WO2006018948A1 - 対象物処理装置およびその方法 - Google Patents

対象物処理装置およびその方法 Download PDF

Info

Publication number
WO2006018948A1
WO2006018948A1 PCT/JP2005/013372 JP2005013372W WO2006018948A1 WO 2006018948 A1 WO2006018948 A1 WO 2006018948A1 JP 2005013372 W JP2005013372 W JP 2005013372W WO 2006018948 A1 WO2006018948 A1 WO 2006018948A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
spraying
processing
processing apparatus
water
Prior art date
Application number
PCT/JP2005/013372
Other languages
English (en)
French (fr)
Inventor
Michio Aruga
Koichi Saito
Kaori Tajima
Original Assignee
Aqua Science Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aqua Science Corporation filed Critical Aqua Science Corporation
Priority to JP2006531376A priority Critical patent/JPWO2006018948A1/ja
Priority to US11/660,477 priority patent/US20080035754A1/en
Publication of WO2006018948A1 publication Critical patent/WO2006018948A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67051Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing using mainly spraying means, e.g. nozzles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/0206Cleaning during device manufacture during, before or after processing of insulating layers
    • H01L21/02063Cleaning during device manufacture during, before or after processing of insulating layers the processing being the formation of vias or contact holes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/02068Cleaning during device manufacture during, before or after processing of conductive layers, e.g. polysilicon or amorphous silicon layers
    • H01L21/02071Cleaning during device manufacture during, before or after processing of conductive layers, e.g. polysilicon or amorphous silicon layers the processing being a delineation, e.g. RIE, of conductive layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • B05B7/0416Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • B05B7/0416Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid
    • B05B7/0441Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with one inner conduit of liquid surrounded by an external conduit of gas upstream the mixing chamber
    • B05B7/0475Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with one inner conduit of liquid surrounded by an external conduit of gas upstream the mixing chamber with means for deflecting the peripheral gas flow towards the central liquid flow

Definitions

  • the present invention relates to an apparatus or method for processing a predetermined part or a predetermined surface of a target object, such as a semiconductor substrate, a Z glass substrate, a Z lens, a Z disk member, a Z precision machined member, a z mold grease member, etc. Therefore, the processing of the object is related to an apparatus or method for cleaning a part or surface, removing or removing unnecessary material there, and polishing or processing the surface of the object. More specifically, for example, in a semiconductor manufacturing process in which a fine structure is formed on the surface of an object, the object processing apparatus and method for removing the unnecessary material that is generated has a certain force in the etching process.
  • the present invention relates to an apparatus or method that can efficiently strip or remove unnecessary substances called reaction by-products and sidewall protective films generated from a film to be etched.
  • reaction by-products are generated from the etching target film.
  • the reaction by-product has a protective effect on the side wall, so it tends to be used by a method such as shape control.
  • dry plasma ashing or chemicals are added to the reaction by-product. Techniques for stripping or removing the product are commonly used.
  • the present invention has been made in view of such problems.
  • the part or surface is washed, and unnecessary objects are removed or removed from the object.
  • Processes such as surface polishing and processing can be carried out more reliably and efficiently, and the target objects are semiconductor substrates (silicon, etc.), glass substrates for liquid crystals, lens products such as cameras, CDs and DVDs, etc. Discs, precision machined parts, mold cartridge parts, etc.
  • the object is to provide an object processing method or method that can be applied to any wider field.
  • An object disposition unit (for example, a stage unit) that disposes the object in a predetermined atmosphere, and a nozzle unit that mixes the supplied steam and water (may be pure water or ultrapure water) and sprays the object on the object ,
  • the relative positional relationship between the object placement portion and the nozzle portion is regularly changed.
  • the relative movement speed (scan speed) to the desired value.
  • each parameter of the gap between the nozzle outlet and the object is controlled.
  • the value of each parameter at that time is
  • the pressure of steam supplied to the nozzle is 0.1 ⁇ 0.5 ⁇ «3 ⁇ 4,
  • the flow rate (flow rate) of ultrapure water supplied to the nozzle is 50 to 1000 cc / min, and the spraying time is 10 to 600 sec.
  • the area of the nozzle outlet is 1 ⁇ : L00mm 2 ,
  • Scan speed is 10 ⁇ 300mm / sec
  • the shape of the outlet of the nozzle portion may be various cross-sectional shapes such as a round shape, a square shape, a rectangular shape, a flat rectangular shape, an elliptical shape, a flat elliptical shape, and a slit shape.
  • the object is any one of a semiconductor substrate, a Z glass substrate, a Z lens, a Z disk member, a Z precision machining member, a Z mold grease member,
  • the treatment of the object may be performed by cleaning the part or surface to be treated, Is the removal of waste on the surface.
  • the object placement unit includes a stage-type placement member or a conveyor-type placement member that performs a shift operation or a plurality of operations of rotation Z rotation Z movement.
  • stage-type arrangement member there is a stage unit that mounts (attaches) an object and rotates or rotates around an axis.
  • a conveyor-type arrangement member there is a belt conveyor that moves or conveys an object by placing (attaching) an object on a movable belt.
  • the object is a semiconductor device having either a high dielectric layer Z passivation film Z metal layer as a part or surface to be processed,
  • the object is a semiconductor device having a “high dielectric layer” as a layer to be processed, and the waste is a reaction by-product generated after etching the high dielectric layer;
  • the flow rate of ultra pure water (flow rate) is 100-500cc / min,
  • the area of the nozzle outlet is 1 ⁇ : L00mm 2 ,
  • the spraying time is 120-300sec
  • Scan speed is 40 ⁇ : LOOmm / sec
  • the gap may be controlled to 5-30 mm.
  • the object is a semiconductor device having a “passivation film”, and the unnecessary object is a reaction by-product generated after the etching process of the passivation film.
  • the unnecessary object is a reaction by-product generated after the etching process of the passivation film.
  • the flow rate of ultra pure water (flow rate) is 100-500cc / min,
  • the area of the nozzle outlet is 1 ⁇ : L00mm 2 ,
  • Spraying time is 60 ⁇ : 120sec
  • Scan speed is 40 ⁇ : 100mm / sec
  • the gap may be controlled to 5-30 mm.
  • the object is a semiconductor device having a “metal layer”
  • the waste is a reaction by-product generated after the etching process of the metal layer.
  • the flow rate of ultra pure water (flow rate) is 100-500cc / min,
  • the area of the nozzle outlet is 1 ⁇ : L00mm 2 ,
  • the spraying time is 30 to 120 seconds
  • Scan speed is 40 ⁇ : 100mm / sec
  • the gap may be controlled to 5-30 mm.
  • the pressure of steam supplied to the nozzle is 0.1 ⁇ 0.5 ⁇ «3 ⁇ 4,
  • the flow rate (flow rate) of ultrapure water supplied to the nozzle is 50 to 1000 cc / min, and the spraying time is 10 to 600 sec.
  • the area of the nozzle outlet is 1 ⁇ : L00mm 2 ,
  • Scan speed is 10 ⁇ 300mm / sec
  • the “object” is not particularly limited, and examples thereof include a semiconductor substrate, a glass substrate, a lens, a disk member, a precision machined member, and a mold grease member.
  • the “treatment” is not particularly limited as long as it is applied to an object, and examples thereof include peeling, washing, and calorific work.
  • the term “unnecessary” refers to various unnecessary items generated during the processing of an object. For example, in a semiconductor device manufacturing process, a resist film, an etching residue after dry etching, and a chemically altered resist. A film etc. can be illustrated.
  • the object processing apparatus and method according to the present invention include high-pressure steam (steam) and water (which may be pure water or ultrapure water) mixed in a nozzle and blown out to an object such as a wafer.
  • steam steam
  • water which may be pure water or ultrapure water
  • various parameter conditions are defined, and the processing time can be precisely controlled in combination with the peripheral speed control method, so that the processing of the object is extremely effective. Can be done.
  • the parameters used here are steam pressure conditions, DIW (pure water) flow, nozzle area, nozzle-to-object (wafer, etc.) distance, removal (processing) time, and scanning speed. .
  • the object processing according to the present invention includes cleaning a predetermined portion or surface of a semiconductor substrate, peeling or removing unnecessary substances such as reaction by-products and foreign substances, cleaning a liquid crystal glass substrate, and removing foreign substances. Removal, camera lens cleaning and foreign matter removal, removal of foreign matter from machined parts Lastly, there is removal of mold grease, etc., but the present invention is particularly suitable for processing an object having a material strength that hate chemicals.
  • the present invention enables peeling at a low pressure when compared with the conventional high-pressure water blowing method, can suppress damage to an object such as a wafer, and the peeling main component is water. Therefore, it is possible to significantly reduce working capital without requiring excessive capital investment.
  • FIG. 1 is an overall view of an object processing apparatus according to an embodiment of the present invention
  • FIG. 2 is an explanatory view showing the structure of a nozzle used in an embodiment of the present invention in cross section
  • FIG. FIG. 4 is a diagram for explaining the operation control of the nozzle unit and the stage unit (object placement unit) in the embodiment
  • FIG. 4 is a diagram for explaining a situation in which the nozzle scans on the object in the embodiment of the present invention.
  • 5 to 7 are views showing a cross-sectional structure of an object to be processed in one embodiment of the present invention.
  • This vibration causes water molecules H 2 O to become hydrogen ions H + and hydroxide ions OH—.
  • Hydrogen ions H + and hydroxide ions are very unstable, so they try to return to the water molecule H 2 O. The high energy generated at this time is converted into mechanical shock.
  • this basic principle (thermal effect phenomenon) is used to generate a cavity and thereby perform processing such as removal of unnecessary materials on the surface of the processing object.
  • wastes are those produced in semiconductor devices after the etching process of the high dielectric layer.
  • reaction by-products reaction by-products generated after etching the passivation film, and reaction by-products generated after etching the metal layer.
  • FIG. 1 is an overall view of an object processing apparatus 100 according to an embodiment of the present invention.
  • This apparatus 100 includes a nozzle 101, an operation valve 103, a water flow meter 105, a stop valve 107a-b, a water pressurization tank 111, a water vapor supply device 113, a water supply pipe 115a-b, a nitrogen supply pipe 11 7, a pressure reducing valve 119.
  • the compression hose 121 to 123 and the stage 131 are configured.
  • An object to be processed (herein referred to as “wafer”) 133 is arranged and fixed on stage 1 31.
  • the nozzle 101 is arranged so as to blow out facing the processing surface of the processing object 133, and generates a cavity jet.
  • the water pressurization tank 111 pressurizes pure water supplied from the water supply pipe 115b to a predetermined value Al (MP), and supplies a predetermined flow rate Bl (lZmin) of the pressurized pure water to the pressure hose. It is sent out to nozzle 101 in a high-pressure state via 121.
  • pure water is usually used as pure water or ultra-pure water in the cleaning process of semiconductor device manufacturing! It only has to be.
  • the water flow meter 105 measures the flow rate of pure water supplied from the water pressure tank 111 to the nozzle 101.
  • the operator can check the flow rate with the water flow meter 105 and adjust it to a desired value using the operation valve 103.
  • the supply of pure water can be stopped or restarted by opening and closing the stop knob 107a.
  • the water vapor supply device 113 heats pure water supplied from the water supply pipe 115a to a predetermined temperature D 1 (° C) or higher to generate water vapor, and the pure water is supplied to the predetermined value according to the amount of generated water vapor. After pressurizing Cl (MP), it is sent to the nozzle 101 through the pressure hose 123 in a high pressure state.
  • the pressure gauge 120 measures the pressure of water vapor supplied from the water vapor supply device 113 to the nozzle 101. The operator can check the pressure with the pressure gauge 120 and adjust it to a desired value using the pressure reducing valve 119. In addition, the supply of water vapor can be stopped or restarted by opening and closing the stop knob 107b.
  • a thermal effect phenomenon occurs due to the pure water supplied from the water pressurizing tank 111 and the water vapor supplied from the water vapor supply device 113. After that, the heat effect phenomenon A closed cavity jet is sprayed onto the surface of the object to be treated. Then, the surface of the object to be processed is eroded by the high impact force generated when the bubbles caused by the cavity disappear, and processing such as cleaning and polishing / grinding is performed, and unnecessary materials are removed.
  • nitrogen can be supplied from the nitrogen supply pipe 117 to the water pressurization tank 111, and thus other gases or chemicals (for example, CO 2, O 2, N 1, O 2, H 2, Alkali, acid,
  • FIGS. 2 (a), 2 (b), and 2 ( C ) are cross-sectional views showing a specific example of the structure of a nozzle that is preferably used in an embodiment of the object processing apparatus according to the present invention.
  • the nozzle 101a in FIG. 2 (a) has two flow paths (121 and 12 3) connected so that an external force can also flow into the internal space a3 of the substantially cylindrical nozzle body al whose upper surface is closed. ), And an internal space a3 for mixing therethrough via the fluids, and a blowout port a2 having a circular cross section for ejecting the mixed fluid downward.
  • the inner wall surface of the nozzle body al is provided with two outlets (vl and wl), from which the fluid flows into the internal space a3.
  • the outlet vl is connected to the steam supply device 113 via a pressure hose (flow path) 123, and the force blows out the steam, and the outlet wl passes through the pressure hose (flow path) 121. It is configured to be connected to the water pressurization tank 111 !, the lever force also blows out pure water (DIW), and in the internal space a3, the water vapor and pure water are mixed and blown out from the outlet a2. ing.
  • DIW pure water
  • the outlets (vl and wl) provided in the nozzle 101a are opened from the side closer to the downward outlet a2 in the order of the outlet wl—outlet vl. It is arrange
  • the shape (cross section) of the nozzle outlet is, for example, a slit-like flat oval or rectangular shape, and the cross-sectional area can be 12 mm 2 corresponding to 2 mm ⁇ 6 mm. Sarasako, Blowout When the loca is blown out toward the target, the blowout angle can be set in a downward-opening skirt shape.
  • the jet port angle of the guide portion at that time may be set to 120 °, for example.
  • the nozzle 101b in Fig. 2 (b) has a substantially cylindrical nozzle body bl whose upper surface and part of the side surface are open (opened). There are two flow paths (121 'and 123') that are connected to let the fluid flow in, and the fluid is blown into the internal space b3 and mixed, and then blown down from the blowout port b2 It is composed.
  • the blowout port v2 provided in the upper surface of the nozzle body bl is connected to the steam supply device 113 via a pressure-resistant hose (flow path) 123 ′, and the force also blows off the steam.
  • pure water (DIW) is guided from a blowout port w2 provided by opening a part of the side wall surface of the nozzle body bl by a pressure hose (flow path) 121 'connected to the water pressurization tank 111.
  • pure water (DIW) is blown out into the internal space b3.
  • the nozzle 101c in Fig. 2 (c) has a substantially cylindrical nozzle body cl having an open (opened) part of the upper surface and side surfaces, and has an internal space c3 from above and from the side of the drawing. It has two channels (121 "and 123") connected to allow fluid to flow in.
  • the flow path 123 "provided on the side of the nozzle body cl blows fluid from the outlet v3 into the internal space c3, and the flow path 12 1" penetrates from above the nozzle body cl into the internal space c3.
  • the blowout port v3 opened in the side wall is connected to the water vapor supply device 113 via a pressure-resistant hose (flow path) 123 ", and blows out water vapor therefrom.
  • the pressure hose 121 "introduced into the interior is connected to the water pressurizing tank 111, and pure water (DIW) is introduced into the internal space c3 through this.
  • DIW pure water
  • the shape (cut surface) of the nozzle outlet (a2, b2, c2) is, for example, a slit-like flat
  • the nozzle part is blown out as an oval or rectangular shape
  • the cross-sectional area of the mouth can be appropriately set within the range of 1 to: LOOmm 2 and used.
  • the cross-sectional shape of the air outlet of the nozzle part is not limited to the above, and for example, a circular (round) shape may be used. If a round shape of 3 to 10 mm ⁇ is adopted, the outlet area (cross-sectional area) of this outlet is 9.42 to 78.5 mm 2 .
  • FIG. 3 is a view for explaining the relative operation, that is, the scanning operation of the nozzle unit 201 and the stage unit 231 in the embodiment of the present invention, and the inside of the processing chamber 300 is processed in a predetermined atmosphere.
  • a stage unit 231 for arranging and holding the target object 233, a nozzle unit for internally mixing the steam supplied from the flow path 223 and the pure water supplied from the flow path 221 and spraying the target object 233 201, and a flow path 301 for waste liquid and exhaust is provided on the lower side thereof.
  • An object 233 to be processed (for example, a substantially disk-shaped semiconductor wafer) is disposed on the stage unit 231.
  • the stage unit 2 is arranged so that the object 233 is not displaced during processing.
  • 31 may be integrally coupled to the upper surface by a fixing means or a locking means.
  • the stage portion 231 is fixedly supported by a support shaft 231 ′ extending downward from its center, and the stage portion 231 is integrally operated in accordance with the rotation or rotation of the support shaft 231 ′. Is configured to do.
  • the operation direction is indicated as R1.
  • the nozzle unit 201 sprays vertically from the upper surface of the object 233 on the stage unit 231. At this time, the distance between the nozzle port 201c and the upper surface of the object 233 is expressed as a gap G. Is done.
  • the nozzle unit 201 here is designed to be movable by itself, and can perform a rotation (turning) operation and a Z or position movement operation. In FIG. 3, it is assumed that the nozzle part 201 can move linearly in the horizontal direction while maintaining the gap G at a predetermined value until the center position cl force on the stage part 231 also reaches the end position T1. Show the trajectory (direction) of the movement as M 1!
  • the nozzle unit 201 performs a linear and regular movement operation (operation direction Ml), and the stage unit 231 performs a regular rotation operation (operation direction R1).
  • the nozzle portion 201 can be sprayed while regularly scanning the entire surface of the object 233 on the object 233, and the scanning speed can be increased by the positional relationship between the nozzle portion 201 and the stage portion 231. It can be controlled to a desired value.
  • the movement operation of the nozzle unit 201 and the rotation operation of the stage unit 231 are combined so as to synchronize with each other, and both are operated simultaneously, and the target 233 is scanned to obtain a desired It can be controlled to obtain scanning speed, but it is not limited to this. That is, while the stage portion 231 is fixed, only the nozzle portion 201 can be moved alone, and a movement operation and a rotation operation can be combined to perform an operation of scanning the entire processing surface of the object 233. On the other hand, with the nozzle unit 201 fixed, only the stage unit 231 can be moved independently, and a mechanism that enables not only the rotation operation but also the movement operation is provided, and the rotation and movement are combined in synchronization. An operation of scanning the entire processing surface of the object 233 can also be performed. As described above, the operations of the nozzle unit 201 and the stage unit 231 may be appropriately combined in accordance with the scanning specification and designed to obtain a desired scanning speed.
  • the object to be processed has a circular shape
  • the entire area of one side of the object is the processing target surface, and all the regions of the processing target surface are evenly distributed.
  • Control is performed to scan the
  • the central force of a circular object can be set so that a desired scanning speed can be obtained by combining the operation of linearly moving the nozzle unit 201 in the circumferential direction and the operation of rotating the stage unit 231. The trajectory of scanning at that time becomes a kana-like shape.
  • 4 (a) and 4 (b) are diagrams showing the scanning status of a rectangular object.
  • FIG. 4 (a) is a diagram showing an example of a scanning locus for a rectangular object 233a. By moving both or one of the nozzle part 201 and the stage part 231, scanning like the locus S 1 can be obtained.
  • FIG. 4 (b) is a diagram showing an example of a scanning trajectory with respect to the rectangular object 233b. For example, as in the case of a circular object, the central force of the object also causes the nozzle part 201 to end. This is a combination of the movement that moves linearly in the direction and the movement that rotates the stage part 231 to obtain the desired scanning speed. The scanning trajectory at this time is also a fine spiral. .
  • the object processing apparatus or method as described above is used, and a semiconductor wafer, 'IC circuit', 'micro structure', liquid crystal, or the like is used as a processing object, and an unnecessary object generated there is effectively used.
  • a semiconductor wafer, 'IC circuit', 'micro structure', liquid crystal, or the like is used as a processing object, and an unnecessary object generated there is effectively used.
  • the pressure of steam supplied to the nozzle is 0.1 ⁇ 0.5 ⁇ «3 ⁇ 4,
  • the flow rate (flow rate) of ultrapure water supplied to the nozzle is 50 to 1000 cc / min, and the spraying time is 10 to 600 sec.
  • the area of the nozzle outlet is 1 ⁇ : L00mm 2 ,
  • Scan speed is 10 ⁇ 300mm / sec
  • the pressure of steam supplied to the nozzle is 0.1 to 0.5 MPa. If it is less than the adaptive value, the physical strength is reduced due to a reduction in striking performance against the reaction by-product and cannot be removed. When the value is higher than the adaptation value, the striking force is inadvertently increased, causing damage to the membrane (tissue). In addition, excessive heat generation causes hardening or alteration. [0042] ⁇ Flow rate of pure water
  • the flow rate (flow rate) of pure water (DIW) is 50 to 1000cc / min. If it is less than the optimum value, only steam (steam) is produced, and the nozzle jet particle size is too fine to reduce the striking component and cannot be removed. When the value is higher than the adaptive value, the particle size of the nozzle force increases due to mixing of steam (steam) and pure water (DIW), and damages the film.
  • the spraying time is 10 to 600 seconds. Reaction by-products are likely to remain if the value is below the adaptation value. If the value is above the adaptation value, it can be removed, but it is likely to cause other secondary problems due to thermal effects. Also, this spraying time parameter is a major factor that directly affects the processing capacity of the equipment, and it is problematic that the spraying time is too long.
  • the area of the nozzle outlet is 1 to: LOOmm 2 is the applicable value. If the value is below the adaptive value, the area of the air outlet is small and the striking force is partially increased, but there is a risk of causing damage to the membrane (tissue). There is a high possibility that a waste will be left in the removal of waste. In addition, when the value exceeds the adaptation value, the area of the outlet is too large, and the mixed particle size of steam (steam) and pure water (DIW) ejected from the nozzle diffuses to reach the target object. However, if the striking performance is reduced, it becomes difficult to remove unnecessary materials.
  • the scanning speed is 10 to 300 mm / sec.
  • careless nozzle ejection per unit time increases the irradiation time, and the possibility of causing damage other than removing unnecessary materials by heat and excessive striking force increases. If the value is higher than the adaptive value, the nozzle ejection time per unit time is shortened and the striking force is insufficient, so it is impossible to remove the waste.
  • the gap (distance) between the nozzle mouth and the object is 3 to 30 mm. If the value is less than the adaptive value, the nozzle force ejection area becomes smaller and the relationship force between the object and the ejection distance becomes smaller, which is an unnecessary object. There is a high possibility that there is a rest in the removal. In addition, when the value exceeds the applicable value, the mixing particle size of steam (steam) ejected from the nozzle and pure water (DIW) decreases the striking performance until it reaches the target. Things tend to be difficult to remove.
  • Figs. 5 to 7 are diagrams showing a state in which specific processing is performed on three types of objects having different structures to which the present invention is applied.
  • An object 500 shown in FIGS. 5 (1) to (3) is a semiconductor device (wafer) having a high dielectric layer as a layer to be processed, and includes a resist (mask) layer 11 and a high dielectric layer (BST). (Or SBT) 12, an AU film, or a Pt film of a thin film layer made of a metal film 13 is laminated on the substrate 14.
  • FIG. 5 (1) shows a state before the object 500 is etched, and the resist (mask) layer 11 has an opening K1.
  • FIG. 5 (2) shows the state after etching.
  • the portion K1 ′ of the high dielectric layer 12 in the position directly below the opening K1 of the resist (mask) layer 11 is opened.
  • secondary reaction by-product F1 is generated on the wall of the site ( ⁇ + ⁇ ') and remains in the form of a fence.
  • FIG. 5 (3) shows that a “steam + pure water mixed spraying process” is performed by the object process to which the present invention is applied, and the reaction (by-product) F1 that is an unnecessary material with the resist (mask) layer 11 is obtained. Indicates a state where and are removed.
  • the vapor pressure is 0.2 to 0.3 MPa and ultrapure water is applied when sprayed.
  • flow rate is 100 ⁇ 500cc / min, the area of the air outlet of the nozzle section 1 to 100 mm 2, spraying time 120 ⁇ 300Sec, scan speed 40 to 100 mm / sec, the gap 5 ⁇ : LOmm / sec , The waste removal effect is high.
  • An object 600 shown in FIGS. 6 (1) to (3) is a semiconductor device having a passivation film as a layer to be processed, and has a structure suitable for a wire bonding Z bump.
  • This object 600 has a thin film layer consisting of a resist (mask) layer 21, a protective film (passivation film) 22, a wiring film (Al) 23, and an insulating film (SiO2 oxide film) 24 on a substrate 125.
  • FIG. 6 (1) shows a state before the object 600 is etched, and the resist (mask) layer 21 has an opening K2.
  • Fig. 6 (2) shows the state after etching.
  • a portion K2 ′ of the passivation film 22 located immediately below the opening K2 of the resist (mask) layer 11 is opened, and a secondary reaction by-product is formed on the wall of the portion (K2 + K2 ′).
  • Material F2 is generated and remains in the form of a fence.
  • FIG. 6 (3) shows that the “steam + pure water mixed spraying process” is performed by the object process to which the present invention is applied, and the reaction (by-product) which is an unnecessary material with the resist (mask) layer 21. The state where F2 is removed is shown.
  • the vapor pressure is 0.15 to 0.3 MPa, and ultrapure water is used for spraying.
  • Flow rate is 100 ⁇ 500cc / min, nozzle outlet area is 1 ⁇ : L00mm 2 , spraying time is 60 ⁇ 120sec, scan speed is 40 ⁇ : LOOmm / sec, gap is 5 ⁇ : LOmm / If it is controlled to sec, the effect of removing unnecessary materials is high.
  • the object 700 shown in FIGS. 7 (1) to (3) is a semiconductor device having metal layers as layers to be processed, and has a structure in which openings are formed in these metal layers by etching. have.
  • This object 700 has a thin film layer consisting of a resist (mask) layer 31, a wiring film (Al) 32, a protective film (TwZ Ti film) 33, and an insulating film (SiO 2 oxide film) 34 on a substrate 35. Stacked structure
  • FIG. 7 (1) shows a state before the object 500 is etched, and the resist (mask) layer 31 has an opening K3.
  • FIG. 6 (2) shows the state after etching.
  • the wiring film (Al) 32 and the protective film (TwZTi) located immediately below the opening K2 of the resist (mask) layer 31 are in contact with each other.
  • the secondary reaction by-product F3 is generated on the wall surface of the hole (K3 + K3 ') and remains in a fence shape.
  • FIG. 7 (3) shows that a “steam + pure water mixed spraying process” is performed by the object processing to which the present invention is applied, and the resist (mask) layer 31 and unnecessary reaction by-products F3. Indicates a state where and are removed.
  • the vapor pressure is 0.1 to 0.2 MPa and ultrapure water is used for spraying.
  • flow rate is 100 ⁇ 500cc / min, the area of the air outlet of the nozzle portion 1 ⁇ : L00mm 2, spraying time 30 ⁇ 120Sec, scan speed 40 ⁇ : L00mm / sec, the gap 5 ⁇ : L0mm / If it is controlled to sec, the effect of removing unnecessary materials is high.
  • FIGS. 5 to 7 show, as objects, (object 1) a semiconductor device having a high dielectric layer, (object 2) Wire bonding A semiconductor device with a passivation film suitable for Z-bumps, (object 3) a semiconductor device with a metal etching layer, is shown as an example. Therefore, the difference between the processing conditions of each object will be described.
  • the pressure of steam at the object 1 is 0.2 to 0.3 MPa
  • the object 2 is 0.15 to 0.3 MPa
  • the object 3 is 0.1 to 0.2 MPa.
  • the high dielectric film has high resistance to the temperature associated with the vapor pressure due to the characteristics of the high dielectric film.
  • the aluminum used for wiring has high vapor density and easily generates aluminum hydroxide due to the synergistic effect with temperature! Therefore, it is better to process at a slightly lower pressure than the object 1.
  • the spraying time for the object 1 is 120 to 300 seconds, the object 2 is 60 to 300 sec, and the object 3 is 30 to 120 seconds.
  • the object 2 uses aluminum for the wiring, if treatment for 60 seconds or more is performed, hydroxide-aluminum is generated on the aluminum side wall, and the aluminum surface is damaged.
  • the object 1 having a high dielectric film does not use aluminum, and the reaction by-product is strong and difficult to remove. Therefore, it is preferable to increase the time.
  • MEMS Micro Electro Mechanical System
  • the present invention is applied as a means or method for removing or deburring reaction by-products in a microstructure using silicon process technology.
  • the present invention is applied as a means or method for removing a chip in an IC finishing process.
  • the present invention can be applied to objects such as semiconductor devices, liquid crystals, magnetic heads, disks, printed circuit boards, cameras and other lenses, precision machined parts, molded resin products, etc. ⁇ Processing such as cleaning and polishing can be performed more effectively, and the present invention is also used as a deburring method in the fields of microstructures and mold caches using silicon process technology. can do. Furthermore, the present invention is particularly suitable for the treatment of materials that dislike chemicals.
  • FIG. 1 is an overall view of an object processing apparatus showing an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a nozzle structure according to an embodiment of the present invention.
  • FIG. 3 is an operation explanatory diagram of a nozzle part and a stage part (object placement part) in an embodiment of the present invention.
  • FIG. 4 is a diagram for explaining a relative operation state (scanning state) of an object in one embodiment of the present invention.
  • FIG. 5 is a cross-sectional view showing the structure of an object 500 in one embodiment of the present invention.
  • FIG. 6 is a cross-sectional view showing the structure of an object 600 in one embodiment of the present invention.
  • FIG. 7 is a cross-sectional view showing the structure of an object 700 in one embodiment of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Cleaning By Liquid Or Steam (AREA)

Description

明 細 書
対象物処理装置およびその方法
技術分野
[oooi] 本発明は、半導体基板 Zガラス基板 Zレンズ Zディスク部材 Z精密機械加工部材 zモールド榭脂部材などを対象物として、その対象物の所定部位または所定面の処 理を行う装置または方法にかかり、その対象物の処理として、部位または面の洗浄、 そこにある不用物の除去や剥離、対象物表面の磨きや加工などを行う装置または方 法に関するものである。より具体的には、例えば、対象物の表面に微細構造が形成さ れる半導体製造プロセスなどにおいて、生成される不用物の除去するための対象物 処理装置およびその方法がある力 そのエッチング工程において、エッチング対象 膜から発生した反応副生成物や側壁保護膜などと呼ばれる不用物を、効率的に剥 離または除去することができる装置または方法に関するものである。
背景技術
[0002] ,従来技術の問題点
ここでは、半導体製造プロセスの例を挙げて説明する。半導体製造のエッチングェ 程において、エッチング対象膜から 2次的な反応副生成物が発生する。一般には、 その反応副生成物は側壁保護作用があるので、形状制御等の手法によってそれを 利用する傾向があり、その後の剥離工程において、ドライプラズマアツシングもしくは 薬液を付加させて、その反応副生成物を剥離または除去する手法が一般的に行わ れている。
[0003] しかし、このような製品製造プロセスで生成されてくる不用物を除去 (剥離)するため の対象物処理装置として、一部のデバイスにおいては、従来の手法もしくは一般の 工程とは異なる手法が実施されているものの、エッチング対象膜の反応副生成物が そのような従来の処理工程では除去することができず、残留物がフェンス (壁)形状と なって存在していることが多い。また、場合によっては、そのような除去 (剥離)工程の 経由を実施せずに次工程に進み、残留膜が存在しまま製品化されている例もある。
[0004] 近年の半導体製造プロセスでは、微細加工における対象膜種の開発及び変更に 伴い、これら反応副生成物による残留膜が与える製品表面の凹凸形成のため、デバ イスの平坦性や電極不良等の問題が多く生じている。このため、最終的には製品の 歩留まりが無視できないものとなってきており、反応副生成物の残留膜をより効率的 に取り除くための新規技術の開発が要望されている。
[0005] ,従来方式における懸念点
従来方式による剥離手法によって、これらのフェンスを除去することは難しい。従来 方式ではプラズマもしくは薬液による処理を行うが、一般的には化学的要素の比重 が高ぐフェンスの除去における条件選択に非常に時間が要するものと考えられ、実 用的には問題が多い。また、従来方式による剥離手法が確立した場合でも、供給設 備、薬液購入、処理設備等への設備投資やそれらの運転資金が多大となるものと予 測される。
[0006] ,他方式における懸念点
一般的に用いられている他の除去方法として、ウォータージェットスクラバー、ロット 処理での水没還流方式、高圧水吹出法などがあるものの、このような除去方法では 厳密なウェハー (対象物)上での要素制御がなされることが難しぐその結果、希望す る残留膜の除去には至っていない。また、高圧水吹出法を用いれば、剥離される可 能性があるものの、非常な高圧なために、制御性およびウェハー (対象物)上でのダメ ージが大きな懸念として存在する。
発明の開示
発明が解決しょうとする課題
[0007] 上述したように、対象物処理装置または方法として、半導体製造プロセスの例を挙 げて説明してきたが、半導体デバイス分野における従来の処理方式では、反応副生 成物からなる不用物 (残留物)の除去が大変難しいという問題点がある。
本発明は、このような問題点に鑑みてなされたものであり、処理される部位または面 を有する対象物について、その部位または面の洗浄、そこにある不用物の除去や剥 離、対象物表面の磨きや加工などの処理をより確実で効率的に実施でき、またその 対象物として、半導体用基板 (シリコンなど)、液晶用などのガラス基板、カメラ等のレ ンズ製品、 CDや DVDなどのディスク類、精密機械加工部品、モールドカ卩ェ部品な どのより広い分野に適用することができる対象物処理方法または方法を提供すること を目的としている。
課題を解決するための手段
[0008] (1)対象物を処理するための対象物処理装置であって、
所定雰囲気下で前記対象物を配置する対象物配置部(例えばステージ部)と、 供給される蒸気と水 (純水や超純水でもよい)とを混合して前記対象物に吹き付ける ノズル部と、
前記ノズル部を前記対象物配置部の前記対象物に対して相対移動させながら前 記吹き付けを行うにあたり、前記対象物配置部と前記ノズル部との相対的な位置関 係を規則的に変化させて、相対移動速度 (スキャン速度)を所望の値に制御する手 段と
を備えたことを特徴とする。
ここで、前記吹き付け時は、ノズル部に供給される蒸気の圧力、ノズル部に供給さ れる水の流量 (フローレイト)、ノズル部の吹出口の面積、吹き付け時間、相対的速度 ( スキャン速度)、ノズル部の吹出口と対象物とのギャップ、の各パラメータを制御する。 そのときの各パラメータの値は、
ノズル部に供給される蒸気の圧カは0.1〜0.5\«¾、
ノズル部に供給される超純水の流量 (フローレイト)は 50〜1000cc/min、 吹き付け時間は 10〜600sec、
ノズル部の吹出口の面積は 1〜: L00mm2
スキャン速度は 10〜300mm/sec、
ノズル口と対象物とのギャップは 3〜30mm、に制御するとよ!/、。
またこのとき、ノズル部の吹出口の形状については、丸型、四角形、矩形、扁平矩 形、楕円形、扁平楕円形、スリット形状など、種々の断面形状のものを用いてよい。
[0009] (2) (1)の対象物処理装置において、
前記対象物は、半導体基板 Zガラス基板 Zレンズ Zディスク部材 Z精密機械加工 部材 Zモールド榭脂部材のいずれかであって、
前記対象物の処理は、処理される部位または面の洗浄、あるいは、当該部位また は面に存在する不用物の除去である。
[0010] (3) (1)または(2)の対象物処理装置にお!、て、
前記対象物配置部は、回転 Z回動 Z移動の 、ずれかの動作またはその複数の動 作を行うステージ式配置部材またはコンベア式配置部材を備えている。
ステージ式配置部材としては、対象物を載置 (取付け)して、軸を中心に回転または 回動の動作を行うステージ部がある。また、コンベア式配置部材としては、可動する ベルトに対象物を載置 (取付け)して、移動または運搬を行うベルトコンベアがある。
[0011] (4) (1)〜(3)の対象物処理装置にお!、て、
前記対象物は、処理される部位または面として、高誘電層 Zパッシベーシヨン膜 Z メタル層のいずれかを有する半導体デバイスであって、
1)前記高誘電層のエッチング処理後に生成される反応副生成物、
2)前記パッシベーシヨン膜のエッチング処理後に生成される反応副生成物、
3)前記メタル層のエッチング処理後に生成される反応副生成物、
のいずれかを不用物として除去する、ことを特徴とする対象物処理装置とした。
[0012] (4 1) (4)の対象物処理装置において、
前記対象物は、処理される層として「高誘電層」を有する半導体デバイスであり、 前記不用物は、前記高誘電層のエッチング処理後に生成される反応副生成物であ るとさ、
前記吹き付け時は、
蒸気の温度は 100°C以上で圧力は 0.2〜0.3MPa、
超純水の流量 (フローレイト)は、 100〜500cc/min、
ノズル部の吹出口の面積は 1〜: L00mm2
吹き付け時間は、 120〜300sec、
スキャンスピードは、 40〜: LOOmm/sec、
ギャップは、 5〜30mm、に制御されるとよい。
[0013] (4 2) (4)の対象物処理装置において、
前記対象物は、「パッシベーシヨン膜」を有する半導体デバイスであり、 前記不用物は、前記パッシベーシヨン膜のエッチング処理後に生成される反応副 生成物であるとき、
前記吹き付け時は、
蒸気の温度は 100°C以上で圧力は 0.15〜0.3MPa、
超純水の流量 (フローレイト)は、 100〜500cc/min、
ノズル部の吹出口の面積は 1〜: L00mm2
吹き付け時間は、 60〜: 120sec、
スキャンスピードは、 40〜: 100mm/sec、
ギャップは、 5〜30mm、に制御されるとよい。
[0014] (4— 3) (4)の対象物処理装置において、
前記対象物は、「メタル層」を有する半導体デバイスであり、
前記不用物は、前記メタル層のエッチング処理後に生成される反応副生成物であ るとさ、
前記吹き付け時は、
蒸気の温度は 100°C以上で圧力は 0.1〜0.2MPa、
超純水の流量 (フローレイト)は、 100〜500cc/min、
ノズル部の吹出口の面積は 1〜: L00mm2
吹き付け時間は、 30〜120sec、
スキャンスピードは、 40〜: 100mm/sec、
ギャップは、 5〜30mm、に制御されるとよい。
[0015] (5)対象物を処理するための対象物処理方法であって、
所定雰囲気下で前記対象物を対象物配置部に配置するステップと、
供給される蒸気と水とを混合してノズル部を介して前記対象物に吹き付けるステツ プと、
前記ノズル部を前記対象物配置部の前記対象物に対して相対移動させながら前 記吹き付けを行うにあたり、前記対象物配置部と前記ノズル部との相対的な位置関 係を規則的に変化させて、相対移動速度 (スキャン速度)を所望の値に制御するステ ップと
を含むことを特徴とする。 ここで、吹き付け時は、ノズル部に供給される蒸気の圧力、ノズル部に供給される水 の流量 (フローレイト)、ノズル部の吹出口の面積、吹き付け時間、相対的速度 (スキヤ ン速度)、ノズル部の吹出口と対象物とのギャップ、の各パラメータを制御する。
そのときの各パラメータの値は、
ノズル部に供給される蒸気の圧カは0.1〜0.5\«¾、
ノズル部に供給される超純水の流量 (フローレイト)は 50〜1000cc/min、 吹き付け時間は 10〜600sec、
ノズル部の吹出口の面積は 1〜: L00mm2
スキャン速度は 10〜300mm/sec、
ノズル口と対象物とのギャップは 3〜30mm、に制御するとよ!/、。
[0016] 以下、本明細書における各用語の意義について説明する。「対象物」とは、特に限 定されず、例えば、半導体基板、ガラス基板、レンズ、ディスク部材、精密機械加工部 材、モールド榭脂部材を挙げることができる。「処理」とは、対象物に施されるものであ る限り特に限定されず、例えば、剥離、洗浄、カロ工を挙げることができる。「不用物」と は、対象物処理の際に生じた様々な不用物を意味し、例えば、半導体装置の製造プ ロセスにおいては、レジスト膜、ドライエッチング後のエッチング残渣、化学的に変質 したレジスト膜等を例示することができる。
発明の効果
[0017] 本発明による対象物処理装置およびその方法は、高圧の蒸気 (水蒸気)と水 (純水 や超純水でもよい)とを,ノズル内で混合してウェハー等の対象物に吹き出させ、その 吹き出し (噴出)にあたって、各種のパラメータ条件を規定し、これによりその処理時間 を周速制御方式と合わせて精密に制御することができるようにしたので、対象物の処 理を極めて効果的に行うことができる。ここでのパラメータとしては、蒸気圧力条件、 D IW (純水)流量、ノズル部の吹出口の面積、ノズルと対象物 (ウェハー等)間の距離、除 去 (処理)時間、スキャニング速度を用いる。
本発明による対象物処理としては、半導体基板の所定部位または面を洗浄するとと もに、反応副生成物等の不用物や異物を剥離または除去すること、液晶用ガラス基 板の洗浄と異物の除去、カメラレンズの洗浄と異物除去、機械加工部品の異物の除 去、モールド榭脂のノ リ取りなどがあるが、本発明はとりわけ化学薬品を嫌う材料力も なる対象物を処理するのに好適である。
また、本発明は、従来の高圧水吹出法と比較した場合、低圧力での剥離を可能とし ており、ウェハー等の対象物のダメージを抑制できるし、剥離基本主成分は、水であ る為、過大な設備投資を必要とせず、運転資金を大幅に低減できる。
発明を実施するための最良の形態
[0018] 以下、本発明の実施の形態について図面を用いて説明する。図 1は本発明の一実 施形態にかかる対象物処理装置の全体図、図 2は本発明の一実施形態に用いられ るノズルの構造を断面で示す説明図、図 3は本発明の一実施形態におけるノズル部 とステージ部 (対象物配置部)の動作制御を説明するための図、図 4は本発明の一実 施形態においてノズルが対象物上をスキャニングする状況を説明するための図、図 5 〜7は本発明の一実施形態において処理される対象物の断面構造を示す図である。
[0019] ·本発明による「対象物処理装置」
'基本原理
常温 (約 20°C)の純水と、高温(100°C以上)の水蒸気とを一定の容量を持った容 器の中で一定の圧力下で連続的に混合すると、純水は水蒸気によって加熱されて 膨張する。一方、水蒸気は純水によって冷却されて収縮する。これらの熱交換によつ て、ある程度の周波数(10ΚΗζ〜1ΜΗζ)を有する振動が発生する。
純水 (約 20°C) +水蒸気(100°C以上)→振動
そして、この振動によって、水分子 H Oが水素イオン H+と水酸化物イオン OH—と
2
に分解する。
H 0→H+ + OH"
2
水素イオン H+や水酸ィ匕物イオン ΟΗΊま非常に不安定な状態にあるため、水分子 H Oに戻ろうとする。この際に生じる高エネルギーを機械的衝撃に変換することで処
2
理対象物を洗浄する。
本発明では、この基本原理 (熱効果現象)を利用してキヤビテーシヨンを発生させ、 これにより処理対象物の表面にある不用物の除去などの処理を行う。これら不用物と しては、半導体デバイスにおいては、高誘電層のエッチング処理後に生成される反 応副生成物、同じくパッシベーシヨン膜のエッチング処理後に生成される反応副生成 物、また、同じくメタル層のエッチング処理後に生成される反応副生成物などがある。
[0020] ·対象物処理装置の全体構造
図 1は本発明の一実施形態による対象物処理装置 100の全体図である。 本装置 100は、ノズル 101、操作バルブ 103、水流量計 105、ストップバルブ 107a 〜b、水加圧タンク 111、水蒸気供給装置 113、水供給管 115a〜b、窒素供給管 11 7、減圧弁 119、而圧ホース 121〜123、ステージ 131で構成されている。ステージ 1 31上には処理すべき対象物(ここでは「ウェハー」とする) 133が配置固定されている 。ノズル 101は、処理対象物 133の処理面に対面して吹出すよう配置され、キヤビテ ーシヨンジェットを発生する。
[0021] 水加圧タンク 111は、水供給管 115bから供給される純水を所定値 Al(MP)に加圧 し、加圧した純水のうち所定の流量 Bl(lZmin)を、耐圧ホース 121を介して高圧状 態でノズル 101に送り出す。ここで「純水」とは、通常、半導体装置製造の洗浄工程 等で純水或!、は超純水として使用されて!、る程度の特性の!/、わゆる水(純水)であ ればよい。
水流量計 105は、水加圧タンク 111からノズル 101に供給される純水の流量を計測 する。作業員は水流量計 105で当該流量を確認し、操作バルブ 103を用いて所望の 値に調整することができる。また、ストップノ レブ 107aを開閉することにより、純水の 供給を停止したり、再開したりすることもできる。
[0022] 水蒸気供給装置 113は水供給管 115aから供給される純水を、所定温度 D 1 (°C)以 上に加温して水蒸気を発生させ、水蒸気の発生量により純水を所定値 Cl(MP)に加 圧したのち、耐圧ホース 123を介して高圧状態でノズル 101に送り出す。
圧力計 120は、水蒸気供給装置 113からノズル 101に供給される水蒸気の圧力を 計測する。作業員は圧力計 120で当該圧力を確認し、減圧弁 119を用いて所望の 値に調整することができる。また、ストップノ レブ 107bを開閉することにより、水蒸気 の供給を停止したり、再開したりすることもできる。
[0023] ノズル 101内では、水加圧タンク 111から供給された純水と、水蒸気供給装置 113 から供給された水蒸気とにより熱効果現象が起こる。その後、熱効果現象によって生 じたキヤビテーシヨンジェットが処理対象物の表面に吹き付けられる。そして、キヤビテ ーシヨンによる気泡が消滅する際に発生する高い衝撃力により、処理対象物の表面 が壊食され、洗浄'研磨 ·研削などの処理が行われ、不用物の除去が行われる。
[0024] 図 1においては、窒素供給管 117から水加圧タンク 111に窒素を供給することがで き、このように、他のガスまたは薬液(例えば、 CO , O , N , O , H ,アルカリ,酸,
2 3 2 2 2
表面活性剤等)が添加された水を用いることにより、洗浄能力や研磨又は研削レート を向上させることができる。なお、本実施形態では純水に窒素等の混合物を混合した 力 純水のみをノズル 101に供給してもよいことは明らかである。
[0025] ·ノズルの構造
図 2(a)(b)(C)は、本発明による対象物処理装置の一実施形態に用いられるのに好 ましいノズルの具体的な構造例を断面で示したものである。
まず図 2(a)におけるノズル 101aは、上面が閉鎖された略円筒形状のノズル本体 al の内部空間 a3に、外部力も流体が流入されるように接続される 2つの流路 (121と 12 3)と、それらの流体を経由させてそこで混合するための内部空間 a3と、混合された流 体を下方に噴出させるための断面円形の吹出口 a2と、を有する。そして、ノズル本体 alの内壁面には二つの吹出し口 (vlと wl)が設けられ、そこから内部空間 a3内へ流 体が流入される。
[0026] この吹出し口 vlは、耐圧ホース (流路) 123を介して水蒸気供給装置 113に接続さ れていてそこ力も水蒸気を吹き出し、また吹出し口 wlは、耐圧ホース (流路) 121を介 して水加圧タンク 111に接続されて!、てそこ力も純水 (DIW)を吹き出し、内部空間 a3 ではそれらの水蒸気と純水とが混合されて、吹出し口 a2から噴出されるよう構成され ている。
図 2(a)においては、このノズル 101a内に開口して設けられる吹出し口 (vlと wl)は、 下向きの吹出口 a2に近い方から吹出し口 wl—吹出し口 vlの順番として、吹出口 a2 の吹き出し向きに対して垂直方向になるような位置に配置されている。そして、ノズル の吹出口の形状 (断面)は、その一例として、スリット状の扁平楕円形または矩形形状 として、その断面積を 2mm X 6mm相当の 12mm2とすることができる。さら〖こ、吹出 ロカも対象物に向けて吹き出されるとき、下開きのスカート状に吹出し角度を設定で きるガイド部を設けてもよぐそのときのガイド部についての噴出口角度を、例えば 12 0° とすることができる。
[0027] 図 2(b)におけるノズル 101bは、上面と側面の一部が開放 (開口)された略円筒形状 のノズル本体 blを有し、その内部空間 b3には図面上方と側方力 それぞれの流体 を流入させるために接続される 2つの流路 (121'と 123')を有し、さらにそれらの流体 を内部空間 b3内に吹き出させて混合し、吹出口 b2から下方向に噴出させる構成とな つている。
ここで、ノズル本体 blの上面に開口されて設けられた吹出し口 v2は、耐圧ホース( 流路) 123'を介して水蒸気供給装置 113に接続されており、そこ力も水蒸気を吹き出 す。また、ノズル本体 blの側壁面の一部が開口されて設けられた吹出し口 w2からは 、水加圧タンク 111に接続された耐圧ホース (流路) 121'によって純水 (DIW)が導か れて、内部空間 b3内には純水 (DIW)が吹き出される。
[0028] 図 2(c)におけるノズル 101cは、上面と側面の一部が開放 (開口)された略円筒形状 のノズル本体 clを有し、その内部空間 c3には図面上方と側方とから流体が流入する よう接続される 2つの流路 (121"と 123")を有する。ノズル本体 clの側方に設けられ た流路 123"は、その吹出し口 v3から内部空間 c3内に流体を吹出し、また、流路 12 1"はノズル本体 clの上方から内部空間 c3内に貫通する流路であって、内部空間 c3 の下側の位置に吹出し口 w3を有して、そこ力 流体を吹き出す。そして、吹出し口 V 3と吹出し口 w3から内部空間 c3内に吹き出された流体は、内部空間 c3内の下側の 位置で混合され、吹出口 c3から下方向に噴出される。
[0029] 側壁に開口される吹出し口 v3は、耐圧ホース (流路) 123"を介して水蒸気供給装 置 113に接続されていて、そこから水蒸気を吹き出す。また、ノズル本体 blの上面か ら内部に導入される耐圧ホース 121"は水加圧タンク 111と接続されており、これを介 して内部空間 c3に純水 (DIW)が導入される。これらの水蒸気と純水 (DIW)とは、耐圧 ホース 121"の下端にある吹出し口 w3のすぐ下方の位置で混ぜ合わされ、吹出し口 c2から外部下方向に吹き出される。
[0030] また、図 2(a)(b)(c)の!、ずれの場合でも、ノズル部の吹出口 (a2、 b2、 c2)の形状 (断 面)は、例えば、スリット状の扁平楕円形または矩形形状として、そのノズル部の吹出 口の断面積を 1〜: LOOmm2の範囲で適宜設定してそれを用いることができる。そして 、ノズル部の吹出口の断面形状は上記のものに限られず、例えば、円形 (丸形)のもの を用いてもよぐそのとき、ノズル部として、その吹出口の内径であるノズル径断面を 3 〜10mm φの丸形のものを採用することとすれば、この吹出口の吹出し面積 (断面積 )は、 9.42〜78.5mm2となる。
[0031] ·ノズル部とステージ部 (対象物配置部)とによる相対的動作 (スキャン動作)
図 3は、本発明の一実施形態において、ノズル部 201とステージ部 231の相対的動 作すなわちスキャン動作を説明するための図であり、処理チャンバ一 300内は、所定 雰囲気下において、処理されるべき対象物 233を配置して保持するステージ部 231 と、流路 223から供給される蒸気と流路 221から供給される純水とを内部で混合して 対象物 233に吹き付けるためのノズル部 201と、を備え、その下側には、廃液や排気 のための流路 301を備える。
[0032] ステージ部 231上には処理される対象物 233 (例えば略円板状の半導体用ウェハ 一)が配置されるが、処理中にこの対象物 233が位置ずれしないように、ステージ部 2 31上に固定手段または係止手段により一体的に結合させてお!、てもよい。このステ ージ部 231は、その中心から下方向に垂下して伸びる支持軸 231'によって固定支 持されており、支持軸 231'の回転または回動動作に従ってステージ部 231も一体的 に同じ動作を行うよう構成されている。図 3では、ステージ部 231と対象物 233とが回 転動作を行うときに、その動作方向を R1として示した。
[0033] ノズル部 201は、ステージ部 231上にある対象物 233の上面から鉛直方向に吹き 付けを行うが、このとき、ノズル口 201cと対象物 233の上面との距離はギャップ Gとし て表される。ここでのノズル部 201は、それ自体が可動するものとして設計されており 、回転 (回動)動作および Zまたは位置移動動作をすることができる。図 3では、ノズル 部 201は、ステージ部 231上の中心位置 cl力も端部位置 T1まで、ギャップ Gを所定 値に保持しながら水平方向に直線的に移動することができるとして、ここでの移動動 作の軌跡 (方向)を M 1として示して!/、る。
[0034] 図 3において、ノズル部 201は直線的な規則的な移動動作 (動作方向 Ml)を行い、 またステージ部 231は規則的な回転動作 (動作方向 R1)を行わせることによって、ノズ ル部 201を、対象物 233上を規則的で継続的に処理面全域をスキャニングさせなが ら吹きつけを行なうことができ、ノズル部 201とステージ部 231との位置関係から、ス キャン速度を所望する値に制御することができる。
[0035] 上述の説明では、ノズル部 201の移動動作とステージ部 231の回転動作について 、相互に同期をとるよう組み合わせて両者を同時に動作させ、対象物 233のスキヤ- ングを行 、、所望のスキャン速度を得るように制御することができることとものではある 力 これに限られるものではない。すなわち、ステージ部 231は固定したままで、ノズ ル部 201だけを単独で可動させ、移動動作および回動動作を組み合わせて、対象 物 233の処理面全域をスキャニングする動作を行うこともできるし、また一方、ノズル 部 201は固定したままで、ステージ部 231だけを単独で可動させ、回動動作だけで はなく移動動作を可能とする機構を設け、回動と移動とを同期をとつて組み合わせ、 対象物 233の処理面全域をスキャニングする動作を行わせることもできる。このように 、ノズル部 201とステージ部 231との動作は、スキャニング仕様に合わせて適宜に組 み合わせ、所望のスキャン速度を得られるように設計がなされればよ 、。
[0036] 〇処理対象物について
•処理対象物が「円形」の場合
本発明の一実施形態として、処理される対象物が円形状の形状をなしている場合 には、対象物の片面全域が処理対象面であるものとして、この処理対象面のすべて の領域を均等にスキャニングするように制御がなされる。たとえば、円形状の対象物 の中心力もノズル部 201を円周方向に直線的に移動させる動作と、ステージ部 231 を回転させる動作を組み合わせて、所望のスキャン速度を得られるように設定でき、 このときのスキャニングの軌跡は糸田かな禍卷き状となる。
[0037] ·処理対象物が「矩形」の場合
本発明の一実施形態として、処理される対象物が矩形状の形状をなしている場合 には、こちらも対象物の片面全域が処理対象面であるものとして、この処理対象面の すべての領域を均等にスキャニングするように制御がなされる。図 4(a)(b)は、矩形状 の対象物のスキャニング状況を示す図である。
[0038] 図 4(a)は、矩形の対象物 233aに対するスキャニング軌跡の一例を示した図であり、 ノズル部 201とステージ部 231の両方またはどちらか一方を移動動作させることによ り、軌跡 S1のようなスキャニングが得られる。また、図 4(b)は、矩形の対象物 233bに 対するスキャニング軌跡の一例を示した図であり、たとえば、円形状の対象物と同様 にして、対象物の中心力もノズル部 201を端部方向に直線的に移動させる動作と、ス テージ部 231を回転させる動作を組み合わせて、所望のスキャン速度を得られるよう に設定したものであり、このときのスキャニング軌跡はやはり細かな渦巻き状となる。
[0039] 本発明では、上述したような対象物処理装置または方法を用い、半導体用ウェハ 一 'IC回路'マイクロ構造体'液晶などを処理対象物として、そこで生成された不用物 を効果的に除去するために、多くのサンプルについてパラメータ条件を種々変化さ せて実験を行い、数多くのデータを収集してそれらの比較検討を行った。その結果、 本発明に基づく蒸気 (水蒸気)と純水とを混合した吹き付けにお!/ヽては、次のようなパ ラメータについて、その数値を規定の範囲に制御することとすれば、不用物除去効果 が極めて高くなることを見出した。
[0040] 本発明による対象物の吹き付けの各パラメータの値は、
ノズル部に供給される蒸気の圧カは0.1〜0.5\«¾、
ノズル部に供給される超純水の流量 (フローレイト)は 50〜1000cc/min、 吹き付け時間は 10〜600sec、
ノズル部の吹出口の面積は 1〜: L00mm2
スキャン速度は 10〜300mm/sec、
ノズル口と対象物とのギャップは 3〜30mm、のように制御するとよ!/、。
[0041] つぎに本発明による対象物処理で用いたそれぞれのパラメータについて説明する
'蒸気の圧力について
ノズル部に供給される蒸気の圧力は、 0.1〜0.5MPaを適応値とする。適応値以下 の場合には、反応副生成物に対しての打力性能低下により物理力が低下して、除去 することができない。適応値以上の場合には、打力が不用意に高くなり、膜 (組織)に 対して損傷を引き起こす。また必要以上の熱の発生により硬化もしくは変質を引き起 こす。 [0042] ·純水の流量について
純水 (DIW)の流量 (フローレイト)については 50〜1000cc/minを適応値とする。適 応値以下の場合には、蒸気 (スチーム)のみとなり、ノズル噴出粒径が微細すぎて打 力成分が低下し、除去することができない。適応値以上の場合には、蒸気 (スチーム )と純水 (DIW)との混合により、ノズル力 噴出される粒径が大きくなり、膜に対して損 傷を与える。
[0043] ·吹き付け処理時間について
吹き付け時間は 10〜600secを適応値とする。適応値以下の場合には、反応副生 成物が残りやすくなる。適応値以上の場合にも、除去は可能ではあるが、熱による影 響などにより、その他の二次的な問題を引き起こす可能性が高くなる。また、この吹き 付け処理時間のパラメータは、装置の処理能力に直接影響を及ぼす大きな要素であ り、吹き付け時間が長すぎるのは問題である。
[0044] 'ノズル部の吹出口の面積について
ノズル部の吹出口の面積は 1〜: LOOmm2を適応値とする。適応値以下の場合には、 吹出口の面積が小さいので打力は部分的には高くはなるものの、膜 (組織)に対して 損傷を引き起こす虞があり、吹出口の面積力 、さすぎるので、不用物の除去に残りを 生じる可能性が高い。また、適応値以上の場合には吹出口の面積が広すぎて、ノズ ルからの噴出された蒸気 (スチーム)と純水 (DIW)との混合粒径が拡散して、対象物 に至るまでに打力性能が減少してしま 、、不用物を除去でき難 、傾向になる。
[0045] ·スキャン速度について
スキャン速度は 10〜300mm/secを適応値とする。適応値以下の場合には、不用意 な単位時間あたりのノズル噴出によって照射時間が長くなり、熱および過剰打力によ り不用物を除去する以外に損傷を引き起こす可能性が高くなる。また、適応値以上の 場合には、単位時間あたりでのノズル噴出時間が短くなり、打力不足となるので不用 物を除去することができなくなる。
[0046] ·ノズル口と対象物とのギャップ
ノズル口と対象物とのギャップ (距離)は 3〜30mmを適応値とする。適応値以下の場 合には、ノズル力 の噴出面積が対象物と噴出距離との関係力 小さくなり、不用物 の除去に残りがある可能性が高い。また、適応値以上の場合には、ノズルからの噴出 された蒸気 (スチーム)と純水 (DIW)との混合粒径が、対象物に至るまでに打力性能 が減少してしま 、、不用物を除去でき難 、傾向になる。
[0047] 図 5〜7は、本発明が適用された 3種類の構造の異なる対象物について具体的な 処理を行う様子を示す図である。
図 5(1)〜(3)で示される対象物 500は、処理される層として高誘電層を有する半導 体デバイス (ウェハー)であって、レジスト (マスク)層 11、高誘電層 (BSTもしくは SBT)1 2、 AU膜もしくは Pt膜の金属膜 13からなる薄膜状の層が、基板 14上に積層された 構造を備えている。
[0048] 図 5(1)は、対象物 500がエッチングされる前の状態であり、レジスト (マスク)層 11は 開孔部 K1を有している。つぎの図 5(2)はエッチングされた後の状態を示し、ここでは 、レジスト (マスク)層 11の開孔部 K1に接して真下の位置にある高誘電層 12の部位 K 1'が開孔されるとともに、部位 (ΚΙ +ΚΙ')の壁面には 2次的な反応副生成物 F1が発 生してフェンス状に残留する。そして、図 5(3)は、本発明が適用された対象物処理に よって「蒸気 +純水の混合吹付処理」がおこなわれ、レジスト (マスク)層 11と不用物で ある反応副生成物 F1とが除去された状態を示す。
[0049] 図 5のような、処理される層として高誘電層を有する半導体デバイス (ウェハー) 500 における不用物除去処理では、吹き付けのときは、蒸気の圧力は 0.2〜0.3MPa、超 純水の流量 (フローレイト)は 100〜500cc/min、ノズル部の吹出口の面積は 1〜100 mm2,吹き付け時間は 120〜300sec、スキャンスピードは 40〜100mm/sec、ギャップ は 5〜: LOmm/sec、に制御されると、その不用物除去の効果が高い。
[0050] 図 6(1)〜(3)で示される対象物 600は、処理される層としてパッシベーシヨン膜を有 する半導体デバイスであって、ワイヤボンディング Zバンプに適する構造を有して ヽ る。この対象物 600は、レジスト (マスク)層 21、保護膜 (パッシベーシヨン膜) 22、配線 膜 (Al)23、絶縁膜 (SiO 酸ィ匕膜) 24からなる薄膜状の層が、基板 125上に積層され
2
た構造を備えている。
[0051] 図 6(1)は、対象物 600がエッチングされる前の状態であり、レジスト (マスク)層 21は 開孔部 K2を有している。つぎの図 6(2)はエッチングされた後の状態を示し、ここでは 、レジスト (マスク)層 11の開孔部 K2に接する真下位置にあるパッシベーシヨン膜 22 の部位 K2'が開孔されるとともに、部位 (K2+K2')の壁面には 2次的な反応副生成 物 F2が発生してフェンス状に残留する。そして、図 6(3)は、本発明が適用された対 象物処理によって「蒸気 +純水の混合吹付処理」がおこなわれ、レジスト (マスク)層 2 1と不用物である反応副生成物 F2とが除去された状態を示す。
[0052] 図 6に示すような、処理される層としてパッシベーシヨン膜を有する半導体デバイス( ウェハー)における不用物除去処理では、吹き付けのときは、蒸気の圧力は 0.15〜0. 3MPa、超純水の流量 (フローレイト)は 100〜500cc/min、ノズル部の吹出口の面積 は 1〜: L00mm2、吹き付け時間は 60〜120sec、スキャンスピードは 40〜: LOOmm/sec 、ギャップは 5〜: LOmm/sec、に制御すると、その不用物除去の効果が高い。
[0053] 図 7(1)〜(3)で示される対象物 700は、処理される層としてメタル層を有する半導体 デバイスであって、エッチングによってこれらのメタル層に開孔部が形成される構造を 有している。この対象物 700は、レジスト (マスク)層 31、配線膜 (Al)32、保護膜 (TwZ Ti膜) 33、絶縁膜 (SiO 酸ィ匕膜) 34からなる薄膜状の層が、基板 35に積層された構
2
造を備えている。
[0054] 図 7(1)は、対象物 500がエッチングされる前の状態であり、レジスト (マスク)層 31は 開孔部 K3を有している。つぎの図 6(2)はエッチングされた後の状態を示し、ここでは 、レジスト (マスク)層 31の開孔部 K2に接した真下位置にある配線膜 (Al)32と保護膜 ( TwZTi)33とがエッチングで開孔される力 そのとき、開孔部位 (K3 +K3')の壁面に は 2次的な反応副生成物 F3が発生してフェンス状に残留する。そして、図 7(3)は、本 発明が適用された対象物処理によって「蒸気 +純水の混合吹付処理」が行われて、 レジスト (マスク)層 31と不用物である反応副生成物 F3とが除去された状態を示す。
[0055] 図 7に示すような、処理される層としてエッチングメタル膜を有する半導体デバイス( ウェハー)における不用物除去処理では、吹き付けのときは、蒸気の圧力は 0.1〜0.2 MPa、超純水の流量 (フローレイト)は 100〜500cc/min、ノズル部の吹出口の面積は 1〜: L00mm2、吹き付け時間は 30〜120sec、スキャンスピードは 40〜: L00mm/sec、 ギャップは 5〜: L0mm/sec、に制御すると、その不用物除去の効果が高い。
[0056] 図 5〜7には、対象物として、(対象物 1)高誘電層を有する半導体デバイス、(対象物 2)ワイヤボンディング Zバンプに適するパッシベーシヨン膜を有する半導体デバイス であり、(対象物 3)メタルエッチング層を有する半導体デバイス、の 3種類をその例とし て示した。そこで、各対象物におけるそれぞれの処理条件の相違について説明する
[0057] ·蒸気の圧力について
対象物 1での蒸気の圧力は 0.2〜0.3MPa、対象物 2では 0.15〜0.3MPa、対象物 3では 0.1〜0.2MPaとしている。
対象物 1では、蒸気の圧力を 0.3MPaのように高く設定しても、高誘電膜での特性上 、蒸気圧力に伴う温度に対する耐性が高いため、打力重視の高圧力設定が可能で ある。これに対して、対象物 2および対象物 3では、配線に使用されているアルミは、 蒸気密度が高 、と、温度との相乗効果で容易に水酸化アルミを発生させやす!ヽため 、対象物 1に比べて、やや低い圧力で処理するとよい。
[0058] ·吹き付け時間について
対象物 1での吹き付け処理をする時間は 120〜300sec、対象物 2では 60〜300se c、対象物 3では 30〜120sec、としている。
対象物 2では、配線にアルミを使用しているため、 60秒以上の処理を実施すると、 アルミ側壁に水酸ィ匕アルミが発生し、アルミ表面を損傷させてしまう。これに対し、高 誘電膜のある対象物 1ではアルミが使用されていないし、且つ、反応副生成物が強 固で除去しづらいため、時間をより長くするのが好ましい。
[0059] 以上、本発明の実施の形態について説明してきたが、本発明は上記説明に限定さ れるわけではなぐ半導体、液晶、磁気ヘッド、ディスク、プリント基板、レンズ、精密 機械加工部品、モールド榭脂製品等の種々の対象物において適用が可能であり、 洗浄 ·磨き'不用物除去などの処理を、より効果的に安価で行うことができる。
また、具体的には次に示す技術分野にお!ヽても有効である。
(1) MEMS(Micro Electro Mechanical System)
シリコンプロセス技術を用いたマイクロ構造体での反応副生成物の除去もしくはバリ 取りの手段または方法として本発明を適用する。
(2)液晶 液晶の製造工程では、 ICの製作と近似的工程が多いため、それらのノ リ取りの手 段または方法として、本発明を適用する。
(3)モールドカロェ
ICの仕上げ工程におけるノ リ取りの手段または方法として、本発明を適用する。 産業上の利用可能性
[0060] 本発明は、半導体デバイス、液晶、磁気ヘッド、ディスク、プリント基板、カメラ等の レンズ、精密機械加工部品、モールド榭脂製品等の対象物においてその適用が可 能であり、不用物除去 ·洗浄 ·磨きなどの処理を、より効果的に行うことができるし、ま た、シリコンプロセス技術を用いたマイクロ構造体、モールドカ卩ェなどの分野において も、バリ取りの手段として本発明を活用することができる。さらに、本発明はとりわけィ匕 学薬品を嫌う材料の処理には好適である。
図面の簡単な説明
[0061] [図 1]本発明の一実施形態を示す対象物処理装置の全体図である。
[図 2]本発明の一実施形態におけるノズル構造を表した断面図である。
[図 3]本発明の一実施形態におけるノズル部とステージ部 (対象物配置部)との動作説 明図である。
[図 4]本発明の一実施形態における対象物の相対的動作状況 (スキャン状況)を説明 するための図である。
[図 5]本発明の一実施形態における対象物 500の構造を示す断面図である。
[図 6]本発明の一実施形態における対象物 600の構造を示す断面図である。
[図 7]本発明の一実施形態における対象物 700の構造を示す断面図である。
符号の説明
[0062] 100 対象物処理装置
101, 101a, 101b, 101c, 201 ノズル部
a2, b2, c3 ノズル部の吹出部
111 水加圧タンク
113 水蒸気供給装置
123 水蒸気供給管 (流路) 121 水供給管 (流路)
133, 233 対象物
131, 231 ステージ部 (対象物配置部)
300 処理用チャンバ一
500, 600, 700 処理対象物
K1, ΚΙ', K2, Κ2', Κ3, K3' 開孔部
F1,F2, F3 反応副生成物(フェンス)

Claims

請求の範囲
[1] 対象物を処理するための対象物処理装置において、
前記対象物を配置する対象物配置部と、
供給される蒸気と水とを混合して前記対象物に吹き付けるノズル部と、 前記ノズル部を前記対象物配置部の前記対象物に対して相対移動させながら前 記吹き付けを行うにあたり、前記対象物配置部と前記ノズル部との相対的な位置関 係を規則的に変化させて、相対移動速度を所望の値に制御する手段と
を備えたことを特徴とする対象物処理装置。
[2] 請求項 1に記載の対象物処理装置において、
前記対象物は、半導体基板 Zガラス基板 Zレンズ Zディスク部材 Z精密機械加工 部材 Zモールド榭脂部材のいずれかであって、
前記対象物の処理は、処理される部位または面の洗浄、あるいは、当該部位また は面に存在する不用物の除去である、ことを特徴とする対象物処理装置。
[3] 請求項 1または 2に記載の対象物処理装置において、
前記対象物配置部は、回転 Z回動 Z移動の 、ずれかの動作またはその複数の動 作を行うステージ式配置部材またはコンベア式配置部材を備える、ことを特徴とする 対象物処理装置。
[4] 請求項 1〜3のいずれか一項に記載の対象物処理装置において、
前記対象物は、処理される部位または面として、高誘電層 Zパッシベーシヨン膜 Z メタル層のいずれかを有する半導体デバイスであって、
1)前記高誘電層のエッチング処理後に生成される反応副生成物、
2)前記パッシベーシヨン膜のエッチング処理後に生成される反応副生成物、
3)前記メタル層のエッチング処理後に生成される反応副生成物、
のいずれかを不用物として除去する、ことを特徴とする対象物処理装置。
[5] 対象物を処理するための対象物処理方法において、
前記対象物を対象物配置部に配置するステップと、
供給される蒸気と水とを混合してノズル部を介して前記対象物に吹き付けるステツ プと、 前記ノズル部を前記対象物配置部の前記対象物に対して相対移動させながら前 記吹き付けを行うにあたり、前記対象物配置部と前記ノズル部との相対的な位置関 係を規則的に変化させて、相対移動速度を所望の値に制御するステップと を含むことを特徴とする対象物処理方法。
PCT/JP2005/013372 2004-08-20 2005-07-21 対象物処理装置およびその方法 WO2006018948A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006531376A JPWO2006018948A1 (ja) 2004-08-20 2005-07-21 対象物処理装置およびその方法
US11/660,477 US20080035754A1 (en) 2004-08-20 2005-07-21 Device for Treating Object and Process Therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004241004 2004-08-20
JP2004-241004 2004-08-20

Publications (1)

Publication Number Publication Date
WO2006018948A1 true WO2006018948A1 (ja) 2006-02-23

Family

ID=35907339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/013372 WO2006018948A1 (ja) 2004-08-20 2005-07-21 対象物処理装置およびその方法

Country Status (5)

Country Link
US (1) US20080035754A1 (ja)
JP (1) JPWO2006018948A1 (ja)
KR (1) KR20070052321A (ja)
TW (1) TW200608453A (ja)
WO (1) WO2006018948A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008288355A (ja) * 2007-05-17 2008-11-27 Disco Abrasive Syst Ltd 加工装置
WO2010071005A1 (ja) * 2008-12-15 2010-06-24 アクアサイエンス株式会社 対象物洗浄方法及び対象物洗浄システム
JP2010528459A (ja) * 2007-05-18 2010-08-19 エフエスアイ インターナショナル インコーポレーテッド 水蒸気または蒸気を用いた基板の処理方法
JP2013187281A (ja) * 2012-03-07 2013-09-19 Disco Abrasive Syst Ltd 被加工物の加工方法
JP2015062956A (ja) * 2012-09-19 2015-04-09 株式会社荏原製作所 研磨装置
JP2017159201A (ja) * 2016-03-07 2017-09-14 セイコーインスツル株式会社 ワーク洗浄装置、及びワーク洗浄方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5494743B2 (ja) 2011-10-14 2014-05-21 株式会社デンソー カメラ洗浄装置
TWI462148B (zh) * 2013-07-10 2014-11-21 Fluid nozzle and fluid nozzle device
US20150349706A1 (en) 2014-06-03 2015-12-03 Sunpower Corporation Solar module cleaner
CN106057710B (zh) * 2016-08-02 2019-02-19 北京七星华创电子股份有限公司 改善气液两相雾化清洗均匀性的装置和方法
KR102100758B1 (ko) * 2016-09-08 2020-04-14 주식회사 뉴파워 프라즈마 초음파 진동을 이용한 수증기 분사 장치
CN109560020B (zh) * 2018-09-27 2022-12-16 厦门市三安集成电路有限公司 一种使用nmp蒸汽剥离晶圆金属膜的结构和方法
CN113118104A (zh) * 2019-12-31 2021-07-16 苏州阿洛斯环境发生器有限公司 一种多通超声驱动控制微液滴集群清洗***

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08148459A (ja) * 1994-11-18 1996-06-07 Toshiba Corp 半導体基板の洗浄方法
JPH1085634A (ja) * 1996-09-12 1998-04-07 Toshiba Corp 噴流加工装置、噴流加工システムおよび噴流加工方法
JP2003249474A (ja) * 2002-02-18 2003-09-05 Lam Res Corp 水供給装置および水供給方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5922792A (ja) * 1982-07-30 1984-02-06 Kanzaki Paper Mfg Co Ltd 感熱記録体用塗液の調成法
US5902399A (en) * 1995-07-27 1999-05-11 Micron Technology, Inc. Method and apparatus for improved coating of a semiconductor wafer
JP3343013B2 (ja) * 1995-12-28 2002-11-11 大日本スクリーン製造株式会社 基板洗浄方法及びその装置
US6616760B2 (en) * 1999-12-17 2003-09-09 Tokyo Electron Limited Film forming unit
US6951221B2 (en) * 2000-09-22 2005-10-04 Dainippon Screen Mfg. Co., Ltd. Substrate processing apparatus
JP4942263B2 (ja) * 2001-08-31 2012-05-30 ラムリサーチ株式会社 洗浄装置
US20030217762A1 (en) * 2002-02-18 2003-11-27 Lam Research Corporation Water supply apparatus and method thereof
JP4038556B2 (ja) * 2002-04-16 2008-01-30 リアライズ・アドバンストテクノロジ株式会社 レジスト膜除去装置及びレジスト膜除去方法、並びに有機物除去装置及び有機物除去方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08148459A (ja) * 1994-11-18 1996-06-07 Toshiba Corp 半導体基板の洗浄方法
JPH1085634A (ja) * 1996-09-12 1998-04-07 Toshiba Corp 噴流加工装置、噴流加工システムおよび噴流加工方法
JP2003249474A (ja) * 2002-02-18 2003-09-05 Lam Res Corp 水供給装置および水供給方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008288355A (ja) * 2007-05-17 2008-11-27 Disco Abrasive Syst Ltd 加工装置
JP2010528459A (ja) * 2007-05-18 2010-08-19 エフエスアイ インターナショナル インコーポレーテッド 水蒸気または蒸気を用いた基板の処理方法
WO2010071005A1 (ja) * 2008-12-15 2010-06-24 アクアサイエンス株式会社 対象物洗浄方法及び対象物洗浄システム
JP2013187281A (ja) * 2012-03-07 2013-09-19 Disco Abrasive Syst Ltd 被加工物の加工方法
JP2015062956A (ja) * 2012-09-19 2015-04-09 株式会社荏原製作所 研磨装置
JP2017159201A (ja) * 2016-03-07 2017-09-14 セイコーインスツル株式会社 ワーク洗浄装置、及びワーク洗浄方法

Also Published As

Publication number Publication date
TW200608453A (en) 2006-03-01
KR20070052321A (ko) 2007-05-21
JPWO2006018948A1 (ja) 2008-05-08
US20080035754A1 (en) 2008-02-14

Similar Documents

Publication Publication Date Title
WO2006018948A1 (ja) 対象物処理装置およびその方法
US7267130B2 (en) Substrate processing apparatus
US7479205B2 (en) Substrate processing apparatus
US9539589B2 (en) Substrate processing apparatus, and nozzle
KR101940897B1 (ko) 기판 처리 장치 및 기판 처리 방법
JP2008135557A (ja) 基板処理装置および基板処理方法
US10357806B2 (en) Substrate treating apparatus and method
WO2006124255A2 (en) System and methods for polishing a wafer
JP2008108830A (ja) 二流体ノズルユニットおよびそれを用いた基板処理装置
JP4767204B2 (ja) 基板処理方法および基板処理装置
JP4781253B2 (ja) 基板処理装置および基板処理方法
TWI710414B (zh) 基板處理裝置、基板處理方法、延遲期間設定方法及記錄媒體
JP4799807B2 (ja) 対象物処理装置及び対象物処理方法
KR20180108733A (ko) 기판 처리 방법 및 기판 처리 장치
JP2003282527A (ja) 基板処理装置および基板処理方法
KR101976799B1 (ko) 스팀세정시스템 및 이를 이용한 스팀세정방법
JP6095295B2 (ja) スピンテーブルを用いた洗浄装置
TWI834178B (zh) 基板處理方法以及基板處理裝置
JP6517113B2 (ja) 基板処理装置および吐出ヘッド
JP2006066793A (ja) ウエハ洗浄方法及びその装置
US11817330B2 (en) Method for processing substrate
KR20220122725A (ko) 기판 에지 세정 및 기판 캐리어 헤드 갭 세정을 위한 장치 및 방법
JP2024075337A (ja) 基板処理装置および基板処理方法
JP2009260368A (ja) 対象物処理装置及び対象物処理方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006531376

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11660477

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020077006392

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 11660477

Country of ref document: US