WO2006001064A1 - 半導体装置及びその製造方法 - Google Patents

半導体装置及びその製造方法 Download PDF

Info

Publication number
WO2006001064A1
WO2006001064A1 PCT/JP2004/009147 JP2004009147W WO2006001064A1 WO 2006001064 A1 WO2006001064 A1 WO 2006001064A1 JP 2004009147 W JP2004009147 W JP 2004009147W WO 2006001064 A1 WO2006001064 A1 WO 2006001064A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
semiconductor device
ferroelectric
memory cell
cell array
Prior art date
Application number
PCT/JP2004/009147
Other languages
English (en)
French (fr)
Inventor
Kaoru Saigoh
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP2004/009147 priority Critical patent/WO2006001064A1/ja
Publication of WO2006001064A1 publication Critical patent/WO2006001064A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/564Details not otherwise provided for, e.g. protection against moisture
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
    • H10B53/30Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors characterised by the memory core region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
    • H10B53/40Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors characterised by the peripheral circuit region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/55Capacitors with a dielectric comprising a perovskite structure material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a semiconductor device and a manufacturing method thereof, and more particularly to a semiconductor device having a ferroelectric capacitor and a manufacturing method thereof.
  • Ferroelectric Random Access Memory using such a ferroelectric capacitor is capable of high-speed operation, low power consumption, and excellent write / read durability. It is a non-volatile memory with features, and further development is expected in the future.
  • the ferroelectric capacitor has a property that its characteristics are easily deteriorated by hydrogen gas or moisture from the outside. For this reason, in the FeRAM, it is necessary to reduce the damage to the ferroelectric capacitor due to the formation process of the wiring after forming the ferroelectric capacitor. Moreover, it was necessary to prevent hydrogen gas from entering the package after packaging.
  • Patent Document 1 Japanese Patent Laid-Open No. 11-261302
  • An object of the present invention is to provide a semiconductor device having excellent resistance to hydrogen gas and moisture resistance, and capable of sufficiently suppressing deterioration of the characteristics of a ferroelectric capacitor, and a method for manufacturing the same. Means for solving the problem
  • a first lower electrode formed in a memory cell array region on a semiconductor substrate, a first ferroelectric film formed on the first lower electrode, A plurality of ferroelectric capacitors having a first upper electrode formed on the first ferroelectric film; and formed in a peripheral region other than the memory cell array region on the semiconductor substrate;
  • a semiconductor device having two lower electrodes and a plurality of dummy layers that adsorb hydrogen gas or moisture.
  • a step of forming a first conductor film on a semiconductor substrate, and a step of forming a ferroelectric film on the first conductor film A step of forming a second conductor film on the ferroelectric film; and the second conductor film, the ferroelectric film, and the first conductor in a memory cell array region on the semiconductor substrate.
  • a lower electrode formed in a memory cell array region on a semiconductor substrate, a ferroelectric film formed on the lower electrode, and an upper electrode formed on the ferroelectric film are provided.
  • FIG. 1 is a plan view showing a structure of a semiconductor device according to a first embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing a structure in the vicinity of a peripheral portion of a memory cell array portion in the semiconductor device according to the first embodiment of the present invention.
  • FIG. 3 is a schematic view showing a structure of a bonding pad portion in the semiconductor device according to the first embodiment of the present invention.
  • FIG. 4 is a plan view showing a rule for forming a dummy capacitor in the semiconductor device according to the first embodiment of the present invention.
  • FIG. 5 is a process cross-sectional view (part 1) illustrating the method for manufacturing the semiconductor device according to the first embodiment of the invention.
  • FIG. 6 is a process cross-sectional view (part 2) illustrating the method for manufacturing the semiconductor device according to the first embodiment of the present invention
  • FIG. 7 is a process cross-sectional view (part 3) illustrating the method for manufacturing the semiconductor device according to the first embodiment of the present invention.
  • FIG. 8 is a process cross-sectional view (part 4) illustrating the method for manufacturing the semiconductor device according to the first embodiment of the present invention
  • FIG. 9 is a process cross-sectional view (part 5) illustrating the method for manufacturing the semiconductor device according to the first embodiment of the present invention.
  • FIG. 10 is a process cross-sectional view (No. 6) showing the method for manufacturing a semiconductor device according to the first embodiment of the invention.
  • FIG. 11 is a process cross-sectional view (No. 7) showing the method for manufacturing a semiconductor device according to the first embodiment of the invention.
  • FIG. 12 is a process cross-sectional view (No. 8) showing the method for manufacturing the semiconductor device according to the first embodiment of the invention.
  • FIG. 13 is a process sectional view (No. 9) showing the method for manufacturing the semiconductor device according to the first embodiment of the invention.
  • FIG. 14 is a process sectional view showing the method for manufacturing the semiconductor device according to the first embodiment of the invention. It is a plan (part 10).
  • FIG. 15 is a process sectional view (No. 11) showing the method for manufacturing the semiconductor device according to the first embodiment of the invention.
  • FIG. 16 is a process cross-sectional view (No. 12) showing the method for manufacturing a semiconductor device according to the first embodiment of the present invention
  • FIG. 17 is a process sectional view (No. 13) showing the method for manufacturing the semiconductor device according to the first embodiment of the invention.
  • FIG. 18 is a schematic view showing a structure in the vicinity of a peripheral portion of a memory cell array portion in a semiconductor device according to a second embodiment of the present invention.
  • FIG. 19 is a schematic view showing the structure of the bonding pad portion in the semiconductor device according to the second embodiment of the present invention.
  • FIG. 20 is a process cross-sectional view (part 1) illustrating the method for manufacturing a semiconductor device according to the second embodiment of the present invention
  • FIG. 21 is a process cross-sectional view (part 2) illustrating the method for manufacturing the semiconductor device according to the second embodiment of the present invention.
  • FIG. 22 is a schematic diagram showing the structure near the periphery of the memory cell array portion in the semiconductor device according to the third embodiment of the present invention.
  • FIG. 23 is a schematic diagram showing the structure of the bonding pad portion in the semiconductor device according to the third embodiment of the present invention.
  • FIG. 24 is a process cross-sectional view (part 1) showing the method for manufacturing a semiconductor device according to the third embodiment of the present invention.
  • FIG. 25 is a process cross-sectional view (part 2) illustrating the method for manufacturing the semiconductor device according to the third embodiment of the present invention.
  • FIG. 26 is a plan view showing the structure of the semiconductor device according to the fourth embodiment of the present invention.
  • FIG. 27 is a schematic diagram showing the structure of the peripheral edge portion of the chip in the semiconductor device according to the fourth embodiment of the present invention.
  • FIG. 28 is a plan view showing the structure of a general FeRAM. Description of issue
  • the outermost ferroelectric capacitor in the memory cell array section in which memory cells are arranged is uniformly exposed and etched in the manufacturing process. Therefore, it is difficult to stably form a predetermined shape. For this reason, the ferroelectric capacitor at the outermost peripheral portion in the memory cell array portion is a dummy capacitor to reduce variation in shape and characteristic. At the same time, such a dummy capacitor has a function of adsorbing hydrogen gas and moisture entering the memory cell array portion and preventing deterioration of the characteristics of the ferroelectric capacitor due to hydrogen gas and moisture. I was in charge.
  • FIG. 28 (a) is a plan view showing a structure of a general FeRAM
  • FIG. 28 (b) is an enlarged plan view of a memory cell array portion in a general FeRAM.
  • a memory cell array portion 102 in which a plurality of memory cells having ferroelectric capacitors are arranged is provided in a predetermined region of the chip 100.
  • Other areas of the chip 100 such as the periphery of the memory cell array section 102 are peripheral circuit sections 104 in which peripheral circuits for driving the memory and the like are formed.
  • a gate electrode (gate wiring) 1 10 pairs are formed so as to extend in a predetermined direction.
  • Source / drain diffusion layers 112 are formed in the semiconductor substrate on both sides of the gate electrode 110.
  • a plurality of pairs of transistors 114 having the gate electrode 110 and the source / drain diffusion layer 112 are formed.
  • a ferroelectric capacitor 116 is formed on the semiconductor substrate on both sides of the transistor 114 via an interlayer insulating film.
  • the source / drain diffusion layer 112 of the transistor 114 and the electrode of the ferroelectric capacitor 116 are connected by a predetermined wiring layer and a conductor plug.
  • a plurality of 2T2C type memory cells having two transistors 114 and two ferroelectric capacitors 116 are arranged.
  • the ferroelectric capacitor 116 in the outermost peripheral portion 102a in the memory cell array unit 102 reduces the variation in shape and characteristics and reduces the amount of hydrogen in the memory cell array unit 102. This is a dummy capacitor for preventing gas and moisture from entering.
  • the present invention improves the resistance to hydrogen gas and moisture resistance of a semiconductor device having a ferroelectric capacitor, and makes it possible to provide a highly reliable semiconductor device with a high manufacturing yield.
  • a semiconductor device and a manufacturing method thereof according to the present invention will be described in detail.
  • FIG. 1 is a plan view showing the structure of the semiconductor device according to the present embodiment
  • FIG. 2 is a schematic diagram showing the structure near the periphery of the memory cell array in the semiconductor device according to the present embodiment
  • FIG. 4 is a schematic view showing the structure of the bonding pad portion
  • FIG. 4 is a plan view showing rules for forming a dummy capacitor in the semiconductor device according to the present embodiment
  • FIGS. 5 to 17 are process cross-sectional views showing the method for manufacturing the semiconductor device according to the present embodiment. It is.
  • a memory cell array unit 12 in which a plurality of memory cells having ferroelectric capacitors are arranged is provided in a predetermined region of the chip 10. .
  • a region other than the memory cell array portion 12 of the chip 10 such as the periphery of the memory cell array portion 12 serves as a peripheral circuit portion 14 in which a peripheral circuit for driving the memory is formed.
  • a bonding pad portion 18 formed by arranging bonding pads 16 for connecting the chip circuit and an external circuit is provided on the peripheral portion of the chip 10.
  • a plurality of dummy capacitors having the same structure as the ferroelectric capacitors in the memory cell array section 12 are formed as will be described later.
  • FIG. 2A is a plan view showing the structure near the peripheral edge of the memory cell array portion 12 in the semiconductor device according to the present embodiment, and shows an enlarged region R surrounded by a circle in FIG. It is a thing.
  • Fig. 2 (b) is an enlarged cross-sectional view along the line A-— 'in Fig. 2 (a).
  • an element isolation region 22 that defines an element region is formed on a semiconductor substrate 20 made of, for example, silicon.
  • a tool 24 is formed in the semiconductor substrate 20 in which the element isolation region 22 is formed.
  • the semiconductor substrate 20 on which the rule 24 is formed is shown in FIG.
  • a gate electrode (gate wiring) 28 is formed through a gate insulating film 26.
  • source / drain diffusion layers 32 are formed on both sides of the gate electrode 28.
  • the transistor 34 having the gate electrode 28 and the source / drain diffusion layer 32 is formed.
  • An interlayer insulating film 36 is formed on the semiconductor substrate 20 on which the transistor 34 is formed.
  • a lower electrode 38 of the ferroelectric capacitor 44 is formed on the interlayer insulating film 36 in the memory cell array portion 12.
  • the lower electrode 38 is configured by a laminated film in which a Ti film having a thickness of 20 nm and a Pt film having a thickness of 175 nm are sequentially laminated.
  • a ferroelectric film 40 of the ferroelectric capacitor 44 is formed on the lower electrode 38.
  • ferroelectric film 40 for example, a 200 nm-thick PbZr TiO film (PZT film) is used.
  • the upper electrode 42 of the ferroelectric capacitor 44 is formed.
  • the upper electrode 42 is made of, for example, an IrO film having a thickness of 200 nm.
  • a ferroelectric capacitor 44 including the lower electrode 38, the ferroelectric film 40, and the upper electrode 42 is formed.
  • a lower electrode 38, a ferroelectric film 40, and an upper electrode 42 similar to the ferroelectric capacitor 44 in the memory cell array portion 12 are formed.
  • Me capacitor 46 is formed on the interlayer insulating film 36 in the peripheral circuit portion 14.
  • the dummy capacitor 46 formed in the peripheral circuit unit 14 adsorbs hydrogen gas and moisture and suppresses entry into the hydrogen gas and moisture memory cell array unit 12. Thereby, adsorption of hydrogen gas and moisture by the ferroelectric capacitor 44 constituting the memory cell can be suppressed, and deterioration of the characteristics of the ferroelectric capacitor 44 can be suppressed.
  • An interlayer insulating film 48 is formed on the interlayer insulating film 36 on which the ferroelectric capacitor 44 and the dummy capacitor 46 are formed.
  • a contact hole 50 reaching the upper electrode 42 of the ferroelectric capacitor 38 is formed.
  • contact holes 52a and 52b reaching the source Z drain diffusion layer 32 are formed.
  • Conductor plugs 54a and 54b made of, for example, tungsten are buried in the contact holes 52a and 52b, respectively.
  • a wiring 56 a is formed on the interlayer insulating film 48 and in the contact hole 50.
  • the upper electrode 42 of the ferroelectric capacitor 44 and the conductor plug 54a connected to the source / drain diffusion layer 32 of the transistor 34 are connected by a wiring 56a.
  • a wiring 56b connected to the conductor plug 54b is formed on the interlayer insulating film 48.
  • the wirings 56a and 56b are composed of, for example, a laminated film in which a TiN film having a thickness of 150 nm, an AlCu film having a thickness of 550 nm, a Ti film having a thickness of 5 nm, and a TiN film having a thickness of 150 nm are sequentially laminated. ing.
  • a 2T2C type memory cell having two transistors 34 and two ferroelectric capacitors 44 is configured.
  • An interlayer insulating film 58 is formed on the interlayer insulating film 48 on which the wirings 56a and 56b are formed.
  • a wiring 64a connected to the conductor plug 62a is formed on the interlayer insulating film 58 in which the conductor plug 62a is carried.
  • the wiring 64a is formed by sequentially stacking a Ti film with a thickness of 50 nm, an AlCu film with a thickness of 500 ⁇ m, a Ti film with a thickness of 5 nm, and a TiN film with a thickness of 150 nm. It is composed of a layer film.
  • An interlayer insulating film 66 is formed on the interlayer insulating film 58 on which the wiring 64a is formed.
  • a contact hole 68a reaching the wiring 64a is formed.
  • a conductor plug 70a made of, for example, tungsten is embedded in the contact hole 68.
  • a wiring 72a connected to the conductor plug 70a is formed on the interlayer insulating film 66 in which the conductor plug 70a is carried.
  • the wiring 72a is constituted by, for example, a laminated film in which a TiN film having a thickness of 50 nm, an AlCu film having a thickness of 500 nm, and a TiN film having a thickness of lOOnm are sequentially laminated.
  • An insulating film 74 is formed on the interlayer insulating film 66 on which the wiring 72a is formed.
  • a passivation film 76 made of, for example, a polyimide film is formed on the insulating film 74.
  • FIG. 3A is a plan view showing the structure of the bonding pad portion 18 in the semiconductor device according to the present embodiment, and shows an enlarged region R surrounded by a circle in FIG. .
  • 3 (b) is an enlarged cross-sectional view along the line BB ′ in FIG. 3 (a).
  • an element isolation region 22 that defines an element region is formed on the semiconductor substrate 20.
  • An interlayer insulating film 36 is formed on the semiconductor substrate 20 on which the element isolation region 22 is formed.
  • a lower electrode 38 and a ferroelectric film 40 similar to the ferroelectric capacitor 44 in the memory cell array unit 12 are provided on the interlayer insulating film 36, as shown in FIGS. 3 (a) and 3 (b).
  • a dummy capacitor 46 composed of the upper electrode 42 and the upper electrode 42 is formed on the interlayer insulating film 36, as shown in FIGS. 3 (a) and 3 (b).
  • the dummy capacitor 46 formed on the bonding pad portion 18 adsorbs hydrogen gas and moisture and suppresses entry into the hydrogen cell and moisture cell array portion 12. Thereby, adsorption of hydrogen gas and moisture by the ferroelectric capacitor 44 constituting the memory cell can be suppressed, and deterioration of the characteristics of the ferroelectric capacitor 44 can be suppressed.
  • An interlayer insulating film 48 is formed on the interlayer insulating film 36 on which the dummy capacitor 46 is formed.
  • a wiring 56 c is formed on the interlayer insulating film 48.
  • the wiring 56c is composed of a laminated film similar to the wirings 56a and 56b.
  • An interlayer insulating film 58 is formed on the interlayer insulating film 48 on which the wiring 56c is formed.
  • a wiring 64b connected to the conductor plug 62b is formed on the interlayer insulating film 58 in which the conductor plug 62b is carried.
  • the wiring 64b is configured by a laminated film similar to the wiring 64a.
  • An interlayer insulating film 66 is formed on the interlayer insulating film 58 on which the wiring 64b is formed.
  • a contact hole 68b reaching the wiring 64b is formed.
  • Conductor plug 70b made of tungsten is carried in contact hole 68b.
  • a wiring 72b (bonding pad 16) connected to the conductor plug 70b is formed on the interlayer insulating film 66 in which the conductor plug 70b is carried.
  • An insulating film 74 is formed on the interlayer insulating film 66 on which the wiring 72b is formed.
  • the insulating film 74 has an opening 75a reaching the wiring 72b (bonding pad 16).
  • a passivation film 76 made of, for example, a polyimide film is formed on the insulating film 74 in which the opening 74 is formed.
  • an opening 75b reaching the wiring 72b (bonding pad 16) through the opening 75a formed in the insulating film 74 is formed.
  • the semiconductor device according to the present embodiment is constituted.
  • the semiconductor device includes the peripheral circuit portion 14 around the memory cell array portion 12 and the chip 10 provided with the memory cell array portion 12 in which the memory cells having the ferroelectric capacitors 44 are arranged IJ.
  • a dummy composed of a lower electrode 38, a ferroelectric film 40, and an upper electrode 42, similar to the ferroelectric capacitor 44.
  • the main feature is that one capacitor 46 is formed.
  • the dummy capacitor 46 formed in the peripheral circuit portion 14 and the bonding pad portion 18 surrounding the memory cell array portion 12 absorbs hydrogen gas and moisture entering the chip 10 from the outside. As a result, it is possible to suppress the invasion of hydrogen gas and moisture into the memory cell array unit 12. As a result, the adsorption of hydrogen gas and moisture by the ferroelectric capacitor 44 in the memory cell array unit 12 can be suppressed, and deterioration of the characteristics of the ferroelectric capacitor 44 due to the hydrogen gas and moisture can be suppressed. Therefore, the resistance and moisture resistance of the semiconductor device to hydrogen gas can be improved, and a highly reliable semiconductor device can be provided with a high manufacturing yield.
  • the dummy capacitors 46 in the peripheral circuit unit 14 and the bonding pad unit 18 are formed as many as possible without affecting the circuits on the chip 10 according to the rules described below. ing.
  • the rules for forming the dummy capacitor 46 in the semiconductor device according to the present embodiment will be described with reference to FIG.
  • the dummy capacitor 46 is formed avoiding the ferroelectric capacitor 44 in the memory cell array unit 12.
  • a distance D between the dummy capacitor 46 formed adjacent to the ferroelectric capacitor 44 in the memory cell array portion 12 and the ferroelectric capacitor 44 in the memory cell array portion 12 is, for example, 0.75 ⁇ .
  • the dummy capacitor 46 is formed so as to avoid the contact portion 82 where the conductor plug 80 is connected to the polysilicon layer 78 such as the gate electrode 28 formed on the semiconductor substrate 10.
  • a distance D between the dummy capacitor 46 formed adjacent to the contact portion 82 and the conductor plug 80 in the contact portion 82 is, for example, 0.6 ⁇ .
  • the dummy capacitor 46 is formed on the semiconductor substrate 10 so as to avoid the active region 86 in which the conductor plug 84 is directly connected.
  • a distance D between the dummy capacitor 46 formed adjacent to the active region 86 and the active region 86 is, for example, 1. O z m.
  • the planar shape of the upper electrode 42 of the dummy capacitor 46 has a side length D of, for example, 3. ⁇ ⁇
  • planar shape of the ferroelectric film 40 and the lower electrode 38 of the dummy capacitor 46 is a square having a side length D of, for example, 4. O xm.
  • the distance D between the peripheral edge of the upper electrode 42 and the peripheral edges of the ferroelectric film 40 and the lower electrode 38 is an example. For example, 0 ⁇ 5 / im.
  • a plurality of such dummy capacitors 46 are arranged at intervals D of 1 ⁇ m, for example.
  • the bonding pad portion 16 provided on the peripheral portion of the chip 10 has a sufficient space, so that more dummy capacitors 46 are formed as compared with the peripheral circuit portion 14. be able to. In this way, by forming a large number of dummy capacitors 46 at the peripheral edge of the chip 10, hydrogen gas and water entering the chip 10 from the side surface of the chip 10 can be more effectively adsorbed.
  • FIGS. Figures 5 (a), 5 (c), 6 (a), 6 (c), 7 (a), 7 (c), 8 (a), 8 (c), Figure 9 (a), Figure 9 (c), Figure 10 (a), Figure 10 (c), Figure ll (a), Figure ll (c), Figure 12 (a), Figure 13 (a), Figure 14 (a), FIG. 15 (a), FIG. 16 (a), and FIG. 17 (a) show process cross-sectional views of the memory cell array unit 12 and the peripheral circuit unit 14, and are shown in FIG. 2 (a).
  • Figure 5 (b), Figure 5 (d), Figure 6 (b), Figure 6 (d), Figure 7 (b), Figure 7 (d), Figure 8 (b), Figure 8 (d), Figure 9 (b), Figure 9 (d), Figure 10 (b), Figure 10 (d), Figure ll (b), 011 (d), Figure 12 (b), Figure 13 (b), Figure 14 ( b), Fig. 15 (b), Fig. 16 (b), and Fig. 17 (b) show process cross-sectional views of the bonding pad 18 and correspond to the B--line cross section in Fig. 3 (a). ing.
  • an element isolation region 22 that defines an element region is formed on a semiconductor substrate 20 made of, for example, silicon by, for example, a LOCOS (LOCal Oxidation of Silicon) method.
  • LOCOS LOCal Oxidation of Silicon
  • the dopant 24 is introduced by ion implantation to form the well 24.
  • the transistor 34 having the gate electrode (gate wiring) 28 and the source / drain diffusion layer 32 is formed in the element region by using a normal transistor formation method (FIGS. 5A and 5). (b)).
  • a SiN film having a thickness of, eg, 200 nm is formed on the entire surface by, eg, plasma CVD.
  • an NSG (Nondoped Silicate Glass) film having a thickness of, for example, 600 ⁇ m is formed on the entire surface by, eg, plasma TEOSCVD.
  • SiON film and NSG film An interlayer insulating film 36 is formed by sequentially laminating.
  • the surface of the interlayer insulating film 36 is planarized by, eg, CMP (Chemical Mechanical Polishing) method (FIGS. 5 (c) and 5 (d)).
  • CMP Chemical Mechanical Polishing
  • a Ti film of, eg, a 20 nm-thickness is formed on the entire surface by, eg, sputtering.
  • a Pt film having a thickness of, for example, 175 nm is formed on the entire surface by, eg, sputtering.
  • a laminated film 38 formed by sequentially laminating the Ti film and the Pt film is formed.
  • the laminated film 38 becomes a lower electrode of the ferroelectric capacitor 44 and the dummy capacitor 46.
  • ferroelectric film 40 is formed on the entire surface by, eg, sputtering.
  • a PZT film having a thickness of 200 nm is formed as 40.
  • the ferroelectric film 40 is formed by the sputtering method has been described as an example, but the formation method of the ferroelectric film 40 is not limited to the sputtering method.
  • the ferroelectric film 40 may be formed by sol-gel method, MOD (Metal Organic Deposition) method, MOCVD method or the like.
  • an IrO film 42 of, eg, a 200 nm-thickness is formed on the entire surface by, eg, sputtering or MOCVD (FIGS. 6 (a) and 6 (b)).
  • the IrO film 42 is composed of the ferroelectric capacitor 44 and
  • a photoresist film 88 is formed on the entire surface by spin coating.
  • the photoresist film 88 is patterned into a planar shape of the upper electrodes of the ferroelectric capacitor 44 and the dummy capacitor 46 by photolithography.
  • the IrO film 42 is etched using the photoresist film 88 as a mask.
  • an upper electrode 42 made of a laminated film is formed (FIGS. 6 (c) and 6 (d)). Thereafter, the photoresist film 88 is peeled off.
  • a photoresist film 90 is formed on the entire surface by spin coating.
  • the photoresist film 90 is patterned into the planar shape of the ferroelectric film of the ferroelectric capacitor 44 and the dummy capacitor 46 by photolithography.
  • the ferroelectric film 40 is etched using the photoresist film 90 as a mask.
  • the ferroelectric film 40 patterned in a predetermined plane shape is formed.
  • the photoresist film 90 is peeled off.
  • a photoresist film 92 is formed on the entire surface by spin coating.
  • the photoresist film 92 is patterned into the planar shape of the ferroelectric capacitor 44 and the lower electrode 38 of the dummy capacitor 46 by photolithography.
  • the laminated film 38 is etched using the photoresist film 92 as a mask (FIG. 7B, FIG.
  • the ferroelectric capacitor 44 is formed in the memory cell array unit 12 and the dummy capacitor 46 is formed in the peripheral circuit unit 14 and the bonding pad unit 18.
  • an aluminum oxide film of, eg, a 20 nm-thickness is formed on the entire surface by, eg, CVD.
  • an NSG film having a thickness of, for example, 1500 nm is formed on the entire surface by, eg, plasma TEOSCVD.
  • an interlayer insulating film 48 formed by sequentially laminating an aluminum oxide film and an NSG film is formed.
  • the surface of the interlayer insulating film 48 is flattened by, eg, CMP (FIGS. 8A and 8B).
  • contact holes 52a and 52b reaching the source / drain diffusion layer 32 are formed in the interlayer insulating film 48 and the interlayer insulating film 36 by photolithography and dry etching (FIG. 8B). (c)).
  • a Ti film of, eg, a 20 nm-thickness is formed on the entire surface by, eg, sputtering.
  • a TiN film of, eg, a 50 nm-thickness is formed on the entire surface by, eg, sputtering or CVD.
  • a barrier metal film (not shown) is constituted by the Ti film and the TiN film.
  • a tungsten film of, eg, a 500 nm-thickness is formed on the entire surface by, eg, CVD.
  • the tandastain film and the barrier metal film are polished by CMP, for example, until the surface of the interlayer insulating film 48 is exposed.
  • the conductor plugs 54a and 54b made of tungsten are loaded in the contact holes 52a and 52b, respectively (FIGS. 9 (a) and 9 (b)).
  • a contact hole 50 reaching the upper electrode 42 of the ferroelectric capacitor 44 is formed in the interlayer insulating film 48 by photolithography and dry etching (FIG. 9 (c), FIG. 9 ⁇
  • a TiN film having a thickness of 150 nm, an AlCu film having a thickness of 550 nm, a Ti film having a thickness of 5 nm, and a TiN film having a thickness of 150 nm, for example, are sequentially stacked on the entire surface.
  • a conductor film is formed by sequentially stacking a TiN film, an AlCu film, a Ti film, and a TiN film.
  • the conductor film is patterned by photolithography and dry etching.
  • a wiring 56a that connects the upper electrode 42 of the ferroelectric capacitor 44 and the conductor plug 54a and a wiring 56b that connects to the conductor plug 54b are formed.
  • a wiring 56c is formed (FIG. 10 (a), FIG. 10 (b)).
  • an aluminum oxide film of, eg, a 20 nm-thickness is formed on the entire surface by, eg, CVD.
  • an NSG film having a thickness of, for example, 2600 nm is formed on the entire surface by, eg, plasma TEOSCVD.
  • an interlayer insulating film 58 formed by sequentially laminating an aluminum oxide film and an NSG film is formed.
  • the surface of the interlayer insulating film 58 is planarized by, eg, CMP (FIG. 10 (c), FIG. 10B).
  • a TiN film of, eg, a 50 nm-thickness is formed on the entire surface by, eg, sputtering.
  • a barrier metal film (not shown) is constituted by the TiN film.
  • a tungsten film of, eg, a 650 nm-thickness is formed on the entire surface by, eg, CVD.
  • the tungsten film is polished by, for example, CMP until the surface of the TiN film on the interlayer insulating film 58 is exposed.
  • the conductor plugs 62a and 62b made of tungsten are embedded in the contact holes 60a and 60b, respectively (FIG. 11 (c), FIG. 11 (d)).
  • an AlCu film having a thickness of 500 nm, a Ti film having a thickness of 5 nm, and a TiN film having a thickness of 150 nm, for example, are sequentially stacked.
  • a conductor film is formed by sequentially stacking a TiN film, a Ti film, an AlCu film, and a TiN film.
  • the conductor film is patterned by photolithography and dry etching.
  • a wiring 64a connected to the conductor plug 62a is formed in the memory cell array portion 12.
  • a wiring 56c connected to the conductor plug 62b is formed (FIGS. 12 (a) and 12 (b)).
  • the surface of the interlayer insulating film 66 is flattened by, eg, CMP (FIGS. 13A and 13B).
  • contact holes 68a and 68b reaching the wirings 64a and 64b are formed in the interlayer insulating film 66 by photolithography and dry etching, respectively (FIGS. 14A and 14B).
  • a TiN film of, eg, a 50 nm-thickness is formed on the entire surface by, eg, sputtering.
  • a barrier metal film (not shown) is constituted by the TiN film.
  • a tungsten film of, eg, a 650 nm-thickness is formed on the entire surface by, eg, CVD.
  • the tungsten film is polished by, eg, CMP until the surface of the TiN film on the interlayer insulating film 66 is exposed.
  • the conductor plugs 70a and 70b made of tungsten are buried in the contact holes 68a and 68b, respectively (FIGS. 15A and 15B).
  • an AlCu film with a film thickness of 500 nm and a TiN film with a film thickness of lOOnm, for example, are sequentially stacked on the entire surface.
  • a conductor film is formed by sequentially stacking a TiN film, an AlCu film, and a TiN film.
  • the conductor film is patterned by photolithography and dry etching. As a result, in the memory cell array portion 12, a wiring 72a connected to the conductor plug 70a is formed. In the bonding pad portion 18, a wiring 72b (bonding pad 16) connected to the conductor plug 70b is formed (FIGS. 16 (a) and 16 (b)).
  • an NSG film having a thickness of, for example, lOOnm is formed on the entire surface by, eg, plasma TEOSCVD.
  • a silicon nitride film having a thickness of, for example, 350 ⁇ m is formed on the entire surface by, eg, plasma CVD.
  • the NSG film and the silicon nitride film are sequentially stacked.
  • An insulating film 74 is formed.
  • an opening 75a reaching the wiring 72b (bonding pad 16) is formed in the insulating film 74 by photolithography and dry etching.
  • a passivation film 76 made of, for example, a 3.0 ⁇ m-thick polyimide film is formed on the entire surface, and an opening 75b is formed in a region on the opening 75b of the passivation film 76 by photolithography. (Fig. 17 (a), Fig. 17 (b)).
  • the semiconductor device according to the present embodiment is manufactured.
  • the peripheral circuit unit 14 and the bonding pad unit 18 are provided in the chip 10 provided with the memory cell array unit 12 in which the memory cells having the ferroelectric capacitors 44 are arranged IJ.
  • a dummy capacitor 46 that adsorbs hydrogen gas and moisture is formed by the lower electrode 38, the ferroelectric film 40, and the upper electrode 42, which are the same as the ferroelectric capacitor 44. Intrusion of hydrogen gas and moisture can be suppressed. As a result, the adsorption of hydrogen gas and moisture by the ferroelectric capacitor 44 in the memory cell array portion 12 is suppressed, and the deterioration of the characteristics of the ferroelectric capacitor 44 due to hydrogen gas and moisture can be suppressed. it can. Therefore, it is possible to improve the resistance and moisture resistance of the semiconductor device to hydrogen gas, and to provide a highly reliable semiconductor device with a high manufacturing yield.
  • FIG. 18 is a schematic diagram showing the structure near the periphery of the memory cell array portion in the semiconductor device according to the present embodiment.
  • FIG. 19 is a schematic diagram showing the structure of the bonding pad portion in the semiconductor device according to the present embodiment.
  • 21 is a process sectional view showing the method for manufacturing the semiconductor device according to the present embodiment. Note that the same components as those of the semiconductor device and the manufacturing method thereof according to the first embodiment are denoted by the same reference numerals, and description thereof is omitted or simplified.
  • the basic configuration of the semiconductor device according to the present embodiment is substantially the same as that of the semiconductor device according to the first embodiment.
  • a dummy electrode 46 is formed by sequentially stacking a lower electrode 38 and a ferroelectric film 40 similar to the ferroelectric capacitor 44 instead of the dummy capacitor 46. It differs from the semiconductor device according to the first embodiment in that one layer 94 is formed and the upper electrode 42 is not formed on the dummy layer 94. Similar to the semiconductor device according to the first embodiment, the dummy layer 94 is formed by sequentially laminating the lower electrode 38 and the ferroelectric film 40 without having the upper electrode 42 as in the semiconductor device according to the present embodiment. Thus, it is possible to prevent hydrogen gas and moisture from entering the memory cell array unit 12.
  • FIG. 18A is a plan view showing a structure in the vicinity of the peripheral edge portion of the memory cell array portion 12 in the semiconductor device according to the present embodiment.
  • Fig. 18 (b) is an enlarged cross-sectional view along the line A- in Fig. 18 (a).
  • the lower electrode 38 and the ferroelectric are formed as in the semiconductor device according to the first embodiment.
  • a ferroelectric capacitor 44 composed of the body film 40 and the upper electrode 42 is formed.
  • a dummy layer 94 is formed by sequentially laminating a lower electrode 38 and a ferroelectric film 40 similar to the ferroelectric capacitor 44 in the memory cell array section 12. Is formed.
  • the dummy layer 94 formed in the peripheral circuit section 14 adsorbs hydrogen gas and moisture, and suppresses the hydrogen gas and moisture from entering the memory cell array section 12. Thereby, adsorption of hydrogen gas and moisture by the ferroelectric capacitor 44 constituting the memory cell can be suppressed, and deterioration of the characteristics of the ferroelectric capacitor 44 can be suppressed.
  • FIG. 19 (a) is a plan view showing the structure of the bonding pad portion 18 in the semiconductor device according to the present embodiment.
  • Fig. 19 (b) is an enlarged cross-sectional view along line B- in Fig. 19 (a).
  • a lower electrode 38 and a ferroelectric film 40 similar to the ferroelectric capacitor 44 in the memory cell array unit 12 are provided on the interlayer insulating film 36, as shown in FIGS. 19 (a) and 19 (b).
  • a dummy layer 94 is formed by sequentially stacking layers.
  • the upper electrode 42 is not formed on the dummy layer 94.
  • the dummy layer 94 formed on the bonding pad portion 18 adsorbs hydrogen gas and moisture to form water. Intrusion into the raw gas or moisture memory cell array unit 12 is suppressed. Thereby, adsorption of hydrogen gas and moisture by the ferroelectric capacitor 44 constituting the memory cell can be suppressed, and deterioration of the characteristics of the ferroelectric capacitor 44 can be suppressed.
  • the dummy layer 94 in the peripheral circuit portion 14 and the bonding pad portion 18 described above is formed according to the same formation rule as the formation rule of the dummy capacitor 46 in the semiconductor device according to the first embodiment shown in FIG. .
  • the semiconductor device includes the peripheral circuit portion 14 around the memory cell array portion 12 and the chip 10 provided with the memory cell array portion 12 in which the memory cells having the ferroelectric capacitors 44 are arranged IJ.
  • the main feature is that a dummy layer 94 formed by sequentially laminating a lower electrode 38 and a ferroelectric film 40 similar to the ferroelectric capacitor 44 is formed on the bonding pad portion 18 at the periphery of the chip 10.
  • the dummy layer 94 formed on the peripheral circuit portion 14 and the bonding pad portion 18 located outside the memory cell array portion 12 adsorbs hydrogen gas and moisture that enter the chip 10 from the outside. As a result, it is possible to suppress the invasion of hydrogen gas and moisture into the memory cell array unit 12. Thereby, adsorption of hydrogen gas and moisture by the ferroelectric capacitor 44 in the memory cell array unit 12 can be suppressed, and deterioration of the characteristics of the ferroelectric capacitor 44 by hydrogen gas and moisture can be suppressed. Therefore, the resistance and moisture resistance of the semiconductor device to hydrogen gas can be improved, and a highly reliable semiconductor device can be provided with a high manufacturing yield.
  • FIGS. 20 (a), 20 (c), 21 (a), and 21 (c) show process cross-sectional views of the memory cell array unit 12 and the peripheral circuit unit 14, and FIG. It corresponds to the A— line cross section in).
  • FIGS. 20 (b), 20 (d), 21 (b), and 21 (d) show process cross-sectional views of the bonding pad portion 18, and B— in FIG. 19 (a). Corresponds to line cross section.
  • the laminated film 38 that becomes the lower electrode of the ferroelectric capacitor 44, The ferroelectric film 40 and the IrO film 42 to be the upper electrode are formed (FIGS. 20 (a) and 20 (b)).
  • a photoresist film 88 is formed on the entire surface by spin coating.
  • the photoresist film 88 is patterned into a planar shape of the upper electrode of the ferroelectric capacitor 44 by photolithography.
  • the photoresist film 88 is not left in the region where the dummy layer 94 is to be formed in the peripheral circuit portion 14 and the bonding pad portion 18.
  • the IrO film 42 is etched using the photoresist film 88 as a mask.
  • an upper electrode 42 made of an IrO film is formed.
  • the IrO film 42 in the part 14 and the bonding pad part 18 is removed by etching.
  • a photoresist film 90 is formed on the entire surface by spin coating.
  • the photoresist film 90 is patterned into the planar shape of the ferroelectric film of the ferroelectric capacitor 44 and patterned into the planar shape of the ferroelectric film of the dummy layer 94. .
  • the ferroelectric film 40 is etched using the photoresist film 90 as a mask.
  • the ferroelectric film 40 having a predetermined planar shape pattern is formed for each of the ferroelectric capacitor 44 and the dummy layer 94. (Fig. 21 (a), Fig. 21 (b)).
  • the photoresist film 90 is peeled off.
  • a photoresist film 92 is formed on the entire surface by spin coating.
  • the photoresist film 92 is patterned into a planar shape of the lower electrode 38 of the ferroelectric capacitor 44 and patterned into the planar shape of the lower electrode 38 of the dummy layer 94.
  • the laminated film 38 is etched using the photoresist film 92 as a mask (FIG. 21 (c), FIG. 21 (d)).
  • the lower electrode made of the laminated film has 3
  • the ferroelectric capacitor 44 is formed in the memory cell array unit 12 and the dummy layer 94 is formed in the peripheral circuit unit 14 and the bonding pad unit 18.
  • the subsequent steps include the method for manufacturing the semiconductor device according to the first embodiment shown in FIGS. Since it is the same as that of FIG.
  • the peripheral circuit unit 14 and the bonding pad unit 18 are provided in the chip 10 provided with the memory cell array unit 12 in which the memory cells having the ferroelectric capacitors 44 are arranged IJ.
  • a dummy layer 94 that adsorbs hydrogen gas and moisture is formed with the lower electrode 38 and the ferroelectric film 40 similar to the ferroelectric capacitor 44, hydrogen gas and moisture are adsorbed in the memory cell array section 12. Intrusion of moisture can be suppressed.
  • the adsorption of hydrogen gas and moisture by the ferroelectric capacitor 44 in the memory cell array unit 12 can be suppressed, and the deterioration of the characteristics of the ferroelectric capacitor 44 by the hydrogen gas and moisture can be suppressed. Accordingly, the resistance and moisture resistance of the semiconductor device to hydrogen gas can be improved, and a highly reliable semiconductor device can be provided with a high manufacturing yield.
  • FIG. 22 is a schematic diagram showing the structure near the periphery of the memory cell array portion in the semiconductor device according to the present embodiment.
  • FIG. 23 is a schematic diagram showing the structure of the bonding pad portion in the semiconductor device according to the present embodiment.
  • FIG. 25 is a process cross-sectional view illustrating the method for manufacturing the semiconductor device according to the present embodiment. Note that the same components as those of the semiconductor device and the manufacturing method thereof according to the first embodiment are denoted by the same reference numerals, and description thereof is omitted or simplified.
  • the basic configuration of the semiconductor device according to the present embodiment is substantially the same as that of the semiconductor device according to the first embodiment.
  • a dummy layer 96 composed of a lower electrode 38 similar to that of the ferroelectric capacitor 44 is formed instead of the dummy capacitor 46, and the ferroelectric film 40 and the upper portion are formed on the dummy layer 96.
  • the electrode 42 is different from the semiconductor device according to the first embodiment in that the electrode 42 is not formed.
  • the memory cell array portion 12 is also provided by the dummy layer 96 including the lower electrode 38 without the upper electrode 42 and the ferroelectric film 40, as in the semiconductor device according to the first embodiment. Intrusion of hydrogen gas and moisture into the inside can be suppressed.
  • FIG. 22 (a) is a plan view showing the structure near the periphery of the memory cell array unit 12 in the semiconductor device according to the present embodiment.
  • FIG. 22 (b) is an enlarged cross-sectional view along line A— in FIG. 22 (a).
  • the lower electrode 38 and the ferroelectric are formed as in the semiconductor device according to the first embodiment.
  • a ferroelectric capacitor 44 composed of the body film 40 and the upper electrode 42 is formed.
  • a dummy layer 96 made of the lower electrode 38 similar to the strong dielectric capacitor 44 in the memory cell array portion 12 is formed on the interlayer insulating film 36 in the peripheral circuit portion 14. On the dummy layer 96, the ferroelectric film 40 and the upper electrode 42 are not formed.
  • the dummy layer 96 formed in the peripheral circuit section 14 adsorbs hydrogen gas and moisture and suppresses entry into the hydrogen gas and moisture cell array section 12. Thereby, adsorption of hydrogen gas and moisture by the ferroelectric capacitor 44 constituting the memory cell can be suppressed, and deterioration of the characteristics of the ferroelectric capacitor 44 can be suppressed.
  • FIG. 23 (a) is a plan view showing the structure of the bonding pad portion 18 in the semiconductor device according to the present embodiment.
  • Fig. 23 (b) is an enlarged cross-sectional view along the line BB 'in Fig. 23 (a).
  • a dummy layer 96 composed of the lower electrode 38 similar to the ferroelectric capacitor 44 in the memory cell array portion 12 is formed. It has been done. On the dummy layer 96, the ferroelectric film 40 and the upper electrode 42 are not formed.
  • the dummy layer 96 formed on the bonding pad portion 18 adsorbs hydrogen gas and moisture and prevents entry into the hydrogen gas and moisture cell array portion 12. Thereby, adsorption of hydrogen gas and moisture by the ferroelectric capacitor 44 constituting the memory cell can be suppressed, and deterioration of the characteristics of the ferroelectric capacitor 44 can be suppressed.
  • the dummy layer 96 in the peripheral circuit portion 14 and the bonding pad portion 18 described above is formed according to the same formation rule as that of the dummy capacitor 46 in the semiconductor device according to the first embodiment shown in FIG. .
  • a memory cell having the ferroelectric capacitor 44 is arranged.
  • the lower electrode 38 similar to the ferroelectric capacitor 44 is formed on the peripheral circuit section 14 around the memory cell array section 12 and the bonding pad section 18 on the peripheral edge of the chip 10.
  • the main feature is that a dummy layer 96 is formed.
  • the dummy layer 96 formed on the peripheral circuit portion 14 and the bonding pad portion 18 located outside the memory cell array portion 12 adsorbs hydrogen gas and moisture that enter the chip 10 from the outside. As a result, it is possible to suppress the invasion of hydrogen gas and moisture into the memory cell array unit 12. Thereby, adsorption of hydrogen gas and moisture by the ferroelectric capacitor 44 in the memory cell array unit 12 can be suppressed, and deterioration of the characteristics of the ferroelectric capacitor 44 by hydrogen gas and moisture can be suppressed. Therefore, the resistance and moisture resistance of the semiconductor device to hydrogen gas can be improved, and a highly reliable semiconductor device can be provided with a high manufacturing yield.
  • FIGS. 24A, FIG. 24C, FIG.25A, and FIG.25C show process cross-sectional views of the memory cell array unit 12 and the peripheral circuit unit 14, and FIG. It corresponds to the A— line cross section in).
  • FIGS. 25 (b), 25 (d), 25 (b), and 25 (d) show process cross-sectional views of the bonding pad portion 18, and B— in FIG. 23 (a). Corresponds to line cross section.
  • a photoresist film 88 is formed on the entire surface by spin coating.
  • the photoresist film 88 is patterned into the planar shape of the upper electrode of the ferroelectric capacitor 44 by photolithography.
  • the photoresist film 88 is not left in the region where the dummy layer 96 is to be formed in the peripheral circuit portion 14 and the bonding pad portion 18.
  • the IrO film 42 is etched using the photoresist film 88 as a mask.
  • an upper electrode 42 made of an IrO film is formed for the dielectric capacitor 44.
  • Peripheral circuit The IrO film 42 in the part 14 and the bonding pad part 18 is removed by etching.
  • a photoresist film 90 is formed on the entire surface by spin coating.
  • the photoresist film 90 is patterned into a planar shape of the ferroelectric film of the ferroelectric capacitor 44 by photolithography. Furthermore, in the semiconductor device manufacturing method according to the present embodiment, the photoresist film 90 is not left in the regions where the dummy layer 96 is to be formed in the peripheral circuit portion 14 and the bonding pad portion 18.
  • the ferroelectric film 40 is etched using the photoresist film 90 as a mask.
  • the ferroelectric film 40 patterned with a predetermined planar shape is formed for the ferroelectric capacitor 44.
  • the ferroelectric film 40 in the peripheral circuit portion 14 and the bonding pad portion 18 is removed by etching (FIGS. 25 (a) and 25 (b)). Thereafter, the photoresist film 90 is peeled off.
  • a photoresist film 92 is formed on the entire surface by spin coating.
  • the photoresist film 92 is patterned into the planar shape of the lower electrode 38 of the ferroelectric capacitor 44 and patterned into the planar shape of the lower electrode 38 of the dummy layer 96 by photolithography.
  • the laminated film 38 is etched using the photoresist film 92 as a mask (FIGS. 25 (c) and 25 (d)).
  • the lower electrode made of the laminated film has 3
  • the ferroelectric capacitor 44 is formed in the memory cell array unit 12 and the dummy layer 96 is formed in the peripheral circuit unit 14 and the bonding pad unit 18.
  • the peripheral circuit unit 14 and the bonding pad unit 18 are provided in the chip 10 provided with the memory cell array unit 12 in which the memory cells having the ferroelectric capacitors 44 are arranged IJ.
  • a dummy layer 96 that consists of a lower electrode 38 similar to that of the ferroelectric capacitor 44 and adsorbs hydrogen gas and moisture is formed. Intrusion of raw gases and moisture can be suppressed. As a result, the adsorption of hydrogen gas and moisture by the ferroelectric capacitor 44 in the memory cell array portion 12 can be suppressed, and the deterioration of the characteristics of the ferroelectric capacitor 44 by the hydrogen gas and moisture can be suppressed. Therefore, the resistance and moisture resistance of the semiconductor device to hydrogen gas can be improved, and a highly reliable semiconductor device can be provided with a high manufacturing yield.
  • FIG. 26 is a plan view showing the structure of the semiconductor device according to the present embodiment.
  • FIG. 27 is a schematic view showing the peripheral edge of the chip in the semiconductor device according to the present embodiment.
  • the same components as those of the semiconductor device and the manufacturing method thereof according to the first embodiment are denoted by the same reference numerals, and the description thereof is omitted or simplified.
  • the basic configuration of the semiconductor device according to the present embodiment is substantially the same as that of the semiconductor device according to the first embodiment.
  • the semiconductor device according to the present embodiment is different from the semiconductor device according to the first embodiment in that it has a portion where the bonding pad 16 is not formed on the periphery of the chip 10.
  • bonding pads 16 are arranged in the vicinity of the pair of opposing edges in the periphery of the chip 10 as in the semiconductor device according to the first embodiment. Is formed. On the other hand, the bonding pad 16 is not formed on the peripheral portion of the chip 10 in the vicinity of the other end of the opposing pair.
  • FIG. 27 (a) is a plan view showing the structure of the periphery of the chip 10 where the bonding pad 16 is not formed in the semiconductor device according to the present embodiment, and is a region surrounded by a circle in FIG. This is an enlarged view of R.
  • Figure 27 (b) shows the expansion along the line C-C 'in Figure 27 (a).
  • FIG. 1 A first figure.
  • a lower electrode 38 similar to the ferroelectric capacitor 44 is formed on the interlayer insulating film 36, as in the semiconductor device according to the first embodiment.
  • a dummy capacitor 46 composed of the ferroelectric film 40 and the upper electrode 42 is formed.
  • the interlayer insulating films 48, 58, 66 and the insulating film 74 formed on the dummy capacitor 46 wiring is embedded.
  • the peripheral portion of the chip 10 is the same as in the semiconductor device according to the first embodiment.
  • the force described in the case where the dummy layer 38 is formed has at least one of the lower electrode 38, the ferroelectric film 40, and the upper electrode 42 in the peripheral circuit portion 14 and the bonding pad portion 18.
  • Such a dummy layer can also suppress the entry of hydrogen gas or moisture into the memory cell array portion 12 as described above.
  • the force ferroelectric film 40 described as an example in which a PZT film is used as the ferroelectric film 40 is not limited to the PZT film, but any other ferroelectric film. Can be used as appropriate.
  • a Pb La Zr Ti O film (
  • PLZT film SrBi (Ta Nb) O film, Bi Ti O film, or the like may be used.
  • the upper electrode 42 is composed of the upper electrode 42 made of an IrO film.
  • the material of the conductor film to be configured is not limited to a strong material.
  • the upper electrode 42 may be composed of (SR ⁇ film).
  • the lower electrode 38 is configured by the laminated film of the Ti film and the Pt film, but the material of the conductor film that configures the lower electrode 38 is not limited to the force and the material.
  • the lower electrode 38 may be composed of an aluminum oxide film and a Pt film.
  • the 2T2C type memory cell having the two transistors 34 and the two ferroelectric capacitors 44 is formed in the memory cell array unit 12.
  • the memory cell configuration is not limited to the 2T2C type.
  • various configurations such as a 2T2C type, for example, a 1T1C type having one transistor and one ferroelectric capacitor can be used.
  • the semiconductor device and the manufacturing method thereof according to the present invention are useful for improving the reliability of a semiconductor device having a ferroelectric capacitor.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Semiconductor Memories (AREA)

Abstract

 半導体基板20上のメモリセルアレイ部12に形成され、下部電極38と、下部電極38上に形成された強誘電体膜40と、強誘電体膜40上に形成された上部電極42とを有する複数個の強誘電体キャパシタ44と、半導体基板20上の周辺回路部14及びボンディングパッド部18に形成され、下部電極38と、下部電極38上に形成された強誘電体膜40と、強誘電体膜40上に形成された上部電極42とを有し、水素ガス又は水分を吸着する複数個のダミーキャパシタ46とを有している。

Description

明 細 書
半導体装置及びその製造方法
技術分野
[0001] 本発明は、半導体装置及びその製造方法に係り、特に強誘電体キャパシタを有す る半導体装置及びその製造方法に関する。
背景技術
[0002] 近時、キャパシタの誘電体膜として強誘電体膜を用いることが注目されている。この ような強誘電体キャパシタを用いた強誘電体メモリ(FeRAM: Ferroelectric Random Access Memory)は、高速動作が可能である、低消費電力である、書き込み/読み出 し耐久性に優れている等の特徴を有する不揮発性メモリであり、今後の更なる発展が 見込まれている。
[0003] し力しながら、強誘電体キャパシタは、外部からの水素ガスや水分により容易にそ の特性が劣化するという性質を有している。このため、 FeRAMでは、その製造工程 におレ、て、強誘電体キャパシタ形成後の配線等の形成プロセスによって強誘電体キ ャパシタが受けるダメージを低減する必要があった。また、パッケージ化後に、水素ガ スゃ水分がパッケージ内に侵入するのを防止する必要があった。
特許文献 1 :特開平 11 - 261302号公報
発明の開示
発明が解決しょうとする課題
[0004] これまで、 FeRAMの水素ガスに対する耐性や耐湿性を向上するべぐ様々な観点 力 の試みがなされている。し力 ながら、薄型のパッケージや、吸湿性の高い樹脂 よりなるパッケージ用いた場合等のように水素ガスや水分に容易に曝されうる条件下 では、従来の FeRAM構造では、水素ガスや水分による強誘電体キャパシタの特性 の劣化を充分に抑制することが困難な場合があった。
[0005] 本発明の目的は、水素ガスに対する耐性及び耐湿性に優れ、強誘電体キャパシタ の特性の劣化を充分に抑制しうる半導体装置及びその製造方法を提供することにあ る。 課題を解決するための手段
[0006] 本発明の一観点によれば、半導体基板上のメモリセルアレイ領域に形成され、第 1 の下部電極と、前記第 1の下部電極上に形成された第 1の強誘電体膜と、前記第 1 の強誘電体膜上に形成された第 1の上部電極とを有する複数個の強誘電体キャパ シタと、前記半導体基板上の前記メモリセルアレイ領域以外の周辺領域に形成され、 少なくとも第 2の下部電極を有し、水素ガス又は水分を吸着する複数個のダミー層と を有する半導体装置が提供される。
[0007] また、本発明の他の観点によれば、半導体基板上に、第 1の導体膜を形成するェ 程と、前記第 1の導体膜上に、強誘電体膜を形成する工程と、前記強誘電体膜上に 、第 2の導体膜を形成する工程と、前記半導体基板上のメモリセルアレイ領域におけ る前記第 2の導体膜、前記強誘電体膜、及び前記第 1の導体膜をパターニングする ことにより、前記メモリセルアレイ領域に、前記第 1の導体膜よりなる第 1の下部電極と 、前記強誘電体膜と、前記第 2の導体膜よりなる第 1の上部電極とを有する複数個の 強誘電体キャパシタを形成し、前記半導体基板上の前記メモリセルアレイ領域以外 の周辺領域における前記第 2の導体膜、前記強誘電体膜、及び前記第 1の導体膜を パターユングすることにより、前記周辺領域に、前記第 1の導体膜よりなる第 2の下部 電極、前記強誘電体膜、及び前記第 2の導体膜よりなる第 2の上部電極のうちの少な くともいずれ力、を有し、水素ガス又は水分を吸着する複数個のダミー層を形成するェ 程とを有する半導体装置の製造方法が提供される。
発明の効果
[0008] 本発明によれば、半導体基板上のメモリセルアレイ領域に形成され、下部電極と、 下部電極上に形成された強誘電体膜と、強誘電体膜上に形成された上部電極とを 有する複数個の強誘電体キャパシタと、半導体基板上のメモリセルアレイ領域以外 の周辺領域に形成され、下部電極、強誘電体膜、及び上部電極のうちの少なくとも いずれ力を有し、水素ガス又は水分を吸着する複数個のダミー層とを有しているので 、メモリセルアレイ領域内に、水素ガスや水分が侵入するのを抑制することできる。し たがって、本発明によれば、強誘電体キャパシタの特性の劣化を抑制することができ 、水素ガスに対する耐性及び耐湿性に優れ、信頼性の高い半導体装置を高い製造 歩留りで提供することができる。
図面の簡単な説明
[図 1]図 1は、本発明の第 1実施形態による半導体装置の構造を示す平面図である。
[図 2]図 2は、本発明の第 1実施形態による半導体装置におけるメモリセルアレイ部の 周縁部近傍の構造を示す概略図である。
[図 3]図 3は、本発明の第 1実施形態による半導体装置におけるボンディングパッド部 の構造を示す概略図である。
[図 4]図 4は、本発明の第 1実施形態による半導体装置におけるダミーキャパシタの 形成ルールを示す平面図である。
[図 5]図 5は、本発明の第 1実施形態による半導体装置の製造方法を示す工程断面 図(その 1)である。
[図 6]図 6は、本発明の第 1実施形態による半導体装置の製造方法を示す工程断面 図(その 2)である。
[図 7]図 7は、本発明の第 1実施形態による半導体装置の製造方法を示す工程断面 図(その 3)である。
[図 8]図 8は、本発明の第 1実施形態による半導体装置の製造方法を示す工程断面 図(その 4)である。
[図 9]図 9は、本発明の第 1実施形態による半導体装置の製造方法を示す工程断面 図(その 5)である。
[図 10]図 10は、本発明の第 1実施形態による半導体装置の製造方法を示す工程断 面図(その 6)である。
[図 11]図 11は、本発明の第 1実施形態による半導体装置の製造方法を示す工程断 面図(その 7)である。
[図 12]図 12は、本発明の第 1実施形態による半導体装置の製造方法を示す工程断 面図(その 8)である。
[図 13]図 13は、本発明の第 1実施形態による半導体装置の製造方法を示す工程断 面図(その 9)である。
[図 14]図 14は、本発明の第 1実施形態による半導体装置の製造方法を示す工程断 面図(その 10)である。
[図 15]図 15は、本発明の第 1実施形態による半導体装置の製造方法を示す工程断 面図(その 11)である。
[図 16]図 16は、本発明の第 1実施形態による半導体装置の製造方法を示す工程断 面図(その 12)である。
[図 17]図 17は、本発明の第 1実施形態による半導体装置の製造方法を示す工程断 面図(その 13)である。
[図 18]図 18は、本発明の第 2実施形態による半導体装置におけるメモリセルアレイ部 の周縁部近傍の構造を示す概略図である。
園 19]図 19は、本発明の第 2実施形態による半導体装置におけるボンディングパッド 部の構造を示す概略図である。
[図 20]図 20は、本発明の第 2実施形態による半導体装置の製造方法を示す工程断 面図(その 1)である。
[図 21]図 21は、本発明の第 2実施形態による半導体装置の製造方法を示す工程断 面図(その 2)である。
園 22]図 22は、本発明の第 3実施形態による半導体装置におけるメモリセルアレイ部 の周縁部近傍の構造を示す概略図である。
園 23]図 23は、本発明の第 3実施形態による半導体装置におけるボンディングパッド 部の構造を示す概略図である。
[図 24]図 24は、本発明の第 3実施形態による半導体装置の製造方法を示す工程断 面図(その 1)である。
[図 25]図 25は、本発明の第 3実施形態による半導体装置の製造方法を示す工程断 面図(その 2)である。
[図 26]図 26は、本発明の第 4実施形態による半導体装置の構造を示す平面図であ る。
園 27]図 27は、本発明の第 4実施形態による半導体装置におけるチップ周縁部の構 造を示す概略図である。
[図 28]図 28は、一般的な FeRAMの構造を示す平面図である。 号の説明
Ο ··チップ
2- - 'メモリセルアレイ部4- ··周辺回路部
6- ·'ボンディングパッド8· ··ボンディングパッド部0· ··半導体基板
2· ··素子分離領域
· ··ゥ ル
6· ··ゲート絶縁膜
· ··ゲート電極
2· '·ソース zドレイン拡散層 ·' "トランジスタ
··層間絶縁膜
·· '·下部電極
·· -強誘電体膜
-· -上部電極
-· '強誘電体キャパシタ ·· 'ダミーキャパシタ -· -層間絶縁膜
-- 'コンタクトホール a, 52b…コンタクトホーノレ a, 54b…導体プラグ a, 56b…酉己線
·· •層間絶縁膜
a、 60b…コンタクトホーノレ a、 62b…導体プラグ a、 64b…配線 66…層間絶縁膜
68a、 68b…コンタクトホーノレ
70a, 70b…導体プラグ
72a, 72b…配線
74…絶縁膜
75a、 75b…開口部
76…パッシベーシヨン膜
78…ポリシリコン層
80…導体プラグ
82…コンタクト部
84…導体プラグ
86…活性領域
88、 90、 92…フォ卜レジス卜膜
94…ダミー層
96…ダミー層
100…チップ
102…メモリセルアレイ部
102a…メモリセルアレイ部の最外周部
104…周辺回路部
106…ボンディングパッド
108· · ·ボンディングパッド部
110…ゲート電極
1 12- · ·ソース/ドレイン拡散層
114…トランジスタ
1 16…強誘電体キャパシタ
発明を実施するための最良の形態
一般的な FeRAMにおいては、メモリセルが配列されたメモリセルアレイ部における 最外周部の強誘電体キャパシタは、その製造工程において露光、エッチングが一様 にならないために、安定的に所定の形状に形成することが困難である。このため、メ モリセルアレイ部における最外周部の強誘電体キャパシタをダミーキャパシタとするこ とにより、形状のばらつきや特性のばらつきを低減することが行われている。併せて、 このようなダミーキャパシタは、メモリセルアレイ部の外周部力 メモリセルアレイ部内 に侵入する水素ガスや水分を吸着し、水素ガスや水分による強誘電体キャパシタの 特性の劣化を防止する機能をも担っていた。
[0012] 一般的な FeRAMの構造について図 28を用いて説明する。図 28 (a)は一般的な F eRAMの構造を示す平面図、図 28 (b)は一般的な FeRAMにおけるメモリセルァレ ィ部の拡大平面図である。
[0013] 図 28 (a)に示すように、チップ 100の所定の領域に、強誘電体キャパシタを有する 複数個のメモリセルが配列されたメモリセルアレイ部 102が設けられている。メモリセ ルアレイ部 102周辺等のチップ 100の他の領域は、メモリの駆動等のための周辺回 路が形成された周辺回路部 104となっている。チップ 100の周縁部には、チップ回路 と外部回路とを接続するためのボンディングパッド 106が配列して形成されたボンデ イングパッド部 108が設けられている。
[0014] メモリセルアレイ部 102では、図 28 (b)に示すように、半導体基板上に、複数対の ゲート電極 (ゲート配線) 1 10が所定の方向に延在するように形成されている。ゲート 電極 110の両側の半導体基板内には、ソース/ドレイン拡散層 112が形成されてい る。こうして、ゲート電極 110とソース/ドレイン拡散層 112とを有する複数対のトラン ジスタ 114が形成されている。
[0015] トランジスタ 114の両側の半導体基板上には、層間絶縁膜を介して、強誘電体キヤ パシタ 116がそれぞれ形成されてレ、る。トランジスタ 114のソース/ドレイン拡散層 11 2と強誘電体キャパシタ 116の電極とは、所定の配線層及び導体プラグにより接続さ れている。
[0016] こうして、メモリセルアレイ部 102では、 2つのトランジスタ 114と 2つの強誘電体キヤ パシタ 116とを有する 2T2C型のメモリセルが複数配列されている。
[0017] メモリセルアレイ部 102における最外周部 102aの強誘電体キャパシタ 116は、形 状のばらつきや特性のばらつきを低減するとともに、メモリセルアレイ部 102内に水素 ガスや水分が侵入するのを防止するためのダミーキャパシタとなっている。
[0018] 図 28に示す FeRAM構造は、併せてそのパッケージとして水素ガスに対する耐性 や耐湿性を考慮したものを用いた場合には、水素ガスや水分による強誘電体キャパ シタの特性の劣化をある程度は抑制することができる。
[0019] し力、しながら、薄型のパッケージや、吸湿性の高い樹脂よりなるパッケージ用いた場 合等のように水素ガスや水分に容易に曝されうる条件下では、図 28に示す従来の F eRAM構造では、水素ガスや水分による強誘電体キャパシタの特性の劣化を充分に 抑制することは困難であった。
[0020] 本発明は、強誘電体キャパシタを有する半導体装置の水素ガスに対する耐性及び 耐湿性を向上し、信頼性の高い半導体装置を高い製造歩留りで提供することを可能 とするものである。以下、実施形態において、本発明による半導体装置及びその製 造方法について詳述する。
[0021] [第 1実施形態]
本発明の第 1実施形態による半導体装置及びその製造方法について図 1乃至図 1 7を用いて説明する。図 1は本実施形態による半導体装置の構造を示す平面図、図 2は本実施形態による半導体装置におけるメモリセルアレイ部の周縁部近傍の構造 を示す概略図、図 3は本実施形態による半導体装置におけるボンディングパッド部の 構造を示す概略図、図 4は本実施形態による半導体装置におけるダミーキャパシタ の形成ルールを示す平面図、図 5乃至図 17は本実施形態による半導体装置の製造 方法を示す工程断面図である。
[0022] まず、本実施形態による半導体装置の構造について図 1乃至図 4を用いて説明す る。
[0023] 図 1に示すように、本実施形態による半導体装置では、チップ 10の所定の領域に、 強誘電体キャパシタを有する複数個のメモリセルが配列されたメモリセルアレイ部 12 が設けられている。メモリセルアレイ部 12周辺等のチップ 10のメモリセルアレイ部 12 以外の領域は、メモリの駆動等のための周辺回路が形成された周辺回路部 14となつ ている。チップ 10の周縁部には、チップ回路と外部回路とを接続するためのボンディ ングパッド 16が配列して形成されたボンディングパッド部 18が設けられている。 [0024] 周辺回路部 14及びボンディングパッド部 18には、後述するように、メモリセルアレイ 部 12における強誘電体キャパシタと同様の構造を有する複数個のダミーキャパシタ が形成されている。
[0025] 図 2 (a)は、本実施形態による半導体装置におけるメモリセルアレイ部 12の周縁部 近傍の構造を示す平面図であり、図 1中の円で囲まれた領域 Rを拡大して示したも のである。図 2 (b)は、図 2 (a)中の A— Α' 線に沿った拡大断面図である。
[0026] 図 2 (b)に示すように、例えばシリコンよりなる半導体基板 20上には、素子領域を画 定する素子分離領域 22が形成されてレ、る。素子分離領域 22が形成された半導体基 板 20内には、ゥヱル 24が形成されている。
[0027] メモリセルアレイ部 12において、ゥヱル 24が形成された半導体基板 20上には、図 2
(a)及び図 2 (b)に示すように、ゲート絶縁膜 26を介してゲート電極(ゲート配線) 28 が形成されている。ゲート電極 28の両側には、ソース/ドレイン拡散層 32が形成さ れている。こうして、ゲート電極 28とソース/ドレイン拡散層 32とを有するトランジスタ 34が構成されている。
[0028] トランジスタ 34が形成された半導体基板 20上には、層間絶縁膜 36が形成されてい る。
[0029] メモリセルアレイ部 12における層間絶縁膜 36上には、強誘電体キャパシタ 44の下 部電極 38が形成されている。下部電極 38は、例えば、膜厚 20nmの Ti膜と膜厚 175 nmの Pt膜とを順次積層してなる積層膜により構成されている。
[0030] 下部電極 38上には、強誘電体キャパシタ 44の強誘電体膜 40が形成されている。
強誘電体膜 40としては、例えば膜厚 200nmの PbZr Ti O膜(PZT膜)が用いら
1— X X 3
れている。
[0031] 強誘電体膜 40上には、強誘電体キャパシタ 44の上部電極 42が形成されている。
上部電極 42は、例えば、膜厚 200nmの Ir〇膜により構成されている。
X
[0032] こうして、メモリセルアレイ部 12においては、下部電極 38と強誘電体膜 40と上部電 極 42とからなる強誘電体キャパシタ 44が形成されている。
[0033] 周辺回路部 14における層間絶縁膜 36上には、メモリセルアレイ部 12における強誘 電体キャパシタ 44と同様の下部電極 38と強誘電体膜 40と上部電極 42とからなるダ ミーキャパシタ 46が形成されてレ、る。
[0034] 周辺回路部 14に形成されたダミーキャパシタ 46は、水素ガスや水分を吸着し、水 素ガスや水分カ モリセルアレイ部 12内に侵入するのを抑制するものである。これに より、メモリセルを構成する強誘電体キャパシタ 44による水素ガスや水分の吸着を抑 制し、強誘電体キャパシタ 44の特性の劣化を抑制することができる。
[0035] 強誘電体キャパシタ 44及びダミーキャパシタ 46が形成された層間絶縁膜 36上に は、層間絶縁膜 48が形成されている。
[0036] 層間絶縁膜 48には、強誘電体キャパシタ 38の上部電極 42に達するコンタクトホー ル 50が形成されている。また、層間絶縁膜 48には、ソース Zドレイン拡散層 32に達 するコンタクトホール 52a、 52bが形成されている。
[0037] コンタクトホール 52a、 52b内には、例えばタングステンよりなる導体プラグ 54a、 54 bがそれぞれ埋め込まれてレ、る。
[0038] 層間絶縁膜 48上及びコンタクトホール 50内には、配線 56aが形成されている。強 誘電体キャパシタ 44の上部電極 42と、トランジスタ 34のソース/ドレイン拡散層 32 に接続する導体プラグ 54aとは、配線 56aにより接続されている。また、層間絶縁膜 4 8上には、導体プラグ 54bに接続する配線 56bが形成されている。配線 56a、 56bは 、例えば、膜厚 150nmの TiN膜と、膜厚 550nmの AlCu膜と、膜厚 5nmの Ti膜と、 膜厚 150nmの TiN膜とを順次積層してなる積層膜により構成されている。
[0039] こうして、メモリセルアレイ部 12には、 2つのトランジスタ 34及び 2つの強誘電体キヤ パシタ 44を有する 2T2C型のメモリセルが構成されている。
[0040] 配線 56a、 56bが形成された層間絶縁膜 48上には、層間絶縁膜 58が形成されて いる。
[0041] 層間絶縁膜 58には、配線 56bに達するコンタクトホール 60aが形成されている。
[0042] コンタクトホール 60a内には、例えばタングステンよりなる導体プラグ 62aが坦め込ま れている。
[0043] 導体プラグ 62aが坦め込まれた層間絶縁膜 58上には、導体プラグ 62aに接続する 配線 64aが形成されている。配線 64aは、例えば、膜厚 50nmの Ti膜と、膜厚 500η mの AlCu膜と、膜厚 5nmの Ti膜と、膜厚 150nmの TiN膜とを順次積層してなる積 層膜により構成されている。
[0044] 配線 64aが形成された層間絶縁膜 58上には、層間絶縁膜 66が形成されている。
[0045] 層間絶縁膜 66には、配線 64aに達するコンタクトホール 68aが形成されている。
[0046] コンタクトホール 68内には、例えばタングステンよりなる導体プラグ 70aが埋め込ま れている。
[0047] 導体プラグ 70aが坦め込まれた層間絶縁膜 66上には、導体プラグ 70aに接続する 配線 72aが形成されている。配線 72aは、例えば、膜厚 50nmの TiN膜と、膜厚 500 nmの AlCu膜と、膜厚 lOOnmの TiN膜とを順次積層してなる積層膜により構成され ている。
[0048] 配線 72aが形成された層間絶縁膜 66上には、絶縁膜 74が形成されている。
[0049] 絶縁膜 74上には、例えばポリイミド膜よりなるパッシベーシヨン膜 76が形成されてレ、 る。
[0050] 図 3 (a)は、本実施形態による半導体装置におけるボンディングパッド部 18の構造 を示す平面図であり、図 1中の円で囲まれた領域 Rを拡大して示したものである。図
2
3 (b)は、図 3 (a)中の B— B' 線に沿った拡大断面図である。
[0051] 図 3 (b)に示すように、半導体基板 20上には、素子領域を画定する素子分離領域 2 2が形成されている。
[0052] 素子分離領域 22が形成された半導体基板 20上には、層間絶縁膜 36が形成され ている。
[0053] 層間絶縁膜 36上には、図 3 (a)及び図 3 (b)に示すように、メモリセルアレイ部 12お ける強誘電体キャパシタ 44と同様の下部電極 38と強誘電体膜 40と上部電極 42とか らなるダミーキャパシタ 46が形成されている。
[0054] ボンディングパッド部 18に形成されたダミーキャパシタ 46は、水素ガスや水分を吸 着し、水素ガスや水分力^モリセルアレイ部 12内に侵入するのを抑制するものである 。これにより、メモリセルを構成する強誘電体キャパシタ 44による水素ガスや水分の 吸着を抑制し、強誘電体キャパシタ 44の特性の劣化を抑制することができる。
[0055] ダミーキャパシタ 46が形成された層間絶縁膜 36上には、層間絶縁膜 48が形成さ れている。 [0056] 層間絶縁膜 48上には、配線 56cが形成されている。配線 56cは、配線 56a、 56bと 同様の積層膜により構成されている。
[0057] 配線 56cが形成された層間絶縁膜 48上には、層間絶縁膜 58が形成されている。
[0058] 層間絶縁膜 58には、配線 56cに達するコンタクトホール 60bが形成されている。
[0059] コンタクトホール 60b内には、例えばタングステンよりなる導体プラグ 62bが坦め込 まれている。
[0060] 導体プラグ 62bが坦め込まれた層間絶縁膜 58上には、導体プラグ 62bに接続する 配線 64bが形成されている。配線 64bは、配線 64aと同様の積層膜により構成されて いる。
[0061] 配線 64bが形成された層間絶縁膜 58上には、層間絶縁膜 66が形成されている。
[0062] 層間絶縁膜 66には、配線 64bに達するコンタクトホール 68bが形成されている。
[0063] コンタクトホール 68b内には、タングステンよりなる導体プラグ 70bが坦め込まれてい る。
[0064] 導体プラグ 70bが坦め込まれた層間絶縁膜 66上には、導体プラグ 70bに接続する 配線 72b (ボンディングパッド 16)が形成されている。
[0065] 配線 72bが形成された層間絶縁膜 66上には、絶縁膜 74が形成されている。絶縁 膜 74には、配線 72b (ボンディングパッド 16)に達する開口部 75aが形成されている
[0066] 開口部 74が形成された絶縁膜 74上には、例えばポリイミド膜よりなるパッシベーシ ヨン膜 76が形成されている。パッシベーシヨン膜 76には、絶縁膜 74に形成された開 口部 75aを介して配線 72b (ボンディングパッド 16)に達する開口部 75bが形成され ている。
[0067] こうして、本実施形態による半導体装置が構成されている。
[0068] 本実施形態による半導体装置は、強誘電体キャパシタ 44を有するメモリセルが配 歹 IJされたメモリセルアレイ部 12が設けられたチップ 10において、メモリセルアレイ部 1 2周辺の周辺回路部 14及びチップ 10周縁部のボンディングパッド部 18に、強誘電 体キャパシタ 44と同様の下部電極 38と強誘電体膜 40と上部電極 42とからなるダミ 一キャパシタ 46が形成されていることに主たる特徴がある。
[0069] メモリセルアレイ部 12を囲む周辺回路部 14及びボンディングパッド部 18に形成さ れたダミーキャパシタ 46は、外部からチップ 10内に侵入してくる水素ガスや水分を吸 着する。この結果、メモリセルアレイ部 12内に水素ガスや水分が侵入するのを抑制す ること力 Sできる。これにより、メモリセルアレイ部 12における強誘電体キャパシタ 44に よる水素ガスや水分の吸着を抑制し、強誘電体キャパシタ 44の特性が水素ガスや水 分により劣化されるのを抑制することができる。したがって、半導体装置の水素ガスに 対する耐性及び耐湿性を向上することができ、信頼性の高い半導体装置を高い製造 歩留りで提供することができる。
[0070] 本実施形態による半導体装置において、周辺回路部 14及びボンディングパッド部 18におけるダミーキャパシタ 46は、以下に述べるルールに従って、チップ 10上の回 路に影響を与えることなぐ可能な限り多く形成されている。本実施形態による半導体 装置におけるダミーキャパシタ 46の形成ルールについて図 4を用いて説明する。
[0071] まず、ダミーキャパシタ 46は、図 4に示すように、メモリセルアレイ部 12における強 誘電体キャパシタ 44を避けて形成されている。メモリセルアレイ部 12における強誘電 体キャパシタ 44と隣接して形成されたダミーキャパシタ 46と、メモリセルアレイ部 12に おける強誘電体キャパシタ 44との間隔 Dは、例えば 0. 75 μ ΐηとなっている。
1
[0072] また、ダミーキャパシタ 46は、半導体基板 10上に形成されたゲート電極 28等のポリ シリコン層 78に導体プラグ 80が接続するコンタクト部 82を避けて形成されている。コ ンタクト部 82と隣接して形成されたダミーキャパシタ 46と、コンタクト部 82における導 体プラグ 80との間隔 Dは、例えば 0. 6 μ ΐηとなっている。
2
[0073] さらに、ダミーキャパシタ 46は、半導体基板 10上に導体プラグ 84が直接接続され た活性領域 86を避けて形成されている。活性領域 86と隣接して形成されたダミーキ ヤノ シタ 46と、活性領域 86との間隔 Dは、例えば 1. O z mとなっている。
3
[0074] ダミーキャパシタ 46の上部電極 42の平面形状は、一辺の長さ Dが例えば 3. Ο μ
4
mの正方形状となっている。また、ダミーキャパシタ 46の強誘電体膜 40及び下部電 極 38の平面形状は、一辺の長さ Dが例えば 4. O x mの正方形状となっている。上
5
部電極 42の周縁部と、強誘電体膜 40及び下部電極 38の周縁部との間隔 Dは、例 えば 0· 5 /imとなっている。このような複数個のダミーキャパシタ 46力 例えば 1· Ομ mの間隔 Dで配列されている。
[0075] なお、ダミーキャパシタ 46は、上記の図 4に示す形成ルールに基づいて、チップ 10 の空レ、てレ、るスペースにできるだけ多く形成することが望ましレ、。
[0076] 特に、チップ 10の周縁部に設けられたボンディングパッド部 16には、空いているス ペースが充分に存在するため、周辺回路部 14と比較してより多くのダミーキャパシタ 46を形成することができる。このように、チップ 10周縁部により多くのダミーキャパシタ 46を形成することにより、チップ 10の側面からチップ 10内に侵入する水素ガスや水 分をより効果的に吸着することができる。
[0077] 次に、本実施形態による半導体装置の製造方法について図 5乃至図 17を用いて 説明する。なお、図 5(a)、図 5(c)、図 6(a)、図 6(c)、図 7(a)、図 7(c)、図 8(a)、図 8(c),図 9(a)、図 9(c)、図 10(a)、図 10(c)、図 ll(a)、図 ll(c)、図 12(a)、図 13 (a)、図 14(a)、図 15(a)、図 16 (a)、及び図 17 (a)は、メモリセルアレイ部 12及び周 辺回路部 14の工程断面図を示しており、図 2(a)中の A— 線断面に対応している 。また、図 5(b)、図 5(d)、図 6(b)、図 6(d)、図 7(b)、図 7(d)、図 8(b)、図 8(d)、図 9(b),図 9(d)、図 10(b)、図 10(d)、図 ll(b)、 011(d),図 12(b)、図 13(b)、図 14(b),図 15(b)、図 16(b)、及び図 17(b)は、ボンディングパッド部 18の工程断面 図を示しており、図 3(a)中の B— 線断面に対応している。
[0078] まず、例えばシリコンよりなる半導体基板 20に、例えば LOCOS (LOCal Oxidation of Silicon)法により、素子領域を画定する素子分離領域 22を形成する。
[0079] 次いで、イオン注入法により、ドーパント不純物を導入することにより、ゥエル 24を形 成する。
[0080] 次いで、通常のトランジスタの形成方法を用いて、素子領域に、ゲート電極 (ゲート 配線) 28とソース/ドレイン拡散層 32とを有するトランジスタ 34を形成する(図 5 (a)、 図 5(b))。
[0081] 次いで、全面に、例えばプラズマ CVD法により、例えば膜厚 200nmの Si〇N膜を 形成する。続いて、全面に、例えばプラズマ TEOSCVD法により、例えば膜厚 600η mの NSG(Nondoped Silicate Glass)膜を形成する。こうして、 Si〇N膜と NSG膜とを 順次積層してなる層間絶縁膜 36が形成される。
[0082] 層間絶縁膜 36を形成した後、例えば CMP (Chemical Mechanical Polishing)法によ り、層間絶縁膜 36の表面を平坦化する(図 5 (c)、図 5 (d) )。
[0083] 次いで、全面に、例えばスパッタ法により、例えば膜厚 20nmの Ti膜を形成する。
続いて、全面に、例えばスパッタ法により、例えば膜厚 175nmの Pt膜を形成する。こ うして、 Ti膜と Pt膜とを順次積層してなる積層膜 38が形成される。積層膜 38は、強 誘電体キャパシタ 44及びダミーキャパシタ 46の下部電極となるものである。
[0084] 次いで、全面に、例えばスパッタ法により、強誘電体膜 40を形成する。強誘電体膜
40としては、例えば膜厚 200nmの PZT膜を形成する。なお、ここでは、強誘電体膜 40をスパッタ法により形成する場合を例に説明したが、強誘電体膜 40の形成方法は スパッタ法に限定されるものではなレ、。例えば、ゾル 'ゲル法、 MOD (Metal Organic Deposition)法、 MOCVD法等により強誘電体膜 40を形成してもよい。
[0085] 次いで、全面に、例えばスパッタ法又は MOCVD法により、例えば膜厚 200nmの I r〇膜 42を形成する(図 6 (a)、図 6 (b) )。 IrO膜 42は、強誘電体キャパシタ 44及び
X X
ダミーキャパシタ 46の上部電極となるものである。
[0086] 次いで、全面に、スピンコート法により、フォトレジスト膜 88を形成する。
[0087] 次いで、フォトリソグラフィ一により、フォトレジスト膜 88を、強誘電体キャパシタ 44及 びダミーキャパシタ 46の上部電極の平面形状にパターニングする。
[0088] 次いで、フォトレジスト膜 88をマスクとして、 IrO膜 42をエッチングする。こうして、強
X
誘電体キャパシタ 44及びダミーキャパシタ 46について、それぞれ積層膜よりなる上 部電極 42が形成される(図 6 (c)、図 6 (d) )。この後、フォトレジスト膜 88を剥離する。
[0089] 次いで、全面に、スピンコート法により、フォトレジスト膜 90を形成する。
[0090] 次いで、フォトリソグラフィ一により、フォトレジスト膜 90を、強誘電体キャパシタ 44及 びダミーキャパシタ 46の強誘電体膜の平面形状にパターユングする。
[0091] 次いで、フォトレジスト膜 90をマスクとして、強誘電体膜 40をエッチングする。こうし て、強誘電体キャパシタ 44及びダミーキャパシタ 46について、それぞれ所定の平面 形状パターニングされた強誘電体膜 40が形成される。 (図 7 (a)、図 7 (b) )。この後、 フォトレジスト膜 90を剥離する。 [0092] 次いで、全面に、スピンコート法により、フォトレジスト膜 92を形成する。
[0093] 次いで、フォトリソグラフィ一により、フォトレジスト膜 92を、強誘電体キャパシタ 44及 びダミーキャパシタ 46の下部電極 38の平面形状にパターユングする。
[0094] 次いで、フォトレジスト膜 92をマスクとして、積層膜 38をエッチングする(図 7 (b)、図
7 (d) )。こうして、強誘電体キャパシタ 44及びダミーキャパシタ 46について、それぞ れ積層膜よりなる下部電極 38が形成される。この後、フォトレジスト膜 92を剥離する。
[0095] こうして、メモリセルアレイ部 12において強誘電体キャパシタ 44が形成されるととも に、周辺回路部 14及びボンディングパッド部 18においてダミーキャパシタ 46が形成 される。
[0096] 次いで、全面に、例えば CVD法により、例えば膜厚 20nmの酸化アルミニウム膜を 形成する。続いて、全面に、例えばプラズマ TEOSCVD法により、例えば膜厚 1500 nmの NSG膜を形成する。こうして、酸化アルミニウム膜と NSG膜とを順次積層して なる層間絶縁膜 48が形成される。
[0097] 層間絶縁膜 48を形成した後、例えば CMP法により、層間絶縁膜 48の表面を平坦 化する(図 8 (a)、図 8 (b) )。
[0098] 次いで、フォトリソグラフィー及びドライエッチングにより、層間絶縁膜 48及び層間絶 縁膜 36に、ソース/ドレイン拡散層 32に達するコンタクトホール 52a、 52bを形成す る(図 8 (b)ヽ図 8 (c) )。
[0099] 次いで、全面に、例えばスパッタ法により、例えば膜厚 20nmの Ti膜を形成する。
続いて、全面に、例えばスパッタ法又は CVD法により、例えば膜厚 50nmの TiN膜 を形成する。こうして、 Ti膜と TiN膜とによりバリアメタル膜(図示せず)が構成される。
[0100] 次いで、全面に、例えば CVD法により、例えば膜厚 500nmのタングステン膜を形 成する。
[0101] 次いで、例えば CMP法により、層間絶縁膜 48の表面が露出するまで、タンダステ ン膜及びバリアメタル膜を研磨する。こうして、コンタクトホール 52a、 52b内に、タンダ ステンよりなる導体プラグ 54a、 54bがそれぞれ坦め込まれる(図 9 (a)、図 9 (b) )。
[0102] 次いで、フォトリソグラフィー及びドライエッチングにより、層間絶縁膜 48に、強誘電 体キャパシタ 44の上部電極 42に達するコンタクトホール 50を形成する(図 9 (c)、図 9亂
[0103] 次いで、全面に、例えば膜厚 150nmの TiN膜と、例えば膜厚 550nmの AlCu膜と 、例えば膜厚 5nmの Ti膜と、例えば膜厚 150nmの TiN膜とを順次積層する。こうし て、 TiN膜と AlCu膜と Ti膜と TiN膜とを順次積層してなる導体膜が形成される。
[0104] 次いで、フォトリソグラフィー及びドライエッチングにより、導体膜をパターユングする 。これにより、メモリセルアレイ部 12においては、強誘電体キャパシタ 44の上部電極 4 2と導体プラグ 54aとを接続する配線 56a、及び導体プラグ 54bに接続する配線 56b が形成される。また、ボンディングパッド部 18においては、配線 56cが形成される(図 10 (a) ,図 10 (b) )。
[0105] 次いで、全面に、例えば CVD法により、例えば膜厚 20nmの酸化アルミニウム膜を 形成する。続いて、全面に、例えばプラズマ TEOSCVD法により、例えば膜厚 2600 nmの NSG膜を形成する。こうして、酸化アルミニウム膜と NSG膜とを順次積層して なる層間絶縁膜 58が形成される。
[0106] 層間絶縁膜 58を形成した後、例えば CMP法により、層間絶縁膜 58の表面を平坦 化する(図 10 (c)、図 10亂
[0107] 次いで、フォトリソグラフィー及びドライエッチングにより、層間絶縁膜 58に、配線 56 b、 56cに達するコンタクトホール 60a、 60bをそれぞれ形成する(図 11 (a)、図 11 (b) ) 0
[0108] 次いで、全面に、例えばスパッタ法により、例えば膜厚 50nmの TiN膜を形成する。
こうして、 TiN膜によりバリアメタル膜(図示せず)が構成される。
[0109] 次いで、全面に、例えば CVD法により、例えば膜厚 650nmのタングステン膜を形 成する。
[0110] 次いで、例えば CMP法により、層間絶縁膜 58上の TiN膜の表面が露出するまで、 タングステン膜を研磨する。こうして、コンタクトホール 60a、 60b内に、タングステンよ りなる導体プラグ 62a、 62bがそれぞれ埋め込まれる(図 11 (c)、図 l l (d) )。
[0111] 次いで、全面に、例えば膜厚 500nmの AlCu膜と、例えば膜厚 5nmの Ti膜と、例 えば膜厚 150nmの TiN膜とを順次積層する。こうして、 TiN膜と Ti膜と AlCu膜と Ti N膜とを順次積層してなる導体膜が形成される。 [0112] 次いで、フォトリソグラフィー及びドライエッチングにより、導体膜をパターニングする 。これにより、メモリセルアレイ部 12においては、導体プラグ 62aに接続する配線 64a が形成される。また、ボンディングパッド部 18においては、導体プラグ 62bに接続す る配線 56cが形成される(図 12 (a)、図 12 (b) )。
[0113] 次いで、全面に、例えばプラズマ TEOSCVD法により、例えば膜厚 2200nmの NS G膜よりなる層間絶縁膜 66を形成する。
[0114] 層間絶縁膜 66を形成した後、例えば CMP法により、層間絶縁膜 66の表面を平坦 化する(図 13 (a)、図 13 (b) )。
[0115] 次いで、フォトリソグラフィー及びドライエッチングにより、層間絶縁膜 66に、配線 64 a、 64bに達するコンタクトホーノレ 68a、 68bをそれぞれ形成する(図 14 (a)、図 14 (b)
[0116] 次いで、全面に、例えばスパッタ法により例えば膜厚 50nmの TiN膜を形成する。こ うして、 TiN膜によりバリアメタル膜(図示せず)が構成される。
[0117] 次いで、全面に、例えば CVD法により、例えば膜厚 650nmのタングステン膜を形 成する。
[0118] 次いで、例えば CMP法により、層間絶縁膜 66上の TiN膜の表面が露出するまで、 タングステン膜を研磨する。こうして、コンタクトホール 68a、 68b内に、タングステンよ りなる導体プラグ 70a、 70bがそれぞれ埋め込まれる(図 15 (a)、図 15 (b) )。
[0119] 次いで、全面に、例えば膜厚 500nmの AlCu膜と、例えば膜厚 lOOnmの TiN膜と を順次積層する。こうして、 TiN膜と AlCu膜と TiN膜とを順次積層してなる導体膜が 形成される。
[0120] 次いで、フォトリソグラフィー及びドライエッチングにより、導体膜をパターユングする 。これにより、メモリセルアレイ部 12においては、導体プラグ 70aに接続する配線 72a が形成される。また、ボンディングパッド部 18においては、導体プラグ 70bに接続す る配線 72b (ボンディングパッド 16)が形成される(図 16 (a)、図 16 (b) )。
[0121] 次いで、全面に、例えばプラズマ TEOSCVD法により、例えば膜厚 lOOnmの NS G膜を形成する。続いて、全面に、例えばプラズマ CVD法により、例えば膜厚 350η mのシリコン窒化膜を形成する。こうして、 NSG膜とシリコン窒化膜とを順次積層して なる絶縁膜 74が形成される。
[0122] 次いで、フォトリソグラフィー及びドライエッチングにより、絶縁膜 74に、配線 72b (ボ ンデイングパッド 16)に達する開口部 75aを形成する。
[0123] 次いで、全面に、例えば膜厚 3. 0 μ mのポリイミド膜よりなるパッシベーシヨン膜 76 を形成し、フォトリソグラフィ一により、パッシベーシヨン膜 76の開口部 75b上の領域 に、開口部 75bを形成する(図 17 (a)、図 17 (b) )。
[0124] こうして、本実施形態による半導体装置が製造される。
[0125] このように、本実施形態によれば、強誘電体キャパシタ 44を有するメモリセルが配 歹 IJされたメモリセルアレイ部 12が設けられたチップ 10において、周辺回路部 14及び ボンディングパッド部 18に、強誘電体キャパシタ 44と同様の下部電極 38と強誘電体 膜 40と上部電極 42とからなり、水素ガスや水分を吸着するダミーキャパシタ 46を形 成するので、メモリセルアレイ部 1 2内に水素ガスや水分が侵入するのを抑制すること ができる。これにより、メモリセルアレイ部 1 2における強誘電体キャパシタ 44による水 素ガスや水分の吸着を抑制し、強誘電体キャパシタ 44の特性が水素ガスや水分によ り劣化されるのを抑制することができる。したがって、半導体装置の水素ガスに対する 耐性及び耐湿性を向上することができ、信頼性の高い半導体装置を高い製造歩留り で提供すること力 Sできる。
[0126] [第 2実施形態]
本発明の第 2実施形態による半導体装置及びその製造方法について図 18乃至図 21を用いて説明する。図 18は本実施形態による半導体装置におけるメモリセルァレ ィ部の周縁部近傍の構造を示す概略図、図 19は本実施形態による半導体装置にお けるボンディングパッド部の構造を示す概略図、図 20及び図 21は本実施形態による 半導体装置の製造方法を示す工程断面図である。なお、第 1実施形態による半導体 装置及びその製造方法と同様の構成要素については同一の符号を付し説明を省略 し或いは簡略にする。
[0127] 本実施形態による半導体装置の基本的構成は、第 1実施形態による半導体装置と ほぼ同様である。本実施形態による半導体装置は、ダミーキャパシタ 46に代えて、強 誘電体キャパシタ 44と同様の下部電極 38と強誘電体膜 40とを順次積層してなるダミ 一層 94が形成されており、ダミー層 94上には上部電極 42が形成されていない点で 、第 1実施形態による半導体装置と異なっている。本実施形態による半導体装置のよ うに、上部電極 42を有さず、下部電極 38と強誘電体膜 40とを順次積層してなるダミ 一層 94によっても、第 1実施形態による半導体装置と同様に、メモリセルアレイ部 12 内に水素ガスや水分が侵入するのを抑制することができる。
[0128] 以下、本実施形態による半導体装置の構造について図 18及び図 19を用いて説明 する。
[0129] 図 18 (a)は、本実施形態による半導体装置におけるメモリセルアレイ部 12の周縁 部近傍の構造を示す平面図である。図 18 (b)は、図 18 (a)中の A— 線に沿った 拡大断面図である。
[0130] メモリセルアレイ部 12における層間絶縁膜 36上には、図 18 (a)及び図 18 (b)に示 すように、第 1実施形態による半導体装置と同様に、下部電極 38と強誘電体膜 40と 上部電極 42とからなる強誘電体キャパシタ 44が形成されている。
[0131] 周辺回路部 14における層間絶縁膜 36上には、メモリセルアレイ部 12における強誘 電体キャパシタ 44と同様の下部電極 38と強誘電体膜 40とを順次積層してなるダミー 層 94が形成されている。
[0132] 周辺回路部 14に形成されたダミー層 94は、水素ガスや水分を吸着し、水素ガスや 水分がメモリセルアレイ部 12内に侵入するのを抑制するものである。これにより、メモ リセルを構成する強誘電体キャパシタ 44による水素ガスや水分の吸着を抑制し、強 誘電体キャパシタ 44の特性の劣化を抑制することができる。
[0133] 図 19 (a)は、本実施形態による半導体装置におけるボンディングパッド部 18の構 造を示す平面図である。図 19 (b)は、図 19 (a)中の B— 線に沿った拡大断面図 である。
[0134] 層間絶縁膜 36上には、図 19 (a)及び図 19 (b)に示すように、メモリセルアレイ部 12 おける強誘電体キャパシタ 44と同様の下部電極 38と強誘電体膜 40とを順次積層し てなるダミー層 94が形成されている。ダミー層 94上には、上部電極 42は形成されて いない。
[0135] ボンディングパッド部 18に形成されたダミー層 94は、水素ガスや水分を吸着し、水 素ガスや水分カ モリセルアレイ部 12内に侵入するのを抑制するものである。これに より、メモリセルを構成する強誘電体キャパシタ 44による水素ガスや水分の吸着を抑 制し、強誘電体キャパシタ 44の特性の劣化を抑制することができる。
[0136] 上述した周辺回路部 14及びボンディングパッド部 18におけるダミー層 94は、図 4 に示す第 1実施形態による半導体装置におけるダミーキャパシタ 46の形成ルールと 同様の形成ルールに従って形成されてレ、る。
[0137] 本実施形態による半導体装置は、強誘電体キャパシタ 44を有するメモリセルが配 歹 IJされたメモリセルアレイ部 12が設けられたチップ 10において、メモリセルアレイ部 1 2周辺の周辺回路部 14及びチップ 10周縁部のボンディングパッド部 18に、強誘電 体キャパシタ 44と同様の下部電極 38と強誘電体膜 40とを順次積層してなるダミー層 94が形成されていることに主たる特徴がある。
[0138] メモリセルアレイ部 12の外部に位置する周辺回路部 14及びボンディングパッド部 1 8に形成されたダミー層 94は、外部からチップ 10内に侵入してくる水素ガスや水分を 吸着する。この結果、メモリセルアレイ部 12内に水素ガスや水分が侵入するのを抑制 すること力 Sできる。これにより、メモリセルアレイ部 12における強誘電体キャパシタ 44 による水素ガスや水分の吸着を抑制し、強誘電体キャパシタ 44の特性が水素ガスや 水分により劣化されるのを抑制することができる。したがって、半導体装置の水素ガス に対する耐性及び耐湿性を向上することができ、信頼性の高い半導体装置を高い製 造歩留りで提供することができる。
[0139] 次に、本実施形態による半導体装置の製造方法について図 20及び図 21を用いて 説明する。なお、図 20 (a)、図 20 (c)、図 21 (a)、及び図 21 (c)は、メモリセルアレイ 部 12及び周辺回路部 14の工程断面図を示しており、図 18 (a)中の A— 線断面 に対応している。また、図 20 (b)、図 20 (d)、図 21 (b)、及び図 21 (d)は、ボンディン グパッド部 18の工程断面図を示しており、図 19 (a)中の B— 線断面に対応してい る。
[0140] まず、図 5、図 6 (a)及び図 6 (b)に示す第 1実施形態による半導体装置の製造方法 と同様にして、強誘電体キャパシタ 44の下部電極となる積層膜 38、強誘電体膜 40、 及び上部電極となる Ir〇膜 42までを形成する(図 20 (a)、図 20 (b) )。 [0141] 次いで、全面に、スピンコート法により、フォトレジスト膜 88を形成する。
[0142] 次いで、フォトリソグラフィ一により、フォトレジスト膜 88を、強誘電体キャパシタ 44の 上部電極の平面形状にパターニングする。なお、ここでは、第 1実施形態による半導 体装置の製造方法と異なり、周辺回路部 14及びボンディングパッド部 18におけるダ ミー層 94の形成予定領域にはフォトレジスト膜 88を残存させない。
[0143] 次いで、フォトレジスト膜 88をマスクとして、 IrO膜 42をエッチングする。こうして、強
X
誘電体キャパシタ 44について、 IrO膜よりなる上部電極 42が形成される。周辺回路
X
部 14及びボンディングパッド部 18における IrO膜 42は、エッチングにより除去される
X
(図 20 (c)、図 20 (d) )。この後、フォトレジスト膜 88を剥離する。
[0144] 次いで、全面に、スピンコート法により、フォトレジスト膜 90を形成する。
[0145] 次いで、フォトリソグラフィ一により、フォトレジスト膜 90を、強誘電体キャパシタ 44の 強誘電体膜の平面形状にパターニングするとともに、ダミー層 94の強誘電体膜の平 面形状にパターユングする。
[0146] 次いで、フォトレジスト膜 90をマスクとして、強誘電体膜 40をエッチングする。こうし て、強誘電体キャパシタ 44及びダミー層 94について、それぞれ所定の平面形状パタ 一二ングされた強誘電体膜 40が形成される。 (図 21 (a)、図 21 (b) )。この後、フォト レジスト膜 90を剥離する。
[0147] 次いで、全面に、スピンコート法により、フォトレジスト膜 92を形成する。
[0148] 次いで、フォトリソグラフィ一により、フォトレジスト膜 92を、強誘電体キャパシタ 44の 下部電極 38の平面形状にパターニングするとともに、ダミー層 94の下部電極 38の 平面形状にパターユングする。
[0149] 次いで、フォトレジスト膜 92をマスクとして、積層膜 38をエッチングする(図 21 (c)、 図 21 (d) )。こうして、強誘電体キャパシタ 44について、積層膜よりなる下部電極が 3
8形成されるとともに、ダミー層 94について、積層膜よりなる下部電極 38が形成され る。この後、フォトレジスト膜 92を剥離する。
[0150] こうして、メモリセルアレイ部 12において強誘電体キャパシタ 44が形成されるととも に、周辺回路部 14及びボンディングパッド部 18においてダミー層 94が形成される。
[0151] この後の工程は、図 8乃至図 17に示す第 1実施形態による半導体装置の製造方法 と同様であるので説明を省略する。
[0152] このように、本実施形態によれば、強誘電体キャパシタ 44を有するメモリセルが配 歹 IJされたメモリセルアレイ部 12が設けられたチップ 10において、周辺回路部 14及び ボンディングパッド部 18に、強誘電体キャパシタ 44と同様の下部電極 38と強誘電体 膜 40と力、らなり、水素ガスや水分を吸着するダミー層 94を形成するので、メモリセル アレイ部 12内に水素ガスや水分が侵入するのを抑制することができる。これにより、メ モリセルアレイ部 12における強誘電体キャパシタ 44による水素ガスや水分の吸着を 抑制し、強誘電体キャパシタ 44の特性が水素ガスや水分により劣化されるのを抑制 すること力 Sできる。したがって、半導体装置の水素ガスに対する耐性及び耐湿性を向 上することができ、信頼性の高い半導体装置を高い製造歩留りで提供することができ る。
[0153] [第 3実施形態]
本発明の第 3実施形態による半導体装置及びその製造方法について図 22乃至図 25を用いて説明する。図 22は本実施形態による半導体装置におけるメモリセルァレ ィ部の周縁部近傍の構造を示す概略図、図 23は本実施形態による半導体装置にお けるボンディングパッド部の構造を示す概略図、図 24及び図 25は本実施形態による 半導体装置の製造方法を示す工程断面図である。なお、第 1実施形態による半導体 装置及びその製造方法と同様の構成要素については同一の符号を付し説明を省略 し或いは簡略にする。
[0154] 本実施形態による半導体装置の基本的構成は、第 1実施形態による半導体装置と ほぼ同様である。本実施形態による半導体装置は、ダミーキャパシタ 46に代えて、強 誘電体キャパシタ 44と同様の下部電極 38よりなるダミー層 96が形成されており、ダミ 一層 96上には強誘電体膜 40及び上部電極 42は形成されていない点で、第 1実施 形態による半導体装置と異なっている。本実施形態による半導体装置のように、上部 電極 42及び強誘電体膜 40を有さず、下部電極 38よりなるダミー層 96によっても、第 1実施形態による半導体装置と同様に、メモリセルアレイ部 12内に水素ガスや水分 が侵入するのを抑制することができる。
[0155] 以下、本実施形態による半導体装置の構造について図 22及び図 23を用いて説明 する。
[0156] 図 22 (a)は、本実施形態による半導体装置におけるメモリセルアレイ部 12の周縁 部近傍の構造を示す平面図である。図 22 (b)は、図 22 (a)中の A— 線に沿った 拡大断面図である。
[0157] メモリセルアレイ部 12における層間絶縁膜 36上には、図 22 (a)及び図 22 (b)に示 すように、第 1実施形態による半導体装置と同様に、下部電極 38と強誘電体膜 40と 上部電極 42とからなる強誘電体キャパシタ 44が形成されている。
[0158] 周辺回路部 14における層間絶縁膜 36上には、メモリセルアレイ部 12における強誘 電体キャパシタ 44と同様の下部電極 38よりなるダミー層 96が形成されている。ダミー 層 96上には、強誘電体膜 40及び上部電極 42は形成されていない。
[0159] 周辺回路部 14に形成されたダミー層 96は、水素ガスや水分を吸着し、水素ガスや 水分力^モリセルアレイ部 12内に侵入するのを抑制するものである。これにより、メモ リセルを構成する強誘電体キャパシタ 44による水素ガスや水分の吸着を抑制し、強 誘電体キャパシタ 44の特性の劣化を抑制することができる。
[0160] 図 23 (a)は、本実施形態による半導体装置におけるボンディングパッド部 18の構 造を示す平面図である。図 23 (b)は、図 23 (a)中の B-B' 線に沿った拡大断面図 である。
[0161] 層間絶縁膜 36上には、図 23 (a)及び図 23 (b)に示すように、メモリセルアレイ部 12 おける強誘電体キャパシタ 44と同様の下部電極 38よりなるダミー層 96が形成されて いる。ダミー層 96上には、強誘電体膜 40及び上部電極 42は形成されていない。
[0162] ボンディングパッド部 18に形成されたダミー層 96は、水素ガスや水分を吸着し、水 素ガスや水分力^モリセルアレイ部 12内に侵入するのを抑制するものである。これに より、メモリセルを構成する強誘電体キャパシタ 44による水素ガスや水分の吸着を抑 制し、強誘電体キャパシタ 44の特性の劣化を抑制することができる。
[0163] 上述した周辺回路部 14及びボンディングパッド部 18におけるダミー層 96は、図 4 に示す第 1実施形態による半導体装置におけるダミーキャパシタ 46の形成ルールと 同様の形成ルールに従って形成されてレ、る。
[0164] 本実施形態による半導体装置は、強誘電体キャパシタ 44を有するメモリセルが配 歹 IJされたメモリセルアレイ部 12が設けられたチップ 10において、メモリセルアレイ部 1 2周辺の周辺回路部 14及びチップ 10周縁部のボンディングパッド部 18に、強誘電 体キャパシタ 44と同様の下部電極 38よりなるダミー層 96が形成されていることに主 たる特徴がある。
[0165] メモリセルアレイ部 12の外部に位置する周辺回路部 14及びボンディングパッド部 1 8に形成されたダミー層 96は、外部からチップ 10内に侵入してくる水素ガスや水分を 吸着する。この結果、メモリセルアレイ部 12内に水素ガスや水分が侵入するのを抑制 すること力 Sできる。これにより、メモリセルアレイ部 12における強誘電体キャパシタ 44 による水素ガスや水分の吸着を抑制し、強誘電体キャパシタ 44の特性が水素ガスや 水分により劣化されるのを抑制することができる。したがって、半導体装置の水素ガス に対する耐性及び耐湿性を向上することができ、信頼性の高い半導体装置を高い製 造歩留りで提供することができる。
[0166] 次に、本実施形態による半導体装置の製造方法について図 24及び図 25を用いて 説明する。なお、図 24 (a)、図 24 (c)、図 25 (a)、及び図 25 (c)は、メモリセルアレイ 部 12及び周辺回路部 14の工程断面図を示しており、図 22 (a)中の A— 線断面 に対応している。また、図 25 (b)、図 25 (d)、図 25 (b)、及び図 25 (d)は、ボンディン グパッド部 18の工程断面図を示しており、図 23 (a)中の B— 線断面に対応してい る。
[0167] まず、図 5、図 6 (a)及び図 6 (b)に示す第 1実施形態による半導体装置の製造方法 と同様にして、強誘電体キャパシタ 44の下部電極となる積層膜 38、強誘電体膜 40、 及び上部電極となる Ir〇膜 42までを形成する(図 24 (a)、図 24 (b) )。
X
[0168] 次いで、全面に、スピンコート法により、フォトレジスト膜 88を形成する。
[0169] 次いで、フォトリソグラフィ一により、フォトレジスト膜 88を、強誘電体キャパシタ 44の 上部電極の平面形状にパターユングする。なお、ここでは、第 1実施形態による半導 体装置の製造方法と異なり、周辺回路部 14及びボンディングパッド部 18におけるダ ミー層 96の形成予定領域にはフォトレジスト膜 88を残存させない。
[0170] 次いで、フォトレジスト膜 88をマスクとして、 Ir〇膜 42をエッチングする。こうして、強
X
誘電体キャパシタ 44について、 IrO膜よりなる上部電極 42が形成される。周辺回路 部 14及びボンディングパッド部 18における IrO膜 42は、エッチングにより除去される
X
(図 24 (c)、図 24 (d) )。この後、フォトレジスト膜 88を剥離する。
[0171] 次いで、全面に、スピンコート法により、フォトレジスト膜 90を形成する。
[0172] 次いで、フォトリソグラフィ一により、フォトレジスト膜 90を、強誘電体キャパシタ 44の 強誘電体膜の平面形状にパターニングする。さらに、本実施形態による半導体装置 の製造方法では、周辺回路部 14及びボンディングパッド部 18におけるダミー層 96 の形成予定領域にはフォトレジスト膜 90を残存させない。
[0173] 次いで、フォトレジスト膜 90をマスクとして、強誘電体膜 40をエッチングする。こうし て、強誘電体キャパシタ 44について、所定の平面形状パターユングされた強誘電体 膜 40が形成される。周辺回路部 14及びボンディングパッド部 18における強誘電体 膜 40は、エッチングにより除去される(図 25 (a)、図 25 (b) )。この後、フォトレジスト膜 90を剥離する。
[0174] 次いで、全面に、スピンコート法により、フォトレジスト膜 92を形成する。
[0175] 次いで、フォトリソグラフィ一により、フォトレジスト膜 92を、強誘電体キャパシタ 44の 下部電極 38の平面形状にパターニングするとともに、ダミー層 96の下部電極 38の 平面形状にパターユングする。
[0176] 次いで、フォトレジスト膜 92をマスクとして、積層膜 38をエッチングする(図 25 (c)、 図 25 (d) )。こうして、強誘電体キャパシタ 44について、積層膜よりなる下部電極が 3
8形成されるとともに、ダミー層 96について、積層膜よりなる下部電極 38が形成され る。この後、フォトレジスト膜 92を剥離する。
[0177] こうして、メモリセルアレイ部 12において強誘電体キャパシタ 44が形成されるととも に、周辺回路部 14及びボンディングパッド部 18においてダミー層 96が形成される。
[0178] この後の工程は、図 8乃至図 17に示す第 1実施形態による半導体装置の製造方法 と同様であるので説明を省略する。
[0179] このように、本実施形態によれば、強誘電体キャパシタ 44を有するメモリセルが配 歹 IJされたメモリセルアレイ部 12が設けられたチップ 10において、周辺回路部 14及び ボンディングパッド部 18に、強誘電体キャパシタ 44と同様の下部電極 38からなり、水 素ガスや水分を吸着するダミー層 96を形成するので、メモリセルアレイ部 12内に水 素ガスや水分が侵入するのを抑制することができる。これにより、メモリセルアレイ部 1 2における強誘電体キャパシタ 44による水素ガスや水分の吸着を抑制し、強誘電体 キャパシタ 44の特性が水素ガスや水分により劣化されるのを抑制することができる。 したがって、半導体装置の水素ガスに対する耐性及び耐湿性を向上することができ、 信頼性の高い半導体装置を高い製造歩留りで提供することができる。
[0180] [第 4実施形態]
本発明の第 4実施形態による半導体装置の製造方法について図 26及び図 27を用 いて説明する。図 26は本実施形態による半導体装置の構造を示す平面図、図 27は 本実施形態による半導体装置におけるチップ周縁部を示す概略図である。なお、第 1実施形態による半導体装置及びその製造方法と同様の構成要素については同一 の符号を付し説明を省略し或いは簡略にする。
[0181] 本実施形態による半導体装置の基本的構成は、第 1実施形態による半導体装置と ほぼ同様である。本実施形態による半導体装置は、チップ 10周縁部にボンディング パッド 16が形成されていない部分を有している点で、第 1実施形態による半導体装 置と異なっている。
[0182] すなわち、図 26に示すように、チップ 10周縁部のうち、対向する一組の端辺近傍 の部分には、第 1実施形態による半導体装置と同様に、ボンディングパッド 16が配列 して形成されている。一方、チップ 10周縁部のうち、対向する他の組の端辺近傍の 部分には、ボンディングパッド 16は形成されていない。
[0183] 図 27 (a)は、本実施形態による半導体装置におけるボンディングパッド 16が形成さ れていないチップ 10周縁部の構造を示す平面図であり、図 26中の円で囲まれた領 域 Rを拡大して示したものである。図 27 (b)は、図 27 (a)中の C一 C' 線に沿った拡
3
大断面図である。
[0184] 図 27 (a)及び図 27 (b)に示すように、層間絶縁膜 36上には、第 1実施形態による 半導体装置と同様に、強誘電体キャパシタ 44と同様の下部電極 38と強誘電体膜 40 と上部電極 42とからなるダミーキャパシタ 46が形成されている。
[0185] ダミーキャパシタ 46上に形成された層間絶縁膜 48、 58、 66、及び絶縁膜 74には、 配線は埋め込まれてレ、なレ、。 [0186] 本実施形態のように、チップ 10周縁部のうち、ボンディングパッド 16が形成されて レ、ない部分が存在する場合においても、第 1実施形態による半導体装置と同様に、 チップ 10周縁部にダミーキャパシタ 46を形成することにより、メモリセルアレイ部 12内 に水素ガスや水分が侵入するのを抑制することができる。これにより、メモリセルァレ ィ部 12における強誘電体キャパシタ 44による水素ガスや水分の吸着を抑制し、強誘 電体キャパシタ 44の特性が水素ガスや水分により劣化されるのを抑制することができ る。
[0187] [変形実施形態]
本発明は上記実施形態に限らず種々の変形が可能である。
[0188] 例えば、上記実施形態では、周辺回路部 14及びボンディングパッド部 18に、ダミ 一キャパシタ 46、下部電極 38と強誘電体膜 40とを順次積層してなるダミー層 94、又 は下部電極よりなるダミー層 38が形成されている場合について説明した力 周辺回 路部 14及びボンディングパッド部 18には、下部電極 38、強誘電体膜 40及び上部電 極 42のうちの少なくともいずれかを有するダミー層が形成されていればよレ、。このよう なダミー層によっても、上記と同様に、メモリセルアレイ部 12内に水素ガスや水分が 侵入するのを抑制することができる。
[0189] また、上記実施形態では、強誘電体膜 40として PZT膜を用いる場合を例に説明し た力 強誘電体膜 40は PZT膜に限定されるものではなぐ他のあらゆる強誘電体膜 を適宜用いることができる。例えば、強誘電体膜 40として、 Pb La Zr Ti O膜(
1-X X 1-Y Y 3
PLZT膜)、 SrBi (Ta Nb ) O膜、 Bi Ti O 膜等を用いてもよい。
2 X 1-X 2 9 4 2 12
[0190] また、上記実施形態では、 IrO膜により上部電極 42を構成した力 上部電極 42を
X
構成する導体膜の材料は力かる材料に限定されるものではない。例えば、 SrRuO膜
(SR〇膜)により上部電極 42を構成してもよい。
[0191] また、上記実施形態では、 Ti膜と Pt膜との積層膜により下部電極 38を構成したが、 下部電極 38を構成する導体膜の材料は力、かる材料に限定されるものではない。例 えば、酸化アルミニウム膜と Pt膜とにより下部電極 38を構成してもよい。
[0192] また、上記実施形態では、メモリセルアレイ部 12に、 2つのトランジスタ 34及び 2つ の強誘電体キャパシタ 44を有する 2T2C型のメモリセルが形成されている場合につ いて説明したが、メモリセルの構成は 2T2C型に限定されるものではない。メモリセル の構成としては、 2T2C型のほ力、例えば 1つのトランジスタ及び 1つの強誘電体キヤ パシタを有する 1T1C型等の種々の構成を用いることができる。
産業上の利用可能性
本発明による半導体装置及びその製造方法は、強誘電体キャパシタを有する半導 体装置の信頼性を向上するのに有用である。

Claims

請求の範囲
[1] 半導体基板上のメモリセルアレイ領域に形成され、第 1の下部電極と、前記第 1の 下部電極上に形成された第 1の強誘電体膜と、前記第 1の強誘電体膜上に形成され た第 1の上部電極とを有する複数個の強誘電体キャパシタと、
前記半導体基板上の前記メモリセルアレイ領域以外の周辺領域に形成され、少な くとも第 2の下部電極を有し、水素ガス又は水分を吸着する複数個のダミー層と を有することを特徴とする半導体装置。
[2] 請求の範囲第 1項記載の半導体装置において、
前記ダミー層は、前記第 2の下部電極上に形成された第 2の強誘電体膜を更に有 する
ことを特徴とする半導体装置。
[3] 請求の範囲第 2項記載の半導体装置において、
前記ダミー層は、前記第 2の強誘電体膜上に形成された第 2の上部電極を更に有 するダミーキャパシタである
ことを特徴とする半導体装置。
[4] 請求の範囲第 1項乃至第 3項のいずれか 1項に記載の半導体装置において、 前記メモリセルアレイ領域に形成され、前記強誘電体キャパシタを有する複数個の メモリセルを更に有する
ことを特徴とする半導体装置。
[5] 請求の範囲第 1項乃至第 4項のいずれか 1項に記載の半導体装置において、 前記半導体基板上の周縁部に形成され、前記半導体基板上に形成された回路と 外部回路とを接続するためのボンディングパッドを更に有する
ことを特徴とする半導体装置。
[6] 請求の範囲第 1項乃至第 5項のいずれか 1項に記載の半導体装置において、 複数個の前記強誘電体キャパシタと複数個の前記ダミー層とは、同一の層間絶縁 膜上に形成されている
ことを特徴とする半導体装置。
[7] 請求の範囲第 1項乃至第 6項のいずれか 1項に記載の半導体装置において、 前記第 1の強誘電体膜及び/又は前記第 2の強誘電体膜は、 PbZr Ti O膜、 P
1— X X 3 b La Zr Ti O膜、 SrBi (Ta Nb ) 〇膜、又は Bi Ti〇 膜である
l-X X 1-Y Y 3 2 X 1-X 2 9 4 2 12
ことを特徴とする半導体装置。
[8] 半導体基板上に、第 1の導体膜を形成する工程と、
前記第 1の導体膜上に、強誘電体膜を形成する工程と、
前記強誘電体膜上に、第 2の導体膜を形成する工程と、
前記半導体基板上のメモリセルアレイ領域における前記第 2の導体膜、前記強誘 電体膜、及び前記第 1の導体膜をパターユングすることにより、前記メモリセルアレイ 領域に、前記第 1の導体膜よりなる第 1の下部電極と、前記強誘電体膜と、前記第 2 の導体膜よりなる第 1の上部電極とを有する複数個の強誘電体キャパシタを形成し、 前記半導体基板上の前記メモリセルアレイ領域以外の周辺領域における前記第 2の 導体膜、前記強誘電体膜、及び前記第 1の導体膜をパターニングすることにより、前 記周辺領域に、前記第 1の導体膜よりなる第 2の下部電極、前記強誘電体膜、及び 前記第 2の導体膜よりなる第 2の上部電極のうちの少なくともいずれ力を有し、水素ガ ス又は水分を吸着する複数個のダミー層を形成する工程と
を有することを特徴とする半導体装置の製造方法。
[9] 請求の範囲第 8項記載の半導体装置の製造方法において、
前記強誘電体キャパシタ及び前記ダミー層を形成する工程では、前記メモリセルァ レイ領域における前記第 2の導電膜、前記強誘電体膜、及び前記第 1の導電膜をパ ターニングするとともに、前記周辺領域における前記第 2の導電膜、前記強誘電体膜 、及び前記第 1の導電膜をパターユングする
ことを特徴とする半導体装置の製造方法。
[10] 請求の範囲第 8項又は第 9項記載の半導体装置の製造方法にぉレ、て、
前記ダミー層を形成する工程では、前記第 2の下部電極と、前記強誘電体膜と、前 記第 2の上部電極とを有するダミーキャパシタを前記ダミー層として形成する
ことを特徴とする半導体装置の製造方法。
[11] 請求の範囲第 8項又は第 9項記載の半導体装置の製造方法において、
前記ダミー層を形成する工程では、前記周辺領域における前記第 2の導電膜を除 去し、前記第 2の下部電極と、前記強誘電体膜とを有する前記ダミー層を形成する ことを特徴とする半導体装置の製造方法。
請求の範囲第 8項又は第 9項記載の半導体装置の製造方法において、 前記ダミー層を形成する工程では、前記周辺領域における前記第 2の導電膜及び 前記強誘電膜を除去し、前記第 2の下部電極よりなる前記ダミー層を形成する ことを特徴とする半導体装置の製造方法。
PCT/JP2004/009147 2004-06-29 2004-06-29 半導体装置及びその製造方法 WO2006001064A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/009147 WO2006001064A1 (ja) 2004-06-29 2004-06-29 半導体装置及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/009147 WO2006001064A1 (ja) 2004-06-29 2004-06-29 半導体装置及びその製造方法

Publications (1)

Publication Number Publication Date
WO2006001064A1 true WO2006001064A1 (ja) 2006-01-05

Family

ID=35781616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/009147 WO2006001064A1 (ja) 2004-06-29 2004-06-29 半導体装置及びその製造方法

Country Status (1)

Country Link
WO (1) WO2006001064A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003100912A (ja) * 2001-07-18 2003-04-04 Matsushita Electric Ind Co Ltd 半導体記憶装置及びその製造方法
JP2003100910A (ja) * 2001-07-19 2003-04-04 Matsushita Electric Ind Co Ltd 半導体記憶装置及びその製造方法
JP2003273325A (ja) * 2002-03-15 2003-09-26 Oki Electric Ind Co Ltd 半導体装置およびその製造方法
JP2004047943A (ja) * 2002-03-20 2004-02-12 Fujitsu Ltd 半導体装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003100912A (ja) * 2001-07-18 2003-04-04 Matsushita Electric Ind Co Ltd 半導体記憶装置及びその製造方法
JP2003100910A (ja) * 2001-07-19 2003-04-04 Matsushita Electric Ind Co Ltd 半導体記憶装置及びその製造方法
JP2003273325A (ja) * 2002-03-15 2003-09-26 Oki Electric Ind Co Ltd 半導体装置およびその製造方法
JP2004047943A (ja) * 2002-03-20 2004-02-12 Fujitsu Ltd 半導体装置

Similar Documents

Publication Publication Date Title
JP4042730B2 (ja) 強誘電体メモリおよびその製造方法
KR100440413B1 (ko) 반도체 기억 장치 및 그 제조 방법
JP4025829B2 (ja) 半導体装置及びその製造方法
KR100870361B1 (ko) 강유전체 메모리 및 그 제조방법
TW584856B (en) Semiconductor device
WO2006134631A1 (ja) 半導体装置
US20080237866A1 (en) Semiconductor device with strengthened pads
JP4791191B2 (ja) 半導体装置及びその製造方法
US8324671B2 (en) Semiconductor device and method of manufacturing the same
US20060043452A1 (en) Ferroelectric memory and its manufacturing method
US7279342B2 (en) Ferroelectric memory
JP2002280523A (ja) 半導体記憶装置とその製造方法
JP2007281373A (ja) 半導体装置及びその製造方法
JP4023770B2 (ja) 半導体記憶装置及びその製造方法
US7507662B2 (en) Ferroelectric memory and its manufacturing method
JP4893304B2 (ja) 半導体装置及びその製造方法
US6384440B1 (en) Ferroelectric memory including ferroelectric capacitor, one of whose electrodes is connected to metal silicide film
WO2007116501A1 (ja) 半導体装置及びその製造方法
WO2006001064A1 (ja) 半導体装置及びその製造方法
US6982455B2 (en) Semiconductor device and method of manufacturing the same
JP5582166B2 (ja) 半導体装置
KR100722940B1 (ko) 반도체 장치의 제조 방법
JP2010287771A (ja) 半導体装置及びその製造方法
JP2003332534A (ja) 半導体装置
JPH1056149A (ja) 強誘電体メモリ及びその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP