and the sensor for detecting the movement state quantity provided on the robot arm is converted into the state quantity of the orthogonal coordinate system.
  • the state quantity obtained by simulation of the robot and the sensor for detecting the movement state quantity provided in the robot arm is converted into the state quantity in the Cartesian coordinate system and synthesized. Therefore, the state quantity of the robot arm can be measured with a simple system configuration that does not require complicated calibration with high accuracy in a non-contact manner and does not reduce accuracy by detecting vibrations twice.
  • State 1 A sensor that detects the state quantity and the state quantity from the simulation of the robot is converted into a state quantity in the Cartesian coordinate system and combined to make the state quantity of the robot arm non-contact and highly accurate. Measurement is possible with a simple system configuration that does not reduce accuracy by detecting vibrations twice.
  • FIG. 1 is an external view showing a first embodiment of the present invention.
  • FIG. 2 is a flowchart showing the first embodiment of the present invention.
  • FIG. 3 is a signal waveform representing the first embodiment of the present invention.
  • FIG. 4 shows signal waveforms on a robot operation pendant representing the second embodiment of the present invention.
  • FIG. 5 shows signal waveforms on a robot operation pendant representing the third embodiment of the present invention.
  • FIG. 6 is a block diagram showing a fourth embodiment of the present invention.
  • the robot 11 to be evaluated is a 6-axis vertical articulated robot, and the evaluation system measures and evaluates the state quantity of the hand of the robot 11, particularly the position, velocity and acceleration, or the angle, angular velocity and angular acceleration. Is described in three stages. Each step is executed by the control flow shown in Fig.2.
  • the robot 11 is driven by a control device 13.
  • a tool 12 that is an end effector that is exchanged according to work is connected to the end of the robot 11.
  • the tool 12 has a sensor 14 for evaluating the position of a hand built in the tool 12 or disposed on the surface. In the following embodiment, a case will be described in which the sensor 14 is a triaxial acceleration sensor and the position of the hand of the robot 11 is evaluated.
  • the acceleration signal from the acceleration sensor 14 is input to the sensor receiver 15 in the control device 13.
  • the acceleration signal is integrated twice to be converted into a sensor coordinate system position.
  • the noise component of the signal is also integrated, an offset occurs at the converted position, so the offset component is removed by a high-pass filter or moving average.
  • the position of the sensor coordinate system from which the offset component has been removed is defined as the robot.
  • the robot 11 is transformed into the position of the orthogonal coordinate system.
  • An angle detector 16 is disposed as an internal sensor in each joint motor of the robot 11.
  • the joint angle which is the output of the angle detector 16, can be converted to the position of the orthogonal coordinate system of the robot 11 by using a conversion formula generally called forward conversion or forward kinematics.
  • first state quantity (position) in the Cartesian coordinate system determined by the sensor in the first step and the second state quantity in the Cartesian coordinate system (in the Cartesian coordinate system determined in the second step)
  • the method of synthesizing (position) will be described.
  • the state quantity on the motor decelerator force load side is measured with a sensor arranged on the arm, and the motor decelerator force is also measured on the motor side with the internal sensor.
  • the specific judgment as to whether or not the load of the motor speed reducer force on the inner world sensor is also affected by comparing the vibration components at the same time of the inner world sensor and the outer world sensor when there is the same vibration component. Judge that there is. For example, when the vibration on the load side is transmitted to the motor via the panel element of the speed reducer and the vibration is measured by the angle detector, the signal force of the internal sensor must also remove the vibration component. For detection of vibration components, signal processing such as FFT may be performed separately.
  • the first state quantity (position) in the Cartesian coordinate system by the sensor placed on the arm and the second state in the Cartesian coordinate system by the internal sensor The state quantity (position) may be added. If the load sensor side of the motor affects the internal sensor, it is necessary to remove the effect. Specifically, the vibration component is extracted from the state quantity (position) of the inner sensor with a high-pass filter or moving average, and the vibration component is extracted. The value obtained by subtracting the state quantity (position) force from the dynamic component is the state quantity (position) of the internal sensor. It is only necessary to add the second state quantity (position) of the Cartesian coordinate system obtained from the inner sensor force with the vibration component removed and the first state quantity (position) of the Cartesian coordinate system by the sensor.
  • Fig. 3 (a) shows the acceleration data of the 14-axis acceleration sensor, which is the sensor. This acceleration
  • Fig. 3 (b) shows velocity data obtained by time-integrating the Y-axis acceleration data.
  • Fig. 3 (c) shows the position data obtained by time integration of the velocity data, and the position data obtained by moving and averaging the position data over a time of 100 [ms]. It can be seen that there is an offset component in the speed data and position data. This offset component is removed by moving average the position data. Moreover, you may remove the offset component of speed data as needed.
  • the method for removing the offset component of the velocity data is the same as the method for removing the offset component of the position data, and can also be removed by passing it through a high-pass filter.
  • Fig. 3 (d) the moving average position data from the position data is shown.
  • This vibration data represents the vibration component on the load side of the motor decelerator.
  • Figure 3 (e) shows the vibration data in the Cartesian coordinate system and the Cartesian coordinate system calculated by the angle detector.
  • the sensor 14 (three-axis acceleration sensor) is arranged at the tip of the arm of the robot 11, and the state quantity (acceleration) of the sensor 14 and the state quantity of the internal sensor 16 (angle detector) ( From the joint angle, the position of the arm tip of the robot 11 can be obtained by simple processing.
  • an accelerometer which is a non-contact sensor, it is possible to evaluate the performance of the mouth bot without restricting the robot's motion.
  • the position in the Cartesian coordinate system is obtained, but other state quantities (such as velocity and acceleration) in the Cartesian coordinate system can be obtained in the same manner as in the case of the position.
  • Figure 4 shows the signal waveform on the robot operation pendant.
  • the Y-axis and Z-axis are shown in the plane with a rectangular position command trajectory and the corresponding composite position response trajectory.
  • (B) shows the position command and composite position response (vertical axis: displacement) with respect to time (horizontal axis).
  • the first specific embodiment obtains the position of the Cartesian coordinate system, whereas the servo gain adjustment of each axis servo motor of the robot 11 by the obtained position (especially here,
  • the obtained state quantity (position) of the Cartesian coordinate system is not limited to the command and
  • the servo gain is adjusted by the state quantity (position) in the Cartesian coordinate system.
  • state quantity (position) in the Cartesian coordinate system.
  • Fig. 4 (b) it is synthesized by the sensor placed on the arm and the internal sensor.
  • State quantity to be Adjustment work may be performed using state quantities (angle, angular velocity, angular acceleration) in the system. This is especially effective when adjusting the speed loop gain, because the servo loop motor has different speed capacities when the motor capacity is different for each robot axis.
  • the servo gain adjustment of each axis servo motor of the robot 11 was performed according to the position obtained in the first specific embodiment, whereas in this embodiment, the robot operation abnormality was detected according to the obtained position. It is different to detect.
  • the obtained state quantity (position) of the orthogonal coordinate system is displayed on the screen on the operation pendant 17 connected to the control device 13 together with the command.
  • the horizontal axis represents time
  • the vertical axis represents the force axis displacement, and shows the position command in the Cartesian coordinate system of the robot and the corresponding synthesized position response waveform.
  • the operator can determine whether or not the arm tip vibrates based on whether or not the combined position response is within a preset range with reference to the position command while observing this waveform. Further, this determination may be automatically performed in the control device 13 and a warning may be issued if the determination is out of range. Further, the comparison of the position command waveform and the composite position response waveform may be performed in units of joint axes by shifting to the failure diagnosis mode after the comparison of the orthogonal coordinate system. Operate one axis at a time from the hand or root, convert the synthesized position response to the joint coordinate system, and compare it with the position command.
  • the comparative force of the Cartesian coordinate system is compared in two stages to the comparison of the joint coordinate system.
  • the comparison data is reduced in the Cartesian coordinate system comparison (XYZ 3 axes), and if vibration is detected, the joint coordinate system comparison (6 axes) is compared in detail. It is possible to reduce the computation load of the control device during monitoring.
  • fault diagnosis was performed in the control device 13, but a position command and a corresponding composite position response were sent to the maintenance department at a remote location via a communication unit such as a commercial line or the Internet. By doing so, failure diagnosis can be performed from a remote location. This is particularly effective for remote failure diagnosis of robots operating overseas.
  • the first specific embodiment calculates the absolute position of the robot 11 in the Cartesian coordinate system by converting the state quantity (joint angle) of the internal sensor into the state quantity (position) of the Cartesian coordinate system.
  • the difference is that the simulator state quantity is used instead of the internal sensor state quantity.
  • the processing of the first calculation unit 41 for converting the acceleration signal of the acceleration sensor 14 into the position of the Cartesian coordinate system of the robot 11 is the same as that of the first specific example, and thus description thereof is omitted.
  • each axis servo motor 21 of the robot and a simulation unit 30 processed in parallel with the mechanism unit 22 connected to the servo motor are provided.
  • the simulation unit 30 simulates the actual machine unit 20 composed of a motor control unit 23 that drives the servo motor 21 based on a command, a motor model 31 simulating the servo motor 21, and the mechanism unit 22.
  • Mechanism model unit 32 and the motor A control model unit 33 simulating the control unit 23 is included.
  • the simulation unit 30 reflects the motor motion characteristics including the servo system delay and mechanism characteristics of the actual machine unit 20, and the Cf standing command is input from the upper force.
  • the internal state quantities of the simulation unit 30 are almost the same. Since the internal state quantity of the simulation unit is not affected by any external force, it does not require processing such as removing vibration components.
  • FIG. 6 is for one axis, it is actually composed of the number of axes of the robot 11.
  • the following equation may be solved.
  • Tref J * Kv * ( ⁇ * ( ⁇ ref- ⁇ lb)-Vlb) (1)
  • Vl ⁇ (dt * Tref / J) ⁇ ⁇ ⁇ (2)
  • the joint model angle response which is the output of the simulation unit 30, is converted to a Cartesian coordinate of the robot 11 by using a conversion formula generally referred to as forward conversion or forward kinematics. Convert to system position.
  • the equations (4) to (7) are calculated, and instead of the joint model angle response, the load side rather than the speed reducer is calculated.
  • a transformation formula called forward transformation or forward kinematics is used.
  • the robot 11 may be converted to a position in the Cartesian coordinate system.
  • Vl ⁇ ⁇ dt (Tref-K * ( ⁇ ft) Xlb)) / Jm ⁇ (4)
  • JL Mechanism inertia (including reduction gear)
  • the first state quantity (position) in the orthogonal coordinate system by the sensor obtained by the first sensor computation unit 41 and the simulation unit obtained by the second sensor computation unit 42 A second state quantity (position) in the Cartesian coordinate system based on the joint model angle response
  • the internal state quantity of the simulation unit is not affected by external force at all, no processing such as removal of vibration components is required, so the first state quantity (position) and the second state quantity (Position) can be simply added.
  • the fourth and subsequent steps are the same as those in the first specific example, and thus the description thereof is omitted.
  • a simulation unit simulating an actual machine it is possible to perform measurement with a simple system configuration without double detection of vibration and loss of accuracy.
  • the present invention converts the state quantity from the sensor provided on the robot arm and the inner world sensor of each axis of the robot into a state quantity in the Cartesian coordinate system and synthesizes it, and the movement state quantity of the robot is non-contacted. Therefore, it can be applied to applications such as detecting abnormalities due to secular changes of remote robots and identifying and adjusting parameters by remote control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Manipulator (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

非接触に精度良く、リアルタイムに、複雑なキャリブレーションが不要で、簡単なシステム構成で、ロボットのアームの運動状態量、特に位置や速度や加速度、又は角度や角速度や角加速度を測定することができるロボットの評価システム及びその評価方法を提供する。  ロボットのアームに設けられ、前記アームの運動状態量を検出するセンサと、ロボットの各軸サーボモータの関節角度を計測する角度検出器と、前記センサの状態量を直交座標系の状態量に変換する第1のセンサ演算部と、前記角度検出器の関節角度を直交座標系の状態量に変換する第2のセンサ演算部と、前記第1のセンサ演算部の出力と前記第2のセンサ演算部の出力を合成する出力合成部とを有することを特徴とするロボットの評価システム。

Description

明 細 書
ロボットの評価システム及び評価方法
技術分野
[0001] 本発明は、直交座標系におけるロボットの先端部の状態量、特に位置や速度やカロ 速度を計測する評価システムとその評価方法に関する。
背景技術
[0002] 従来のシリアルリンク型ロボットの動作性能を評価する場合やパラメータ調整を実施 する場合には、ロボットの手先の状態量、特に位置や速度や加速度、又は角度や角 速度や角加速度を精度良く測定することが重要である、しかし、シリアルリンク型ロボ ットの手先の可動範囲は広ぐ手先の動きの自由度も直交と回転の 6自由度と多自由 度であるため、精度良く測定する事が困難である。
[0003] このような問題に対して、例えば、図 7に示すように、前記ロボット手先に、回転角度 センサをもったパッシブリンクの 3軸ロボットを取り付けて、測定対象のロボット手先の 位置を計測する方式がある (例えば、特許文献 1参照)。
この方式では、測定対象のロボット手先の姿勢変化は自在継手で吸収し、位置変 化のみを前記回転角度センサの値とリンク長力も演算する構成である。
[0004] また、 2個以上のカメラで測定対象を撮影し、その画像から 3次元位置を演算し絶 対位置姿勢を求め、更にジャイロセンサと加速度センサで相対位置姿勢を求める方 式がある (例えば、特許文献 2参照)。
この方式では、測定対象上にマーカや LEDを配置し、その画像を連続的に 2台以 上のカメラで撮影して専用のコントローラで合成することで連続的な 3次元位置を求 め、カメラで撮影できな ヽ位置では加速度センサ等の相対位置情報を用いる構成で ある。
[0005] また、アームに取り付けた加速度センサで振動を計測し、 FFT解析でロボットの固有 振
動数を求め、固有振動数に応じロボットを制御する方式がある(例えば、特許文献 3 参照)。 この方式では、固有振動数を算出するための予測式を、予め固有振動数と、ロボッ トアームの位置とワークの質量との関数として求める構成である。
[0006] また、互いに垂直な 3表面を持つターゲットに、非接触式センサを有する互いに垂 直な 3表面を持つマルチセンサ測定ヘッドを対向させ、ターゲットの相対的な動きを 立方体定位測定原理に基づいてポーズ計算し、位置と方向のデータを同時に測定 する方式がある (例えば、特許文献 4参照)。
[0007] また、動作性能の評価ではな!/、が、外界センサを用いることでロボットの動作性能を 向上させたり、ロボットのパラメータを補正したりする方法もある。
ロボット自身のパラメータ補正方法としては、作業対象物の情報を取得する外界セ ンサ及びロボットの位置姿勢情報を取得する内界センサを具備し、ロボットの手先が 直線対象物に沿った基準動作時の情報カゝら認識誤差のモデリングを行う方法もある
(例えば、特許文献 5参照)。
[0008] ロボットの振動を抑制する方法としては、アーム先端に加速度センサを設け、加速 度信号はローパスフィルタを通してヤコビ転置行列で各軸の加速度に変換し、速度 指令にフィードバックする方法がある(例えば、特許文献 6参照)。
特許文献 1 :実開平 07— 031295号公報 (請求項 1、第 1図)
特許文献 2 :特開 2004— 050356号公報 (請求項 1、第 1図)
特許文献 3:特開平 06— 278080号公報 (請求項 1、第 1図)
特許文献 4:特開平 08— 090465号公報 (請求項 1、第 1図)
特許文献 5:特開平 11 197834号公報 (請求項 1、第 1図)
特許文献 6 :特許第 3442941号 (請求項 1、第 1図)
発明の開示
発明が解決しょうとする課題
[0009] ところ力 回転角度センサをもったパッシブリンクの 3軸ロボットで測定対象のロボッ ト手先の位置を計測する方式では、測定対象であるロボットの可動範囲全体を一度 に測定する事は困難であるという問題がある。また、測定対象のロボットと 3軸ロボット が接続しているため、測定対象ロボットの動作によっては、 3軸ロボットを破損させる 危険性がある。また、 3軸ロボットであるため、ロボットの手先の回転動作も測定不可 能であるという問題や、測定精度がパッシブリンクの 3軸ロボットの加工'組立精度に 依存するという問題や、高い分解能の回転角度センサが必要であるという問題もある
[0010] また、 2個以上のカメラで測定対象を撮影した画像と加速度センサやジャイロセンサ 力 3次元位置を演算して求める方式では、カメラで撮影できない時間が長い場合に は加速度センサやジャイロセンサの 2回積分に頼らなければならず、そのオフセット 量が著しく大きく不連続になるという問題がある。また、測定前にロボットと装置間の 複雑なキャリブレーションを実施しな 、と使用できず、画像処理が必要なためリアルタ ィムにロボットの手先の状態量を表示できない等の問題もある。更には、このような力 メラを複数台使用する測定装置は高価であるという問題もある。
[0011] また、アームに取り付けた加速度センサで振動を計測し、 FFT解析でロボットの固有 振
動数を求める方式では、手先の振動は求めることができる力 ロボットの動作性能評 価動作中の直交座標系での絶対的な手先の位置や速度や加速度、又は角度や角 速度や角加速度を測定し評価することはできな 、。
[0012] また、互いに垂直な 3表面を持つターゲットに、非接触式センサを有する互いに垂 直な 3表面を持つマルチセンサ測定ヘッドを対向させる方式では、測定対象である口 ボットの可動範囲全体を一度に測定する事は困難であるという問題がある。また、測 定精度がターゲットの加工精度に依存するという問題がある。
[0013] また、外界センサと内界センサで直線動作時の同じ状態量を測定して認識誤差を モデリングする方法では、ロボットの手先の動作性能を評価することはできない。また 同様に、加速度信号はローパスフィルタを通してヤコビ転置行列で各軸の加速度に 変換し、速度指令にフィードバックする方法では、ロボットの手先の動作性能を評価 することはできない。
[0014] そこで本発明は、力かる問題点に鑑みてなされたものであり、複雑なキヤリブレーシ ヨンが不要で、非接触に精度良ぐリアルタイムに、簡単なシステム構成で、ロボットの 先端部、手先の状態量、特に位置や速度や加速度、又は角度や角速度や角加速度 を測定することができるロボットの評価システム及びその評価方法を提供することを目 的とする。
また、ロボットの手先の指令値とセンサ値を合成した出力合成値を操作ペンダント 上に表示し、それにより作業者がリアルタイムにロボットの手先の応答を評価できるよ うにすることを目的とする。
また、作業者が前記ロボットの手先の状態量を直感的に把握でき、各軸サーボモー タのサーボゲイン調整、速度ループゲイン調整を簡単に行うことを目的とする。
また、ロボットの内部状態量のみを使うよりも高感度にロボットの動作異常を検出す ることを目的とする。
また、遠隔地からも各軸サーボモータのサーボゲイン調整、速度ループゲイン調整 、ロボットの動作異常を検出することを目的とする。
また、ロボットのアームの状態量を、非接触に精度良く簡単なシステム構成で測定 することを目的とする。
課題を解決するための手段
[0015] 本発明では、上記問題点を解決するため、本発明は次のようにしたものである。
[0016] 請求項 1記載のロボットの評価システムでは、ロボットのアームに設けられ、前記ァ ームの運動状態量を検出するセンサと、ロボットの各軸サーボモータの関節角度を計 測する角度検出器と、前記センサの状態量を直交座標系の状態量に変換する第 1 のセンサ演算部と、前記角度検出器の関節角度を直交座標系の状態量に変換する 第 2のセンサ演算部と、前記第 1のセンサ演算部の出力と前記第 2のセンサ演算部の 出力を合成する出力合成部と
を有することを特徴とする。
[0017] また、請求項 2記載のロボットの評価システムでは、前記センサは加速度センサであ ることを特徴とする。
[0018] また、請求項 3記載のロボットの評価システムでは、前記センサはジャイロセンサで あることを特徴とする。
[0019] また、請求項 4記載のロボットの評価システムでは、前記出力合成部の出力である 出力合成値を基に、前記ロボットの各軸サーボモータのサーボゲイン調整を行うこと を特徴とする。 [0020] また、請求項 5記載のロボットの評価システムでは、前記各軸サーボモータの関節 指令を直交座標系の位置及び速度及び加速度に変換した直交指令値と前記出力 合成部の出力である出力合成値を、前記ロボットの制御装置に接続された操作ペン ダントの画面上に表示することを特徴とする。
[0021] また、請求項 6記載のロボットの評価方法では、第 1ステップとして、ロボットのァー ムに設けられ、前記アームの運動状態量を検出するセンサの状態量を直交座標系 の状態量に変換して第 1のセンサ出力値を求め、第 2ステップとして、ロボットの各軸 サーボモータに接続された角度検出器で計測された関節角度を直交座標系の状態 量に変換して第 2のセンサ出力値を求め、第 3ステップとして、前記第 1のセンサ出力 値と前記第 2のセンサ出力値を合成して、出力合成値を求めることを特徴とする。
[0022] また、請求項 7記載のロボットの評価方法では、請求項 6において第 4ステップとし て、前記出力合成値を基に、前記ロボットの各軸サーボモータのサーボゲインを調整 することを特徴とするものである。
[0023] また、請求項 8記載のロボットの評価方法では、請求項 7にお 、て、直交座標系の 状態量を関節座標系の状態量に変換して前記各軸サーボモータの速度ループゲイ ンを調整するものである。
[0024] また、請求項 9記載のロボットの評価システムでは、請求項 1にお!/、て前記出力合 成部の出力である出力合成値を基に、前記ロボットの動作異常を検出することを特 徴とする。
[0025] また、請求項 10記載のロボットの評価システムでは、請求項 5にお 、て前記直交指 令値及び前記出力合成値を、通信部を介して、遠隔地に送信することを特徴とする。
[0026] また、請求項 11記載のロボットの評価方法では、請求項 6にお 、て第 4ステップとし て、前記出力合成値を基に、前記ロボットの動作異常を検出することを特徴とする。
[0027] また、請求項 12記載のロボットの評価システムでは、ロボットの各軸サーボモータと 、前記サーボモータに接続される機構部と、前記サーボモータを指令に基づいて駆 動するモータ制御部と、を有するロボットの評価システムにおいて、前記サーボモー タを模擬したモータモデルと、前記機構部を模擬した機構モデル部と、前記モータ制 御部を模擬した制御モデル部と、を有するシミュレーション部と、前記ロボットのァー ムに設けられ、前記アームの運動状態量を検出するセンサと、前記センサの状態量 を直交座標系の状態量に変換する第 1のセンサ演算部と、前記シミュレーション部の 出力である関節モデル角度応答又はモデルメカ位置応答を直交座標系の状態量に 変換する第 2のセンサ演算部と、前記第 1のセンサ演算部の出力と前記第 2のセンサ 演算部の出力を合成する出力合成部とを有することを特徴とする。
[0028] また、請求項 13記載のロボットの評価方法では、第 1ステップとして、ロボットのァー ムに設けられ、前記アームの運動状態量を検出するセンサの状態量を直交座標系 の状態量に変換して第 1のセンサ出力値を求め、第 2ステップとして、ロボットの各軸 サーボモータと、前記サーボモータに接続される機構部と、前記サーボモータを指令 に基づいて駆動するモータ制御部と、で構成された実機部をそれぞれ模擬した、モ ータモデルと、機構モデル部と、制御モデル部と、で構成されたシミュレーション部に より、実機部と同一指令を前記シミュレーション部に入力し、前記シミュレーション部 の出力として、関節モデル角度応答又はモデルメカ位置応答を求め、第 3ステップと して、前記関節モデル角度応答又は前記モデルメカ位置応答を直交座標系の状態 量に変換して第 2のセンサ出力値を求め、第 4ステップとして、前記第 1のセンサ出力 値と前記第 2のセンサ出力値を合成して、出力合成値を求めることを特徴とする。 発明の効果
[0029] 以上述べたように、請求項 1、 2及び 3のロボットの評価システムによれば、ロボットの アームに設けられた運動状態量を検出するセンサとロボットの各軸の角度検出器か らの状態量を、直交座標系の状態量に変換して合成することで、ロボットのアームの 状態量を、非接触に精度良ぐ複雑なキャリブレーションが不要で、簡単なシステム 構成で測定することができる。
請求項 4記載のロボットの評価システムによれば、ロボットのアームに設けられた運 動状態量を検出するセンサとロボットの各軸の角度検出器力 の状態量を、直交座 標系の状態量に変換して合成することで、作業者が前記ロボットの手先の状態量を 直感的に把握で
き、各軸サーボモータのサーボゲイン調整を簡単に行うことができる。
請求項 5記載のロボットの評価システムによれば、ロボットの手先の指令値とセンサ 値を合成した出力合成値を操作ペンダント上に表示できることで、作業者はリアルタ ィムにロボットの手先の応答を評価することが出来る。
請求項 6記載のロボットの評価方法によれば、ロボットのアームに設けられた運動状 態量を検出するセンサとロボットの各軸の角度検出器力 の状態量を、直交座標系 の状態量に変換して合成することで、ロボットの手先の状態量を、非接触に精度良く 、複雑なキャリブレーションが不要で、簡単なシステム構成で測定することができる。 請求項 7記載のロボットの評価方法によれば、ロボットのアームに設けられた運動状 態量を検出するセンサとロボットの各軸の角度検出器力 の状態量を、直交座標系 の状態量に変換して合成することで、前記ロボットの手先の状態量力 各軸サーボモ ータのサーボゲイン調整することができる。
請求項 8記載のロボットの評価方法によれば、直交座標系の状態量を関節座標系 の状態量に変換して前記各軸サーボモータの速度ループゲインを調整することがで きる。
請求項 9記載のロボットの評価システムによれば、前記出力合成部の出力である出 力合成値を基に、前記ロボットの動作異常を検出することで、ロボットの内部状態量 のみを使うよりも高感度に異常検出することができる。
請求項 10記載のロボットの評価システムによれば、前記直交指令値及び前記出力 合成値を、通信部を介して、遠隔地に送信することことで、遠隔地からもサーボゲイン 調整や動作異常検出を行うことができる。
請求項 11記載のロボットの評価方法によれば、ロボットのアームに設けられた運動 状態量を検出するセンサとロボットの各軸の角度検出器力 の状態量を、直交座標 系の状態量に変換して合成し、ロボットの動作異常を検出することで、ロボットの内部 状態量のみを使うよりも高感度に異常検出することができる。
請求項 12記載のロボットの評価システムによれば、ロボットのアームに設けられた運 動状態量を検出するセンサとロボットのシミュレーションによる状態量を、直交座標系 の状態量に変換して合成することで、ロボットのアームの状態量を、非接触に精度良 ぐ複雑なキャリブレーションが不要で、二重に振動を検出して精度を落とすことなぐ 簡単なシステム構成で測定することができる。 o
請求項 13記載のロボットの評価方法によれば、ロボットのアームに設けられた運動 1—
状1—態量を検出するセンサとロボットのシミュレーションによる状態量を、直交座標系の 状態量に変換して合成することで、ロボットのアームの状態量を、非接触に精度良ぐ 複雑なキャリブレーションが不要で、二重に振動を検出して精度を落とすことなぐ簡 単なシステム構成で測定することができる。
図面の簡単な説明
[0030] [図 1]本発明の第 1の実施例を表す外観図
[図 2]本発明の第 1の実施例を表すフローチャート
[図 3]本発明の第 1の実施例を表す信号波形
[図 4]本発明の第 2の実施例を表すロボット操作ペンダント上の信号波形
[図 5]本発明の第 3の実施例を表すロボット操作ペンダント上の信号波形
[図 6]本発明の第 4の実施例を表すブロック図
[図 7]従来の制御方式を示す図
符号の説明
πボッ卜
12 ツール
13 制御装置
14 センサ
15 センサ受信部
16 角度検出器
17 操作ペンダント
20 実機部
21 サーボモータ
22 機構部
23 モータ制御部
30 シミュレーション部
31 モータモデノレ
32 機構モデル部 33 制御モデル部
41 第 1のセンサ演算部
42 第 2のセンサ演算部
43 出力合成部
44 指令
45 モデル状態量
46 第 2の状態量
発明を実施するための最良の形態
[0032] 以下、本発明の実施の形態について図を参照して説明する。
実施例 1
[0033] 本発明の第 1の実施例を、図 1、図 2及び図 3を用いて説明する。ここでは、評価対 象であるロボット 11は 6軸垂直多関節ロボットとし、前記ロボット 11の手先の状態量、 特に位置や速度や加速度、又は角度や角速度や角加速度を測定し、評価する評価 システムについて、 3段階に分けて説明する。各ステップは図 2に示す制御フローに より実行される。
図 1に示すように、前記ロボット 11は制御装置 13で駆動される。前記ロボット 11の手 先には作業に応じて交換されるエンドェフエクタであるツール 12が接続されている。 前記ツール 12には手先の位置を評価するためのセンサ 14が前記ツール 12に内蔵又 は表面に配置されている。以下の本実施例では、センサ 14は 3軸の加速度センサと して、前記ロボット 11の手先の位置を評価する場合を説明する。
[0034] (1)第 1ステップ
ここでは、センサの状態量 (加速度)を直交座標系の状態量 (位置)に変換する方 法について説明する。
前記加速度センサ 14の加速度信号は、前記制御装置 13内のセンサ受信部 15に入 力される。前記センサ受信部 15内では、前記加速度信号を 2回積分することで、セン サ座標系の位置に変換する。ここで、信号のノイズ成分も積分されることで、変換した 位置にはオフセットが発生するため、ハイパスフィルタ又は移動平均でオフセット成 分を除去する。次に、オフセット成分が除去されたセンサ座標系の位置を、前記ロボ ット 11のベースからツールまでの回転行列を用いることで、前記ロボット 11の直交座 標系の位置に変換する。
[0035] (2)第 2ステップ
ここでは、内界センサの状態量 (関節角度)を直交座標系の状態量 (位置)に変換 する方法について説明する。
前記ロボット 11の各関節のモータには、内界センサとして角度検出器 16が配置され ている。前記角度検出器 16の出力である関節角度を、一般的に順変換又は順運動 学と呼ばれる変換式を用いることで、前記ロボット 11の直交座標系の位置に変換する ことができる。
[0036] (3)第 3ステップ
ここでは、第 1ステップで求められたセンサによる直交座標系での第 1の状態量 (位 置)と、第 2ステップで求められた内界センサによる直交座標系での第 2の状態量 (位 置)を合成する方法にっ 、て説明する。
本実施例における各センサの検出の役割として、モータの減速器力 負荷側の状 態量をアームに配置したセンサで測定し、モータの減速器力もモータ側の状態量を 内界センサで
測定する。そのため、内界センサにモータの減速器力も負荷側が影響する場合とし ない場合で、処理を分ける必要がある。内界センサにモータの減速器力も負荷側が 影響する力否かの具体的判断は、内界センサと外界センサの同一時刻の振動成分 を比較して、同一の振動成分がある場合には影響があると判断する。例えば、負荷 側の振動が減速器のパネ要素を介してモータに伝わり、角度検出器でその振動が 測定される場合には、内界センサの信号力もその振動成分を除去する必要がある。 振動成分の検出には、 FFTなどの信号処理を別に行えば良い。
内界センサにモータの減速器力も負荷側が影響しない場合には、アームに配置し たセンサによる直交座標系での第 1の状態量 (位置)と内界センサによる直交座標系 での第 2の状態量 (位置)は加算すれば良い。内界センサにモータの減速器力 負 荷側が影響する場合には、その影響を除去する必要がある。具体的には、内界セン サの状態量 (位置)からハイパスフィルタ又は移動平均で振動成分を抽出し、その振 動成分を状態量 (位置)力 減算した値を内界センサの状態量 (位置)とする。この振 動成分が除去された内界センサ力 求めた直交座標系の第 2の状態量 (位置)とセン サによる直交座標系での第 1の状態量 (位置)を加算すれば良い。
[0037] 次に、実際に前記ロボット 11に直交座標系で Y軸方向に 50[mm]の往復動作をさせ た場合の波形処理につ!、て説明する。
図 3(a)に、センサである加速度センサ 14力 の Y軸の加速度データを示す。この加 速
度センサ信号にはノイズ成分が含まれるので必要に応じてローパスフィルタ等を通す 図 3(b)に、前記 Y軸の加速度データを時間積分した速度データを示す。図 3(c)に、 前記速度データを時間積分した位置データと、この位置データの 100[ms]の時間で 移動平均した位置データを示す。速度データや位置データにはオフセット成分が出 ていることが分かる。位置データを移動平均することで、このオフセット成分を除去す る。また、必要に応じて速度データのオフセット成分も除去しても良い。速度データの オフセット成分の除去方法は、位置データのオフセット成分除去方法と同様であり、 ハイパスフィルタを通すことでも除去できる。図 3(d)に、前記位置データから前記移動 平均した位置データを
減算した振動データを示す。この振動データがモータの減速器力 負荷側の振動成 分を表している。
図 3(e)に、直交座標系での前記振動データと角度検出器カゝら演算された直交座標 系で
の位置を合成した位置データと、直交座標系での位置指令データを示す。
[0038] このように、前記ロボット 11のアーム先端にセンサ 14 (3軸の加速度センサ)を配置し 、前記センサ 14の状態量 (加速度)と内界センサ 16 (角度検出器)の状態量(関節角 度)から、前記ロボット 11のアーム先端の位置を簡単な処理で求めることができる。非 接触センサである加速度センサを用いることで、ロボットの動作を制限することなぐ口 ボットの動作性能を評価することが可能である。
また、加速度センサの替わりに 3軸のジャイロセンサを用いることで、ロボットの直交 座標系での姿勢を求める事もできる。また、加速度センサとジャイロセンサを併用する 構成でも良い。
ここでは、直交座標系での位置を求めたが、直交座標系での他の状態量 (速度や 加速度など)を求めることも位置の場合と同様に可能である。
実施例 2
[0039] 本発明の第 2の具体的実施例を、図 4及び図 5に示して説明する。
図 4はロボット操作ペンダント上の信号波形を示す。 (a)において Y軸と Z軸を平面内 に長方形の位置指令の軌跡とそれに対応した合成位置応答の軌跡を示して!/、る。ま た (b)は時間 (横軸)に対する位置指令と合成位置応答の様子 (縦軸:変位)を示して いる。
本実施例では、第 1の具体的実施例が直交座標系の位置を求めることに対して、 求められた位置により前記ロボット 11の各軸サーボモータのサーボゲイン調整 (特に ここで〖ま、
位置ループゲインや速度ループゲイン)を実施することが異なる。
前記ロボット 11の直交座標系の状態量 (位置)を求めるまでの過程は、第 1の具体 的実施例と同じであるため、説明を省略する。
直交座標系の状態量 (位置)が求められた場合には、次の第 4ステップに進む。
[0040] (4)第 4ステップ
図 4(a)に示すように、求められた直交座標系の状態量 (位置)は指令と共に、前記 制
御装置 13に接続された操作ペンダント 17上の画面に表示される。作業者はその波形 を見ながら、位置指令と合成位置応答の偏差が小さくなるように、各軸サーボモータ の位置ループゲインを大きく調整することができる。大きく設定しすぎてロボットの手 先に振動が発生した場合にはその振動も合成位置応答に現れるので、逆に小さく調 整すればよい。
[0041] 本実施例では、直交座標系での状態量 (位置)でサーボゲインを調整して 、るが、 図 4(b)に示すように、アームに配置したセンサと内界センサで合成する状態量を、関 節座標 系での状態量 (角度や角速度や角加速度)にして、調整作業を行っても良い。これは 特に、ロボットの軸毎にモータ容量が違う場合に、各軸サーボモータによって速度ル ープゲインの値が異なるため、速度ループゲインを調整する際にも有効である。 実施例 3
[0042] 本発明の第 3の具体的実施例を、図 5に示して説明する。
第 1の具体的実施例が求められた位置により前記ロボット 11の各軸サーボモータの サーボゲイン調整を実施していたのに対して、本実施例では、求められた位置により ロボットの動作異常を検出することが異なる。
例えば、ここではサーボモータとアーム間に配置された減速機が摩耗した場合を想 定する。減速機の摩耗が起きると減速機の出力端でガタが生じて、ロボットのアーム 先端での振動が大きくなるため、この振動現象を捉えることでロボットの動作異常を 判断する。
前記ロボット 11の直交座標系の状態量 (位置)を求めるまでの過程は、第 1の具体 的実施例と同じであるため、説明を省略する。
直交座標系の状態量 (位置)が求められた場合には、次の第 4ステップに進む。
[0043] (4)第 4ステップ
図 5に示すように、求められた直交座標系の状態量 (位置)は指令と共に、前記制 御装置 13に接続された操作ペンダント 17上の画面に表示される。横軸が時間、縦軸 力 軸変位を表し、ロボットの直交座標系における位置指令とそれに対応した合成位 置応答の波形を示して 、る。
作業者はこの波形を見ながら、合成位置応答が位置指令を基準として予め設定さ れた範囲の中に入っている力否かで、アーム先端が振動しているかを判断できる。ま た、この判断は制御装置 13内で自動的に実施して、範囲外であった場合には警告 を発する構成であっても良い。また、位置指令と合成位置応答の波形の比較は、前 記直交座標系の比較の後で、故障診断モードに移行して、関節軸単位で実施しても 良い。手先または根元から 1軸ずつ動作させて、合成位置応答を関節座標系に変換 して、位置指令と比較する。
このように直交座標系の比較力 関節座標系の比較に 2段階に比較を実施すること で、初めに直交座標系の比較 (XYZの 3軸)で比較データを少なくしておき、振動が 検出された場合には関節座標系の比較 (6軸)で詳細に比較することで、通常監視時 の制御装置の演算負荷を減らすことができる。
振動が予め設定された範囲を超えた場合には、減速機の摩耗が起こっているとし て、作業者へアラーム表示や交換要求を出すことができる。
本実施例では、制御装置 13内で、故障診断を実施したが、商用回線、インターネ ットなどの通信部を介して、遠隔地にあるメンテナンス部門に位置指令とそれに対応 した合成位置応答を送信することことで、遠隔地から故障診断を実施できる。特に海 外で稼働しているロボットの遠隔故障診断に有効である。
実施例 4
[0044] 本発明の第 4の具体的実施例を、図 6に示して説明する。
本実施例では、第 1の具体的実施例が内界センサの状態量 (関節角度)を直交座 標系の状態量 (位置)に変換することでロボット 11の直交座標系の絶対位置を求めて V、たのに対して、内界センサの状態量の代わりにシミュレータの状態量を用いること が異なる。
第 1の具体的実施例では、内界センサにモータの減速器力 負荷側が影響する場 合には、内界センサの信号力 振動成分を除去するために特別な処理が必要である 。本実施例では、その処理を簡易化するために以下の方法で合成位置応答を作成 する。
前記加速度センサ 14の加速度信号から前記ロボット 11の直交座標系の位置に変換 する第 1の演算部 41の処理は、第 1の具体的実施例と同じであるため、説明を省略 する。
[0045] (2)第 2ステップ
前記ロボット 11および前記制御装置 13内に、図 6に示すように、ロボットの各軸サー ボモータ 21と、前記サーボモータに接続される機構部 22と並列に処理されるシミュレ ーシヨン部 30とを設ける。シミュレーション部 30は、前記サーボモータ 21を指令に基づ いて駆動するモータ制御部 23から構成された実機部 20と、前記サーボモータ 21を模 擬したモータモデル 31と、前記機構部 22を模擬した機構モデル部 32と、前記モータ 制御部 23を模擬した制御モデル部 33とで構成されている。
シミュレーション部 30では実機部 20のサーボ系の遅れや機構の特性などを含んだ モータの運動特性を反映できており、上位力ゝら同 Cf立置指令が入力されるので、実 機部 20とシミュレーション部 30の内部状態量 (位置指令、位置フィードバック、位置偏 差、速度指令、速度フィードバック、速度偏差など)は、ほぼ一致する。シミュレーショ ン部の内部状態量は外部力 の影響を一切受けないため、振動成分を除去する等 の処理を必要としない。
ここで、図 6は 1軸分であるが、実際にはロボット 11の軸数分で構成される。シミュレ ーシヨン部 30の具体的な演算としては、以下の式を解けばよい。
[0046] Tref=J*Kv*( Κρ*( Θ ref - Θ lb ) - Vlb) ··· (1)
[0047] ここで、 Tref:トルク指令
J:モータのロータイナーシャ +機構部のイナーシャ (減速機を含む)
Kv:速度ループゲイン
Κρ:位置ループゲイン
Θ ref:上位指令生成部 50から位置指令
0ft):位置フィードバック
Vlb:速度フィードバック
[0048] Vl =∑(dt*Tref/ J) · · · (2)
[0049] ここで、
dt:演算周期時間
∑:積分
[0050] 01 =∑(dt* Vlb) ··· (3)
[0051] 第 2のセンサ演算部 42において、前記シミュレーション部 30の出力である関節モデ ル角度応答を一般的に順変換又は順運動学と呼ばれる変換式を用いることで、前記 ロボット 11の直交座標系の位置に変換する。
[0052] また、前記シミュレーション部 30に、より詳細な 2慣性モデルを用いる場合には、(4) 〜(7)式を演算し、前記関節モデル角度応答の代わりに、減速機よりも負荷側のモ デルメカ位置応答を用いて、順変換又は順運動学と呼ばれる変換式を用いることで 、前記ロボット 11の直交座標系の位置に変換する構成でも良い。
Vl =∑ { dt(Tref-K*( Θ ft) Xlb))/ Jm } · · · (4)
ここで、
K:減速機パネ定数
Xlb:モデルメカ位置応答
Jm:モータのロータイナーシャ
[0053] 01 =∑(dt* Vl ) ··· (5)
[0054] X'l =∑{ dt *Κ*( θ¾ -Xl )/JL } ··· (6)
[0055] ここで、各記号は以下のとおりである。
X' lb:モデルメカ速度応答
JL:機構部のイナーシャ (減速機を含む)
[0056] Xl =∑(dt*X'ib) ··· (7)
[0057] (3)第 3ステップ
出力合成部 43において、前記第 1のセンサ演算部 41で求めたセンサによる直交座 標系での第 1の状態量 (位置)と、前記第 2のセンサ演算部 42で求めたシミュレーショ ン部の関節モデル角度応答による直交座標系での第 2の状態量 (位置)を合成する
。前述のように、シミュレーション部の内部状態量は外部力 の影響を一切受けない ため、振動成分を除去する等の処理を必要としないため、第 1の状態量 (位置)と第 2 の状態量 (位置)は単に加算すればょ 、。
第 4ステップ以降は、第 1の具体的実施例と同じであるため、説明を省略する。 本実施例では、実機を模擬したシミュレーション部を用いることで、二重に振動を検 出して精度を落とすことなぐ簡単なシステム構成で測定することができる。
産業上の利用可能性
[0058] 本発明は、ロボットのアームに設けられたセンサとロボットの各軸の内界センサから の状態量を直交座標系の状態量に変換して合成してロボットの運動状態量を非接触 に精度良く測定することができるので、遠隔地のロボットの経年変化による異常検出 や、遠隔操作によるパラメータの同定や調整という用途にも適用できる。

Claims

請求の範囲
[1] ロボットのアームに設けられ、前記アームの運動状態量を検出するセンサと、
ロボットの各軸サーボモータの関節角度を計測する角度検出器と、
前記センサの状態量を直交座標系の状態量に変換する第 1のセンサ演算部と、 前記角度検出器の関節角度を直交座標系の状態量に変換する第 2のセンサ演算 部と、
前記第 1のセンサ演算部の出力と前記第 2のセンサ演算部の出力を合成する出力 合成部
とを有することを特徴とするロボットの評価システム。
[2] 前記センサは加速度センサであることを特徴とする請求項 1記載のロボットの評価 システム。
[3] 前記センサはジャイロセンサであることを特徴とする請求項 1記載のロボットの評価 システム。
[4] 前記出力合成部の出力である出力合成値を基に、前記ロボットの各軸サーボモー タのサーボゲイン調整を行うことを特徴とする請求項 1記載のロボットの評価システム
[5] 前記各軸サーボモータの関節指令を直交座標系の位置及び速度及び加速度に 変換した直交指令値と前記出力合成部の出力である出力合成値を、前記制御装置 に接続された操作ペンダントの画面上に表示することを特徴とする請求項 1記載の口 ボットの評価システム。
[6] 第 1ステップとして、ロボットのアームに設けられ、前記アームの運動状態量を検出 するセンサの状態量を直交座標系の状態量に変換して第 1のセンサ出力値を求め、 第 2ステップとして、ロボットの各軸サーボモータに接続された角度検出器で計測さ れた関節角度を直交座標系の状態量に変換して第 2のセンサ出力値を求め、 第 3ステップとして、前記第 1のセンサ出力値と前記第 2のセンサ出力値を合成して 、出力合成値を求めることを特徴とするロボットの評価方法。
[7] 第 4ステップとして、前記出力合成値を基に、前記ロボットの各軸サーボモータのサ ーボゲインを調整することを特徴とする請求項 6記載のロボットの評価方法。
[8] 直交座標系の状態量を関節座標系の状態量に変換して前記各軸サーボモータの 速度ループゲインを調整する請求項 7記載のロボットの評価方法。
[9] 前記出力合成部の出力である出力合成値を基に、前記ロボットの動作異常を検出 することを特徴とする請求項 1記載のロボットの評価システム。
[10] 前記直交指令値及び前記出力合成値を通信部を介して遠隔地に送信することを 特徴とする請求項 5記載のロボットの評価システム。
[11] 第 4ステップとして、前記出力合成値を基に、前記ロボットの動作異常を検出するこ とを特徴とする請求項 6記載のロボットの評価方法。
[12] ロボットの各軸サーボモータと、前記サーボモータに接続される機構部と、前記サ ーボモータを指令に基づ 、て駆動するモータ制御部と、を有するロボットの評価シス テムにおいて、
前記サーボモータを模擬したモータモデルと、前記機構部を模擬した機構モデル 部と、前記モータ制御部を模擬した制御モデル部と、を有するシミュレーション部と、 前記ロボットのアームに設けられ、前記アームの運動状態量を検出するセンサと、 前記センサの状態量を直交座標系の状態量に変換する第 1のセンサ演算部と、 前記シミュレーション部の出力である関節モデル角度応答又はモデルメカ位置応 答を直交座標系の状態量に変換する第 2のセンサ演算部と、
前記第 1のセンサ演算部の出力と前記第 2のセンサ演算部の出力を合成する出力 合成部
とを有することを特徴とするロボットの評価システム。
[13] 第 1ステップとして、ロボットのアームに設けられ、前記アームの運動状態量を検出 するセンサの状態量を直交座標系の状態量に変換して第 1のセンサ出力値を求め、 第 2ステップとして、ロボットの各軸サーボモータと、前記サーボモータに接続される 機構部と、前記サーボモータを指令に基づいて駆動するモータ制御部と、で構成さ れた実機部をそれぞれ模擬したモータモデルと、機構モデル部と制御モデル部とで 構成されたシミュレーション部により、実機部と同一指令を前記シミュレーション部に 入力し、前記シミュレーション部の出力として、関節モデル角度応答又はモデルメカ 位置応答を求め、 第 3ステップとして、前記関節モデル角度応答又は前記モデルメカ位置応答を直交 座標系の状態量に変換して第 2のセンサ出力値を求め、
第 4ステップとして、前記第 1のセンサ出力値と前記第 2のセンサ出力値を合成して 、出力合成値を求めることを特徴とするロボットの評価方法。
PCT/JP2005/015134 2004-08-25 2005-08-19 ロボットの評価システム及び評価方法 WO2006022201A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05780443A EP1803536A1 (en) 2004-08-25 2005-08-19 Robot evaluation system and evaluation method
JP2006531872A JPWO2006022201A1 (ja) 2004-08-25 2005-08-19 ロボットの評価システム及び評価方法
US11/661,136 US20070288124A1 (en) 2004-08-25 2005-08-19 Evaluating System And Evaluating Method Of Robot

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-244896 2004-08-25
JP2004244896 2004-08-25
JP2005-232190 2005-08-10
JP2005232190 2005-08-10

Publications (1)

Publication Number Publication Date
WO2006022201A1 true WO2006022201A1 (ja) 2006-03-02

Family

ID=35967413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/015134 WO2006022201A1 (ja) 2004-08-25 2005-08-19 ロボットの評価システム及び評価方法

Country Status (5)

Country Link
US (1) US20070288124A1 (ja)
EP (1) EP1803536A1 (ja)
JP (1) JPWO2006022201A1 (ja)
TW (1) TW200621450A (ja)
WO (1) WO2006022201A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011036956A (ja) * 2009-08-11 2011-02-24 Kawasaki Heavy Ind Ltd ロボットの精度調整方法およびロボット
JP2011042022A (ja) * 2009-08-24 2011-03-03 Kawasaki Heavy Ind Ltd 自動作業システムにおけるロボットの診断方法及び診断プログラム
JP2011115885A (ja) * 2009-12-02 2011-06-16 Mitsubishi Electric Corp 軌跡測定装置
JP2011224664A (ja) * 2010-04-15 2011-11-10 Tamagawa Seiki Co Ltd 作業確認システム
JP2012139807A (ja) * 2011-01-06 2012-07-26 Seiko Epson Corp ロボット及びロボットのノイズ除去方法
US8972059B2 (en) 2009-06-01 2015-03-03 Kawasaki Jukogyo Kabushiki Kaisha Displacement correcting method and displacement correcting program in automatic operation system
US9037293B2 (en) 2012-08-31 2015-05-19 Seiko Epson Corporation Robot
US9044861B2 (en) 2012-08-31 2015-06-02 Seiko Epson Corporation Robot
US9242377B2 (en) 2012-08-31 2016-01-26 Seiko Epson Corporation Robot
US9302388B2 (en) 2012-08-31 2016-04-05 Seiko Epson Corporation Robot
JP2016059970A (ja) * 2014-09-16 2016-04-25 株式会社デンソーウェーブ 摺動部材の劣化判定システム
JP2020040137A (ja) * 2018-09-07 2020-03-19 日産自動車株式会社 異常判定装置及び異常判定方法
US10814481B2 (en) 2018-04-06 2020-10-27 Fanuc Corporation Robot system for performing learning control by using motor encoder and sensor
JP2020190551A (ja) * 2019-05-15 2020-11-26 オムロン株式会社 計測システム、計測装置、計測方法、及び計測プログラム
CN112140127A (zh) * 2019-06-27 2020-12-29 精工爱普生株式会社 超调量检测方法、检测***和调整方法以及机器人***
WO2021141049A1 (ja) * 2020-01-10 2021-07-15 ファナック株式会社 制御システム
US11446823B2 (en) 2017-08-08 2022-09-20 Panasonic Intellectual Property Management Co., Ltd. Method for transmitting information in controller and method for detecting abnormality in encoder
WO2023243010A1 (ja) * 2022-06-15 2023-12-21 ヤマハ発動機株式会社 支援装置及びロボットシステム

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9867669B2 (en) * 2008-12-31 2018-01-16 Intuitive Surgical Operations, Inc. Configuration marker design and detection for instrument tracking
JP4256440B2 (ja) * 2007-08-10 2009-04-22 ファナック株式会社 ロボットプログラム調整装置
DE102008047575B4 (de) * 2008-09-17 2012-09-27 Leica Biosystems Nussloch Gmbh Gerät zur Handhabung mindestens eines Objektträgers
JP5083194B2 (ja) * 2008-12-18 2012-11-28 株式会社デンソーウェーブ ロボットのキャリブレーション方法及びロボットの制御装置
CN101948011B (zh) * 2010-09-09 2013-06-26 北京航空航天大学 一种六足万向行走的多功能月球探测机器人
DE102012102294B4 (de) * 2011-03-18 2015-03-19 Denso Wave Inc. Verfahren zum Erfassen eines Achsenabstand-Versatzes eines 6-Achs-Roboters
JP2012232370A (ja) * 2011-04-28 2012-11-29 Seiko Epson Corp ロボットコントローラー、簡易設置型ロボット、及び簡易設置型ロボットの制御方法
JP2013121634A (ja) * 2011-12-12 2013-06-20 Seiko Epson Corp ロボット装置およびロボット装置の制御方法
JP5929224B2 (ja) * 2012-01-20 2016-06-01 セイコーエプソン株式会社 ロボット
CN102664367A (zh) * 2012-05-11 2012-09-12 广东交通职业技术学院 一种高压绝缘瓷瓶清洁机械手
JP6083145B2 (ja) * 2012-07-31 2017-02-22 セイコーエプソン株式会社 ロボットの制御装置、およびロボット
JP6332900B2 (ja) * 2012-08-31 2018-05-30 セイコーエプソン株式会社 ロボットシステム及びロボット制御装置
US8950054B2 (en) * 2012-10-10 2015-02-10 The Boeing Company Manufacturing method and robotic assembly system
JP6155780B2 (ja) * 2013-04-10 2017-07-05 セイコーエプソン株式会社 ロボット、ロボット制御装置およびロボットシステム
JP2014205197A (ja) 2013-04-10 2014-10-30 セイコーエプソン株式会社 ロボット、ロボット制御装置およびロボットシステム
JP2014205199A (ja) 2013-04-10 2014-10-30 セイコーエプソン株式会社 ロボット、ロボット制御装置およびロボットシステム
JP2014205198A (ja) * 2013-04-10 2014-10-30 セイコーエプソン株式会社 ロボット、ロボット制御装置およびロボットシステム
JP6354122B2 (ja) 2013-06-05 2018-07-11 セイコーエプソン株式会社 ロボット
JP6314426B2 (ja) * 2013-10-31 2018-04-25 セイコーエプソン株式会社 ロボット制御装置およびロボット制御方法
CN104669244A (zh) * 2013-12-02 2015-06-03 精工爱普生株式会社 机器人
US10274939B2 (en) * 2014-03-14 2019-04-30 Makino Milling Machine Co., Ltd. Feed shaft control method and numerical control work device
JP5850087B2 (ja) * 2014-05-07 2016-02-03 セイコーエプソン株式会社 ロボット、制御装置及びロボットシステム
JP6418782B2 (ja) * 2014-05-16 2018-11-07 キヤノン株式会社 ロボットシステムの制御方法、プログラム、記録媒体、ロボットシステム、及び診断装置
US10035269B2 (en) * 2015-09-16 2018-07-31 The Boeing Company Enhanced robotic teaching tool
EP3172996B1 (en) * 2015-11-30 2021-01-13 Whirlpool Corporation Cooking system
JP6514171B2 (ja) * 2016-09-27 2019-05-15 ファナック株式会社 最適な物品把持経路を学習する機械学習装置、及び機械学習方法
US10369702B2 (en) * 2016-10-17 2019-08-06 Raytheon Company Automated work piece moment of inertia (MOI) identification system and method for same
AT519718B1 (de) * 2017-02-28 2018-12-15 Fill Gmbh Knickarmroboter und Verfahren zum spanenden Bearbeiten eines Werkstückes mittels dem Knickarmroboter
JP7223493B2 (ja) * 2017-05-19 2023-02-16 川崎重工業株式会社 ロボットシステム
CN107511829B (zh) * 2017-10-11 2020-06-05 深圳市威博特科技有限公司 机械手的控制方法及装置、可读存储介质及自动化设备
JP6661676B2 (ja) * 2018-01-18 2020-03-11 ファナック株式会社 ロボット制御装置
JP7155562B2 (ja) * 2018-03-22 2022-10-19 トヨタ自動車株式会社 姿勢角演算装置、移動装置、姿勢角演算方法、およびプログラム
JP6965844B2 (ja) * 2018-08-08 2021-11-10 オムロン株式会社 制御システム、解析装置および制御方法
JP6795559B2 (ja) 2018-08-22 2020-12-02 ファナック株式会社 制御装置および軸送り制御方法
US11027435B2 (en) 2018-12-04 2021-06-08 Raytheon Company Automated work piece testing system and method for same
US11198227B2 (en) 2018-12-04 2021-12-14 Raytheon Company Adjustable ballast system and method for same
JP2022019093A (ja) * 2020-07-17 2022-01-27 セイコーエプソン株式会社 オーバーシュート量検出方法およびロボットシステム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05111889A (ja) * 1991-10-23 1993-05-07 Fanuc Ltd 制御方式可変型ロボツト制御方式
JPH06332535A (ja) * 1993-05-21 1994-12-02 Kobe Steel Ltd ロボットの制御装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6123212A (ja) * 1984-07-11 1986-01-31 Hitachi Ltd 多関節構造機械の制御装置
JP2713899B2 (ja) * 1987-03-30 1998-02-16 株式会社日立製作所 ロボツト装置
US5631973A (en) * 1994-05-05 1997-05-20 Sri International Method for telemanipulation with telepresence
JPH09216184A (ja) * 1996-02-08 1997-08-19 Toshiba Corp 遠隔操作型ロボット監視システム
JP3442941B2 (ja) * 1996-09-30 2003-09-02 株式会社東芝 ロボットの振動抑制制御装置およびその制御方法
JP3808321B2 (ja) * 2001-04-16 2006-08-09 ファナック株式会社 ロボット制御装置
US7457698B2 (en) * 2001-08-31 2008-11-25 The Board Of Regents Of The University And Community College System On Behalf Of The University Of Nevada, Reno Coordinated joint motion control system
JP2004082243A (ja) * 2002-08-26 2004-03-18 Sony Corp アクチュエータ制御装置及びアクチュエータの制御方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05111889A (ja) * 1991-10-23 1993-05-07 Fanuc Ltd 制御方式可変型ロボツト制御方式
JPH06332535A (ja) * 1993-05-21 1994-12-02 Kobe Steel Ltd ロボットの制御装置

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8972059B2 (en) 2009-06-01 2015-03-03 Kawasaki Jukogyo Kabushiki Kaisha Displacement correcting method and displacement correcting program in automatic operation system
JP2011036956A (ja) * 2009-08-11 2011-02-24 Kawasaki Heavy Ind Ltd ロボットの精度調整方法およびロボット
JP2011042022A (ja) * 2009-08-24 2011-03-03 Kawasaki Heavy Ind Ltd 自動作業システムにおけるロボットの診断方法及び診断プログラム
JP2011115885A (ja) * 2009-12-02 2011-06-16 Mitsubishi Electric Corp 軌跡測定装置
JP2011224664A (ja) * 2010-04-15 2011-11-10 Tamagawa Seiki Co Ltd 作業確認システム
JP2012139807A (ja) * 2011-01-06 2012-07-26 Seiko Epson Corp ロボット及びロボットのノイズ除去方法
US9242377B2 (en) 2012-08-31 2016-01-26 Seiko Epson Corporation Robot
US9044861B2 (en) 2012-08-31 2015-06-02 Seiko Epson Corporation Robot
US11090805B2 (en) 2012-08-31 2021-08-17 Seiko Epson Corporation Robot
US9302388B2 (en) 2012-08-31 2016-04-05 Seiko Epson Corporation Robot
US9409293B2 (en) 2012-08-31 2016-08-09 Seiko Epson Corporation Robot
US9844875B2 (en) 2012-08-31 2017-12-19 Seiko Epson Corporation Robot
US10399222B2 (en) 2012-08-31 2019-09-03 Seiko Epson Corporation Robot
US9037293B2 (en) 2012-08-31 2015-05-19 Seiko Epson Corporation Robot
US10688659B2 (en) 2012-08-31 2020-06-23 Seiko Epson Corporation Robot
JP2016059970A (ja) * 2014-09-16 2016-04-25 株式会社デンソーウェーブ 摺動部材の劣化判定システム
US11446823B2 (en) 2017-08-08 2022-09-20 Panasonic Intellectual Property Management Co., Ltd. Method for transmitting information in controller and method for detecting abnormality in encoder
US10814481B2 (en) 2018-04-06 2020-10-27 Fanuc Corporation Robot system for performing learning control by using motor encoder and sensor
JP2020040137A (ja) * 2018-09-07 2020-03-19 日産自動車株式会社 異常判定装置及び異常判定方法
JP7110843B2 (ja) 2018-09-07 2022-08-02 日産自動車株式会社 異常判定装置及び異常判定方法
JP2020190551A (ja) * 2019-05-15 2020-11-26 オムロン株式会社 計測システム、計測装置、計測方法、及び計測プログラム
JP7448884B2 (ja) 2019-05-15 2024-03-13 オムロン株式会社 計測システム、計測装置、計測方法、及び計測プログラム
JP2021003781A (ja) * 2019-06-27 2021-01-14 セイコーエプソン株式会社 オーバーシュート量検出方法、オーバーシュート量検出システム、ロボットシステムおよびオーバーシュート量調整方法
CN112140127A (zh) * 2019-06-27 2020-12-29 精工爱普生株式会社 超调量检测方法、检测***和调整方法以及机器人***
CN112140127B (zh) * 2019-06-27 2023-07-11 精工爱普生株式会社 超调量检测方法、检测***和调整方法以及机器人***
JP7310358B2 (ja) 2019-06-27 2023-07-19 セイコーエプソン株式会社 オーバーシュート量検出方法、オーバーシュート量検出システム、ロボットシステムおよびオーバーシュート量調整方法
WO2021141049A1 (ja) * 2020-01-10 2021-07-15 ファナック株式会社 制御システム
JPWO2021141049A1 (ja) * 2020-01-10 2021-07-15
JP7384933B2 (ja) 2020-01-10 2023-11-21 ファナック株式会社 制御システム
WO2023243010A1 (ja) * 2022-06-15 2023-12-21 ヤマハ発動機株式会社 支援装置及びロボットシステム

Also Published As

Publication number Publication date
EP1803536A1 (en) 2007-07-04
US20070288124A1 (en) 2007-12-13
JPWO2006022201A1 (ja) 2008-05-08
TW200621450A (en) 2006-07-01

Similar Documents

Publication Publication Date Title
WO2006022201A1 (ja) ロボットの評価システム及び評価方法
JP5311294B2 (ja) ロボットの接触位置検出装置
US9937620B2 (en) Robot system having function to calculate position and orientation of sensor
US10618164B2 (en) Robot system having learning control function and learning control method
US8306661B2 (en) Method and system for establishing no-entry zone for robot
JP6705851B2 (ja) 振動解析装置および振動解析方法
JP2016198828A (ja) ロボット制御方法、ロボット装置、プログラム及び記録媒体
CN111438687A (zh) 判定装置
JP5849451B2 (ja) ロボットの故障検出方法、制御装置およびロボット
JP2010228028A (ja) ロボットアーム、ロボットアームの接触検知方法、及び、ロボットアームを備えた装置
JP2004364396A (ja) モータの制御装置および制御方法
CN112179551A (zh) 机器人的关节电机转矩系数与摩擦力同步测试方法和装置
JP7447568B2 (ja) シミュレーション装置およびプログラム
CN114867584A (zh) 获得机器人臂的振动特性的方法
JPH09123077A (ja) ロボットの剛性同定方法及びその装置
KR20130000496A (ko) 가속도센서와 자이로센서를 구비한 로봇 교시장치와 이를 이용한 로봇제어방법
US20230035296A1 (en) Method of suppressing vibrations of a robot arm with external objects
JP6565622B2 (ja) ロボットシステム及びロボット制御方法
JP3671694B2 (ja) ロボットのティーチング方法およびその装置
JPH06332535A (ja) ロボットの制御装置
Qi et al. A lead-through robot programming approach using a 6-DOF wire-based motion tracking device
EP0440588A1 (en) A system for monitoring the parameters of movement of industrial robots and the like
JP5473889B2 (ja) 力制御装置
JP2020097085A (ja) ロボット装置の検査方法、プログラム、記録媒体、ロボットシステム、物品の製造方法
Rodríguez-Angeles et al. User wearable interface based on inertial sensors for unilateral master-slave robot teleoperation

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006531872

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005780443

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005780443

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11661136

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 11661136

Country of ref document: US