WO2005100514A1 - Solid fuel and method of producing the same - Google Patents

Solid fuel and method of producing the same Download PDF

Info

Publication number
WO2005100514A1
WO2005100514A1 PCT/JP2005/006736 JP2005006736W WO2005100514A1 WO 2005100514 A1 WO2005100514 A1 WO 2005100514A1 JP 2005006736 W JP2005006736 W JP 2005006736W WO 2005100514 A1 WO2005100514 A1 WO 2005100514A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
fuel body
solid
agent layer
ignition
Prior art date
Application number
PCT/JP2005/006736
Other languages
French (fr)
Japanese (ja)
Inventor
Masaki Terada
Original Assignee
Masaki Terada
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Masaki Terada filed Critical Masaki Terada
Priority to JP2006512301A priority Critical patent/JPWO2005100514A1/en
Publication of WO2005100514A1 publication Critical patent/WO2005100514A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/34Other details of the shaped fuels, e.g. briquettes
    • C10L5/36Shape
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L11/00Manufacture of firelighters
    • C10L11/06Manufacture of firelighters of a special shape
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/44Solid fuels essentially based on materials of non-mineral origin on vegetable substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2209/00Specific waste
    • F23G2209/26Biowaste
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2900/00Special features of, or arrangements for incinerators
    • F23G2900/508Providing additional energy for combustion, e.g. by using supplementary heating
    • F23G2900/50804Providing additional energy for combustion, e.g. by using supplementary heating using thermit or other compositions of metal oxides as auxiliary fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K2201/00Pretreatment of solid fuel
    • F23K2201/50Blending
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the present invention relates to a solid fuel suitable as a heat source for cooking such as baking and heating, and a method for producing the same.
  • Patent Document 1 is known as a solid fuel including a carbonaceous fuel body and an ignition material.
  • the solid fuel there includes a fuel body including charcoal and coal briquettes, an ignition material, and a packaging material for containing both.
  • As the ignition material solid alcohol or gel-like industrial alcohol fuel is used to ignite the formed coal. Charcoal, which occupies most of the fuel, is ignited by the heat of combustion of the coal formed in the center of the charcoal group.
  • an ignition material for charcoal As an ignition material for charcoal that is difficult to ignite, it is formed by kneading a binder powder, such as coconut shell and paddy laying, a combustible liquid organic material represented by alcohol, and a binder. Later, drying has also been proposed (Patent Document 2).
  • a thermite is used as an ignition material, and the fuel body is ignited by the heat of the reduction reaction.
  • a heating element using this type of thermite-like reaction heat as a heat source is known from Patent Document 3.
  • thermite-like exothermic IJ, fiber and binder The exothermic agent-containing paste is formed into a sheet and then dried to form an arbitrary shape. The outer surface of the heating element is covered with a protective film if necessary. This type of heating element has a remarkably faster reaction speed than alcohol / paraffin heating elements.
  • the heating time is extremely short because the heating element is in a sheet shape, and is not suitable as a heat source for cooking.
  • Patent Literature 1 Patent No. 3 157 8 19 (Paragraph No. 0 13, FIG. 2)
  • Patent Literature 2 Japanese Patent Application Laid-Open No. 2003-20049 (Paragraph No. 0 15 (Fig. 1)
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2003-240405 (Paragraph No. 026, Fig. 1)
  • the ignition material molded coal, and then Ignite in the order of charcoal.
  • the surrounding combustion air is consumed when the coal begins to burn, and the lack of oxygen makes it impossible to sustain the combustion of the coal. There is.
  • the charcoal group Since it takes a lot of time for the charcoal group to turn on after igniting the igniting material, the charcoal group is burned in advance, for example, when grilling or heating using solid fuel as a heat source in restaurants, etc. It must be kept and lacks responsiveness.
  • ash fogging phenomenon unburned charcoal is covered with burning ash (hereinafter referred to as ash fogging phenomenon), and the thermal power tends to gradually decrease, and part of the charcoal may remain in an unburned state.
  • waste of solid fuel becomes an insignificant amount, for example, when providing various dishes such as grilled foods and hot pots using solid fuel as a heat source in an if restaurant or the like.
  • Ignition material consisting of solid alcohol ⁇ , 3 ⁇ 4 " Shaped charcoal burns with a unique smell, so there is a problem in cooking food with solid fuel, especially when burning and cooking creatures. Cheap.
  • An object of the present invention is to obtain a solid fuel that can reliably and quickly ignite a fuel body.
  • An object of the present invention is to obtain a solid fuel in which a fuel body maintains a combustion state for a long time without accompanying smoke or off-flavor. Therefore, an object of the present invention is to provide a solid fuel suitable as a heat source for baking and cooking of raw ingredients, cooking and the like. An object of the present invention is to quickly ignite a fuel body, eliminate a decrease in thermal power due to an ash fogging phenomenon, completely burn the fuel body to the end, and stably exhibit a predetermined heating temperature over a long period of time. To provide a solid fuel. Disclosure of the invention
  • the solid fuel of the present invention includes a fuel body 1 in which a group of combustion air passages 6 is formed, and a thermite-like heating material disposed on the surface of the fuel body 1.
  • An ignition agent layer 2 and an ignition unit 3 provided on a part of the surface of the ignition agent layer 2 are provided.
  • the fuel body 1 is characterized in that a coal particle 4 made of an odorless carbon material is press-formed to form a porous body having a gap 14 between the charcoal and Ifc 4.
  • coal particles 4 constituting the fuel body 1 those containing one or more plant-derived odorless carbon materials such as charcoal, coconut shell charcoal, bamboo charcoal, and mangrove charcoal can be selected. More specifically, fuel body 1 is made by pulverizing coconut shell charcoal, Of coal 4 adjusted to 6 to 60 mesh, and a binder to bind the coal 4
  • the binder 5 is composed of inorganic refractory cement or castaple.
  • the igniting agent layer 2 contains iron oxide, silicon, mineral fibers, and an aluminum oxide-based or silicon oxide-based binder.
  • the igniting agent layer 2 is integrated with the fuel body 1 by attaching the igniting agent adjusted to the paste shape by adding water to the surface of the fuel body 1 and drying the igniting agent layer. At that time, the ignition part 3 is exposed on a part of the surface of the ignition agent layer 2.
  • the above-mentioned fuel body 1 is formed in a flat three-dimensional shape, for example, a disk shape, and the entire lower surface of the fuel body 1 is covered with the igniting agent layer 2, and the fuel body 1 is quickly planarized by the reaction heat of the igniting agent layer 2. It should be possible to ignite.
  • through-holes 6 are formed in a vertically penetrating manner. Is preferably set to 7.5 to 30%.
  • a mixture of the coal granules 4 and the binder 5 filled in the mold 10 is pressurized by a press machine to form a gap between the coal granules 4:!
  • the igniting agent adjusted in a paste shape is poured into the surface of the fuel body 1 in the mold 10 to form the igniting agent layer 2. Can be formed.
  • an ignition made up of a fuel body 1 forming a group of combustion air ports 6 and a thermite-like heating material that does not require combustion air and generates high-temperature reaction heat Since it is composed of the igniting agent layer 2 and the igniting part 3 provided in a part of the igniting agent layer 2, simply igniting the igniting part 3 with a familiar lighter, etc., the reduction reaction of the igniting agent layer 2 starts Then, the fuel body 1 can be burned by the high-temperature reaction heat. Therefore, the fuel body 1 can be ignited more quickly and more reliably than conventional solid fuels of this type.
  • the fuel body 1 is formed porous by pressure-forming the coal particles 4, a relatively large gap 14 is secured between the adjacent coal particles 4, and the presence of the gap 14 As a result, the chance of contact of the combustion air and the flame with the coal particles 4 increases, and accordingly, quick ignition of the coal particles 4, that is, rapid ignition of the fuel body 1 can be realized.
  • the gaps 14 facilitate smooth supply of combustion air to the individual coal granules 4, maintain the combustion state of the fuel body 1 appropriately, and also help to completely burn the fuel body 1.
  • the coal grain 4 is made of odorless carbon This is to prevent the generation of smoke and off-flavors when the fuel body 1 is burned, whereby a solid fuel suitable as a heat source for baking and cooking of raw ingredients, heating and the like can be obtained.
  • the coal grain 4 contains one or more plant-derived odorless carbon materials such as charcoal, coconut shell charcoal, bamboo charcoal, mangrove charcoal, etc.
  • the generation of smoke and unpleasant odor when the fuel body 1 is burned is reliably eliminated.
  • a solid fuel suitable as a heat source for baking and cooking of raw ingredients, heating and the like can be obtained.
  • the coal particles 4 are formed of multiple types of odorless carbon materials, depending on the application, for example, by combining an odorless carbon material with excellent ignition characteristics with an odorless carbon material with good fire life Solid fuels with different characteristics can be formed, and the applications of solid fuels will be expanded accordingly.
  • the fuel body 1 When the fuel body 1 is formed in a flat three-dimensional shape such as a disk shape and the igniting agent layer 2 is formed on the entire lower surface thereof, the fuel body 1 is quickly planarized by the reaction heat of the igniting agent layer 2. Can ignite.
  • the ignition time on the entire peripheral surface of the fuel body 1 can be significantly reduced as compared with a molded coal having a large vertical thickness such as a commercially available briquette. Strong heat is uniformly exerted on the entire upper surface of the fuel body 1, so that grilling and cooking of raw ingredients and heating cooking can be performed more suitably.
  • the fuel assembly 1 is made of only coconut shell charcoal fired at a high temperature and contains coal particles 4 having a particle size adjusted to 6 to 60 mesh and a binder 5 for binding the coal particles 4 to each other.
  • a fuel assembly 1 that achieves a balance between ease of ignition and good durability is obtained, and coking coal is reduced in cost Available at
  • the particle size of the coal particles 4 becomes larger than 6 mesh, it becomes difficult to ignite because of the large particle size, and it takes time to ignite the fuel body 1.
  • coal particles 4 having a particle size smaller than 60 mesh the specific surface area becomes too large, and the combustion duration becomes extremely short. Therefore, it is preferable to use coal grains 4 of 8 to 60 mesh.
  • charcoal has a higher raw material cost compared to the case of using other odorless carbon materials as raw materials, and the quality of the carbon materials cannot be avoided due to differences in the raw wood for burning. It is difficult to make the combustion characteristics uniform. For example, it does not mean that there is no homogeneous charcoal such as Bincho charcoal, but this would cost too much raw material. Therefore, it is desired that the coal grain 4 be made only from coconut shell charcoal fired at a high temperature.
  • the binder 5 for binding the coal granules 4 is used for refractory cement or castable.
  • the fuel body 1 can be prevented from collapsing, and the predetermined heating temperature can be stably exhibited for a long time.
  • the refractory cement and castable contribute to the improvement of the structural strength of the fuel assembly 1 when not in use. It also prevents the fuel body 1 from being damaged at all times
  • the igniter layer 2 containing iron oxide, silicon, mineral fibers, and aluminum oxide or silicon oxide binders was not evacuated when using synthetic resin binders. There is no dripping or adhesion, and no generation of offensive odor.
  • the mixing of the mineral fiber uto improves the strength of the igniting agent layer 2 itself, and prevents the igniting agent layer 2 from peeling or collapsing during long-term storage.
  • the igniting agent adjusted to a paste by adding water adheres to the surface of the fuel body 1 and solidifies when dried and solidified, with a portion of the igniting agent entering the gaps 14 between adjacent coal particles 4 .
  • the igniting agent layer 2 and the fuel body 1 can be firmly integrated, and the igniting agent layer 2 does not peel off or separate from the fuel body 1 during distribution or long-term storage. It can be reliably prevented.
  • openings 6 are formed in a vertically penetrating manner, and the ratio of the opening area of all the openings 6 to the area of the upper surface of the fuel assembly 1 is 7. If it is set in the range of 5 to 30%, it is possible to secure the necessary and sufficient combustion duration while igniting the fuel body 1 within a time that does not hinder practical use. Further, a solid fuel having a good balance between ease of ignition and good durability can be obtained. If the ratio of the area is smaller than 7.5%, the time required for ignition is prolonged and responsiveness is poor. If the ratio of the area exceeds 30%, the duration of combustion is shortened, so that it can be applied only to cooking for a very short time, causing problems for practical use.
  • the optimal area ratio is 7.5 to 30%.
  • a mixture of the coal particles 4 and the binder 5 is pressure-formed to form a fuel body 1 having a uniform density, and then the fuel body surrounded by a mold 10.
  • the igniting agent adjusted in a paste shape is poured into the surface of 1 to form an igniting agent layer 2 on one entire surface of the fuel assembly 1.
  • the ignition portion 3 is formed on a part of the surface of the igniting agent layer 2, so that the solid fuel having a multi-layer structure is used. It can be manufactured easily with less labor.
  • the paste-like igniting agent is poured into the surface of the fuel body 1 in the mold 10 to form the igniting agent layer 2.
  • the igniting agent solidifies when a portion of the paste-like igniting agent enters the gaps 14 between the adjacent coal granules 4.
  • Combustible body 1 can be firmly integrated in an inseparable state, and the shape of the obtained solid fuel can be stably maintained over a long period of time. Of course, if necessary, you can transfer one formwork to another.
  • FIGS. 1 to 4 show an embodiment of the solid fuel according to the present invention.
  • the solid fuel according to the present invention has a flat disk shape having a small height for its diameter.
  • a fuel body 1 formed in a three-dimensional shape of And an ignition part 3 provided on a part of the outer peripheral edge of the ignition agent layer 2.
  • the fuel body 1 is formed from coal particles 4 made of at least one plant-derived odorless carbon material such as charcoal, coconut shell charcoal, bamboo charcoal, mangrove charcoal, etc. .
  • coal particles 4 obtained by pulverizing coconut shell charcoal fired at a high temperature are used as a raw material, and a binder 5 is mixed with the coal particles 4 and then pressed into a disk shape.
  • the body is dried and solidified to form a porous fuel body 1.
  • a group of combustion air passages 6 are formed in the fuel body 1 so as to penetrate the fuel body 1 up and down so that the entire fuel body 1 can ignite.
  • the diameter of the fuel body 1 is 10 cm and the thickness thereof is 25 mm
  • the fuel body 1 having a diameter of 10 mm and 21 openings 6 is uniformly dispersed. Formed.
  • Each passage 6 is a round hole.
  • the binder 5 is composed of a mixture of starch glue, refractory cement containing aluminum oxide or silicon oxide, and water, and the adjacent coal particles 4 are bonded together by the adhesive strength of the starch glue.
  • the binder 5 may be castable instead of refractory cement containing aluminum oxide or silicon oxide.
  • Starch paste burns out simultaneously when individual coal particles 4 burn, but does not emit off-flavors or smoke.
  • the refractory cement and castables maintain the adjacency of the coal particles 4 during combustion to prevent the coal particles from falling into incomplete combustion due to the ash fogging phenomenon. Mix to prevent complete collapse and to burn all coal particles 4 completely.
  • the refractory cement and castables increase the structural strength of the fuel assembly 1 when not in use and prevent the fuel assembly 1 from being damaged during distribution.
  • Commercially available castables Can be used.
  • the fuel body 1 can be constructed so that it collapses and falls to the bottom of the stove, and the burning red coal grains are constantly shown. In that case, reduce the amount of refractory cement or castable added, or simply form the binder with polysaccharides and protein alone.
  • the igniting agent layer 2 is made of a thermite-like heating material composed of a metal oxide and a reducing agent, and generates high-temperature heat by a reduction reaction of the metal oxide.
  • metal oxides and reducing agents include iron oxide and aluminum, iron oxide and silicon, magnesium and silicon oxide, titanium and carbon, calcium and carbon, and the like.
  • iron oxide was used as a metal oxide
  • silicon was used as a reducing agent
  • mineral fibers and an aluminum oxide-based binder were mixed with these to form an ignition agent.
  • an oxidized silicon-based binder can also be used.
  • the igniting agent layer 2 is prepared by adding water to the igniting agent, adjusting the paste to a paste shape, and attaching a paste-like igniting agent to the entire lower surface of the fuel body 1 and drying the same. It is formed by
  • the igniter 3 is formed of an ignition agent containing barium chromate or barium peroxide as a main component, powdered aluminum and amorphous boric acid, and dissolving the ignition agent in water. And applied to the igniting agent layer 2 and then dried. In order to easily ignite the ignition portion 3 from the peripheral surface side, the ignition portion 3 is provided from the lower surface of the ignition agent layer 2 to the outer peripheral edge (see FIG. 2).
  • the reduction reaction of the igniting agent layer 2 can be started by igniting the ignition section 3 with a lighter or a match. This At this time, the igniting agent layer 2 reacts violently, and the reduction reaction spreads over the entire lower surface of the fuel body 1 in a very short time.
  • the lower surface of the fuel body 1 can be quickly ignited in a planar manner by the reaction heat of the igniting agent layer 2.
  • a part of the igniting agent layer 2 has entered the through-hole 6, so that the inner peripheral surface at the lower end of the through-hole 6 can be ignited at the same time, and the fuel body 1 is correspondingly moved in a shorter time. It will be able to ignite.
  • FIG. 4 shows the schematic steps of the manufacturing method.
  • the mixture of coal particles 4 and binder 5 Prior to the production of solid fuel, the mixture of coal particles 4 and binder 5 is first prepared. Prepare the paste-like igniting agent and the igniting agent dissolved in water in advance as well.
  • the solid fuel of the present invention is obtained by pressing a mixture of the coal particles 4 and the binder 5 filled in the mold 10 with a press machine to form the porous fuel body 1 and, at the same time, forming the porous fuel body 1 through the opening 6 of the fuel body 1.
  • the first step of forming a group and after the fuel body 1 is dried and solidified together with the mold 10, the igniting agent is poured by pouring a paste-shaped igniting agent over one side of the fuel body 1 in the mold 10.
  • the ignition part 3 is applied to one sound of the surface of the igniting agent layer 2, and the mold 10 is formed.
  • a third step of separating the fuel body 1 from the fuel is obtained by pressing a mixture of the coal particles 4 and the binder 5 filled in the mold 10 with a press machine to form the porous fuel body 1 and, at the same time, forming the porous fuel body 1 through the opening 6 of the fuel body 1.
  • the first step of forming a group and after the fuel body 1 is dried and solidified
  • the fuel body 1 is formed by pressurizing with a machine, and at the same time, a group of openings 6 is formed in the fuel body 1.
  • a through hole 6 is formed on the side of the mold 11 that enters the mold 10 Pins 12 are provided.
  • the molding die 11 only needs to be pressurized so that the coal particles 4 are bound together via the binder 5 and the whole density is constant.
  • Reference numeral 13 is a base for receiving the formwork 10. .Pressing the mixture of the coal particles 4 and the binder 5 with the molding die 1 1 binds the coal particles 4 via the binder 5. However, a small gap 14 is secured between the adjacent coal particles 4, and a porous fuel body 1 can be obtained by this.
  • the porous fuel body 1 is dried and solidified together with the mold 10.
  • the fuel assembly 1 and the mold 10 are housed in a drying oven having an atmosphere temperature of 90 to 100 ° C., and the state is maintained for 8 hours, thereby solidifying the fuel assembly 1. Let it.
  • the binder 5 is slightly shrunk, the gap 14 between the adjacent coal particles 4 can be expanded as shown in FIG. The presence of this gap 14 increases the chance of contact of the combustion air or flame with the coal grain 14. Therefore, quick ignition of the coal particles 4 and maintenance of the combustion state can be realized.
  • the size of the gap 14 varies depending on the size of the coal granules 4 and the mixing ratio of the coal granules 4 having different sizes, and affects the time required for the fuel body 1 to ignite and the duration of combustion. Therefore, the present inventor determined a suitable size of the coal particles 4 by performing a test described later.
  • the igniting agent layer 2 poured into the mold 10 is dried and solidified.
  • the mold 10 into which the igniting agent layer 2 has been poured is housed in a drying oven having an ambient temperature of 110 ° C., and the state is maintained for 12 hours, thereby obtaining the igniting agent layer. 2 was solidified.
  • the fuel body 1 is formed to be porous. Therefore, there is a gap between adjacent coal grains 4. Therefore, when the paste-like igniting agent is poured into the mold 10, one m5 of the igniting agent enters the opening 6 as shown in FIG. 1B, and further enters the gap between the adjacent coal particles 4. Therefore, when the paste-like igniting agent is dried, the igniting agent layer 2 is firmly bound to the fuel body 1, so that the igniting agent layer 2 does not peel off or separate from the fuel body 1 during distribution. It can be reliably prevented.
  • An ignition part 3 is applied to a part of the surface of the dried igniting agent layer 2, and the fuel body 1 is separated from the mold 10 as shown in Fig. 4 (d) to obtain a disk-shaped solid fuel.
  • the igniter 3 faces the outer peripheral side surface of the igniting agent layer 2.
  • the igniting agent is poured by pouring a paste-shaped igniting agent over one side of the fuel body 1 in the O-form 10.
  • the layer 2 is formed, and the fuel body 1 and the igniting agent layer 2 are simultaneously dried and solidified, so that the time required for drying the fuel body 1 and the igniting agent layer 2 can be reduced by half.
  • a group of coal particles 4 mixed with the binder 5 is formed by a press machine to form a porous fuel body 1.
  • the ignition time and the combustion duration time of the fuel body 1 change depending on the odorless carbon material, the size of the coal particles 4 and the mixing ratio of the coal particles 4 having different sizes.
  • make sure that there is no smoke or ash fogging during combustion and how to make a fuel body 1 that is suitable as a heat source for baking and cooking raw foods, heating cooking, etc. Force, I experimented with this. Further, by changing the number of straight holes 6 formed in the fuel assembly 1 and the number thereof, the opening 6 to be provided in the fuel assembly 1 was optimized. (Illustration!
  • the amount of coal particles 4 used was set to 60 g per fuel body 1.
  • Binder 5 is formed of 25% by weight of starch paste, 53% by weight of aluminum oxide, and 22% by weight of refractory cement. The weight percentages were mixed. The density of the fuel assembly 1 molded under the above conditions was 0.24. An ignition agent layer 2 was formed on one surface of the combustion body 1, and an ignition portion 3 was formed as described above. The thickness of the ignition agent layer 2 was 5 mm.
  • Example 2 The fuel body 1 was formed under the same conditions as in Example 1 except that the particle size of the coal granules 4 was adjusted to 12 to 32 mesh and the thickness of the fuel body 1 was set to 20. The density of fuel body 1 was 0.41 due to the somewhat smaller size of coal grain 4.
  • Example 3 The fuel particle 1 was formed under the same conditions as in Example 2 by adjusting the particle size of the coal particles 4 to 60 mesh or more. The density of the fuel body 1 became 0.44 because the particle size of the coal particles 4 became smaller.
  • Example 4 Using coconut shell charcoal fired at 400 to 500 ° C as a raw material, the particle size of the coal particles 4 was adjusted to 12 to 32 mesh, and under the same conditions as in Example 2. Fuel body 1 was formed. Since the coconut shell charcoal was fired at a lower temperature than in Example 1, the density of the fuel body 1 was 0.3. 7
  • Example 5 Mangrove charcoal calcined at 400 to 500 degrees C was used as a raw material, and the particle size of coal particles 4 was adjusted to 12 to 32 mesh, and the fuel was used under the same conditions as in Example 2. Formed body 1. The density of fuel assembly 1 was 0.37 due to the different coal raw materials.
  • the fuel body 1 was formed under the same conditions as in Example 2 by adjusting the mesh to 32 mesh.
  • the density of fuel assembly 1 was 0.37 due to the different coal raw materials.
  • Example 7 bamboo charcoal fired at 400 to 500 ° C was used as a raw material, and the grain size of the coal particles 4 was adjusted to 10 to 30 mesh, and the fuel was used under the same conditions as in Example 2. Formed body 1. Since the coconut shell charcoal was fired at a lower temperature than in Example 6, the density of the fuel body 1 was 0.30.
  • Example 8 A fuel body 1 was formed under the same conditions as in Example 2 by adjusting the particle size of coal particles 4 to 12 to 32 mesh using charcoal fired at 700 ° C as a raw material. did. The density of the fuel assembly 1 was 0.23.
  • Each of the solid fuels of Examples 1 to 8 formed as described above was placed on a test bench with a ventilation gap maintained at the lower surface of the igniting agent layer 2, and after igniting the igniting agent layer 2, the fuel was ignited. The time until the material 1 fired and the duration of combustion were measured. In addition, the presence or absence of ash fogging during combustion, the occurrence of unusual odor, and the presence or absence of shape collapse due to combustion were visually confirmed. Table 1 shows the results.
  • the time required for ignition was defined as the time from when the ignition layer 2 was ignited to when the temperature on the upper surface of the fuel assembly 1 reached 250 ° C.
  • the burning duration was defined as the time from completion of ignition until the temperature of the upper surface of the fuel assembly 1 dropped to 150 ° C. or less.
  • the time required for ignition is shorter as the firing temperature of the coking coal is lower, and the particle size of the coal granules 4 is shorter.
  • the combustion duration is longer as the coking coal firing temperature is higher, and no smoke or off-flavor is generated.
  • the raw material for coal grain 4 was coconut shell charcoal fired at a high temperature, especially coal grain 4 of Example 2 whose grain size was adjusted to 12 to 32 mesh. It turns out that it is the best in terms of ease and good fire.
  • the fuel body 1 of Example 2 not only no smoke or off-flavor was generated during combustion, but also incomplete combustion of the coal particles 4 due to the ash fogging phenomenon and no collapse of the fuel body 1 .
  • the particle size of the coal particles 4 is less than 6 mesh, the average particle size becomes as large as 2 mm, it takes time to ignite, and the shape retention during molding is inferior.
  • the particle size of the coal particles 4 exceeds 60 mesh, the average particle size is reduced to 0.25 mm, and the combustion duration is shortened by an increase in the specific surface area of the coal particles 4.
  • large-grained coal granules 4 and small-grained coal granules 4 are mixed, the small-grained coal granules 4 enter the gaps between the large-grained coal granules 4, so that the density of each fuel 1 increases. , With a moderate gap 14 It is not preferable because it is difficult to burn
  • the diameter of the opening 6 is 6 mm, 8 mm, 1
  • the diameter of the port 6 should be 8 to 10 ram, and the number of formed openings 6 should be 16 to 26. In other words, if the ratio of the opening area of all the openings 6 to the area of the upper surface of the fuel assembly 1 is in the range of 7.5 to 30%, It turned out to be good.
  • the solid fuel of the present invention can be burned using a combustion vessel 20 shown in FIG.
  • the combustion vessel 20 is made of a metal cylinder having upper and lower surfaces opened, and the upper and lower portions of the cylinder wall 20a are bent toward the cylinder inner surface to form a support piece 21 for receiving solid fuel.
  • the support pieces 21 are provided at four locations in the circumferential direction of the cylindrical wall 20a. Vent holes 22 for introducing combustion air are cut out at the four lower portions of the combustion vessel 20.
  • One of the openings formed in the cylindrical wall 20a by forming the support piece 21 can be used as the ignition port 23.
  • the solid fuel is accommodated in the combustion vessel 20 with the lower surface of the igniting agent layer 2 being received by the support piece 21, and the lower part 3 is exposed to the ignition port 23.
  • the reduction reaction of the igniter layer 2 is started, and the reduction reaction spreads over the entire lower surface of the fuel body 1 in a very short time. Therefore, the lower surface of the fuel body 1 can be rapidly ignited in a planar manner by the reaction heat of the igniting agent layer 2.
  • a part of the reaction residue of the igniting agent layer 2 remains on the fuel body 1 side. Most of the reaction residue scatters at the time of the reduction reaction, and falls on a fire tray below the combustion vessel 20. Therefore, the lower surface of the opening 6 is opened, and the combustion air can be introduced into the opening 6 without any problem. Thereafter, since the fire of the ignited fuel body 1 moves upward from below, the solid fuel can be used as a heat source for grilling and cooking pots.
  • the combustion container 20 described above can also serve as a solid fuel packaging container, and is contained in a container.
  • a solid fuel packaging container By fixing the stored solid fuel in a non-movable manner and then sealing the combustion container 20 in a non-ventilable manner and storing it in a paper box for packaging, it is possible to provide a solid fuel without quality deterioration during long-term storage.
  • one or more solid fuels may be sold in a sealed state.
  • the through hole 6 in the illustrated example is a round hole, the hole 6 may have an arbitrary hole shape such as a polygon. If necessary, a group of the openings 6 may be formed in a radial groove shape.
  • the fuel body 1 does not need to be formed in a disk shape in plan view, and can be formed in a flat three-dimensional shape having, for example, a polymorphic cross section and a smaller vertical dimension than other dimensions.
  • the ignition section 3 may be provided at a plurality of locations.
  • the combustion vessel 20 may have a structure capable of accommodating two or more solid fuels adjacent to each other.
  • the shape of the solid fuel in a plan view is made to be polygonal, thereby generating heat.
  • the surfaces can be evenly arranged.
  • the coal grain 4 it is sufficient for the coal grain 4 to contain at least one kind of odorless carbon material derived from plants, such as charcoal, coconut shell charcoal, bamboo charcoal, and mangrove charcoal.
  • the opening 6 is formed by the pin 12 provided on the molding die 11 side, but the pin 12 is provided by the pin 12 on the form 10 side. 6 may be formed. In that case, a knock bin for forcibly releasing the press-molded fuel assembly 1 can be provided on the mold frame 10 side.
  • the solid fuel can be formed in the manner described below.
  • a heating element (ignition layer) 32 and a solid carbon (fuel element) 31 utilizing thermite reaction are brought into contact or close proximity.
  • Solid carbon 31 is laminated on a heating element 32 using thermite reaction, These are filled in a container 33 or packed in a packaging material.
  • a heating element 32 utilizing a thermit reaction is added, if necessary, to a metal oxide and a reducing agent such as a reducing metal that combines with oxygen contained in the metal oxide to cause a reduction reaction. Consists of a mixture with a few auxiliary compositions.
  • Solid fuel 31 is formed by using charcoal made from plants such as wood, bamboo charcoal, coconut shell charcoal, palm coconut charcoal, mineral-based charcoal, lead, coal, coatas, and carbonized fiber.
  • Solid carbon 31 is kneaded with powdery or granular carbon raw material, and added with non-combustible fibers such as ceramic fiber, fiber, glass fiber, asbestos, binder and water, and then kneaded to obtain a thick, circular, Molded into square, rectangular, elliptical, triangular, irregular, or rod-shaped ⁇ 3 masses and dried.
  • non-combustible fibers such as ceramic fiber, fiber, glass fiber, asbestos, binder and water
  • the solid carbon 31 is mixed with a calcium salt, a sodium salt and a peroxide as additives for catalyzing combustion.
  • the heating element 32 or the solid carbon 31 is used as a container 33 or a packing material made of a metal material such as iron, aluminum, or stainless steel, or a material such as ceramic, ceramic, porcelain, or carbon.
  • Heating element 32 or solid carbon 31 is coated with a combustible material such as paper, nitrocellulose, plastic paint, etc. Heating element 32 or solid carbon 31 to promote the burning of solid carbon 31 Container 3 3 and "'Empty packaging material An air inlet hole 37 is formed.
  • FIG. 5A show specific embodiments of the solid fuel.
  • reference numeral 40 denotes a normal wire mesh used for grilled dishes.
  • the solid fuel is formed by stacking an intersecting fuel body 31 on a heating element 32 filled in a metal can (container) 33.
  • reference numeral 41 denotes a tabletop opening provided with a recess 42 for fitting the solid fuel.
  • Fig. 5 (d) shows a state where these are assembled.
  • the heating element 32 and the solid carbon 31 are brought into contact with or in close proximity to each other, and when the heating element 32 is ignited by a known method such as printing or a fuse, the heating element 32 is turned on. High temperature is reached in a short time and immediately spreads to solid carbon 31. Due to thermite reaction of heating element 32, high temperature can be maintained for a long time due to the heat generation and continuous combustion of solid carbon 31. .
  • Fig. 7 (a) when the solid fuel 3 1B is placed on the heating element 32, the metal can 33 is used to prevent the solid fuel 3 1B from dropping. Aspects of? You have to '' Then, the supply of air to the solid fuel 31B becomes insufficient.Therefore, as shown in FIG. 7 (b), an air inflow hole 37 is provided on the side of the metal can 33 to solid fuel. Promotes 3 1 B combustion.
  • the shape of the solid fuel can be formed into a cylindrical shape.
  • the periphery of the cylindrical heating element 32 was coated with solid carbon 31.
  • Reference numeral 45 denotes an igniting agent applied to the heat generating body 32.
  • solid fuel can be formed into a spherical shape.
  • the solid fuel is formed into a sphere by wrapping the spherical heat generating body 32 around solid carbon 31.
  • Reference numeral 46 denotes an ignition section, which guides the heating element 32 out of the solid carbon 31, coats the tip with an igniter 45, and ignites it with flint or explosive.
  • the cylindrical and spherical solid fuels described in FIGS. 9 and 10 can be used as substitutes for bean charcoal and bincho charcoal.
  • the solid fuel configured as described above exerts the high-temperature heat generation of the heating element 32 and the sustained combustion of the solid carbon 31 at the same time to ignite in a short time; It lasts. 4
  • the volume of solid fuel is also relatively small. These characteristics indicate that solid fuels are suitable for grilling.
  • the metal oxide and the oxygen contained in the metal oxide combine with each other to cause a reduction reaction. It is a mixture of a reducing agent such as a source metal and a small amount of an auxiliary composition added as needed.
  • a reducing agent such as a source metal
  • an auxiliary composition added as needed.
  • the most common and economically preferred are iron oxide and silicon or iron oxide and aluminum mixtures.
  • thermite reaction starts immediately, and the heating element 32 reaches a high temperature in several tens of seconds. Since the thermite reaction does not require oxygen, the heating time and the amount of heat generated are determined by the constituents. Of course, the temperature is affected by the particle size of the constituent components and the manufacturing method, but generally the exothermic temperature is around 100 ° C., and the reaction is completed in a few seconds.
  • the solid fuel described in Figs. 6 (a) and (b) is obtained by simply stacking the disc-shaped solid carbon 31 on the heating element 32, so that the combustion of the solid carbon 31 is in contact with air. Limited to surroundings. In a short time, a large amount of unburned solid carbon 31 remains, but almost disappears after a considerably long time.
  • the solid fuel in Fig. 6 (c) uses fibrous solid carbon of 31 A.
  • the voids between the fibers are very large and the supply of oxygen is sufficient, so it burns out in a short time.
  • the combustion temperature, time and embers can be controlled by adjusting the fiber thickness and void density.
  • massive solid carbon 31 B was arranged on a heating element 32.
  • the side of the metal can 3 is raised so that the solid carbon 3 Air inlet holes 37 were provided.
  • the air enters through the side inflow hole 37, passes through the solid carbon 31 mass, and is discharged to the upper part, so that the carbon mass in the center also burns sufficiently.
  • the solid fuel shown in Fig. 8 has a number of holes 34 penetrating vertically through the disk-shaped solid carbon 31.Air flows in from the gap between the heating element 32 and the solid carbon 31 and passes through the hole 34. Exhaust to the top. Therefore, sufficient oxygen is supplied to the solid carbon 31. Combustion occurs not only above and below the solid fuel but also uniformly at the center of the disk.
  • the cylindrical solid fuel shown in FIG. 10 and the spherical solid fuel shown in FIG. 11 respectively cover the heating element 32 with solid carbon 31.Therefore, the heating element 32 is formed when the thermite reaction starts. The thermal expansion causes cracks in the solid carbon 31, and oxygen is supplied from the crack, so that the solid carbon 31 burns to the inside.
  • the raw material and manufacturing method of the solid carbon 31 used in the combustion experiment are the same as the method shown in the combustion test 1 described later, and details of the shape of the solid carbon 31 are as follows.
  • the diameter of the solid carbon 31 in FIG. 6 (a) was 6.5 cm, and its thickness was 2 cm.
  • the size of the carbon mass of the solid carbon 31 in FIG. 7 was set to 0.2 to 1 cm, and the thickness of the layer was set to 2 cm.
  • the solid carbon 31 was overlaid on 100 g of the heating element 32, respectively, and the burning after burning was observed.
  • the results are shown in Table 3. Incidentally, as the target was measured it can have the heating element 3 2 Nominitsu.
  • the solid carbon 31 in FIG. 8 (a) is provided with many through holes 8 at the top and bottom, and the lower end is tightly closed with the heating element 32, so that the inflow of air should be restricted. " However, it is presumed that the heat generated caused the surface of the heating element 32 to be uneven, so that a sufficient gap was generated and air flowed in sufficiently. It is thought that the combustion of solid carbon 31 was promoted by the rise and chimney effect, and as a result, the burning rate of solid carbon 31 was increased and the glowing time was prolonged.
  • Charcoal can be classified into white charcoal with high ignition temperature and black charcoal with low ignition temperature.
  • the former includes Bincho charcoal, and the latter include mangrove charcoal, palm palm charcoal, coconut palm charcoal, sawdust charcoal, and bamboo charcoal.
  • Manzalove coal burns easily, but generates large amounts of flame. Saw charcoal is dangerous because it generates a lot of fire.
  • mineral-based charcoal There is also mineral-based charcoal. Each has its own characteristics
  • the material for the container 33 for storing the heating element 32 and the solid carbon 31 metals such as iron, aluminum, and stainless steel, or ceramics, pottery, porcelain, and carbon can be used. Also, it is not necessary to use the container 33, and it is also possible to simply wrap the container. In addition, combustible materials such as paper, nitrose, loin, plastic, and paint can be used to reinforce the shape of the heating element 32.
  • FIG. 8 Another combustion test 1 was performed using the solid fuel shown in Fig. 8 (a).
  • the wire mesh 40 used for the nutrition test was made of stainless steel, the size was 20 cm ⁇ 20 cm, and the lattice gap was 0.8 cm square.
  • the size of the tabletop stove 41 was 15 cm X 15 cm at the bottom and 10 cm in height.
  • the material is a commercially available Serammiku insulation central diameter 7. Te 2 cm, depth 2 cm difficulty RiNui, to form a recess 4 2.
  • For solid fuel 30 g of mangrove charcoal (2 mm in size) and 24 g of water were added to 6 g of starch paste and kneaded well, then put into a Teflon container with a diameter of 6.5 cm and a depth of 2 cm. .
  • This solid fuel was placed in a tabletop stove 41 and the heating element 32 was ignited with a flint spark. Later, the time during which the solid carbon 31 was glowing was measured to be 30 minutes. The burning rate of the solid carbon 31 was 80%, and the time until complete combustion was 1 hour ⁇ .
  • Another combustion test 2 was performed using the solid carbon 31 in FIG.
  • 80 g of iron oxide (Fe 2 O 3 ) and 20 g of silicon add 35 ml of water and knead well.Then, form a cylinder with a diameter of l cra and a length of 10 cm at 120 ° C. ⁇ ⁇
  • the dried one was used as a cylindrical heating element 32.
  • 90 g of mangrove charcoal and 18 g of starch paste were mixed with 72 ml of water and kneaded well, and the mixture was applied by coating around the heating element 32 and dried at 120 ° C. for 3 hours.
  • the coated part was 3 cm long and 0.5 cra thick, and the length of the uncoated part was 2 cm.
  • FIG. 1 (b) is a longitudinal section of the solid fuel, and (a) is a partially enlarged view.
  • FIG. 2 is a perspective view of a solid fuel.
  • FIG. 3 is a front view of a solid fuel in which a part of a combustion vessel is broken.
  • FIG. 4 is a cross-sectional view illustrating a solid fuel manufacturing process.
  • (A) is the first step
  • (b) is the second step
  • (c) is the second and third steps
  • (d) is the third step. Show
  • FIG. 3 is a perspective view showing another solid fuel embodiment
  • FIG. 7 ⁇ (a) is a cross-sectional view showing another solid fuel embodiment, and (b) is a partially cutaway front view.
  • FIG. 4 is a perspective view showing an embodiment of another solid fuel
  • FIG. 12 is a perspective view showing an embodiment of another solid fuel.
  • FIG. 13 is a perspective view showing an embodiment of another solid fuel.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

A solid fuel having a fuel body which can be ignited reliably and quickly and which maintains its burning state for a long time without emitting smoke or bad smell. Therefore, the solid fuel is suitable as a heat source for roasting or cooking raw food. The solid fuel comprises a flat cylindrical fuel body (1) formed with a group of combustion air passages (6), an ignition agent layer (2) composed of thermite-like exothermic material disposed under the entire bottom surface of the fuel body (1), and an igniting section (3) disposed on part of the surface of the ignition agent layer (2). The fuel body (1) is formed by grinding a coal made by burning coconut shells at high temperatures, the grinding being continued until the coal particles (4) have a particle size of 12-32 mesh, the coal particles being then pressure-molded to be porous. The passages (6) are formed in numbers of 16-26 in the fuel body (1).

Description

明 細 書  Specification
固形燃料とその製造方法 技術分野  Solid fuel and its manufacturing method
この発明は、 焼き調理や加熱調理などの調理用の熱源と して好適な固形燃料と その製造方法とに関する。 背景技術  The present invention relates to a solid fuel suitable as a heat source for cooking such as baking and heating, and a method for producing the same. Background art
炭素質の燃料体と着火材とを備えた固形燃料に閿して、 特許文献 1が公知であ る。 そこでの固形燃料は、 木炭および成形炭とを含む燃料体と、 着火材と、 これ ら両者を収容する包装材とを含んでいる。 着火材には、 固形アルコールやゲル状 の工業用アルコール燃料などを用いており、 これで成形炭を着火させている。 燃 料体の殆どを占める木炭は、 木炭群の中央に配置した成形炭の燃焼熱によって着 火する。  Patent Document 1 is known as a solid fuel including a carbonaceous fuel body and an ignition material. The solid fuel there includes a fuel body including charcoal and coal briquettes, an ignition material, and a packaging material for containing both. As the ignition material, solid alcohol or gel-like industrial alcohol fuel is used to ignite the formed coal. Charcoal, which occupies most of the fuel, is ignited by the heat of combustion of the coal formed in the center of the charcoal group.
着火しにくい木炭の着火材と して、 ヤシ殻ゃ籾設などの繊維質素材の炭化物粉 末と、 アルコールに代表される可燃液体有機物と、 バイ ンダーとを混練したうえ で筒状に成形したのち、 乾燥させることも提案されている (特許文献 2 ) 。 この発明では、 着火材と して例えばテルミ ッ トを使用して、 その還元反応熱で 燃料体を着火させる。 この種のテルミ ツ ト様反応熱を熱源とする発熱体は特許文 献 3に公知である。 そこでは、 テルミ ッ ト様発熱斉 IJと、 繊維と、 バインダーとを 含む発熱剤含有ペース トをシ一ト状に形成したのち、 乾燥させて任意形状に整形 している。 発熱体の外面は、 必要に応じて保護フィルムで覆ってある。 この種の 発熱体は、 アルコール系ゃパラフィ ン系の発熱体に比べて反 ¾速度が著しく速くAs an ignition material for charcoal that is difficult to ignite, it is formed by kneading a binder powder, such as coconut shell and paddy laying, a combustible liquid organic material represented by alcohol, and a binder. Later, drying has also been proposed (Patent Document 2). In the present invention, for example, a thermite is used as an ignition material, and the fuel body is ignited by the heat of the reduction reaction. A heating element using this type of thermite-like reaction heat as a heat source is known from Patent Document 3. There, thermite-like exothermic IJ, fiber and binder The exothermic agent-containing paste is formed into a sheet and then dried to form an arbitrary shape. The outer surface of the heating element is covered with a protective film if necessary. This type of heating element has a remarkably faster reaction speed than alcohol / paraffin heating elements.
、 しかも発熱体がシート状であるため燃焼時間が極端に短く 、 調理用の熱源と し ては不向きである。 Moreover, the heating time is extremely short because the heating element is in a sheet shape, and is not suitable as a heat source for cooking.
特許文献 1 特許第 3 1 5 7 8 1 9号公報 (段落番号 0 0 1 3、 図 2 ) 特許文献 2 特開 2 0 0 3— 2 0 4 9 1号公報 (段落番号 0 0 1 5、 図 1 ) 特許文献 3 特開 2 0 0 3— 2 4 0 3 5 5号公報 (段落番号 0 0 2 6、 図 1 ) 特許文献 1の固形燃料においては、 着火材、 成形炭、 次い で木炭の順で着火す る。 ところが、 包装材に収容した木炭群の中央部分に成形炭 が配置されるので、 成形炭が燃焼し始めた時点で周辺の燃焼空気が消費され、 酸素不足で成形炭の燃 焼を持続できないことがある。 着火材に点火してから、 木炭群に火が回るのに多 くの時間が掛かるため、 例えばレス トラン等において固形燃料を熱源にして焼き 調理や加熱調理を行う場合に、 木炭群を予め燃焼させておく 必要があり即応性に 欠ける。  Patent Literature 1 Patent No. 3 157 8 19 (Paragraph No. 0 13, FIG. 2) Patent Literature 2 Japanese Patent Application Laid-Open No. 2003-20049 (Paragraph No. 0 15 (Fig. 1) Patent Document 3 Japanese Patent Application Laid-Open No. 2003-240405 (Paragraph No. 026, Fig. 1) In the solid fuel of Patent Document 1, the ignition material, molded coal, and then Ignite in the order of charcoal. However, since the coal is placed at the center of the charcoal group contained in the packaging material, the surrounding combustion air is consumed when the coal begins to burn, and the lack of oxygen makes it impossible to sustain the combustion of the coal. There is. Since it takes a lot of time for the charcoal group to turn on after igniting the igniting material, the charcoal group is burned in advance, for example, when grilling or heating using solid fuel as a heat source in restaurants, etc. It must be kept and lacks responsiveness.
さらに、 未燃焼の木炭が燃焼灰で覆われて (以下灰かぶり 現象という) 、 火力 が徐々に低下しがちであり、 木炭の一部が未燃焼状態のまま で残ることがあり、 その分だけ無駄になる。 こ う した固形燃料の無駄は、 例え if レス トラン等におい て固形燃料を熱源とする焼き物や鍋物などの各種の料理を 供する場合などに無 視できない量になる。 固形アルコールからなる着火材ゃ、 ¾ "炭や燃料油を含む成 形炭は、 特有の臭いを伴いながら燃焼するため、 固形燃料で食材を加熱調理する のに問題があり、 と く に生物 (なまもの) を焼き調理する場合に他の食材に 臭い が移りやすい。 . 本発明の目的は、 燃料体に対する着火を確実かつ迅速に行える固形燃料を 得る にある。 本発明の目的は、 燃料体が煙や異臭を伴う ことなく長時間にわたつ て燃 焼状態を維持する固形燃料を得るにある。 したがって、 本発明の目的は、 生食材 の焼き調理や、 加熱調理等の熱源と して好適な固形燃料を提供することにあ る。 本発明の目的は、 燃料体に迅速に着火でき、 灰かぶり現象による火力の低 下も 解消して燃料体を最後まで完全に燃焼でき、 所定の加熱温度を長時間にわた つて 安定的に発揮する固形燃料を提供することにある。 発明の開示 Furthermore, unburned charcoal is covered with burning ash (hereinafter referred to as ash fogging phenomenon), and the thermal power tends to gradually decrease, and part of the charcoal may remain in an unburned state. To waste. Such waste of solid fuel becomes an insignificant amount, for example, when providing various dishes such as grilled foods and hot pots using solid fuel as a heat source in an if restaurant or the like. Ignition material consisting of solid alcohol ゃ, ¾ " Shaped charcoal burns with a unique smell, so there is a problem in cooking food with solid fuel, especially when burning and cooking creatures. Cheap. An object of the present invention is to obtain a solid fuel that can reliably and quickly ignite a fuel body. An object of the present invention is to obtain a solid fuel in which a fuel body maintains a combustion state for a long time without accompanying smoke or off-flavor. Therefore, an object of the present invention is to provide a solid fuel suitable as a heat source for baking and cooking of raw ingredients, cooking and the like. An object of the present invention is to quickly ignite a fuel body, eliminate a decrease in thermal power due to an ash fogging phenomenon, completely burn the fuel body to the end, and stably exhibit a predetermined heating temperature over a long period of time. To provide a solid fuel. Disclosure of the invention
本発明の固形燃料は、 図 1に示すごと く、 燃焼空気用の通口 6の一群が形成さ れた燃料体 1 と、 燃料体 1の表面に配置されるテルミ ッ ト様発熱材からなる 着火 剤層 2 と、 着火剤層 2の表面の一部に設けられる点火部 3 とを備えている。 この うち、 燃料体 1が、 無臭性炭素材を原料とする炭粒 4を加圧成形して、 炭; Ifc 4間 に隙間 1 4を有する多孔質に形成されていることを特徴とする。  As shown in FIG. 1, the solid fuel of the present invention includes a fuel body 1 in which a group of combustion air passages 6 is formed, and a thermite-like heating material disposed on the surface of the fuel body 1. An ignition agent layer 2 and an ignition unit 3 provided on a part of the surface of the ignition agent layer 2 are provided. Among them, the fuel body 1 is characterized in that a coal particle 4 made of an odorless carbon material is press-formed to form a porous body having a gap 14 between the charcoal and Ifc 4.
燃料体 1 を構成する炭粒 4 と しては、 木炭、 ヤシ殻炭、 竹炭、 マングロープ炭 などの植物由来の無臭性炭素材の 1種以上を含んだものを選ぶことができる 。 更に具体的にみると、 燃料体 1は、 高温で焼成したヤシ殻炭を粉砕して、 粒度 が 6〜 6 0メ ッシュに調整された炭粒 4 と、 炭粒 4 どう しを結着するバインダーAs the coal particles 4 constituting the fuel body 1, those containing one or more plant-derived odorless carbon materials such as charcoal, coconut shell charcoal, bamboo charcoal, and mangrove charcoal can be selected. More specifically, fuel body 1 is made by pulverizing coconut shell charcoal, Of coal 4 adjusted to 6 to 60 mesh, and a binder to bind the coal 4
5 とを含む。 そのバインダー 5は、 無機物の耐火セメントまたはキャスタプルとAnd 5. The binder 5 is composed of inorganic refractory cement or castaple.
、 天然物の多糖類または蛋白質で形成されるのりのいずれかひとつ、 あるいは 2 種以上の混合物からなる。 着火剤層 2は、 酸化鉄と、 ケィ素と、 鉱物繊維と、 酸 化アルミニウム系または酸化ケィ素系のバインダーとを含んでいる。 かく して、 水を加えてペース ト状に調整した着火剤を、 燃料体 1 の表面に付着させて乾燥す ることによ り、 着火剤層 2を燃料体 1 と一体化する。 その際、 着火剤層 2の表面 の一部に点火部 3を露出させておく。 It consists of either one of the natural polysaccharides or glue formed from proteins, or a mixture of two or more. The igniting agent layer 2 contains iron oxide, silicon, mineral fibers, and an aluminum oxide-based or silicon oxide-based binder. Thus, the igniting agent layer 2 is integrated with the fuel body 1 by attaching the igniting agent adjusted to the paste shape by adding water to the surface of the fuel body 1 and drying the igniting agent layer. At that time, the ignition part 3 is exposed on a part of the surface of the ignition agent layer 2.
前出の燃料体 1は扁平な立体形状、 例えば円盤状に形成して、 燃料体 1の下面 全体を着火剤層 2で覆い、 着火剤層 2の反応熱によって燃料体 1を面状に迅速着 火できるよ うにすればよい。  The above-mentioned fuel body 1 is formed in a flat three-dimensional shape, for example, a disk shape, and the entire lower surface of the fuel body 1 is covered with the igniting agent layer 2, and the fuel body 1 is quickly planarized by the reaction heat of the igniting agent layer 2. It should be possible to ignite.
また、 円盤状に形成した燃料体 1には、 1 6〜 2 6個の通口 6を上下貫通状 tこ 形成し、 燃料体 1の上面の面積に占める全通口 6の開口面積の比を、 7. 5〜 3 0 %に設定することが好ましい。  Also, in the fuel body 1 formed in a disk shape, 16 to 26 through-holes 6 are formed in a vertically penetrating manner. Is preferably set to 7.5 to 30%.
本発明の固形燃料の製造方法においては、 図 4に示すごと く、 型枠 1 0に充填 した炭粒 4 とバインダー 5 との混合物をプレス機で加圧して、 炭粒 4間に隙間:! 4を有する多孔質の燃料体 1 を成形し、 同時に燃料体 1 に通口 6の一群を形成^" る第 1工程と、 型枠 1 0内の燃料体 1の表面にペース ト状に調整した着火剤を し込んで、 燃料体 1の片面の全体に着火剤層 2を形成する第 2工程と、 着火剤層 2を乾燥固化して燃料体 1 と一体化したのち、 着火剤層 2の表面の一部に、 点火 部 3をこれが着火剤層 2の表面に露出するよ う塗布形成し、 型枠 1 0から燃料体 を分離する第 3工程とを経て固形燃料を製造する。 In the method for producing a solid fuel according to the present invention, as shown in FIG. 4, a mixture of the coal granules 4 and the binder 5 filled in the mold 10 is pressurized by a press machine to form a gap between the coal granules 4:! The first step of forming a porous fuel body 1 having a 4 and simultaneously forming a group of openings 6 in the fuel body 1; and adjusting the surface of the fuel body 1 in the mold 10 in a paste-like manner. A second step of forming the igniting agent layer 2 on one side of the fuel body 1 by injecting the igniting agent, and drying and solidifying the igniting agent layer 2 to be integrated with the fuel body 1, and then the igniting agent layer 2 Part of the surface of the ignition The part 3 is applied so as to be exposed on the surface of the igniting agent layer 2, and the solid fuel is produced through a third step of separating the fuel body from the mold 10.
先の第 2工程においては、 型枠 1 0ごと燃料体 1 を乾燥固化したのち、 型枠 1 0内の燃料体 1の表面に、 ペース ト状に調整した着火剤を流し込んで着火剤層 2 を形成することができる。 発明の効果  In the second step, after the fuel body 1 is dried and solidified together with the mold 10, the igniting agent adjusted in a paste shape is poured into the surface of the fuel body 1 in the mold 10 to form the igniting agent layer 2. Can be formed. The invention's effect
本発明の固形燃料では、 燃焼空気用の通口 6の一群を形成した燃料体 1 と、 燃 焼空気を必要とせず、 しかも高温の反応熱を発生するテルミ ッ ト様発熱材からな る着火剤層 2 と、 着火剤層 2の一部に設けられる点火部 3 とで構成されているの で、 身近なライターなどで点火部 3に着火するだけで、 着火剤層 2の還元反応が 開始し、 その高温の反応熱によって燃料体 1 を燃やすことができる。 したがって 、 従来のこの種の固形燃料に比べて、 より迅速にしかも確実に燃料体 1を着火で きる。  In the solid fuel of the present invention, an ignition made up of a fuel body 1 forming a group of combustion air ports 6 and a thermite-like heating material that does not require combustion air and generates high-temperature reaction heat Since it is composed of the igniting agent layer 2 and the igniting part 3 provided in a part of the igniting agent layer 2, simply igniting the igniting part 3 with a familiar lighter, etc., the reduction reaction of the igniting agent layer 2 starts Then, the fuel body 1 can be burned by the high-temperature reaction heat. Therefore, the fuel body 1 can be ignited more quickly and more reliably than conventional solid fuels of this type.
燃料体 1は、 炭粒 4を加圧成形して多孔質に形成されているので、 隣接する炭 粒 4の間に比較的大きな隙間 1 4が確保されており、 この隙間 1 4の存在によつ て、 炭粒 4に対する燃焼空気や炎の接触機会が増え、 その分だけ炭粒 4への迅速 な着火、 すなわち燃料体 1の迅速な着火を実現できる。 先の隙間 1 4は、 個々の 炭粒 4に対する燃焼空気の送給を円滑化して、 燃料体 1の燃焼状態を好適に維持 し、 燃料体 1 を完全燃焼させることにも役立つ。 炭粒 4を無臭性炭素材で形成し たのは、 燃料体 1の燃焼時に煙や異臭が発生するのを避けるためであり、 これに よ り生食材の焼き調理や、 加熱調理等の熱源と して好適な固形燃料が得られる。 燃料体 1の形成素材を炭粒 4 とすることにより、 着火のしゃすさを実現しながら も、 同じ重量の粉状の炭で形成した燃料体に比べて燃焼持続時間を長時間化でき る。 Since the fuel body 1 is formed porous by pressure-forming the coal particles 4, a relatively large gap 14 is secured between the adjacent coal particles 4, and the presence of the gap 14 As a result, the chance of contact of the combustion air and the flame with the coal particles 4 increases, and accordingly, quick ignition of the coal particles 4, that is, rapid ignition of the fuel body 1 can be realized. The gaps 14 facilitate smooth supply of combustion air to the individual coal granules 4, maintain the combustion state of the fuel body 1 appropriately, and also help to completely burn the fuel body 1. The coal grain 4 is made of odorless carbon This is to prevent the generation of smoke and off-flavors when the fuel body 1 is burned, whereby a solid fuel suitable as a heat source for baking and cooking of raw ingredients, heating and the like can be obtained. By using the coal particles 4 as the material for forming the fuel body 1, it is possible to achieve a longer ignition duration, but also achieve a longer combustion duration than a fuel body formed of the same weight of powdered charcoal, while realizing ignition stiffness.
炭粒 4が木炭、 ヤシ殻炭、 竹炭、 マングローブ炭などの植物由来の無臭性炭素 材の 1種以上を含んでいると、 燃料体 1の燃焼時に煙や異臭が発生するのを確実 に解消して、 生食材の焼き調理や、 加熱調理等の熱源と して好適な固形燃料が得 られる。 複数種の無臭性炭素材で炭粒 4が形成されていると、 例えば着火特性に 優れた無臭性炭素材と、 火持ちの良好な無臭性炭素材とを組み合わせるなどによ り、 用途に応じた特性の固形燃料を形成でき、 その分だけ固形燃料の適用対象が 拡大する。  If the coal grain 4 contains one or more plant-derived odorless carbon materials such as charcoal, coconut shell charcoal, bamboo charcoal, mangrove charcoal, etc., the generation of smoke and unpleasant odor when the fuel body 1 is burned is reliably eliminated. As a result, a solid fuel suitable as a heat source for baking and cooking of raw ingredients, heating and the like can be obtained. If the coal particles 4 are formed of multiple types of odorless carbon materials, depending on the application, for example, by combining an odorless carbon material with excellent ignition characteristics with an odorless carbon material with good fire life Solid fuels with different characteristics can be formed, and the applications of solid fuels will be expanded accordingly.
燃料体 1 は、 例えば円盤状などの扁平な立体形状に形成して、 その下面全体に 着火剤層 2を形成してあると、 着火剤層 2の反応熱で燃料体 1 を面状に迅速着火 できる。 燃料体 1が扁平な立体形状に形成されていると、 市販の練炭に代表され る上下厚みの大きい成形炭に比べて、 燃料体 1の全周面への着火時間を大幅に短 縮でき、 燃料体 1の上面全体で強い火力を均等に発揮して、 生食材の焼き調理や 、 加熱調理等をさらに好適に行える。  When the fuel body 1 is formed in a flat three-dimensional shape such as a disk shape and the igniting agent layer 2 is formed on the entire lower surface thereof, the fuel body 1 is quickly planarized by the reaction heat of the igniting agent layer 2. Can ignite. When the fuel body 1 is formed into a flat three-dimensional shape, the ignition time on the entire peripheral surface of the fuel body 1 can be significantly reduced as compared with a molded coal having a large vertical thickness such as a commercially available briquette. Strong heat is uniformly exerted on the entire upper surface of the fuel body 1, so that grilling and cooking of raw ingredients and heating cooking can be performed more suitably.
高温で焼成したヤシ殻炭のみを原料にして、 粒度が 6〜 6 0メ ッシュに調整さ れた炭粒 4 と、 炭粒 4 どう しを結着するバインダー 5 とを含む燃料体 1 によれば 竹炭やマングローブ炭などの他の無臭性炭素材を原料とする場合に比べて、 着 火の容易性と火持ちの良さとをバランスよく発揮する燃料体 1が得られ、 原料炭 を低コス トで入手できる。 炭粒 4の粒度が 6 メ ッシュを越えて大きく なると、 粒 度が大きい分だけ着火しにく く なり、 燃料体 1の着火に時間が掛かる。 また、 粒 度が 6 0メ ッシュよ り小さな炭粒 4の場合には、 その比表面積が大きく なり過ぎ て燃焼持続時間が著しく短く なり、 火持ちが悪い点で実用に適さなく なる。 した がって、 炭粒 4は 8〜 6 0メ ッシュのものが用いて好ましい。 The fuel assembly 1 is made of only coconut shell charcoal fired at a high temperature and contains coal particles 4 having a particle size adjusted to 6 to 60 mesh and a binder 5 for binding the coal particles 4 to each other. Ba Compared to when using other odorless carbon materials such as bamboo charcoal and mangrove charcoal as a raw material, a fuel assembly 1 that achieves a balance between ease of ignition and good durability is obtained, and coking coal is reduced in cost Available at When the particle size of the coal particles 4 becomes larger than 6 mesh, it becomes difficult to ignite because of the large particle size, and it takes time to ignite the fuel body 1. In the case of coal particles 4 having a particle size smaller than 60 mesh, the specific surface area becomes too large, and the combustion duration becomes extremely short. Therefore, it is preferable to use coal grains 4 of 8 to 60 mesh.
因みに木炭は、 他の無臭性炭素材を原料とする場合に比べて、 原料コス トが髙 く付く うえ、 焼成原木の違いで炭素材の質にばらつきが出るのを避けられず、 炭 粒 4の燃焼特性を一律に揃えるのが難しい。 例えば、 備長炭などの均質な木炭が ない訳ではないが、 これでは原料コス トが髙くつき過ぎる。 よって、 炭粒 4は、 高温で焼成したヤシ殻炭のみを原料にすることが望まれる。  By the way, charcoal has a higher raw material cost compared to the case of using other odorless carbon materials as raw materials, and the quality of the carbon materials cannot be avoided due to differences in the raw wood for burning. It is difficult to make the combustion characteristics uniform. For example, it does not mean that there is no homogeneous charcoal such as Bincho charcoal, but this would cost too much raw material. Therefore, it is desired that the coal grain 4 be made only from coconut shell charcoal fired at a high temperature.
炭粒 4を結着するためのバインダー 5が、 耐火セメン トまたはキャスタブルと The binder 5 for binding the coal granules 4 is used for refractory cement or castable.
、 多糖類または蛋白質で形成されるのり との混合物で構成されていると、 炭粒 4 と共に燃焼するのり によって異臭や煙が発生するのをよく防止できる。 バインダ 一 5に耐火セメントまたはキャスタブルを加えてあると、 燃焼途中における炭粒 4の隣接間隔を維持して、 前記灰かぶり現象によって炭粒群が不完全燃焼状態に 陥るのを防ぎ、 さらに燃焼末期に燃料体 1が崩壊するのを防いで、 所定の加熱温 度を長時間にわたって安定的に発揮させることができる。 また、 耐火セメ ントお ょぴキャスタブルは、 未使用状態における燃料体 1の構造強度の向上に寄与し、 通時の燃料体 1の破損を防ぐことにもなる However, if it is composed of a mixture with the glue formed of polysaccharides or proteins, it is possible to prevent the generation of offensive odor and smoke due to the glue burning with the coal particles 4. If refractory cement or castables are added to the binder 1, the adjacent spacing of the coal particles 4 during the combustion is maintained, preventing the coal particles from falling into incomplete combustion due to the ash fogging phenomenon. Thus, the fuel body 1 can be prevented from collapsing, and the predetermined heating temperature can be stably exhibited for a long time. In addition, the refractory cement and castable contribute to the improvement of the structural strength of the fuel assembly 1 when not in use. It also prevents the fuel body 1 from being damaged at all times
酸化鉄と、 ケィ素と、 鉱物繊維と、 酸化アルミニウム系または酸化ケィ素系の バインダーとを含む着火剤層 2は、 合成樹脂系のバインダーを使用する場合に避 けられなかった、 燃えかすの滴下や付着、 あるいは異臭の発生がないうえ、 鉱物 繊糸隹の混入で着火剤層 2これ自体の強度が向上し、 長期保管時の着火剤層 2の剥 落や崩壊をよく防止する。 水を加えてペース ト状に調整した着火剤は、 燃料体 1 の表面に付着させて乾燥固化すると、 着火剤の一部が隣接する炭粒 4間の隙間 1 4に入り込んだ状態で固化する。 したがって、 着火剤を乾燥した状態では着火剤 層 2 と燃料体 1 とを強固に一体化でき、 流通時や長期保管時に着火剤層 2が燃料 体 1から剥離したり、 分離したりするのを確実に防止できる。  The igniter layer 2 containing iron oxide, silicon, mineral fibers, and aluminum oxide or silicon oxide binders was not evacuated when using synthetic resin binders. There is no dripping or adhesion, and no generation of offensive odor. In addition, the mixing of the mineral fiber uto improves the strength of the igniting agent layer 2 itself, and prevents the igniting agent layer 2 from peeling or collapsing during long-term storage. The igniting agent adjusted to a paste by adding water adheres to the surface of the fuel body 1 and solidifies when dried and solidified, with a portion of the igniting agent entering the gaps 14 between adjacent coal particles 4 . Therefore, when the igniting agent is dried, the igniting agent layer 2 and the fuel body 1 can be firmly integrated, and the igniting agent layer 2 does not peel off or separate from the fuel body 1 during distribution or long-term storage. It can be reliably prevented.
円盤状に形成した燃料体 1 に、 1 6〜 2 6個の通口 6を上下貫通状に形成して 、 燃料体 1 の上面の面積に占める全通口 6の開口面積の比を 7. 5〜 3 0 %の範囲 に設定してあると、 実用上支障のない時間内に燃料体 1の着火を図りながら、 必 要かつ十分な燃焼持続時間を確保できる。 更に、 着火の容易性と、 火持ちの良さ と をバランスよく備えた固形燃料が得られる。 先の面積の比が 7. 5 %よ り小さい と、 着火に要する時間が長引いて即応性に欠ける。 先の面積の比が 3 0 %を越え る と、 燃焼持続時間が短く なるため、 ごく短時間の加熱調理にしか適用できず実 用 生に問題が出る。 したがって、 前出の面積比は、 7. 5〜 3 0 %が最適である。 本発明の固形燃料の製造方法においては、 炭粒 4 とバインダー 5 との混合物を 加圧成形して密度が均一な燃料体 1 を形成したのち、 型枠 1 0で囲まれた燃料体 1の表面にペース ト状に調整した着火剤を流し込んで、 燃料体 1の片面の全体に 着火剤層 2を形成する。 さらに、 着火剤層 2を乾燥固化して燃料体 1 と一体化し たのち、 着火剤層 2の表面の一部に点火部 3を形成する仕様と したので、 複層構 造の固形燃料をよ り少ない手間で簡便に製造できる。 燃料体 1の加圧成形から着 火剤層 2 の形成、 ついで乾燥にまで至る一連の処理を、 加圧成形された燃料体 1 が型枠 1 0内に収まった状態のままで行うので、 燃料体 1や着火剤層 2の一部が 、 製造途中に欠損したり、 異物が混入したりするのを確実に防止でき、 形状およ び燃焼特性が均一の固形燃料を提供できる。 In the disk-shaped fuel assembly 1, 16 to 26 openings 6 are formed in a vertically penetrating manner, and the ratio of the opening area of all the openings 6 to the area of the upper surface of the fuel assembly 1 is 7. If it is set in the range of 5 to 30%, it is possible to secure the necessary and sufficient combustion duration while igniting the fuel body 1 within a time that does not hinder practical use. Further, a solid fuel having a good balance between ease of ignition and good durability can be obtained. If the ratio of the area is smaller than 7.5%, the time required for ignition is prolonged and responsiveness is poor. If the ratio of the area exceeds 30%, the duration of combustion is shortened, so that it can be applied only to cooking for a very short time, causing problems for practical use. Therefore, the optimal area ratio is 7.5 to 30%. In the method for producing a solid fuel according to the present invention, a mixture of the coal particles 4 and the binder 5 is pressure-formed to form a fuel body 1 having a uniform density, and then the fuel body surrounded by a mold 10. The igniting agent adjusted in a paste shape is poured into the surface of 1 to form an igniting agent layer 2 on one entire surface of the fuel assembly 1. Furthermore, after the igniting agent layer 2 is dried and solidified to be integrated with the fuel body 1, the ignition portion 3 is formed on a part of the surface of the igniting agent layer 2, so that the solid fuel having a multi-layer structure is used. It can be manufactured easily with less labor. Since a series of processes from the press molding of the fuel body 1 to the formation of the igniting agent layer 2 and then to the drying are performed while the press molded fuel body 1 is contained in the mold 10, It is possible to reliably prevent a part of the fuel body 1 and the igniting agent layer 2 from being broken during production or from being mixed with foreign matters, and to provide a solid fuel having a uniform shape and combustion characteristics.
本発明方法の第 2工程において、 型枠 1 0 ごと燃料体 1 を乾燥固化したのち、 型枠 1 0 内の燃料体 1 の表面にペース ト状の着火剤を流し込んで着火剤層 2を形 成すると、 ペース ト状の着火剤の一部が、 隣接する炭粒 4間の隙間 1 4に入り込 んだ状態で着火剤が固化するので、 着火剤を乾燥した状態では着火剤層 2 と燃科 体 1 とを分離不能な状態で強固に一体化でき、 得られた固形燃料の形状を長期に わたって安定的に維持できる。 もちろん、 必要に応じて型枠 1 ◦を別の型枠に移 し変えてもよレヽ。 発明を実施するための最良の形態  In the second step of the method of the present invention, after the fuel body 1 is dried and solidified together with the mold 10, the paste-like igniting agent is poured into the surface of the fuel body 1 in the mold 10 to form the igniting agent layer 2. When the igniting agent is dried, the igniting agent solidifies when a portion of the paste-like igniting agent enters the gaps 14 between the adjacent coal granules 4. Combustible body 1 can be firmly integrated in an inseparable state, and the shape of the obtained solid fuel can be stably maintained over a long period of time. Of course, if necessary, you can transfer one formwork to another. BEST MODE FOR CARRYING OUT THE INVENTION
(実施 図 1 ないし図 4は、 本発明に係る固形燃料の実施例を示す。 図 1お よび図 2において、 本発明の固形燃料は、 径寸法の割に高さ寸法が小さい扁平な 円盤状の立体形状に形成される燃料体 1 と、 燃料体 1の下面に全体的に配置され る着火剤層 2 と、 着火剤層 2の外周縁の一部に設けられる点火部 3 とを含む。 燃焼時に異臭や煙が発生するのを防ぐために、 燃料体 1は木炭、 ヤシ殻炭、 竹 炭、 マングローブ炭など植物由来の無臭性炭素材の 1種以上を原料とする炭粒 4 で形成する。 具体的には、 高温で焼成したヤシ殻炭を粉碎して得られた炭粒 4を 原料にして、 これにバイ ンダー 5を混合したうえで円盤状に加圧成形し、 得られ た成形燃料体を乾燥固化して、 多孔体状の燃料体 1 を形成する。 燃料体 1には燃 焼空気用の通口 6の一群を上下貫通状に形成して、 燃料体 1の全体にわたって火 が回るようにする。 この実施例では、 燃料体 1の直径寸法を 1 0 cm、 その厚みを 2 5 mmとするとき、 直径寸法が 1 0 mmの 2 1個の通口 6を均等に分散する状態で 燃料体 1に形成した。 各通口 6は丸孔と した。 (Embodiments FIGS. 1 to 4 show an embodiment of the solid fuel according to the present invention. In FIGS. 1 and 2, the solid fuel according to the present invention has a flat disk shape having a small height for its diameter. A fuel body 1 formed in a three-dimensional shape of And an ignition part 3 provided on a part of the outer peripheral edge of the ignition agent layer 2. In order to prevent the generation of off-flavors and smoke during combustion, the fuel body 1 is formed from coal particles 4 made of at least one plant-derived odorless carbon material such as charcoal, coconut shell charcoal, bamboo charcoal, mangrove charcoal, etc. . Specifically, coal particles 4 obtained by pulverizing coconut shell charcoal fired at a high temperature are used as a raw material, and a binder 5 is mixed with the coal particles 4 and then pressed into a disk shape. The body is dried and solidified to form a porous fuel body 1. A group of combustion air passages 6 are formed in the fuel body 1 so as to penetrate the fuel body 1 up and down so that the entire fuel body 1 can ignite. In this embodiment, when the diameter of the fuel body 1 is 10 cm and the thickness thereof is 25 mm, the fuel body 1 having a diameter of 10 mm and 21 openings 6 is uniformly dispersed. Formed. Each passage 6 is a round hole.
バインダー 5は、 澱粉のり と、 酸化アルミニウムまたは酸化ケィ素を含む耐火 セメ ン ト と、 水との混合物からなり、 隣接する炭粒 4 どう しは澱粉のりの粘着力 で結着する。 バインダー 5には、 酸化アルミニウムまたは酸化ケィ素を含む耐火 セメントに変えて、 キャスタブルを用いてもよい。 澱粉のり は個々の炭粒 4が燃 焼するとき、 同時に燃え尽きるが、 異臭や煙を発生することはない。 耐火セメ ン トおよびキャスタブルは、 燃焼途中における炭粒 4の隣接関係を維持して、 灰か ぶり現象によって炭粒群が不完全燃焼状態に陥るのを防ぎ、 さらに燃焼末期に燃 料体 1が崩壊するのを防いで、 全ての炭粒4を完全燃焼させるために混合する。 加えて、 耐火セメ ン トおよびキャスタブルは、 未使用状態における燃料体 1の構 造強度を向上して、 流通時の燃料体 1 の破損を防ぐ。 キャスタブルは市販品を適 用することができる。 もちろん、 炭粒 4が燃焼し終わると直ぐに、 崩れてコンロ の底に落下し、 燃焼中の赤い炭粒が絶えず表われるよ うに工夫された燃料体 1 も 構成できる。 その場合には、 添加される耐火セメントやキャスタブルの量を少な くするか、 単に多糖類やたんぱく質だけでバインダーを形成する。 The binder 5 is composed of a mixture of starch glue, refractory cement containing aluminum oxide or silicon oxide, and water, and the adjacent coal particles 4 are bonded together by the adhesive strength of the starch glue. The binder 5 may be castable instead of refractory cement containing aluminum oxide or silicon oxide. Starch paste burns out simultaneously when individual coal particles 4 burn, but does not emit off-flavors or smoke. The refractory cement and castables maintain the adjacency of the coal particles 4 during combustion to prevent the coal particles from falling into incomplete combustion due to the ash fogging phenomenon. Mix to prevent complete collapse and to burn all coal particles 4 completely. In addition, the refractory cement and castables increase the structural strength of the fuel assembly 1 when not in use and prevent the fuel assembly 1 from being damaged during distribution. Commercially available castables Can be used. Of course, as soon as the coal grains 4 have been burned, the fuel body 1 can be constructed so that it collapses and falls to the bottom of the stove, and the burning red coal grains are constantly shown. In that case, reduce the amount of refractory cement or castable added, or simply form the binder with polysaccharides and protein alone.
着火剤層 2は、 金属酸化物と還元剤とで構成されるテルミ ッ ト様の発熱材から なり、 金属酸化物の還元反応で高温の熱を発生する。 金属酸化物と還元剤との組 み合わせと しては、 酸化鉄とアルミニウム、 酸化鉄とケィ素、 マグネシウムと酸 化ケィ素、 チタンと炭素、 カルシウムと炭素などがある。 この実施例では酸化鉄 を金属酸化物と し、 ケィ素を還元剤と して、 これらに鉱物繊維と、 酸化アルミ二 ゥム系のバインダーと を混合して着火剤を構成した。 酸化アルミニウム系のパイ ンダ一に代えて、 酸ィ匕ケィ素系のバインダーを使用することもできる。 後述する よ うに着火剤層 2は、 前記着火剤に水を加えてペース ト状に調整したう えで、 ぺ ース ト状の着火剤を燃料体 1の下面全体に付着させ、 乾燥することによ り形成す る。  The igniting agent layer 2 is made of a thermite-like heating material composed of a metal oxide and a reducing agent, and generates high-temperature heat by a reduction reaction of the metal oxide. Combinations of metal oxides and reducing agents include iron oxide and aluminum, iron oxide and silicon, magnesium and silicon oxide, titanium and carbon, calcium and carbon, and the like. In this example, iron oxide was used as a metal oxide, silicon was used as a reducing agent, and mineral fibers and an aluminum oxide-based binder were mixed with these to form an ignition agent. Instead of an aluminum oxide-based binder, an oxidized silicon-based binder can also be used. As will be described later, the igniting agent layer 2 is prepared by adding water to the igniting agent, adjusting the paste to a paste shape, and attaching a paste-like igniting agent to the entire lower surface of the fuel body 1 and drying the same. It is formed by
点火部 3は、 クロム酸バリ ウムや過酸化バリ ウムを主剤と して、 これに粉末状 のアルミニゥムと無定形ホゥ酸を添加した発火剤で形成してあり、 この発火剤を 水に溶解して着火剤層 2に塗布したのち乾燥して形成する。 点火部 3を周面側か ら容易に点火するために、 点火部 3は着火剤層 2の下面から外周縁にわたって設 ける (図 2参照) 。 固形燃料を使用するときは、 ライターやマッチの火で点火部 3を点火することによ り、 着火剤層 2の還元反応を開始させることができる。 こ のとき、 着火剤層 2は激しく反応して、 ごく短時間で還元反応が燃料体 1の下面 全体に行き渡る。 そのため、 燃料体 1の下面を着火剤層 2の反応熱によって面状 に迅速着火できる。 図 1に示すよ うに着火剤層 2の一部は通口 6内に入り込んで いるので、 通口 6の下端内周面も同時に着火でき、 その分だけ燃料体 1 をよ り短 かい時間で着火できることになる。 The igniter 3 is formed of an ignition agent containing barium chromate or barium peroxide as a main component, powdered aluminum and amorphous boric acid, and dissolving the ignition agent in water. And applied to the igniting agent layer 2 and then dried. In order to easily ignite the ignition portion 3 from the peripheral surface side, the ignition portion 3 is provided from the lower surface of the ignition agent layer 2 to the outer peripheral edge (see FIG. 2). When a solid fuel is used, the reduction reaction of the igniting agent layer 2 can be started by igniting the ignition section 3 with a lighter or a match. This At this time, the igniting agent layer 2 reacts violently, and the reduction reaction spreads over the entire lower surface of the fuel body 1 in a very short time. Therefore, the lower surface of the fuel body 1 can be quickly ignited in a planar manner by the reaction heat of the igniting agent layer 2. As shown in Fig. 1, a part of the igniting agent layer 2 has entered the through-hole 6, so that the inner peripheral surface at the lower end of the through-hole 6 can be ignited at the same time, and the fuel body 1 is correspondingly moved in a shorter time. It will be able to ignite.
上記構成の固形燃料は以下の製造方法によつて量産できる。 図 4は製造方法の 概略工程を示す。 固形燃料の製造に先行して、 まず炭粒 4 とバインダー 5 との混 合物を調整しておく。 ペース 卜状の着火剤と、 水に溶解した点火剤も同様に予め 調整しておく。  The solid fuel having the above configuration can be mass-produced by the following production method. Figure 4 shows the schematic steps of the manufacturing method. Prior to the production of solid fuel, the mixture of coal particles 4 and binder 5 is first prepared. Prepare the paste-like igniting agent and the igniting agent dissolved in water in advance as well.
本発明の固形燃料は、 型枠 1 0に充填した炭粒 4 とバインダー 5 との混合物を プレス機で加圧して、 多孔質の燃料体 1 を成形すると同時に、 燃料体 1に通口 6 の一群を形成する第 1工程と、 型枠 1 0 ごと燃料体 1 を乾燥固化したのち、 型枠 1 0内の燃料体 1の片面の全体にペース ト状に調整した着火剤を流し込んで着火 剤層 2を形成する第 2工程と、 着火剤層 2を乾燥固化して燃料体 1 と一体化した のち、 着火剤層 2の表面の一音 に点火部 3を塗布形成し、 型枠 1 0から燃料体 1 を分離する第 3工程とを経て製造する。  The solid fuel of the present invention is obtained by pressing a mixture of the coal particles 4 and the binder 5 filled in the mold 10 with a press machine to form the porous fuel body 1 and, at the same time, forming the porous fuel body 1 through the opening 6 of the fuel body 1. The first step of forming a group, and after the fuel body 1 is dried and solidified together with the mold 10, the igniting agent is poured by pouring a paste-shaped igniting agent over one side of the fuel body 1 in the mold 10. After the second step of forming the layer 2 and drying and solidifying the igniting agent layer 2 and integrating it with the fuel body 1, the ignition part 3 is applied to one sound of the surface of the igniting agent layer 2, and the mold 10 is formed. And a third step of separating the fuel body 1 from the fuel.
すなわち第 1工程において ま、 図 4 ( a ) に示すよ うに、 上面が開口する丸皿 状の型枠 1 0に所定量の炭粒 4 とバインダー 5 との混合物を充填した後、 これら をプレス機で加圧して燃料体 1 を成形すると同時に、 燃料体 1 に通口 6 の一群を 形成する。 そのために、 型枠 1 0内に入り込む成形型 1 1側には、 通口 6 を成形 するためのピン 1 2を設けてある。 成形型 1 1 は、 炭粒 4 どう しがバインダー 5 を介して結着し、 全体の密度が一定となるよ うに加圧できればよい。 符号 1 3は 型枠 1 0を受け止めるベースである。 .成形型 1 1で炭粒 4 とバインダー 5 との混 合物を加圧することにより、 炭粒 4 どう しはバインダー 5を介して結着する。 但 し、 隣接する炭粒 4の間には、 僅かな隙間 1 4が確保されており、 これで多孔質 の燃料体 1 を得ることができる。 That is, in the first step, as shown in FIG. 4 (a), after filling a predetermined amount of the mixture of the coal particles 4 and the binder 5 into a round dish-shaped mold 10 having an open upper surface, these are pressed. At the same time, the fuel body 1 is formed by pressurizing with a machine, and at the same time, a group of openings 6 is formed in the fuel body 1. For this purpose, a through hole 6 is formed on the side of the mold 11 that enters the mold 10 Pins 12 are provided. The molding die 11 only needs to be pressurized so that the coal particles 4 are bound together via the binder 5 and the whole density is constant. Reference numeral 13 is a base for receiving the formwork 10. .Pressing the mixture of the coal particles 4 and the binder 5 with the molding die 1 1 binds the coal particles 4 via the binder 5. However, a small gap 14 is secured between the adjacent coal particles 4, and a porous fuel body 1 can be obtained by this.
第 2工程においては、 図 4 ( b ) に示すよ うに、 多孔質の燃料体 1 を型枠 1 0 ごと乾燥処理して固化させる。 具体的には、 燃料体 1および型枠 1 0を、 雰囲気 温度が 9 0〜 1 0 0度 Cの乾燥炉に収容 し、 その状態を 8時間維持することによ り、 燃料体 1 を固化させる。 このとき、 バインダー 5が幾分収縮するので、 図 1 ( a ) に示すように隣接する炭粒 4間の隙間 1 4を拡充できる。 この隙間 1 4の 存在によって、 炭粒 1 4に対する燃焼空気や炎の接触機会が増える。 したがって 、 炭粒 4の迅速な着火と、 燃焼状態の維持とを実現できる。 因みに、 前記隙間 1 4の大きさは、 炭粒 4の大きさや、 大き さが異なる炭粒 4の混合比などによって 種々に変化し、 燃料体 1の着火に要する時間や、 燃焼持続時間を左右するので、 本発明者は、 後述する試験を行って炭粒 4の好適な大きさを決定した。  In the second step, as shown in FIG. 4 (b), the porous fuel body 1 is dried and solidified together with the mold 10. Specifically, the fuel assembly 1 and the mold 10 are housed in a drying oven having an atmosphere temperature of 90 to 100 ° C., and the state is maintained for 8 hours, thereby solidifying the fuel assembly 1. Let it. At this time, since the binder 5 is slightly shrunk, the gap 14 between the adjacent coal particles 4 can be expanded as shown in FIG. The presence of this gap 14 increases the chance of contact of the combustion air or flame with the coal grain 14. Therefore, quick ignition of the coal particles 4 and maintenance of the combustion state can be realized. Incidentally, the size of the gap 14 varies depending on the size of the coal granules 4 and the mixing ratio of the coal granules 4 having different sizes, and affects the time required for the fuel body 1 to ignite and the duration of combustion. Therefore, the present inventor determined a suitable size of the coal particles 4 by performing a test described later.
第 3工程では、 図 4 ( c ) に示すよ う に、 型枠 1 0内に流し込んだ着火剤層 2 を乾燥固化する。 具体的には、 着火剤層 2が流し込まれた型枠 1 0を、 雰囲気温 度が 1 1 0度 Cの乾燥炉に収容し、 その状態を 1 2時間維持することにより、 着 火剤層 2を固化させた。 先に説明したよ うに、 燃料体 1は多孔質に形成されてい て、 隣接する炭粒 4間に隙間がある。 そのため、 型枠 1 0内にペース ト状の着火 剤を流し込むと、 図 1 ( b ) に示すようにその一 m5が通口 6に入り込み、 さらに 隣接する炭粒 4間の隙間に入り込む。 したがって、 ペース ト状の着火剤を乾燥し た状態では、 着火剤層 2が燃料体 1 と強固に結着するので、 流通時に着火剤層 2 が燃料体 1から剥離し、 あるいは分離するのを確実に防止できる。 In the third step, as shown in FIG. 4 (c), the igniting agent layer 2 poured into the mold 10 is dried and solidified. Specifically, the mold 10 into which the igniting agent layer 2 has been poured is housed in a drying oven having an ambient temperature of 110 ° C., and the state is maintained for 12 hours, thereby obtaining the igniting agent layer. 2 was solidified. As described above, the fuel body 1 is formed to be porous. Therefore, there is a gap between adjacent coal grains 4. Therefore, when the paste-like igniting agent is poured into the mold 10, one m5 of the igniting agent enters the opening 6 as shown in FIG. 1B, and further enters the gap between the adjacent coal particles 4. Therefore, when the paste-like igniting agent is dried, the igniting agent layer 2 is firmly bound to the fuel body 1, so that the igniting agent layer 2 does not peel off or separate from the fuel body 1 during distribution. It can be reliably prevented.
乾燥後の着火剤層 2の表面一部に点火部 3を塗布形成し、 図 4 ( d ) に示すよ うに型枠 1 0から燃料体 1 を分離することにより、 円盤状の固形燃料が得られる 。 先に説明したよ うに、 点火部 3は着火剤層 2の外周側面に臨ませておく。 上記の製造方法とは異なり、 第 2工程において燃料体 1 を乾燥固化する前に、 O 型枠 1 0内の燃料体 1の片面全体にペース ト状に調整した着火剤を流し込んで着 火剤層 2を形成し、 燃料体 1および着火剤層 2を同時に乾燥固化して、 燃料体 1 および着火剤層 2の乾燥処理に要する手間を半減することができる。  An ignition part 3 is applied to a part of the surface of the dried igniting agent layer 2, and the fuel body 1 is separated from the mold 10 as shown in Fig. 4 (d) to obtain a disk-shaped solid fuel. Can be As described above, the igniter 3 faces the outer peripheral side surface of the igniting agent layer 2. Unlike the above manufacturing method, before the fuel body 1 is dried and solidified in the second step, the igniting agent is poured by pouring a paste-shaped igniting agent over one side of the fuel body 1 in the O-form 10. The layer 2 is formed, and the fuel body 1 and the igniting agent layer 2 are simultaneously dried and solidified, so that the time required for drying the fuel body 1 and the igniting agent layer 2 can be reduced by half.
以上のように、 この発明の固形燃料においては、 バインダー 5が混合された一 群の炭粒 4をプレス機で成形して多孔質の燃料体 1 を形成するが、 本発明者は使5 用する無臭性炭素材や、 炭粒 4の大きさ、 および大きさが異なる炭粒 4の混合比 率などの違いによって、 燃料体 1の着火時間と燃焼継続時間とがどのよ うに変化 するかをテス ト し、 同時に燃焼時における煙の発生や、 灰かぶり現象の有無を確 認して、 生食材の焼き調理や、 加熱調理等の熱源 と して好適な燃料体 1 をいかに してつく る力、、 これを実験した。 さらに、 燃料体 1 における通口 6の直铎ゃ形成 〇 個数を変更して、 燃料体 1 に設けるべき通口 6 の好適化を図った。 (実施伊! J l ) 7 0 0〜 8 0 0度 Cで焼成したヤシ殻炭を原材料にして、 炭粒 4 の粒度を 6〜 1 2メ ッシュに調整し、 これにパインダー 5 と水とを加えて混合し 、 得ら た混合物を直径が 1 0 cm、 厚み 3 5 mmの円盤状に成形して燃料体 1 を得 た。 As described above, in the solid fuel of the present invention, a group of coal particles 4 mixed with the binder 5 is formed by a press machine to form a porous fuel body 1. How the ignition time and the combustion duration time of the fuel body 1 change depending on the odorless carbon material, the size of the coal particles 4 and the mixing ratio of the coal particles 4 having different sizes. At the same time, make sure that there is no smoke or ash fogging during combustion, and how to make a fuel body 1 that is suitable as a heat source for baking and cooking raw foods, heating cooking, etc. Force, I experimented with this. Further, by changing the number of straight holes 6 formed in the fuel assembly 1 and the number thereof, the opening 6 to be provided in the fuel assembly 1 was optimized. (Illustration! Jl) Using coconut shell charcoal fired at 700 to 800 ° C as a raw material, the particle size of the coal particles 4 was adjusted to 6 to 12 mesh, and this was combined with binder 5 and water. Was added and mixed, and the resulting mixture was shaped into a disk having a diameter of 10 cm and a thickness of 35 mm to obtain a fuel assembly 1.
燃料 1 に形成すべき通口 6は、 直径が 1 0 mmの丸?しと し、 その形成個数は 2 Is the opening 6 to be formed in the fuel 1 a round with a diameter of 10 mm? And the number of formation is 2
1個と した。 炭粒 4の使用量は、 1個の燃料体 1につレヽて 6 0 g と した。 One. The amount of coal particles 4 used was set to 60 g per fuel body 1.
バインダー 5は、 2 5重量パーセン トの澱粉のり と、 5 3重量パーセン トの酸 化アルミ ニゥムと、 2 2重量パーセントの耐火セメン ト とで形成し、 炭粒 4の重 量に対して 2 0重量パーセントを混合した。 以上の条件で成形した燃料体 1 の密 度は 0. 2 4であった。 燃焼体 1の片面には、 着火剤層 2を形成し、 さらに点火部 3を前述の要領で形成した。 着火剤層 2の厚みは 5 mmと した。  Binder 5 is formed of 25% by weight of starch paste, 53% by weight of aluminum oxide, and 22% by weight of refractory cement. The weight percentages were mixed. The density of the fuel assembly 1 molded under the above conditions was 0.24. An ignition agent layer 2 was formed on one surface of the combustion body 1, and an ignition portion 3 was formed as described above. The thickness of the ignition agent layer 2 was 5 mm.
(実施例 2 ) 炭粒 4の粒度を 1 2〜 3 2メ ッシュに調整し、 燃料体 1 の厚みを 2 0 と する以外は、 実施例 1 と同じ条件で燃料体 1 を形成した。 炭粒 4の粒度 が幾分小 さ く なるために、 燃料体 1 の密度は 0. 4 1になった。  (Example 2) The fuel body 1 was formed under the same conditions as in Example 1 except that the particle size of the coal granules 4 was adjusted to 12 to 32 mesh and the thickness of the fuel body 1 was set to 20. The density of fuel body 1 was 0.41 due to the somewhat smaller size of coal grain 4.
(実施例 3 ) 炭粒 4の粒度を 6 0メ ッシュ以上に調整して、 実施例 2 と同じ条 件で燃枓体 1 を形成した。 炭粒 4の粒度がさらに小さく なるために、 燃料体 1の 密度は 0. 4 4になった。  (Example 3) The fuel particle 1 was formed under the same conditions as in Example 2 by adjusting the particle size of the coal particles 4 to 60 mesh or more. The density of the fuel body 1 became 0.44 because the particle size of the coal particles 4 became smaller.
(実施例 4 ) 4 0 0〜 5 0 0度 Cで焼成したヤシ殻炭を原材料にして、 炭粒 4 の粒度を 1 2〜 3 2メ ッシュに調整して、 実施例 2 と同じ条件で燃料体 1 を形成 した。 実施例 1 に比べて低温でヤシ殻炭を焼成したので、 燃料体 1の密度は 0. 3 7になつた。 (Example 4) Using coconut shell charcoal fired at 400 to 500 ° C as a raw material, the particle size of the coal particles 4 was adjusted to 12 to 32 mesh, and under the same conditions as in Example 2. Fuel body 1 was formed. Since the coconut shell charcoal was fired at a lower temperature than in Example 1, the density of the fuel body 1 was 0.3. 7
(実施例 5 ) 4 0 0〜 5 0 0度 Cで焼成したマングロープ炭を原材料にして、 炭粒 4の粒度を 1 2〜 3 2メ ッシュに調整して、 実施例 2 と同じ条件で燃料体 1 を形成した。 炭原料が異なるため、 燃料体 1 の密度は 0. 3 7であった。  (Example 5) Mangrove charcoal calcined at 400 to 500 degrees C was used as a raw material, and the particle size of coal particles 4 was adjusted to 12 to 32 mesh, and the fuel was used under the same conditions as in Example 2. Formed body 1. The density of fuel assembly 1 was 0.37 due to the different coal raw materials.
(実施例 6 ) 7 0 0度 Cで焼成した竹炭を原材料にして、 炭粒 4の粒度を 1 2 (Example 6) Using bamboo charcoal fired at 700 ° C as a raw material, the particle size of charcoal particles 4 was 1 2
〜 3 2メ ッ シュに調整して、 実施例 2 と同じ条件で燃料体 1 を形成した。 炭原料 が異なるた め、 燃料体 1 の密度は 0. 3 7であった。 The fuel body 1 was formed under the same conditions as in Example 2 by adjusting the mesh to 32 mesh. The density of fuel assembly 1 was 0.37 due to the different coal raw materials.
(実施例 7 ) 4 0 0〜 5 0 0度 Cで焼成した竹炭を原材料にして、 炭粒 4の粒 度を 1 0〜 3 0メ ッシュに調整して、 実施例 2 と同じ条件で燃料体 1 を形成した 。 実施例 6 に比べて低温でヤシ殻炭を焼成したので、 燃料体 1 の密度は 0. 3 0に なった。  (Example 7) Bamboo charcoal fired at 400 to 500 ° C was used as a raw material, and the grain size of the coal particles 4 was adjusted to 10 to 30 mesh, and the fuel was used under the same conditions as in Example 2. Formed body 1. Since the coconut shell charcoal was fired at a lower temperature than in Example 6, the density of the fuel body 1 was 0.30.
(実施例 8 ) 7 0 0度 Cで焼成した木炭を原材料にして、 炭粒 4の粒度を 1 2 〜 3 2メ ッ シュに調整して、 実施例 2 と同じ条件で燃料体 1 を形成した。 燃料体 1の密度は 0. 2 3であった。  (Example 8) A fuel body 1 was formed under the same conditions as in Example 2 by adjusting the particle size of coal particles 4 to 12 to 32 mesh using charcoal fired at 700 ° C as a raw material. did. The density of the fuel assembly 1 was 0.23.
以上のよ うに形成した実施例 1から 8の各固形燃料を、 着火剤層 2の下面に通 気隙間を 保した状態でテス トベンチ上に載置し、 着火剤層 2を点火してから燃 料体 1に奢火するまでの時間と、 燃焼持続時間とを計測した。 さ らに、 燃焼時の 灰かぶり現象の有無と、 異臭の発生の有無と、 燃焼に伴う形状崩落の有無を目視 によって崔認した。 表 1 はその結果を示す。 着火に要する時間は、 着火剤層 2を 点火して力 ら燃料体 1 の上面の温度が 2 5 0度 Cに達するまでの時間と した。 焼持続時間は、 着火完了以後 こ燃料体 1の上面の温度が 1 5 0度 C以下に低下す るまでの時間と した。 Each of the solid fuels of Examples 1 to 8 formed as described above was placed on a test bench with a ventilation gap maintained at the lower surface of the igniting agent layer 2, and after igniting the igniting agent layer 2, the fuel was ignited. The time until the material 1 fired and the duration of combustion were measured. In addition, the presence or absence of ash fogging during combustion, the occurrence of unusual odor, and the presence or absence of shape collapse due to combustion were visually confirmed. Table 1 shows the results. The time required for ignition was defined as the time from when the ignition layer 2 was ignited to when the temperature on the upper surface of the fuel assembly 1 reached 250 ° C. The burning duration was defined as the time from completion of ignition until the temperature of the upper surface of the fuel assembly 1 dropped to 150 ° C. or less.
表 1から理解できるように、 着火に要する時間は、 原料炭の焼成温度が低いほ ど短く、 炭粒 4の粒度が小さレ、ほど短い。 また、 燃焼持続時間は、 原料炭の焼成 温度が高いほど長く、 さらに煙や異臭の発生もみられない。 これらのテス 卜結果 から、 炭粒 4の原料と しては、 高温で焼成したヤシ殻炭、 なかでも粒度を 1 2〜 3 2メ ッシュに調整した実施例 2の炭粒 4が、 着火の容易性と、 火持ちの良さ と で最適であることが解る。 実施例 2の燃料体 1 においては、 燃焼時の煙や異臭の 発生がないのはもちろんのこ と、 灰かぶり現象に伴う炭粒 4の不完全燃焼や、 燃 料体 1の崩壊もなかった。 As can be seen from Table 1, the time required for ignition is shorter as the firing temperature of the coking coal is lower, and the particle size of the coal granules 4 is shorter. The combustion duration is longer as the coking coal firing temperature is higher, and no smoke or off-flavor is generated. From the results of these tests, the raw material for coal grain 4 was coconut shell charcoal fired at a high temperature, especially coal grain 4 of Example 2 whose grain size was adjusted to 12 to 32 mesh. It turns out that it is the best in terms of ease and good fire. In the fuel body 1 of Example 2, not only no smoke or off-flavor was generated during combustion, but also incomplete combustion of the coal particles 4 due to the ash fogging phenomenon and no collapse of the fuel body 1 .
ほ 1 ] [1]
Figure imgf000020_0001
Figure imgf000020_0001
これらの結果から、 固形燃料の用途によって、 炭粒 4の粒度は、  Based on these results, depending on the use of the solid fuel,
シュの範囲内が好ましく、 1 2 〜 3 2メ ッシュの範囲内で選択することがより好 ましい。 因みに、 炭粒 4の粒度が 6 メ ッシュを下回ると、 平均的な粒径が 2 mmと 大きくなり、 着火に時間が掛カ る う え、 成形時の保形性に劣る。 炭粒 4の粒度が 6 0メ ッシュを越えると、 平均的な粒径が 0. 2 5 mmと小さく なり、 炭粒 4の比表 面積が大きく なる分だけ燃焼持続時間が短く なる。 粒度が大きな炭粒 4 と、 粒度 が小さな炭粒 4 とを混合した とき、 粒度の大きな炭粒 4の隙間に、 粒度の小さな 炭粒 4が入り込むため、 燃料 1本 1の密度が大きく なるが、 適度の隙間 1 4を確保 できず燃焼しにくい点で好ましくない Preferably, it is selected within the range of 12 to 32 mesh. By the way, when the particle size of the coal particles 4 is less than 6 mesh, the average particle size becomes as large as 2 mm, it takes time to ignite, and the shape retention during molding is inferior. When the particle size of the coal particles 4 exceeds 60 mesh, the average particle size is reduced to 0.25 mm, and the combustion duration is shortened by an increase in the specific surface area of the coal particles 4. When large-grained coal granules 4 and small-grained coal granules 4 are mixed, the small-grained coal granules 4 enter the gaps between the large-grained coal granules 4, so that the density of each fuel 1 increases. , With a moderate gap 14 It is not preferable because it is difficult to burn
次に、 実施例 2の燃料体 1 における通口 6 の直径や形成個数を変更して、 燃料 体 1 において最も好適な通口 6の形態を調べた。 通口 6の直径は 6 mm、 8 mm、 1 Next, the most suitable form of the through-hole 6 in the fuel assembly 1 was examined by changing the diameter and the number of the through-holes 6 in the fuel assembly 1 of Example 2. The diameter of the opening 6 is 6 mm, 8 mm, 1
0 mm, 1 2 mmの 4種類と し、 その形成個数 1 6個、 2 1個、 2 6個の 3種類と した。 得られた 6種類の固形燃料は、 先のヲス ト と同様に、 着火剤層 2の下面に 通気隙間を確保した状態でテス トベンチ上【こ載置し、 着火剤層 2を点火してから 燃料体に着火するまでの時間と、 燃焼持続時間とを計測した。 さらに、 燃焼に伴 う形状崩壊の有無を目視によって確認した。 その結果を表 2に示す。 There are four types, 0 mm and 12 mm, and three types are formed: 16, 21, and 26. The six types of solid fuels obtained were placed on a test bench with a ventilation gap secured on the lower surface of the igniting agent layer 2 in the same manner as in the previous test. The time required to ignite the fuel body and the duration of combustion were measured. Furthermore, the presence or absence of shape collapse due to combustion was visually confirmed. The results are shown in Table 2.
[表 2 ]  [Table 2]
Figure imgf000021_0001
Figure imgf000021_0001
表 2から理解できるように、 通口 6 の直径が大きいほど着火に要する時間は短 くなるものの、 逆に燃焼持続時間が短くなる。 通口 6 の形成個数が多いほど、 着 火に要する時間は短くなるものの、 逆に燃'姨持続時間が短く なる。 実際の使用状 況を考慮すると、 着火に要する時間と して f 、 3 · 5 〜 4分ほどで十分であり、 燃 焼持続時間は 4 0分以上あれば足り る。 これらの結果から、 通口 6の直径は 8 〜 1 0 ram, 通口 6 の形成個数は 1 6 〜 2 6個であればよレ、。 換言すると、 燃料体 1 の上面の面積に占める全通口 6の開口面積の比は、 7. 5 〜 3 0 %の範囲であれば よいことが判った。 さらに直径が 1 0 醒前後の通口 6を 2 0個前後形成すること が最も好ましく、 その場合の全通口 6の開口面積の比は 1 6〜 2 0 %となる。 本発明の固形燃料は、 図 3に示す燃焼容器 2 0を用いて燃焼させることができ る。 燃焼容器 2 0は、 上下面が開口する金属製の円 筒体からなり、 その筒壁 2 0 a の上下中途部を筒内面側へ折り曲げて、 固形燃 を受け止める支持片 2 1 とす る。 支持片 2 1は筒壁 2 0 a の周方向 4箇所に設け る。 燃焼容器 2 0の下部 4箇 所には、 燃焼空気を導入するための通気口 2 2を切 り欠き形成する。 支持片 2 1 を形成することによって筒壁 2 0 aに形成される開 口のひとつは、 点火口 2 3 と して利用できる。 As can be seen from Table 2, the larger the diameter of the port 6, the shorter the time required for ignition, but the shorter the duration of combustion. The greater the number of openings 6 formed, the shorter the time required for ignition, but conversely the shorter the duration of the fuel basin. Considering actual usage conditions, the time required for ignition, f, about 3.5 to 4 minutes is sufficient, and a combustion duration of 40 minutes or more is sufficient. From these results, the diameter of the opening 6 should be 8 to 10 ram, and the number of formed openings 6 should be 16 to 26. In other words, if the ratio of the opening area of all the openings 6 to the area of the upper surface of the fuel assembly 1 is in the range of 7.5 to 30%, It turned out to be good. Further, it is most preferable to form about 20 openings 6 having a diameter of about 10 after awakening, and in this case, the ratio of the opening area of all openings 6 is 16 to 20%. The solid fuel of the present invention can be burned using a combustion vessel 20 shown in FIG. The combustion vessel 20 is made of a metal cylinder having upper and lower surfaces opened, and the upper and lower portions of the cylinder wall 20a are bent toward the cylinder inner surface to form a support piece 21 for receiving solid fuel. The support pieces 21 are provided at four locations in the circumferential direction of the cylindrical wall 20a. Vent holes 22 for introducing combustion air are cut out at the four lower portions of the combustion vessel 20. One of the openings formed in the cylindrical wall 20a by forming the support piece 21 can be used as the ignition port 23.
使用時には、 着火剤層 2の下面が支持片 2 1で受 け止められる状態で固形燃料 を燃焼容器 2 0内に収容し、 点下部 3を点火口 2 3 に臨ませる。 この状態で、 着 火用のライターの火で点下部 3に点火すると、 着火剤層 2の還元反応が開始され て、 ごく短時間で還元反応が燃料体 1の下面全体に行き渡る。 そのため、 燃料体 1 の下面を着火剤層 2の反応熱によって面状に迅速着火できる。  At the time of use, the solid fuel is accommodated in the combustion vessel 20 with the lower surface of the igniting agent layer 2 being received by the support piece 21, and the lower part 3 is exposed to the ignition port 23. In this state, when the lighter for ignition ignites the spot 3, the reduction reaction of the igniter layer 2 is started, and the reduction reaction spreads over the entire lower surface of the fuel body 1 in a very short time. Therefore, the lower surface of the fuel body 1 can be rapidly ignited in a planar manner by the reaction heat of the igniting agent layer 2.
着火剤層 2の反応かすは一部が燃料体 1側に残る 、 その殆どは還元反応時に 飛び散って、 燃焼容器 2 0の下方の火皿上に落下す る。 そのため、 通口 6の下面 を開口 して、 燃焼空気を問題なく、 通口 6内へ導入することができる。 以後は、 着火した燃料体 1の火が、 下方から上方へと移るの で、 固形燃料を焼き調理の熱 源や、 鍋料理の熱源と して使用することができる。  A part of the reaction residue of the igniting agent layer 2 remains on the fuel body 1 side. Most of the reaction residue scatters at the time of the reduction reaction, and falls on a fire tray below the combustion vessel 20. Therefore, the lower surface of the opening 6 is opened, and the combustion air can be introduced into the opening 6 without any problem. Thereafter, since the fire of the ignited fuel body 1 moves upward from below, the solid fuel can be used as a heat source for grilling and cooking pots.
上記の燃焼容器 2 0は、 固形燃料の包装容器を兼ねることができ、 容器内に収 容した固形燃料を遊動不能に固定したうえで、 燃焼容器 2 0を通気不能に密封し 包装用の紙箱内に収容することによ り、 長期保存時の品質劣化がない固形燃料 を提供できる。 もちろん、 1個あるいは複数個の固形燃料のみを密封した状態で 販売してもよい。 The combustion container 20 described above can also serve as a solid fuel packaging container, and is contained in a container. By fixing the stored solid fuel in a non-movable manner and then sealing the combustion container 20 in a non-ventilable manner and storing it in a paper box for packaging, it is possible to provide a solid fuel without quality deterioration during long-term storage. Of course, one or more solid fuels may be sold in a sealed state.
図示例の通口 6は丸孔と したが、 例えば多角形など任意の孔形状にすることが できる。 必要があれば、 通口 6の一群を放射溝状に形成してもよい。 燃料体 1 は 平面視で円盤状に形成する必要はなく、 例えば横断面が多 形で、 他の寸法に比 ベて上下寸法が小さい扁平な立体形状に形成することがで きる。 点火部 3は複数 箇所に設けてあってもよい。  Although the through hole 6 in the illustrated example is a round hole, the hole 6 may have an arbitrary hole shape such as a polygon. If necessary, a group of the openings 6 may be formed in a radial groove shape. The fuel body 1 does not need to be formed in a disk shape in plan view, and can be formed in a flat three-dimensional shape having, for example, a polymorphic cross section and a smaller vertical dimension than other dimensions. The ignition section 3 may be provided at a plurality of locations.
なお、 燃焼容器 2 0は、 2個以上の固形燃料を隣接して収容できる構造であつ てもよく、 その場合には固形燃料の平面視形状を多角形状 と しておく ことによ り 、 発熱面を均等に配置することができる。 炭粒 4は木炭、 ヤシ殻炭、 竹炭、 マン グローブ炭などの植物由来の無臭性炭素材の 1種以上を含んでいれば足り る。 実施例で説明した固形燃料の製造方法においては、 成形型 1 1の側に設けたピ ン 1 2で通口 6を形成したが、 型枠 1 0側にピン 1 2を設 けて通口 6 を形成して もよい。 その場合には、 加圧成形された燃料体 1を強制的 に離型するためのノ ッ クァゥ トビンを、 型枠 1 0側に設けることができる。  The combustion vessel 20 may have a structure capable of accommodating two or more solid fuels adjacent to each other. In such a case, the shape of the solid fuel in a plan view is made to be polygonal, thereby generating heat. The surfaces can be evenly arranged. It is sufficient for the coal grain 4 to contain at least one kind of odorless carbon material derived from plants, such as charcoal, coconut shell charcoal, bamboo charcoal, and mangrove charcoal. In the method for manufacturing a solid fuel described in the embodiment, the opening 6 is formed by the pin 12 provided on the molding die 11 side, but the pin 12 is provided by the pin 12 on the form 10 side. 6 may be formed. In that case, a knock bin for forcibly releasing the press-molded fuel assembly 1 can be provided on the mold frame 10 side.
固形燃料は以下に説明する態様で形成できる。 テルミ ツ ト反応を利用した発熱 体 (着火剤層) 3 2 と固形炭素 (燃料体) 3 1 とを、 接触 あるいは近接した構造 とする。 テルミ ッ ト反応を利用した発熱体 3 2の上に固形炭素 3 1 を積層し、 こ れらを容器 3 3に充填し、 あるいは包装材で包装する。 テルミ ッ ト反応を利用し た発熱体 3 2を、 金属酸化物と、 金属酸化物に含まれる酸素と結合し て還元反応 を生じさせる還元金属などの還元剤と、 必要に応じて添加される少 の補助組成 物との混合物で構成する。 The solid fuel can be formed in the manner described below. A heating element (ignition layer) 32 and a solid carbon (fuel element) 31 utilizing thermite reaction are brought into contact or close proximity. Solid carbon 31 is laminated on a heating element 32 using thermite reaction, These are filled in a container 33 or packed in a packaging material. A heating element 32 utilizing a thermit reaction is added, if necessary, to a metal oxide and a reducing agent such as a reducing metal that combines with oxygen contained in the metal oxide to cause a reduction reaction. Consists of a mixture with a few auxiliary compositions.
テルミ ッ ト反応を利用した発熱体 3 2の原料を水あるいは有機溶斉 IJと混練し、 それを成型し、 乾燥して固形燃料を形成する。 固形燃料 3 1 は、 木 、 竹炭、 ャ シ殻炭、 パーム椰子炭などの植物を原料と した炭、 鉱物系の燻炭、 鉛、 石炭、 コータス、 炭化繊維などを原料にして形成する。  The raw material of the heating element 32 utilizing thermite reaction is kneaded with water or organically soluble IJ, molded and dried to form a solid fuel. Solid fuel 31 is formed by using charcoal made from plants such as wood, bamboo charcoal, coconut shell charcoal, palm coconut charcoal, mineral-based charcoal, lead, coal, coatas, and carbonized fiber.
固形炭素 3 1 を、 粉状あるいは粒状の炭素原料に、 セラミ ック繊,維、 ガラス繊 維、 石綿などの不燃性繊維、 バインダーおよぴ水を加えて混練し、 厚みを有する 、 円形、 正方形、 長方形、 楕円形、 三角形、 不定形、 あるいは棒状^3塊状に成型 し、 乾燥して製造する。 Solid carbon 31 is kneaded with powdery or granular carbon raw material, and added with non-combustible fibers such as ceramic fiber, fiber, glass fiber, asbestos, binder and water, and then kneaded to obtain a thick, circular, Molded into square, rectangular, elliptical, triangular, irregular, or rod-shaped ^ 3 masses and dried.
固形炭素 3 1の燃焼を助長するために、 固形炭素 3 1 に貫通した 7^ (通口) 3 4、 あるいは表面に凹凸 3 5を設ける。 固形炭素 3 1に、 燃焼を触媒する添加物 と してカ リ ウム塩、 ナト リ ウム塩、 過酸化物を混入する。 発熱体 3 2あるいは固 形炭素 3 1 を、 鉄、 アルミニウム、 ステンレスなどの金属素材、 あるいはセラ ミ ック、 陶器、 磁器、 炭素などの素材より なる容器 3 3、 あるいは包 材(こ収納す る。 発熱体 3 2あるいは固形炭素 3 1 を、 紙、 ニ トロセルロース、 ブラスチック 塗料などの可燃性素材によって被覆する。 固形炭素 3 1の燃焼を 進するため 、 発熱体 3 2あるいは固形炭素 3 1が収納してある容器 3 3、 およ " '包装材に空 気の流入穴 3 7を形成する。 In order to promote the combustion of solid carbon 31, 7 ^ (opening) 34 penetrating solid carbon 31 or irregularities 35 on the surface are provided. The solid carbon 31 is mixed with a calcium salt, a sodium salt and a peroxide as additives for catalyzing combustion. The heating element 32 or the solid carbon 31 is used as a container 33 or a packing material made of a metal material such as iron, aluminum, or stainless steel, or a material such as ceramic, ceramic, porcelain, or carbon. Heating element 32 or solid carbon 31 is coated with a combustible material such as paper, nitrocellulose, plastic paint, etc. Heating element 32 or solid carbon 31 to promote the burning of solid carbon 31 Container 3 3 and "'Empty packaging material An air inlet hole 37 is formed.
図 5ないし図 1 3に固形燃料の具体的な実施形態を示す。 図 5 ( a ) において 符号 4 0は焼き料理に用いられる通常の金網である。 図 5 ( b ) に^すよ うに、 固形燃料は、 金属缶 (容器) 3 3に充填された発熱体 3 2の上に円邀型の燃料体 3 1 を重ねて形成する。 図 5 ( c ) において、 符号 4 1は固形燃料 嵌め込むた めの窪み 4 2を備えた卓上コン口である。 図 5 ( d ) はこれらを組み重ねた状態 を示す。  5 to 13 show specific embodiments of the solid fuel. In FIG. 5A, reference numeral 40 denotes a normal wire mesh used for grilled dishes. As shown in FIG. 5 (b), the solid fuel is formed by stacking an intersecting fuel body 31 on a heating element 32 filled in a metal can (container) 33. In FIG. 5 (c), reference numeral 41 denotes a tabletop opening provided with a recess 42 for fitting the solid fuel. Fig. 5 (d) shows a state where these are assembled.
上記のように発熱体 3 2 と固形炭素 3 1 を接触あるいは近接して" @己置し、 発熱 体 3 2にフ リ ン トや導火線などの公知の方法で点火すると、 発熱体 3 2が短時間 で高温に達し、 直ちに固形炭素 3 1 に延焼する。 発熱体 3 2のテル ミ ッ ト反応に よる髙温発熱と固形炭素 3 1の持続燃焼によって、 高温の状態を長 時間持続でき る。  As described above, the heating element 32 and the solid carbon 31 are brought into contact with or in close proximity to each other, and when the heating element 32 is ignited by a known method such as printing or a fuse, the heating element 32 is turned on. High temperature is reached in a short time and immediately spreads to solid carbon 31. Due to thermite reaction of heating element 32, high temperature can be maintained for a long time due to the heat generation and continuous combustion of solid carbon 31. .
発熱体 3 2の発熱には酸素を供給する必要はないが、 固形炭素 3 1 には酸素を 供給しなければ燃焼を持続できない。 したがって、 固形炭素 3 1 に 空気を如何に 供給するかで、 いろいろな構造が考えられ、 燃焼の持続時間や燃焼 効率に影響す る。 以下にその詳細を述べる。  It is not necessary to supply oxygen for the heat generated by the heating element 32, but combustion cannot be sustained without supplying oxygen to the solid carbon 31. Therefore, depending on how air is supplied to the solid carbon 31, various structures can be considered, which affect the duration of combustion and the combustion efficiency. The details are described below.
図 6 ( a ) に示すよ うに、 金属缶 3 3に充填された発熱体 3 2の 上に円盤型の 固形炭素 3 1 を重ねた固形燃料においては、 発熱体 3 2に点火する と、 固形炭素 3 1に延焼し、 空気と接している側面および上面が燃焼する。 固形 炭素 3 1 の底 面は酸素が欠乏し、 未燃焼炭素が残存する。 しかし、 固形炭素 3 1 の厚みが薄け れば、 未燃焼物はそれだけ少なくなる。 As shown in Fig. 6 (a), in the case of solid fuel in which disk-shaped solid carbon 31 is superimposed on a heating element 32 filled in a metal can 33, when the heating element 32 is ignited, the solid The fire spreads to carbon 31 and the side and top surfaces in contact with air burn. The bottom surface of solid carbon 31 is deficient in oxygen and unburned carbon remains. However, the thickness of solid carbon 3 1 is thin. If so, unburned matter will be reduced accordingly.
図 6 ( b ) に示すよ うに、 発熱体 3 2 と接する円盤型の固形炭素 3 1の底 ¾に 凹凸 3 5を形成すると、 発熱体 3 2 と固形炭素 3 1 との間の空隙部を多く し、 固 形炭素 3 1の底面への空気の供給を促して、 固形炭素 3 1の燃焼を促進できる。 図 6 ( c ) に示すよ うに、 円盤型の固形炭素 3 1の代わりに、 繊維状の固形炭 素 3 1 Aを発熱体 3 2の上に積層すると、 繊維状の固形炭素 3 1 Aの空隙が:^き いので、 空気の流通に優れ、 未燃焼の炭素の残存量は少ない。 しかし、 燃焼の持 続時間は短い。  As shown in FIG. 6 (b), when irregularities 35 are formed at the bottom of the disk-shaped solid carbon 31 in contact with the heating element 32, a gap between the heating element 32 and the solid carbon 31 is formed. In many cases, the supply of air to the bottom surface of the solid carbon 31 can be promoted, and the combustion of the solid carbon 31 can be promoted. As shown in Fig. 6 (c), when fibrous solid carbon 31A is laminated on heating element 32 instead of disc-shaped solid carbon 311, fibrous solid carbon 31A The air gap is large: good air circulation and low residual amount of unburned carbon. However, the duration of combustion is short.
図 7 ( a ) に示すよ うに、 発熱体 3 2の上に塊状の固形燃料 3 1 Bを配置" "る 場合には、 塊状の固形燃料 3 1 Bが落下しないよ うに、 金属缶 3 3の側面を?¾く '' しなければならない。 すると、 固形燃料 3 1 Bへの空気の供給が不十分となるの で、 図 7 ( b ) に示すよ う に金属缶 3 3の側面に空気の流入穴 3 7を設けて、 固 形燃料 3 1 Bの燃焼を促進する。  As shown in Fig. 7 (a), when the solid fuel 3 1B is placed on the heating element 32, the metal can 33 is used to prevent the solid fuel 3 1B from dropping. Aspects of? You have to '' Then, the supply of air to the solid fuel 31B becomes insufficient.Therefore, as shown in FIG. 7 (b), an air inflow hole 37 is provided on the side of the metal can 33 to solid fuel. Promotes 3 1 B combustion.
図 8 ( a ) ( b ) に示すよ うに、 円盤型の固形燃料 3 1 に上下に貫通する:^ 3 4を多数設けると、 空気は発熱体 3 2 と固形炭素 3 1 との間隙から流入し、 : Λ 3 4を通って上方に排気されるので、 固形炭素 3 1 に十分な酸素が供給され、 燃焼 を持続できる。  As shown in Fig. 8 (a) and (b), penetrate vertically through the disc-shaped solid fuel 31: If a large number of ^ 34 are provided, air will flow in from the gap between the heating element 32 and the solid carbon 31. Since: Λ Exhausted upward through 34, sufficient oxygen is supplied to the solid carbon 31 and combustion can be sustained.
図 9に示すように、 金属缶 3 3の底に貫通する穴 3 6 と連通する穴 3 8を穀け ると、 先のように、 固形炭素 3 1のみに貫通する穴 3 4を設けた場合よ り も、 固 形炭素 3 1への酸素の供給がよ り良好となる。 この場合には、 固形燃料 3 1 穴 3 4 と連通する穴 3 8を形成することになる。 As shown in FIG. 9, when the hole 38 communicating with the hole 36 penetrating the bottom of the metal can 33 was grained, the hole 34 penetrating only the solid carbon 31 was provided as described above. The supply of oxygen to the solid carbon 31 is better than in the case. In this case, solid fuel 3 1 hole A hole 3 8 communicating with 3 4 will be formed.
図 1 0 ( a ) 、 ( b ) に示すよ うに、 固形燃料の形状は円柱状に形成できる。 そこでは、 円柱型の発熱体 3 2の周囲を固形炭素 3 1で被覆した。 符号 4 5は発 熱体 3 2に塗布した点火剤である。  As shown in Figs. 10 (a) and (b), the shape of the solid fuel can be formed into a cylindrical shape. There, the periphery of the cylindrical heating element 32 was coated with solid carbon 31. Reference numeral 45 denotes an igniting agent applied to the heat generating body 32.
図 1 1 ( a ) 、 ( b ) に示すよ うに、 固形燃料は球状に形成できる。 球形の発 熱体 3 2の周囲を固形炭素 3 1で包んで固形燃料を球状に形成する。 符号 4 6は 点火部で、 発熱体 3 2を固形炭素 3 1の外部に導出し、 その先端に点火剤 4 5 を 塗布し、 フ リ ン トや火薬で点火する。 図 9およぴ図 1 0で説明した、 円柱型およ び球形の固形燃料は、 豆炭ゃ備長炭の代用と して利用できる。  As shown in Figs. 11 (a) and (b), solid fuel can be formed into a spherical shape. The solid fuel is formed into a sphere by wrapping the spherical heat generating body 32 around solid carbon 31. Reference numeral 46 denotes an ignition section, which guides the heating element 32 out of the solid carbon 31, coats the tip with an igniter 45, and ignites it with flint or explosive. The cylindrical and spherical solid fuels described in FIGS. 9 and 10 can be used as substitutes for bean charcoal and bincho charcoal.
図 1 2に示すよ うに、 図 1 0で説明した複数の円柱状の固形燃料を、 その点火 剤 4 5が互いに接触するよ うに組むと、 一箇所に点火するだけで、 後は連鎖的に 燃焼させることができる。 また、 図 1 3に示すよ うに、 図 1 1で説明した球形の 固形燃料を、 その点火部 4 6力 他の固形燃料に接触するように並べることによ つて連鎖的に燃焼を誘起させることができる。  As shown in FIG. 12, when a plurality of cylindrical solid fuels described in FIG. 10 are assembled such that their igniting agents 45 are in contact with each other, only one location is ignited, and the rest are connected in a chain. Can be burned. In addition, as shown in Fig. 13, the spherical solid fuel described in Fig. 11 is ignited by arranging it so that it contacts the other solid fuel. Can be.
以上のよ うに構成した固形燃料は、 発熱体 3 2の高温発熱と固形炭素 3 1 の持 続燃焼を同時に発揮させることによって、 ①短時間に着火し、 ②髙温となって赤 熱し、 ③それが持続する。 ④固形燃料の体積も比較的小さい。 これらの特徴は、 固形燃料が焼き料理に適していることを示す。  The solid fuel configured as described above exerts the high-temperature heat generation of the heating element 32 and the sustained combustion of the solid carbon 31 at the same time to ignite in a short time; It lasts. ④The volume of solid fuel is also relatively small. These characteristics indicate that solid fuels are suitable for grilling.
発熱体 3 2の構成成分にはいろいろな組み合わせが考えられるが、 原理的には 、 金属酸化物と、 金属酸化物に含まれる酸素と結合して還元反応を生じさせる還 元金属などの還元剤と、 必要に応じて添加される少量の補助組成物との混合物 で ある。 最も一般的で、 経済的に好ましいのは酸化鉄とケィ素、 あるいは酸化鉄 と アルミ二ゥムの各混合物である。 Various combinations of the components of the heating element 32 are conceivable. However, in principle, the metal oxide and the oxygen contained in the metal oxide combine with each other to cause a reduction reaction. It is a mixture of a reducing agent such as a source metal and a small amount of an auxiliary composition added as needed. The most common and economically preferred are iron oxide and silicon or iron oxide and aluminum mixtures.
発熱体 3 2に点火すると、 テルミ ッ ト反応が即座に開始し、 発熱体 3 2は数 十 秒で高温に達する。 テルミ ッ ト反応は酸素を必要と しないので、 発熱時間や発 熱 量は構成成分によって決まる。 もちろん、 構成成分の粒子サイズや製造方法に よ つて影響されるが、 一般的には発熱温度は 1 0 0 o °c付近で、 反応は数+秒で 完 結する。  When the heating element 32 is ignited, the thermite reaction starts immediately, and the heating element 32 reaches a high temperature in several tens of seconds. Since the thermite reaction does not require oxygen, the heating time and the amount of heat generated are determined by the constituents. Of course, the temperature is affected by the particle size of the constituent components and the manufacturing method, but generally the exothermic temperature is around 100 ° C., and the reaction is completed in a few seconds.
ところで、 固形炭素 3 1の燃焼には酸素が必要であるので、 それを如何に供 給 するかによつて、 燃料と しての発熱時間や熱量が大きく異なる。 また、 炭素の 種 類によっても同様である。 図 6 ( a ) 、 ( b ) で説明した固形燃料は、 円盤型 の 固形炭素 3 1 を発熱体 3 2の上に重ねただけであるので、 固形炭素 3 1 の燃焼 は 空気と触れている周囲に限定される。 短時間では固形炭素 3 1 の未燃焼物が多 量 に残存するが、 それもかなり長時間後にはほぼ消失する。  By the way, since the combustion of solid carbon 31 requires oxygen, the heating time and amount of heat as a fuel greatly differ depending on how the oxygen is supplied. The same applies to the types of carbon. The solid fuel described in Figs. 6 (a) and (b) is obtained by simply stacking the disc-shaped solid carbon 31 on the heating element 32, so that the combustion of the solid carbon 31 is in contact with air. Limited to surroundings. In a short time, a large amount of unburned solid carbon 31 remains, but almost disappears after a considerably long time.
図 6 ( c ) の固形燃料は、 繊維状の固形炭素 3 1 Aを使用した場合で、 一般 的 に繊維間の空隙は非常に大きく、 酸素の供給は十分なので短時間でそれは燃え 尽 きる。 繊維の太さと空隙密度を調節することによって燃焼温度と時間、 残り火 を コン トロールできる。  The solid fuel in Fig. 6 (c) uses fibrous solid carbon of 31 A. Generally, the voids between the fibers are very large and the supply of oxygen is sufficient, so it burns out in a short time. The combustion temperature, time and embers can be controlled by adjusting the fiber thickness and void density.
図 7の固形燃料は、 発熱体 3 2の上に塊状の固形炭素 3 1 Bを配置した。 状 の固形炭素 3 1 Bが落下しないように、 金属缶 3の側面を高く し、 その側面に空 気の流入穴 3 7を設けた。 空気は側面の流入穴 3 7から進入し、 固形炭素 3 1の 塊の間を通って、 上部に放出されるので、 中央部の炭素塊も十分に燃焼する。 図 8の固形燃料は、 円盤型の固形炭素 3 1 に上下に貫通する穴 3 4を多数設け るので、 空気は発熱体 3 2 と固形炭素 3 1の間隙から流入し、 穴 3 4を通って上 方に排気される。 従って、 固形炭素 3 1 に十分な酸素が供給される。 燃焼は固形 燃料の上下のみならず円盤の中央部も均一に起こる。 In the solid fuel shown in FIG. 7, massive solid carbon 31 B was arranged on a heating element 32. The side of the metal can 3 is raised so that the solid carbon 3 Air inlet holes 37 were provided. The air enters through the side inflow hole 37, passes through the solid carbon 31 mass, and is discharged to the upper part, so that the carbon mass in the center also burns sufficiently. The solid fuel shown in Fig. 8 has a number of holes 34 penetrating vertically through the disk-shaped solid carbon 31.Air flows in from the gap between the heating element 32 and the solid carbon 31 and passes through the hole 34. Exhaust to the top. Therefore, sufficient oxygen is supplied to the solid carbon 31. Combustion occurs not only above and below the solid fuel but also uniformly at the center of the disk.
図 9の固形燃料は、 通気用の穴 3 4 と連通する穴 3 6を金属缶 3 3の底に設け るので、 酸素の供給が非常に良好となる。 しかし、 発熱体 3 2が空気によって冷 却されるので燃料と しての持続時間は短い。  In the solid fuel shown in FIG. 9, since the hole 36 communicating with the ventilation hole 34 is provided at the bottom of the metal can 33, the supply of oxygen is very good. However, since the heating element 32 is cooled by air, the duration as fuel is short.
図 1 0の円柱型の固形燃料、 および図 1 1の球形の固形燃料は、 それぞれ発熱 体 3 2の周囲を固形炭素 3 1で被覆するので、 テルミ ッ ト反応の開始と共に発熱 体 3 2が熱膨張して固形炭素 3 1 にひび割れを起こ し、 そこから酸素が供給され るので固形炭素 3 1の燃焼が内部まで起こる。  The cylindrical solid fuel shown in FIG. 10 and the spherical solid fuel shown in FIG. 11 respectively cover the heating element 32 with solid carbon 31.Therefore, the heating element 32 is formed when the thermite reaction starts. The thermal expansion causes cracks in the solid carbon 31, and oxygen is supplied from the crack, so that the solid carbon 31 burns to the inside.
上記の固形燃料の燃焼状況、 例えば赤熱時間および未燃焼量などに及ぼす円盤 型の固形炭素 3 1の形状の影響を比較した (実験 1 ) 。 さらに、 固形炭素 3 1 に 設けた穴 3 4の数、 大きさ、 分布が、 固形燃料の燃焼に及ぼす影響を調べた(実 験 2 )。  The effects of the shape of the disk-shaped solid carbon 31 on the combustion state of the above solid fuel, for example, the glowing time and the unburned amount, were compared (Experiment 1). Furthermore, the effect of the number, size, and distribution of holes 34 in the solid carbon 31 on the combustion of solid fuel was examined (Experiment 2).
(実験 1 ) 固形燃料を図 5で説明した卓上コンロ 4 1 に納め、 ガスバーナーで発 熱体 3 2に点火後、 次の項目を測定した。  (Experiment 1) The solid fuel was placed in the tabletop stove 41 described in FIG. 5, and after igniting the heating element 32 with the gas burner, the following items were measured.
①点火後の赤熱時間 : 卓上コンロ 4 1の上方から肉眼で固形炭素 3 1の燃焼を観 察し、 それが赤熱している時間を測定した。 (1) Red heat time after ignition: From above the tabletop stove 41, observe the burning of solid carbon 31 with the naked eye. And measured the time it was glowing.
②点火 3 0分後の固形炭素 3 1の上面の表面温度を接触温度計で測定し fこ。  (2) Measure the surface temperature of the upper surface of solid carbon 31 after 30 minutes of ignition with a contact thermometer.
③点火 3 0分後の固形炭素 3 1の未燃焼量を%で示した。  (3) The amount of unburned solid carbon 31 after 30 minutes of ignition is indicated by%.
燃焼実験に供した固形炭素 3 1の原料および製法は、 後述する燃焼試験 1 に示' した方法と同じで、 固形炭素 3 1の形状の詳細は以下の通りである。  The raw material and manufacturing method of the solid carbon 31 used in the combustion experiment are the same as the method shown in the combustion test 1 described later, and details of the shape of the solid carbon 31 are as follows.
図 6 ( a ) の固形炭素 3 1の直径を 6. 5 cmと し、 その厚さ 2 cmと した。  The diameter of the solid carbon 31 in FIG. 6 (a) was 6.5 cm, and its thickness was 2 cm.
図 6 ( b ) の固形炭素 3 1 の底部に深さ巾共に 5瞧の溝を縦横に 5本 ISけた。 図 6 ( c ) の固形燃料において、 直径が 0. 0 5 mmの炭化繊維 3. 7 gを図 6 に示 す容器 3 3に充填した。 炭化繊維の層の厚さは 2 cmであった。  At the bottom of the solid carbon 31 in Fig. 6 (b), five grooves 5 mm in both depth and width were made in the vertical and horizontal directions. In the solid fuel shown in FIG. 6 (c), 3.7 g of carbonized fiber having a diameter of 0.05 mm was filled in a container 33 shown in FIG. The thickness of the carbonized fiber layer was 2 cm.
図 7の固形炭素 3 1の炭素塊のサイズを 0. 2ないし 1 cmと し、 その層の厚さを 2 cmと した。  The size of the carbon mass of the solid carbon 31 in FIG. 7 was set to 0.2 to 1 cm, and the thickness of the layer was set to 2 cm.
図 8の固形炭素 3 1に直径 0. 6 cmの穴 3 4を 2 5個設けた。  In the solid carbon 31 in FIG. 8, 25 holes 34 having a diameter of 0.6 cm were provided.
以上の固形炭素 3 1 をそれぞれ 1 0 0 gの発熱体 3 2の上に重ね、 点 後の燃 焼を観察した。 その結果を表 3に示す。 なお、 対象と して、 発熱体 3 2 のみにつ いても測定した。 The solid carbon 31 was overlaid on 100 g of the heating element 32, respectively, and the burning after burning was observed. The results are shown in Table 3. Incidentally, as the target was measured it can have the heating element 3 2 Nominitsu.
下記の表 3から明らかなよ うに、 発熱体 3 2のみと比較して固形炭素 3 1 を発 熱体 3 に重ねることによって赤熱時間を著しく延長できることが判つ た。 また 、 固形炭素 3 1への空気の流入を計ることによって固形炭素 3 1の燃焼効率も改 善されることが判明した。 [表 3 ] As is clear from Table 3 below, it was found that the glow time can be significantly extended by superimposing solid carbon 31 on heating element 3 as compared to heating element 32 alone. It was also found that measuring the inflow of air into the solid carbon 31 improved the combustion efficiency of the solid carbon 31. [Table 3]
Figure imgf000031_0001
Figure imgf000031_0001
なお、 図 6 ( b ) のよ うに、 固形炭素 3 1の底面に凹凸 3 5を設けても効果^ S なかったのは、 発熱体 3 2が発熱するとその上表面は、 かなり凹凸になるので、 図 6 ( a) のよ うに、 発熱体 3 2の上に重ねた固形炭素 3 1の底面が平滑でも、 固形炭素 3 1の底面に凹凸 3 5を設けた場合と同じ状態になって空気の流通が 易に起こるからである。  In addition, as shown in FIG. 6 (b), the provision of the irregularities 35 on the bottom surface of the solid carbon 31 did not have an effect ^ S because the upper surface of the heating element 32 becomes considerably irregular when the heating element 32 generates heat. As shown in Fig. 6 (a), even if the bottom surface of the solid carbon 31 overlaid on the heating element 32 is smooth, the air becomes the same state as when the unevenness 35 is provided on the bottom surface of the solid carbon 31. Is easily distributed.
図 8 ( a ) の固形炭素 3 1 には、 上下にたく さんの貫通穴 8が設けられてい 、 下端は発熱体 3 2 と密着して閉塞しており、 空気の流入は制限されるはず" ある。 しかし、 発熱によって発熱体 3 2の表面が凹凸になり、 十分の間隙が生 じ て空気の流入が十分に起こっていることが推察される。 流入した空気は下端か ら 上端に向かって上昇、 煙突的効果で固形炭素 3 1 の燃焼が促進される結果、 固 炭素 3 1の燃焼率が増大し、 赤熱時間も延長されたと考えられる。  The solid carbon 31 in FIG. 8 (a) is provided with many through holes 8 at the top and bottom, and the lower end is tightly closed with the heating element 32, so that the inflow of air should be restricted. " However, it is presumed that the heat generated caused the surface of the heating element 32 to be uneven, so that a sufficient gap was generated and air flowed in sufficiently. It is thought that the combustion of solid carbon 31 was promoted by the rise and chimney effect, and as a result, the burning rate of solid carbon 31 was increased and the glowing time was prolonged.
(実験 2 )  (Experiment 2)
図 8 ( a ) の固形炭素 3 1の穴 3 4のサイズと数を変更して、 燃焼状況を確 、 し、 その結果を表 4に示す。 [表 4 ] By changing the size and number of holes 34 of solid carbon 31 in Fig. 8 (a), the combustion state was confirmed, and the results are shown in Table 4. [Table 4]
Figure imgf000032_0001
Figure imgf000032_0001
この実験結果から穴 3 4の数、 サイズ、 位置によつて固形炭素 3 1の燃焼 は大 きく影響されることが判る。 また穴 3 4への空気の供給は中央部になるほど 不十 分となるので、 それだけ穴 3 4の径を大きくすればよいことが判る。  The experimental results show that the number, size, and location of holes 34 greatly affect the combustion of solid carbon 31. Also, the supply of air to the hole 34 becomes insufficient at the center, so it is understood that the diameter of the hole 34 should be increased accordingly.
固形炭素 3 1の種類については、 炭、 黒鉛、 石炭、 コータスなどいろいろ 考え 1 0 られるが、 着火温度はそれぞれ異なる。 黒鉛ゃコータスなどは高温で製造さ れ、 炭素の純度は高いが、 その着火温度は高く、 酸化鉄と珪素の組み合わせのテルミ ッ ト反応で延焼させることは困難である。 石炭は着火温度も低く、 火力も 3 く経 済的で好ましいが、 燃焼したときの匂いは料理に適さない。 炭の着火温度 » 1 0 o o °c以下で、 黒鉛ゃコ一クスなどに比べて低く、 また匂いの問題もなく、 経済The types of solid carbon 3 1, charcoal, graphite, coal, although 1 0 is considered variously like Kotasu, ignition temperature are different. Graphite and coatas are produced at high temperatures and have high carbon purity, but their ignition temperatures are high, and it is difficult to spread the fire by thermite reaction of a combination of iron oxide and silicon. Coal has a low ignition temperature, has a low thermal power and is economical and is preferable, but the smell when burned is not suitable for cooking. Ignition temperature of charcoal »10 oo ° C or less, lower than graphite, coke, etc., no odor problem, economy
1 c 的であるので本発明の固形炭素の原料と して適している。 Since it is 1c- like, it is suitable as a raw material for the solid carbon of the present invention.
炭は着火温度が高い白炭と低い黒炭に分類でき、 前者には備長炭、 後者 ίこはマ ングローブ炭、 パームヤシ炭、 ヤシガラ炭、 ノ コ屑炭、 竹炭などがある。 マ ンザ ローブ炭は容易に燃焼するが、 炎の発生が大である。 また、 ノコ屑炭は火 の発 生が多く、 危険である。 その他に鉱物系の燻炭もある。 それぞれに特徴が ¾るの Charcoal can be classified into white charcoal with high ignition temperature and black charcoal with low ignition temperature. The former includes Bincho charcoal, and the latter include mangrove charcoal, palm palm charcoal, coconut palm charcoal, sawdust charcoal, and bamboo charcoal. Manzalove coal burns easily, but generates large amounts of flame. Saw charcoal is dangerous because it generates a lot of fire. There is also mineral-based charcoal. Each has its own characteristics
η で、 本発明の燃料の固形炭素と して使用するとき、 いろいろな炭素を適当【こ配合 し X固形化することも考えられる。 . When η is used as the solid carbon of the fuel of the present invention, various carbons are appropriately used. It is also conceivable that X solidifies.
発熱体 3 2および固形炭素 3 1 を収納する容器 3 3については、 その素材と し て鉄、 アルミニウム、 ステンレスなどの金属、 あるいはセラミ ック、 陶器、 磁器 、 炭素などが利用できる。 また、 それが容器 3 3でなくても単にそれらで包装す るだけでもよい。 さ らには、 可燃性素材、 たとえば、 紙、 ニ トロセ, ロース、 プ ラスチック、 塗料なども発熱体 3 2の形状を補強する目的で使用でさる。  As the material for the container 33 for storing the heating element 32 and the solid carbon 31, metals such as iron, aluminum, and stainless steel, or ceramics, pottery, porcelain, and carbon can be used. Also, it is not necessary to use the container 33, and it is also possible to simply wrap the container. In addition, combustible materials such as paper, nitrose, loin, plastic, and paint can be used to reinforce the shape of the heating element 32.
図 8 ( a ) に示す固形燃料を用いて、 別の燃焼試験 1 を行った。 養式験のために 用いた金網 4 0はステンレス製で、 サイズは 2 0 cmX 2 0 cm、 格子空隙は 0.8cm 平方であった。 卓上コンロ 4 1 の大きさは底辺 1 5 cmX 1 5 cm, 高さ 1 0 cmであ つた。 その材質は市販のセラッミク断熱材を使用し、 中央を直径7. 2 c m, 深さ 2 c mにく りぬいて、 窪み 4 2を形成した。 固形燃料は、 マングローブ炭 (サイ ズは 2 mm〉) 3 0 g、 でんぷん糊 6 gに水 2 4 m l を加えてよく練 り、 直径 6. 5 cm, 深さ 2 cmのテフロン容 に入れた。 Another combustion test 1 was performed using the solid fuel shown in Fig. 8 (a). The wire mesh 40 used for the nutrition test was made of stainless steel, the size was 20 cm × 20 cm, and the lattice gap was 0.8 cm square. The size of the tabletop stove 41 was 15 cm X 15 cm at the bottom and 10 cm in height. The material is a commercially available Serammiku insulation central diameter 7. Te 2 cm, depth 2 cm difficulty RiNui, to form a recess 4 2. For solid fuel, 30 g of mangrove charcoal (2 mm in size) and 24 g of water were added to 6 g of starch paste and kneaded well, then put into a Teflon container with a diameter of 6.5 cm and a depth of 2 cm. .
上記の固形燃料に直径 1 cmの貫通穴 1 0個と、 0. 6 cmの貫通穴を 2 5個を、 そ れぞれ中央部と周辺部に均等な間隔で開け、 1 2 0 °Cで 3時間乾燥 して円盤型の 固形炭素 3 1 と した。 一方、 酸化鉄 (Fe203) 8 0 g と珪素 2 0 g 水 3 5 m 1 でよく練り、 それを直径 6. 9 cm、 深さ 1. 5 cmのブリ キ缶に入れ、 1 2 0 °Cでー晚 乾燥して円盤型の発熱体 3 2 と した。 固形炭素 3 1 を発熱体 3 2上 に重ねて、 卓 上コンロ用燃料と した。 その断面図は図 8 ( a ) の通りである。 In the above solid fuel, 10 holes with a diameter of 1 cm and 25 holes with a diameter of 0.6 cm were opened at equal intervals in the center and periphery, respectively, at 120 ° C. For 3 hours to obtain disk-shaped solid carbon 31. Meanwhile, the iron oxide (Fe 2 0 3) 8 0 g and silicon 2 0 kneaded well with g water 3 5 m 1, put it in diameter 6. 9 cm, the yellowtail key cans depth 1. 5 cm, 1 2 The resultant was dried at 0 ° C. to obtain a disc-shaped heating element 32. The solid carbon 3 1 overlying the heating element 3 2, and a table on stove fuel. The cross section is as shown in Fig. 8 (a).
この固形燃料を卓上コンロ 4 1 に納め、 発熱体 3 2にフ リ ン ト火花で点火した のち、 固形炭素 3 1が赤熱している時間を測定すると、 それは 3 0分間であった また、 固形炭素 3 1の燃焼率は 8 0 %で、 完全燃焼までの時間は 1時^ であつ た。 This solid fuel was placed in a tabletop stove 41 and the heating element 32 was ignited with a flint spark. Later, the time during which the solid carbon 31 was glowing was measured to be 30 minutes.The burning rate of the solid carbon 31 was 80%, and the time until complete combustion was 1 hour ^ .
図 1 1 の固形炭素 3 1 を用いて、 別の燃焼試験 2 を行った。 酸化鉄 <Fe203) 8 0 g と珪素 2 0 gに、 水 3 5 m l を加えてよく練り、 それを直径 l cra、 長さ 1 0 cmの円柱にして、 1 2 0 °Cでー晚乾燥したものを円柱形の発熱体 3 2 と した。 一方、 マングローブ炭 9 0 g、 でんぷん糊 1 8 gに水 7 2 m l を加えてよく練り 、 それを発熱体 3 2の周囲に塗布して被覆し、 1 2 0 °Cで 3時間乾燥したものを 円柱型の固形燃料と した。 被覆部は長さ 3 cm、 厚さ 0. 5 craで、 非被覆部の長さは 2 cmと した。 Another combustion test 2 was performed using the solid carbon 31 in FIG. To 80 g of iron oxide (Fe 2 O 3 ) and 20 g of silicon, add 35 ml of water and knead well.Then, form a cylinder with a diameter of l cra and a length of 10 cm at 120 ° C.ー 晚 The dried one was used as a cylindrical heating element 32. On the other hand, 90 g of mangrove charcoal and 18 g of starch paste were mixed with 72 ml of water and kneaded well, and the mixture was applied by coating around the heating element 32 and dried at 120 ° C. for 3 hours. Was used as a cylindrical solid fuel. The coated part was 3 cm long and 0.5 cra thick, and the length of the uncoated part was 2 cm.
得られた円柱型の固形燃料を燃焼試験 1 と同じ卓上コンロ 4 1に納め、 固形燃 料の発熱体 3 2の部分にフリ ン ト火花で点火した。 固形燃料は全て赤熱 し、 赤熱 した備長炭に似ていた。 図面の簡単な説明  The obtained cylindrical solid fuel was placed in the same tabletop stove 41 as in the combustion test 1 and the heating element 32 of the solid fuel was ignited with flint sparks. All solid fuels glowed red, resembling red-hot Bincho charcoal. Brief Description of Drawings
[図 1 ] ( b ) は固形燃料の縦断面図、 ( a ) はその一部拡大図で ある。  [Fig. 1] (b) is a longitudinal section of the solid fuel, and (a) is a partially enlarged view.
[図 2 ] 固形燃料の斜視図である。  FIG. 2 is a perspective view of a solid fuel.
[図 3 ] 燃焼容器の一部を破断した固形燃料の正面図である。  FIG. 3 is a front view of a solid fuel in which a part of a combustion vessel is broken.
[図 4 ] 固形燃料の製造工程を説明する断面図である。 ( a ) は第 1工程、 ( b ) は第 2工程、 ( c ) は第 2工程及び第 3工程、 ( d ) は第 3工程 をそれぞ れ示す FIG. 4 is a cross-sectional view illustrating a solid fuel manufacturing process. (A) is the first step, (b) is the second step, (c) is the second and third steps, and (d) is the third step. Show
は別の固形燃料の実施形態を示す 視図であり 、  FIG. 3 is a perspective view showing another solid fuel embodiment,
( b ) 、 ( c ) はその分解斜視図である  (b) and (c) are exploded perspective views thereof.
別の固形燃料の各実施形態を示す断面図で feる  Cross-sectional view showing each solid fuel embodiment
[図 7〗 ( a ) は別の固形燃料の実施形態を示す断面図、 ( b ) はその一部 を破断した正面図である  [Fig. 7〗 (a) is a cross-sectional view showing another solid fuel embodiment, and (b) is a partially cutaway front view.
は別の固形燃料の実施形態を示す断面図、 ( b ) はその平面 図である。  Is a sectional view showing another embodiment of the solid fuel, and (b) is a plan view thereof.
別の固形燃料の実施形態を示す断面図である。  It is sectional drawing which shows embodiment of another solid fuel.
は別の固形燃料の実施形態を示す余 4視図、 (b ) はそ 面図である。  FIG. 4 is a perspective view showing an embodiment of another solid fuel, and FIG.
は別の固形燃料の実施形態を示す^ 1·視図、 ( b ) はその断 面図である。  Is a ^ 1 view showing another embodiment of the solid fuel, and (b) is a sectional view thereof.
[図 1 2] 別の固形燃料の実施形態を示す斜視図である  FIG. 12 is a perspective view showing an embodiment of another solid fuel.
[図 1 3 ] 別の固形燃料の実施形態を示す斜視図である 符号の説明  FIG. 13 is a perspective view showing an embodiment of another solid fuel.
燃料体  Fuel body
着火剤層  Ignition layer
3 点火部 炭粒 バインダ一 通口 型枠 隙間 3 Ignition section Charcoal grain Binder One opening Formwork Gap

Claims

請 求 の 範 囲 The scope of the claims
1 . 燃焼空気用の通口 ( 6 ) の一群が形成された燃料体 ( 1 ) と、 燃料体 ( 1 ) の表面に配置されるテルミ ッ ト様発熱材からなる着火斉 LI層 ( 2 ) と、 着火剤 層 ( 2 ) の表面の一部に設けられる点火部 ( 3 ) とを備えており、 燃料体 ( 1 ) 力 無臭性炭素材を原料とする炭粒 (4 ) を加圧成形して、 炭 粒 (4 ) 間に隙間 ( 1 4 ) を有する多孔質に形成されていることを特徴とす る固形燃料。  1. A fuel body (1) in which a group of communication air openings (6) are formed, and a LI layer (2) composed of a thermite-like heating material disposed on the surface of the fuel body (1) And an ignition section (3) provided on a part of the surface of the igniting agent layer (2). The fuel body (1) is formed by pressure forming coal particles (4) made of odorless carbon material. A solid fuel characterized by being formed porous with a gap (14) between the coal particles (4).
2. 燃料体 ( 1 ) を構成する炭粒 (4 ) 力 、 木炭、 ヤシ殻炭、 竹炭、 マングロー ブ炭などの植物由来の無臭性炭素材の 1種以上を含んでいる請求項 1記載の 固形燃料。  2. The coal particle (4) according to claim 1, comprising one or more plant-derived odorless carbon materials such as charcoal, coconut shell charcoal, bamboo charcoal, mangrove charcoal, etc., constituting the fuel body (1). Solid fuel.
3 . 燃料体 ( 1 ) が、 高温で焼成したヤシ殻炭を粉砕して、 粒度が 6〜 6 0メ ッ シュに調整された炭粒 (4 ) と、 炭粒 (4 ) どう しを結着するバインダー ( 5 ) とを含み、  3. The fuel body (1) pulverizes the coconut shell charcoal fired at a high temperature to form a coal grain (4) whose grain size is adjusted to 6 to 60 mesh, and connects the coal grain (4) with each other. A binder (5)
バインダー ( 5 ) 力 S、 耐火セメ ン トまたはキャスタブ/ と、 多糖類または蛋 白質で形成されるのり との混合物からなり、  Binder (5) Consists of a mixture of force S, refractory cement or castab /, and a paste formed of a polysaccharide or protein,
着火剤層 ( 2 ) 力 S、 酸化鉄と、 ケィ素と、 鉱物繊維と、 酸化アルミニウム系 または酸化ケィ素系のバインダーとを含んでおり、  Ignition agent layer (2) Force S, containing iron oxide, silicon, mineral fiber, aluminum oxide or silicon oxide binder,
水を加えてペース ト状に調整した着火剤を、 燃料体 ( ュ) の表面に付着させ て乾燥することによ り、 着火剤層 ( 2 ) が燃料体 ( 1 ) と一体化されており 着火剤層 ( 2) の表面の一部に点火部 ( 3 ) が露 している請求項 1記載の 固形燃料。 The igniting agent layer (2) is integrated with the fuel body (1) by attaching and drying the igniting agent adjusted to a paste by adding water to the surface of the fuel body (new). The solid fuel according to claim 1, wherein an ignition portion (3) is exposed on a part of the surface of the ignition agent layer (2).
4. 燃料体 ( 1 ) 力 扁平な立体形状に形成されており  4. Fuel body (1) Force It is formed in a flat three-dimensional shape.
燃料体 ( 1 ) の下面全体が、 着火剤層 ( 2 ) で覆われており、  The entire lower surface of the fuel body (1) is covered with an ignition agent layer (2),
着火剤層 ( 2) の反応熱によって燃料体 ( 1 ) を面状に迅速着火できる請求 項 3記載の固形燃料。  The solid fuel according to claim 3, wherein the fuel body (1) can be rapidly ignited in a planar manner by the reaction heat of the igniting agent layer (2).
5. 円盤状に形成した燃料体 ( 1 ) に、 1 6〜 2 6個 通口 ( 6 ) が上下貫通状' に形成されており、 5. In the fuel body (1) formed in a disk shape, 16 to 26 ports (6) are formed in a vertically penetrating manner.
燃料体 ( 1 ) の上面の面積に占める全通口 ( 6 ) O開口面積の比が、 7. 5〜 3 0 %に設定されている請求項 4記載の固形燃料。 The ratio of Zentsu opening (6) O opening area occupied in the area of the upper surface of the fuel assembly (1) is from 7.5 to 3 0% has been set to claim 4 solid fuel according.
6. 型枠 ( 1 0 ) に充填した炭粒 ( 4 ) とバインダー ( 5 ) との混合物をプレス 機で加圧して、 炭粒 ( 4) 間に隙間 ( 1 4 ) を有する多孔質の燃料体 ( 1 ) を成形し、 同時に燃科体 ( 1 ) に通口 ( 6 ) の一群を形成する第 1工程と、 型枠 ( 1 0 ) 内の燃料体 ( 1 ) の表面にペース ト状に調整した着火剤を流し 込んで、 燃料体 ( 1 ) の片面の全体に着火剤層 ( 2 ) を形成する第 2工程と 着火剤層 ( 2) を乾燥固化して燃料体 ( 1 ) と一体化したのち、 着火剤層 6. A mixture of the coal particles (4) and the binder (5) filled in the mold (10) is pressurized by a press machine, and a porous fuel having a gap (14) between the coal particles (4) is produced. A first step of forming the fuel body (1) and simultaneously forming a group of openings (6) in the fuel body (1); and a paste-like process on the surface of the fuel body (1) in the mold (10). A second step of pouring the adjusted igniting agent into the fuel body (1) to form an igniting agent layer (2) on one entire surface of the fuel body (1) and drying and solidifying the igniting agent layer (2) to form the fuel body (1) After integration, ignition agent layer
( 2 ) の表面の一部に点火部 ( 3 ) を着火剤層 ( 2 ) の表面に露出するよ う 塗布形成し、 型枠 ( 1 0 ) から燃料体 ( 1 ) を分离隹する第 3工程とからなる 固形燃料の製造方法。 An ignition part (3) is applied to a part of the surface of (2) so as to be exposed on the surface of the igniting agent layer (2), and the fuel body (1) is separated from the mold (10). A method for producing a solid fuel, comprising:
7. 型枠 ( 1 0 ) ごと燃料体 ( 1 ) を乾燥固化したのち、 型枠 ( 1 0 ) 内の燃料7. After drying and solidifying the fuel body (1) with the mold (10), the fuel in the mold (10)
) の表面に、 ペース ト状に調整した着火剤を ¾!Eし迖んで着火剤層 を形成する請求項 6記載の固形燃料の製造方法。 7. The method for producing a solid fuel according to claim 6, wherein an igniting agent adjusted to a paste shape is formed on the surface of the) to form an igniting agent layer.
PCT/JP2005/006736 2004-04-13 2005-03-30 Solid fuel and method of producing the same WO2005100514A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006512301A JPWO2005100514A1 (en) 2004-04-13 2005-03-30 Solid fuel and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004147018 2004-04-13
JP2004-147018 2004-04-13

Publications (1)

Publication Number Publication Date
WO2005100514A1 true WO2005100514A1 (en) 2005-10-27

Family

ID=35149989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/006736 WO2005100514A1 (en) 2004-04-13 2005-03-30 Solid fuel and method of producing the same

Country Status (2)

Country Link
JP (1) JPWO2005100514A1 (en)
WO (1) WO2005100514A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009120776A (en) * 2007-11-19 2009-06-04 Nishizuka Shoten:Kk Solid fuel and production method of solid fuel
JP2011094040A (en) * 2009-10-30 2011-05-12 Jfe Steel Corp Method of producing charcoal
KR101953361B1 (en) * 2018-05-11 2019-02-28 최희식 alcohol impregnated solid fuel using spent mushroom substrates, and manufacturing method thereof
KR20220138161A (en) * 2021-04-05 2022-10-12 농업회사법인향유미가(주) Corn Complexing Agent

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS511559U (en) * 1974-06-24 1976-01-08
JPS60181195A (en) * 1984-02-29 1985-09-14 Mitsuuroko:Kk Ignition agent for solid fuel
JPH048799A (en) * 1990-04-26 1992-01-13 Toshiya Yoshida Bamboo charcoal for fuel
JPH07258666A (en) * 1994-03-25 1995-10-09 Shinagawa Fuel Co Ltd Briquetted coal and method for roasting coffee bean using the same
JPH1060464A (en) * 1996-08-21 1998-03-03 Shinagawa Fuel Co Ltd Formed charcoal and its production
JP2000319676A (en) * 1999-05-11 2000-11-21 Nisshin Kogyo Kk Solidified fuel and preparation thereof
JP2003020491A (en) * 2001-07-05 2003-01-24 Tsuboi:Kk Igniting material
JP2003105363A (en) * 2001-09-28 2003-04-09 Hideaki Shimizu Fuel charcoal
JP2003171679A (en) * 2001-12-10 2003-06-20 Hideo Sumino Coal moldings for fuel, fuel with ignition material and method for producing the same
JP2003240355A (en) * 2002-02-20 2003-08-27 Guraiko Materials:Kk Heat generator and road marking material

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS511559U (en) * 1974-06-24 1976-01-08
JPS60181195A (en) * 1984-02-29 1985-09-14 Mitsuuroko:Kk Ignition agent for solid fuel
JPH048799A (en) * 1990-04-26 1992-01-13 Toshiya Yoshida Bamboo charcoal for fuel
JPH07258666A (en) * 1994-03-25 1995-10-09 Shinagawa Fuel Co Ltd Briquetted coal and method for roasting coffee bean using the same
JPH1060464A (en) * 1996-08-21 1998-03-03 Shinagawa Fuel Co Ltd Formed charcoal and its production
JP2000319676A (en) * 1999-05-11 2000-11-21 Nisshin Kogyo Kk Solidified fuel and preparation thereof
JP2003020491A (en) * 2001-07-05 2003-01-24 Tsuboi:Kk Igniting material
JP2003105363A (en) * 2001-09-28 2003-04-09 Hideaki Shimizu Fuel charcoal
JP2003171679A (en) * 2001-12-10 2003-06-20 Hideo Sumino Coal moldings for fuel, fuel with ignition material and method for producing the same
JP2003240355A (en) * 2002-02-20 2003-08-27 Guraiko Materials:Kk Heat generator and road marking material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009120776A (en) * 2007-11-19 2009-06-04 Nishizuka Shoten:Kk Solid fuel and production method of solid fuel
JP4689658B2 (en) * 2007-11-19 2011-05-25 株式会社西塚商店 Solid fuel and method for producing solid fuel
JP2011094040A (en) * 2009-10-30 2011-05-12 Jfe Steel Corp Method of producing charcoal
KR101953361B1 (en) * 2018-05-11 2019-02-28 최희식 alcohol impregnated solid fuel using spent mushroom substrates, and manufacturing method thereof
KR20220138161A (en) * 2021-04-05 2022-10-12 농업회사법인향유미가(주) Corn Complexing Agent
KR102459412B1 (en) 2021-04-05 2022-10-27 농업회사법인향유미가(주) Corn Complexing Agent

Also Published As

Publication number Publication date
JPWO2005100514A1 (en) 2008-03-06

Similar Documents

Publication Publication Date Title
US4725286A (en) Firestarter
AU2013383052B2 (en) A disposable grill
WO2005100514A1 (en) Solid fuel and method of producing the same
US9353942B2 (en) Burner for household or recreational use
US8250995B2 (en) Log cartridge burning system
JP4689658B2 (en) Solid fuel and method for producing solid fuel
US5762656A (en) Dense core charcoal briquet
AU2003201492B2 (en) Combustible fuel composition and method
US5912192A (en) Multi-layered solid combustible article and its manufacture
GB2442702A (en) Carbon fuel combustion package
US6027539A (en) Fire starter and method of making same
US20160075961A1 (en) Charcoal chimney
WO2009044375A2 (en) Heating means comprising a carbonaceous material, a binder, limestone, an oxidising compound and a zeolite
US20060027227A1 (en) Volcano furnace
EP3947609B1 (en) A combustible briquette and a method for manufacturing a combustible briquette
JPS6370004A (en) Deposit for granular carbonaceous fuel and usage for producing fire having high efficiency for baking, etc. from said deposit
JP3325885B1 (en) Molded coal for fuel, fuel with ignition material, and manufacturing method
WO2008007096A2 (en) Pellets with infused accelerants and method of use
US20060096162A1 (en) Easily lightable charcoal brick
JP3164627U (en) Ignition charcoal
JP3227221U (en) Solid fuel and stove set
JP4212517B2 (en) Method for producing fat and oil adsorbent
CA2556953A1 (en) Carbon fuel combustion supporting packaging
US20210269729A1 (en) Organic Fire Starter
JPS60181195A (en) Ignition agent for solid fuel

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006512301

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase