WO2006016444A1 - 液化石油ガス製造用触媒、および、この触媒を用いた液化石油ガスの製造方法 - Google Patents

液化石油ガス製造用触媒、および、この触媒を用いた液化石油ガスの製造方法 Download PDF

Info

Publication number
WO2006016444A1
WO2006016444A1 PCT/JP2005/009874 JP2005009874W WO2006016444A1 WO 2006016444 A1 WO2006016444 A1 WO 2006016444A1 JP 2005009874 W JP2005009874 W JP 2005009874W WO 2006016444 A1 WO2006016444 A1 WO 2006016444A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
petroleum gas
liquefied petroleum
zeolite
catalyst component
Prior art date
Application number
PCT/JP2005/009874
Other languages
English (en)
French (fr)
Inventor
Kaoru Fujimoto
Kenji Asami
Xiaohong Li
Sachio Asaoka
Qianwen Zhang
Original Assignee
Japan Gas Synthesize, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Gas Synthesize, Ltd. filed Critical Japan Gas Synthesize, Ltd.
Priority to US11/573,242 priority Critical patent/US20080319245A1/en
Priority to JP2006531286A priority patent/JP4965258B2/ja
Publication of WO2006016444A1 publication Critical patent/WO2006016444A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/076Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/78Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J29/7815Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/12Liquefied petroleum gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • B01J23/6522Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7007Zeolite Beta
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/28Propane and butane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Definitions

  • the present invention relates to a catalyst for producing liquefied petroleum gas whose main component is propane or butane by reacting carbon monoxide with hydrogen.
  • LPG Liquefied petroleum gas
  • propane is supplied anywhere in a cylinder filled state.
  • propane gas is widely used as a fuel for home and business use.
  • propane gas is supplied to approximately 25 million households (more than 50% of all households).
  • LPG can also be used as fuel for mobiles such as cassette stoves and disposable lighters (mainly butane gas), industrial fuel, and automobile fuel.
  • LPG is 1) a method for recovering wet natural gas power, 2) a method for recovering from crude oil stabilization (vapor pressure adjustment), and 3) separating and extracting what is produced in the oil refining process, etc. Produced by methods.
  • LPG particularly propane gas used as fuel for home and business use
  • a methanol synthesis catalyst such as a Cu-Zn system, a Cr-Zn system, and a Pd system, specifically, a CuO-ZnO-Al 2 O catalyst and a PdZSiO catalyst.
  • a mixed catalyst that is a physical mixture of a zeolite catalyst and zeolite having an average pore size of approximately lOA (lnm) or more, specifically, a methanol conversion catalyst made of Y-type zeolite.
  • a method of reacting synthesis gas to produce a liquid petroleum gas or a hydrocarbon mixture having a composition close to that is disclosed.
  • a catalyst composed of Pd / SiO and a Y-type zeolite has an active and hydrocarbon yield.
  • Catalysts made from the treated materials have a relatively high activity and yield of hydrocarbons and a relatively high proportion of propane (C3) and butane (C4) in the hydrocarbons produced, It is difficult to say that it has sufficiently good performance in terms of hydrocarbon yield.
  • the activity and the yield of hydrocarbons are higher than the catalyst composed of 2 and Y-type zeolite, and the proportion of propane (C3) and butane (C4) in the produced hydrocarbon is also high.
  • the catalyst composed of 2 and Y-type zeolite composed of 2 and Y-type zeolite, and the proportion of propane (C3) and butane (C4) in the produced hydrocarbon is also high.
  • C3 and butane (C4) in the produced hydrocarbon is also high.
  • Cu-Zn catalyst and dealuminated Y-type zeolite with SiO ZA1 O 7.6 were steamed at 450 ° C for 2 hours.
  • Catalysts made from these products have high activity and hydrocarbon yields, and also have a high proportion of propane (C3) and butane (C4) in the hydrocarbons produced.
  • propane (C3) and butane (C4) propane (C3) and butane (C4) in the hydrocarbons produced.
  • a catalyst composed of a Cu-Zn catalyst and a Y-type zeolite has a sufficiently long catalyst life with little deterioration over time. Therefore, when this catalyst is used, LPG is produced in a high yield for a long time. It is difficult to manufacture stably over time.
  • the catalyst composed of the Zn-Cr-based catalyst and the Y-type zeolite described in Patent Document 1 described above is such that the activity, the yield of hydrocarbons, and the selectivity for propane and butane are all PdZSiO and Y-type.
  • Patent Document 1 describes that the function of the Zn-Cr catalyst as a methanol synthesis catalyst is not so high under the LPG synthesis reaction conditions.
  • Is a hybrid consisting of Cu-based low-pressure methanol synthesis catalyst (trade name: BASF S3-85) and high-silica Y-type zeolite with SiO ZA1 O 7.6 treated with water vapor at 450 ° C for 1 hour.
  • Non-Patent Document 1 A method for producing C2-C4 paraffin with a selectivity of 69-85% from synthesis gas via methanol and dimethyl ether using a catalyst is disclosed. However, it is difficult to say that the catalyst described in Non-Patent Document 1 has sufficiently excellent performance as the catalyst described in Patent Document 1 above.
  • the catalyst consisting of is less preferred from the viewpoint of cost.
  • Pd—SiO or Pd, Ca—SiO and a catalyst composed of zeolite and described in Non-Patent Document 2 are also preferred from the viewpoint of cost.
  • Patent Document 1 Japanese Patent Laid-Open No. 61-23688
  • Non-patent document 1 "Selective Synthesis of LPG from Synthesis Gas", Kaoru Fujimoto et al., Bull. Chem. Soc. Jpn., 58, p. 3059-3060 (1985)
  • Non-patent document 2 "Synthesis of LPG from Synthesis Gas with Hybrid Catalyst ", Qianwen Zhang et al., Abstracts of the 33rd Petroleum & Petrochemical Conference, p. 179-180, November 17, 2003
  • the object of the present invention is to react hydrocarbons of carbon monoxide and hydrogen with propane or butane as a main component, that is, liquid petroleum gas (LPG) with high activity, high selectivity, It is to provide a catalyst for producing liquefied petroleum gas that can be produced in high yield and has a long catalyst life and little deterioration.
  • LPG liquid petroleum gas
  • Another object of the present invention is to provide a method capable of stably producing LPG having a high concentration of propane and Z or butane from a synthesis gas with a high yield over a long period of time using this catalyst. It is to be. Furthermore, the present invention provides a method capable of stably producing LPG having a high concentration of propane and Z or butane with a high yield from a carbon-containing raw material such as natural gas over a long period of time.
  • a catalyst for use in producing a liquefied petroleum gas mainly composed of propane or butane by reacting carbon monoxide with hydrogen and comprising an olefin finning catalyst component is provided.
  • a liquefied petroleum gas production catalyst characterized by comprising a methanol synthesis catalyst component supported on a Zn—Cr-based methanol synthesis catalyst and a zeolite catalyst component.
  • the olefin finning catalyst component refers to a component that exhibits a catalytic action in the hydrogenation reaction of olefin to paraffin.
  • the Zn—Cr-based methanol synthesis catalyst refers to a catalyst containing Zn and Cr and exhibiting a catalytic action in the reaction of CO + 2H ⁇ CH OH. Also,
  • the zeolite catalyst component refers to zeolite that catalyzes the condensation reaction of methanol with hydrocarbons and the condensation reaction of Z or dimethyl ether with hydrocarbons.
  • the synthesis gas is circulated through the catalyst layer containing the liquefied petroleum gas production catalyst described above to produce liquefied petroleum gas whose main component is propane or butane.
  • a method for producing liquid liquefied petroleum gas characterized by having a petroleum gas production process.
  • a carbon-containing raw material and at least one selected from the group consisting of H 0, O and CO power
  • the synthesis gas refers to a mixed gas containing hydrogen and carbon monoxide, and is not limited to a mixed gas composed of hydrogen and carbon monoxide.
  • the synthesis gas may be a mixed gas containing, for example, carbon dioxide, water, methane, ethane, ethylene and the like. Syngas obtained by reforming natural gas usually contains carbon dioxide and water vapor in addition to hydrogen and carbon monoxide. Further, the synthesis gas may be a coal gas obtained by coal gasification or a water gas produced from coal coatus.
  • the catalyst for producing liquefied petroleum gas of the present invention contains a methanol synthesis catalyst component in which an olefin hydration catalyst component is supported on a Zn—Cr-based methanol synthesis catalyst, and a zeolite catalyst component.
  • a Zn—Cr-based methanol synthesis catalyst carrying 0.005 to 5% by weight, more preferably 0.5 to 5% by weight of the olefin hydrogenation catalyst component is preferable.
  • a composite oxide containing Zn and Cr is preferred in which Pd is supported at 0.05 to 5% by weight, more preferably 0.5 to 5% by weight.
  • the SiO ZA1 O molar ratio supporting Pd of 3% by weight or less is 10
  • the methanol synthesis catalyst component is a reaction of CO + 2H ⁇ CH OH.
  • the zeolite catalyst component refers to zeolite that exhibits a catalytic action in the condensation reaction of methanol with hydrocarbons and the condensation reaction of Z or dimethyl ether with hydrocarbons.
  • Pd-based catalysts are also catalyzed in the methanol synthesis reaction (CO + 2H ⁇ CH OH).
  • the Cu—Zn-based catalyst is usually used at a relatively low temperature (about 230 to 300 ° C.), and its heat resistance is not as high as that of other methanol synthesis catalysts.
  • Monoacid When producing LPG by reacting carbon and hydrogen, if the reaction temperature is increased for the purpose of high activity and high yield, it is not possible to use a conventional Cu-Zn catalyst as a methanol synthesis catalyst component. Not necessarily preferred.
  • the methanol synthesis catalyst component is also required to exhibit a catalytic action in the hydrogenation reaction of olefins to paraffin. It is done.
  • conventional Zn—Cr-based catalysts do not have a high hydrogenation capacity. Therefore, when producing LPG by reacting carbon monoxide with hydrogen, it is not always preferable to use a conventional Zn—Cr catalyst as a methanol synthesis catalyst component.
  • LPG synthesis is carried out by adding an olefin fin hydrogenation catalyst component as a co-catalyst to a conventional Zn-Cr-based methanol synthesis catalyst that does not have a high hydrogenation ability. It provides the necessary hydrogenation capacity and has both high thermal stability and sufficient hydrogenation capacity.
  • a methanol synthesis catalyst component of a catalyst used in the production of liquefied petroleum gas by reacting carbon monoxide and hydrogen a olefin hydration catalyst component supported on a Zn-Cr-based methanol synthesis catalyst has high heat. From the viewpoint of mechanical stability and hydrogenation ability, it is suitable particularly when the reaction temperature is increased.
  • the olefin finning catalyst component on the Zn—Cr-based methanol synthesis catalyst.
  • the excellent effect of the present invention cannot be obtained with a catalyst containing a Zn—Cr-based methanol synthesis catalyst and a zeolite containing Pd as an olefin finning catalyst component.
  • the Pd-based methanol synthesis catalyst has high thermal stability and hydrogenation ability, and when combined with ⁇ -zeolite, as a methanol synthesis catalyst component, particularly when the reaction temperature is increased, Is preferred.
  • the amount of expensive Pd used in Pd-based methanol synthesis catalysts is relatively large. Therefore, when Pd-based methanol synthesis catalysts are used as catalyst components for methanol synthesis in liquefied petroleum gas production catalysts. As compared with the catalyst for producing liquefied petroleum gas of the present invention, there is a tendency that it is disadvantageous in terms of cost.
  • Zeolite catalyst components include ZSM-5, MCM-22, 13, Y-type, etc., which has a three-dimensional pore spread that allows reaction molecules to diffuse, in other words, reaction within the pores.
  • Medium-pore zeolite with three-dimensional molecular diffusion zeolite with a pore size of 0.4-4 to 0.65 nm, mainly formed by a 10-membered ring
  • large-pore zeolite (with a pore size of mainly 12-membered ring) From 0.66 to 0.76 nm zeolite) is preferred.
  • the zeolite catalyst component so-called high silica zeolite, specifically, zeolite having a SiO / Al 2 O molar ratio of 10 to 150 is used.
  • the polymerization reaction is limited to a low degree of polymerization, and lower olefins whose main component is propylene or butene are produced. To do.
  • the resulting lower olefins can easily escape from the pores that have a three-dimensional pore spread that allows diffusion of relatively large reaction molecules of the zeolite catalyst component, and then synthesize methanol. By being rapidly hydrogenated on the catalyst component, it becomes inactive and stabilized in further polymerization reactions.
  • Propylene and Z or butene, as well as propane and Z or butane can be produced with higher selectivity by using the above-mentioned zeolite catalyst component.
  • the catalyst for producing liquefied petroleum gas of the present invention has a long catalyst life and little deterioration with time.
  • the catalyst for producing liquefied petroleum gas according to the present invention has a high activity and a high yield over a long period of time in comparison with, for example, a catalyst containing a Cu—Zn-based methanol synthesis catalyst and a Y-type zeolite. Butane, or LPG, can be produced.
  • Methanol synthesis A catalyst for liquefied petroleum gas production containing a Cu-Zn-based methanol synthesis catalyst as a catalyst component is a high-temperature reaction atmosphere in which CO and H 2 O exist at high concentrations.
  • a methanol synthesis catalyst component used in the present invention if it does not exhibit a medium action.
  • LPG having a total content of propane and butane of 90 mol% or more, further 95 mol% or more (including 100 mol%) can be produced.
  • the content of propane 50 mol% or more further can be produced LPG which is 60 mol 0/0 or more (including 100 mol 0/0).
  • FIG. 1 is a process flow diagram showing a main configuration of an example of an LPG production apparatus suitable for carrying out the LPG production method of the present invention.
  • the catalyst for producing liquefied petroleum gas according to the present invention comprises an olefin-hydrogenation catalyst component containing Zn—Cr It contains one or more methanol synthesis catalyst components and one or more zeolite catalyst components that are supported on a anol synthesis catalyst.
  • the liquefied petroleum gas production catalyst of the present invention may contain other additive components as long as the desired effects are not impaired.
  • the content ratio of the methanol synthesis catalyst component to the zeolite catalyst component is preferably 0.1 or more, more preferably 0.5 or more. . Further, the content ratio of the methanol synthesis catalyst component to the zeolite catalyst component (methanol synthesis catalyst component Z zeolite catalyst component; mass basis) is preferably 5 or less, and more preferably 3 or less.
  • the methanol synthesis catalyst component has a function as a methanol synthesis catalyst and a function as a hydrogenation catalyst for olefin.
  • the zeolite catalyst component functions as a solid acid zeolite catalyst whose acidity is adjusted with respect to the condensation reaction of methanol and Z or dimethyl ether with hydrocarbons. Therefore, the content ratio of the methanol synthesis catalyst component to the zeolite catalyst component is reflected in the methanol synthesis function of the catalyst of the present invention and the relative ratio between the hydrogenation function of olefin and the hydrocarbon generation function of methanol power. .
  • methanol monoxide and hydrogen are converted into methanol synthesis catalyst components.
  • the methanol must be sufficiently converted to methanol, and the formed methanol is sufficiently converted by the zeolite catalyst component to olefin having propylene or butene as the main component, and the methanol synthesis catalyst component. It must be converted to liquid petroleum gas, the main component of which is propane or butane.
  • the content ratio of the methanol synthesis catalyst component to the zeolite catalyst component (methanol synthesis catalyst component Z zeolite catalyst component; mass basis) 0.1 or more, more preferably 0.5 or more, Carbon and hydrogen can be converted to methanol at a higher conversion rate.
  • the content ratio of methanol synthesis catalyst component to zeolite catalyst component (methanol synthesis catalyst component Z zeolite catalyst component; mass basis) is set to 0.8 or more, The produced methanol can be more selectively converted into liquid petroleum gas mainly composed of propane or butane.
  • the generated methanol is further increased. It can be converted into a liquid petroleum gas having a conversion ratio of propane or butane as the main component.
  • the methanol synthesis catalyst component in the present invention is obtained by supporting an olefin finning catalyst component on a Zn—Cr based methanol synthesis catalyst.
  • Zn-Cr-based methanol synthesis catalyst includes Zn and Cr, CO + 2H ⁇ CH 2 O
  • the catalyst is not particularly limited as long as it exhibits a catalytic action in the reaction of H, and a known Zn—Cr-based methanol synthesis catalyst can be used, and a commercially available one can also be used.
  • the Zn content ratio (ZnZCr; atomic ratio) to Cr in the Zn Cr-based methanol synthesis catalyst is preferably 1 or more, more preferably 1.5 or more. Also, the Zn content ratio (ZnZCr; atomic ratio) to Cr in the Zn—Cr-based methanol synthesis catalyst is preferably 3 or less, more preferably 2.5 or less.
  • Zn-Cr-based methanol synthesis catalyst examples include KMA manufactured by Zude Chemie Catalysts Co., Ltd.
  • olefin hydrogenation catalyst component among them, Pd and Pt are preferred, and Pd is more preferred.
  • Pd and Pt may not be included in the form of a metal.
  • Pd and Pt may be included in the form of an oxide, a nitrate, a chloride, or the like. In that case, it is preferable to convert Pd and Pt to metallic palladium and metallic platinum by, for example, hydrogen reduction treatment before the reaction, because higher catalytic activity can be obtained.
  • olefin hydrogenation catalyst components such as Pd and Pt are supported in a highly dispersed manner on a Zn-Cr-based methanol synthesis catalyst.
  • the total supported amount of the olefin hydration catalyst component of the methanol synthesis catalyst component is preferably 0.005% by weight or more, more preferably 0.01% by weight or more, and more preferably 0.05% by weight or more. Particularly preferred is 0.1% by weight or more, and more preferred is 0.5% by weight or more.
  • the supported amount of the olefin hydration catalyst component of the methanol synthesis catalyst component is preferably 5% by weight or less, more preferably 3% by weight or less, in view of dispersibility and economy. Propane and Z or butane can be produced with higher conversion, higher selectivity, and higher yield by making the supported amount of the olefin hydration catalyst component of the methanol synthesis catalyst component within the above range. .
  • the supported amount of the olefin hydration catalyst component 0.005% by weight or more, more preferably 0.5% by weight or more, carbon monoxide and hydrogen can be converted at a higher conversion rate. It can be converted to methanol, and the produced methanol is more selectively produced as propane or butane. It can be converted into liquefied petroleum gas.
  • the loading amount of the olefin hydration catalyst component to 5% by weight or less, the generated methanol is converted into liquid petroleum gas having a higher conversion rate and a main component of propane or butane. be able to.
  • the catalyst cost can be sufficiently reduced by making the supported amount of the olefin hydrogenation catalyst component 3% by weight or less, more preferably 2% by weight or less.
  • the methanol synthesis catalyst component used in the present invention is particularly preferably a Zn-Cr-based methanol synthesis catalyst carrying Pd, preferably metal Pd.
  • a methanol synthesis catalyst component in which an olefin hydrogenation catalyst component such as Pd is supported on a Zn-Cr-based methanol synthesis catalyst can be prepared by a known method such as an impregnation method or a precipitation method.
  • the methanol synthesis catalyst component is prepared by the precipitation method, the catalytic activity may be higher than when it is prepared by the impregnation method, and the LPG synthesis reaction can be performed at a lower reaction temperature, resulting in higher hydrocarbons. Selectivity, and even higher propane and butane selectivity may be obtained.
  • the zeolite catalyst component is not particularly limited as long as it is a zeolite that exhibits a catalytic action in the condensation reaction of methanol to a hydrocarbon and the condensation reaction of Z or dimethyl ether to a hydrocarbon, and any of them can be used. Use a commercially available product.
  • the medium pore zeolite is mainly formed by a 10-membered ring having a pore diameter of 0.44 to 0.00.
  • the SiO 2 ZAl 2 O molar ratio is 10 to 150, and the reaction molecule is expanded.
  • a medium pore zeolite or a large pore zeolite having a three-dimensional spread of fine pores that can be dispersed is particularly preferable.
  • USY or high silica type beta Solid acid zeolite is particularly preferable.
  • Examples of the zeolite catalyst component include zeolites containing metals such as alkali metals, alkaline earth metals, transition metals (Pd, etc.), zeolites ion-exchanged with these metals, or these metals.
  • Proton type zeolite is preferred, which includes supported zeolite. By using proton type zeolite having an appropriate acid strength and acid amount (acid concentration), the catalytic activity is further increased, and propane and Z or butane can be synthesized with high conversion and high selectivity.
  • a proto having a SiO ZA1 O molar ratio of 10 to 150 is preferable.
  • Type j8 zeolite, more preferably proton type j8—with SiO ZA1 O molar ratio of 30-50
  • J8-zeola having an O molar ratio of 10 to 150, more preferably an SiO 2 / Al O molar ratio of 30 to 50
  • a methanol synthesis catalyst component and a zeolite catalyst component it is preferable to separately prepare a methanol synthesis catalyst component and a zeolite catalyst component and mix them.
  • a methanol synthesis catalyst component and the zeolite catalyst component it is possible to easily design each composition, structure, and physical property optimally for each function.
  • a methanol synthesis catalyst requires basicity
  • a zeolite catalyst requires acidity. Therefore, if both catalyst components are prepared at the same time, it becomes difficult to optimize them for each function.
  • the methanol synthesis catalyst component in which an olefin hydrogenation catalyst component such as Pd is supported on a Zn—Cr-based methanol synthesis catalyst can be prepared by a known method such as an impregnation method or a precipitation method.
  • the Zn—Cr-based methanol synthesis catalyst can be prepared by a known method, and a commercially available product can also be used.
  • Pd is included in the form of an oxide! /
  • One Pd is included in the form of a nitrate! /
  • Some methanol synthesis catalyst components such as those containing Pd in the form of a salt, need to be reduced and activated before use.
  • the methanol synthesis catalyst component does not necessarily need to be reduced and activated in advance, and the methanol synthesis catalyst component and the zeolite catalyst component are mixed and molded to produce the catalyst for producing liquefied petroleum gas of the present invention. Then, prior to the start of the reaction, a reduction treatment can be performed to activate the methanol synthesis catalyst component.
  • the treatment conditions for the reduction treatment can be appropriately determined according to the type of olefin hydrogenation catalyst component in the methanol synthesis catalyst component.
  • the zeolite catalyst component can be prepared by a known method, or a commercially available product can be used. If necessary, the zeolite catalyst component may be adjusted in advance in acidity by a method such as metal ion exchange prior to mixing with the methanol synthesis catalyst component.
  • the methanol synthesis catalyst component and the zeolite catalyst component to be mixed are preferably in the form of granules, not in the form of powder, which preferably has a relatively large particle diameter.
  • the powder means one having an average particle size of 10 ⁇ m or less !
  • the granule means one having an average particle size of 100 m or more.
  • Granular that is, a methanol synthesis catalyst component having an average particle diameter of 100 ⁇ m or more and a condylar particle, that is, a zeolite catalyst component having an average particle diameter of 100 m or more are mixed and molded as necessary.
  • a catalyst with a longer life, S, and a longer deterioration can be obtained.
  • the average particle size of the methanol synthesis catalyst component to be mixed and the average particle size of the zeolite catalyst component are more preferably 200 m or more, particularly preferably 500 m or more.
  • the average particle diameter of the methanol synthesis catalyst component to be mixed and the average particle diameter of the zeolite catalyst component are preferably 5 mm or less, more preferably 2 mm or less. preferable.
  • the average particle diameter of the methanol synthesis catalyst component to be mixed and the average particle diameter of the zeolite catalyst component are preferably the same.
  • each catalyst component is usually mechanically pulverized as necessary, and the average particle size is adjusted to, for example, about 0.5 to 2 / ⁇ ⁇ , and then mixed uniformly. Then, mold as needed. Alternatively, all the desired catalyst components are added, mixed until uniform while being mechanically pulverized, and the average particle size is adjusted to about 0.5 to 2 / ⁇ ⁇ , for example, and molded as necessary.
  • the respective catalyst components are usually compressed in advance. Molding is performed by a known molding method such as a molding method or extrusion molding method, and mechanically pulverized as necessary. After the average particle diameter is preferably adjusted to about 100 m to 5 mm, both are uniformly mixed. . Then, this mixture is molded again as necessary to produce the liquefied petroleum gas production catalyst of the present invention.
  • the liquefied petroleum gas production catalyst of the present invention may contain other additive components as necessary within the range not impairing the desired effects.
  • liquid petroleum gas preferably main component
  • propane or butane A method for producing a liquid petroleum gas whose component is propane will be described.
  • reaction temperature is preferably 420 ° C or less, more preferably 400 ° C or less, from the viewpoint of the use limit temperature of the catalyst and the point of easy removal and recovery of reaction heat.
  • reaction pressure is preferably lOMPa or less, more preferably 7 MPa or less from the viewpoint of economy.
  • the concentration of carbon monoxide and carbon in the gas fed to the reactor is based on the point of securing the carbon monoxide pressure (partial pressure) required for the reaction and improving the raw material intensity. 20 mol% or more is preferred 25 mol% or more is more preferred. In addition, the concentration of carbon monoxide and carbon in the gas fed to the reactor is preferably 45 mol% or less, preferably 40 mol or less, because the conversion rate of monoxide carbon is sufficiently higher. % Or less is more preferred.
  • the concentration of hydrogen in the gas fed to the reactor is preferably at least 1.2 moles per mole of carbon monoxide because carbon monoxide reacts more fully 1 More than 5 moles is preferred.
  • the concentration of hydrogen in the gas fed to the reactor is preferably 3 mol or less per mol of carbon monoxide, more preferably 2.5 mol or less from the viewpoint of economy. In some cases, the hydrogen concentration in the gas fed to the reactor is preferably lowered to about 0.5 moles per mole of carbon monoxide.
  • the gas fed to the reactor may contain water vapor. Transfer to reactor
  • the gas to be used may contain an inert gas or the like.
  • the gas sent to the reactor is divided and sent to the reactor, thereby controlling the reaction temperature.
  • the reaction can be carried out in a fixed bed, a fluidized bed, a moving bed, etc. It is preferable to select the double-sided force between the reaction temperature control and the catalyst regeneration method.
  • the fixed bed may be a Taenti reactor such as an internal multi-stage Taenti method, a multi-tube reactor, a multi-stage reactor containing multiple heat exchanges, a multi-stage cooling radial flow method or a double-tube heat.
  • Other reactors such as an exchange system, a built-in cooling coil system, and a mixed flow system can be used.
  • the catalyst for producing liquefied petroleum gas of the present invention can be diluted with silica, alumina, or an inert and stable heat conductor for the purpose of temperature control.
  • the liquefied petroleum gas production catalyst of the present invention may be applied to the heat exchanger surface for the purpose of temperature control.
  • synthesis gas can be used as a raw material gas for liquefied petroleum gas (LPG) synthesis.
  • synthesis gas production process a synthesis gas is produced from the carbon-containing raw material (synthesis gas production process), and LPG is produced from the obtained synthesis gas using the catalyst of the present invention (liquid oil gas production process).
  • LPG production method of the present invention An embodiment of the LPG production method of the present invention will be described.
  • the carbon-containing raw material is selected from the group consisting of H 0, O and CO.
  • Syngas is produced from at least one of the above.
  • the carbon-containing raw material is a substance containing carbon and also includes H 0, O, and CO power.
  • the carbon-containing raw material a known raw material for synthesis gas can be used.
  • lower hydrocarbons such as methane ethane, natural gas, naphtha, coal, etc. can be used.
  • a catalyst is usually used in a synthesis gas production process and a liquid petroleum gas production process
  • a carbon-containing raw material natural gas, naphtha, coal, etc.
  • sulfur or sulfuration is used.
  • those having a low content of catalyst poisoning substances such as compounds are preferred.
  • the carbon-containing raw material contains a catalyst poisoning substance, a process for removing the catalyst poisoning substance such as desulfurization prior to the synthesis gas production process can be performed as necessary.
  • the synthesis gas reacts with the above carbon-containing raw material and at least one selected from the group consisting of H 0, O, and CO power.
  • the synthesis gas can be produced by a known method.
  • natural gas methane
  • synthesis gas can be produced by a steam reforming method or an autothermal reforming method.
  • steam necessary for steam reforming, oxygen necessary for autothermal reforming, and the like can be supplied as necessary.
  • synthesis gas can be produced using an air-blown gasification furnace or the like.
  • a shift reactor is provided downstream of the reformer, which is a reactor for producing synthesis gas as described above, and synthesis gas is generated by shift reaction (CO + H 0 ⁇ CO + H).
  • composition can also be adjusted.
  • the composition of the preferred synthesis gas produced by the synthesis gas production process is as follows: From the stoichiometry for the production of lower paraffin, the molar ratio of H 2 ZCO is 7Z3 2.3.
  • Quasi is preferably 1.2 or more, more preferably 1.5 or more.
  • hydrogen is available in an amount sufficient to react with carbon monoxide and obtain a liquid petroleum gas whose main component is propane or butane, excess hydrogen does not reduce the total pressure of the source gas. Decreasing the economics of the technology as it becomes necessary. From this point, the content ratio of hydrogen to carbon monoxide in the synthesis gas (H ZCO; molar basis) is preferably 3 or less, more preferably 2.5 or less.
  • the concentration of carbon monoxide and carbon monoxide in the produced synthesis gas is determined by ensuring the pressure (partial pressure) of carbon monoxide suitable for the conversion reaction of LPG to LPG, From this point, 20 mol% or more is preferable, and 25 mol% or more is more preferable. Also in the synthesis gas produced The concentration of carbon monoxide is preferably 45 mol% or less, more preferably 40 mol% or less, because the conversion rate of carbon monoxide is sufficiently higher in the case of syngas power and conversion to LPG. It is preferable.
  • a gas having a composition such that steam Z methane (molar ratio) is 1 and carbon dioxide Z methane (molar ratio) is 0.4 is used as a raw material gas.
  • the reaction temperature (catalyst bed Atsushi Ideguchi) 800 to 900 ° C, the reaction pressure L ⁇ 4MPa, a gas hourly space velocity (GHSV), etc. 2000 hr _1 of Syngas can be produced under operating conditions.
  • the catalyst described in W098Z46524 is a catalyst in which at least one kind of catalytic metal selected from rhodium, ruthenium, iridium, palladium and platinum is supported on a support made of a metal oxide.
  • the specific surface area of the catalyst is 25 m 2 / g or less
  • the electronegativity of the metal ions in the support metal oxide is 13.0 or less
  • the supported amount of the catalyst metal is the metal equivalent amount.
  • the catalyst is 0.0005-0. 1 mol% with respect to the support metal oxide. From the standpoint of preventing carbon deposition, the electronegativity is preferably 4 to 12, and the specific surface area of the catalyst is preferably 0.01 to L0m 2 Zg.
  • Xi is the electronegativity of the metal ion
  • Xo is the electronegativity of the metal
  • i is the number of valence electrons of the metal ion.
  • the electronegativity of metal (Xo) is Pauling's electronegativity.
  • Pauling's electronegativity use the values listed in Table 15.4 of “Ryo Fujishiro Translation, Moore Physical Chemistry (2) (4th edition), Tokyo Kagaku Dojin, p. 707 (1974;)”.
  • the electronegativity (Xi) of metal ions in metal oxides is described in detail in, for example, “Catalyst Society, Catalyst Course, Vol. 2, p. 145 (1985)”.
  • examples of the metal oxide include metal oxides containing one or more metals such as Mg, Ca, Ba, Zn, Al, Zr, and La.
  • An example of such a metal oxide is magnesia (MgO).
  • reaction is represented by the following formula (iii).
  • the reaction temperature is preferably 600 to 1200 ° C, more preferably 600 to 1000 ° C.
  • the reaction pressure is preferably from 0.098 MPaG to 3.9 MPaG, more preferably from 0.49 MPaG to 2.9 MPaG (G represents a gauge pressure).
  • the gas space velocity is preferably 1,000 -10, More preferred is 2,000-8, OOOhr- 1 .
  • steam (H 0) 0.5 to 2 per 1 mol of carbon in the carbon-containing raw material (excluding CO)
  • the reaction pressure is preferably from 0.59 MPaG to 3.9 MPaG, more preferably from 0.49 MPaG to 2.9 MPaG.
  • the gas space velocity GHSV is preferred.
  • the ratio of CO to carbon-containing raw materials is shown as 1 mol of carbon in carbon-containing raw materials (excluding CO).
  • the mixing ratio is not particularly limited, but in general, H 2 O / CO (molar ratio) is from 0.1 to L0
  • the reaction temperature is preferably 550 to 1200 ° C, more preferably 600 to 1000 ° C, and the reaction pressure is preferably 0.29 MPaG to 3.9 MPaG, more preferably 0.49 MPaG to 2. 9MPaG.
  • a gas spatial velocity is preferably 1, 000 ⁇ 10, 000hr _1, more preferably 2, 000 to 8, a 000hr _1.
  • the ratio of steam to carbon-containing raw material is shown, it is preferably 0.5-2 mol, more preferably steam (H 0) per 1 mol of carbon in the carbon-containing raw material (excluding CO).
  • the catalyst described in Japanese Patent Application Laid-Open No. 2000-288394 is composed of a complex oxide having a composition represented by the following formula (I), and M 1 and Co are highly dispersed in the complex oxide. It is a catalyst characterized by being made.
  • M 1 is at least one of Group 6A elements, Group 7A elements, Group 8 transition elements, Group 1B elements, Group 2B elements, Group 4B elements, and lanthanoid elements excluding Co. It is a kind of element.
  • the catalyst described in Japanese Patent Application Laid-Open No. 2000-469 has a complex oxide strength having a composition represented by the following formula (II), and M 2 and Ni are highly dispersed in the complex oxide. It is a catalyst characterized in that
  • M 2 is at least one element selected from Group 3B elements, Group 4A elements, Group 6B elements, Group 7B elements, Group 1A elements, and lanthanoid elements of the periodic table.
  • the reforming reaction of the carbon-containing raw material that is, the synthesis reaction of the synthesis gas is not limited to the above method, and may be performed according to other known methods.
  • the reforming reaction of the carbon-containing raw material can be carried out in various types of reactors, but it is usually preferred to carry out in a fixed bed method or a fluidized bed method.
  • the main component of the hydrocarbons contained in the synthesis gas obtained in the above-mentioned synthesis gas production process 1 is obtained from the synthesis gas production process using the catalyst for liquid oil production of the present invention.
  • a lower paraffin-containing gas that is propane or butane is produced.
  • liquid meteorite oil gas mainly composed of propane or butane.
  • pressurization and Z or cooling may be performed as necessary.
  • the gas fed into the reactor is a synthetic gas obtained in the above-described synthesis gas production process.
  • the gas fed into the reactor may contain, for example, carbon dioxide, water, methane, ethane, ethylene, inert gas, etc. in addition to carbon monoxide and hydrogen.
  • the gas fed into the reactor may be a gas obtained by adding carbon monoxide, hydrogen, and other components to the synthesis gas obtained in the above synthesis gas production process, if necessary.
  • the gas fed into the reactor may be a gas obtained by separating predetermined components from the synthesis gas obtained in the above synthesis gas production process, if necessary.
  • the gas fed into the reactor may be a mixture of carbon monoxide and hydrogen, which are raw materials for producing lower paraffin, with carbon dioxide.
  • carbon dioxide diacid-carbon discharged from the reactor is recycled, or by using an amount commensurate with it, in the reactor, diacid-carbon by shift reaction from monoxide-carbon is used. It is possible to substantially reduce the production of soot carbon or to prevent the production of diacid soot carbon.
  • the gas fed to the reactor may contain water vapor.
  • the reaction temperature is preferably 300 ° C or higher, more preferably 320 ° C or higher, and particularly preferably 340 ° C or higher. Further, as described above, the reaction temperature is preferably 420 ° C or lower, more preferably 400 ° C or lower.
  • Gas hourly space velocity as described above, or 500 hr _1 is preferred instrument 1500 hr _ 1 or more preferred arbitrariness.
  • the gas space velocity as described above, LOOOOhr- 1 or less and more preferably preferably fixture 5000 hr _1 hereinafter.
  • the gas sent to the reactor is divided and sent to the reactor, thereby controlling the reaction temperature.
  • the reaction can be carried out in a fixed bed, fluidized bed, moving bed, etc. It is preferable to select the double-sided force between the reaction temperature control and the catalyst regeneration method.
  • the fixed bed may be a Taenti reactor such as an internal multi-stage Taenti method, a multi-tube reactor, a multi-stage reactor containing multiple heat exchanges, a multi-stage cooling radial flow method or a double-tube heat.
  • Other reactors such as an exchange system, a built-in cooling coil system, and a mixed flow system can be used.
  • the lower paraffin-containing gas obtained in this liquid petroleum gas production process has propane or butane as the main component of the hydrocarbons contained therein. From the viewpoint of liquid characteristics, the total content of propane and butane in the lower paraffin-containing gas is more preferable.
  • a lower paraffin-containing gas having a total content power of propane and butane of 60% or more, further 70% or more, and further 75% or more (including 100%) based on the carbon content of hydrocarbons is obtained. be able to.
  • the lower paraffin-containing gas obtained in the liquid petroleum gas production process preferably has more propane than butane from the viewpoint of combustibility and vapor pressure characteristics.
  • the lower paraffin-containing gas obtained in the liquid-oil petroleum gas production process usually contains moisture, a low-boiling component having a boiling point or sublimation point lower than that of propane, and a substance having a boiling point higher than that of butane.
  • a high boiling point component is included.
  • low-boiling components include ethane, methane, ethylene as a by-product, carbon dioxide produced by a shift reaction, Examples of the raw material for the reaction include hydrogen and carbon monoxide.
  • Examples of the high-boiling components include high-boiling paraffins (pentane, hexane, etc.) that are by-products.
  • Water separation can be performed, for example, by liquid-liquid separation.
  • an absorption process in which a liquid petroleum gas mainly composed of propane or butane is absorbed by an absorbing liquid such as high-boiling paraffin gas having a boiling point higher than butane or gasoline. Is preferred.
  • the high-boiling components can be separated by, for example, gas-liquid separation, absorption separation, distillation or the like.
  • the content of low boiling point components in LPG is 5 mol% or less (including 0 mol%) by separation.
  • the total content of propane and butane in the LPG produced in this manner can be 90 mol% or more, more preferably 95 mol% or more (including 100 mol%). Further, the content of propane in the produced LPG can be 50 mol% or more, and further 60 mol% or more (including 100 mol%). According to the present invention, it is possible to produce LPG having a composition suitable for propane gas, which is widely used as a home-use fuel.
  • a low-boiling component separated from a lower paraffin-containing gas is synthesized with a synthetic gas. It can be recycled as a raw material for the manufacturing process.
  • the low-boiling components separated from the lower paraffin-containing gas include substances that can be reused as raw materials for the synthesis gas production process, specifically, methane, ethane, ethylene, and the like. Also, the carbon dioxide contained in this low-boiling component is combined by the CO reforming reaction.
  • the low boiling point component includes hydrogen and carbon monoxide which are unreacted raw materials. Therefore, the raw material intensity can be reduced by recycling the low-boiling components separated from the lower paraffin-containing gas as the raw material for the synthesis gas production process.
  • All of the low-boiling components separated from the lower paraffin-containing gas may be recycled to the synthesis gas production process, or part of the low-boiling components are extracted outside the system and the rest are recycled to the synthesis gas production process. Also good. Low boiling components can be separated into the synthesis gas production process by separating only the desired components.
  • the content of low-boiling components in the gas sent to the reformer ie, the content of recycled raw materials, can be determined as appropriate.
  • a booster is provided in the recycle line as appropriate.
  • FIG. 1 shows an example of an LPG production apparatus suitable for carrying out the LPG production method of the present invention.
  • natural gas (methane) is supplied to the reformer 1 via the line 3 as a carbon-containing raw material. Further, since steam reforming is performed, steam (not shown) is supplied to the line 3.
  • a reforming catalyst layer la containing a reforming catalyst (synthetic gas production catalyst) is provided.
  • the reformer 1 includes a heating means (not shown) for supplying heat necessary for reforming.
  • methane is reformed in the presence of the reforming catalyst, and a synthesis gas containing hydrogen and carbon monoxide is obtained.
  • the synthesis gas thus obtained is supplied to the reactor 2 via the line 4.
  • a catalyst layer 2a containing the catalyst of the present invention is provided in the presence of the catalyst of the present invention.
  • a hydrocarbon gas (lower paraffin-containing gas) whose main component is propane or butane is synthesized.
  • the LPG manufacturing apparatus is provided with a booster, heat exchange, valves, an instrumentation control device, and the like as necessary.
  • a gas such as carbon dioxide and the like can be added to the synthesis gas obtained in the reformer 1 and supplied to the reactor 2.
  • hydrogen or carbon monoxide carbon can be further added to the synthesis gas obtained in the reformer 1, or the composition can be adjusted by a shift reaction and supplied to the reactor 2.
  • methanol synthesis catalyst component As the methanol synthesis catalyst component, a Zn-Cr-based methanol synthesis catalyst with 1% by weight of Pd supported on it (also referred to as "PdZZn-Cr”) was mechanically powdered as follows. (Average particle size: 0.7 m) was used.
  • Zn-Cr-based methanol synthesis catalyst product name: KMA (average particle size: about lmm) manufactured by Zude Chemie Catalysts Co., Ltd. was used.
  • zeolite catalyst component As a zeolite catalyst component, a commercially available proton type j8 having a SiO ZA1 O molar ratio of 37.1
  • the catalyst was prepared in the same manner as in Example 1 except that the methanol synthesis catalyst component and the zeolite catalyst component were not mechanically powdered and each was molded by tableting and mixed into a granule with an average particle size of 1 mm. Obtained.
  • the LPG synthesis reaction was performed in the same manner as in Example 1 using the prepared catalyst.
  • the product was analyzed by gas chromatography. After 3 hours of reaction initiation, the conversion of carbon monoxide was 86.1%, and the shift reaction conversion of carbon monoxide to carbon dioxide was converted to carbon dioxide. The conversion rate was 33.4% and the conversion to hydrocarbons was 52.7%.
  • 81.8% of propane and butane are propane and butane in the carbon standard of the generated hydrocarbon gas, and the breakdown of the propane and butane is 57.5% of propane and 42.5% of butane based on carbon. .
  • a catalyst was obtained in the same manner as in Example 2 except that a Zn—Cr-based methanol synthesis catalyst (manufactured by Zude Chemie Catalyst Co., Ltd., trade name: KMA; also referred to as “Zn—Cr”) was used as the methanol synthesis catalyst component. It was.
  • a Zn—Cr-based methanol synthesis catalyst manufactured by Zude Chemie Catalyst Co., Ltd., trade name: KMA; also referred to as “Zn—Cr”
  • the LPG synthesis reaction was performed in the same manner as in Example 1 using the prepared catalyst.
  • the product was analyzed by gas chromatography. After 3 hours of reaction initiation, the conversion of carbon monoxide was 66.2%, and the shift reaction conversion of carbon monoxide to carbon dioxide was converted to carbon dioxide. The conversion rate was 30.2% and the conversion to hydrocarbons was 36.0%.
  • the carbon group of the generated hydrocarbon gas On the other hand, 75.4% were propane and butane, and the breakdown of propane and butane was 30.5% for propane and 69.5% for butane on a carbon basis.
  • the zeolite catalyst component is a commercially available proton type j8 having a molar ratio of SiO ZA1 O of 37.1.
  • the prepared catalyst lg was filled in a reaction tube having an inner diameter of 6 mm, prior to the reaction, the catalyst was reduced in a hydrogen stream at 400 ° C for 3 hours.
  • methanol synthesis catalyst component As the methanol synthesis catalyst component, the same procedure as in Comparative Example 2 was used except that 0.5 wt% Pd was supported on a Zn—Cr-based methanol synthesis catalyst (manufactured by Zude Chemie Catalysts, Inc., trade name: KMA). A catalyst was obtained.
  • an LPG synthesis reaction was carried out in the same manner as in Comparative Example 2.
  • the conversion rate of carbon monoxide was 33.9% after 3 hours of reaction initiation, and the shift reaction conversion of carbon monoxide to carbon dioxide to carbon dioxide was achieved.
  • the conversion rate was 13.3% and the conversion to hydrocarbons was 20.6%.
  • 80.2% of the produced hydrocarbon gas was propane and butane, and the breakdown of propane and butane was 60.2% for propane and 39.8% for butane. .
  • a catalyst was obtained in the same manner as in Comparative Example 2 except that a 2% by weight Pd supported on a Zn-Cr-based methanol synthesis catalyst (manufactured by Zude Chemie Catalyst Co., Ltd., trade name: KMA) was used as the methanol synthesis catalyst component. It was.
  • a catalyst was obtained in the same manner as in Comparative Example 2 except that a 4% wt. It was.
  • Examples 3 to 6 using the catalyst of the present invention comprising PdZZn-Cr and Pd- ⁇ -zeolite use a catalyst comprising Zn-Cr and Pd- ⁇ -zeolite.
  • the activity was higher, and the selectivity of hydrocarbons and the selectivity of propane and butane were also equal or higher.
  • a Zn—Cr-based methanol synthesis catalyst (manufactured by Zude Chemie Catalysts Co., Ltd., trade name: KMA) supported by 1% by weight by an impregnation method was used as follows.
  • the Pd-containing solution was charged with 5 g of a Zn—Cr-based methanol synthesis catalyst and impregnated with the Pd-containing solution. Then, a Zn-Cr-based methanol synthesis catalyst impregnated with this Pd-containing solution was added at 120 ° C. After drying for 12 hours in this dryer, it was further calcined at 300 ° C for 4 hours and mechanically pulverized to obtain a methanol synthesis catalyst component.
  • the zeolite catalyst component is a commercially available proton type j8 with a SiO ZA1 O molar ratio of 37.1.
  • a Zn—Cr-type methanol synthesis catalyst (manufactured by Zude Chemie Catalysts Co., Ltd., trade name: KMA) carrying 1% by weight of Pd was used by precipitation and precipitation as follows.
  • a catalyst was obtained in the same manner as in Example 7 except that.
  • a Zn—Cr-based methanol synthesis catalyst (particle size of 105 / zm or less) was prepared.
  • a 0.25M NaCO aqueous solution was added dropwise to the solution containing the Zn—Cr powder until the pH reached 10. Then, filter and wash with ion-exchanged water. It was dried at 120 ° C for 12 hours. Furthermore, it was calcined at 300 ° C in air for 4 hours.
  • LPG synthesis reaction was carried out in the same manner as in Example 7.
  • the conversion rate of carbon monoxide was 44.0% after 3 hours of the reaction initiation power, and the shift reaction conversion of carbon monoxide to carbon dioxide was converted to carbon dioxide.
  • the conversion rate was 17.6% and the conversion to hydrocarbons was 26.4%.
  • propane and butane accounted for 78.9% of the generated hydrocarbon gas based on carbon.
  • the catalyst for producing liquefied petroleum gas according to the present invention reacts with carbon monoxide and hydrogen to produce hydrocarbons whose main component is propane or butane, that is, liquefied petroleum gas (LPG) with high activity and high selectivity.
  • LPG liquefied petroleum gas
  • the catalyst life is long and the catalyst life is long and the deterioration is low. Therefore, by using the catalyst of the present invention, propane and Z or butane can be stably produced over a long period of time from carbon-containing raw materials such as natural gas or synthesis gas with high activity, high selectivity, and high yield. be able to. That is, by using the catalyst of the present invention, liquid petroleum gas having a high concentration of propane and Z or butane can be stably produced over a long period of time from carbon-containing raw materials such as natural gas or synthesis gas. Can be manufactured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

明 細 書
液化石油ガス製造用触媒、および、この触媒を用いた液ィヒ石油ガスの製 造方法
技術分野
[0001] 本発明は、一酸ィ匕炭素と水素とを反応させて主成分がプロパンまたはブタンである 液化石油ガスを製造するための触媒に関する。
[0002] また、本発明は、この触媒を用い、合成ガスから、主成分がプロパンまたはブタンで ある液化石油ガスを製造する方法に関する。さらに、本発明は、この触媒を用い、天 然ガス等の含炭素原料から、主成分がプロパンまたはブタンである液ィ匕石油ガスを 製造する方法に関する。
背景技術
[0003] 液化石油ガス (LPG)は、常温常圧下ではガス状を呈する石油系もしくは天然ガス 系炭化水素を圧縮し、あるいは同時に冷却して液状にしたものをいい、その主成分 はプロパンまたはブタンである。液体の状態で貯蔵および輸送が可能な LPGは可搬 性に優れ、供給にパイプラインを必要とする天然ガスとは違い、ボンベに充填した状 態でどのような場所にでも供給することができるという特徴がある。そのため、プロパン を主成分とする LPG、すなわちプロパンガスが、家庭用 ·業務用の燃料として広く用 いられている。現在、日本国内においても、プロパンガスは約 2, 500万世帯(全世帯 の 50%以上)に供給されている。また、 LPGは、家庭用'業務用燃料以外にも、カセ ットコンロ、使い捨てライター等の移動体用の燃料 (主に、ブタンガス)、工業用燃料、 自動車用燃料としても使用されて ヽる。
[0004] 従来、 LPGは、 1)湿性天然ガス力 回収する方法、 2)原油のスタビラィズ (蒸気圧 調整)工程から回収する方法、 3)石油精製工程などで生成されるものを分離'抽出 する方法などにより生産されている。
[0005] LPG、特に家庭用 ·業務用の燃料として用いられるプロパンガスは将来的にも需要 が見込め、工業的に実施可能な、新規な製造方法を確立できれば非常に有用であ る。 [0006] LPGの製造方法として、特許文献 1には、 Cu— Zn系、 Cr—Zn系、 Pd系等のメタノ ール合成触媒、具体的には、 CuO-ZnO-Al O触媒、 PdZSiO触媒、 Cr—Zn
2 3 2
系触媒と、平均孔径が略 lOA (lnm)以上のゼォライト、具体的には Y型ゼオライトよ りなるメタノール転化触媒とを物理的に混合した混合触媒の存在下で、水素および 一酸化炭素よりなる合成ガスを反応させて、液ィ匕石油ガス、あるいは、これに近い組 成の炭化水素混合物を製造する方法が開示されている。
[0007] し力しながら、上記特許文献 1に記載の触媒は、必ずしも十分な性能を有して!/、る とは言えない。
[0008] 例えば、 Pd/SiOと Y型ゼオライトとから成る触媒は、活性および炭化水素の収率
2
が低ぐ生成する炭化水素中のプロパン (C3)およびブタン (C4)の割合も低い。 Pd /SiOと、 SiO ZA1 O = 7. 6の脱アルミ Y型ゼオライトを 450°Cで 2時間水蒸気処
2 2 2 3
理したものとから成る触媒は、活性および炭化水素の収率が比較的高ぐまた、生成 する炭化水素中のプロパン (C3)およびブタン (C4)の割合も比較的高いが、特に活 性および炭化水素の収率の点で、十分に優れた性能を有して 、るとは言、難、、。
[0009] また、上記特許文献 1には Pd系メタノール合成触媒、すなわち PdZSiO触媒の P
2 dの担持量について何ら記載されていないが、 PdZSiO触媒の Pdの担持量は、通
2
常、 4重量%程度であり、高価な Pdの使用量が比較的多い。そのため、 Pd系メタノー ル合成触媒 (PdZSiO )と¥型ゼオライトとから成る触媒は、コストの点で不利になる
2
場合が多い。
[0010] 一方、 Cu— Zn系触媒 (銅 亜鉛 アルミナ混合酸化物および市販の低圧メタノー ル合成触媒)と Y型ゼオライトとから成る触媒は、全般的な傾向として、 PdZSiO
2と Y 型ゼオライトとから成る触媒よりも、活性および炭化水素の収率が高ぐまた、生成す る炭化水素中のプロパン (C3)およびブタン (C4)の割合も高い。中でも、 Cu— Zn系 触媒と、 SiO ZA1 O = 7. 6の脱アルミ Y型ゼオライトを 450°Cで 2時間水蒸気処理
2 2 3
したものとから成る触媒は、活性および炭化水素の収率が高ぐまた、生成する炭化 水素中のプロパン(C3)およびブタン(C4)の割合も高い。しかしながら、通常、 Cu— Zn系触媒と Y型ゼオライトとから成る触媒は、経時劣化が小さくなぐ触媒寿命が十 分に長いとは言い難い。そのため、この触媒を用いた場合、 LPGを高収率で、長期 間にわたって安定に製造することは困難である。
[0011] また、上記特許文献 1に記載の Zn—Cr系触媒と Y型ゼオライトとから成る触媒は、 活性、炭化水素の収率、プロパンおよびブタンの選択率いずれもが PdZSiOと Y型
2 ゼォライトとから成る触媒よりも更に低い。上記特許文献 1には、 LPG合成反応条件 ではメタノール合成触媒としての Zn—Cr系触媒の機能はあまり高くないと記載されて いる。
[0012] このように、合成ガス力も LPGを製造するプロセス、さらには、天然ガス等の含炭素 原料力 LPGを製造するプロセスの実用化のためには、液ィ匕石油ガス製造用触媒 のさらなる改良が望まれている。
[0013] また、 LPGの製造方法として、非特許文献 1には、メタノール合成用触媒である 4w t%Pd/SiO、 01—211—八1混合酸化物[01 : 211:八1=40 : 23 : 37 (原子比)]また
2
は Cu系低圧メタノール合成用触媒(商品名: BASF S3— 85)と、 450°Cで 1時間水 蒸気処理した、 SiO ZA1 O =7. 6の高シリカ Y型ゼオライトと力も成るハイブリッド
2 2 3
触媒を用い、合成ガスからメタノール、ジメチルエーテルを経由して C2〜C4のパラフ インを選択率 69〜85%で製造する方法が開示されている。しカゝしながら、非特許文 献 1に記載の触媒は、上記特許文献 1に記載の触媒と同様、十分に優れた性能を有 しているとは言い難い。
[0014] また、上記非特許文献 1に記載の触媒にお!、て、 Pd系メタノール合成用触媒、す なわち PdZSiOの Pdの担持量は 4重量%であり、高価な Pdの使用量が比較的多
2
い。そのため、非特許文献 1に記載されている、 4wt%Pd/SiOと Y型ゼオライトと
2
から成る触媒は、コストの点からは、あまり好ましくない。
[0015] また、非特許文献 2には、 Pd— SiOあるいは Pd, Ca-SiOと、 13ーゼオライトある
2 2
いは USYゼォライトとから成るハイブリッド触媒を用い、合成ガス力も LPGを製造する 方法が開示されている。この非特許文献 2に記載の触媒においても、メタノール合成 触媒である Pd— SiOあるいは Pd, Ca-SiOの Pdの担持量は 4重量%であり、高価
2 2
な Pdの使用量が比較的多い。そのため、非特許文献 2に記載されている、 Pd-SiO あるいは Pd, Ca-SiOとゼオライトと力 成る触媒も、コストの点からは、あまり好ま
2 2
しくない。 特許文献 1:特開昭 61— 23688号公報
非特許文献 1: "Selective Synthesis of LPG from Synthesis Gas", Kaor u Fujimoto et al. , Bull. Chem. Soc. Jpn. , 58, p. 3059— 3060 (1985) 非特許文献 2 : "Synthesis of LPG from Synthesis Gas with Hybrid C atalyst", Qianwen Zhang et al. ,第 33回石油'石油化学討論会講演要旨, p . 179- 180, 2003年 11月 17日
発明の開示
発明が解決しょうとする課題
[0016] 本発明の目的は、一酸ィ匕炭素と水素とを反応させて主成分がプロパンまたはブタ ンである炭化水素、すなわち液ィ匕石油ガス (LPG)を高活性、高選択性、高収率で製 造することができ、し力も、触媒寿命が長ぐ劣化が少ない液化石油ガス製造用触媒 を提供することである。
[0017] 本発明の他の目的は、この触媒を用い、合成ガスから、プロパンおよび Zまたはブ タンの濃度が高い LPGを高収率で、長期間にわたって安定に製造することができる 方法を提供することである。さらには、天然ガスなどの含炭素原料から、プロパンおよ び Zまたはブタンの濃度が高い LPGを高収率で、長期間にわたって安定に製造す ることができる方法を提供することである。
課題を解決するための手段
[0018] 本発明によれば、一酸ィ匕炭素と水素とを反応させてプロパンまたはブタンを主成分 とする液化石油ガスを製造する際に用いられる触媒であって、ォレフィン水素化触媒 成分を Zn—Cr系メタノール合成触媒に担持したものであるメタノール合成触媒成分 と、ゼォライト触媒成分とを含有することを特徴とする液化石油ガス製造用触媒が提 供される。
[0019] ここで、ォレフィン水素化触媒成分とは、ォレフィンのパラフィンへの水素化反応に おいて触媒作用を示すものを指す。 Zn—Cr系メタノール合成触媒とは、 Znおよび C rを含み、 CO + 2H→CH OHの反応において触媒作用を示すものを指す。また、
2 3
ゼォライト触媒成分とは、メタノールの炭化水素への縮合反応および Zまたはジメチ ルエーテルの炭化水素への縮合反応において触媒作用を示すゼォライトを指す。 [0020] また、本発明によれば、上記の液化石油ガス製造用触媒の存在下で一酸化炭素と 水素とを反応させ、主成分がプロパンまたはブタンである液ィ匕石油ガスを製造するこ とを特徴とする液ィヒ石油ガスの製造方法が提供される。
[0021] また、本発明によれば、上記の液化石油ガス製造用触媒を含有する触媒層に合成 ガスを流通させて、主成分がプロパンまたはブタンである液ィ匕石油ガスを製造する液 化石油ガス製造工程を有することを特徴とする液ィヒ石油ガスの製造方法が提供され る。
[0022] また、本発明によれば、
(1)含炭素原料と、 H 0、 Oおよび CO力 なる群より選択される少なくとも一種とか
2 2 2
ら、合成ガスを製造する合成ガス製造工程と、
(2)上記の液化石油ガス製造用触媒を含有する触媒層に合成ガスを流通させて、主 成分がプロパンまたはブタンである液ィ匕石油ガスを製造する液ィ匕石油ガス製造工程 と
を有することを特徴とする液ィ匕石油ガスの製造方法が提供される。
[0023] ここで、合成ガスとは、水素と一酸ィ匕炭素とを含む混合ガスを指し、水素および一酸 化炭素からなる混合ガスに限られない。合成ガスは、例えば、二酸化炭素、水、メタン 、ェタン、エチレンなどを含む混合ガスであってもよい。天然ガスを改質して得られる 合成ガスは、通常、水素と一酸化炭素とに加えて二酸化炭素や水蒸気を含む。また 、合成ガスは、石炭ガス化により得られる石炭ガスや、石炭コータスから製造される水 性ガスであってもよい。
発明の効果
[0024] 本発明の液化石油ガス製造用触媒は、ォレフィン水素化触媒成分を Zn— Cr系メタ ノール合成触媒に担持したものであるメタノール合成触媒成分と、ゼォライト触媒成 分とを含有する。
[0025] メタノール合成触媒成分としては、 Zn— Cr系メタノール合成触媒にォレフィン水素 化触媒成分を 0. 005〜5重量%、より好ましくは 0. 5〜5重量%担持したものが好ま しい。中でも、 Znおよび Crを含む複合酸化物に Pdを 0. 005〜5重量%、より好まし くは 0. 5〜5重量%担持したものが好ましい。また、好ましいゼォライト触媒成分とし ては、 β—ゼオライト、特に、 SiO ZA1 Oモル比が 10〜150のプロトン型 j8—ゼォ
2 2 3
ライトが挙げられる。さらに、 Pdを 3重量%以下担持した、 SiO ZA1 Oモル比が 10
2 2 3
〜150の j8—ゼオライトも挙げられる。
[0026] この本発明の液化石油ガス製造用触媒は、一酸化炭素と水素とを反応させて主成 分がプロパンまたはブタンである炭化水素、すなわち液化石油ガス (LPG)を高活性 、高選択性、高収率で製造することができ、しかも、触媒寿命が長ぐ劣化が少ないも のである。
[0027] 本発明の触媒の存在下で一酸化炭素と水素とを反応させると、下記式(1)で示さ れるような反応が起こり、主成分がプロパンまたはブタンである LPGを製造することが できる。
[0028] [化 1]
CO + 2H2
CH3OH CH3OCH3
H2C: ( 1 ) H2
OLEFIN——~* LPG まず、メタノール合成触媒成分上で一酸化炭素と水素とからメタノールが合成され る。この時、メタノールの脱水 2量ィ匕により、ジメチルエーテルも生成する。次いで、合 成されたメタノールはゼオライト触媒成分の細孔内の活性点にて主成分がプロピレン またはブテンである低級ォレフィン炭化水素に転換される。この反応では、メタノール の脱水によってカルベン(H C : )が生成し、このカルベンの重合によって低級ォレフ
2
インが生成すると考えられる。そして、生成した低級ォレフィンはゼオライト触媒成分 の細孔内から抜け出し、メタノール合成触媒成分上で速やかに水素化されて主成分 がプロパンまたはブタンであるパラフィン、すなわち LPGとなる。
[0029] なお、ここで、メタノール合成触媒成分とは、 CO + 2H→CH OHの反応において
2 3
触媒作用を示すものを指す。また、ゼォライト触媒成分とは、メタノールの炭化水素へ の縮合反応および Zまたはジメチルエーテルの炭化水素への縮合反応において触 媒作用を示すゼォライトを指す。
[0030] メタノール合成触媒としては、 Cu—Zn系触媒 (Cuおよび Znを含む複合酸化物)や Zn— Cr系触媒 (Znおよび Crを含む複合酸化物)が広く用いられている。しかしなが ら、一酸化炭素と水素とを反応させて LPGを製造する際に用いる液化石油ガス製造 用触媒のメタノール合成触媒成分として、 Cu— Zn系メタノール合成触媒や、従来の Zn—Cr系メタノール合成触媒を用いた場合、十分な触媒性能が得られるとは必ずし も言えない。
[0031] また、 Pd系触媒もメタノール合成反応 (CO + 2H→CH OH)において触媒作用
2 3
を示すことが知られている。
[0032] 一酸化炭素と水素とを反応させて LPGを合成する反応は、様々な因子に支配され る。そのため、本発明の液化石油ガス製造用触媒が優れた性能を示す理由は明らか ではないが、次のように考えることができる。
[0033] 一酸化炭素と水素とからメタノールを合成する反応 (CO + 2H→CH OH)は平衡
2 3
反応である。そして、 CO + 2H =CH OH+ 100kJであり、メタノール生成の平衡は
2 3
低温ほど有利である。しカゝしながら、一酸化炭素と水素とを反応させて LPGを製造す る場合、メタノール合成触媒成分上で合成されたメタノールは、速やかに、ゼォライト 触媒成分の細孔内の活性点にて低級ォレフィン炭化水素に転換される。そのため、 メタノール生成の平衡の制約は実質的になくなり、十分な収率を得るために低温で 反応を行う必要はなくなる。一方、反応速度の点からは、高温で反応を行う方が有利 である。ゼォライト触媒成分の活性の点からも、メタノール合成触媒成分の耐熱性は ある程度高い方が望ましぐ具体的には、 270°C以上、さらには 300°C以上、さらに は 320°C以上でメタノール合成触媒成分を使用できることが好ましい。
[0034] メタノール合成触媒のうち、 Cu— Zn系触媒は、通常、比較的低温(230〜300°C 程度)で使用され、その耐熱性は他のメタノール合成触媒と比べて高くない。一酸ィ匕 炭素と水素とを反応させて LPGを製造する際に、高活性、高収率を目的として、反応 温度を高くする場合、メタノール合成触媒成分として従来の Cu— Zn系触媒を使用す ることは必ずしも好ましくな 、。
[0035] 一方、メタノール合成触媒のうち、 Zn— Cr系触媒は、通常、比較的高温(250〜40 0°C程度)で使用される。反応温度を高くする上で、メタノール合成触媒成分として Zn — Cr系触媒を使用することに特に問題はないように思われる。
[0036] しカゝしながら、一酸化炭素と水素とを反応させて LPGを製造する場合、メタノール 合成触媒成分には、ォレフィンのパラフィンへの水素化反応において触媒作用を示 すことをも求められる。しかし、従来の Zn— Cr系触媒は、水素化能があまり高くない。 そのため、一酸化炭素と水素とを反応させて LPGを製造する際に、メタノール合成触 媒成分として従来の Zn—Cr系触媒を使用することは必ずしも好ましくない。
[0037] 本発明においては、メタノール合成触媒成分として、水素化能があまり高くない従 来の Zn— Cr系メタノール合成触媒に助触媒としてォレフィン水素化触媒成分を添カロ することにより、 LPG合成に必要な水素化能を付与し、高い熱的安定性と十分な水 素化能との両方を有するものとして 、る。一酸化炭素と水素とを反応させて液化石油 ガスを製造する際に用いられる触媒のメタノール合成触媒成分として、ォレフィン水 素化触媒成分を Zn—Cr系メタノール合成触媒に担持したものは、高い熱的安定性 と水素化能とを有する点から、特に反応温度を高くする場合、好適である。
[0038] 本発明では、ォレフィン水素化触媒成分を Zn—Cr系メタノール合成触媒に担持す ることが重要である。 Zn—Cr系メタノール合成触媒とォレフィン水素化触媒成分であ る Pdを担持した —ゼォライトとを含有する触媒では、本発明の優れた効果を得るこ とができない。
[0039] また、 Pd系メタノール合成触媒は、高い熱的安定性と水素化能とを有しており、 β —ゼオライトと組み合わせれば、メタノール合成触媒成分として、特に反応温度を高く する場合、好適である。し力しながら、 Pd系メタノール合成触媒は、前述の通り、高価 な Pdの使用量が比較的多ぐそのため、液化石油ガス製造用触媒のメタノール合成 触媒成分として Pd系メタノール合成触媒を用いた場合、本発明の液化石油ガス製造 用触媒と比べて、コストの点で不利になる傾向がある。 [0040] 一方、本発明のメタノール合成触媒と組み合わせて用いるゼォライト触媒成分とし ては、 Y型、 ZSM— 5、モルデナイト、 SAPO— 34、 MCM— 22など種々のゼォライ トが挙げられるが、いずれのゼォライトを使用しても優れた性能を有する触媒が得ら れるということではない。
[0041] ゼォライト触媒成分としては、 ZSM— 5、 MCM— 22や、 13、 Y型など、反応分子の 拡散が可能な細孔の広がりが 3次元である、言い換えると、細孔内での反応分子の 拡散が 3次元である中細孔ゼオライト(細孔径が主に 10員環によって形成される 0. 4 4〜0. 65nmのゼオライト)または大細孔ゼオライト(細孔径が主に 12員環によって形 成される 0. 66〜0. 76nmのゼオライト)が好ましい。また、ゼォライト触媒成分として は、いわゆる高シリカゼォライト、具体的には SiO /Al Oモル比が 10〜 150のゼォ
2 2 3
ライトが好ましい。ゼォライト触媒成分として、反応分子の拡散が制限され、かつ、低 濃度活性点である高シリカゼォライトを用いると、重合反応としては低い重合度に止 まり、主成分がプロピレンまたはブテンである低級ォレフィンが生成する。その生成し た低級ォレフィンは、ゼォライト触媒成分の比較的大きぐ反応分子の拡散が可能な 細孔の広がりが 3次元である細孔内からは容易に抜け出すことができ、その後、メタノ ール合成触媒成分上で速やかに水素化されることによって、さらなる重合反応に不 活性となり、安定化する。ゼォライト触媒成分として上記のようなものを用いることによ り、より高選択率でプロピレンおよび Zまたはブテン、さらにはプロパンおよび Zまた はブタンを製造することができる。
[0042] また、本発明の液化石油ガス製造用触媒は、触媒寿命が長ぐ経時劣化が少ない 。本発明の液化石油ガス製造用触媒は、例えば、 Cu— Zn系メタノール合成触媒と Y 型ゼオライトとを含有する触媒などと比べて、長期間にわたって高活性、高収率でプ 口パンおよび/またはブタン、すなわち LPGを製造することができる。メタノール合成 触媒成分として Cu— Zn系メタノール合成触媒を含有する液化石油ガス製造用触媒 は、高温であり、かつ、 COおよび H Oが高濃度で存在する反応雰囲気中における
2 2
安定性が比較的低い。触媒の安定性向上、長寿命化は、合成ガスカゝら LPGを製造 するプロセス、さらには、天然ガス等の含炭素原料力 LPGを製造するプロセスの実 用化において、非常に重要である。 [0043] なお、ォレフィンのパラフィンへの水素化反応に使用する触媒としてニッケル触媒な どが広く使用されている力 メタノール合成反応(CO + 2H→CH OH)において触
2 3
媒作用を示すものでなければ、当然、本発明において使用するメタノール合成触媒 成分としては好ましくない。
[0044] さらに、本発明の液ィ匕石油ガス製造用触媒の存在下で一酸ィ匕炭素と水素とを反応 させ、 LPGを高転化率、高選択率、高収率で、長期間にわたって安定に製造するに は、その反応条件も重要である。反応温度が 300°C以上 420°C以下であり、かつ、反 応圧力が 2. 2MPa以上 lOMPa以下で一酸ィ匕炭素と水素とを反応させた場合に、 特に優れた本発明の効果を得ることができる。
[0045] 本発明によれば、例えば、 COの転ィ匕率が 60%以上、さらには 70%以上、さらには 80%以上の高活性で、プロパンおよびブタンの合計含有量が 60%以上、さらには 7 0%以上、さらには 75%以上の炭化水素を製造することができる。
[0046] また、本発明によれば、例えば、プロパンおよびブタンの合計含有量が 90モル% 以上、さらには 95モル%以上(100モル%も含む)である LPGを製造することができ る。また、本発明によれば、例えば、プロパンの含有量が 50モル%以上、さらには 60 モル0 /0以上(100モル0 /0も含む)である LPGを製造することができる。
図面の簡単な説明
[0047] [図 1]本発明の LPGの製造方法を実施するのに好適な LPG製造装置の一例につい て、主要な構成を示すプロセスフロー図である。
符号の説明
[0048] 1 改質器
la 改質触媒層
2 反応器
2a 触媒層
3、 4、 5 ライン
発明を実施するための最良の形態
[0049] 1.本発明の液化石油ガス製造用触媒
本発明の液化石油ガス製造用触媒は、ォレフィン水素化触媒成分を Zn— Cr系メタ ノール合成触媒に担持したものであるメタノール合成触媒成分一種以上と、ゼォライ ト触媒成分一種以上とを含有する。
[0050] なお、本発明の液化石油ガス製造用触媒は、その所望の効果を損なわない範囲内 で、他の添加成分を含有していてもよい。
[0051] ゼォライト触媒成分に対するメタノール合成触媒成分の含有比率 (メタノール合成 触媒成分 Zゼォライト触媒成分;質量基準)は、 0. 1以上であることが好ましぐ 0. 5 以上であることがより好ましい。また、ゼォライト触媒成分に対するメタノール合成触媒 成分の含有比率 (メタノール合成触媒成分 Zゼォライト触媒成分;質量基準)は、 5以 下であることが好ましぐ 3以下であることがより好ましい。ゼォライト触媒成分に対す るメタノール合成触媒成分の含有比率を上記の範囲にすることにより、より高選択率 、高収率でプロパンおよび Zまたはブタンを製造することができる。
[0052] メタノール合成触媒成分は、メタノール合成触媒としての機能と、ォレフィンの水素 添加触媒としての機能とを有する。また、ゼォライト触媒成分は、メタノールおよび Z またはジメチルエーテルの炭化水素への縮合反応に対して酸性が調整された固体 酸ゼオライト触媒としての機能を有する。そのため、ゼォライト触媒成分に対するメタ ノール合成触媒成分の含有比率は、本発明の触媒の持つメタノール合成機能およ びォレフインの水素添加機能とメタノール力 の炭化水素生成機能との相対比に反 映される。本発明にお 、て一酸ィ匕炭素と水素とを反応させて主成分がプロパンまた はブタンである液ィ匕石油ガスを製造するにあたり、一酸ィ匕炭素と水素とをメタノール 合成触媒成分によって十分にメタノールに転ィ匕しなければならず、かつ、生成したメ タノールをゼォライト触媒成分によって十分に主成分がプロピレンまたはブテンであ るォレフインに転ィ匕し、それをメタノール合成触媒成分によって主成分がプロパンま たはブタンである液ィ匕石油ガスに転ィ匕しなければならない。
[0053] ゼォライト触媒成分に対するメタノール合成触媒成分の含有比率 (メタノール合成 触媒成分 Zゼォライト触媒成分;質量基準)を 0. 1以上、より好ましくは 0. 5以上にす ることにより、一酸ィ匕炭素と水素とをより高転ィ匕率でメタノールに転ィ匕させることができ る。また、ゼォライト触媒成分に対するメタノール合成触媒成分の含有比率 (メタノー ル合成触媒成分 Zゼォライト触媒成分;質量基準)を 0. 8以上にすることにより、生 成したメタノールをより選択的にプロパンまたはブタンを主成分とする液ィ匕石油ガスに 転ィ匕させることができる。
[0054] 一方、ゼォライト触媒成分に対するメタノール合成触媒成分の含有比率 (メタノール 合成触媒成分 Zゼォライト触媒成分;質量基準)を 5以下、より好ましくは 3以下にす ることにより、生成したメタノールをより高転ィ匕率で主成分がプロパンまたはブタンで ある液ィ匕石油ガスに転ィ匕させることができる。
[0055] なお、ゼォライト触媒成分に対するメタノール合成触媒成分の含有比率は、上記の 範囲に限定されるものではなぐメタノール合成触媒成分、ゼォライト触媒成分の種 類などに応じて適宜決めることができる。
[0056] (メタノール合成触媒成分)
本発明におけるメタノール合成触媒成分は、ォレフィン水素化触媒成分を Zn— Cr 系メタノール合成触媒に担持したものである。
[0057] Zn—Cr系メタノール合成触媒としては、 Znおよび Crを含み、 CO + 2H→CH O
2 3
Hの反応において触媒作用を示すものであれば特に限定されず、公知の Zn— Cr系 メタノール合成触媒を使用することができ、また、市販されているものを使用することも できる。
[0058] Zn— Cr系メタノール合成触媒は、通常、 Znおよび Crを含む複合酸ィ匕物である。な お、この複合酸化物は、 Zn、 Crおよび O以外の元素、例えば、 Si, A1等を含んでい てもよい。
[0059] Zn Cr系メタノール合成触媒中の Crに対する Znの含有比率 (ZnZCr;原子比) は、 1以上が好ましぐ 1. 5以上がより好ましい。また、 Zn— Cr系メタノール合成触媒 中の Crに対する Znの含有比率 (ZnZCr;原子比)は、 3以下が好ましぐ 2. 5以下 力 り好ましい。 Crに対する Znの含有比率が上記の範囲である Zn— Cr系メタノール 合成触媒を用いることにより、より高い触媒活性が得られ、より高転化率、高選択率、 高収率でプロパンおよび Zまたはブタンを製造することができる。
[0060] Zn— Cr系メタノール合成触媒として、具体的には、ズードケミー触媒株式会社製、 KMAなどが挙げられる。
[0061] Zn— Cr系メタノール合成触媒は、一種を用いても、二種以上を併用してもよい。 [0062] ォレフィン水素化触媒成分としては、ォレフィンのパラフィンへの水素化反応におい て触媒作用を示すものであれば特に限定されない。ォレフィン水素化触媒成分とし て、具体的には、 Fe, Co, Ni, Cu, Ru, Rh, Pd, Ir, Ptなどが挙げられる。ォレフィ ン水素化触媒成分は、一種であっても、二種以上であってもよい。
[0063] ォレフィン水素化触媒成分としては、中でも、 Pd, Ptが好ましぐ Pdがより好ましい。
ォレフィン水素化触媒成分として Pdおよび Zまたは Pt、より好ましくは Pdを用いるこ とにより、より高い触媒活性が得られ、より高転化率、高選択率、高収率でプロパンお よび Zまたはブタンを製造することができる。
[0064] なお、 Pd, Ptは金属の形で含まれていなくてもよぐ例えば、酸化物、硝酸塩、塩ィ匕 物などの形で含まれていてもよい。その場合、より高い触媒活性が得られる点から、 反応前に、例えば、水素還元処理などをすることによって、 Pd, Ptを金属パラジウム 、金属白金に転ィ匕させることが好ましい。
[0065] なお、 Pd, Ptを活性化するための還元処理の処理条件は、担持したパラジウム化 合物および Zまたは白金化合物の種類などに応じて適宜決めることができる。
[0066] また、より効果的にォレフィンの水素化が起きる点から、 Pd, Pt等のォレフィン水素 化触媒成分は Zn—Cr系メタノール合成触媒に高分散担持されていることが好ましい
[0067] メタノール合成触媒成分のォレフィン水素化触媒成分の担持量は、合計で、 0. 00 5重量%以上が好ましぐ 0. 01重量%以上がより好ましぐ 0. 05重量%以上が特に 好ましぐ 0. 1重量%以上がさらに好ましぐ 0. 5重量%以上がさらに好ましい。また 、メタノール合成触媒成分のォレフィン水素化触媒成分の担持量は、分散性と経済 性との点から、合計で、 5重量%以下が好ましぐ 3重量%以下がより好ましい。メタノ ール合成触媒成分のォレフィン水素化触媒成分の担持量を上記の範囲にすること により、より高転化率、高選択率、高収率でプロパンおよび Zまたはブタンを製造す ることがでさる。
[0068] ォレフィン水素化触媒成分の担持量を 0. 005重量%以上、より好ましくは 0. 5重 量%以上にすることにより、一酸ィ匕炭素と水素とをより高転ィ匕率でメタノールに転ィ匕さ せることができ、また、生成したメタノールをより選択的にプロパンまたはブタンを主成 分とする液化石油ガスに転化させることができる。一方、ォレフィン水素化触媒成分 の担持量を 5重量%以下にすることにより、生成したメタノールをより高転ィ匕率で主成 分がプロパンまたはブタンである液ィ匕石油ガスに転ィ匕させることができる。また、ォレ フィン水素化触媒成分の担持量を 3重量%以下、より好ましくは 2重量%以下にする ことにより、触媒コストを十分に低減することができる。
[0069] 本発明において用いるメタノール合成触媒成分としては、 Zn— Cr系メタノール合成 触媒に Pd、好ましくは金属 Pdを担持したものが特に好ましい。
[0070] このメタノール合成触媒成分において、 Pdの担持量は、 0. 005重量%以上が好ま しぐ 0. 01重量%以上がより好ましぐ 0. 05重量%以上が特に好ましぐ 0. 1重量
%以上がさらに好ましぐ 0. 5重量%以上がさらに好ましい。また、 Pdの担持量は、 5 重量%以下が好ましぐ 4重量%以下がより好ましい。
[0071] なお、上記のメタノール合成触媒成分は、その所望の効果を損なわな!/、範囲内で、 ォレフィン水素化触媒成分以外の成分を Zn—Cr系メタノール合成触媒に担持したも のであってもよい。
[0072] Pd等のォレフィン水素化触媒成分を Zn—Cr系メタノール合成触媒に担持したメタ ノール合成触媒成分は、含浸法、析出沈殿法など公知の方法で調製することができ る。メタノール合成触媒成分を析出沈殿法で調製した場合、含浸法で調製した場合 と比べて、触媒活性がより高い場合があり、より低い反応温度で LPG合成反応を行う ことができ、より高い炭化水素の選択性、さらには、より高いプロパンおよびブタンの 選択性が得られる場合がある。
[0073] (ゼオライト触媒成分)
ゼォライト触媒成分としては、メタノールの炭化水素への縮合反応および Zまたは ジメチルエーテルの炭化水素への縮合反応において触媒作用を示すゼォライトであ れば特に限定されず、いずれも使用することができ、また、市販されているものを使 用することちでさる。
[0074] ゼォライト触媒成分としては、反応分子の拡散が可能な細孔の広がりが 3次元であ る中細孔ゼオライトまたは大細孔ゼオライトが好ましい。このようなものとしては、例え ば、 ZSM— 5、 MCM— 22や、ベータ、 Y型などが挙げられる。本発明においては、 一般にメタノールおよび zまたはジメチルエーテル力 低級ォレフィン炭化水素への 縮合反応に高 、選択性を示す SAPO— 34などの小細孔ゼォライトあるいはモルデ ナイトなどの細孔内での反応分子の拡散が 3次元でないゼォライトよりも、一般にメタ ノールおよび Zまたはジメチルエーテル力 アルキル置換芳香族炭化水素への縮合 反応に高 、選択性を示す ZSM— 5、 MCM— 22などの中細孔ゼオライトある 、はべ ータ、 Y型などの大細孔ゼオライトなどの細孔内での反応分子の拡散が 3次元である ゼォライトが好まし 、。中細孔ゼオライトあるいは大細孔ゼオライトなどの細孔内での 反応分子の拡散が 3次元であるゼォライトを用いることにより、生成したメタノールをよ り選択的にプロピレンおよび Zまたはブテンを主成分とするォレフィン、さらにはプロ パンおよび Zまたはブタンを主成分とするパラフィン (液ィ匕石油ガス)に転ィ匕させるこ とがでさる。
[0075] ここで、中細孔ゼオライトは、細孔径が主に 10員環によって形成される 0. 44〜0.
65nmのゼオライトをいい、また、大細孔ゼオライトは、細孔径が主に 12員環によって 形成される 0. 66-0. 76nmのゼオライトをいう。ゼォライト触媒成分の細孔径は、ガ ス状生成物内の C3成分選択性の点から、 0. 5nm以上がより好ましい。また、ゼオラ イト触媒成分の骨格細孔径は、ベンゼン等の芳香族化合物や C5成分等のガソリン 成分などの液状生成物の生成抑制の点から、 0. 76nm以下がより好ましい。
[0076] また、ゼォライト触媒成分としては、いわゆる高シリカゼォライトが好ましぐ具体的に は SiO ZA1 Oモル比が 10〜 150のゼオライトが好ましい。ゼォライト触媒成分とし
2 2 3
て SiO ZA1 Oモル比が 10〜150の高シリカゼォライトを用いることにより、生成した
2 2 3
メタノールをより選択的にプロピレンおよび Zまたはブテンを主成分とするォレフィン 、さらにはプロパンおよび Zまたはブタンを主成分とするパラフィン (液ィ匕石油ガスに) 転化させることができる。ゼォライトの SiO ZAl Oモル比は、 20以上がより好ましく
2 2 3
、 30以上が特に好ましい。また、ゼォライトの SiO ZAl Oモル比は、 100以下がよ
2 2 3
り好ましぐ 50以下が特に好ましい。
[0077] ゼォライト触媒成分としては、 SiO ZAl Oモル比が 10〜150で、反応分子の拡
2 2 3
散が可能な細孔の広がりが 3次元である中細孔ゼオライトまたは大細孔ゼオライトが 特に好ましい。そのようなものとしては、例えば、 USYや高シリカタイプのベータなど の固体酸ゼオライトが挙げられる。
[0078] ゼォライト触媒成分としては、イオン交換などによって酸性を調整した上記のような 固体酸ゼオライトを用いる。
[0079] ゼォライト触媒成分としては、アルカリ金属、アルカリ土類金属、遷移金属(Pdなど) 等の金属を含有するゼオライト、これらの金属等でイオン交換したゼォライト、あるい は、これらの金属等を担持したゼォライトなども挙げられる力 プロトン型のゼォライト が好ましい。適当な酸強度、酸量 (酸濃度)を有するプロトン型のゼォライトを用いるこ とにより、触媒活性がさらに高くなり、高転化率、高選択率でプロパンおよび Zまたは ブタンを合成することができる。
[0080] 特に好ましいゼォライト触媒成分として、 SiO ZA1 Oモル比が 10〜 150のプロト
2 2 3
ン型 j8—ゼオライト、より好ましくは SiO ZA1 Oモル比が 30〜50のプロトン型 j8—
2 2 3
ゼォライトが挙げられる。
[0081] また、好ま U、ゼオライト触媒成分として、 Pdを 3重量%以下担持した、 SiO ZA1
2 2
Oモル比が 10〜150、より好ましくは SiO /Al Oモル比が 30〜50の j8—ゼオラ
3 2 2 3
イトも挙げられる。 Pdの担持量は、 1重量%以下がより好ましい。
[0082] 2.本発明の液化石油ガス製造用触媒の製造方法
本発明の液化石油ガス製造用触媒の製造方法としては、メタノール合成触媒成分 とゼオライト触媒成分とを別途に調製し、これらを混合することが好ましい。メタノール 合成触媒成分とゼォライト触媒成分とを別途に調製することにより、各々の機能に対 して、それぞれの組成、構造、物性を最適に設計することが容易にできる。一般に、メ タノール合成触媒は塩基性を必要とし、ゼォライト触媒は酸性を必要とする。そのた め、両触媒成分を同時に調製すると、各々の機能に対して最適化することが困難に なってくる。
[0083] Pd等のォレフィン水素化触媒成分を Zn—Cr系メタノール合成触媒に担持したメタ ノール合成触媒成分は、含浸法、析出沈殿法など公知の方法で調製することができ る。なお、 Zn—Cr系メタノール合成触媒は公知の方法で調製することができ、また、 市販品を使用することもできる。
[0084] 例えば、 Pdが酸化物の形で含まれて!/、るもの、 Pdが硝酸塩の形で含まれて!/、るも の、 Pdが塩ィ匕物の形で含まれているものなど、メタノール合成触媒成分には、使用 前に還元処理をして活性ィ匕することが必要なものもある。本発明においては、メタノ ール合成触媒成分を予め還元処理して活性化する必要は必ずしもなぐメタノール 合成触媒成分とゼォライト触媒成分とを混合'成形して本発明の液化石油ガス製造 用触媒を製造した後、反応を開始するに先立ち還元処理をしてメタノール合成触媒 成分を活性ィ匕することができる。
[0085] なお、この還元処理の処理条件は、メタノール合成触媒成分中のォレフィン水素化 触媒成分の種類などに応じて適宜決めることができる。
[0086] ゼォライト触媒成分は公知の方法で調製することができ、また、市販品を使用するこ ともできる。ゼォライト触媒成分は、必要に応じて、メタノール合成触媒成分との混合 に先立ち、金属イオン交換などの方法によって予め酸性質を調整してもよい。
[0087] 本発明の液化石油ガス製造用触媒は、メタノール合成触媒成分とゼォライト触媒成 分とを均一に混合した後、必要に応じて成形して製造される。両触媒成分の混合 '成 形の方法としては特に限定されないが、乾式の方法が好ましい。湿式で両触媒成分 の混合'成形を行った場合、両触媒成分間での化合物の移動、例えばメタノール合 成触媒成分中の塩基性成分のゼォライト触媒成分中の酸点への移動'中和が生じる ことによって、両触媒成分の各々の機能に対して最適化された物性等が変化するこ とがある。触媒の成形方法としては、押出成形法、打錠成形法などが挙げられる。
[0088] 本発明にお 、て、混合するメタノール合成触媒成分とゼォライト触媒成分とは、粒 径がある程度大きい方が好ましぐ粉末状ではなぐ顆粒状であることが好ましい。
[0089] ここで、粉末とは、平均粒径が 10 μ m以下のものを!、 、、顆粒とは、平均粒径が 10 0 m以上のものをいう。
[0090] 顆粒状、すなわち平均粒径が 100 μ m以上のメタノール合成触媒成分と、同じく顆 粒状、すなわち平均粒径が 100 m以上のゼォライト触媒成分とを混合し、必要に 応じて成形して本発明の液化石油ガス製造用触媒を製造することにより、触媒寿命 力 Sさらに長ぐ劣化がさらに少ない触媒を得ることができる。混合するメタノール合成 触媒成分の平均粒径およびゼォライト触媒成分の平均粒径は、 200 m以上がより 好ましぐ 500 m以上が特に好ましい。 [0091] 一方、本発明の混合触媒の優れた性能を保つ点から、混合するメタノール合成触 媒成分の平均粒径およびゼォライト触媒成分の平均粒径は、 5mm以下が好ましぐ 2mm以下がより好ましい。
[0092] 混合するメタノール合成触媒成分の平均粒径とゼォライト触媒成分の平均粒径とは 、同じである方が好ましい。
[0093] 混合触媒を製造する場合、通常、それぞれの触媒成分を必要に応じて機械的に粉 砕し、平均粒径を例えば 0. 5〜2 /ζ πι程度に揃えた後、均一に混合し、必要に応じ て成形する。あるいは、所望の触媒成分すベてを加え、機械的に粉砕しながら均一 になるまで混合し、平均粒径を例えば 0. 5〜2 /ζ πι程度に揃え、必要に応じて成形 する。
[0094] それに対して、顆粒状のメタノール合成触媒成分と顆粒状のゼォライト触媒成分と を混合して本発明の液化石油ガス製造用触媒を製造する場合、通常、それぞれの 触媒成分を予め打錠成形法、押出成形法などの公知の成形方法により成形し、それ を必要に応じて機械的に粉砕し、平均粒径を好ましくは 100 m〜5mm程度に揃え た後、両者を均一に混合する。そして、この混合物を必要に応じて再度成形し、本発 明の液化石油ガス製造用触媒を製造する。
[0095] なお、本発明の液化石油ガス製造用触媒は、その所望の効果を損なわない範囲内 で必要により他の添加成分を含有して 、てもよ 、。
[0096] 3.液化石油ガスの製造方法
次に、上記のような本発明の液ィ匕石油ガス製造用触媒を用いて一酸ィ匕炭素と水素 とを反応させ、主成分がプロパンまたはブタンである液ィ匕石油ガス、好ましくは主成 分がプロパンである液ィ匕石油ガスを製造する方法について説明する。
[0097] 反応温度は、 300°C以上が好ましぐ 320°C以上がより好ましぐ 340°C以上が特に 好ましい。反応温度を上記の範囲にすることにより、より高転化率、高収率でプロパン および Zまたはブタンを製造することができる。
[0098] 一方、反応温度は、触媒の使用制限温度の点と、反応熱の除去'回収が容易であ る点とから、 420°C以下が好ましぐ 400°C以下がより好ましい。
[0099] 反応圧力は、 2. 2MPa以上が好ましぐ 2. 5MPa以上がより好ましぐ 3MPa以上 が特に好ましい。反応圧力を上記の範囲にすることにより、より高転化率、高収率で プロパンおよび zまたはブタンを製造することができ、さらには、経時劣化がさらに小 さくなり、より長期間にわたって高活性、高収率でプロパンおよび Zまたはブタンを製 造することができる。特に、反応圧力を 3MPa以上にすることにより、十分に高い転化 率、十分に高 、収率でプロパンおよび Zまたはブタンを製造することができる。
[0100] 一方、反応圧力は、経済性の点から、 lOMPa以下が好ましぐ 7MPa以下がより好 ましい。
[0101] ガス空間速度は、経済性の点から、 500hr_1以上が好ましぐ 1500hr_1以上がより 好ましい。また、ガス空間速度は、メタノール合成触媒成分とゼォライト触媒成分とが 、それぞれ、より十分に高い転ィ匕率を示す接触時間を与える点から、 lOOOOhr—1以 下が好ましぐ 5000hr_1以下がより好ましい。
[0102] 反応器に送入されるガス中の一酸ィ匕炭素の濃度は、反応に必要とされる一酸化炭 素の圧力(分圧)の確保と、原料原単位向上との点から、 20モル%以上が好ましぐ 2 5モル%以上がより好ましい。また、反応器に送入されるガス中の一酸ィ匕炭素の濃度 は、一酸ィ匕炭素の転ィ匕率がより十分に高くなる点から、 45モル%以下が好ましぐ 40 モル%以下がより好ま 、。
[0103] 反応器に送入されるガス中の水素の濃度は、一酸化炭素がより十分に反応する点 から、一酸ィ匕炭素 1モルに対して 1. 2モル以上が好ましぐ 1. 5モル以上がより好ま しい。また、反応器に送入されるガス中の水素の濃度は、経済性の点から、一酸化炭 素 1モルに対して 3モル以下が好ましぐ 2. 5モル以下がより好ましい。また、場合に よっては、反応器に送入されるガス中の水素の濃度は、一酸ィ匕炭素 1モルに対して 0 . 5モル程度まで低くすることも好ましい。
[0104] 反応器に送入されるガスは、反応原料である一酸化炭素および水素に、二酸化炭 素を加えたものであってもよい。反応器カゝら排出される二酸ィ匕炭素をリサイクルする、 あるいは、それに見合う量の二酸ィ匕炭素を加えることによって、反応器中での一酸化 炭素からのシフト反応による二酸ィ匕炭素の生成を実質的に軽減し、さらには、その生 成をなくすこともできる。
[0105] また、反応器に送入されるガスには水蒸気を含有させることもできる。反応器に送入 されるガスには、その他に、不活性ガスなどを含有させることもできる。
[0106] 反応器に送入されるガスは、分割して反応器に送入し、それにより反応温度を制御 することちでさる。
[0107] 反応は固定床、流動床、移動床などで行うことができる力 反応温度の制御と触媒 の再生方法との両面力 選定することが好ましい。例えば、固定床としては、内部多 段タエンチ方式などのタエンチ型反応器、多管型反応器、複数の熱交 を内包す るなどの多段型反応器、多段冷却ラジアルフロー方式や二重管熱交換方式や冷却 コイル内蔵式や混合流方式などその他の反応器などを用いることができる。
[0108] 本発明の液化石油ガス製造用触媒は、温度制御を目的として、シリカ、アルミナな ど、あるいは、不活性で安定な熱伝導体で希釈して用いることもできる。また、本発明 の液化石油ガス製造用触媒は、温度制御を目的として、熱交換器表面に塗布して用 いることちでさる。
[0109] 4.含炭素原料からの液化石油ガスの製造方法
本発明にお ヽては、液化石油ガス (LPG)合成の原料ガスとして合成ガスを用いる ことができる。
[0110] 次に、含炭素原料から合成ガスを製造し (合成ガス製造工程)、得られた合成ガス から、本発明の触媒を用いて、 LPGを製造する (液ィ匕石油ガス製造工程)、本発明の LPGの製造方法の一実施形態について説明する。
[0111] 〔合成ガス製造工程〕
合成ガス製造工程では、含炭素原料と、 H 0、 Oおよび COからなる群より選択さ
2 2 2
れる少なくとも一種とから、合成ガスを製造する。
[0112] 含炭素原料としては、炭素を含む物質であって、 H 0、 Oおよび CO力もなる群よ
2 2 2
り選択される少なくとも一種と反応して Hおよび COを生成可能なものを用いることが
2
できる。含炭素原料としては、合成ガスの原料として公知のものを用いることができ、 例えば、メタンゃェタン等の低級炭化水素など、また、天然ガス、ナフサ、石炭などを 用!、ることができる。
[0113] 本発明では、通常、合成ガス製造工程および液ィ匕石油ガス製造工程において触 媒を用いるため、含炭素原料 (天然ガス、ナフサ、石炭など)としては、硫黄や硫黄化 合物などの触媒被毒物質の含有量が少ないものが好ましい。また、含炭素原料に触 媒被毒物質が含まれる場合には、必要に応じて、合成ガス製造工程に先立ち脱硫な ど、触媒被毒物質を除去する工程を行うことができる。
[0114] 合成ガスは、合成ガス製造用触媒 (改質触媒)の存在下で、上記のような含炭素原 料と、 H 0、 Oおよび CO力もなる群より選択される少なくとも一種とを反応させること
2 2 2
により製造される。
[0115] 合成ガスは、公知の方法により製造することができる。例えば、天然ガス (メタン)を 原料とする場合には、水蒸気改質法や、 自己熱改質法などによって合成ガスを製造 することができる。なお、この場合、水蒸気改質に必要な水蒸気や、自己熱改質に必 要な酸素などは必要に応じて供給することができる。また、石炭を原料とする場合に は、空気吹きガス化炉などを用いて合成ガスを製造することができる。
[0116] また、例えば、上記のような原料力も合成ガスを製造する反応器である改質器の下 流にシフト反応器を設け、シフト反応 (CO+H 0→CO +H )によって合成ガスの
2 2 2
組成を調整することもできる。
[0117] 本発明において、合成ガス製造工程カゝら製造される好ましい合成ガスの組成は、 低級パラフィン製造のための化学量論から言えば H ZCOのモル比は 7Z3 2. 3
2
であるが、製造される合成ガス中の一酸化炭素に対する水素の含有比率 (H /CO ;
2 モル基準)は 1. 2〜3であることが好ましい。合成ガス力 LPGへの転換反応で生成 する水によるシフト反応によって水素が生成するため、一酸ィ匕炭素を好適に反応さ せる点から、合成ガス中の一酸ィ匕炭素に対する水素の含有比率 (H ZCO ;モル基
2
準)は、 1. 2以上が好ましぐ 1. 5以上がより好ましい。また、水素は、一酸化炭素が 好適に反応し、主成分がプロパンまたはブタンである液ィ匕石油ガスを得ることのでき る量があればよぐ余剰の水素は原料ガスの全圧を不必要に上げることになつて技術 の経済性を低下させる。この点から、合成ガス中の一酸化炭素に対する水素の含有 比率 (H ZCO ;モル基準)は、 3以下が好ましぐ 2. 5以下がより好ましい。
2
[0118] また、製造される合成ガス中の一酸ィ匕炭素の濃度は、合成ガス力も LPGへの転換 反応に好適な一酸化炭素の圧力(分圧)の確保と、原料原単位向上との点から、 20 モル%以上が好ましぐ 25モル%以上がより好ましい。また、製造される合成ガス中 の一酸化炭素の濃度は、合成ガス力も LPGへの転換反応にぉ 、て一酸化炭素の転 化率がより十分に高くなる点から、 45モル%以下が好ましぐ 40モル%以下がより好 ましい。
[0119] 上記の組成の合成ガスを製造するためには、含炭素原料とスチーム (水)、酸素お よび二酸ィ匕炭素力 なる群より選択される少なくとも一種との供給量比、用いる合成 ガス製造用触媒の種類や、その他の反応条件を適宜選択すればょ 、。
[0120] 例えば、原料ガスとしてスチーム Zメタン (モル比)が 1、二酸化炭素 Zメタン (モル 比)が 0. 4となるような組成のガスを用い、 Ruあるいは RhZ焼結低表面積ィ匕マグネ シァ触媒が充填された外熱式多管反応管型の装置にて、反応温度 (触媒層出口温 度) 800〜900°C、反応圧力 l〜4MPa、ガス空間速度(GHSV) 2000hr_1等の操 作条件にて合成ガスを製造することができる。
[0121] 合成ガス製造においてスチームを用いて改質する場合、エネルギー効率の点から 、スチームと原料カーボンとの比(SZC)は 1. 5以下とすることが好ましぐ 0. 8〜1. 2とすることがより好ましい。その一方で、 SZCをこのような低い値にすると、炭素析 出発生の可能性が無視できなくなる。
[0122] 低 SZCで合成ガス製造を行う場合には、例えば、 W098Z46524号公報、特開 2 000— 288394号公報ある 、は特開 2000— 469号公報に記載されて ヽるような、良 好な合成ガス化反応の活性を有しつつも炭素析出活性が抑えられた触媒を用いるこ とが好ましい。以下、これらの触媒について述べる。
[0123] W098Z46524号公報に記載されている触媒は、金属酸化物からなる担体にロジ ゥム、ルテニウム、イリジウム、パラジウムおよび白金の中力も選ばれる少なくとも 1種 の触媒金属を担持させた触媒であって、該触媒の比表面積が 25m2/g以下で、力 っ該担体金属酸化物中の金属イオンの電気陰性度が 13. 0以下であり、該触媒金 属の担持量が金属換算量で担体金属酸化物に対して 0. 0005-0. 1モル%である 触媒である。炭素析出防止の点からは、上記電気陰性度は 4〜12が好ましぐ上記 触媒の比表面積は 0. 01〜: L0m2Zgが好ましい。
[0124] なお、前記金属酸ィ匕物中の金属イオンの電気陰性度は、次式により定義されるもの である。 [0125] Xi= (l + 2i)Xo
ここで、 Xi:金属イオンの電気陰性度、 Xo :金属の電気陰性度、 i:金属イオンの荷 電子数である。
[0126] 金属酸ィ匕物が複合金属酸ィ匕物の場合は、平均の金属イオン電気陰性度を用い、 その値は、その複合金属酸化物中に含まれる各金属イオンの電気陰性度に複合酸 化物中の各酸化物のモル分率を掛けた値の合計値とする。
[0127] 金属の電気陰性度 (Xo)は Paulingの電気陰性度を用いる。 Paulingの電気陰性 度は、「藤代亮ー訳、ムーア物理化学 (下)(第 4版)、東京化学同人, p. 707 (1974 ;)」の表 15. 4に記載の値を用いる。なお、金属酸ィ匕物中の金属イオンの電気陰性度 (Xi)については、例えば、「触媒学会編、触媒講座、第 2卷、 p. 145 (1985)」に詳 述されている。
[0128] この触媒にお!、て、前記金属酸化物としては、 Mg、 Ca、 Ba、 Zn、 Al、 Zr、 La等の 金属を 1種または 2種以上含む金属酸ィ匕物が挙げられる。このような金属酸化物とし ては、例えば、マグネシア(MgO)が挙げられる。
[0129] メタンとスチームとを反応させる方法 (スチームリフォーミング)の場合、その反応は 下記式 (i)で示される。
[0130] [化 2]
CH4 + H20 ^ 3H2 + CO (i) メタンと二酸化炭素とを反応させる方法 (coリフォーミング)の場合、その反応は下
2
記式 (ii)で示される。
[0131] [化 3]
CH4 + C02 2H2 + 2CO (ϋ) メタンとスチームと二酸ィ匕炭素とを反応させる方法 (スチーム Zco混合リフォーミ
2
ング)の場合、その反応は下記式 (iii)で示される。
[0132] [化 4] 3CH4 + 2H20 + C02 8H2 + 4CO (iii) 上記の触媒を用いてスチームリフォーミングを行う場合、その反応温度は、好ましく は 600〜1200°C、より好ましくは 600〜1000°Cであり、その反応圧力は、好ましくは 0. 098MPaG〜3. 9MPaG、より好ましくは 0. 49MPaG〜2. 9MPaG (Gはゲージ 圧であることを示す)である。また、このスチームリフォーミングを固定床方式で行う場 合、そのガス空間速度(GHSV)は、好ましくは 1, 000-10,
Figure imgf000026_0001
より好ましく は 2, 000-8, OOOhr—1である。含炭素原料に対するスチームの使用割合を示すと 、含炭素原料 (COを除く)中の炭素 1モル当り、好ましくはスチーム (H 0) 0. 5〜2
2 2
モノレ、より好ましくは 0. 5〜1. 5モノレ、さらに好ましくは 0. 8〜1. 2モノレの害 ij合である [0133] 上記の触媒を用いて COリフォーミングを行う場合、その反応温度は、好ましくは 5
2
00〜1200。C、より好ましくは 600〜1000。Cであり、その反応圧力は、好ましくは 0. 49MPaG〜3. 9MPaG、より好ましくは 0. 49MPaG〜2. 9MPaGである。また、こ の COリフォーミングを固定床方式で行う場合、そのガス空間速度 (GHSV)は、好ま
2
し <は 1, 000〜10,
Figure imgf000026_0002
より好まし <は 2, 000〜8, 000hr_1である。含炭素 原料に対する COの使用割合を示すと、含炭素原料 (COを除く)中の炭素 1モル当
2 2
り、好ましくは CO 20〜0. 5モル、より好ましくは 10〜1モルの割合である。
2
[0134] 上記の触媒を用いて、含炭素原料にスチームと COとの混合物を反応させて合成
2
ガスを製造する (スチーム/ CO混合リフォーミングを行う)場合、スチームと COとの
2 2 混合割合は特に制約されないが、一般的には、 H O/CO (モル比)は、 0. 1〜: L0
2 2
であり、その反応温度は、好ましくは 550〜1200°C、より好ましくは 600〜1000°Cで あり、その反応圧力は、好ましくは 0. 29MPaG〜3. 9MPaG、より好ましくは 0. 49 MPaG〜2. 9MPaGである。また、この反応を固定床方式で行う場合、そのガス空 間速度(GHSV)は、好ましくは 1, 000〜10, 000hr_1、より好ましくは 2, 000〜8, 000hr_1である。含炭素原料に対するスチームの使用割合を示すと、含炭素原料 (C Oを除く)中の炭素 1モル当り、好ましくはスチーム(H 0) 0. 5〜2モル、より好ましく
2 2
は 0. 5〜1. 5モノレ、さらに好ましくは 0. 5〜1. 2モノレの害 ij合である。 [0135] 特開 2000— 288394号公報に記載されている触媒は、下記式 (I)で表される組成 を有する複合酸化物からなり、 M1および Coが該複合酸化物中で高分散化されてい ることを特徴とする触媒である。
[0136] a1M1 'b1Co'c1Mg'd1Ca'e10 (I)
(式中、 a1, b1, c1, d1, e1はモル分率であり、 a'+b' + c' + d^ 1, 0. 0001≤&'≤0 . 10、 0. OOOl ^b'^O. 20、 0. 70≤ (c' + d1)≤0. 9998、 0く 0. 9998、 0≤ d1く 0. 9998であり、 e1は元素が酸素と電荷均衡を保つのに必要な数である。
[0137] また、 M1は周期律表第 6A族元素、第 7A族元素、 Coを除く第 8族遷移元素、第 1 B族元素、第 2B族元素、第 4B族元素およびランタノイド元素の少なくとも 1種類の元 素である。 )
特開 2000— 469号公報に記載されている触媒は、下記式 (II)で表される組成を有 する複合酸ィ匕物力 なり、 M2および Niが該複合酸ィ匕物中で高分散化されていること を特徴とする触媒である。
[0138] a2M2'b2Ni'c2Mg'd2Ca'e20 (II)
(式中、 a2, b2, c2, d2, e2はモル分率であり、 a2 + b2 + c2 + d2= l、 0. 0001≤a2≤0 . 10、 0. 0001≤b2≤0. 10、 0. 80≤ (c2+d2)≤0. 9998、 0< c2≤0. 9998、 0≤ d2< 0. 9998であり、 e2は元素が酸素と電荷均衡を保つのに必要な数である。
[0139] また、 M2は周期律表第 3B族元素、第 4A族元素、第 6B族元素、第 7B族元素、第 1 A族元素およびランタノイド元素の少なくとも 1種類の元素である。 )
これらの触媒も、 W098Z46524号公報に記載の触媒と同様にして用いることが できる。
[0140] 含炭素原料のリフォーミング反応、すなわち合成ガスの合成反応は、上記の方法に 限らず、その他、公知の方法に準じて行えばよい。また、含炭素原料のリフォーミング 反応は、各種の反応器形式で実施することができるが、通常、固定床方式、流動床 方式で実施することが好まし ヽ。
[0141] 〔液化石油ガス製造工程〕
液ィ匕石油ガス製造工程では、本発明の液ィ匕石油ガス製造用触媒を用いて、上記 の合成ガス製造工程にお 1、て得られた合成ガスから、含まれる炭化水素の主成分が プロパンまたはブタンである低級パラフィン含有ガスを製造する。そして、得られた低 級パラフィン含有ガスから、必要に応じて水分などを分離した後、プロパンの沸点より 低 、沸点または昇華点を持つ物質である低沸点成分 (未反応の原料である水素お よび一酸化炭素、副生物である二酸化炭素、ェタン、エチレンおよびメタンなど)や、 ブタンの沸点より高い沸点を持つ物質である高沸点成分 (副生物である高沸点パラ フィンガスなど)を必要に応じて分離し、プロパンまたはブタンを主成分とする液ィ匕石 油ガス (LPG)を得る。また、液ィ匕石油ガスを得るために、必要に応じて加圧および Z または冷却を行ってもよい。
[0142] 液ィ匕石油ガス製造工程では、上記のような本発明の液化石油ガス製造用触媒の存 在下、一酸化炭素と水素とを反応させ、主成分がプロパンまたはブタンであるバラフ イン類、好ましくは主成分がプロパンであるパラフィン類を製造する。
[0143] ここで、反応器に送入されるガスは、上記の合成ガス製造工程にお ヽて得られた合 成ガスである。なお、この反応器に送入されるガスは、一酸化炭素および水素以外に 、例えば、二酸化炭素、水、メタン、ェタン、エチレン、不活性ガスなどを含むものであ つてもよい。また、反応器に送入されるガスは、上記の合成ガス製造工程において得 られた合成ガスに、必要に応じて、一酸化炭素や水素、その他の成分を加えたもの であってもよい。また、反応器に送入されるガスは、上記の合成ガス製造工程におい て得られた合成ガスから、必要に応じて、所定の成分を分離したものであってもよい。
[0144] 反応器に送入されるガスは、低級パラフィン製造の原料である一酸化炭素および 水素に、二酸化炭素を加えたものであってもよい。その二酸化炭素として、反応器か ら排出される二酸ィ匕炭素をリサイクルする、あるいは、それに見合う量を用いることに よって、反応器の中で一酸ィ匕炭素からのシフト反応による二酸ィ匕炭素の生成を実質 的に軽減、あるいは、二酸ィ匕炭素を生成させなくすることもできる。
[0145] また、反応器に送入されるガスには、水蒸気を含有させることもできる。
[0146] 反応温度は、前述の通り、 300°C以上が好ましぐ 320°C以上がより好ましぐ 340 °C以上が特に好ましい。また、反応温度は、前述の通り、 420°C以下が好ましぐ 40 0°C以下がより好ましい。
[0147] 反応圧力は、前述の通り、 2. 2MPa以上が好ましぐ 2. 5MPa以上がより好ましぐ 3MPa以上が特に好ましい。また、反応圧力は、前述の通り、 lOMPa以下が好ましく 、 7MPa以下がより好ましい。
[0148] ガス空間速度は、前述の通り、 500hr_1以上が好ましぐ 1500hr_ 1以上がより好ま しい。また、ガス空間速度は、前述の通り、 lOOOOhr—1以下が好ましぐ 5000hr_1以 下がより好ましい。
[0149] 反応器に送入されるガスは、分割して反応器に送入し、それにより反応温度を制御 することちでさる。
[0150] 反応は固定床、流動床、移動床などで行うことができる力 反応温度の制御と触媒 の再生方法との両面力 選定することが好ましい。例えば、固定床としては、内部多 段タエンチ方式などのタエンチ型反応器、多管型反応器、複数の熱交 を内包す るなどの多段型反応器、多段冷却ラジアルフロー方式や二重管熱交換方式や冷却 コイル内蔵式や混合流方式などその他の反応器などを用いることができる。
[0151] 本発明の液化石油ガス製造用触媒は、温度制御を目的として、シリカ、アルミナな ど、あるいは、不活性で安定な熱伝導体で希釈して用いることもできる。また、本発明 の液化石油ガス製造用触媒は、温度制御を目的として、熱交換器表面に塗布して用 いることちでさる。
[0152] この液ィ匕石油ガス製造工程において得られる低級パラフィン含有ガスは、含まれる 炭化水素の主成分がプロパンまたはブタンである。液ィ匕特性の点から、低級パラフィ ン含有ガス中のプロパンおよびブタンの合計含有量は多 、ほど好まし 、。本発明で は、プロパンおよびブタンの合計含有量力 含まれる炭化水素の炭素量基準で 60% 以上、さらには 70%以上、さらには 75%以上(100%も含む)である低級パラフィン 含有ガスを得ることができる。
[0153] さらに、液ィ匕石油ガス製造工程において得られる低級パラフィン含有ガスは、燃焼 性および蒸気圧特性の点から、ブタンよりプロパンが多 、ことが好ま 、。
[0154] 液ィ匕石油ガス製造工程において得られる低級パラフィン含有ガスには、通常、水分 や、プロパンの沸点より低い沸点または昇華点を有する低沸点成分、ブタンの沸点よ り高い沸点を持つ物質である高沸点成分が含まれる。低沸点成分としては、例えば、 副生物であるェタン、メタン、エチレンや、シフト反応により生成する二酸化炭素、未 反応の原料である水素および一酸ィ匕炭素が挙げられる。高沸点成分としては、例え ば、副生物である高沸点パラフィン (ペンタン、へキサン等)などが挙げられる。
[0155] そのため、得られた低級パラフィン含有ガスから、必要に応じて水分、低沸点成分 および高沸点成分などを分離し、プロパンまたはブタンを主成分とする液ィ匕石油ガス (LPG)を得る。
[0156] 水分の分離、低沸点成分の分離、高沸点成分の分離は、公知の方法によって行う ことができる。
[0157] 水分の分離は、例えば、液液分離などによって行うことができる。
[0158] 低沸点成分の分離は、例えば、気液分離、吸収分離、蒸留などによって行うことが できる。より具体的には、加圧常温での気液分離や吸収分離、冷却しての気液分離 や吸収分離、あるいは、その組み合わせによって行うことができる。また、膜分離や吸 着分離によって行うこともでき、これらと気液分離、吸収分離、蒸留との組み合わせに よって行うこともできる。低沸点成分の分離には、製油所で通常用いられているガス 回収プロセス(「石油精製プロセス」石油学会 Z編、講談社サイェンティフイク、 1998 年、 p. 28〜p. 32記載)を適用することができる。
[0159] 低沸点成分の分離方法としては、プロパンまたはブタンを主成分とする液ィ匕石油ガ スを、ブタンより沸点の高い高沸点パラフィンガス、あるいは、ガソリンなどの吸収液に 吸収させる吸収プロセスが好まし 、。
[0160] 高沸点成分の分離は、例えば、気液分離、吸収分離、蒸留などによって行うことが できる。
[0161] 民生用としては、使用時の安全性の点から、例えば、分離によって LPG中の低沸 点成分の含有量を 5モル%以下 (0モル%も含む)とすることが好ま 、。
[0162] このようにして製造される LPG中のプロパンおよびブタンの合計含有量は、 90モル %以上、さらには 95モル%以上(100モル%も含む)とすることができる。また、製造 される LPG中のプロパンの含有量は、 50モル%以上、さらには 60モル%以上(100 モル%も含む)とすることができる。本発明によれば、家庭用'業務用の燃料として広 く用いられているプロパンガスに適した組成を有する LPGを製造することができる。
[0163] 本発明にお ヽては、低級パラフィン含有ガスから分離された低沸点成分を、合成ガ ス製造工程の原料としてリサイクルすることができる。
[0164] 低級パラフィン含有ガスから分離された低沸点成分は、合成ガス製造工程の原料と して再利用することができる物質、具体的にはメタン、ェタン、エチレンなどを含む。ま た、この低沸点成分中に含まれる二酸化炭素は、 COリフォーミング反応によって合
2
成ガスに戻すことができる。さらに、低沸点成分は、未反応の原料である水素、一酸 化炭素を含む。そのため、この低級パラフィン含有ガスから分離された低沸点成分を 合成ガス製造工程の原料としてリサイクルすることにより、原料原単位を低減させるこ とがでさる。
[0165] 低級パラフィン含有ガスから分離された低沸点成分は、すべて合成ガス製造工程 にリサイクルしてもよいし、また、一部を系外に抜き出し、残りを合成ガス製造工程にリ サイクルしてもよい。低沸点成分は、所望の成分のみを分離して合成ガス製造工程 にリサイクルすることもできる。
[0166] 合成ガス製造工程において、反応器である改質器に送入されるガス中の低沸点成 分の含有量、すなわちリサイクル原料の含有量は適宜決めることができ、例えば、 40
〜75モル%とすることができる。
[0167] 低沸点成分をリサイクルするためには、適宜リサイクルラインに昇圧手段を設ける等
、公知の技術を採用することができる。
[0168] 〔LPGの製造方法〕
次に、図面を参照しながら、本発明の LPGの製造方法の一実施形態について説 明する。
[0169] 図 1に、本発明の LPGの製造方法を実施するのに好適な LPG製造装置の一例を 示す。
[0170] まず、含炭素原料として天然ガス (メタン)が、ライン 3を経て、改質器 1に供給される 。また、水蒸気改質を行うため、図示しないが水蒸気がライン 3に供給される。改質器 1内には、改質触媒 (合成ガス製造用触媒)を含有する改質触媒層 laが備えられて いる。また、改質器 1は、改質のために必要な熱を供給するための加熱手段 (不図示 )を備える。この改質器 1内において、改質触媒の存在下、メタンが改質され、水素お よび一酸化炭素を含む合成ガスが得られる。 [0171] このようにして得られた合成ガスは、ライン 4を経て、反応器 2に供給される。反応器 2内には、本発明の触媒を含有する触媒層 2aが備えられている。この反応器 2内に おいて、本発明の触媒の存在下、合成ガスカゝら主成分がプロパンまたはブタンである 炭化水素ガス (低級パラフィン含有ガス)が合成される。
[0172] 合成された炭化水素ガスは、必要に応じて水分等を除去した後、加圧'冷却され、 ライン 5から製品となる LPGが得られる。 LPGは、気液分離などにより水素等を除去 してちよい。
[0173] なお、図示しないが、 LPG製造装置には、昇圧機、熱交翻、バルブ、計装制御 装置などが必要に応じて設けられる。
[0174] また、改質器 1において得られた合成ガスに二酸ィ匕炭素などのガスを添加して反応 器 2に供給することもできる。また、改質器 1において得られた合成ガスに、さらに水 素または一酸ィ匕炭素を添加して、あるいは、シフト反応によって組成を調整し、反応 器 2に供給することもできる。
[0175] また、反応器 2において得られた炭化水素ガスから、公知の方法により、水分、低沸 点成分、高沸点成分などを分離することもできる。さらに、炭化水素ガス力 分離した 低沸点成分は、合成ガス製造工程 (改質工程)の原料として、改質器 1にリサイクル することができる。
実施例
[0176] 以下、実施例により本発明をさらに詳細に説明する。なお、本発明はこれらの実施 例に限定されるものではない。
[0177] 〔実施例 1〕
(触媒の製造)
メタノール合成触媒成分としては、以下のようにして調製した、 Zn— Cr系メタノール 合成触媒に 1重量%の Pdを担持した触媒(「PdZZn— Cr」ともいう。)を機械的に粉 末にしたもの(平均粒径: 0. 7 m)を用いた。
[0178] Zn— Cr系メタノール合成触媒としては、ズードケミー触媒株式会社製、商品名: K MA (平均粒径:約 lmm)を用いた。この Zn— Cr系メタノール合成触媒の組成は、 Z nZCr= 2 (原子比)である。 [0179] まず、 Pd (NH ) (NO ) 水溶液(Pd含有量: 4. 558重量0 /0) 4. 4mlにイオン交換
3 2 3 2
水 lmlを加えて、 Pd含有溶液を調製した。調製した Pd含有溶液に Zn— Cr系メタノ ール合成触媒 20gを投入し、 Pd含有溶液を含浸させた。そして、この Pd含有溶液を 含浸させた Zn— Cr系メタノール合成触媒を 120°Cの乾燥機中で 12時間乾燥した後 、さらに 450°Cで 2時間空気焼成し、これを機械的に粉砕して、メタノール合成触媒 成分とした。
[0180] ゼォライト触媒成分としては、市販の SiO ZA1 Oモル比が 37. 1のプロトン型 j8
2 2 3
ーゼオライト (東ソ一株式会社製)を機械的に粉末にしたもの(平均粒径: 0. 7 m) を用いた。
[0181] 調製したメタノール合成触媒成分とゼォライト触媒成分とを、 Pd/Zn-Cr: βーゼ オライト = 2 : 1 (重量比)で、均一に混合した。そして、これを打錠成形'整粒して、平 均粒径 lmmの粒状の成形触媒を得た。
[0182] (LPGの製造)
調製した触媒 lgを内径 6mmの反応管に充填した後、反応に先立ち、触媒を水素 気流中、 400°Cで 3時間還元処理した。
[0183] 触媒を還元処理した後、水素 66. 7モル%ぉよび一酸化炭素 33. 3モル%からなる 原料ガス (H ZCO = 2 (モル基準))を反応温度 375°C、反応圧力 5. IMPa、ガス
2
空間速度 2000hr_1 (WZF=9. Og'hZmol)で触媒層に流通させ、 LPG合成反応 を行なった。生成物をガスクロマトグラフィーにより分析したところ、反応開始から 3時 間後、一酸化炭素の転化率は 70. 5%であり、一酸化炭素の二酸化炭素へのシフト 反応転化率は 30. 0%、炭化水素への転化率は 40. 5%であった。また、生成した炭 化水素ガスの炭素基準で 75. 0%がプロパンおよびブタンであり、そのプロパンおよ びブタンの内訳は炭素基準でプロパンが 38. 3%、ブタンが 61. 7%であった。さらに 、反応開始から 5時間後、一酸化炭素の転化率は 66. 4%であり、一酸化炭素の二 酸ィ匕炭素へのシフト反応転ィ匕率は 28. 4%、炭化水素への転化率は 38. 0%であつ た。また、生成した炭化水素ガスの炭素基準で 74. 8%がプロパンおよびブタンであ り、そのプロパンおよびブタンの内訳は炭素基準でプロパンが 37. 4%、ブタンが 62 . 6%であった。 [0184] その結果を表 1に示す。
[0185] 〔実施例 2〕
(触媒の製造)
メタノール合成触媒成分およびゼォライト触媒成分を機械的に粉末にすることなぐ それぞれを打錠成形により成形し、平均粒径: 1mmの顆粒状として両者を混合した 以外は実施例 1と同様にして触媒を得た。
[0186] (LPGの製造)
調製した触媒を用い、実施例 1と同様にして LPG合成反応を行なった。生成物をガ スクロマトグラフィーにより分析したところ、反応開始力も 3時間後、一酸化炭素の転 化率は 86. 1%であり、一酸ィ匕炭素の二酸ィ匕炭素へのシフト反応転ィ匕率は 33. 4% 、炭化水素への転化率は 52. 7%であった。また、生成した炭化水素ガスの炭素基 準で 81. 8%がプロパンおよびブタンであり、そのプロパンおよびブタンの内訳は炭 素基準でプロパンが 57. 5%、ブタンが 42. 5%であった。さらに、反応開始から 5時 間後、一酸化炭素の転化率は 78. 1%であり、一酸化炭素の二酸化炭素へのシフト 反応転化率は 33. 3%、炭化水素への転化率は 44. 8%であった。また、生成した炭 化水素ガスの炭素基準で 77. 2%がプロパンおよびブタンであり、そのプロパンおよ びブタンの内訳は炭素基準でプロパンが 41. 8%、ブタンが 58. 2%であった。
[0187] その結果を表 1に示す。
[0188] 〔比較例 1〕
(触媒の製造)
メタノール合成触媒成分として、 Zn— Cr系メタノール合成触媒 (ズードケミー触媒 株式会社製、商品名: KMA;「Zn— Cr」ともいう。)を用いた以外は実施例 2と同様に して触媒を得た。
[0189] (LPGの製造)
調製した触媒を用い、実施例 1と同様にして LPG合成反応を行なった。生成物をガ スクロマトグラフィーにより分析したところ、反応開始力も 3時間後、一酸化炭素の転 化率は 66. 2%であり、一酸ィ匕炭素の二酸ィ匕炭素へのシフト反応転ィ匕率は 30. 2% 、炭化水素への転化率は 36. 0%であった。また、生成した炭化水素ガスの炭素基 準で 75. 4%がプロパンおよびブタンであり、そのプロパンおよびブタンの内訳は炭 素基準でプロパンが 30. 5%、ブタンが 69. 5%であった。さらに、反応開始から 5時 間後、一酸化炭素の転化率は 63. 9%であり、一酸化炭素の二酸化炭素へのシフト 反応転化率は 29. 5%、炭化水素への転ィ匕率は 34. 3%であった。また、生成した炭 化水素ガスの炭素基準で 71. 6%がプロパンおよびブタンであり、そのプロパンおよ びブタンの内訳は炭素基準でプロパンが 27. 2%、ブタンが 72. 8%であった。
[0190] その結果を表 1に示す。
[0191] [表 1]
Figure imgf000035_0001
表 1から明らかなように、 PdZZn— Crと |8—ゼォライトとからなる本発明の触媒を用 いた実施例 2は、 Zn— Crと |8—ゼォライトとからなる触媒を用いた比較例 1と比べて 、活性が高ぐまた、炭化水素の選択率、プロパンおよびブタンの選択率も高力つた。 また、粉末状の PdZZn— Crと粉末状の —ゼォライトとからなる本発明の触媒を用 いた実施例 1も、顆粒状の Zn— Crと顆粒状の β—ゼオライトとからなる触媒を用いた 比較例 1と比べて、活性が高ぐまた、炭化水素の選択率、プロパンおよびブタンの 選択率も同等以上であった。
[0192] また、顆粒状の PdZZn— Crと顆粒状の β—ゼオライトとからなる本発明の触媒を 用いた実施例 2は、粉末状の PdZZn— Crと粉末状の |8—ゼォライトとからなる本発 明の触媒を用いた実施例 1と比べて、より高い触媒活性、炭化水素の選択率、プロパ ンおよびブタンの選択率が得られ、触媒の安定性も高力つた。
[0193] 〔比較例 2〕
(触媒の製造)
メタノール合成触媒成分としては、巿販の Zn— Cr系メタノール合成触媒 (ズードケミ 一触媒株式会社製、商品名: KMA;「Zn— Cr」ともいう。)を用いた。この Zn— Cr系 メタノール合成触媒の組成は、 Zn/Cr = 2 (原子比)である。
[0194] ゼォライト触媒成分としては、市販の SiO ZA1 Oモル比が 37. 1のプロトン型 j8
2 2 3
ーゼオライト (東ソ一株式会社製)にイオン交換法によって 0. 5重量%の Pdを担持し たもの(「Pd— βーゼオライト」ともいう。)を用いた。
[0195] そして、メタノール合成触媒成分とゼォライト触媒成分とを、 Zn— Cr: Pd— βーゼ オライト = 2 : 1 (重量比)で、均一に混合し、これを打錠成形'整粒して、平均粒径 lm mの粒状の成形触媒を得た。
[0196] (LPGの製造)
調製した触媒 lgを内径 6mmの反応管に充填した後、反応に先立ち、触媒を水素 気流中、 400°Cで 3時間還元処理した。
[0197] 触媒を還元処理した後、水素 66. 7モル%ぉよび一酸化炭素 33. 3モル%からなる 原料ガス (H ZCO = 2 (モル基準))を反応温度 375°C、反応圧力 2. IMPa、ガス
2
空間速度 2000hr_1 (WZF=9. Og'hZmol)で触媒層に流通させ、 LPG合成反応 を行なった。生成物をガスクロマトグラフィーにより分析したところ、反応開始から 3時 間後、一酸化炭素の転化率は 21. 4%であり、一酸化炭素の二酸化炭素へのシフト 反応転化率は 8. 9%、炭化水素への転化率は 12. 5%であった。また、生成した炭 化水素ガスの炭素基準で 76. 3%がプロパンおよびブタンであり、そのプロパンおよ びブタンの内訳は炭素基準でプロパンが 59. 1%、ブタンが 40. 9%であった。
[0198] その結果を表 2に示す。
[0199] 〔実施例 3〕
(触媒の製造)
メタノール合成触媒成分として、 Zn— Cr系メタノール合成触媒 (ズードケミー触媒 株式会社製、商品名: KMA)に 0. 5重量%の Pdを担持したものを用いた以外は比 較例 2と同様にして触媒を得た。
[0200] (LPGの製造)
調製した触媒を用い、比較例 2と同様にして LPG合成反応を行なった。生成物をガ スクロマトグラフィーにより分析したところ、反応開始力も 3時間後、一酸化炭素の転 化率は 33. 9%であり、一酸ィ匕炭素の二酸ィ匕炭素へのシフト反応転ィ匕率は 13. 3% 、炭化水素への転化率は 20. 6%であった。また、生成した炭化水素ガスの炭素基 準で 80. 2%がプロパンおよびブタンであり、そのプロパンおよびブタンの内訳は炭 素基準でプロパンが 60. 2%、ブタンが 39. 8%であった。
[0201] その結果を表 2に示す。
[0202] 〔実施例 4〕
(触媒の製造)
メタノール合成触媒成分として、 Zn— Cr系メタノール合成触媒 (ズードケミー触媒 株式会社製、商品名: KMA)に 1重量%の Pdを担持したものを用いた以外は比較 例 2と同様にして触媒を得た。
[0203] (LPGの製造)
調製した触媒を用い、比較例 2と同様にして LPG合成反応を行なった。生成物をガ スクロマトグラフィーにより分析したところ、反応開始力も 3時間後、一酸化炭素の転 化率は 40. 0%であり、一酸ィ匕炭素の二酸ィ匕炭素へのシフト反応転ィ匕率は 15. 6% 、炭化水素への転化率は 24. 4%であった。また、生成した炭化水素ガスの炭素基 準で 79. 3%がプロパンおよびブタンであり、そのプロパンおよびブタンの内訳は炭 素基準でプロパンが 64. 9%、ブタンが 35. 1%であった。
[0204] その結果を表 2に示す。
[0205] 〔実施例 5〕
(触媒の製造)
メタノール合成触媒成分として、 Zn— Cr系メタノール合成触媒 (ズードケミー触媒 株式会社製、商品名: KMA)に 2重量%の Pdを担持したものを用いた以外は比較 例 2と同様にして触媒を得た。
[0206] (LPGの製造)
調製した触媒を用い、比較例 2と同様にして LPG合成反応を行なった。生成物をガ スクロマトグラフィーにより分析したところ、反応開始力も 3時間後、一酸化炭素の転 化率は 44. 4%であり、一酸ィ匕炭素の二酸ィ匕炭素へのシフト反応転ィ匕率は 18. 6% 、炭化水素への転化率は 25. 8%であった。また、生成した炭化水素ガスの炭素基 準で 81. 5%がプロパンおよびブタンであり、そのプロパンおよびブタンの内訳は炭 素基準でプロパンが 61. 4%、ブタンが 38. 6%であった。
[0207] その結果を表 2に示す。
[0208] 〔実施例 6〕
(触媒の製造)
メタノール合成触媒成分として、 Zn— Cr系メタノール合成触媒 (ズードケミー触媒 株式会社製、商品名: KMA)に 4重量%の Pdを担持したものを用いた以外は比較 例 2と同様にして触媒を得た。
[0209] (LPGの製造)
調製した触媒を用い、比較例 2と同様にして LPG合成反応を行なった。生成物をガ スクロマトグラフィーにより分析したところ、反応開始力も 3時間後、一酸化炭素の転 化率は 45. 7%であり、一酸ィ匕炭素の二酸ィ匕炭素へのシフト反応転ィ匕率は 19. 3% 、炭化水素への転化率は 26. 5%であった。また、生成した炭化水素ガスの炭素基 準で 79. 3%がプロパンおよびブタンであり、そのプロパンおよびブタンの内訳は炭 素基準でプロパンが 62. 7%、ブタンが 37. 3%であった。
[0210] その結果を表 2に示す。 [0211] [表 2]
Figure imgf000039_0001
表 2から明らかなように、 PdZZn-Crと Pd- β—ゼオライトとからなる本発明の触 媒を用いた実施例 3〜6は、 Zn— Crと Pd— β—ゼオライトとからなる触媒を用いた比 較例 2と比べて、活性が高ぐまた、炭化水素の選択率、プロパンおよびブタンの選 択率も同等以上であった。
[0212] 〔実施例 7〕
(触媒の製造)
メタノール合成触媒成分としては、以下のようにして含浸法により Zn—Cr系メタノー ル合成触媒 (ズードケミー触媒株式会社製、商品名: KMA)に 1重量%の Pdを担持 したものを用いた。
[0213] まず、 Pd (NO )水溶液 (Pd (NO )含有量: 10重量%) 1. 1mlを調製した。調製
3 2 3 2
した Pd含有溶液に Zn— Cr系メタノール合成触媒 5gを投入し、 Pd含有溶液を含浸さ せた。そして、この Pd含有溶液を含浸させた Zn— Cr系メタノール合成触媒を 120°C の乾燥機中で 12時間乾燥した後、さらに 300°Cで 4時間空気焼成し、これを機械的 に粉砕して、メタノール合成触媒成分とした。
[0214] ゼォライト触媒成分としては、市販の SiO ZA1 Oモル比が 37. 1のプロトン型 j8
2 2 3
ーゼオライト (東ソ一株式会社製)にイオン交換法によって 0. 5重量%の Pdを担持し たものを用いた。
[0215] そして、メタノール合成触媒成分とゼォライト触媒成分とを、 Pd/Zn-Cr: Pd- β ーゼオライト = 2 : 1 (重量比)で、均一に混合し、これを打錠成形'整粒して、平均粒 径 lmmの粒状の成形触媒を得た。
[0216] (LPGの製造)
調製した触媒 lgを内径 6mmの反応管に充填した後、反応に先立ち、触媒を水素 気流中、 400°Cで 3時間還元処理した。
[0217] 触媒を還元処理した後、水素 66. 7モル%ぉよび一酸化炭素 33. 3モル%からなる 原料ガス (H ZCO = 2 (モル基準))を反応温度 375°C、反応圧力 2. IMPa、ガス
2
空間速度 2000hr_1 (WZF= 9. Og'hZmol)で触媒層に流通させ、 LPG合成反応 を行なった。生成物をガスクロマトグラフィーにより分析したところ、反応開始から 3時 間後、一酸化炭素の転化率は 40. 8%であり、一酸化炭素の二酸化炭素へのシフト 反応転化率は 16. 2%、炭化水素への転ィ匕率は 24. 6%であった。また、生成した炭 化水素ガスの炭素基準で 77. 4%がプロパンおよびブタンであった。
[0218] その結果を表 3に示す。
[0219] 〔実施例 8〕
(触媒の製造)
メタノール合成触媒成分として、以下のようにして析出沈殿法により Zn—Cr系メタノ ール合成触媒 (ズードケミー触媒株式会社製、商品名: KMA)に 1重量%の Pdを担 持したものを用いた以外は実施例 7と同様にして触媒を得た。
[0220] まず、ビーカーに Pd (NO )水溶液(Pd (NO )含有量: 10重量%) 1. 1mlと水 15
3 2 3 2
Omlを入れ、撹拌した。次に、溶液を撹拌しながら Zn—Cr系メタノール合成触媒 (粒 子径 105 /z m以下)をカ卩えた。この Zn—Cr粉末を含む溶液に、 pHが 10となるまで、 0. 25M— NaCO水溶液を滴下した。その後、ろ過、イオン交換水による洗浄を行 い、 120°Cで 12時間乾燥した。さらに空気中 300°Cで 4時間焼成した。
[0221] (LPGの製造)
調製した触媒を用い、実施例 7と同様にして LPG合成反応を行なった。生成物をガ スクロマトグラフィーにより分析したところ、反応開始力も 3時間後、一酸化炭素の転 化率は 44. 0%であり、一酸ィ匕炭素の二酸ィ匕炭素へのシフト反応転ィ匕率は 17. 6% 、炭化水素への転化率は 26. 4%であった。また、生成した炭化水素ガスの炭素基 準で 78. 9%がプロパンおよびブタンであった。
[0222] その結果を表 3に示す。
[0223] [表 3]
Figure imgf000041_0001
表 3から明らかなように、析出沈殿法によりメタノール合成触媒成分である PdZZn — Crを調製した実施例 8は、含浸法により PdZZn— Crを調製した実施例 7と比べて 、活性が高力つた。
産業上の利用可能性
以上のように、本発明の液化石油ガス製造用触媒は、一酸化炭素と水素とを反応 させて主成分がプロパンまたはブタンである炭化水素、すなわち液化石油ガス (LPG )を高活性、高選択性、高収率で製造することができ、しかも、触媒寿命が長ぐ劣化 が少ないものである。従って、本発明の触媒を用いることにより、天然ガスなどの含炭 素原料あるいは合成ガスから、プロパンおよび Zまたはブタンを長期間にわたって安 定に、高活性、高選択性、高収率で製造することができる。すなわち、本発明の触媒 を用いることにより、天然ガスなどの含炭素原料あるいは合成ガスから、プロパンおよ び Zまたはブタンの濃度が高い液ィ匕石油ガスを高収率で、長期間にわたって安定に 製造することができる。

Claims

請求の範囲
[I] 一酸ィ匕炭素と水素とを反応させてプロパンまたはブタンを主成分とする液ィ匕石油ガ スを製造する際に用いられる触媒であって、
ォレフィン水素化触媒成分を Zn—Cr系メタノール合成触媒に担持したものであるメ タノール合成触媒成分と、ゼォライト触媒成分とを含有することを特徴とする液化石 油ガス製造用触媒。
[2] 前記ゼォライト触媒成分に対する前記メタノール合成触媒成分の含有比率 (質量 基準)が、 0. 1〜5 [メタノール合成触媒成分 Zゼォライト触媒成分]である請求項 1 に記載の液化石油ガス製造用触媒。
[3] 前記メタノール合成触媒成分のォレフィン水素化触媒成分の担持量が、合計で、 0
. 005〜5重量%である請求項 1または 2に記載の液ィ匕石油ガス製造用触媒。
[4] 前記 Zn— Cr系メタノール合成触媒が、 Znおよび Crを含む複合酸ィ匕物である請求 項 1〜3のいずれかに記載の液化石油ガス製造用触媒。
[5] 前記 Zn— Cr系メタノール合成触媒中の Crに対する Znの含有比率 (Zn/Cr)が、
1〜3 (原子比)である請求項 4に記載の液ィ匕石油ガス製造用触媒。
[6] 前記ォレフィン水素化触媒成分が Fe, Co, Ni, Cu, Ru, Rh, Pd, Irおよび Ptから なる群より選択される少なくとも一種である請求項 1〜5のいずれかに記載の液ィ匕石 油ガス製造用触媒。
[7] 前記ォレフィン水素化触媒成分が Pdである請求項 6に記載の液化石油ガス製造用 触媒。
[8] 前記メタノール合成触媒成分の Pdの担持量が、 0. 005〜5重量%である請求項 7 に記載の液化石油ガス製造用触媒。
[9] 前記ゼォライト触媒成分が β—ゼオライトである請求項 1〜8の 、ずれかに記載の 液化石油ガス製造用触媒。
[10] 前記 j8—ゼオライトが、 SiO ZA1 Oモル比が 10〜 150のプロトン型 13—ゼォライ
2 2 3
トである請求項 9に記載の液化石油ガス製造用触媒。
[II] 前記 13—ゼオライトが、 SiO ZA1 Oモル比が 10〜150、 Pd担持量が 3重量%以
2 2 3
下の Pd担持 βーゼオライトである請求項 9に記載の液ィ匕石油ガス製造用触媒。
[12] 請求項 1〜11のいずれかに記載の液化石油ガス製造用触媒の存在下で一酸化炭 素と水素とを反応させ、主成分がプロパンまたはブタンである液ィ匕石油ガスを製造す ることを特徴とする液化石油ガスの製造方法。
[13] 一酸ィ匕炭素と水素とを反応させる際の反応温度が、 300°C以上 420°C以下である 請求項 12に記載の液化石油ガスの製造方法。
[14] 一酸ィ匕炭素と水素とを反応させる際の反応圧力が、 2. 2MPa以上 lOMPa以下で ある請求項 12または 13に記載の液化石油ガスの製造方法。
[15] 請求項 1〜11の ヽずれかに記載の液化石油ガス製造用触媒を含有する触媒層に 合成ガスを流通させて、主成分がプロパンまたはブタンである液ィ匕石油ガスを製造す る液化石油ガス製造工程を有することを特徴とする液化石油ガスの製造方法。
[16] (1)含炭素原料と、 H 0、 Oおよび CO力 なる群より選択される少なくとも一種と
2 2 2
から、合成ガスを製造する合成ガス製造工程と、
(2)請求項 1〜11のいずれかに記載の液化石油ガス製造用触媒を含有する触媒 層に合成ガスを流通させて、主成分がプロパンまたはブタンである液ィ匕石油ガスを製 造する液化石油ガス製造工程と
を有することを特徴とする液化石油ガスの製造方法。
PCT/JP2005/009874 2004-08-10 2005-05-30 液化石油ガス製造用触媒、および、この触媒を用いた液化石油ガスの製造方法 WO2006016444A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/573,242 US20080319245A1 (en) 2004-08-10 2005-05-30 Catalyst and Process for Producing Liquefied Petroleum Gas
JP2006531286A JP4965258B2 (ja) 2004-08-10 2005-05-30 液化石油ガス製造用触媒、および、この触媒を用いた液化石油ガスの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-233327 2004-08-10
JP2004233327 2004-08-10

Publications (1)

Publication Number Publication Date
WO2006016444A1 true WO2006016444A1 (ja) 2006-02-16

Family

ID=35839220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/009874 WO2006016444A1 (ja) 2004-08-10 2005-05-30 液化石油ガス製造用触媒、および、この触媒を用いた液化石油ガスの製造方法

Country Status (4)

Country Link
US (1) US20080319245A1 (ja)
JP (1) JP4965258B2 (ja)
CN (1) CN1733871B (ja)
WO (1) WO2006016444A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4989650B2 (ja) * 2006-07-31 2012-08-01 日本ガス合成株式会社 液化石油ガス製造用触媒、及び、この触媒を用いた液化石油ガスの製造方法
JP5405103B2 (ja) * 2006-02-17 2014-02-05 日本ガス合成株式会社 液化石油ガス製造用触媒
JP2019038777A (ja) * 2017-08-25 2019-03-14 国立大学法人富山大学 低級オレフィンの製造方法
WO2023277187A1 (ja) * 2021-07-02 2023-01-05 古河電気工業株式会社 液化石油ガス合成用触媒および液化石油ガスの製造方法
WO2023277189A1 (ja) * 2021-07-02 2023-01-05 古河電気工業株式会社 液化石油ガス合成用触媒および液化石油ガスの製造方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2009104742A1 (ja) * 2008-02-20 2011-06-23 日本ガス合成株式会社 液化石油ガス製造用触媒、および、この触媒を用いた液化石油ガスの製造方法
WO2010078035A2 (en) * 2008-12-17 2010-07-08 Synch Energy Corporation Process and system for converting biogas to liquid fuels
CN103483118A (zh) * 2012-06-14 2014-01-01 中国科学院大连化学物理研究所 一种制备液化石油气的方法
BR112017000472B1 (pt) * 2014-07-11 2020-12-29 Dow Global Technologies Llc processo para preparar hidrocarbonetos c2 e c3
WO2017074558A1 (en) 2015-10-30 2017-05-04 Dow Global Technologies Llc Process to convert synthesis gas to olefins over a bifunctional chromium oxide/zinc oxide-sapo-34 catalyst
AR110362A1 (es) 2016-12-22 2019-03-20 Dow Global Technologies Llc Proceso para convertir gas de síntesis en olefinas usando un catalizador bifuncional de óxido de cromozinc - sapo-34
EP3814001A1 (en) 2018-06-29 2021-05-05 Dow Global Technologies LLC <sup2/>? <sub2/>?2?hybrid catalysts comprising a mixed metal oxide component for production of cand c <ns1:sub>3</ns1:sub>?hydrocarbons
CN112203759A (zh) 2018-06-29 2021-01-08 陶氏环球技术有限责任公司 用于将合成气体转化为c2和c3烯烃的包含沸石和混合金属氧化物组分的杂化催化剂
WO2020210092A1 (en) 2019-04-10 2020-10-15 Exxonmobil Chemical Patents Inc. Multicomponent catalysts for syngas conversion to light hydrocarbons
EP4364845A1 (en) 2021-07-02 2024-05-08 Furukawa Electric Co., Ltd. Catalyst for liquefied petroleum gas synthesis and method for producing liquefied petroleum gas

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59196744A (ja) * 1983-04-08 1984-11-08 ザ・ブリテイツシユ・ペトロリユ−ム・コムパニ−・ピ−・エル・シ− 合成ガスを炭化水素に転化するための触媒組成物
JPS60144387A (ja) * 1983-12-27 1985-07-30 Satoyuki Inui 合成ガスから軽質炭化水素を製造する方法
JP2000288394A (ja) * 1999-04-05 2000-10-17 Japan Petroleum Exploration Co Ltd リホーミング用触媒およびこれを用いた合成ガスの製法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4096163A (en) * 1975-04-08 1978-06-20 Mobil Oil Corporation Conversion of synthesis gas to hydrocarbon mixtures
US4086262A (en) * 1976-09-20 1978-04-25 Mobil Oil Corporation Conversion of synthesis gas to hydrocarbon mixtures
JPS6123688A (ja) * 1984-07-12 1986-02-01 Hiroo Tominaga 合成ガスからの低級飽和脂肪族を主成分とする炭化水素の製造方法
CN1054202A (zh) * 1990-02-26 1991-09-04 中国科学院大连化学物理研究所 一种由合成气高选择性制取丙烷催化剂
CN1153080A (zh) * 1995-12-29 1997-07-02 中国科学院兰州化学物理研究所 由合成气直接制取二甲醚的催化剂
US20060242904A1 (en) * 2003-02-26 2006-11-02 Kaoru Fujimoto Catalyst for producing liquefied petroleum gas, process for producing the same, and process for producing liquefied petroleum gas with the catalyst

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59196744A (ja) * 1983-04-08 1984-11-08 ザ・ブリテイツシユ・ペトロリユ−ム・コムパニ−・ピ−・エル・シ− 合成ガスを炭化水素に転化するための触媒組成物
JPS60144387A (ja) * 1983-12-27 1985-07-30 Satoyuki Inui 合成ガスから軽質炭化水素を製造する方法
JP2000288394A (ja) * 1999-04-05 2000-10-17 Japan Petroleum Exploration Co Ltd リホーミング用触媒およびこれを用いた合成ガスの製法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG Q. ET AL: "Synthesis of LPG from Synthesis Gas with Hybrid Catalysis.", 2003, pages 179 - 180, XP002982545 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5405103B2 (ja) * 2006-02-17 2014-02-05 日本ガス合成株式会社 液化石油ガス製造用触媒
JP4989650B2 (ja) * 2006-07-31 2012-08-01 日本ガス合成株式会社 液化石油ガス製造用触媒、及び、この触媒を用いた液化石油ガスの製造方法
JP2019038777A (ja) * 2017-08-25 2019-03-14 国立大学法人富山大学 低級オレフィンの製造方法
WO2023277187A1 (ja) * 2021-07-02 2023-01-05 古河電気工業株式会社 液化石油ガス合成用触媒および液化石油ガスの製造方法
WO2023277189A1 (ja) * 2021-07-02 2023-01-05 古河電気工業株式会社 液化石油ガス合成用触媒および液化石油ガスの製造方法

Also Published As

Publication number Publication date
CN1733871B (zh) 2010-05-12
CN1733871A (zh) 2006-02-15
JPWO2006016444A1 (ja) 2008-05-01
JP4965258B2 (ja) 2012-07-04
US20080319245A1 (en) 2008-12-25

Similar Documents

Publication Publication Date Title
JP4965258B2 (ja) 液化石油ガス製造用触媒、および、この触媒を用いた液化石油ガスの製造方法
JP2006021100A (ja) 液化石油ガス製造用触媒、および、この触媒を用いた液化石油ガスの製造方法
CN101016494B (zh) 液化石油气的制造方法
JP2007125515A (ja) 液化石油ガス製造用触媒、および、この触媒を用いた液化石油ガスの製造方法
CN101016493B (zh) 液化石油气的制造方法
JP5405103B2 (ja) 液化石油ガス製造用触媒
JP4833070B2 (ja) 液化石油ガスの製造方法
JP4989650B2 (ja) 液化石油ガス製造用触媒、及び、この触媒を用いた液化石油ガスの製造方法
JP3930879B2 (ja) 液化石油ガスの製造方法
JP2008195773A (ja) 合成ガスからの液化石油ガス及び/又はガソリンの製造方法
JP2007238608A (ja) 液化石油ガスの製造方法
JPWO2005037962A1 (ja) プロパンまたはブタンを主成分とする液化石油ガスの製造方法
JP2009195815A (ja) 液化石油ガス製造用触媒、および、この触媒を用いた液化石油ガスの製造方法
WO2009104742A1 (ja) 液化石油ガス製造用触媒、および、この触媒を用いた液化石油ガスの製造方法
JPWO2004076063A1 (ja) 液化石油ガス製造用触媒、その製造方法、および、この触媒を用いた液化石油ガスの製造方法
JP2007181755A (ja) 液化石油ガス製造用触媒、および、この触媒を用いた液化石油ガスの製造方法
WO2006016583A1 (ja) 液化石油ガスの製造方法
JP4459925B2 (ja) 液化石油ガス製造用触媒、および、この触媒を用いた液化石油ガスの製造方法
JP2006143752A (ja) プロパンまたはブタンを主成分とする液化石油ガスの製造方法
JP2006182792A (ja) 液化石油ガスの製造方法
WO2004076600A1 (ja) プロパンまたはブタンを主成分とする液化石油ガスの製造方法
JP5086658B2 (ja) 液化石油ガスの製造方法
JP2007063568A (ja) 液化石油ガスの製造方法
JPH0136811B2 (ja)
JP2006182646A (ja) プロパンまたはブタンを主成分とする液化石油ガスの製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11573242

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006531286

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase