WO2006003771A1 - Phenolic-resin-coated fine carbon fiber and process for producing the same - Google Patents

Phenolic-resin-coated fine carbon fiber and process for producing the same Download PDF

Info

Publication number
WO2006003771A1
WO2006003771A1 PCT/JP2005/010192 JP2005010192W WO2006003771A1 WO 2006003771 A1 WO2006003771 A1 WO 2006003771A1 JP 2005010192 W JP2005010192 W JP 2005010192W WO 2006003771 A1 WO2006003771 A1 WO 2006003771A1
Authority
WO
WIPO (PCT)
Prior art keywords
fine carbon
carbon fiber
coated
fiber
resin
Prior art date
Application number
PCT/JP2005/010192
Other languages
French (fr)
Japanese (ja)
Inventor
Eiki Tsushima
Kazuyuki Murakami
Susumu Katagiri
Isamu Ide
Masanobu Nishikawa
Original Assignee
Mitsubishi Corporation
Fj Composite Materials Co., Ltd.
Lignyte. Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Corporation, Fj Composite Materials Co., Ltd., Lignyte. Co., Ltd. filed Critical Mitsubishi Corporation
Priority to JP2006528438A priority Critical patent/JPWO2006003771A1/en
Publication of WO2006003771A1 publication Critical patent/WO2006003771A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/39Aldehyde resins; Ketone resins; Polyacetals
    • D06M15/41Phenol-aldehyde or phenol-ketone resins
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/40Fibres of carbon

Definitions

  • Phenolic resin-coated fine carbon fiber and method for producing the same
  • the present invention relates to a phenol-resin-coated fine carbon fiber excellent in dispersibility and used as a filler in a composite material and a method for producing the same.
  • carbon fiber composite materials in which carbon fibers are dispersed as fillers in matrices of various plastics, ceramics, metals, rubbers, etc. have mechanical strength, thermal conductivity, electrical conductivity, heat resistance, electromagnetic waves. It is used in various fields to improve shielding performance. This is expected in recent years because these characteristics are further required in the fields of electrical and electronic equipment and functional materials.
  • Pitch-based carbon fibers and PAN (polyacrylonitrile) -based carbon fibers are widely used as carbon fibers.
  • carbon fibers produced by the vapor phase method and fine carbon fibers such as carbon nanotubes have been used.
  • the use of is proposed.
  • composite materials that use these fine carbon fibers as fillers have not been so popular. This is partly due to the fact that fine carbon fiber has a cost-related problem and cannot improve the properties to meet the cost increase.
  • the characteristic improvement expected when using fine carbon fibers as a filler is not achieved.
  • the main cause is that the fine carbon fibers have low wettability with the material constituting the matrix, and therefore the dispersibility in the matrix is poor. , Seems to be due to that.
  • the present invention has a high wettability with respect to a matrix material when used as a filler in a matrix such as plastic, ceramics, metal, rubber, etc., and the dispersibility in the matrix is high.
  • An object is to provide excellent fine carbon fibers and a method for producing the same.
  • the present inventor has made researches to achieve the above-mentioned object, and as a result, fine carbon fibers having specific physical properties are used, and the surface thereof is covered with a predetermined amount of phenolic resin. It was found that the fine carbon fibers achieved achieve the above-mentioned purpose.
  • the present invention is characterized by the following gist.
  • Fine carbon fiber strength The phenolic resin-coated fine carbon fiber according to the above (1) or (2), which is graphitized at 2300 to 3500 ° C in a non-acidic atmosphere.
  • the phenolic resin when used as a filler in a matrix of plastic, ceramics, metal, rubber, etc., the phenolic resin having excellent dispersibility in the matrix having high wettability to the matrix material.
  • a coated fine carbon fiber and a method for producing the same are provided.
  • the carbon fiber composite material comprising a matrix filled with the phenol resin-coated fine carbon fiber of the present invention is remarkably improved in mechanical strength, thermal conductivity, electrical conductivity, heat resistance, electromagnetic shielding properties, and the like. And used in various fields.
  • the fine carbon fiber used in the present invention has a fiber diameter of 0.5 to 500 nm or less, a fiber length of 1 OOO / zm or less, preferably an aspect ratio of 3 to: preferably a carbon hexagonal network surface. It has a multi-layered structure with concentric cylinders, and its central axis is a hollow structure Of fine carbon fiber is used.
  • the fine carbon fiber that can be produced is significantly different from the conventional carbon fiber with a fiber diameter of 5-10 / ⁇ ⁇ obtained by heat-treating conventional PAN, pitch, cellulose, rayon and other fibers. .
  • the fine carbon fibers used in the present invention are greatly different from the conventional carbon fibers not only in fiber diameter but also in fiber length. As a result, it is extremely excellent in terms of physical properties such as conductivity, thermal conductivity, and slidability.
  • the fiber diameter of the fine carbon fiber is smaller than 0.5 nm, the strength of the obtained composite material becomes insufficient.
  • the fiber diameter is larger than 500 nm, mechanical strength, thermal conductivity, sliding Sexuality, etc. will decrease.
  • the fiber length is longer than 1000 m, the fine carbon fibers are difficult to disperse uniformly in a matrix such as aluminum metal, so the composition of the material becomes non-uniform and the mechanical strength of the resulting composite material Decreases.
  • the fine carbon fiber used in the present invention is particularly preferably one having a fiber diameter of 10 to 200 nm, a fiber length of 3 to 300 ⁇ m, and preferably an aspect ratio of 3 to 500.
  • the fiber diameter and fiber length of the fine carbon fiber can be measured with an electron microscope.
  • a preferred fine carbon fiber used in the present invention is a carbon nanotube.
  • This carbon nanotube is also called a graphite whisker, filamentous carbon, carbon fiber, etc., and is a single-walled carbon nanotube having a single graphite film forming a tube, and a multilayered carbon nanotube having a multilayer structure. Any of them can be used in the present invention.
  • multi-walled carbon nanotubes are preferable because they provide a high mechanical strength and are advantageous in terms of economy.
  • Carbon nanotubes are, for example, arc discharge methods, laser evaporation methods, thermal decomposition methods, etc. as described in “Basics of Carbon Nanotubes” (issued by Corona, pages 23 to 57, issued in 1998). Manufactured by.
  • the carbon nanotube has a fiber diameter of preferably 0.5 to 5 OOnm, a fiber length of preferably 1 to 500 ⁇ m, and preferably an aspect ratio of 3 to 500.
  • the fine carbon fiber particularly preferable in the present invention has a relatively large fiber diameter and fiber length! / Vapor grown carbon fiber.
  • a vapor grown carbon fiber is also called VGCF (Vapor Grown Carbon Fiber), which is disclosed in Japanese Patent Application Laid-Open No. 2003-176327. As described in the report, it is produced by gas phase pyrolysis of a gas such as hydrocarbon together with hydrogen gas in the presence of an organic transition metal catalyst.
  • the vapor grown carbon fiber (VGCF) has a fiber diameter of preferably 50 to 300 nm, a fiber length of preferably 3 to 300 ⁇ m, and preferably an aspect ratio of 3 to 500. This VGCF is excellent in terms of ease of manufacture, handling, and properties.
  • the fine carbon fiber used in the present invention is preferably heat-treated in a non-oxidizing atmosphere at a temperature of 2300 ° C or higher, preferably 2500 to 3500 ° C.
  • the mechanical strength and chemical stability are greatly improved, contributing to weight reduction of pressure vessels.
  • As the non-oxidizing atmosphere argon, helium, and nitrogen gas are preferably used.
  • a boron compound such as boron carbide, boron oxide, boric acid, borate, boron nitride, and organic boron compound coexists, the heat treatment effect is further improved and the heat treatment temperature is lowered.
  • This boron compound is preferably present in the heat-treated fine carbon fiber so that the boron content is 0.01 to: LO weight%, preferably 0.1 to 5 weight%! /.
  • the phenolic resin is coated on the surface of the fine carbon fiber.
  • the fine carbon fiber coated with phenolic resin on the surface uses previously prepared phenolic resin powder, and the phenolic resin powder is diluted as it is or by adding a solvent such as alcohol such as ethanol.
  • a solvent such as alcohol such as ethanol.
  • the fine carbon fibers coated on the surface with the phenol resin obtained in this way have a coating capacity of S40 wt% or more. Since the amount of fine carbon fibers is relatively reduced when the amount of phenolic rosin is increased, mechanical strength, conductivity, and thermal conductivity are lowered.
  • Examples of the phenols used in the synthesis of phenol rosin used in the powerful method include phenol, catechol, tannin, resorcin, hydroquinone, pyrogallol, o-cresol, m cresol, p cresol, p-t --Butylphenol, 4-tert-butylcatechol, m-phenol-phenol, p-phenolphenol, p- (a-tamyl) phenol, ⁇ nonylphenol, guaiacol, bisphenol A, bisphenol S, bisphenol no F, o Black mouth phenol, p Black mouth phenol, 2,4-dichlorophenol, o-phenol phenol, 3,5 xylenol, 2,3 xylenol, 2,5 xylenol, 2,6 xylenol, 3,4 xylenol, p —Octylphenol, etc. Used other, Chide monkey be used in combination more than two kinds in.
  • aldehydes used as a raw material for the above-mentioned phenolic rosin it is possible to use a form such as trioxane, tetraoxane, paraformaldehyde which is most suitable for formalin in the form of an aqueous formaldehyde solution. It is also possible to replace part or most of formaldehyde with furfural or furfuryl alcohol.
  • alkali metal oxides such as sodium, potassium and lithium, oxides and hydroxides, carbonates, calcium, magnesium, barium and the like It is preferable to use oxides, hydroxides, carbonates, and amine compounds.
  • oxides, hydroxides, carbonates, and amine compounds One of these can be used alone, or two or more can be used in combination.
  • Specific examples include sodium hydroxide, potassium hydroxide, lithium hydroxide, sodium carbonate, calcium hydroxide, magnesium hydroxide, barium hydroxide, calcium carbonate, magnesium oxide, calcium oxide, and ammonia.
  • examples include oxamethyltriamine, trimethylamine, triethylamine, triethanolamine, and 1,8 diazabicyclo [5,4,0] undecene7.
  • lubricants in addition to the phenols and aldehydes, in addition to the phenols and aldehydes, lubricants, fibers, epoxy resins, coupling agents, and the like can be blended.
  • reaction vessel When producing fine carbon fibers coated with phenol resin, phenols, aldehydes, and a reaction catalyst are placed in a reaction vessel. The corresponding components are added, and phenols and aldehydes are reacted in the presence of them.
  • This reaction is preferably carried out with stirring in an amount of water sufficient to stir the reaction system.
  • the reaction system At the beginning of the reaction, the reaction system is viscous and flows with stirring.
  • the condensation reaction product of phenols and aldehydes containing fine carbon fibers begins to separate from the water in the system, and the composite particles formed by the aggregation of phenolic resin and fine carbon fibers form the reaction vessel. Distributed throughout.
  • the stirring of the phenolic resin is further stopped after the reaction of the phenolic resin is further promoted to the desired level, the fine carbon fibers coated with the phenolic resin are precipitated and separated from the water. From this, it is possible to easily obtain a phenol resin-coated fine carbon fiber by drying.
  • the phenolic resin in the phenolic resin-coated fine carbon fiber produced by caulking is coated very thinly and uniformly on the surface of the fine carbon fiber, a fine carbon fiber with a small amount of phenolic resin is used. Can be easily obtained.
  • the coating amount of phenol resin is adjusted to 1 to 40 parts by weight per 100 parts by weight of fine carbon fiber. If the coating amount is larger than 40 parts by weight, the fiber content is relatively lowered, so that the properties of the composite material are deteriorated. It is not preferable because it is difficult to disperse.
  • the phenol resin-coated fine carbon fiber of the present invention is used by being filled in various matrices.
  • metals such as aluminum, magnesium, silver, copper, titanium, nickel, and alloys containing these metals; ceramics such as alumina, silicon nitride, carbide, zirconium oxide, silicon dioxide; polyamides Thermoplastic resins such as polyphenylene oxide, polybutylene terephthalate, polyester, polyethylene, polyacetal, polychlorinated bur, polystyrene, polybutene; epoxy resin, unsaturated polyester resin, phenol resin, And thermosetting resin such as modified ethylene resin; rubber such as polybutadiene, polyisoprene, natural rubber, and styrene rubber.
  • nylon and epoxy resin are preferable as the plastics
  • aluminum and magnesium are preferable as the ceramic nitride metal as the ceramics.
  • the content of the fine carbon fiber coated with phenol resin in the matrix is added to these Depending on the type of matrix and the application of the composite material to be produced, it is usually contained preferably 25 to 85% by weight, particularly 30 to 70% by weight.
  • a reaction vessel equipped with a stirrer was charged with 347 parts by weight of phenol, 448 parts by weight of 37% by weight formalin, and 36 parts by weight of hexamethylenetetramine.
  • vapor grown carbon fiber VGCF with a fiber diameter of 150 nm, fiber length of 15 ⁇ m, and aspect ratio of 100 is graphitized by heating at 2800 ° C for 30 minutes in an argon gas atmosphere. 1835 parts by weight of fine carbon fiber and 1500 parts by weight of water were charged. Then, with stirring and mixing, the temperature was raised to 90 ° C. over 60 minutes, and the reaction was carried out for 4 hours. Next, after cooling to 20 ° C., the contents of the reaction vessel were filtered off with Nutsche to obtain a phenolic rosin-coated fine carbon fiber having a moisture content of 22% by weight.
  • the fine carbon fiber is spread to a thickness of about 2 cm on a polyethylene sheet laid on a stainless steel vat, and is then placed in a hot-air circulating dryer and dried at an internal temperature of 45 ° C for about 48 hours. As a result, a fine carbon fiber coated with phenol resin having a moisture content of 0.5% by weight was obtained. The content of phenol resin in this fine carbon fiber was 15% by weight.
  • Fine phenolic fiber coated with phenol resin obtained above was filled into a plate-shaped mold having a length of 100 mm x width 100 mm x thickness 10 mm, and pressure cured at 200 kgZcm 2 at 150 ° C for 30 minutes. .
  • the obtained molded body was press-fitted with molten aluminum at Sarako, 800 ° C, 300 kgZcm 2 to obtain an aluminum matrix composite.
  • fine carbon fibers with a fiber volume content of 65% were uniformly dispersed.
  • Example 1 100 parts by weight of phenol resin coated fine carbon fiber used in Example 1 was mixed with 43 parts by weight of powdered phenol resin (trade name: LA-100P, manufactured by Lignite Co., Ltd.) .
  • the resulting mixture is 200 mm in a plate mold with a length of 100 mm x width 100 mm x thickness 10 mm. kg / cm 2 , 150 ° C, and pressure cured for 30 minutes.
  • the molded product was a composite material in which fine carbon fibers having a fiber volume content of 60% were uniformly dispersed.
  • Example 1 As the fine carbon fiber in Example 1, a phenol resin coated carbon fiber was used in the same manner as in Example 1 except that a fine carbon fiber having a fiber diameter of 80 nm, a fiber length of 2.0 m, and an aspect ratio of 25 was used. Prepared.
  • the obtained phenol resin-coated fine carbon fiber was mixed with powdered phenol resin in the same manner as in Example 2 and pressure-cured to obtain a molded body.
  • the molded body was a composite material in which fine carbon fibers having a fiber volume content of 60% were uniformly dispersed.
  • Example 1 fine carbon fiber was used without coating with phenol resin. That is, 100 parts by weight of the fine carbon fiber was stirred and mixed in the same manner as in Example 2 with 67 parts by weight of powdered phenol resin and a V-pender. The obtained mixture was pressure-molded under the same conditions as in Example 2. The resulting molded body had a fiber volume content of 55%, but the agglomerated fine carbon fibers were unevenly distributed in the molded body, and it was easy to collapse at the VGCF aggregation site.

Abstract

Phenolic-resin-coated fine carbon fibers which have excellent dispersibility and are usable as a filler in a matrix; and a process for producing the fibers. The process, which is for producing fine carbon fibers coated with a phenolic resin, is characterized by reacting a phenol with an aldehyde in the presence of a catalyst while mixing the reactants with fine carbon fibers which each has a multilayer structure composed of superposed cylindrical carbon layers having a fiber diameter of 0.5-500 nm and a fiber length of 1,000 µm or shorter and which each has a hollow structure in which the fiber axis extends. Thus, the surface of the fine carbon fibers is coated with a phenolic resin in an amount of 1-40 parts by weight per 100 parts by weight of the fine carbon fibers.

Description

明 細 書  Specification
フエノール樹脂被覆微細炭素繊維及びその製造方法  Phenolic resin-coated fine carbon fiber and method for producing the same
技術分野  Technical field
[0001] 本発明は、複合材料における充填材として使用される、分散性の優れたフエノール 榭脂被覆微細炭素繊維及びその製造方法に関する。  TECHNICAL FIELD [0001] The present invention relates to a phenol-resin-coated fine carbon fiber excellent in dispersibility and used as a filler in a composite material and a method for producing the same.
背景技術  Background art
[0002] 従来、炭素繊維を各種のプラスチック、セラミックス、金属、ゴムなどのマトリックス中 に充填材として分散させた炭素繊維複合材料は、機械的強度、熱伝導性、電気伝導 性、耐熱性、電磁波シールド性などが向上するために、各種の分野にて使用されて いる。これは、近年、電気'電子機器分野、機能材料分野などでは、これらの特性が 一段と要求されるために期待されて 、る。  Conventionally, carbon fiber composite materials in which carbon fibers are dispersed as fillers in matrices of various plastics, ceramics, metals, rubbers, etc. have mechanical strength, thermal conductivity, electrical conductivity, heat resistance, electromagnetic waves. It is used in various fields to improve shielding performance. This is expected in recent years because these characteristics are further required in the fields of electrical and electronic equipment and functional materials.
[0003] 炭素繊維としては、ピッチ系炭素繊維、 PAN (ポリアクリロニトリル)系炭素繊維など が広く使用されているが、特に近年、気相法による炭素繊維や、カーボンナノチュー ブなどの微細炭素繊維の使用が提案されている。し力しながら、これらの微細炭素繊 維を充填材とする複合材料はそれほどの普及をみせていない。それは、微細炭素繊 維のコスト面の問題もある力 それ以上に、コストの上昇に見合う特性の向上が得ら れないことが一因である。  [0003] Pitch-based carbon fibers and PAN (polyacrylonitrile) -based carbon fibers are widely used as carbon fibers. In recent years, carbon fibers produced by the vapor phase method and fine carbon fibers such as carbon nanotubes have been used. The use of is proposed. However, composite materials that use these fine carbon fibers as fillers have not been so popular. This is partly due to the fact that fine carbon fiber has a cost-related problem and cannot improve the properties to meet the cost increase.
[0004] 微細炭素繊維を充填材として使用する場合に期待される特性向上が達成されない 大きな原因は、微細炭素繊維がマトリックスを構成する材料との濡れ性が小さいため 、マトリックス中における分散性が悪 、ことに起因するものと思われる。  [0004] The characteristic improvement expected when using fine carbon fibers as a filler is not achieved. The main cause is that the fine carbon fibers have low wettability with the material constituting the matrix, and therefore the dispersibility in the matrix is poor. , Seems to be due to that.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] 本発明は、上記の事情に鑑みて、プラスチック、セラミックス、金属、ゴムなどのマトリ ックス中に充填材として使用された場合に、マトリックス材料に対する濡れ性が大きく 、マトリックス中における分散性の優れた微細炭素繊維及びその製造方法を提供す ることを目的とする。 [0005] In view of the above circumstances, the present invention has a high wettability with respect to a matrix material when used as a filler in a matrix such as plastic, ceramics, metal, rubber, etc., and the dispersibility in the matrix is high. An object is to provide excellent fine carbon fibers and a method for producing the same.
課題を解決するための手段 [0006] 本発明者は、上記の目的を達成すべく研究を重ねたところ、微細炭素繊維として、 特定の物性を有するものを使用し、かつその表面を所定の量のフエノール榭脂で被 覆した微細炭素繊維が上記目的を達成することを見出した。 Means for solving the problem [0006] The present inventor has made researches to achieve the above-mentioned object, and as a result, fine carbon fibers having specific physical properties are used, and the surface thereof is covered with a predetermined amount of phenolic resin. It was found that the fine carbon fibers achieved achieve the above-mentioned purpose.
[0007] 力べして、本発明は、以下の要旨を特徴とするものである。  [0007] In summary, the present invention is characterized by the following gist.
(1)繊維径 0. 5〜500nm、繊維長 1000 m以下を有する、中心軸が空洞構造の 微細炭素繊維の表面にフエノール榭脂が被覆され、該フエノール榭脂の被覆量が、 上記微細炭素繊維 100重量部あたり、 1〜40重量部であることを特徴とするフエノー ル榭脂被覆微細炭素繊維。  (1) The surface of a fine carbon fiber having a fiber diameter of 0.5 to 500 nm and a fiber length of 1000 m or less and having a hollow center structure is coated with phenol resin, and the coating amount of the phenol resin is the fine carbon 1 to 40 parts by weight per 100 parts by weight of fiber.
(2)微細炭素繊維が、気相法による炭素繊維、及び Z又はカーボンナノチューブで ある上記(1)に記載のフエノール榭脂被覆微細炭素繊維。  (2) The phenol resin-coated fine carbon fiber according to the above (1), wherein the fine carbon fiber is a carbon fiber obtained by a gas phase method, and Z or a carbon nanotube.
(3)微細炭素繊維力 非酸ィ匕性雰囲気にて 2300〜3500°Cで黒鉛ィ匕されている上 記(1)又は(2)に記載のフ ノール榭脂被覆微細炭素繊維。  (3) Fine carbon fiber strength The phenolic resin-coated fine carbon fiber according to the above (1) or (2), which is graphitized at 2300 to 3500 ° C in a non-acidic atmosphere.
(4)フエノール類とアルデヒド類とを、触媒の存在下で、繊維径 0. 5〜500nm、繊維 長 1000 m以下有する、中心軸が空洞構造の微細炭素繊維と混合させつつ反応さ せることを特徴とするフエノール榭脂被覆微細炭素繊維の製造方法。  (4) To react phenols and aldehydes in the presence of a catalyst while mixing them with fine carbon fibers having a fiber diameter of 0.5 to 500 nm and a fiber length of 1000 m or less and having a hollow structure in the central axis. A method for producing a fine carbon fiber coated with phenol resin.
(5)上記微細炭素繊維 100重量部あたり、フ ノール榭脂が 1〜40重量部被覆され る上記 (4)に記載のフエノール榭脂被覆微細炭素繊維の製造方法。  (5) The method for producing phenolic resin-coated fine carbon fiber according to (4), wherein 1 to 40 parts by weight of phenolic resin is coated per 100 parts by weight of the fine carbon fiber.
発明の効果  The invention's effect
[0008] 本発明によれば、プラスチック、セラミックス、金属、ゴムなどのマトリックス中に充填 材として使用された場合に、マトリックス材料に対する濡れ性が大きぐマトリックス中 における分散性の優れたフ ノール榭脂被覆微細炭素繊維及びその製造方法が提 供される。本発明のフエノール榭脂被覆微細炭素繊維が充填されたマトリックスから なる炭素繊維複合材料は、機械的強度、熱伝導性、電気伝導性、耐熱性、電磁波シ 一ルド性などが著しく改善されるために、各種の分野にて使用される。  [0008] According to the present invention, when used as a filler in a matrix of plastic, ceramics, metal, rubber, etc., the phenolic resin having excellent dispersibility in the matrix having high wettability to the matrix material. A coated fine carbon fiber and a method for producing the same are provided. The carbon fiber composite material comprising a matrix filled with the phenol resin-coated fine carbon fiber of the present invention is remarkably improved in mechanical strength, thermal conductivity, electrical conductivity, heat resistance, electromagnetic shielding properties, and the like. And used in various fields.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0009] 本発明で使用される微細炭素繊維としては、繊維径 0. 5〜500nm以下、繊維長 1 OOO /z m以下で、好ましくはアスペクト比 3〜: LOOOを有する、好ましくは炭素六角網 面力 なる円筒が同心円状に配置された多層構造を有し、その中心軸が空洞構造 の微細炭素繊維が使用される。カゝかる微細炭素繊維は、従来の PAN、ピッチ、セル ロース、レーヨンなどの繊維を熱処理することによって得られる、繊維径が 5〜10 /ζ πι の従来のカーボンファイバーとは大きく異なるものである。本発明で使用される微細 炭素繊維は、従来のカーボンファイバーと比べて繊維径ゃ繊維長さが異なるだけで なぐ構造的にも大きく異なっている。この結果、導電性、熱伝導性、摺動性などの物 '性の点で極めて優れるものである。 [0009] The fine carbon fiber used in the present invention has a fiber diameter of 0.5 to 500 nm or less, a fiber length of 1 OOO / zm or less, preferably an aspect ratio of 3 to: preferably a carbon hexagonal network surface. It has a multi-layered structure with concentric cylinders, and its central axis is a hollow structure Of fine carbon fiber is used. The fine carbon fiber that can be produced is significantly different from the conventional carbon fiber with a fiber diameter of 5-10 / ζ πι obtained by heat-treating conventional PAN, pitch, cellulose, rayon and other fibers. . The fine carbon fibers used in the present invention are greatly different from the conventional carbon fibers not only in fiber diameter but also in fiber length. As a result, it is extremely excellent in terms of physical properties such as conductivity, thermal conductivity, and slidability.
[0010] 上記微細炭素繊維は、その繊維径が 0. 5nmより小さい場合には、得られる複合材 料の強度が不十分になり、 500nmより大きいと、機械的強度、熱伝導性、摺動性な どが低下する。また、繊維長が 1000 mより大きい場合には、微細炭素繊維がアル ミニゥム金属などのマトリックス中に均一に分散し難くなるため、材料の組成が不均一 になり、得られる複合材料の機械的強度が低下する。本発明で使用される微細炭素 繊維は、繊維径が 10〜200nm、繊維長が 3〜300 μ m、好ましくはアスペクト比が 3 〜500を有するものが特に好ましい。なお、本発明において微細炭素繊維の繊維径 や繊維長は、電子顕微鏡により測定することができる。 [0010] When the fiber diameter of the fine carbon fiber is smaller than 0.5 nm, the strength of the obtained composite material becomes insufficient. When the fiber diameter is larger than 500 nm, mechanical strength, thermal conductivity, sliding Sexuality, etc. will decrease. In addition, when the fiber length is longer than 1000 m, the fine carbon fibers are difficult to disperse uniformly in a matrix such as aluminum metal, so the composition of the material becomes non-uniform and the mechanical strength of the resulting composite material Decreases. The fine carbon fiber used in the present invention is particularly preferably one having a fiber diameter of 10 to 200 nm, a fiber length of 3 to 300 μm, and preferably an aspect ratio of 3 to 500. In the present invention, the fiber diameter and fiber length of the fine carbon fiber can be measured with an electron microscope.
[0011] 本発明で使用される好ましい微細炭素繊維は、カーボンナノチューブである。この カーボンナノチューブは、グラフアイトウィスカー、フィラメンタスカーボン、炭素フイブ リルなどとも呼ばれて 、るもので、チューブを形成するグラフアイト膜が一層である単 層カーボンナノチューブと、多層である多層カーボンナノチューブとがあり、本発明で はそのいずれも使用できる。しかし、多層カーボンナノチューブの方が、大きい機械 的強度が得られるとともに経済面でも有利であり好ましい。 [0011] A preferred fine carbon fiber used in the present invention is a carbon nanotube. This carbon nanotube is also called a graphite whisker, filamentous carbon, carbon fiber, etc., and is a single-walled carbon nanotube having a single graphite film forming a tube, and a multilayered carbon nanotube having a multilayer structure. Any of them can be used in the present invention. However, multi-walled carbon nanotubes are preferable because they provide a high mechanical strength and are advantageous in terms of economy.
[0012] カーボンナノチューブは、例えば、「カーボンナノチュ—ブの基礎」(コロナ社発行、 23〜57頁、 1998年発行)に記載されるようにアーク放電法、レーザ蒸発法及び熱 分解法などにより製造される。カーボンナノチューブは、繊維径が好ましくは 0. 5〜5 OOnm、繊維長が好ましくは 1〜500 μ m、好ましくはアスペクト比が 3〜500のもので ある。  Carbon nanotubes are, for example, arc discharge methods, laser evaporation methods, thermal decomposition methods, etc. as described in “Basics of Carbon Nanotubes” (issued by Corona, pages 23 to 57, issued in 1998). Manufactured by. The carbon nanotube has a fiber diameter of preferably 0.5 to 5 OOnm, a fiber length of preferably 1 to 500 μm, and preferably an aspect ratio of 3 to 500.
[0013] 本発明において特に好ましい微細炭素繊維は、上記カーボンナノチューブのうち で繊維径と繊維長が比較的大き!/ヽ気相法炭素繊維である。このような気相法炭素繊 維は、 VGCF (Vapor Grown Carbon Fiber)とも呼ばれ、特開 2003— 176327号公 報に記載されるように、炭化水素などのガスを有機遷移金属系触媒の存在下におい て水素ガスとともに気相熱分解することによって製造される。この気相法炭素繊維 (V GCF)は、繊維径が好ましくは 50〜300nm、繊維長が好ましくは 3〜300 μ m、好ま しくはアスペクト比が 3〜500のものである。そして、この VGCFは、製造しやすさや取 り扱 、性の点で優れて 、る。 [0013] Among the carbon nanotubes described above, the fine carbon fiber particularly preferable in the present invention has a relatively large fiber diameter and fiber length! / Vapor grown carbon fiber. Such a vapor grown carbon fiber is also called VGCF (Vapor Grown Carbon Fiber), which is disclosed in Japanese Patent Application Laid-Open No. 2003-176327. As described in the report, it is produced by gas phase pyrolysis of a gas such as hydrocarbon together with hydrogen gas in the presence of an organic transition metal catalyst. The vapor grown carbon fiber (VGCF) has a fiber diameter of preferably 50 to 300 nm, a fiber length of preferably 3 to 300 μm, and preferably an aspect ratio of 3 to 500. This VGCF is excellent in terms of ease of manufacture, handling, and properties.
[0014] 本発明で使用される微細炭素繊維は、 2300°C以上、好ましくは 2500〜3500°C の温度で非酸化性雰囲気にて熱処理することが好ましぐこれにより、黒鉛化され、 機械的強度、化学的安定性が大きく向上し、圧力容器の軽量化に貢献する。非酸化 性雰囲気は、アルゴン、ヘリウム、窒素ガスが好ましく使用される。この熱処理におい て、炭化ホウ素、酸化ホウ素、ホウ酸、ホウ酸塩、窒化ホウ素、有機ホウ素化合物など のホウ素化合物を共存させた場合には、上記熱処理効果が一層向上するとともに、 熱処理温度も低下し、有利に実施できる。このホウ素化合物は、熱処理された微細 炭素繊維中にホウ素含有量が 0. 01〜: LO重量%、好ましくは 0. 1〜5重量%になる ように存在させるのが好まし!/、。  [0014] The fine carbon fiber used in the present invention is preferably heat-treated in a non-oxidizing atmosphere at a temperature of 2300 ° C or higher, preferably 2500 to 3500 ° C. The mechanical strength and chemical stability are greatly improved, contributing to weight reduction of pressure vessels. As the non-oxidizing atmosphere, argon, helium, and nitrogen gas are preferably used. In this heat treatment, when a boron compound such as boron carbide, boron oxide, boric acid, borate, boron nitride, and organic boron compound coexists, the heat treatment effect is further improved and the heat treatment temperature is lowered. Can be advantageously implemented. This boron compound is preferably present in the heat-treated fine carbon fiber so that the boron content is 0.01 to: LO weight%, preferably 0.1 to 5 weight%! /.
[0015] 本発明では、微細炭素繊維の表面にフエノール榭脂が被覆される。フエノール榭脂 を表面に被覆した微細炭素繊維は、予め製造されたフエノール榭脂粉末を使用し、 該フエノール榭脂粉末をそのまま、ある 、はエタノールなどのアルコールなどの溶剤 を加えて希釈し、これを微細炭素繊維と混合し-一ダ一等で混練し、この混練物を押 出した後に乾燥し、これを粉砕することによって製造できる。しかし、このようにして得 られたフエノール榭脂を表面に被覆した微細炭素繊維は、フエノール榭脂の被覆量 力 S40重量%以上と多い。フエノール榭脂の量が多くなると相対的に微細炭素繊維量 が少なくなるので、機械的強度、導電性、熱伝導性が低下してしまう。  [0015] In the present invention, the phenolic resin is coated on the surface of the fine carbon fiber. The fine carbon fiber coated with phenolic resin on the surface uses previously prepared phenolic resin powder, and the phenolic resin powder is diluted as it is or by adding a solvent such as alcohol such as ethanol. Can be produced by mixing with fine carbon fiber and kneading the mixture with a fine carbon fiber, extruding the kneaded product, drying it, and pulverizing it. However, the fine carbon fibers coated on the surface with the phenol resin obtained in this way have a coating capacity of S40 wt% or more. Since the amount of fine carbon fibers is relatively reduced when the amount of phenolic rosin is increased, mechanical strength, conductivity, and thermal conductivity are lowered.
[0016] 本発明者の知見では、予め製造されたフエノール榭脂を使用するのではなぐフエ ノール類とアルデヒド類とを、触媒の存在下で微細炭素繊維と混合させつつ反応させ ることにより、フエノール榭脂が微細炭素繊維の表面に極めて薄く均一に被覆される ことが判明した。この結果、この方法により得られるフエノール榭脂被覆微細炭素繊 維における、フ ノール榭脂の被覆量力 0重量%以下、更に好ましくは 25重量%以 下の微細炭素繊維を容易に得ることができる。 [0017] 力かる方法で使用されるフエノール榭脂の合成に用いるフエノール類としては、例 えば、フエノール、カテコール、タンニン、レゾルシン、ヒドロキノン、ピロガロール、 o— クレゾール、 m クレゾール、 p クレゾール、 p—t—ブチルフエノール、 4—tーブチ ルカテコール、 m—フエ-ルフエノール、 p フエ-ルフエノール、 p— ( a—タミル)フ ェノール、 ρ ノニルフエノール、グアヤコール、ビスフエノール A、ビスフエノール S、 ビスフエノーノレ F、 o クロ口フエノーノレ、 p クロ口フエノーノレ、 2, 4ージクロロフエノー ル、 o フエ-ルフエノール、 3, 5 キシレノール、 2, 3 キシレノール、 2, 5 キシ レノール、 2, 6 キシレノール、 3, 4 キシレノール、 p—ォクチルフエノールなどを 挙げることができ、これらのうち 1種のものを単独で用いる他、 2種以上のものを併用 することちでさる。 [0016] According to the knowledge of the present inventor, phenols and aldehydes, which do not use a pre-manufactured phenol resin, are reacted while being mixed with fine carbon fibers in the presence of a catalyst, It has been found that phenolic resin is very thin and evenly coated on the surface of fine carbon fibers. As a result, it is possible to easily obtain fine carbon fibers with a phenol resin-coated fine carbon fiber obtained by this method of 0% by weight or less, more preferably 25% by weight or less of phenol resin. [0017] Examples of the phenols used in the synthesis of phenol rosin used in the powerful method include phenol, catechol, tannin, resorcin, hydroquinone, pyrogallol, o-cresol, m cresol, p cresol, p-t --Butylphenol, 4-tert-butylcatechol, m-phenol-phenol, p-phenolphenol, p- (a-tamyl) phenol, ρnonylphenol, guaiacol, bisphenol A, bisphenol S, bisphenol no F, o Black mouth phenol, p Black mouth phenol, 2,4-dichlorophenol, o-phenol phenol, 3,5 xylenol, 2,3 xylenol, 2,5 xylenol, 2,6 xylenol, 3,4 xylenol, p —Octylphenol, etc. Used other, Chide monkey be used in combination more than two kinds in.
[0018] 一方、上記フエノール榭脂の原料に用いるアルデヒド類としては、ホルムアルデヒド の水溶液の形態であるホルマリンが最適である力 トリオキサン、テトラオキサン、パラ ホルムアルデヒドのような形態のものを用いることもでき、その他ホルムアルデヒドの一 部あるいは大部分をフルフラールゃフルフリルアルコールに置き換えることも可能で ある。  [0018] On the other hand, as aldehydes used as a raw material for the above-mentioned phenolic rosin, it is possible to use a form such as trioxane, tetraoxane, paraformaldehyde which is most suitable for formalin in the form of an aqueous formaldehyde solution. It is also possible to replace part or most of formaldehyde with furfural or furfuryl alcohol.
[0019] また、フエノール類とアルデヒド類を付加縮合反応させる触媒としては、ナトリウム、 カリウム、リチウムなどのアルカリ金属の酸化物や水酸化物や炭酸塩、カルシウム、マ グネシゥム、バリウムなどアルカリ土類金属の酸化物や水酸化物や炭酸塩、アミンィ匕 合物を用いるのが好ましい。これらのうち 1種のものを単独で用いる他、 2種以上のも のを併用することもできる。具体例を挙げれば、水酸化ナトリウム、水酸ィ匕カリウム、水 酸化リチウム、炭酸ナトリウム、水酸ィ匕カルシウム、水酸化マグネシウム、水酸化バリウ ム、炭酸カルシウム、酸化マグネシウム、酸化カルシウム、アンモニア、へキサメチレ ントリアミン、トリメチルァミン、トリェチルァミン、トリエタノールァミン、 1, 8 ジァザビ シクロ [5, 4, 0]ゥンデセン 7などがある。  [0019] In addition, as a catalyst for addition condensation reaction of phenols and aldehydes, alkali metal oxides such as sodium, potassium and lithium, oxides and hydroxides, carbonates, calcium, magnesium, barium and the like It is preferable to use oxides, hydroxides, carbonates, and amine compounds. One of these can be used alone, or two or more can be used in combination. Specific examples include sodium hydroxide, potassium hydroxide, lithium hydroxide, sodium carbonate, calcium hydroxide, magnesium hydroxide, barium hydroxide, calcium carbonate, magnesium oxide, calcium oxide, and ammonia. Examples include oxamethyltriamine, trimethylamine, triethylamine, triethanolamine, and 1,8 diazabicyclo [5,4,0] undecene7.
[0020] また、フエノール榭脂の形成にあたっては、フエノール類及びアルデヒド類のほかに 、滑剤、繊維、エポキシ榭脂、カップリング剤などを配合することもできる。  [0020] In addition to the phenols and aldehydes, in addition to the phenols and aldehydes, lubricants, fibers, epoxy resins, coupling agents, and the like can be blended.
[0021] フエノール榭脂で被覆された微細炭素繊維を製造する場合、フエノール類とアルデ ヒド類と反応触媒を反応容器にとり、さらに反応容器に微細炭素繊維、その他必要に 応じた成分を投入し、これらの存在下でフエノール類とアルデヒド類を反応させる。こ の反応は反応系を攪拌するに足る量の水中で、攪拌しつつ行なわれるのが好ましく 、反応の当初では反応系は粘稠であって攪拌に伴って流動する状態である。反応が 進むにつれて、微細炭素繊維を含むフエノール類とアルデヒド類との縮合反応物が 系中の水と分離し始め、生成されるフエノール榭脂と微細炭素繊維とが凝集した複合 粒子が反応容器の全体に分散された状態になる。そしてさらに所望する程度にフ ノ ール榭脂の反応を進めて冷却したのちに攪拌を停止すると、フエノール榭脂で被覆 された微細炭素繊維は沈殿して水と分離され、濾過することによって水から容易に分 離することができ、これを乾燥することによってフエノール榭脂被覆微細炭素繊維を 容易に得ることができる。 [0021] When producing fine carbon fibers coated with phenol resin, phenols, aldehydes, and a reaction catalyst are placed in a reaction vessel. The corresponding components are added, and phenols and aldehydes are reacted in the presence of them. This reaction is preferably carried out with stirring in an amount of water sufficient to stir the reaction system. At the beginning of the reaction, the reaction system is viscous and flows with stirring. As the reaction progresses, the condensation reaction product of phenols and aldehydes containing fine carbon fibers begins to separate from the water in the system, and the composite particles formed by the aggregation of phenolic resin and fine carbon fibers form the reaction vessel. Distributed throughout. When the stirring of the phenolic resin is further stopped after the reaction of the phenolic resin is further promoted to the desired level, the fine carbon fibers coated with the phenolic resin are precipitated and separated from the water. From this, it is possible to easily obtain a phenol resin-coated fine carbon fiber by drying.
[0022] カゝくして製造されるフエノール榭脂被覆微細炭素繊維におけるフエノール榭脂は微 細炭素繊維の表面に極めて薄く均一に被覆されるため、フエノール榭脂の被覆量が 少ない微細炭素繊維を容易に得ることができる。カゝくして、フエノール榭脂の被覆量 は、微細炭素繊維 100重量部あたり、 1〜40重量部になるようにされる。被覆量が 40 重量部より大きいと相対的に繊維含有率が低下するため複合材料の特性が低下し、 逆に 1量部より小さいと微細炭素繊維の力さ密度が小さくなるためマトリックス中に分 散しにくくなり好ましくはない。  [0022] Since the phenolic resin in the phenolic resin-coated fine carbon fiber produced by caulking is coated very thinly and uniformly on the surface of the fine carbon fiber, a fine carbon fiber with a small amount of phenolic resin is used. Can be easily obtained. As a result, the coating amount of phenol resin is adjusted to 1 to 40 parts by weight per 100 parts by weight of fine carbon fiber. If the coating amount is larger than 40 parts by weight, the fiber content is relatively lowered, so that the properties of the composite material are deteriorated. It is not preferable because it is difficult to disperse.
[0023] 本発明のフエノール榭脂被覆微細炭素繊維は、各種のマトリックスに充填されて使 用される。力かるマトリックスとして、アルミニウム、マグネシウム、銀、銅、チタン、 -ッ ケル、又はこれらの金属を含む合金などの金属;アルミナ、窒化ケィ素、炭化ケィ素、 酸化ジルコニウム、二酸化ケイ素などのセラミックス;ポリアミド、ポリフェニンレンォキ シド、ポリブチレンテレフタレート、ポリエステル、ポリエチレン、ポリアセタール、ポリ塩 化ビュル、ポリスチレン、ポリブテンなどの熱可塑性榭脂;エポキシ榭脂、不飽和ポリ エステル榭脂、フエノール榭脂、四フッ化工チレン榭脂などの熱硬化性榭脂;ポリブタ ジェン、ポリイソプレン、天然ゴム、スチレンゴムなどのゴム;などが挙げられる。なかで も、本発明では、プラスチックスとしては、ナイロン、エポキシ榭脂が、セラミックスとし ては、窒化ケィ素力 金属としては、アルミニウム、マグネシウムが好ましい。  [0023] The phenol resin-coated fine carbon fiber of the present invention is used by being filled in various matrices. As a strong matrix, metals such as aluminum, magnesium, silver, copper, titanium, nickel, and alloys containing these metals; ceramics such as alumina, silicon nitride, carbide, zirconium oxide, silicon dioxide; polyamides Thermoplastic resins such as polyphenylene oxide, polybutylene terephthalate, polyester, polyethylene, polyacetal, polychlorinated bur, polystyrene, polybutene; epoxy resin, unsaturated polyester resin, phenol resin, And thermosetting resin such as modified ethylene resin; rubber such as polybutadiene, polyisoprene, natural rubber, and styrene rubber. Among them, in the present invention, nylon and epoxy resin are preferable as the plastics, and aluminum and magnesium are preferable as the ceramic nitride metal as the ceramics.
[0024] マトリックス中のフエノール榭脂被覆微細炭素繊維の含有量は、これらが添加される マトリックの種類や製造される複合材料の用途などによっては異なるが、通常は、好 ましくは 25〜85重量%、特には 30〜70重量%が含有される。 [0024] The content of the fine carbon fiber coated with phenol resin in the matrix is added to these Depending on the type of matrix and the application of the composite material to be produced, it is usually contained preferably 25 to 85% by weight, particularly 30 to 70% by weight.
実施例  Example
[0025] 次に、本発明を実施例によって具体的に説明する。  Next, the present invention will be specifically described with reference to examples.
実施例 1  Example 1
攪拌機付きの反応容器に、フ ノールを 347重量部、 37重量%ホルマリンを 448重 量部、へキサメチレンテトラミンを 36重量部仕込んだ。さらに、繊維径が 150nm、繊 維長が 15 μ m、アスペクト比が 100の気相法炭素繊維 (VGCF)をアルゴンガス雰囲 気中、温度 2800°Cで 30分間、加熱処理して黒鉛化した微細炭素繊維を 1835重量 部及び水を 1500重量部仕込んだ。そしてこれを攪拌混合しながら 60分を要して 90 °Cまで昇温し、そのまま 4時間反応を行なった。次に、 20°Cまで冷却した後、反応容 器の内容物をヌッチェによりろ別して、含有水分 22重量%のフエノール榭脂被覆微 細炭素繊維を得た。  A reaction vessel equipped with a stirrer was charged with 347 parts by weight of phenol, 448 parts by weight of 37% by weight formalin, and 36 parts by weight of hexamethylenetetramine. In addition, vapor grown carbon fiber (VGCF) with a fiber diameter of 150 nm, fiber length of 15 μm, and aspect ratio of 100 is graphitized by heating at 2800 ° C for 30 minutes in an argon gas atmosphere. 1835 parts by weight of fine carbon fiber and 1500 parts by weight of water were charged. Then, with stirring and mixing, the temperature was raised to 90 ° C. over 60 minutes, and the reaction was carried out for 4 hours. Next, after cooling to 20 ° C., the contents of the reaction vessel were filtered off with Nutsche to obtain a phenolic rosin-coated fine carbon fiber having a moisture content of 22% by weight.
[0026] この微細炭素繊維を、ステンレス製バットに敷いたポリエチレンシートの上に約 2cm の厚さに広げ、これを熱風循環式乾燥器に入れて器内温度 45°Cで約 48時間乾燥 すること〖こよって、含有水分 0. 5重量%のサラサラとした、フエノール榭脂被覆微細 炭素繊維を得た。この微細炭素繊維中のフエノール榭脂の含有量は 15重量%であ つた o  [0026] The fine carbon fiber is spread to a thickness of about 2 cm on a polyethylene sheet laid on a stainless steel vat, and is then placed in a hot-air circulating dryer and dried at an internal temperature of 45 ° C for about 48 hours. As a result, a fine carbon fiber coated with phenol resin having a moisture content of 0.5% by weight was obtained. The content of phenol resin in this fine carbon fiber was 15% by weight.
[0027] 上記で得られたフエノール榭脂被覆微細炭素繊維を、縦 100mm X横 100mm X 厚み 10mmの板状成形金型に充填し、 200kgZcm2、 150°C、 30分、加圧硬化させ た。得られた成型体に対し、さら〖こ、 800°C、 300kgZcm2で溶融アルミニウムを圧入 させ、アルミニウムマトリックスの複合材を得た。本複合材は繊維体積含有率 65%の 微細炭素繊維が均一に分散していた。 [0027] Fine phenolic fiber coated with phenol resin obtained above was filled into a plate-shaped mold having a length of 100 mm x width 100 mm x thickness 10 mm, and pressure cured at 200 kgZcm 2 at 150 ° C for 30 minutes. . The obtained molded body was press-fitted with molten aluminum at Sarako, 800 ° C, 300 kgZcm 2 to obtain an aluminum matrix composite. In this composite material, fine carbon fibers with a fiber volume content of 65% were uniformly dispersed.
[0028] 実施例 2  [0028] Example 2
実施例 1で使用したフエノール榭脂被覆微細炭素繊維 100重量部に対し、粉末フ エノール榭脂(リグナイト社製、商品名: LA— 100P) 43重量部を混合し、 Vプレンダ 一で攪拌混合した。  100 parts by weight of phenol resin coated fine carbon fiber used in Example 1 was mixed with 43 parts by weight of powdered phenol resin (trade name: LA-100P, manufactured by Lignite Co., Ltd.) .
得られる混合物を、縦 100mm X横 100mm X厚み 10mmの板状成形金型で 200 kg/cm2, 150°C、 30分加圧硬化させた。成形物は、繊維体積含有率 60%の微細 炭素繊維が均一に分散した複合材料であった。 The resulting mixture is 200 mm in a plate mold with a length of 100 mm x width 100 mm x thickness 10 mm. kg / cm 2 , 150 ° C, and pressure cured for 30 minutes. The molded product was a composite material in which fine carbon fibers having a fiber volume content of 60% were uniformly dispersed.
[0029] 実施例 3 [0029] Example 3
実施例 1における微細炭素繊維として、繊維径が 80nm、繊維長が 2. 0 m、ァス ぺクト比が 25の微細炭素繊維を用いる以外は実施例 1と同様にフエノール榭脂被覆 炭素繊維を調製した。  As the fine carbon fiber in Example 1, a phenol resin coated carbon fiber was used in the same manner as in Example 1 except that a fine carbon fiber having a fiber diameter of 80 nm, a fiber length of 2.0 m, and an aspect ratio of 25 was used. Prepared.
得られたフエノール榭脂被覆微細炭素繊維を、実施例 2と同様にして、粉末フヱノ ール榭脂と混合し、加圧硬化することにより成形体を得た。該成型体は繊維体積含 有率 60%の微細炭素繊維が均一に分散した複合材料であった。  The obtained phenol resin-coated fine carbon fiber was mixed with powdered phenol resin in the same manner as in Example 2 and pressure-cured to obtain a molded body. The molded body was a composite material in which fine carbon fibers having a fiber volume content of 60% were uniformly dispersed.
[0030] 比較例 1 [0030] Comparative Example 1
実施例 1にお 、て、フエノール榭脂を被覆しな 、微細炭素繊維を使用した。すなわ ち、該微細炭素繊維 100重量部を、実施例 2と同様にして、粉末フエノール榭脂 67 重量部と Vプレンダ一で攪拌混合した。得られた混合物を実施例 2と同様の条件で 加圧成形した。得られた成形体の繊維体積含有率は 55%であったが、凝集した微 細炭素繊維が成形体中に偏在しており、 VGCFの凝集箇所で崩れやすいものであ つ 7こ。  In Example 1, fine carbon fiber was used without coating with phenol resin. That is, 100 parts by weight of the fine carbon fiber was stirred and mixed in the same manner as in Example 2 with 67 parts by weight of powdered phenol resin and a V-pender. The obtained mixture was pressure-molded under the same conditions as in Example 2. The resulting molded body had a fiber volume content of 55%, but the agglomerated fine carbon fibers were unevenly distributed in the molded body, and it was easy to collapse at the VGCF aggregation site.

Claims

請求の範囲 The scope of the claims
[1] 繊維径 0. 5〜500nm、繊維長 1000 m以下を有する、中心軸が空洞構造の微 細炭素繊維の表面にフエノール榭脂が被覆され、該フエノール榭脂の被覆量力 上 記微細炭素繊維 100重量部あたり、 1〜40重量部であることを特徴とするフ ノール 榭脂被覆微細炭素繊維。  [1] The surface of a fine carbon fiber having a fiber diameter of 0.5 to 500 nm and a fiber length of 1000 m or less and having a hollow structure in the central axis is coated with phenol resin, and the coating power of the phenol resin is as described above. A phenol-resin-coated fine carbon fiber characterized in that it is 1 to 40 parts by weight per 100 parts by weight of the fiber.
[2] 微細炭素繊維が、気相法炭素繊維である請求項 1に記載のフエノール榭脂被覆微 細炭素繊維。  [2] The phenol-resin-coated fine carbon fiber according to claim 1, wherein the fine carbon fiber is a vapor grown carbon fiber.
[3] 微細炭素繊維が、非酸ィ匕性雰囲気にて 2300〜3500°Cで黒鉛ィ匕処理されている 請求項 1又は 2に記載のフエノール榭脂被覆微細炭素繊維。  [3] The phenol resin-coated fine carbon fiber according to claim 1 or 2, wherein the fine carbon fiber is graphite-treated at 2300 to 3500 ° C in a non-acidic atmosphere.
[4] フエノール類とアルデヒド類とを、触媒の存在下で、繊維径 0. 5〜500nm、繊維長[4] Phenolics and aldehydes in the presence of a catalyst, fiber diameter 0.5 to 500 nm, fiber length
1000 m以下を有する、中心軸が空洞構造の微細炭素繊維と混合させつつ反応さ せることを特徴とするフエノール榭脂被覆微細炭素繊維の製造方法。 A method for producing fine carbon fiber coated with phenol resin, characterized by reacting while mixing with fine carbon fiber having a center axis of 1000 m or less and having a hollow structure in the central axis.
[5] 上記微細炭素繊維 100重量部あたり、フ ノール榭脂が 1〜40重量部被覆される 請求項 4に記載のフエノール榭脂被覆微細炭素繊維の製造方法。 5. The method for producing phenolic resin-coated fine carbon fiber according to claim 4, wherein 1 to 40 parts by weight of phenolic resin is coated per 100 parts by weight of the fine carbon fiber.
PCT/JP2005/010192 2004-07-06 2005-06-02 Phenolic-resin-coated fine carbon fiber and process for producing the same WO2006003771A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006528438A JPWO2006003771A1 (en) 2004-07-06 2005-06-02 Phenolic resin-coated fine carbon fiber and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-199497 2004-07-06
JP2004199497 2004-07-06

Publications (1)

Publication Number Publication Date
WO2006003771A1 true WO2006003771A1 (en) 2006-01-12

Family

ID=35782584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/010192 WO2006003771A1 (en) 2004-07-06 2005-06-02 Phenolic-resin-coated fine carbon fiber and process for producing the same

Country Status (2)

Country Link
JP (1) JPWO2006003771A1 (en)
WO (1) WO2006003771A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009173529A (en) * 2007-11-26 2009-08-06 Porcher Industries Rfl film or adhesive dip coating layer containing carbon nanotube, and yarn comprising the coating layer
JP2010132515A (en) * 2008-12-08 2010-06-17 Mitsubishi Rayon Co Ltd Method for manufacturing porous electrode substrate
JP2012207099A (en) * 2011-03-29 2012-10-25 Sumitomo Bakelite Co Ltd Phenolic resin molding material
JP2019177452A (en) * 2018-03-30 2019-10-17 山形県 Carbon nanotube composite resin bond whetstone, and manufacturing method thereof
JP2019178027A (en) * 2018-03-30 2019-10-17 山形県 Resin coated carbon nanotube
JP2019178223A (en) * 2018-03-30 2019-10-17 山形県 Carbon nanotube composite resin molded body and manufacturing method therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60127264A (en) * 1983-12-15 1985-07-06 旭有機材工業株式会社 Phenol resin coated carbonaceous fiber
JPH03287821A (en) * 1990-04-02 1991-12-18 Japan Synthetic Rubber Co Ltd Production of modified extra fine carbon fibril
JP2004506530A (en) * 2000-08-24 2004-03-04 ウィリアム・マーシュ・ライス・ユニバーシティ Polymer wrapped single-walled carbon nanotubes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60127264A (en) * 1983-12-15 1985-07-06 旭有機材工業株式会社 Phenol resin coated carbonaceous fiber
JPH03287821A (en) * 1990-04-02 1991-12-18 Japan Synthetic Rubber Co Ltd Production of modified extra fine carbon fibril
JP2004506530A (en) * 2000-08-24 2004-03-04 ウィリアム・マーシュ・ライス・ユニバーシティ Polymer wrapped single-walled carbon nanotubes

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009173529A (en) * 2007-11-26 2009-08-06 Porcher Industries Rfl film or adhesive dip coating layer containing carbon nanotube, and yarn comprising the coating layer
JP2010132515A (en) * 2008-12-08 2010-06-17 Mitsubishi Rayon Co Ltd Method for manufacturing porous electrode substrate
JP2012207099A (en) * 2011-03-29 2012-10-25 Sumitomo Bakelite Co Ltd Phenolic resin molding material
JP2019177452A (en) * 2018-03-30 2019-10-17 山形県 Carbon nanotube composite resin bond whetstone, and manufacturing method thereof
JP2019178027A (en) * 2018-03-30 2019-10-17 山形県 Resin coated carbon nanotube
JP2019178223A (en) * 2018-03-30 2019-10-17 山形県 Carbon nanotube composite resin molded body and manufacturing method therefor
JP7053015B2 (en) 2018-03-30 2022-04-12 山形県 Method for manufacturing carbon nanotube composite resin molded product
JP7168159B2 (en) 2018-03-30 2022-11-09 山形県 Carbon nanotube composite resin bond grinding wheel and its manufacturing method

Also Published As

Publication number Publication date
JPWO2006003771A1 (en) 2008-04-17

Similar Documents

Publication Publication Date Title
WO2006003771A1 (en) Phenolic-resin-coated fine carbon fiber and process for producing the same
JP3943123B2 (en) Method for producing carbon fiber reinforced carbon composite material suitable for heat sink for semiconductor
JP4002294B2 (en) Carbon fiber Ti-Al composite material and method for producing the same.
WO2006100809A1 (en) Composite material
JP2013091783A (en) Electroconductive resin composition, and electroconductive coating and electroconductive adhesive using the same
JP5025126B2 (en) Conductive phenol resin composite material, method for producing conductive phenol resin composite material, conductive composite carbonized material, conductive resin composition, secondary battery electrode, electrode carbon material, electric double layer capacitor polarizable electrode
JP4570553B2 (en) Composite material
JP4963579B2 (en) Polysaccharide-modified phenolic resin, production method of polysaccharide-modified phenolic resin, resin-coated sand, polysaccharide-modified phenolic resin carbonized material, conductive resin composition, carbon material for electrode, electrode for secondary battery, electric double layer capacitor polarizability electrode
JPWO2006027879A1 (en) Carbon fiber Ti-Al composite material and manufacturing method thereof
JPH0645185B2 (en) Porous composite sheet and method for producing the same
Bîru et al. Developing polybenzoxazine composites based on various carbon structures
JP2012149161A (en) Electroconductive resin composition, and conductive coating and conductive adhesive using the same
JP4537809B2 (en) Carbon / phenolic resin composite material, carbon / phenolic resin composite cured material, carbon / phenolic resin composite carbonized material, fuel cell separator, conductive resin composition, battery electrode, electric double layer capacitor
JP4358986B2 (en) Method for producing carbon / phenolic resin molding material
JP5246728B2 (en) Production method of phenol resin, phenol resin, phenol resin carbonized material, conductive resin composition, electrode for secondary battery, carbon material for electrode, adsorbent for medicine, electric double layer capacitor polarizable electrode
JP2006117461A (en) Carbon nanofiber-phenol resin composite carbonized material, electrically conductive resin composition, electrode for secondary battery, carbon material for electrical double layer capacitor polarizable electrode, and electrical double layer capacitor polarizable electrode
JP3915045B2 (en) Structural part molding material in machining center and structural part molding in machining center
JP5002792B2 (en) Polysaccharide-modified phenolic resin, production method of polysaccharide-modified phenolic resin, resin-coated sand, polysaccharide-modified phenolic resin carbonized material, conductive resin composition, carbon material for electrode, electrode for secondary battery, electric double layer capacitor polarizability electrode
JP5050257B2 (en) Carbon nanofiber-containing resin molding
JP4568079B2 (en) Carbon nanofiber / phenolic resin composite material, method for producing carbon nanofiber / phenolic resin composite material
JP4473515B2 (en) Carbon / oxazine compound composite molding material and fuel cell separator
JP2009242529A (en) Thermosetting resin composite material, its manufacturing method, and friction material
JP3583872B2 (en) Carbon / resin composite
Wu et al. Effects of carbon nanotubes on curing and properties of boron-containing bisphenol-S formaldehyde resin/o-cresol epoxy resin composites
JPH11166101A (en) Manufacture of glass-fiber containing phenolic resin molding material

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006528438

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase