WO2005121721A1 - Überlastsicherung für ein kraftmesselement - Google Patents

Überlastsicherung für ein kraftmesselement Download PDF

Info

Publication number
WO2005121721A1
WO2005121721A1 PCT/EP2005/005941 EP2005005941W WO2005121721A1 WO 2005121721 A1 WO2005121721 A1 WO 2005121721A1 EP 2005005941 W EP2005005941 W EP 2005005941W WO 2005121721 A1 WO2005121721 A1 WO 2005121721A1
Authority
WO
WIPO (PCT)
Prior art keywords
overload
measuring element
force measuring
recess
force
Prior art date
Application number
PCT/EP2005/005941
Other languages
English (en)
French (fr)
Inventor
Ralf Scherer
Original Assignee
Hottinger Baldwin Messtechnik Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hottinger Baldwin Messtechnik Gmbh filed Critical Hottinger Baldwin Messtechnik Gmbh
Priority to DK05750528.1T priority Critical patent/DK1754030T3/da
Priority to PL05750528T priority patent/PL1754030T3/pl
Priority to EP05750528.1A priority patent/EP1754030B1/de
Priority to ES05750528.1T priority patent/ES2662255T3/es
Publication of WO2005121721A1 publication Critical patent/WO2005121721A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G23/00Auxiliary devices for weighing apparatus
    • G01G23/005Means for preventing overload

Definitions

  • the invention relates to an overload protection for a force measuring element according to the preamble of patent claim 1.
  • Overload safeguards of this type are preferably required for sawing devices in which force measuring elements are provided for weight detection.
  • the force measuring elements usually consist of a movable force introduction part and a firmly clamped force absorption part between which a deformation body is arranged, which is provided with measuring transducers, which are usually designed as strain gauges.
  • These strain gauges preferably consist of a vapor-deposited measuring grid, which can easily be damaged or destroyed if a predetermined strain is exceeded. It is therefore often necessary to prevent the deformation body from being overstretched by overload protection.
  • Such overload protection for a force measuring element is known from DE 42 32 568 C2, which is integrated in a cylindrical force measuring cell or load cell.
  • a threaded bolt with a fine thread is provided under the movable force introduction part in the rigid force receiving part, which limits the vertical movement of the movable force introduction part.
  • the threaded bolt is adjusted to a maximum permissible gap distance to the movable force introduction part, which then prevents the strain gauges on the cylindrical deformation body from being overloaded or overstretched.
  • an overload safety device on a force measuring element which provides a defined, prefabricated gap distance between the moving part of the force measuring element and the overload safety device.
  • an elongated hole is provided in a force measuring element, which is designed as a double bending beam, transversely to the direction of force introduction and in the longitudinal direction of the double bending beam, in which a cylindrical overload rod is arranged.
  • the overload rod is firmly pressed into the bore at the clamping end or on and the force-absorbing part of the double bending beam and has a predetermined play in the bore of the movable part of the bending beam.
  • the diameter of the bore is at least larger than the overload rod by the maximum permissible range of movement, so that a defined annular gap is created around it.
  • This annular gap limits the range of motion of the force introduction part in order to prevent overloading the strain gauges on the deformation elements of the bending beam.
  • this overload protection is only arranged longitudinally about a central longitudinal axis, so that when the force is applied off-center, the bending beam can twist, in which the vertical movement range cannot be reliably limited by the annular gap.
  • Such a twist-proof limitation of the vertical range of motion in the event of overload protection of a double bending beam is known from DE 43 13 932 AI.
  • a screw-on additional beam is provided parallel to the double bending beam, which limits the vertical range of motion of the movable part of the bending beam.
  • a stop head is fastened to the movable part or the force introduction part of the bending beam, in the recess of which the end of the overload beam extends. protrudes.
  • One end of the overload beam engages in the recess of the stop head in such a way that the vertical range of movement of the movable bending beam part is limited upwards and downwards by a gap width provided.
  • the overload beam is approximately half the width of the double bending beam, the limiting gaps running parallel to the width on the underside of the bending beam achieve a torsion-proof limitation of the vertical deflection.
  • the gap widths in the weighing direction must be adjusted very precisely by means of an inclined beam on the overload bar and a stop head that can be moved to prevent the strain gauges from being overloaded, taking into account the nominal load range.
  • This overload protection has the disadvantage that in the case of the double bending beams, which are predominantly machinable today, the overload protection still has to be screwed on manually and its small gap widths must also be adjusted, which increases the manufacturing effort of the force measuring element.
  • the invention is therefore based on the object of integrating an overload safety device into the force measuring element in such a way that it can be manufactured largely by machine and does not require any manual adjustment work, and also overloads when the force is applied off-center. Strain gauges safely prevented.
  • the invention has the advantage that the overload contactor for the force measuring element can largely be carried out by the same milling process of the bending beam base body, since this is usually done fully automatically by means of program-controlled machine tools. Since the overload bar is particularly useful for a double bending beam is machined out of the solid material between the two deformation bodies, such an overload protection is advantageously also inexpensive and space-saving to manufacture. By working out the overload beam from the full bending beam material and the use of freely available dowel pins as series parts, the production of the overload protection requires almost no additional assembly time and no manual adjustment work.
  • the invention also has the advantage that the use of dowel pins to produce such small gap spacings of a few tenths of a millimeter means that they can be produced in a simple manner by machining processes with relatively large tools and do not have to be produced by a complex wire EDM process as is usual. Since such dowel pins are available in high accuracy classes (H7 fit) as inexpensive series parts, the very small gap widths can advantageously be manufactured very precisely with the simplest machining processes, so that the overload protection according to the invention very reliably protects the strain gauges from occurring overloads.
  • the overload protection is effective evenly over the entire width of the force measuring element, so that, in particular, rotation of the bending beam about the longitudinal axis is prevented when force is applied off-center.
  • the dowel pins are cylindrical, which has the advantage that the dowel pins can be inserted in a recess of more than 180 ° and can thus be fixed in the direction of movement without additional fastening means.
  • the use of the cylindrical dowel pins has the advantage that, in the event of an overload, the movable part of the bending beam rests in a form-fitting manner in the cutout of the limiting element, so that a comparatively low surface load results even with high overload forces.
  • this has the advantage that even in the event of frequent and high overloads of the force measuring element, the overload protection neither wears out nor there is a risk that the gap distances change, so that a long service life of the force measuring element can be achieved.
  • Fig. 1 an illustration of a force measuring element with integrated overload protection
  • Fig. 2 an enlarged section of the overload protection with a stop head.
  • a force measuring element in the form of a double bending beam 1 with overload protection is shown, which essentially consists of an overload beam 9 arranged between the bending beams 2, 3, the stop head 6 in a recess 17 with two dowel pins 4, 5 of the movable part 7 of the double bending beam 1 protrudes, a defined gap 18, 19 being left between the dowel pins 4, 5 and the stop head 6.
  • the force measuring element designed as a double bending beam 1 essentially consists of a force introduction part 7 and a force absorption part 8, which are connected by two bending beams 2, 3.
  • the force introduction part 7 represents the movable part of the force measuring element and is subjected to the weight force to be measured, for example in a balance.
  • This force introduction part 7 is approximately cuboid in shape, its upper cover surface 10 mostly being used for force introduction.
  • Force absorption part 8 is also cuboid and represents the clamping end of the force measuring element 1, which is usually fixedly attached to a scale or its frame part.
  • the double bending beam 1 is made from a longitudinal beam made of solid material, preferably aluminum or stainless steel, from which the two bending beams 2, 3 are usually worked out by milling or drilling operations.
  • the two bending beams 2, 3 generally have one or two thin points 11 and thereby form a deformation body, to which the strain gauges, not shown, are applied as transmitters. When a force is applied, a bending stress is generated on the surface of the deformation body, which is proportional to the force introduced and which is converted into an electrical signal by the transmitters.
  • an additional beam is arranged as an overload beam 9 for overload protection, which is also worked out of the original solid material.
  • This overload beam 9 is fixedly connected to the clamping end 8 or the force-absorbing part of the bending beam 1.
  • the overload beam 9 essentially fills the space between the two bending beams 2, 3 and also corresponds in its width or depth to approximately the width of the double bending beam 1. Both depend on the The height and the depth of the overload bar 9 essentially depend on the overload force to be absorbed, which in the illustrated embodiment corresponds to at least ten times the nominal load, without the measuring transducer being damaged or destroyed.
  • the overload bar 9 there is a narrower part which represents a stop head 6 and which projects into a recess 17 in the movable part 7 or the force introduction part. Both the recess 17 and the stop head 6 are machined out of the solid beam material by means of milled bores and slots and do not require any assembly processes.
  • the recess 17 is essentially formed by three vertical grooves 12, 14 and two holes 15, 16 connecting the grooves.
  • the length of the stop head 6 is limited by a vertical longitudinal groove 12 which runs across the width of the movable part 7 and allows the stop head to protrude approximately 10 mm into the force introduction part 7.
  • two further opposing vertical grooves 14 are milled, which have a horizontal round indentation 20 at the end of the stop head 6 for the force introduction part 7.
  • a lower bore 16 and an upper bore 15 are provided between the indentations 20 and the end points of the vertical longitudinal groove 12, each of which connects the vertical longitudinal groove 12 to the indentations 20 of the opposing vertical grooves 14.
  • the holes 15, 16 represent part of the entire recess 17 and each extend with a part in the force introduction part 7 and the other part in the stop head 6 of the overload beam 9.
  • Each hole 15, 16 is arranged so that it extends at more than 180 °, preferably 200 °, into the area of the force introduction part 7 and preferably at approximately 160 ° into the area of the stop head 6.
  • These bores 15, 16 can also be produced very precisely using program-controlled machine tools, so that they can later be fitted with a serial, very precise cylindrical dowel pin 4, 5 of the accuracy class H7 fit.
  • the dowel pins 4, 5 can be inserted or pressed into this bore part without the dowel pins 4, 5 falling out of this bore part upwards or downwards, so that there is no further fastening needs more.
  • the bores 15, 16 are enlarged in their radius in the region of the stop head 6 by preferably 0.3 mm.
  • this creates a defined gap 18, 19, preferably 0.3 mm wide, between the bore part in the stop head 6 and the opposite lateral surface of the dowel pins 4, 5, which vertically extends the movable part 7 of the double bending beam 1. steering limited.
  • the gap width 18, 19 is dimensioned such that it corresponds at least to the vertical movement at the nominal load and also takes into account a predetermined overload which does not damage the strain gauges.
  • the range of motion of the force introduction part 7 is limited in the case of a predetermined overload by the fact that the dowel pin 15, 16 lies positively in the bore part of the stop head 6.
  • the dowel pin 15, 16 lies positively in the bore part of the stop head 6.
  • the upper dowel pin 4 for overload protection with a pressure load is tion provided.
  • the lower dowel pin 5 is provided as an overload protection in the direction of pull, which occurs more frequently in weighing devices during transport or during service and cleaning work.
  • each with a bore 15 and a dowel pin 4 is necessary for overload protection.
  • the dowel pins 4, 5 can be not only cylindrical, but also square or in other round shapes. However, the holes must then also be Appropriate recess shapes are provided. Rectangular or square dowel pins, which are also offered as series parts in high accuracy classes, are particularly advantageous. Corresponding rectangular or square cross sections of the cutouts or cutout parts 15, 16 can be carried out in a simple manner and with high accuracy using program-controlled milling machines. Such overload safeguards are not only feasible for double bending beam sensors 1, but can also be provided for single or other multiple bending beams.
  • the stop head 6 can also be arranged on the force introduction part 7, which then engages in a recess 17 in the overload bar 9.
  • the stop head 6 could also protrude into the clamping end 8 and limit the vertical movement path of the movable part 7 of the bending beam there.
  • this would represent a worsened embodiment, since the overload bar 9, which is then arranged to be movable, would experience a lever arm translation which would require different gap widths 18, 19 depending on the lever arm length.
  • the dowel pins 4, 5 can also be attached to the stop head 6, in which case the overload gaps 18, 19 are to be provided on the recess part or bore part 15, 16 of the force introduction part 7.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Force In General (AREA)

Abstract

Die Erfindung betrifft eine Überlastsicherung für ein Kraftmesselement (1), das als Biegebalken mit Messumformer ausgebildet ist. Dieses Kraftmesselement (1) enthält ein Begrenzungselement (9), welches fest mit dem Einspannende bzw. dem Kraftaufnahmeteil (8) verbunden ist und sich bis zum beweglichen Teil (7) des Kraftmesselements (1) erstreckt und von diesem durch einen Spalt (18, 19) getrennt ist. Dabei wird die Durchbiegung des beweglichen Teils (7) des Kraftmesselements (1) durch den Spalt (18, 19) begrenzt. Die Erfindung ist dadurch gekennzeichnet, dass das Begrenzungselement als Überlastbalken (9) ausgebildet ist, der durch mindestens einen quer zur Balkenlängsrichtung verlaufenden Aussparungsteil (15, 16) vom beweglichen Teil (7) des Kraftmesselements (1) getrennt ist. Dieser Aussparungsteil wird aus mindestens einer Bohrung (15, 16) oder einer rechteckförmig oder quadratischen Nut gebildet, die sich mit einem Teil sowohl im beweglichen Teil (7) und mit dem anderen Teil im Überlastbalken (9) erstreckt. Dabei sind in der Bohrung (15, 16) oder in den rechteckförmig oder quadratischen Nuten Passstifte (4, 5) fixiert, die einen definierten Spalt (18, 19) zwischen dem Überlastbalken (9) und dem beweglichen Teil (7) belassen.

Description

Überlastsicherung für ein Kraftmesselement
Die Erfindung betrifft eine Überlastsicherung für ein Kraftmesselement gemäß dem Oberbegriff des Patentanspruchs 1.
Derartige Überlastsicherungen werden vorzugsweise bei ägeein- richtungen benötigt, in denen Kraftmesselemente zur Gewichtserfassung vorgesehen sind. Dabei bestehen die Kraftmesselemente meist aus einem beweglichen Krafteinleitungsteil und einem fest eingespannten Kraftaufnahmeteil zwischen denen ein Verformungskörper angeordnet ist, der mit Messumformern versehen ist, die meist als Dehnungsmessstreifen ausgebildet sind. Diese Dehnungsmessstreifen bestehen vorzugsweise aus einem aufgedampften Messgitter, das bei Überschreitung einer vorgesehenen Dehnung leicht beschädigt oder zerstört werden kann. Deshalb ist es häufig notwendig, eine Überdehnung des Verformungskör- pers durch eine ÜberlastSicherung zu verhindern.
Eine derartige Überlastsicherung für ein Kraftmesselement ist aus der DE 42 32 568 C2 bekannt, die in einer zylinderförmigen Kraftmesszelle bzw. Wägezelle integriert ist. Dabei ist unter dem beweglichen Krafteinleitungsteil im biegesteifen Kraftaufnahmeteil ein Gewindebolzen mit einem Feingewinde vorgesehen, der den beweglichen Krafteinleitungsteil in seiner vertikalen Bewegung begrenzt. Dazu wird der Gewindebolzen auf einen maximal zulässigen Spaltabstand zum beweglichen Krafteinleitungs- teil einjustiert, der dann eine Überlastung bzw. Überdehnung der Dehnungsmessstreifen auf dem zylindrischen Verformungskörper verhindert. Da derartige Spaltabstände wegen der geringen vertikalen Durchbiegung des Krafteinleitungsteils auf wenige Zehntel Millimeter genau eingestellt werden müssen, sind hier- zu genaue manuelle Justierarbeiten notwendig, die jeweils bei jeder Wägezelle durchgeführt werden müssen und den Fertigungsaufwand nicht unerheblich erhöhen.
Aus der DE 27 53 549 C2 ist ebenfalls eine Überlastsicherung an einem Kraftmesselement bekannt, das einen definierten vorgefertigten Spaltabstand zwischen dem beweglichen Teil des Kraftmesselements und der Überlastsicherung vorsieht. Dabei ist in einem Kraftmesselement, das als Doppelbiegebalken ausgebildet ist, quer zur Krafteinleitungsrichtung und in Längs- richtung des Doppelbiegebalkens eine Langlochbohrung vorgesehen, in der ein zylinderförmiger Überlaststab angeordnet ist. Der Überlaststab ist am Einspannende bzw. am und Kraftaufnahmeteil des Doppelbiegebalkens fest in die Bohrung eingepresst und hat in der Bohrung des beweglichen Teils des Biegebalkens ein vorgegebenes Spiel. Dazu ist die Bohrung in ihrem Durchmesser mindestens um den maximal zulässigen Bewegungsbereich größer als der Überlaststab, so dass um diesen ein definierter Ringspalt entsteht. Dieser Ringspalt begrenzt den Bewegungsbereich des Krafteinleitungsteils um eine Überlastung der Deh- nungsmessstreifen an den Verformungskörpern des Biegebalkens zu verhindern. Dieser Überlastschutz ist aber nur längs um eine zentrale Längsachse angeordnet, so dass bei einer außermittigen Krafteinleitung eine Verdrehung des Biegebalkens eintreten kann, bei der der vertikale Bewegungsbereich durch den Ringspalt nicht sicher begrenzbar ist.
Eine derartige verdrehsichere Begrenzung des vertikalen Bewegungsbereichs bei einer Überlastsicherung eines Doppelbiegebalkens ist aus der DE 43 13 932 AI bekannt. Bei dieser Über- lastsicherung ist parallel zum Doppelbiegebalken ein anschraubbarer Zusatzbalken vorgesehen, der den vertikalen Bewegungsbereich des beweglichen Teils des Biegebalkens begrenzt. Dazu ist am beweglichen Teil bzw. dem Krafteinleitungsteil des Biegebalkens ein Anschlagkopf befestigt, in des- sen vorgesehene Aussparung das Ende des Überlastbalkens hin- einragt. Dabei greift das eine Ende des Überlastbalkens so in die Aussparung des Anschlagkopfes ein, dass der vertikale Bewegungsbereich des beweglichen Biegebalkenteils durch eine vorgesehene Spaltbreite nach oben und unten begrenzt wird. Da der Überlastbalken etwa halb so breit wie der Doppelbiegebalken ausgeführt ist, wird durch die parallel zur Breite an der Unterseite des Biegebalkens verlaufenden Begrenzungsspalte eine verdrehsichere Begrenzung der vertikalen Ausbiegung erreicht. Allerdings müssen bei dieser Überlastsicherung die Spaltbreiten in Wägerichtung durch eine schräge am Überlastbalken und einen dazu verschiebbaren Anschlagkopf sehr genau einjustiert werden, um eine sichere Überlastung der Dehnungsmessstreifen unter Berücksichtigung des Nennlastbereichs zu verhindern. Diese Überlastsicherung hat den Nachteil, dass bei den heute überwiegend maschinell herstellbaren Doppelbiegebalken die Überlastsicherung noch manuell angeschraubt und deren geringe Spaltbreiten noch zusätzlich einjustiert werden müssen, was den Herstellungsaufwand des Kraftmesselements erhöht.
Der Erfindung liegt deshalb die Aufgabe zugrunde, eine Überlastsicherung so in das Kraftmesselement zu integrieren, dass dieses weitgehend maschinell herstellbar ist und keine manuellen Justierarbeiten erfordert sowie auch bei einer außermittigen Krafteinleitung eine Überlastung der. Dehnungsmessstreifen sicher verhindert.
Diese Aufgabe wird durch die in Patentanspruch 1 angegebene Erfindung gelöst. Weiterbildungen und vorteilhafte Ausführungsbeispiele sind in den Unteransprüchen angegeben.
Die Erfindung hat den Vorteil, dass der Überlastschütz für das Kraftmesselement weitgehend durch den gleichen Fräsvorgang des Biegebalkengrundkörpers erfolgen kann, da dies meist vollautomatisch mittels programmgesteuerter Werkzeugmaschinen ge- schieht. Da der Überlastbalken insbesondere bei einem Doppel- biegebalken aus dem Vollmaterial zwischen den beiden Verformungskörpern herausbearbeitet wird, ist ein derartiger Überlastschutz vorteilhafterweise auch kostengünstig und platzsparend herstellbar. Durch die Herausarbeitung des Überlastbal- kens aus dem Biegebalkenvollmaterial und dem Einsatz frei erhältlicher Passstifte als Serienteile erfordert die Herstellung des Überlastschutzes nahezu keine zusätzliche Montagezeit und keine manuellen Justierarbeiten.
Die Erfindung hat weiterhin den Vorteil, dass durch den Einsatz von Passstiften zur Herstellung von derart kleinen Spaltabständen von wenigen zehntel Millimetern diese auf einfache Weise durch spanabhebende Bearbeitungsverfahren mit relativ großen Werkzeugen herstellbar .sind und nicht wie sonst üblich durch ein aufwändiges Drahterodierverfahren gefertigt werden müssen. Da derartige Passstifte in hohen Genauigkeitsklassen (H7-Passung) als kostengünstige Serienteile erhältlich sind, können vorteilhafterweise mit einfachsten Bearbeitungsverfahren die sehr kleine Spaltweiten sehr genau hergestellt werden, so dass die erfindungsgemäße Überlastsicherung sehr zuverlässig die Dehnungsmessstreifen vor auftretenden Überlastungen schützt .
Durch die quer zur Längsrichtung angeordneten Passstifte wird vorteilhafterweise gleichzeitig erreicht, dass die Überlastsicherung gleichmäßig über die gesamte Breite des Kraftmesselements wirksam ist, so dass insbesondere eine Verdrehung des Biegebalkens um die Längsachse bei außermittiger Krafteinleitung verhindert wird.
Bei einer besonderen Ausführung der Erfindung ist vorgesehen, zwei Passstifte zur Begrenzung des beweglichen Biegebalkenteils in beide vertikale Richtungen einzusetzen, wodurch vorteilhafterweise gleichzeitig ein Überlastschutz in Zug- und Druckrichtung erreichbar ist, der die Dehnungsmessstreifen in den beiden möglichen Bewegungsrichtungen des Kraftmesselements vor Überlastung schützt.
Eine weitere besondere Ausführung der Erfindung sieht vor, dass die Passstifte zylinderförmig ausgebildet sind, woraus sich der Vorteil ergibt, dass die Passstifte in einer Aussparung von mehr als 180° eingesteckt werden können, und so ohne zusätzliche Befestigungsmittel in Bewegungsrichtung fixierbar sind. Insbesondere der Einsatz der zylinderförmigen Passstifte hat den Vorteil, dass im Überlastfall der bewegliche Teil des Biegebalkens formschlüssig in der Aussparung des Begrenzungselements aufliegt, so dass auch bei hohen Überlastkräften sich eine vergleichsweise geringe Flächenbelastung ergibt. Dies hat gleichzeitig den Vorteil, dass auch bei häufigen und hohen Ü- berlastungen des Kraftmesselements die Überlastsicherung weder verschleißt noch die Gefahr besteht, dass sich die Spaltabstände verändern, so dass eine hohe Lebensdauer des Kraftmesselements erreichbar ist.
Die Erfindung wird anhand eines Ausführungsbeispiels, das in der Zeichnung dargestellt ist, näher erläutert. Es zeigen:
Fig. 1: eine Abbildung eines Kraftmesselements mit integrierter Überlastsicherung, und Fig. 2: einen vergrößerten Ausschnitt aus der Überlastsicherung mit einem Anschlagkopf.
In Fig. 1 der Zeichnung ist ein Kraftmesselement in Form eines Doppelbiegebalkens 1 mit Überlastsicherung dargestellt, der im wesentlichen aus einem zwischen den Biegebalken 2,3 angeordneten Überlastbalken 9 besteht, dessen Anschlagkopf 6 in eine Aussparung 17 mit zwei Passstiften 4, 5 des beweglichen Teils 7 des Doppelbiegebalkens 1 hineinragt, wobei zwischen den Passstiften 4, 5 und dem Anschlagkopf 6 ein definierter Spalt 18, 19 belassen ist. Das als Doppelbiegebalken 1 ausgebildete Kraftmesselement besteht im wesentlichen aus einem Krafteinleitungsteil 7 und einem Kraftaufnahmeteil 8, die durch zwei Biegebalken 2, 3 ver- bunden sind. Das Krafteinleitungsteil 7 stellt den beweglichen Teil des Kraftmesselements dar und wird beispielsweise in einer Waage mit der zu messenden Gewichtskraft beaufschlagt. Dieses Krafteinleitungsteil 7 ist etwa quaderförmig ausgebildet, wobei deren obere Deckfläche 10 meist zur Krafteinleitung dient. Das gegenüber dem Krafteinleitungsteil 7 angeordnete
Kraftaufnahmeteil 8 ist ebenfalls quaderförmig ausgebildet und stellt das Einspannende des Kraftmesselements 1 dar, das meist fest an einer Waage oder dessen Rahmenteil befestigt ist.
Der Doppelbiegebalken 1 wird aus einem Längsbalken aus Vollmaterial, vorzugsweise Aluminium oder Edelstahl hergestellt, aus dem die beiden Biegebalken 2, 3 meist durch Fräs- oder Bohrvorgänge herausgearbeitet werden. Dabei weisen die beiden Biegebalken 2, 3 in der Regel eine oder zwei Dünnstellen 11 auf und bilden dadurch einen Verformungskörper, an dem die nicht dargestellten Dehnungsmessstreifen als Messumformer appliziert sind. Bei einer Kraftbelastung entsteht an der Oberfläche der Verformungskörper eine Biegespannung, die der eingeleiteten Kraft proportional ist und die von den Messumformern in ein elektrisches Signal umgewandet wird.
In den rechteckigen Hohlraum zwischen den beiden Biegebalken 2, 3 ist zur Überlastsicherung ein zusätzlicher Balken als Ü- berlastbalken 9 angeordnet, der ebenfalls aus dem ursprüngli- chen Vollmaterial herausgearbeitet ist. Dieser Überlastbalken 9 ist fest mit dem Einspannende 8 bzw. dem Kraftaufnahmeteil des Biegebalkens 1 verbunden. Der Überlastbalken 9 füllt im wesentlichen den Zwischenraum zwischen den beiden Biegebalken 2, 3 aus und entspricht auch in seiner Breite bzw. Tiefe etwa der Breite des Doppelbiegebalkens 1. Dabei hängen sowohl die Höhe als auch die Tiefe des Überlastbalkens 9 im wesentlichen von der aufzunehmenden Überlastkraft ab, die beim dargestellten Ausführungsbeispiel mindestens dem zehnfachen der Nennbelastung entspricht, ohne dass dabei die Messumformer beschä- digt oder zerstört werden können.
Am Ende des Überlastbalkens 9 ist ein schmalerer Teil angeordnet, der einen Anschlagkopf 6 darstellt und der in eine Aussparung 17 des beweglichen Teils 7 bzw. des Krafteinleitungs- teils hineinragt. Sowohl die Aussparung 17 als auch der Anschlagkopf 6 sind durch gefräste Bohrungen und Schlitze aus dem Balkenvollmaterial herausgearbeitet und erfordern keinerlei Montagevorgänge. Dabei wird die Aussparung 17 im wesentlichen durch drei vertikale Nuten 12, 14 und zwei die Nuten verbindende Bohrungen 15, 16 gebildet.
Dies ist im einzelnen auch in der Vergrößerung des Anschlagkopfes 6 in Fig. 2 der Zeichnung dargestellt. Dabei wird die Länge des Anschlagkopfes 6 durch eine vertikale Längsnut 12 begrenzt, die quer durch die Breite des beweglichen Teils 7 verläuft und den Anschlagkopf etwa 10 mm in das Krafteinleitungsteil 7 hineinragen lässt. Zur Herstellung der vertikalen Innenwand 13 des Krafteinleitungsteils 7 und der Stirnfläche des breiteren Teils des Überlastbalkens- 9 sind zwei weitere gegenläufige vertikale Nuten 14 eingefräst, die an ihren Enden am Anschlagkopf 6 eine horizontale runde Einbuchtung 20 zum Krafteinleitungsteil 7 aufweisen. Zwischen den Einbuchtungen 20 und den Endpunkten der vertikalen Längsnut 12 sind eine untere Bohrung 16 und eine obere Bohrung 15 angebracht, die je- weils die vertikale Längsnut 12 mit den Einbuchtungen 20 der gegenläufigen vertikalen Nuten 14 verbinden. Dadurch wird der Anschlagkopf 6 gebildet, der in die durch die Nuten 12, 14 und Bohrungen 15, 16 hergestellte Aussparung 17 hineinragt. Die Bohrungen 15, 16 stellen dabei einen Teil der gesamten Aussparung 17 dar und erstrecken sich jeweils mit einem Teil in den Krafteinleitungsteil 7 und mit dem anderen Teil in den Anschlagkopf 6 des Überlastbalkens 9. Dabei ist jede Bohrung 15, 16 so angeordnet, dass sie sich mit mehr als 180° vorzugsweise 200° in den Bereich des Krafteinleitungsteils 7 und vorzugsweise mit ca. 160° in den Bereich des Anschlagkopfes 6 hinein erstreckt. Diese Bohrungen 15, 16 sind mit programmgesteuerten Werkzeugmaschinen auch sehr genau herstellbar, so dass sie später mit einem seriell hergestellten sehr genauen zylindrischen Passstift 4, 5 der Genauigkeitsklasse H7-Passung bestückt werden können. Durch den Bohrungsanteil von mehr als 180° im Krafteinleitungsteil 7 können die Passstifte 4, 5 in diesen Bohrungsteil eingeschoben oder eingepresst werden, ohne dass die Passstifte 4, 5 aus diesem Bohrungsteil nach oben o- der unten herausfallen können, so dass es keiner weiteren Befestigung mehr bedarf. Bei vorzugsweise 6 mm dicken Passstiften 4, 5 werden die Bohrungen 15, 16 allerdings im Bereich des Anschlagkopfes 6 in ihren Radius um vorzugsweise 0,3 mm ver- größert. Dadurch entsteht bei eingesetzten Passstiften 4, 5 zwischen dem Bohrungsteil im Anschlagkopf 6 und der gegenüberliegenden Mantelfläche der Passstifte 4, 5 ein definierter Spalt 18, 19 von vorzugsweise 0,3 mm Breite, der den beweglichen Teil 7 des Doppelbiegebalkens 1 in seiner vertikalen Aus- lenkung begrenzt.
Die Spaltbreite 18, 19 wird dabei so bemessen, dass sie mindestens der vertikalen Bewegung bei Nennbelastung entspricht und zusätzlich eine vorgegebene, nicht die Dehnungsmessstrei- fen schädigende Überlastung berücksichtigt. Dabei wird der Bewegungsbereich des Krafteinleitungsteils 7 bei einer vorgegebenen Überlastung dadurch begrenzt, dass der Passstift 15, 16 formschlüssig in den Bohrungsteil des Anschlagkopfes 6 anliegt. Zur Überlastsicherung in Wägerichtung ist lediglich der obere Passstift 4 zur Überlastsicherung mit einer Druckbelas- tung vorgesehen. Hingegen ist der untere Passstift 5 als Überlastsicherung in Zugrichtung vorgesehen, die bei Wägeeinrichtungen während des Transports oder bei Service- und Reinigungsarbeiten häufiger auftreten.
Bei Doppelbiegebalken 1 für Wägeeinrichtungen werden bei Nennbelastung meist nur Vertikalbewegungen von 0,05 bis 0,15 mm vorgesehen, so dass für derartige Überlastsicherungen Spaltweiten von 0,1 bis 0,5 mm • ausreichen, die ohne besonderen Fer- tigungsaufwand beliebig aus dem Anschlagkopf 6 ausfräsbar sind und keiner weiteren Einstellung oder Justierung bedürfen. Dabei ist besonders vorteilhaft, dass aufgrund der relativ großen Bohrungsdurchmesser (> 6 mm 0) mit normalen Fräswerkzeugen unter höchster Genauigkeit die vorgesehenen Spaltbreiten von 0,1 bis 0,5 mm herstellbar sind. Auch das Einsetzen der Passstifte 4, 5 bedarf keiner besonderen manuellen Montage, da diese als Serienteile in beliebigen Längen und gestuften Dicken angeboten werden und in den vorgesehenen Bohrungsteil automatisch einpreß- oder einsetzbar sind. Es ist aber auch denkbar, die Passstifte 4, 5 durch Schweiß- oder Klebvorgänge in den Bohrungen 15, 16 zu fixieren. Zum Freihalten der Überlastspalte 18, 19 vor Verschmutzung oder anderen Beeinträchtigungen werden meist Gehäuse vorgesehen, die gleichzeitig auch die Messumformer und deren Verbindungsleitungen schützen. Es ist aber auch denkbar, die Spalte 18, 19 mit plastischen Abdichtungsmaterialien zu verschließen, die so weich und elastisch sind, dass sie bis zum Erreichen der Nennbelastung keine Kraftnebenkopplung verursachen.
Bei lose aufliegenden Krafteinleitungs- oder Wägeteilen ist zur Überlastsicherung im Grunde nur der obere Teil der Überlastsicherung mit jeweils einer Bohrung 15 und einem Passstift 4 notwendig. Dabei können die Passstifte 4, 5 nicht nur zylin- derförmig, sondern auch eckig oder in anderen Rundformen aus— gebildet sein. Die Bohrungen müssen aber dann auch in entspre- chenden Aussparungsformen vorgesehen werden. Dabei sind insbesondere rechteckförmige oder quadratische Passstifte vorteilhaft, die auch als Serienteile in hohen Genauigkeitsklassen angeboten werden. Entsprechende rechteckige oder quadratische Querschnitte der Aussparungen bzw. Aussparungsteile 15, 16 sind mit programmgesteuerten Fräsmaschinen auf einfache Weise und in hoher Genauigkeit ausführbar. Derartige ÜberlastSicherungen sind nicht nur für Doppelbiegebalkenaufnehmer 1 ausführbar, sondern können auch für Einfach- oder andere Mehr- fachbiegebalken vorgesehen werden. Dabei kann der Anschlagkopf 6 auch am Krafteinleitungsteil 7 angeordnet sein, wobei dieser dann in eine Aussparung 17 in den Überlastbalken 9 eingreift.
Im Grunde könnte der Anschlagkopf 6 auch in das Einspannende 8 hineinragen und dort den vertikalen Bewegungsweg des beweglichen Teils 7 des Biegebalkens begrenzen. Dies würde aber eine verschlechterte Ausführungsart darstellen, da der dann beweglich angeordnete Überlastbalken 9 eine Hebelarmübersetzung erfahren würde, die je nach Hebelarmlänge verschiedene Spalt- breiten 18, 19 erforderlich machen würde. Bei einer alternativen Ausführung der Erfindung können die Passstifte 4, 5 auch am Anschlagkopf 6 befestigt werden, wobei dann die Überlastspalte 18, 19 am Aussparungsteil bzw. Bohrungsteil 15, 16 des Krafteinleitungsteils 7 vorzusehen ist.

Claims

Patentansprüche
1. Überlastsicherung für ein Kraftmesselement, das als Biegebalken (1) mit Messumformern ausgebildet ist und ein sich quer zur Krafteinleitungsrichtung erstreckendes Begren- zungselement enthält, welches fest mit dem Einspannende bzw. dem Kraftaufnahmeteil (8) des Kraftmesselements (1) verbunden ist, wobei der bewegliche Teil des Kraftmesselements (1) und das Begrenzungselement durch einen Spalt (18, 19) so voneinander beabstandet sind, dass die Durch- biegung des beweglichen Teils (7) begrenzt wird, dadurch gekennzeichnet, dass das Begrenzungselement als Überlastbalken (9) ausgebildet ist, der durch mindestens einen quer zur Balkenlängsrichtung verlaufenden Aussparungsteil (15) von dem beweglichen Teil (7) getrennt ist, wobei sich der Aussparungsteil (15) sowohl im Bereich des Überlastbalkens (9) als auch im Bereich des beweglichen Teils (7) erstreckt und in die mindestens ein Passstift (4, 5) fixiert ist, der einen definierten Spalt (18, 19) zwischen dem Überlastbalken (9) und dem beweglichen Teil (7) belässt.
2. Überlastsicherung nach Anspruch 1, dadurch gekennzeichnet, dass der Aussparungsteil (15) aus mindestens einer Bohrung besteht, die sich mit einem Teil (7) der Querschnittsflä- ehe im beweglichen Teil (7) des Kraftmesselements (1) und mit dem anderen Teil der Querschnittsfläche in dem Überlastbalken (9) erstreckt.
3. ÜberlastSicherung nach Anspruch 1 oder 2, dadurch gekenn- zeichnet, dass sich die Querschnittsfläche im beweglichen Teil (7) des Kraftmesselements (1) über einen Kreisausschnitt von mehr als 180° erstreckt, wobei in diesem Teil ein zylindrischer Passstift (4, 5) fixiert ist.
4. ÜberlastSicherung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Querschnittsfläche des Bohrungsteils (15, 16) im Überlastbalken (9) so bemessen ist, dass zwischen der Mantelfläche des Passstiftes (4, 5) und des Überlastbalkens (9) ein definierter Spalt (18, 19) mit vorgebbarem Abstand entsteht, der bei einer vorgegebenen Überlastung die Durchbiegung des Biegebalkens (1) begrenzt und eine Spaltbreite von 0,05 bis 0,5 mm aufweist.
5. Überlastsicherung nach Anspruch 1, dadurch gekennzeichnet, dass der Aussparungsteil (15, 16) aus mindestens einer Rechteck- oder Quadratnut besteht, die sich mit einem Teil der Querschnittsfläche im beweglichen Teil (7) des Kraftmesselements (1) und mit dem anderen Teil der Querschnittsfläche in den Überlastbalken (9) erstreckt, wobei in einem der Querschnittsflächenteile ein quadratischer oder rechteckförmiger Passstift fixiert ist.
6. Überlastsicherung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Kraftmesselement (1) als Einfachbiegebalken ausgebildet ist, bei dem mindestens gegenüberliegend zur Krafteinleitungsseite (10) ein Überlastbalken (9) vorgesehen ist, der mindestens durch einen Aussparungsteil (15, 16) in dem ein Passstift (4, 5) angeordnet ist, vom beweglichen Teil (7) des Biegebalkens ge- trennt ist, wobei zwischen dem Passstift' (4, 5) und dem Überlastbalken (9) oder dem beweglichen Teil (7) ein definierter Spalt (18, 19) vorgesehen ist.
7. Überlastsicherung nach einem der Ansprüche 1 bis 5, da- durch gekennzeichnet, dass das Kraftmesselement (1) als Doppel- oder Mehrfachbiegebalken ausgebildet ist, bei dem mindestens im Zwischenraum zwischen zwei benachbarten Verformungskörpern bzw. Biegebalken (2, 3) ein Überlastbalken (9) angeordnet ist, an dessen Ende ein Anschlagkopf (6) ausgebildet ist, der in eine Aussparung (17) des beweglichen Teils (7) des Doppel- oder Mehrfachbiegebalkens hineinragt, die mindestens einen Aussparungsteil (15, 16) aufweist, in den mindestens ein Passstift (4, 5) unter Belassung eines definierten Spaltes (18, 19) eingesetzt ist.
8. Überlastsicherung nach Anspruch 7, dadurch gekennzeichnet, dass die Aussparung (17) aus zwei vertikal beabstandeten Bohrungen (15, 16) und einer seitlich angefügten vertikalen Längsnut (12) sowie zwei vertikal beabstandeten Nuten (14) mit seitlicher Einbuchtung (20) gebildet wird, die den Anschlagkopf (6) umgibt und diesen vom beweglichen Teil (7) des Doppel- oder Mehrfachbiegebalkens trennt.
9. Überlastsicherung nach Anspruch 8, dadurch gekennzeichnet, dass in den Aussparungsteil mit den beabstandeten Bohrungen (15, 16) entweder im Teil des Anschlagkopfes (6) oder im Teil des beweglichen Biegebalkenteils (7) jeweils ein Passstift (4, 5) fixiert ist, wobei ein Passstift (4) eine vorgegebene Überlast in Druckrichtung und der andere Pass- stift (5) eine vorgegebene Überlast in Zugrichtung aufnimmt und diese über den Überlastbalken (9) auf den Kraftaufnahmeteil (8) überträgt.
PCT/EP2005/005941 2004-06-05 2005-06-02 Überlastsicherung für ein kraftmesselement WO2005121721A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DK05750528.1T DK1754030T3 (da) 2004-06-05 2005-06-02 Overbelastningssikring for et kraftmåleelement
PL05750528T PL1754030T3 (pl) 2004-06-05 2005-06-02 Zabezpieczenie przed przeciążeniem elementu mierzącego wartość siły
EP05750528.1A EP1754030B1 (de) 2004-06-05 2005-06-02 Überlastsicherung für ein kraftmesselement
ES05750528.1T ES2662255T3 (es) 2004-06-05 2005-06-02 Protección contra sobrecargas para un elemento de medición de fuerza

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200410027619 DE102004027619B4 (de) 2004-06-05 2004-06-05 Überlastsicherung für ein Kraftmesselement
DE102004027619.6 2004-06-05

Publications (1)

Publication Number Publication Date
WO2005121721A1 true WO2005121721A1 (de) 2005-12-22

Family

ID=34969966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/005941 WO2005121721A1 (de) 2004-06-05 2005-06-02 Überlastsicherung für ein kraftmesselement

Country Status (9)

Country Link
EP (1) EP1754030B1 (de)
DE (1) DE102004027619B4 (de)
DK (1) DK1754030T3 (de)
ES (1) ES2662255T3 (de)
HU (1) HUE036211T2 (de)
PL (1) PL1754030T3 (de)
PT (1) PT1754030T (de)
TR (1) TR201803002T4 (de)
WO (1) WO2005121721A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103162775A (zh) * 2013-03-18 2013-06-19 梅特勒-托利多(常州)精密仪器有限公司 悬臂梁式弹性体
CN109060195A (zh) * 2018-10-12 2018-12-21 苏州科技大学 测力传感器
CN110132382A (zh) * 2019-04-01 2019-08-16 苏州钮曼精密机电科技有限公司 称重传感器
CN110836714A (zh) * 2018-08-17 2020-02-25 测量专业股份有限公司 具有超载保护的荷重单元
CN110849450A (zh) * 2018-08-21 2020-02-28 上海寺冈电子有限公司 称重传感器及包括其的称重秤
CN110887656A (zh) * 2019-12-25 2020-03-17 昆山孚思格机电科技有限公司 一种链式测力分选机基准端伸出驱动和过载保护装置
CN114593850A (zh) * 2022-05-10 2022-06-07 常州坤维传感科技有限公司 一种防过载型传感器弹性体及六轴力传感器

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008064169B4 (de) 2008-12-22 2013-07-18 Hottinger Baldwin Messtechnik Gmbh Wägezelle
DE102010014152B4 (de) * 2010-04-07 2015-12-24 Hottinger Baldwin Messtechnik Gmbh Wägezelle
CN102435362B (zh) * 2011-09-15 2013-03-13 北京航空航天大学 基于柔性平行四边形机构的两级力分辨率的力传感器
CN103528726B (zh) * 2013-11-01 2015-05-13 哈尔滨工业大学 一种具有过载保护功能的十字梁式六维力传感器
DE102014111682A1 (de) 2014-08-15 2016-02-18 Bizerba Gmbh & Co Kg Wägezelle zur Gewichtskraftmessung
WO2022121870A1 (zh) * 2020-12-10 2022-06-16 苏州艾利特机器人有限公司 一种高过载保护力传感器及机器人

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3646809A (en) * 1970-01-16 1972-03-07 Bytrex Inc Adjustable transducer overload stop
DE3148670A1 (de) * 1981-12-09 1983-07-21 Eckardt Ag, 7000 Stuttgart Kraftmesseinrichtung
DE3225857A1 (de) * 1981-12-09 1984-01-12 Eckardt Ag, 7000 Stuttgart Kraftmesseinrichtung
US5247840A (en) * 1990-06-29 1993-09-28 Eckardt Ag Bending element for a force-measuring apparatus
US6257075B1 (en) * 1998-08-03 2001-07-10 Mannesmann Vdo Ag Method of producing a sensor having a rotary angle limiter for registering a torque, and sensor produced in accordance with this method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2753549C2 (de) * 1977-12-01 1983-01-20 Hottinger Baldwin Messtechnik Gmbh, 6100 Darmstadt Überlastsicherung für eine Kraftmeßeinrichtung
DE3213932A1 (de) * 1982-04-15 1983-10-27 Süd-Chemie AG, 8000 München Verfahren zur aufarbeitung von aluminium- und eisenhaltigen sauren abwaessern
DE4232568C2 (de) * 1992-09-29 2000-08-03 Gwt Global Weighing Technologi Integrierter Überlastschutz, insbesondere für eine zylindrische Kraftmeßzelle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3646809A (en) * 1970-01-16 1972-03-07 Bytrex Inc Adjustable transducer overload stop
DE3148670A1 (de) * 1981-12-09 1983-07-21 Eckardt Ag, 7000 Stuttgart Kraftmesseinrichtung
DE3225857A1 (de) * 1981-12-09 1984-01-12 Eckardt Ag, 7000 Stuttgart Kraftmesseinrichtung
US5247840A (en) * 1990-06-29 1993-09-28 Eckardt Ag Bending element for a force-measuring apparatus
US6257075B1 (en) * 1998-08-03 2001-07-10 Mannesmann Vdo Ag Method of producing a sensor having a rotary angle limiter for registering a torque, and sensor produced in accordance with this method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103162775A (zh) * 2013-03-18 2013-06-19 梅特勒-托利多(常州)精密仪器有限公司 悬臂梁式弹性体
CN103162775B (zh) * 2013-03-18 2015-07-15 梅特勒-托利多(常州)精密仪器有限公司 悬臂梁式弹性体
CN110836714A (zh) * 2018-08-17 2020-02-25 测量专业股份有限公司 具有超载保护的荷重单元
EP3620768A3 (de) * 2018-08-17 2020-07-29 Measurement Specialties, Inc. Kraftmessdose mit überlastschutz
US10996099B2 (en) 2018-08-17 2021-05-04 Measurement Specialties (China) Ltd. Load cell with overload protection
CN110849450A (zh) * 2018-08-21 2020-02-28 上海寺冈电子有限公司 称重传感器及包括其的称重秤
US11933662B2 (en) 2018-08-21 2024-03-19 Shanghai Teroako Electronic Co., Ltd. Load cell scale for weighing with overload protection
CN109060195A (zh) * 2018-10-12 2018-12-21 苏州科技大学 测力传感器
CN110132382A (zh) * 2019-04-01 2019-08-16 苏州钮曼精密机电科技有限公司 称重传感器
CN110887656A (zh) * 2019-12-25 2020-03-17 昆山孚思格机电科技有限公司 一种链式测力分选机基准端伸出驱动和过载保护装置
CN114593850A (zh) * 2022-05-10 2022-06-07 常州坤维传感科技有限公司 一种防过载型传感器弹性体及六轴力传感器

Also Published As

Publication number Publication date
DK1754030T3 (da) 2018-03-26
ES2662255T3 (es) 2018-04-05
EP1754030A1 (de) 2007-02-21
TR201803002T4 (tr) 2018-03-21
DE102004027619B4 (de) 2008-04-03
HUE036211T2 (hu) 2018-06-28
DE102004027619A1 (de) 2006-01-05
PT1754030T (pt) 2018-03-09
EP1754030B1 (de) 2017-12-13
PL1754030T3 (pl) 2018-08-31

Similar Documents

Publication Publication Date Title
EP1754030A1 (de) Überlastsicherung für ein kraftmesselement
EP0080702B1 (de) Kraftmessvorrichtung
EP0819922B1 (de) Schocksicherung für eine Kraftmessvorrichtung
DE9203796U1 (de) Kraftmeßzelle
DE69213506T2 (de) Kraftaufnehmer
DE3035595A1 (de) Rasterspannsystem
DE3621378C2 (de)
DE69226269T2 (de) Kaliber mit gestuften blöcken
EP0719405B1 (de) Doppelkeilkraftmessvorrichtung
DE1752346C3 (de) Bombiervorrichtung für eine Abkantpresse
EP1530035B1 (de) Kraftmesszelle mit Befestigungsentkopplung durch vorstehende Flächen und kurze Einschnitte
DE3151275A1 (de) Befestigungsvorrichtung fuer werkzeuge
DE3137878C2 (de) Überlastsicherung für den Vorschubantrieb an einer Werkzeugmaschine
DE9203582U1 (de) Meßvorrichtung zum Messen von Längen oder anderen Maßkriterien an Werkstücken
DE2617987C2 (de) Meßvorrichtung mit Dehnungsmeßstreifen
DE2917966A1 (de) Einrichtung zur messung von kraftkomponenten in gelenken
DE10191531T5 (de) Scherstab-Kraftmeßzelle und Verfahren zu ihrer Herstellung
EP3095534B1 (de) Biegemaschine
DE102018107320B4 (de) Kraftmesseinrichtung
DE2223159B2 (de) Vorrichtung zum Messen der Unwucht von Kraftfahrzeugrä'dern an Kraftfahrzeugen
DE102007018422B4 (de) Parallelogrammlenkerstruktur, insbesondere monolothische Parallelogrammlenkerstruktur für einen Wägeaufnehmer
EP1160555A2 (de) Doppelbiegebalken-Kraftaufnehmer
DE2001007C3 (de) Schnellwechselfutter mit axialem Längenausgleich
EP2012955B1 (de) Spannkopf
CH391615A (de) Bolzenschneider

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005750528

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2005750528

Country of ref document: EP