WO2005095331A1 - 糖鎖-ペプチド結合剤 - Google Patents

糖鎖-ペプチド結合剤 Download PDF

Info

Publication number
WO2005095331A1
WO2005095331A1 PCT/JP2005/005810 JP2005005810W WO2005095331A1 WO 2005095331 A1 WO2005095331 A1 WO 2005095331A1 JP 2005005810 W JP2005005810 W JP 2005005810W WO 2005095331 A1 WO2005095331 A1 WO 2005095331A1
Authority
WO
WIPO (PCT)
Prior art keywords
peptide
formula
substituted
hydrogen atom
sugar chain
Prior art date
Application number
PCT/JP2005/005810
Other languages
English (en)
French (fr)
Inventor
Shinichiro Nishimura
Akio Takimoto
Original Assignee
Shionogi & Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shionogi & Co., Ltd. filed Critical Shionogi & Co., Ltd.
Priority to JP2006511656A priority Critical patent/JPWO2005095331A1/ja
Publication of WO2005095331A1 publication Critical patent/WO2005095331A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C271/00Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C271/06Esters of carbamic acids
    • C07C271/08Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms
    • C07C271/10Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C271/16Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K9/00Peptides having up to 20 amino acids, containing saccharide radicals and having a fully defined sequence; Derivatives thereof

Definitions

  • the present invention relates to a sugar used for easily producing glycopeptides and glycoproteins having a uniform composition (hereinafter, collectively referred to as “glycopeptides” unless otherwise specified).
  • the present invention relates to a chain peptide binding agent and a method for producing a glycopeptide using the sugar chain peptide binding agent.
  • Organisms especially eukaryotes
  • Post-translational modifications include, for example, those at the amino acid level (ie, cleavage of a signal peptide), and modifications with other biomolecules such as sugar chains and lipids.
  • the modification with a sugar chain is a typical one, and it is said that very many peptides and proteins in eukaryotes have a sugar chain.
  • Patent Documents 1 to 4 attempts have been made to produce artificial conjugated peptides whose functions have been regulated by imitating such sugar chain modifications (Patent Documents 1 to 4), and these are also used as biopharmaceuticals.
  • Non-Patent Document 1 describes a method for introducing a modified sugar obtained through several steps of synthesis reaction into insulin
  • Non-Patent Document 2 describes a method for synthesizing a sugar chain after synthesizing a non-natural peptide. Is described. However, it is difficult to say that any of them is a suitable production method from the viewpoint of simplicity and mass production, and it is difficult to produce a biopharmaceutical having a constant composition.
  • Patent Document 1 JP-A-2000-300287
  • Patent Document 2 Column 2001—278899 9
  • Non-patent literature l Angw. Chem, 2004, 43, 1516
  • Non-Patent Document 2 Am. Chem. Soc, 2003, 125, 1702
  • An object of the present invention is to provide a sugar chain peptide binding agent used for easily producing a glycopeptide having a constant composition, and a method for producing a glycopeptide using the sugar chain peptide binding agent. Is to do.
  • the present invention provides (1) a compound represented by the general formula (I):
  • Y is —A 1 -A'-OA 2 -,-(CH CH O) —A 1- (CH CH O) A 1 —
  • amino group, imino group and the like present in the compound represented by the formula (I) may be protected by a suitable protecting group.
  • the present invention relates to the following (2) to (11).
  • X is —NH and Z is —O—NH (R 4 ) (where R 4 is a hydrogen atom, lower alkyl,
  • the sugar chain peptide binder according to (1) wherein the group represented by and Z is —O—NH (R 4 ), wherein R 4 is a hydrogen atom, lower alkyl, or aryl.
  • a 1 is an optionally substituted CI-15 alkylene;
  • R 4 is a hydrogen atom, lower alkyl, or aryl), or a salt thereof.
  • a 1 is an optionally substituted C 1-15 alkylene;
  • R 4 is a hydrogen atom, lower alkyl, or aryl), or a salt thereof.
  • a 1 and A 2 are each independently an optionally substituted C 1 — 1
  • 5 alkylene, substituted ! may be, C2-15 alkylene or substituted !, may be C2-15 alkylene; n is an integer of 1 to 5; R 1 is hydroxy or NH ( R 2 ) (where
  • R 2 is hydrogen atom, lower alkyl, aryl or aralkyl); R 3 is hydrogen atom or —
  • R 4 is a hydrogen atom, a lower alkyl or Ariru
  • step 2) a step of reacting the peptide obtained in step 1) with a sugar chain
  • a method for producing a glycopeptide is a method for producing a glycopeptide.
  • a step of reacting the compound represented by the general formula (IV) with a sugar chain, and 2) the peptide obtained in the step 1) and a peptide having a glutamine residue are transtranscribed.
  • a method for producing a glycopeptide which includes a step of reacting in the presence of sglutaminase, can also be performed.
  • step 2) including the step of reacting the peptide obtained in step 1) with a sugar chain
  • a method for producing a glycopeptide is a method for producing a glycopeptide.
  • the present invention provides a sugar chain-peptide binding agent used for easily producing a glycopeptide having a uniform composition by using a natural or non-natural protein and an unprotected sugar chain.
  • the present invention relates to a method for producing a glycopeptide using a sugar chain-peptide binding agent. According to the present invention, it is possible to provide a glycopeptide having a constant composition, so that it is possible to provide a higher-quality Noro medicine.
  • sucrose chain refers to a conjugate comprising at least one unit sugar (monosaccharide and Z or a derivative thereof). When two or more unit sugars are linked, each unit sugar is linked by dehydration condensation through glycosidic bonds.
  • sugar chains examples include polysaccharides (glucose, galactose, mannose, fucose, xylose, N-acetyldarcosamine, N-acetylgalatatosamine, sialic acid and (Complexes and derivatives thereof), as well as a wide range of sugar chains degraded or derived from complex biomolecules such as degraded polysaccharides, glycoproteins, proteoglycans, glycosaminodalican, and glycolipids. Not limited to them. Therefore, in this specification, a sugar chain can be used interchangeably with "polysaccharide”, “carbohydrate”, and “carbohydrate”. Unless otherwise specified, the term “sugar chain” in this specification includes both sugar chains and sugar chain-containing substances.
  • “monosaccharide” refers to a compound represented by the general formula CHO, which is not hydrolyzed to a simpler molecule.
  • n 2, 3, 4, 5, 6, 7, 8, 9, and 10 Things are called diose, triose, tetroses, pentoses, hexoses, heptose, otatoses, nonose and decos, respectively.
  • diose 1, 3, 4, 5, 6, 7, 8, 9, and 10 Things are called diose, triose, tetroses, pentoses, hexoses, heptose, otatoses, nonose and decos, respectively.
  • aldehyde or ketone of a chain polyhydric alcohol The former is called aldose and the latter is called ketose.
  • the term "monosaccharide derivative” refers to a substance in which one or more hydroxyl groups on a monosaccharide are substituted with another substituent and the resulting substance is not within the range of the monosaccharide.
  • Examples of such monosaccharide derivatives include sugars having a carboxyl group (eg, aldonic acid in which the C 1 position has been oxidized to form a carboxylic acid (eg, D-dalconic acid obtained by oxidizing D-glucose), (D-gluconic acid in which D-glucose has been oxidized), a sugar having an amino group or an amino group derivative (eg, an acetylated amino group) (eg, N-acetyl-) D-darcosamine, N-acetyl-D-galactosamine, etc.), a saccharide having both an amino group and a carboxyl group (for example, N-acetylneuraminic acid (sialic acid), N-acetylmuramic acid, etc.), and a sugar that has been deoxylated (for example, 2- (Doxy-D-ribose), sulfated sugars containing sulfate groups, phosphorylated
  • sugar chain-containing substance refers to a substance containing a sugar chain and a substance other than the sugar chain.
  • sugar chain-containing substances are found abundantly in living organisms.For example, in addition to polysaccharides contained in living organisms, complex substances such as degraded polysaccharides, glycoproteins, proteodalicans, glycosaminoglycans, glycolipids, etc.
  • the biomolecular force also includes, but is not limited to, a wide range of sugar chains decomposed or derived.
  • the terms "protein,”"polypeptide,””oligopeptide,” and “peptide” are used interchangeably herein and refer to a polymer of amino acids of any length. .
  • the polymer may be linear or branched or cyclic.
  • the amino acids may be naturally occurring or non-naturally occurring or modified amino acids.
  • the term may also include those assembled into a complex of multiple polypeptide chains.
  • the term also includes natural or artificially modified amino acid polymers. Such modifications include, for example, disulfide bond formation, Dali Cosylation, lipidation, acetylation, phosphorylation or any other manipulation or modification (eg, conjugation with a labeling component).
  • This definition also includes, for example, polypeptides containing one or more analogs of an amino acid (eg, including unnatural amino acids, etc.), peptidomimetic compounds (eg, peptoids), and those known in the art! Other modifications are included.
  • the gene product of the present invention usually takes the form of a polypeptide.
  • the gene product of the present invention in such a polypeptide form is useful as a composition for diagnosis, prevention, treatment or prognosis of the present invention.
  • a peptide having a physiological activity is preferable.
  • insulin for example, insulin, erythropoietin, thrombopoetin, interleukin 1, interleukin 2, interleukin 3, interleukin 4, interleukin 5, interleukin 6, interleukin 7, interleukin 8, interleukin 9, interleukin 10, interleukin 11, Interleukin 12, Interleukin 13, Interleukin-14, Interleukin-15, Interferon-a, Interferon-13, Interferon- ⁇ , G-CSF, GM-CSF, M-CSF, GLP-1, Stem Senoractor 1, mpl-ligand, somatostatin, vasoplethsin, gnore gon, growth honoremon, leptin, cholecystokine, substance P, adrenaline, ADF, corticosteroid stimulating hormone, j8 endorphin, neoendor Peptides obtained by modifying the base petit de and their working physiologically in the human body such as fin, animal-derived peptides
  • glycoprotein includes, but is not limited to, enzymes, hormones, cytokins, antibodies, vaccines, receptors, serum proteins, and the like.
  • the “sugar chain-peptide binder” refers to a group that acts as a “linker” interposed between the sugar chain and the peptide when forming a glycopeptide.
  • the general formula (I) is a group that acts as a “linker” interposed between the sugar chain and the peptide when forming a glycopeptide.
  • Y is —A 1 —, -A '-OA 2 -,-(CH CH O) —A 1 —,-(CH CH O) A 1 —
  • R 4 is hydrogen atom or lower alkyl
  • Each separate or C1- 15 alkylene optionally substituted by; is R 4 a hydrogen atom or a lower ⁇ Norekinore
  • a 2 are each independently optionally substituted C1-15 alkylene;
  • R 4 is hydrogen atom or lower alkyl) OLE ⁇ INK3
  • R 4 is a hydrogen atom or a lower alkyl
  • R 4 is a hydrogen atom or a lower alkyl
  • ⁇ 2 are each independently substituted !, or! /, C 1-15 alkylene;
  • R 4 is a hydrogen atom or lower alkyl
  • ⁇ 2 are each independently substituted !, or! /, C 1-15 alkylene;
  • R 4 is a hydrogen atom or lower alkyl
  • a 1 is an optionally substituted CI-15 alkylene; R 4 is a hydrogen atom, lower alkyl, or aryl). In the above 1) to 7) and 9), A 1 is preferably C3-8 alkylene. In the above 1) to 9), R 4 is preferably a hydrogen atom or lower alkyl.
  • fluid can be any fluid as long as it can provide an environment in which the sugar chain peptide binding agent of the present invention interacts with a sugar chain.
  • fluids are substantially free of substances containing keto groups. This is because, when a substance containing a keto group is significantly contained, the reaction between the aldehyde group in the fluid and the substance of the present invention does not proceed sufficiently. Therefore, the V-form that does not contain a substance containing a keto group is not essential, but is preferably an embodiment.
  • the fluid used herein is such that it brings the sugar into equilibrium between the cyclic hemiacetal form and the acyclic aldehyde form.
  • Such fluids include, but are not limited to, for example, aqueous solutions, organic solvents, and mixtures thereof.
  • the fluid is an aqueous solution.
  • transglutaminase (sometimes abbreviated as TGase) refers to a ⁇ -carboxyamide group in a glutamine residue (Gin) in a protein or peptide chain and an ⁇ in a lysine residue (Lys) in a lysine residue (Lys).
  • Gin glutamine residue
  • Lys lysine residue
  • Transdaltaminase is widely distributed in animals (various tissues, blood cells and plasma) and microorganisms. Thus, transdaltaminase has various molecular forms, but the molecular forms are diverse.
  • Transdaltaminase catalyzes a cross-linking reaction due to ⁇ ( ⁇ daltamyl) lysine isopeptide linkage between or within peptide chains in vivo.
  • Transdaltaminase is a substrate for Gin residues Since the specificity is extremely high, it is possible to modify only a specific Gin residue in a protein by using a molecule such as alkylamine.
  • Transdaltaminase is said to be involved in fibrin molecular cross-linking, keratinization of epidermal cells, semen coagulation, and wound tissue healing.
  • the sugar chain peptide binder By reacting the sugar chain-peptide binder with the glutamine-containing peptide in the presence of transdaltaminase, the sugar chain peptide binder is easily introduced into the glutamine residue of the peptide.
  • the sugar chain-peptide binding agent is allowed to act on the cysteine-containing peptide in the presence of transdaltaminase, whereby the sugar chain peptide binding agent is easily introduced into the cysteine residue of the peptide.
  • transferase refers to an enzyme that catalyzes a group transfer reaction.
  • Representative transferases used herein include glycosyltransferases, which catalyze the transfer of sugars.
  • Exemplary glycosyltransferases include, for example, ⁇ 1,4-galatatosyltransferase, ⁇ -1,3-galatatosyltransferase,
  • amino acid may be natural or non-natural as long as the object of the present invention is satisfied.
  • “Derivative amino acids” or “amino acid analogs” are those that differ from naturally occurring amino acids but have a similar function as the original amino acid. Such derived amino acids and amino acid analogs are well-known in the art.
  • the term “natural amino acid” refers to the L-isomer of a natural amino acid.
  • Natural amino acids include glycine, alanine, norin, leucine, isoleucine, serine, methionine, threonine, pheninolealanine, tyrosine, tryptophan, cysteine, proline, histidine, aspartic acid, asnolagin, glutamic acid, glutamine, and carboxyglutamic acid. , Arginine, ordinine, and lysine. Unless otherwise indicated, all amino acids referred to herein are L-forms, but forms using D-form amino acids are also within the scope of the present invention.
  • the term “unnatural amino acid” refers to an amino acid not normally found in nature in proteins.
  • non-natural amino acids examples include D- or L-forms of norleucine, para-trophe-l-alanine, homophen-l-alanine, para-fluorophen-l-alanine, 3-amino-2-benzylpropionic acid, and homoarginine, and D-fe-l-alanine Is mentioned.
  • Amino acid analog refers to a molecule that is not an amino acid, but that is similar to the physical properties and Z or function of the amino acid.
  • Amino acid analogs include, for example, etyonin, canavanine, 2-methyldaltamine and the like.
  • Amino acid mimetics refers to compounds that have a structure that is different from the general chemical structure of an amino acid, but that functions in a manner similar to a naturally occurring amino acid.
  • IUPAC- may be referred to herein by any of the single letter symbols recommended by the IUB Biochemica 1 Nomenclature Commission.
  • biological activity and “bioactivity” are used interchangeably in the present specification, and a certain factor (eg, nucleotide, polynucleotide, protein, etc.) is contained in a living body. It refers to the activity obtained, and includes activities that exert various functions (eg, transcription promoting activity). For example, if two factors interact (eg, insulin acts on the insulin receptor in the liver, etc.), its biological activity is The binding between the two molecules and the resulting biological changes, such as when one molecule is precipitated with an antibody and the other co-precipitates, the two molecules bind It is thought that there is. Therefore, looking at such co-precipitation is one of the judgment methods.
  • a certain factor eg, nucleotide, polynucleotide, protein, etc.
  • a molecule is functionally related to another molecule using neurite extension as an index. Specifically, it includes checking the blood glucose lowering effect of insulin. For example, if a factor is an enzyme, its biological activity includes the enzymatic activity. In another example, where an agent is a ligand, the ligand involves binding to the corresponding receptor. Such a biological activity can be measured by techniques well known in the art.
  • bioactive substance refers to any substance having the biological activity as described above. Such substances include, but are not limited to, for example, enzymes, antibodies, vaccines, serum proteins, hormones, cytokins, growth factors, cell adhesion molecules, receptors, signaling factors, and the like.
  • activity is the ability to show or reveal binding (either direct or indirect); affect the response (i.e., measure in response to some exposure or stimulus).
  • measurable indices eg, the affinity of a compound that binds directly to a polypeptide or polynucleotide of the invention, or, eg, upstream or downstream after some stimulation or event.
  • a measure of the amount of other proteins or other similar functions can be mentioned.
  • Such activity can be measured by assays such as competitive inhibition.
  • binding refers to a physical or chemical interaction between two proteins or compounds or related proteins or compounds, or a combination thereof. . Bonds include ionic bonds, non-ionic bonds, hydrogen bonds, van der Waals bonds, hydrophobic interactions, and the like.
  • the physical interaction (binding) can be direct or indirect, the indirect being a force or cause through the effect of another protein or compound.
  • Direct binding refers to interactions that do not occur through or due to the effects of another protein or compound, and are not associated with other substantial chemical intermediates.
  • substitution refers to replacing one or more hydrogen atoms in an organic compound or a substituent with another atom or atomic group. It is also possible to remove one hydrogen atom and substitute a monovalent substituent, and it is also possible to remove two hydrogen atoms and substitute a divalent substituent.
  • alkyl refers to a monovalent group generated by the loss of one hydrogen atom in an aliphatic hydrocarbon (alkane) such as methane, ethane, and propane.
  • n 2n + l is represented by one (where n is a positive integer).
  • Alkyl can be straight or branched.
  • substituted alkyl refers to an alkyl in which H of the alkyl is substituted by a substituent defined below.
  • C1-C2 alkyl C1-C3 alkyl, C1-C4 alkyl, C1-C5 alkyl, C1-C6 alkyl, C1-C7 alkyl, C1-C8 alkyl, C1-C9 alkyl, C1-C10 alkyl C1-C12 alkyl or C1-C12 alkyl, C1-C2-substituted alkyl, C1-C3-substituted alkyl, C1-C4-substituted alkyl, C1-C5-substituted alkyl, C1-C6-substituted Alkyl, C1-C7 substituted alkyl, C1-C8 substituted alkyl, C1-C9 substituted alkyl, C1-C10 substituted alkyl, C1-C11 substituted alkyl or C1-C12 substituted alkyl.
  • C 1 -C 10 alkyl means a linear or branched alkyl having 1 to 10 carbon atoms, such as methyl (CH—), ethyl (CH-1), n-propyl (CH CH CH—), iso
  • Alkyl is C1-C10 alkyl in which one or more hydrogen atoms have been replaced by substituents.
  • lower alkyl is preferably C1 to C6 alkyl, and more preferably C1 to C3 alkyl.
  • alkylene is a divalent group derived from “alkyl”, for example, methylene, ethylene, trimethylene, tetramethylene, pentamethylene, hexamethylene, heptamethylene, octamethylene, nonane Methylene, decanmethylene, pendecamethylene, dodecamethylene and the like can be mentioned.
  • alkenyl refers to a monovalent group such as ethylene or propylene, which is generated by the loss of one hydrogen atom of an aliphatic hydrocarbon having one double bond in the molecule, Generally represented by CH (where n is a positive integer greater than or equal to 2). "Replaced
  • modified alkyl refers to an alkyl in which H of the alkyl is substituted by a substituent defined below. Specific examples include C2-C3 alkenyl, C2-C4 alkenyl, C2-C5 alkenyl, C2-C6 alkenyl, C2-C7 alkenyl, C2-C8 alkenyl, C2-C9 alkenyl.
  • C2 to C10 K2 to C11, K2 to C12, C2 to C3 substituted C, C2 to C4 substituted C, C2 to C5 Substituted alkyl, C2-C6 substituted alkyl, C2-C7 substituted alkyl, C2-C8 substituted alkyl, C2-C9 substituted alkyl, C2-C It may be a 10-substituted, a 2- to 11-substituted or a 2- to 12-substituted.
  • a 10-substituted alkylene is a C2-C10 alkylene, in which one or more hydrogen atoms are substituted with a substituent.
  • alkene is a divalent group derived from “alkenyl”, and examples include biylene, probenylene, and butylene.
  • alkynyl refers to a monovalent group such as acetylene formed by the loss of one hydrogen atom from an aliphatic hydrocarbon having one triple bond in the molecule, and is generally CH 2 (Where n is a positive integer greater than or equal to 2). "Substituted al n 2n_3
  • “Kyl” refers to an alkyl in which H of the alkyl is substituted by a substituent defined below. Specific examples include C2-C3 alkyl, C2-C4 alkyl, C2-C5 alkyl, C2-C6 alkyl, C2-C7 alkyl, C2-C8 alkyl, C2- C9 Alkyl, C2-C10 Alkyl, C2-C11 Alkyl, C2-C12 Alkynyl, C2-C3-Substituted Alkyl, C2-C4-Substituted Alkyl, C2-C5-Substituted Alkyl -Alkyl, C2-C6-substituted alkyl, C2-C7-substituted alkyl, C2-C8-substituted alkyl, C2-C9-substituted alkyl, C2-C10-substituted It can be an alkyl, a C2-C11 substituted alkyl or a C2-
  • C2-C10 alkyl means, for example, a linear or branched alkyl containing 2 to 10 carbon atoms, such as ethur (CH ⁇ C—), 1 propynyl ( CH C ⁇ C). Also, for example, C2-C10 substituted alkyl
  • Nyl refers to C2-C10 alkyl in which one or more hydrogen atoms are substituted with a substituent.
  • alkylene is a divalent group derived from “alkyl”, and includes, for example, propylene, butylene and the like.
  • substituent is substituted or substituted by a substituent selected from Substituent Group A, aryl, heteroaryl which may be substituted by a substituent selected from Substituent Group A, A non-aromatic carbocyclic group optionally substituted by a substituent selected from Group A, a non-aromatic heterocyclic group optionally substituted by a substituent selected from Substituent Group A , Hydroxy, alkyloxy, mercapto, alkylthio, halogen, nitro, shear-input ruboxy, alkyloxycarbol, haloalkyl, haloalkyloxy, optionally substituted aminocarboxy which may be substituted Phenyl, acryl, acryloxy, aryloxy (for example, phenyloxy), aralkyloxy (for example, benzyl
  • substituted or substituted by a substituent selected from substituent group A, V means that one or more substituent groups A described below are substituted. Well, that means.
  • Substituent group A alkyl, hydroxy, alkyloxy, mercapto, alkylthio, halo Gen, nitro, carboxy, alkyloxycarboyl, haloalkyl, haloalkyloxy, haloalkyloxy, optionally substituted aminocarbyl which may be substituted, acyl, acyloxy, aryloxy (for example, phenyloxy) Aralkyloxy (for example, benzyloxy), lower alkylsulfonyl, guadino, azo group, substituent group B.
  • the substituent may be substituted with a selected substituent, or may be substituted with an aryl or substituent group B.
  • a heteroaryl, substituted with a substituent selected from a substituent group B, a non-aromatic carbocyclic group, and a substituent selected from a substituent group B A non-aromatic heterocyclic group which may be substituted by a group;
  • substituted group B may be substituted by a selected substituent
  • substituent group B may be substituted with one or more substituent groups below.
  • Substituent group B alkyl, hydroxy, alkyloxy, mercapto, alkylthio, halogen, nitro, carboxy, carboxy, alkyloxycarbo, haloalkyl, haloalkyloxy, optionally substituted, optionally substituted Aminocarbyl, acetyl, acryloxy, aryloxy (eg, phenyloxy), aralkyloxy (eg, benzyloxy), lower alkylsulfonyl, guadino, azo group, aryl, heteroaryl, non-aromatic carbocyclic group, and Aromatic heterocyclic group.
  • aryl refers to a group formed by the removal of one hydrogen atom bonded to a ring of an aromatic hydrocarbon, and is included in the “carbocyclic group” in this specification. Examples thereof include phenyl, a-naphthyl, 13-naphthyl, anthyl, indul, fenanthryl and the like. “Substituted aryl” refers to aryl substituted with a substituent selected below.
  • protecting group is a protecting group for an amino group and an imino group
  • examples thereof include benzyl, benzoyl, acetyl, t-butoxycarbonyl, and benzyloxycarbonyl. Acetyl is preferred.
  • the protection reaction and the deprotection reaction can be performed according to the method described in ci ci, for example, Protective uroups in Organic Synthesis, Theodora W ureen (John Wiley & Sons).
  • Cl, C2,... Cn represent the number of carbon atoms. Therefore, C1 has 1 carbon Used to represent a substituent of
  • substitution refers to replacing one or more hydrogen atoms in an organic compound or a substituent with another atom or atomic group. It is also possible to remove one hydrogen atom and substitute with a monovalent substituent, and it is also possible to remove two hydrogen atoms and substitute with a divalent substituent.
  • substituents examples include alkyl, cycloalkyl, alkaryl, cycloalkyl, alkyl, alkoxy, carbocyclic group, heterocyclic group, halogen, hydroxy, thiol, cyano, nitro, amino, carboxy, carbamoyl, and acyl. , Asilamino, thiocarboxy, amide, carbol, thiocarbol, sulfol or sulfiel, but are not limited thereto.
  • the “optionally substituted amino” means an amino, which may be substituted at one or two places with alkyl, aryl, aryl or arylalkyl.
  • protecting reaction refers to Boc (t-butoxycarbol), acetyl, benzyl, Cbz (benzyloxycarbol), Fmoc (9-fluorenylmethoxycarbonyl), and the like.
  • Boc t-butoxycarbol
  • acetyl benzyl
  • Cbz benzyloxycarbol
  • Fmoc 9-fluorenylmethoxycarbonyl
  • deprotection reaction refers to a reaction for removing a protecting group as listed above.
  • trifluorene is used for Boc (t-butoxycarbol).
  • TF A acetic acid
  • PdZC for benzyl ether
  • amino acids in the sequence may be used in other protein structures, such as cationic regions or substrate molecule binding sites, without appreciable loss or loss of interaction binding capacity.
  • Amino acid It is the interaction capacity and properties of a protein that define the biological function of a protein.
  • certain amino acid substitutions may be made in the amino acid sequence, or at the level of its DNA coding sequence, resulting in a protein that retains its original properties after the substitution. Accordingly, various modifications may be made to the peptide disclosed herein or the corresponding DNA encoding this peptide without appreciable loss of biological utility.
  • hydrophobicity index of amino acids can be considered.
  • the importance of the hydrophobic amino acid index in conferring interactive biological functions on proteins is generally recognized in the art (Kyte. J and Doolittle, RFJ Mol. Biol. 157 (1): 105-132, 1982).
  • the hydrophobic nature of amino acids contributes to the secondary structure of the resulting protein, which in turn defines the interaction of that protein with other molecules (eg, enzymes, substrates, receptors, DNA, antibodies, antigens, etc.).
  • Each amino acid is assigned a hydrophobicity index based on its hydrophobicity and charge properties.
  • one amino acid can be replaced by another amino acid having a similar hydrophobicity index and still yield a protein having a similar biological function (e.g., an equivalent protein in enzymatic activity). It is well known.
  • the hydrophobicity index is preferably within ⁇ 2, more preferably within ⁇ 1, and even more preferably within ⁇ 0.5. It is understood in the art that such substitution of amino acids based on hydrophobicity is efficient. As described in US Pat. No.
  • hydrophilicity indices have been assigned to amino acid residues: arginine (+3.0); lysine (+3.0); Aspartic acid (+ 3.0 ⁇ 1); Glutamic acid (+ 3.0 ⁇ 1); Serine (+0.3); Asparagine (+0.2); Glutamine (+0.2); Glycine (0); Threonine (10.4); Proline (10.5 ⁇ 1); Alanine (10.5); Histidine (10.5); Cystine (11.0); Methionine (11.3); Valine (1-1.5); Leucine (1-1.8); Isoloisin (1-1.8); Tyrosine (1-2.3); Hue-alanan (1-2.5); and Tryptophan (3.4) .
  • an amino acid can be substituted for another that has a similar hydrophilicity index and still provide a bioisostere.
  • the hydrophilicity index is preferably within ⁇ 2, more preferably within ⁇ 1, and even more preferably within ⁇ 0.5.
  • conservative substitution refers to an amino acid substitution in which the hydrophilicity index or Z and hydrophobicity index of the amino acid to be replaced with the original amino acid are similar to those described above. Replacement. Examples of conservative substitution include, for example, those having a hydrophilicity index or a hydrophobicity index within ⁇ 2, preferably within ⁇ 1, more preferably within ⁇ 0.5. But not limited to them.
  • conservative substitutions are well known to those skilled in the art and include, for example, substitutions within each of the following groups: arginine and lysine; glutamic and aspartic acid; serine and threonine; glutamine and asparagine; Leucine, and isoleucine, but are not limited thereto.
  • variant refers to a substance in which a substance such as an original peptide or polypeptide is partially changed.
  • variants include substitutional variants , Addition variants, deletion variants, truncated variants, allelic variants and the like.
  • variants include one or more substitutions, additions and Z or deletions, or one or more substitutions, additions and Z or deletions with respect to a reference nucleic acid molecule or peptide. But not limited to them.
  • Alleles refer to genetic variants that belong to the same locus and are distinct from each other. Therefore, “allelic variant” refers to a variant that has an allelic relationship to a certain gene.
  • allelic variants usually have sequences that are identical or very similar to their corresponding alleles, usually have nearly the same biological activity, but rarely have different biological activities. May have activity.
  • “Species homolog or homolog” refers to homology (preferably 60% or more homology, more preferably 80% or more) of a certain gene at the amino acid level or nucleotide level with a certain gene. , 85% or more, 90% or more, 95% or more homology). Homology can be calculated using BLAST software. A method for obtaining such a species homolog is apparent from the description of the present specification.
  • the term "ortholog” is also called an orthologous gene, and refers to a gene derived from a common ancestral species, Tseidai, which has two genes.
  • orthologs For example, taking the hemoglobin gene family with a multigene structure as an example, human and mouse ⁇ -hemoglobin genes are orthologs.Human ⁇ -hemoglobin gene and j8 hemoglobin gene are paralogs (genes generated by gene duplication). is there. Orthologs are useful for estimating molecular phylogenetic trees. Orthologs can usually perform the same function as the original species in another species, so the orthologs of the present invention can also be useful in the present invention.
  • conservatively modified variant refers to a nucleic acid that encodes the same or essentially the same amino acid sequence, and essentially the same if the nucleic acid does not encode an amino acid sequence. Sequence. Due to the degeneracy of the genetic code, many functionally identical nucleic acids encode any given protein. For example, the codons GCA, GCC, GCG, and GCU all encode the amino acid alanine.
  • each codon in the nucleic acid (except AUG, which is usually the only codon for methionine, and TGG, which is usually the only codon for tryptophan) 1S Produces functionally identical molecules It will be understood that this can be modified.
  • each silent variation of a nucleic acid which encodes a polypeptide is implicit in each described sequence.
  • modifications may be made to avoid substitution of the amino acid cysteine, which greatly affects the conformation of the polypeptide.
  • base sequence modification methods include cleavage with a restriction enzyme or the like, ligation treatment with a DNA polymerase, Klenow fragment, DNA ligase, or the like, site-specific base substitution using a synthetic oligonucleotide, or the like. (Site-directed mutagenesis; Mark Zoller and Michael Smith, Methods in Enzymology, 100, 468-500 (1983)) You can do it too.
  • amino acid addition, deletion, or modification can also be performed to produce a functionally equivalent polypeptide.
  • Substitution of an amino acid refers to substitution of the original peptide with one or more, for example, 1 to: L0, preferably 1 to 5, more preferably 1 to 3 amino acids.
  • the addition of amino acids refers to adding one or more, for example, 1 to 10, preferably 1 to 5, and more preferably 1 to 3 amino acids to the original peptide chain.
  • Amino acid deletion refers to deletion of one or more, for example, 1 to 10, preferably 1 to 5, and more preferably 1 to 3, amino acids from the original peptide.
  • Amino acid modifications include amidation, carboxylation, sulfation, halogenation, shortening, lipidation, phosphorylation, alkylation, glycosylation, phosphorylation, hydroxylation, hydroxylation, acylation (eg, acetyl ) And other forces.
  • the amino acid to be substituted or added may be a natural amino acid or a non-natural amino acid or an amino acid analog. Natural amino acids are preferred.
  • peptide derivative refers to a compound that differs from a peptide. But at least one chemical or biological function equivalent to that of the peptide.
  • peptide analogs include those in which one or more amino acid analogs or amino acid derivatives have been added or substituted with the original peptide.
  • Peptide analogs have the same functional capabilities as the original peptide (e.g., similar P Ka values, similar functional groups, similar binding modes to other molecules, Such additions or substitutions have been made to be substantially similar to those of similar gender.
  • Such peptide analogs can be made using techniques well known in the art.
  • a peptide analog can be a polymer that includes an amino acid analog.
  • a nucleic acid molecule may have a portion of the nucleic acid sequence deleted or other as described above, as long as the expressed peptide has substantially the same activity as the native peptide. It may be replaced by a base or another nucleic acid sequence may be partially inserted. Alternatively, another nucleic acid may be bound to the 5 'end and the Z or 3' end. Alternatively, a nucleic acid molecule which encodes a peptide-encoding gene under stringent conditions and encodes a peptide having substantially the same function as the peptide may be used. Such genes are known in the art and can be used in the present invention.
  • Such a nucleic acid can be obtained by a well-known PCR method, and can also be chemically synthesized. These methods may be combined with, for example, a site-specific displacement induction method, a hybridization method, or the like.
  • substitution, addition or deletion of a peptide or polypeptide refers to the replacement, addition or removal of an amino acid or a substitute thereof with respect to the original peptide or polypeptide, respectively. That means.
  • Techniques for such substitution, addition or deletion are well known in the art, and examples of such techniques include site-directed mutagenesis techniques.
  • the number of substitutions, additions or deletions may be any number as long as the number is one or more.Such numbers may vary depending on the variant having the substitution, addition or deletion, and the intended function (for example, hormone As long as the information transfer function of the site power-in is maintained. For example, such a number can be one or several, and And preferably less than 20%, less than 10%, or less than 100, less than 50, less than 25, etc. of the total length.
  • physiologically active peptide and the like, and fragments and variants thereof used in the present invention can be produced using genetic engineering techniques.
  • vector refers to a vector capable of transferring a target polynucleotide sequence to a target cell.
  • vectors are capable of autonomous replication in host cells such as prokaryotic cells, yeast, animal cells, plant cells, insect cells, animal individuals and plant individuals, or capable of incorporation into chromosomes, Those containing a promoter at a position suitable for transcription of the polynucleotide of the present invention are exemplified.
  • cloning vectors those suitable for cloning are referred to as “cloning vectors”.
  • Such a closing vector usually contains a multiple closing site containing a plurality of restriction enzyme sites.
  • Preferred vectors include plasmids, phages, cosmids, episodes, viral particles or viruses, and DNA fragments that can be integrated (ie, fragments that can be integrated into the host genome by homologous recombination). It is not limited to.
  • Preferred viral particles include, but are not limited to, adenovirus, baculovirus, parvovirus, herpes virus, box virus, adeno-associated virus, semliki forest virus, vaccinia virus and retrovirus.
  • vector refers to a circular double stranded DNA loop into which additional DNA segments can be ligated.
  • viral vector Another type of vector is a viral vector, wherein additional DNA segments can be ligated into the viral genome.
  • Certain vectors eg, bacterial vectors having a bacterial origin of replication and episomal mammalian vectors
  • bacterial vectors having a bacterial origin of replication and episomal mammalian vectors are capable of autonomous replication in a host cell into which they are introduced.
  • Other vectors e.g., non-episomal mammalian vectors
  • certain vectors may direct the expression of genes to which they are operably linked.
  • One such vector is referred to herein as an “expression vector”.
  • the term "expression vector” refers to a nucleic acid sequence in which various regulatory elements are operably linked in a host cell in combination with a structural gene and a promoter that regulates its expression.
  • the regulatory elements may preferably include a terminator, a selectable marker such as a drug resistance gene, and an enhancer. It is well known to those skilled in the art that the type of expression vector of an organism (eg, an animal) and the type of regulatory element used may vary depending on the host cell.
  • Examples of the "recombinant vector” for prokaryotic cells that can be used in the present invention include pc DNA3 (+), pBluescript-SK (+ Z-I), pGEM-T, pEF-BOS, pEGFP, pHAT, pUC18, pFT-DESTTM42GATEWAY ( Examples of the “recombinant vector” for animal cells that can be used in the present invention include pcDNAI / Amp, pcDNAI, pCDM8 (all sold from Funakoshi), pAGE107 [Japanese Unexamined Patent Publication No. 3-229 (Invitrogen). ), PAGE103 Q [. Biochem., 101, 1307 (1987)], ⁇ o, pAMoAQ [. Biol. Chem., 268, 22782--22787 (1993)], mouse stem cell virus (Murine Stem Cell Virus) (MSCV ), PEF-BOS, pEGFP and the like.
  • terminal 1 is a sequence located downstream of a region encoding a gene protein and involved in terminating transcription when DNA is transcribed into mRNA and adding a poly A sequence. Terminators are known to be involved in mRNA stability and affect gene expression levels.
  • promoter refers to a region on DNA that determines the transcription start site of a gene and directly regulates the frequency of transcription, and is a base sequence to which RNA polymerase normally starts transcription by binding. . Therefore, in the present specification, a portion of a gene having a promoter function is referred to as a “promoter portion”.
  • the promoter region is usually within about 2 kbp upstream of the first exon of the putative protein coding region. Therefore, the promoter region can be estimated by predicting the protein coding region in the genomic base sequence using DNA analysis software.
  • the putative promoter region varies for each structural gene, but is usually, but not limited to, upstream of the structural gene, and may be downstream of the structural gene. Preferably, the putative promoter region is also within about 2 kbp upstream of the first exon translation initiation force.
  • the “origin of replication” refers to a specific region on a chromosome where DNA replication starts.
  • the origin of replication can either be provided by constructing the vector to include an endogenous origin, or can be provided by the chromosomal replication machinery of the host cell. If the vector integrates into the host cell chromosome, the latter may be sufficient.
  • one of skill in the art can transform mammalian cells by a method of co-transforming a selectable marker with the DNA of the present invention. Examples of suitable selectable markers are dihydrofolate reductase (DHFR) or thymidine kinase (see US Pat. No. 4,399,216).
  • DHFR dihydrofolate reductase
  • thymidine kinase see US Pat. No. 4,399,216.
  • tissue-specific regulatory elements are known in the art.
  • suitable tissue-specific promoters include developmentally regulated promoters (eg, the mouse hox promoter (Kessel and Gruss (1990) Science 249, 374-379) and ⁇ -fe Topoprotein promoter (Campes and Tilghman (1989) Genes Dev. 3, 537-546)), albumin promoter (liver-specific; Pinkert et al. (1987) Genes Dev.
  • lymph-specific promoter Calame and Eaton (1988) Adv. Immunol. 43, 235—275
  • T cell receptors Winoto and Baltimore (1989) EMBO J. 8, 729—733
  • immunoglobulins Bonerji et al. (1983) Cell
  • neuron-specific promoters eg, nerve fiber promoters; Byrne and Ruddle (1989) Proc. Natl. Acad. Sci. USA 86) , 5473-5477
  • a spleen-specific promoter e.g., whey promoter; US Pat. No. 4,873,316 and European Application Publication Nos. 264, 166.
  • the term "ennosense” refers to a sequence used to increase the expression efficiency of a target gene. Such enos are well known in the art. A plurality of enhancers can be used, but one may be used! /, And no need to use! /.
  • operably linked refers to a transcription / translation control sequence (eg, promoter, henno, saccharin, etc.) or translation control that has expression (operation) of a desired sequence. It means to be placed under the control of the sequence.
  • the promoter In order for a promoter to be operably linked to a gene, the promoter is usually, but not necessarily, positioned immediately upstream of the gene.
  • any technique for introducing a nucleic acid molecule into a cell may be used. Examples thereof include transformation, transduction, and transfection. Techniques for introducing such nucleic acid molecules are well known and commonly used in the art, and are described in, for example, Ausubel FA et al. (1988), Current Protocols in Molecular Biotechnology, Wiley, New York, NY ; Sambrook J et al. (1987) Molecular Cloning: A Laboratory Manual, 2nd Ed. And its third edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. Tsuchiya, 1997. Introduction of the gene can be confirmed using the methods described herein, such as Northern plot, Western plot analysis, or other well-known conventional techniques.
  • any of the above-described methods for introducing DNA into cells can be used, and examples thereof include transfection, transduction, and transformation (for example, calcium phosphate method, Ribosome method, DEAE dextran method, electroporation method, method using particle gun (gene gun), etc.).
  • transformant refers to all or a part of an organism such as a cell produced by transformation.
  • examples of the transformant include prokaryotic cells, yeast, animal cells, plant cells, insect cells, and the like.
  • a transformant is also called a transformed cell, a transformed tissue, a transformed host, or the like, depending on the target.
  • the cells used in the present invention may be transformants. In the present invention! For genetic manipulation, etc.!
  • the prokaryotic itoda cell may be a prokaryotic cell belonging to the genus Escherichia, Serratia, Bacillus, Brevibacterium, Corynebacterium, Panyu, Microbacterium, Pseudomonas, or the like, for example, Escherichia coli XL1-Blue II Escherichia coli XL2-Blue Escherichia coli DH1, BL-21 and JM109 are exemplified.
  • animal cells include mouse's myeloma cells, rats, CHO cells, BHK cells, African green monkeys, which are myeloma cells, mouse'ino, ibridoma cells, Chinese'no, and Muster cells.
  • Examples include kidney cells, human leukemia cells, HBT5637 (JP-A-63-299), and human colon cancer cell lines.
  • African green monkeys such as ps20 and NSO for mouse 'myeloma cells, YB2Z0 for rat' myeloma cells, HEK293 (ATCC: CRL-1573) for human fetal kidney cells, and BALL-1 for human leukemia cells
  • Kidney cells include COS-1 and COS-7
  • human colon cancer cell lines include HCT-15, human neuroblastoma SK—N—SH, SK—N—SH—5Y, mouse neuroblastoma Neuro2A, etc. Is exemplified.
  • any method for introducing a recombinant vector can be used as long as it is a method for introducing DNA, for example, a calcium chloride method, an etatroporation method (Methods.Enzymol. , 194, 182 (1990)], lipofection method, spheroplast method [Proc. Natl. Acad. Sci. USA, 84, 1929 (1978)], lithium acetate method Q [. Bacteriol., 153, 163 (1983) Natl. Acad. Sci. USA, 75, 1929 (1978).
  • the transient expression of the Cre enzyme, DNA mapping on the chromosome, etc., used in the method for removing a genome or a locus used in the present specification, may be performed by cell type. It is well known in this field, as described in the separate study protocol series “FISH Experiment Protocol Human: Genome Analysis Power Chromosomes and Genetic Diagnosis” by Kenichi Matsubara and Hiroshi Yoshikawa, supervised by Shujunsha (Tokyo).
  • “detection” or “quantification” of gene expression can be achieved using an appropriate method including, for example, mRNA measurement and immunological measurement methods.
  • the molecular biological measurement method include a Northern blot method, a dot plot method, and a PCR method.
  • the immunological measurement method include, for example, an ELISA method using a microtiter plate, an RIA method, a fluorescent antibody method, a Western blot method, and an immunohistochemical staining method.
  • Examples of the quantification method include an ELISA method and an RIA method. Genetic analysis using an array (for example, a DNA array or a protein array) can also be performed.
  • DNA arrays are widely reviewed in Shujunsha, edited by Cell Engineering, “DNA Microarrays and Latest PCR Methods”. Protein arrays are described in detail in Nat Genet. 2002 Dec; 32 Suppl: 526-32.
  • Methods for analyzing gene expression include, but are not limited to, RT-PCR, RACE, SSCP, immunoprecipitation, two-hybrid systems, and in vitro translation, as described above. Such a further analysis method is described in, for example, Genome Analysis Experimental MethodYusuke Nakamura Lab ' Mayuaru, Editing' Yusuke Nakamura Yodosha (2002), etc. All are incorporated by reference.
  • expression level refers to the level of expression of a polypeptide or mRNA in a target cell or the like. Such expression levels are evaluated using the antibody of the present invention by any appropriate method including immunological measurement methods such as ELISA, RIA, fluorescent antibody, western blotting, and immunohistological staining.
  • the expression level of the peptide at the mRNA level can be mentioned.
  • change in expression level refers to the expression level of the polypeptide of the present invention at the protein level or mRNA level, which is evaluated by any appropriate method including the above-described immunological measurement method or molecular biological measurement method. Means increase or decrease.
  • upstream refers to a position at the 5 ′ end of a particular reference point force polynucleotide.
  • downstream also indicates a position at which a specific reference point force is also located at the 3 ′ end of the polynucleotide.
  • base paired and “Watson & Crick base paired” are used synonymously in the present specification, and similar to those found in double-stranded DNA, adenine residues are used.
  • complementary or “complement” is used herein to refer to a polynucleotide that is capable of forming a Watson & Crick base pair with another specific polynucleotide in its entirety. Shows the sequence.
  • a first polynucleotide is considered to be complementary to a second polynucleotide if each base of the first polynucleotide is paired with its complementary base.
  • the complementary bases are generally A and T (or A and U) or C and G.
  • complementary is used as a synonym for "complementary polynucleotide,” “complementary nucleic acid,” and “complementary nucleotide sequence.” These terms apply to a pair of polynucleotides based solely on their sequence, and do not apply to a particular set of two polynucleotides in effect that are in association.
  • a transformant derived from a microorganism, animal cell, or the like having a recombinant vector into which DNA encoding the peptide (for example, insulin or a variant or fragment thereof) used in the present invention has been incorporated, can be subjected to ordinary culture.
  • the peptide of the present invention can be produced by culturing according to the method to produce and accumulate the polypeptide of the present invention, and collecting the peptide of the present invention from the culture of the present invention.
  • the method of culturing the transformant of the present invention in a medium can be performed according to a usual method used for culturing a host.
  • a prokaryote such as Escherichia coli, or a medium for culturing a transformant obtained by using a eukaryote such as yeast as a host may be assimilated by the organism of the present invention.
  • the medium contains a carbon source, a nitrogen source, inorganic salts, and the like, and can efficiently culture the transformant, a natural medium or a synthetic medium may be used.
  • glucose, flatatose, sucrose, glycerol, carbohydrates such as molasses, starch or starch hydrolysate, acetic acid, and propion containing these can be used as long as each microorganism can assimilate.
  • Organic acids such as acids and alcohols such as ethanol and propanol can be used.
  • Nitrogen sources include ammonia, ammonium chloride, ammonium sulfate, ammonium acetate, ammonium phosphate, and other inorganic or organic acid ammonium salts, and other nitrogen-containing substances.
  • peptone, meat extract, yeast extract, corn steep liquor, casein hydrolyzate, soybean meal and soybean meal hydrolyzate, various fermented cells and digested products thereof can be used.
  • potassium (II) phosphate potassium (II) phosphate, magnesium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate, calcium carbonate, and the like can be used.
  • Culture is performed under aerobic conditions such as shaking culture or deep aeration stirring culture.
  • the culture temperature is 15 to 40 ° C, and the culture time is usually 5 hours to 7 days.
  • the pH is maintained at 3.0 to 9.0.
  • the pH is adjusted using an inorganic or organic acid, an alkaline solution, urea, calcium carbonate, ammonia, or the like. If necessary, an antibiotic such as ampicillin or tetracycline may be added to the medium during the culture.
  • an inducer may be added to the medium, if necessary.
  • an inducer may be added to the medium, if necessary.
  • culture a microorganism transformed with an expression vector using the trp promoter such as isopropyl-1- ⁇ -D-thiogalatatopyranoside.
  • indole acrylic acid or the like may be added to the medium. Cells or organs into which the gene has been introduced can be cultured in large quantities using a jar armmenter.
  • the medium for culturing the cells of the present invention may be a commonly used RPMI 1640 medium (The Journal of the American Medical Association). , 199, 519 (1967)), Eagle's MEM medium (Science, 122, 501 (1952)), DMEM medium (Virology, 8, 396 (1959)), 199 medium (Proceedings of the Society for the Biological Medicine) 73, 1 (1950)), or a medium obtained by adding fetal calf serum or the like to such a medium.
  • Cultivation is usually carried out for 1 to 7 days under conditions such as pH 6 to 8, 25 to 40 ° C, and the presence of 5% C02. If necessary, antibiotics such as kanamycin, penicillin, and streptomycin may be added to the medium during the culturing.
  • a conventional enzyme commonly used in the art is used. Isolation or purification techniques can be used. For example, when the peptide used in the present invention secretes the peptide used in the present invention extracellularly from the transformant for producing the peptide of the present invention, the culture is treated by a method such as centrifugation. , To obtain a soluble fraction.
  • a solvent extraction method such as salting out method using ammonium sulfate, etc., a precipitation method using an organic solvent, and a resin such as getylaminoethyl (DEAE)-Sepharose, DIAION HPA-75 (Mitsubishi Dirigaku).
  • Anion exchange chromatography cation exchange chromatography using a resin such as S-Sepharose FF (Pharmacia), and hydrophobic chromatography using a resin such as butyl sepharose and phenyl sepharose.
  • a purified sample can be obtained by a method such as gel filtration using molecular sieve, affinity chromatography, chromatofocusing, and electrophoresis such as isoelectric focusing.
  • the culture is centrifuged to remove the peptide from the culture. After collecting the cells and washing the cells, the cells are crushed with an ultrasonic crusher, a French press, a Mantongaulin homogenizer, a Dynomill or the like to obtain a cell-free extract.
  • the supernatant obtained by centrifuging the cell-free extract is subjected to solvent extraction, salting out using ammonium sulfate, desalting, precipitation with an organic solvent, getylaminoethyl (DEAE)-Sepharose, DIAION HPA-75
  • Anion exchange chromatography using resin Mitsubishi Chemical
  • resin such as S-Sepharose FF (Pharmacia) Cation exchange chromatography
  • hydrophobic chromatography using resins such as butyl sepharose, phenyl sepharose, gel filtration using molecular sieves, affinity chromatography, chromatofocusing, isoelectrics, etc.
  • a purified sample can be obtained by using an electrophoresis method such as point electrophoresis.
  • the peptide used in the present invention is expressed by forming an insoluble substance in the cells, cells are similarly collected, crushed, and centrifuged to obtain a precipitate fraction obtained by a conventional method. After recovering the polypeptide of the present invention, the insoluble form of the polypeptide is solubilized with a polypeptide denaturing agent. This soluble solution is diluted or dialyzed into a solution that does not contain a polypeptide denaturing agent or has a concentration of the polypeptide denaturing agent that is not so large as to denature the peptide, or is dialyzed to obtain a peptide used in the present invention. After having a normal tertiary structure, a purified sample can be obtained by the same isolation purification method as described above.
  • the protein can be purified according to the usual protein purification method Q [Evan. Sadler et al .: Methods in Enzymology, 83, 458].
  • the peptide used in the present invention can be produced as a fusion protein with another protein, and a substance having affinity for the fused protein can be purified by using affinity chromatography. [Yamakawa, Akio, Experimental Medicine, 13, 469–474 (1995)].
  • affinity chromatography Yamakawa, Akio, Experimental Medicine, 13, 469–474 (1995)
  • the method described by Lowe et al. [Proc. Natl. Acad. Sci., USA, 86, 8227-8231 (1989), Genes Devlop., 4, 1288 (1990)] Can be produced as a fusion protein with peptide A and purified by affinity chromatography using immunoglobulin G.
  • the peptide used in the present invention can be produced as a fusion protein with a FLAG peptide and purified by affinity chromatography using an anti-FLAG antibody [Proc. Natl. Acad. Sci., USA , 86, 8227 (1989), Genes Develop., 4, 1288 (1990)].
  • the proteolytic cleavage site is combined with the fusion moiety and the recombinant protein in order to allow the separation of the recombinant protein from the fusion moiety following purification of the fusion protein. And is introduced at the junction.
  • enzymes and their cognate recognition sequences include Factor Xa, thrombin, and enterokinase.
  • fusion expression vectors include PGEX (Pharmacia Biotech; Smith and Johnson (1988) Gene 67, 31-40), pMAL (New England), which fuses on-S transferase (GST), maltose E binding protein, or protein A to the target recombinant protein Biolabs, Beverly, Mass.) And pRIT5 (Pharmacia, Piscataway, NJ).
  • the antibody against the peptide itself used in the present invention can be purified by affinity chromatography.
  • the peptide used in the present invention can be transcribed in vitro according to a known method I. Biomolecular NMR, 6, 129-134, Science, 242, 1162-1164, Biochem., 110, 166-168 (1991)]. ⁇ It can be produced using a translation system.
  • the peptide used in the present invention can also be produced by a chemical synthesis method such as the Fmoc method (fluorenylmethyloxycarbol method) or the tBoc method (t-butyloxycarbol method) based on the amino acid information.
  • Chemical synthesis using a peptide synthesizer such as Advanced ChemTech, Applied Biosystems, Pharmacia Biotech, Protein Technology Instrument ⁇ Synthecell-Vega, PerSeptive, Shimadzu Corporation.
  • Structural analysis of the purified peptide used in the present invention can be performed by a method commonly used in protein tradition, for example, the method described in Protein Structural Analysis for Gene Cloying (Hisashi Hirano, Tokyo Kagaku Dojin, 1993). Can be implemented.
  • the physiological activity of the peptide used in the present invention can be measured according to a known measuring method.
  • soluble peptides useful in the present invention can also be achieved by various methods known in the art.
  • peptides can also induce intact transmembrane P75 polypeptide molecular strength by proteolysis by using specific endopeptidases in combination with exopeptidase, Edman degradation, or both.
  • This intact P75 peptide molecule can be purified from its natural source using conventional methods.
  • the intact p75 peptide can be produced by recombinant DNA technology utilizing well-known techniques for cDNA, expression vectors and recombinant gene expression.
  • the soluble peptides useful in the present invention are produced directly. And therefore Eliminates the need for the entire p75 peptide as starting material.
  • a gene encoding the desired soluble p75 peptide can be synthesized by chemical means using an oligonucleotide synthesizer. Such oligonucleotides are designed based on the amino acid sequence of the desired soluble p75 peptide.
  • the specific DNA sequence encoding the desired peptide can also be derived from the full length DNA sequence by isolation of a specific restriction endonuclease fragment or by PCR synthesis of a specific region from cDNA.
  • Deletion, substitution or addition (including fusion) of amino acids of the peptide (for example, insulin or the like) used in the present invention can be carried out by a site-directed mutagenesis method which is a well-known technique. One or several amino acids are deleted, substituted or added.
  • the present invention relates to medicaments (for example, medicaments such as vaccines, health foods, medicaments whose protein or lipid has reduced antigenicity) and cosmetics.
  • medicaments for example, medicaments such as vaccines, health foods, medicaments whose protein or lipid has reduced antigenicity
  • the medicament and cosmetics may further include a pharmaceutically acceptable carrier and the like.
  • the pharmaceutically acceptable carrier contained in the medicament of the present invention includes any substance known in the art.
  • suitable formulation materials or pharmaceutically acceptable carriers include antioxidants , Preservatives, colorants, flavors, and diluents, emulsifiers, suspending agents, solvents, fillers, bulking agents, buffers, delivery vehicles, diluents, excipients and / or pharmaceutical adjuvants. But not limited to them.
  • the medicament of the invention will be administered in the form of a composition comprising the compound, or a variant or derivative thereof, together with one or more physiologically acceptable carriers, excipients or diluents.
  • suitable vehicles may be water for injection, physiological solutions, or artificial cerebrospinal fluid, which may be supplemented with other materials common in compositions for parenteral delivery. is there.
  • an acceptable carrier, excipient, or stabilizer is non-toxic to recipients, and is preferably inert at the dosages and concentrations employed, and Phosphate, citrate, or other organic acid; ascorbic acid, a tocopherol; low molecular weight polypeptide; protein (eg, serum albumin, gelatin or immunoglobulin); hydrophilic polymer (eg, Amino acids (eg, glycine, glutamine, asparagine, arginine or lysine); monosaccharides, disaccharides and other carbohydrates (including glucose, mannose, or dextrin); chelating agents (eg, EDTA); Sugar alcohol (eg, mantole or sorbitol); salt form Counterions (such as sodium); and Z or non-ionic surface-active agents (e.g., Tween, pull port nick (pluronic) or polyethylene glycol (PEG)).
  • Phosphate, citrate, or other organic acid eg, serum albumin, ge
  • Suitable carriers include neutral buffered saline or saline mixed with serum albumin.
  • the product is formulated as a lyophilizate using suitable excipients (eg, sucrose).
  • suitable excipients eg, sucrose
  • Other standard carriers, diluents and excipients may be included as desired.
  • Other exemplary compositions include a Tris buffer at pH 7.0-8.5 or an acetate buffer at pH 4.0-5.5, which may be Sarako, Sorbitol or a suitable alternative thereof. May be included.
  • the peptide into which the sugar chain of the present invention has been introduced is compounded with a pharmaceutically acceptable carrier.
  • a pharmaceutically acceptable carrier Orally or parenterally as solid preparations such as tablets, capsules, granules, powders, powders, suppositories, etc., or liquid preparations such as syrups, injections, suspensions, solutions, sprays, etc. be able to.
  • Pharmaceutically acceptable carriers include, as described above, excipients, lubricants, binders, disintegrants, disintegration inhibitors, absorption promoters, adsorbents, humectants, and dissolution aids in solid preparations.
  • composition of the present invention can also contain substances other than the polynucleotide, polypeptide and the like of the present invention.
  • Parenteral routes of administration include, but are not limited to, intravenous injection, intramuscular injection, nasal, rectal, vaginal and transdermal.
  • excipients in solid preparations include glucose, ratatose, sucrose, D-mantol, crystalline cellulose, starch, calcium carbonate, light anhydrous silicic acid, sodium chloride, kaolin and urea.
  • lubricant in the solid preparation examples include, but are not limited to, magnesium stearate, calcium stearate, powdered boric acid, colloidal citric acid, talc, polyethylene glycol and the like.
  • binder in the solid preparation examples include water, ethanol, propanol, sucrose, D-mantol, crystalline cellulose, dextrin, methylcellulose, hydroxypropinoresenolerose, hydroxypropinolemethinoresenorelose, canoleboxy methinoresenorelose, Examples include starch solutions, gelatin solutions, polyvinylpyrrolidone, calcium phosphate, potassium phosphate, and shellac.
  • Disintegrants in solid preparations include, for example, starch, carboxymethylcellulose, carboxymethylcellulose calcium, agar powder, laminaran powder, croscarmellose sodium, sodium carboxymethyl starch, sodium alginate, sodium hydrogen carbonate, calcium carbonate, polyoxyethylene
  • examples include, but are not limited to, sorbitan fatty acid esters, sodium lauryl sulfate, starch, monoglyceride stearate, ratatose, and calcium cellulose glycolate.
  • Preferred examples of the disintegration inhibitor in a solid preparation include hydrogenated oil, sucrose, stearin , Cocoa butter and hardened oil, but are not limited thereto.
  • absorption enhancer in the solid preparation examples include, but are not limited to, quaternary ammonium bases and sodium lauryl sulfate.
  • adsorbent in the solid preparation examples include, but are not limited to, starch, ratatose, kaolin, bentonite, and colloidal keic acid.
  • humectant in the solid preparation examples include, but are not limited to, glycerin and starch.
  • solubilizer in the solid preparation examples include, but are not limited to, arginine, glutamic acid, and aspartic acid.
  • Examples of the stabilizer in the solid preparation include, but are not limited to, human serum albumin, ratatose, and the like.
  • tablets, pills and the like When preparing tablets, pills and the like as solid preparations, they may be coated with a film of a gastric or enteric substance (sucrose, gelatin, hydroxypropylcellulose, hydroxypropylmethylcellulose phthalate, etc.) if necessary.
  • Tablets include tablets coated with usual coatings as necessary, such as sugar-coated tablets, gelatin-coated tablets, enteric-coated tablets, film-coated tablets or double tablets, and multilayer tablets.
  • Capsules include hard capsules and soft capsules.
  • higher alcohols, higher alcohol esters, semi-synthetic glycerides, etc. can be added in addition to the additives listed above, but the invention is not limited thereto.
  • Preferred examples of the solvent in the liquid preparation include water for injection, alcohol, propylene glycol, macrogol, sesame oil, corn oil and the like.
  • solubilizers in liquid formulations include polyethylene glycol, propylene glycol, D-mantol, benzyl benzoate, ethanol, trisaminomethane, cholesterol, triethanolamine, sodium carbonate and sodium citrate. And the like, but are not limited thereto.
  • suspending agent in the liquid preparation examples include stearyltriethanolamine, sodium radium sulfate, laurylaminopropionic acid, lecithin, benzalco-pum chloride, Surfactants such as salted benzene, glyceryl monostearate, etc., for example, polybutyl alcohol, polybutylpyrrolidone, sodium carboxymethylcellulose, methylcellulose, hydroxymethinoresenorelose, hydroxyethinoresenorelose, hydroxyethinorescellulose And hydrophilic polymers such as hydroxypropylcellulose, but are not limited thereto.
  • the tonicity agent in the liquid preparation include, but are not limited to, sodium salt salt, glycerin, D-mantol and the like.
  • Suitable examples of the buffer in the liquid preparation include, but are not limited to, buffers such as phosphate, acetate, carbonate, and citrate.
  • the soothing agent in the liquid preparation include, but are not limited to, benzyl alcohol, benzalco-pum chloride and proforce hydrochloride.
  • Preferred examples of the preservative in the liquid preparation include, but are not limited to, noraoxybenzoic acid esters, chlorobutanol, benzyl alcohol, 2-phenylethyl alcohol, dehydroacetic acid, and sorbic acid.
  • antioxidants in liquid formulations include, but are not limited to, sulfites, ascorbic acid, a-tocopherol and cysteine.
  • the solutions and suspensions are preferably sterilized and isotonic with blood and blood.
  • these are sterilized by filtration using a nocteria retention filter or the like, blending of a bactericide or irradiation. Further, after these treatments, the mixture is solidified by freeze-drying or the like, and sterile water or a sterile injectable diluent (lidocaine hydrochloride solution, physiological saline) is used immediately before use.
  • compositions may contain coloring agents, preservatives, flavors, flavors, sweeteners and the like, as well as other agents.
  • the medicament of the present invention can be administered orally or parenterally.
  • the medicament of the present invention can be administered intravenously or subcutaneously.
  • the medicament used in the present invention may be in the form of a pyrogen-free, pharmaceutically acceptable aqueous solution.
  • the preparation of such pharmaceutically acceptable compositions takes into account pH, isotonicity, stability, etc. By doing so, those skilled in the art can easily carry out.
  • the administration method includes oral administration, parenteral administration (for example, intravenous administration, intramuscular administration, subcutaneous administration, intradermal administration, mucosal administration, rectal administration, vaginal administration, local administration to the affected area, Skin administration).
  • Formulations for such administration may be provided in any formulation.
  • Such preparations include, for example, solutions, injections, and sustained-release preparations.
  • the medicament of the present invention may contain a physiologically acceptable carrier, excipient or stabilizing agent as necessary (Japanese Pharmacopoeia 14th edition or its latest edition, Remington's Pharmaceutical sciences, 18th Edition, AR Gennaro, ed., MacK Publishing Company, 1990) and a glycan composition having the desired degree of purity, which can be prepared and stored in the form of a lyophilized cake or aqueous solution .
  • Various delivery systems are known and can be used to administer the compounds of the invention (eg, ribosomes, microparticles, microcapsules, etc.).
  • Methods of introduction include, but are not limited to, intradermal, intramuscular, intraperitoneal, intravenous, subcutaneous, intranasal, epidural, and oral routes.
  • the compound or composition can be administered by any convenient route, such as by injection or bolus injection, by absorption through epithelial or mucosal linings such as oral, rectal and intestinal mucosa, and It can be administered together with other biologically active agents. Administration can be systemic or local.
  • intraventricular injection can involve, for example, a brain attached to a reservoir, such as an Ommaya reservoir. It may be desirable to introduce it into the central nervous system by means of an intravenous catheter).
  • Pulmonary administration may also be used, for example, with the use of an inhaler or nebulizer, and formulation with an aerosolizing agent.
  • the polypeptide, polynucleotide or composition of the invention may be desirable to administer locally to the area in need of treatment (eg, central nervous system, brain, etc.);
  • the area in need of treatment eg, central nervous system, brain, etc.
  • this implant may be (Including porous, non-porous, or glue-like materials, including membranes or fibers such as sialastic membranes)
  • this implant may be (Including porous, non-porous, or glue-like materials, including membranes or fibers such as sialastic membranes)
  • the compound or composition can be delivered encapsulated in vesicles, especially ribosomes (Langer, Science 249: 1527-1533 (1990); Treat et al., Liposomes m The Therapy of Infectious). Disease and Cancer, Lo pez-Berestein and Fidler (eds.), Liss, New York, pp. 353-365 (1989); Lo pez-Berestein, ibid., Pp. 317-327; see broadly ibid).
  • vesicles especially ribosomes
  • the compound or composition can be delivered in a controlled release system.
  • a pump may be used (Langer, supra; Seft on, CRC Crit. Ref. Biomed. Eng. 14: 201 (1987); Buchwald et al., Surgery 88: 507 (1980); Saudek et al. , N. Engl. J. Med. 321: 574 (1989)).
  • polymeric materials may be used (Medical Applications of
  • a controlled sustained release system can be placed near the therapeutic target, ie, the brain, and thus requires only a portion of the systemic dose (eg, Goodson, Medical
  • the amount of the composition used in the treatment method of the present invention depends on the purpose of use, the target disease (type, severity, etc.), the patient's age, weight, sex, medical history, cell morphology or type, etc. With this in mind, those skilled in the art can easily determine.
  • the frequency of applying the treatment method of the present invention to a subject (or patient) also depends on the purpose of use, target disease (type, severity, etc.), age, weight, sex, medical history, and course of treatment of the patient. It can be easily determined by a person skilled in the art in consideration of the above.
  • the frequency includes, for example, administration once every few months (eg, once a week, once a month). It is preferable to administer once a week to one month while observing the course.
  • the dose of the peptide into which the sugar chain of the present invention is introduced varies depending on the age, body weight, symptoms, administration method and the like of the subject, and is not particularly limited.
  • Olmg ⁇ : LOg preferably 0.1 mg ⁇ : Lg, lmg ⁇ : L00 mg, 0.1 mg ⁇ : LOmg, etc.
  • it can be 0.01 mg to 100 mg, preferably 0.01 mg to 100 mg, 0.1 mg to 100 mg, 1 mg to 100 mg, 0.1 mg to 10 mg, and the like.
  • administer refers to a cell or tissue of an organism, alone or in combination with a pharmaceutical composition containing the peptide into which the sugar chain of the present invention has been introduced or a pharmaceutical composition containing the same.
  • the combination may be administered, for example, either simultaneously as a mixture, separately but simultaneously or concurrently; or sequentially.
  • “Combination" administration further includes separately administering one of the compounds or agents given first, followed by the second.
  • An abnormal condition can also be prevented or treated by administering the compound to a group of cells having an abnormality in a signaling pathway to the organism.
  • the effect of administering the compound on the biological function can then be monitored.
  • the organism is preferably a mouse, a rat, a heron, a guinea pig, or a goat, more preferably a monkey (monkey or ape), and most preferably a human.
  • the “instruction” refers to a physician, a patient, or the like who administers a method of administering or diagnosing the medicament or the like of the present invention, or a person diagnosing (possibly a patient). It is described.
  • This instruction describes a word indicating a procedure for administering the diagnostic agent, the medicine and the like of the present invention.
  • This instruction is prepared in accordance with the format prescribed by the competent authority of the country where the present invention is implemented (for example, the Ministry of Health, Labor and Welfare in Japan and the Food and Drug Administration (FDA) in the United States) and is issued by the competent authority. The approval is clearly stated. Instructions are so-called package inserts, which are usually provided on paper media, but are not limited to, for example, electronic media (eg, homepages (websites) provided on the Internet, emails, etc.). ) Can also be provided.
  • Judgment of termination of treatment according to the method of the present invention may be based on standard laboratory results from commercially available atsays or instrumentation or clinical features characteristic of disorders such as insulin (eg, neurological disorders). It can be supported by the disappearance of symptoms. Treatment can be resumed with a recurrence of a disease associated with insulin or the like (eg, a neurological disease).
  • the present invention also provides a pharmaceutical pack or kit comprising one or more containers filled with one or more components of the pharmaceutical composition of the present invention. Manufacture of pharmaceuticals or biological products,
  • a notice in the form of an agency that regulates use or sale may optionally accompany such containers, and this notice represents the agency's approval of manufacture, use or sale for administration to humans.
  • the cosmetic can be prepared while complying with the regulations specified by the authorities.
  • the sugar chain peptide binding agent of the present invention can be obtained by the following method.
  • a 1 has the same meaning as (1), Pro is a protecting group, and DEAD is getyl azodicarboxylate.
  • the present invention provides a glycopeptide in which glutamine is modified with a sugar chain.
  • This glycopeptide is characterized in that at least one amino acid residue has glutamine in the amino acid sequence of a peptide having a biological activity, and the glutamine is modified with a sugar chain.
  • modification means direct or indirect binding.
  • the glutamine modified with a sugar chain is preferably at least one dartamine contained in the peptide, and more preferably a plurality (for example, two or three), or all of the glutamine present are modified with a sugar chain. May be.
  • the bond is usually, but not limited to, a covalent bond, as long as the carbohydrate is capable of constituting the same entity as the peptide to which it is attached, other interactions (eg, hydrophobic bonds, hydrogen bonds, etc.). Bonding or the like).
  • the biologically active form of the peptide used is preferably water-soluble under at least one condition under which the enzymatic activity of transdaltaminase is exerted.
  • conditions vary depending on the transdaltaminase and the substrate used, and those skilled in the art can appropriately set such conditions.
  • Exemplary conditions include, but are not limited to, for example, pH 4 to pH 9, salt concentration OmM to: LM, and a temperature of 0 ° C to 42 ° C. Any buffer salt may be used.
  • any kind of buffer solution can be used as long as the buffer solution is pH4 to pH9.
  • the buffer solution is pH4 to pH9.
  • Tris phosphate buffer solution PH 8.0
  • phosphate Buffers pH 6.4 to 7.4
  • the preferred amount of addition is usually 0.1 to: LOO millimolar concentration is preferred. Since transdaltaminase derived from microorganisms is not dependent on calcium, the addition of potassium salt with potassium salt is not necessary.
  • transdaltaminase examples include those produced by microorganisms such as Streptoverticillium sp. (Eg, Streptoverticillium sp. Strain s-8112), those derived from animals such as guinea pigs and humans, and those derived from fish. Can also be used. In addition, it is also commercially available as an adhesive for general-purpose foods, and in the present invention, such a commercially available transdaltaminase is also used. More preferably, such conditions may be “mild conditions”. Such mild conditions include, but are not limited to, conditions under which the intramolecular disulfide bond is not broken and conditions under which the steric structure is not changed.
  • Conditions that determine such mild conditions include, for example, peptide or protein concentration, substrate concentration, calcium ion concentration, PH, temperature, type and concentration of coexisting salt, the presence or absence of GSH, and the presence or absence of a reducing agent. But not limited to them. If necessary, a plurality of these factors may be considered. Specific examples of such conditions include, for example, insulin (0.9 lmM), Lac. Amino Hex (0.9 mM) ⁇ CaC12 (5 mM) ⁇ Tris-HCl (20 mM, pH 7.5), transglutaminase (3.5 U / ml); Examples include, but are not limited to, reaction at 37 ° C and 30 minutes.
  • GSH promotes the reaction of transdaltaminase with wild-type insulin, but such a supplemented koji is not preferred because it has an adverse effect on the biological activity of the peptide.
  • Other mild conditions include, for example, setting the concentration of a peptide or protein (eg, a protein containing a lysine residue (eg, insulin)) to 0.2 mM or less (preferably, 0. ImM or less).
  • the calcium concentration must be 2 mM or more (preferably 5 mM or more, more preferably 10 mM), and the reaction at 37 ° C when GSH is removed is shortened (for example, 3 hours or less, preferably 1 hour or less).
  • the use of a reduced amount of the reducing agent by exchanging a small amount or a buffer without affecting the reducing agent may be mentioned, but is not limited thereto.
  • the transdaltaminase used in the method of the present invention may be of any origin, including those derived from animals (derived from various tissues and plasma components), those derived from microorganisms, and those derived from microorganisms. It may be made in
  • the reaction product is subjected to centrifugation, chromatography (eg, reversed-phase HPLC, affinity chromatography with a lectin column, gel filtration, etc.) in the relevant field.
  • chromatography eg, reversed-phase HPLC, affinity chromatography with a lectin column, gel filtration, etc.
  • the obtained glycan-linked insulin can be isolated as a mixture of a plurality of types. In addition, it may include those modified with a plurality of different sugar chains or other substituents.
  • reaction products includes high performance liquid chromatography, nuclear magnetic resonance spectra, and mass spectrometry. (Such as MALDI TOF mass spectrum analysis).
  • the amino acid residue substituted with glutamine in the peptide having a biological activity in the present invention may be present on the surface of the peptide.
  • the amino acid residue substituted with glutamine in the peptide having a biological activity in the present invention may be present on the surface of the peptide.
  • the amino acid residue substituted with glutamine in the peptide having a biological activity in the present invention may be present on the surface of the peptide.
  • Identification of amino acid residues on such a surface can be performed by crystal structure analysis well known in the art. Methods for determining the spatial conformation of a peptide are known in the art and include, for example, X-ray crystallography, and two-dimensional nuclear magnetic resonance spectroscopy. Methods for identifying parts present on a surface include methods for identifying epitopes.
  • glutamine may be present in the wild-type form of the biologically active peptide or, if not present in the wild-type, may replace or add glutamine.
  • the production of such additional or substituted peptides can be performed synthetically or genetically. Such production methods can be performed using techniques well known to those skilled in the art, as described herein above and illustrated in the Examples.
  • the position at which glutamine is substituted or added is preferably at a site susceptible to protease digestion. Easily subject to protease digestion! / The ability to convert to glutamine and “mask” it with sugar chains to allow it to undergo protease digestion.
  • Whether the site is susceptible to such protease digestion can be determined by incubating the peptide with any protease and determining the sequence of the digested partial peptide.
  • the number of glutamine residues into which a sugar chain is introduced is at least one. Even if sugar chains are introduced into two or more, three or more glutamine residues, it does not matter. When sugar chains are introduced into a plurality of glutamine residues, the sugar chains to be introduced may be the same or different. Alternatively, even when a sugar chain is introduced into one glutamine residue, the introduced sugar chain may be uniform or a mixture. I prefer something that is even! /.
  • the reaction occurs only by mixing a peptide having a free cysteine residue (thiol group) and a sugar chain-peptide binder containing a compound represented by the general formula (V) in a buffer solution. A derivative into which the chain peptide binding agent has been introduced is obtained.
  • the peptide moiety can be produced synthetically or genetically using techniques well known in the art, and such synthetic and genetic engineering methods are described elsewhere herein. The place is detailed. Further, the production of a peptide having glutamine at at least one amino acid residue can also be produced using synthesis and Z or genetic engineering techniques well known in the art. In such a case, if the wild-type peptide does not have glutamine at at least one amino acid residue, the amino acid sequence can be modified to have glutamine within the range. Such modification methods are also well known in the art and are described herein.
  • the glycopeptide of the invention has at least one selected from the group consisting of substitution, addition and Z or deletion of one or several amino acid residues, and Z or sugar chain and lipid group. It may be advantageous to further include a biomolecule. Such further modifications of the glycopeptide can be made when it is desired to impart or eliminate or regulate the desired function. Making such modifications can be performed by one of ordinary skill in the art.
  • the present invention provides a method for preparing a functional glycopeptide via a sugar chain-peptide binding agent.
  • a method for preparing a functional glycopeptide via a sugar chain-peptide binding agent includes the steps of: A) providing a target peptide containing at least one dartamine at an amino acid residue; and B) introducing a sugar chain-peptide binding agent into the glutamine.
  • the peptide of interest has at least one amino acid residue other than glutamine in the wild-type form of the peptide.
  • the peptide may be provided by substituting with a min, or a wild-type peptide having glutamine at such a position may be directly provided.
  • Such a glutamine residue may be present within 12 amino acids from the C-terminal or N-terminal of the peptide, but is not limited thereto.
  • the method of the present invention further comprises the step of identifying a residue in the amino acid sequence of the peptide of interest that does not lose the biological activity of the peptide of interest even when converted to glutamine. .
  • a functional glycopeptide can be steadily produced.
  • at least one amino acid residue in which glutamine is replaced may be a residue identified by such a method, and a residue other than such a residue may be modified.
  • Such an identification step may include, for example, identifying amino acid residues on the surface of the glycopeptide.
  • the target peptide is provided by identifying a site susceptible to protease digestion in the wild-type form of the target peptide and, if glutamine is not present at that site, substituting the site susceptible to protease digestion with glutamine. obtain.
  • the peptide to be modified may be a wild-type peptide or a synthetic artificially modified peptide.
  • transdaltaminase The introduction of a sugar chain into glutamine usually utilizes transdaltaminase, and the sugar chain contains, but is not limited to, an amino group. Since transdaltaminase has high specificity for glutamine, it is advantageously used to introduce a sugar chain into only glutamine residues.
  • the amino group and the sugar chain may be directly bonded, or may be bonded via a spacer.
  • sugar chains can be used in the present invention.
  • the sugar chains used advantageously comprise ratatose or sialic acid. More preferably, the sugar chain used further advantageously comprises sialic acid.
  • examples of the sugar chain used in the present invention include, for example, Lac, Sia a2, 3 — Lac, Sia a2, o— Lac, uc ⁇ ⁇ , 2— Lac, Sia a2, 8— a 2, 3— Lac, 3 ⁇ 4ia 2, 8— 3 ⁇ 4ia 2, 6— Lac, Sia 2, 8— Sia a 2, 3— (Fuc 1, 2—) Lac, 3 ⁇ 4ia 2 , 8-Sia- a ⁇ 2, 6— (Fuc—a— 1, 2—) Lac and other trisaccharides, tetrasaccharides, pentasaccharides, hexasaccharides, or n-saccharides (where n is 7 or more) , And the like are not limited thereto.
  • These exemplified sugar chains may be linear, branched, or ⁇ -shaped. When the sugar chain is branched, the sugar chain is preferably in the form of a double chain, a triple chain, or
  • the size of the sugar chain to be introduced may also be any.
  • the sugar chains used are at least disaccharide in size, more preferably at least trisaccharide in size.
  • Such sugar chains may be linear, branched or cyclized.
  • the method for producing a glycopeptide via a sugar chain-peptide binding agent of the present invention may further include a step of further elongating the sugar chain.
  • a step of further elongating the sugar chain By having an elongation step, in principle, sugar chains can be added indefinitely.
  • transglutaminase when transglutaminase is used, the limit of the size of the sugar chain to be introduced, which is a limit, is effectively eliminated.
  • Such sugar chain elongation is due to ⁇ ⁇ , 4-galatatotransferase, 1,3-galatatotransferase, ⁇ , 4 galactosyltransferase, / 31,3-galactosyltransferase, / 31 , 6—galactosyltransferase, a 2,6 sialyltransferase, 1,4 galactose transferase, ceramide galatatosyltransferase, 1,2 fucose transferase, 1,3 fucose transferase, al, 4 fucose Transferase, al, 6-fucose transferase, a 1,3-N-acetylgalatatosamine transferase, al, 6-N-acetylgalatatosamine transferase, ⁇ 4,4 ⁇ -acetylgalatatosamine transferase , Polypeptide ⁇ acetyl
  • N-methylhydroxylamine hydrochloride (lOg) was dissolved in about 10 times the volume of methanol (100 ml) and cooled in an ice bath. After adding 1 equivalent (16.7 ml) of triethylamine, 1.1 equivalents of di-t-butyl dicarbonate (28.7 g) were added dropwise. After stirring for about 1 hour, the temperature was raised to room temperature and further stirred for 1 hour. The solvent was distilled off under reduced pressure, ethyl acetate and water were added to the residue for extraction, and the organic layer was dried over magnesium sulfate. Purification was performed by silica gel column chromatography to obtain the desired product (yield 63%). 'H-NMR CCDCl), ⁇ 3.16 (s, 3H), 1.49 (s, 9H)
  • TGase (manufactured by Wako Pure Chemical Industries, Ltd.) was added to a reaction solution (100 mM Tris-HCl pH 7.5 10 mM CaCl 5 mM DTT) containing ImM mastoparan and 20 mM oxamine linker.
  • reaction solution 50 mM AcOH / Na buffer pH 4.5
  • Imox's oxyamine linker with persimmon mastoparan and lOOmM glucose was reacted at 37 ° C for 24 hours.
  • the present invention relates to a sugar chain-peptide binding agent used for easily producing a glycopeptide having a uniform composition using a natural or unnatural protein and an unprotected sugar chain, and the sugar chain.
  • the present invention relates to a method for producing a glycopeptide using a peptide binding agent.

Abstract

一般式(I):   X-Y-Z   (I) [式中、XはH2N-またはHS-; Yは-A1-、-A1-O-A2-、-(CH2CH2O)n-A1-、-(CH2CH2O)n-A1-O-A2-、-A1-NH-C(=O)-A2-、-A1-C(=O)-NH-A2-、-A1-(CH2CH2O)n-NH-C(=O)-A2-、-A1-(CH2CH2O)n-C(=O)-NH-A2-等;および、 Zは-O-NH(R4)、-NH-OR4、-C(=O)-NH-NH-R4、または-C(=S)-NH-NH-R4(式中、R4は水素原子、低級アルキル、またはアリール] で表される化合物を含む糖鎖-ペプチド結合剤、および該糖鎖-ペプチド結合剤を用いた糖ペプチドの製造方法。

Description

糖鎖一ペプチド結合剤
技術分野
[0001] 本発明は、均一な組成を有する糖ペプチドおよび糖タンパク質 (特記しない限り、 本明細書において、これらを総称して「糖ペプチド」と呼ぶ)を簡便に製造するために 用 、る糖鎖 ペプチド結合剤、および該糖鎖 ペプチド結合剤を用 、た糖ペプチド の製造方法に関する。
背景技術
[0002] ペプチドおよびタンパク質は、生理活性物質の典型としてこれまで研究が進められ ている。生物 (特に、真核生物)は、遺伝子の転写および翻訳という機構を通じてべ プチドおよびタンパク質を生産にした後に、翻訳後修飾することが多ぐ多くのぺプチ ドおよびタンパク質は、翻訳後修飾により機能を発揮し、調節 (例えば、増強または低 減)される。翻訳後修飾としては、例えば、アミノ酸レベル (すなわち、シグナルぺプチ ド切断など)のもののほか、例えば、糖鎖、脂質などの他の生体分子による修飾が挙 げられる。この中で、糖鎖による修飾は代表的なものであり、真核生物において非常 に多くのペプチドおよびタンパク質は、糖鎖を有すると言われている。
このような糖鎖修飾を模倣して、近年、機能を調節した人工的複合ペプチドを生産 する試みがなされており(特許文献 1〜4)、バイオ医薬にも利用されている。
しかし、ペプチドまたはタンパク質の特定の部位に特定の糖鎖をィ匕学的に導入する 方法、とりわけペプチドまたはタンパク質の複数の箇所に複数本の糖鎖を均一に導 入する方法は限られている。例えば、非特許文献 1には、数段階の合成反応を経て 得られる糖修飾体をインスリンに導入する方法が記載されており、非特許文献 2には 、非天然のペプチドを合成した後に糖鎖を導入する方法が記載されている。しかし、 いずれも簡便さや大量生産の観点から適した製造方法とは言い難ぐ、組成が一定 して 、るバイオ医薬を生産することは困難な状況である。
特許文献 1:特開 2000 - 300287
特許文献 2:欄 2001— 278899 9
非特許文献 l:Angw. Chem, 2004, 43, 1516
非特許文献 2: Am. Chem. Soc, 2003, 125, 1702
発明の開示
発明が解決しょうとする課題
[0003] 本発明の課題は、組成が一定した糖ペプチドを簡便に生産するために用いる糖鎖 ペプチド結合剤、および該糖鎖 ペプチド結合剤を用 Vヽて糖ペプチドを製造する 方法、を提供することにある。
課題を解決するための手段
[0004] すなわち、本発明は、(1)一般式 (I):
X-Y-Z (I)
[式中、 Xは H N—または式:
2
[化 1]
Figure imgf000003_0001
で表される基;
Yは—A1 -A'-O-A2-, -(CH CH O) —A1 -(CH CH O) A1
2 2 n 2 2 n
O - A2 - A1 - NH - C( = 0) - A2 - A1 - C( = 0) - NH - A2 - A1 -( CH CH O) NH— C( = 0)— A2 A1—(CH CH O) — C( = 0)— NH—
2 2 n 2 2 n
A2—、式:
[化 2]
Figure imgf000003_0002
で表される基、または式
[化 3]
Figure imgf000004_0001
で表される基 (式中、 A1および A2はそれぞれ独立して、置換されていてもよい C1— 1 5アルキレン、置換されて!、てもよ 、C2— 15ァルケ-レンまたは置換されて!、てもよ い C2— 15アルキ-レン; nは 1〜 5の整数; R1はヒドロキシまたは NH (R2) (式中、 R2は水素原子、低級アルキル、ァリールまたはァラルキル); R3は水素原子または— C ( = 0)— R5 (式中、 R5は低級アルキル、ァリールまたはァラルキル));および、 Zは O— NH (R4)、一 NH— OR4、 一 C ( = 0)— NH— NH— R4、または C ( = S )— NH— NH— R4 (式中、 R4は水素原子、低級アルキル、またはァリール)] で表される化合物を含む糖鎖 ペプチド結合剤、に関する。
ここで、式 (I)で表される化合物に存在するァミノ基、イミノ基等は、適切な保護基に より保護されていてもよい。
詳しくは、以下の(2)〜(11)に関する。
(2) Xが— NHおよび Zが— O— NH (R4) (式中、 R4は水素原子、低級アルキル、
2
またはァリール)である(1)の糖鎖 ペプチド結合剤。
(3) Xが式:
[化 4]
Figure imgf000004_0002
で表される基および Zが— O— NH (R4) (式中、 R4は水素原子、低級アルキル、また はァリール)である(1)記載の糖鎖 ペプチド結合剤。
(4)一般式 (Π) : H N— A1— O— NH(R4) (II)
2
(式中、 A1は置換されていてもよい CI— 15アルキレン; R4は水素原子、低級アルキ ル、またはァリール)で表わされる化合物またはその塩。
(5)—般式 (III):
[化 5]
Figure imgf000005_0001
(式中、 A1は置換されていてもよい C 1—15アルキレン; R4は水素原子、低級アルキ ル、またはァリール)で表わされる化合物またはその塩。
(6)以下の工程:
1)一般式 (IV):
H N-Y-Z (IV)
2
[式中、 Yは— A1—、— A1— O— A2—、 - (CH CH O) — A1—、 - (CH CH O)
2 2 η 2 2 : Α1 - Ο - Α2 - A1 - NH - C( = 0) - A2 - A1 - C( = 0) - NH - A2 -、 A1—(CH CH O) — NH— C( = 0)— A2 A1—(CH CH O) — C( = 0)
2 2 η 2 2 η NH - Α2 -、式:
[化 6]
Figure imgf000005_0002
で表される基、または式:
[化 7]
Figure imgf000005_0003
で表される基 (式中、 A1および A2はそれぞれ独立して、置換されていてもよい C1— 1
5アルキレン、置換されて!、てもよ 、C2— 15ァルケ-レンまたは置換されて!、てもよ い C2— 15アルキ-レン; nは 1〜 5の整数; R1はヒドロキシまたは NH (R2) (式中、
R2は水素原子、低級アルキル、ァリールまたはァラルキル); R3は水素原子または—
C ( = 0)— R5 (式中、 R5は低級アルキル、ァリールまたはァラルキル));および、
Zは O— NH (R4)、一 NH— OR4、 一 C ( = 0)— NH— NH— R4、または C ( = S
)— NH— NH— R4 (式中、 R4は水素原子、低級アルキル、またはァリール)] で表される化合物と、
グルタミン残基を有するペプチドを、
トランスダルタミナーゼの存在下で反応させる工程、および
2) 1)工程で得られたペプチドと、糖鎖を反応させる工程を包含する、
糖ペプチドの製造方法。
該製造方法に関連して、 1)一般式 (IV)で表される化合物と糖鎖を反応させる工程 、および 2) 1)工程で得られたペプチドと、グルタミン残基を有するペプチドを、トラン スグルタミナーゼの存在下で反応させる工程を包含する、糖ペプチドの製造方法に ついても行うことができる。
(7)以下の工程:
1)一般式 (V) :
[化 8]
Figure imgf000006_0001
[式中、 Yは— A1—、— A1— O— A2—、 - (CH CH O) — A1—、 - (CH CH O)
2 2 η 2 2 一 Α1 - Ο - Α2 -、 一 A1 - NH - C ( = 0) - A2 -、 一 A1 - C ( = 0) - NH - A2 -、 一 A1—(CH CH O) — NH— C ( = 0)— A2—、 一 A1—(CH CH O) — C ( = 0)
2 2 η 2 2 η NH - Α2 -、式:
[化 9]
Figure imgf000007_0001
Figure imgf000007_0002
で表される基 (式中、 A1および A2はそれぞれ独立して、置換されていてもよい C1— 1 5アルキレン、置換されて!、てもよ 、C2— 15ァルケ-レンまたは置換されて!、てもよ い C2— 15アルキ-レン; nは 1〜 5の整数; R1はヒドロキシまたは NH (R2) (式中、 R2は水素原子、低級アルキル、ァリールまたはァラルキル); R3は水素原子または— C ( = 0)— R5 (式中、 R5は低級アルキル、ァリールまたはァラルキル));および、 Zは O— NH (R4)、一 NH— OR4、 一 C ( = 0)— NH— NH— R4、または C ( = S )— NH— NH— R4 (式中、 R4は水素原子、低級アルキル、またはァリール)] で表される化合物と、
システィン残基を含有するペプチドを反応させる工程、および
2) 1)工程で得られたペプチドと糖鎖を反応させる工程を包含する、
糖ペプチドの製造方法。
該製造方法に関連して、 1)一般式 (V)で表される化合物と糖鎖を反応させる工程 、および 2) 1)工程で得られたペプチドと、システィン残基を有するペプチドを反応さ せる工程、を包含する糖ペプチドの製造方法にっ ヽても行うことができる。
(8) Zが— O— NH (R4) (式中、 R4は水素原子、低級アルキル、またはァリール)で ある(6)または(7)記載の製造方法。
(9) Yが— A1— (式中、 A1は置換されていてもよい CI— I5アルキレン)である(6) または(7)記載の製造方法。
(10) (6)〜(9)の 、ずれかに記載の製造方法で製造されうる糖ペプチド。 ( 11) (6)〜(9)の ヽずれかに記載の製造方法で製造されうる糖ペプチドを有効成 分として含有する医薬組成物。
発明の効果
[0009] 本発明は、天然または非天然のタンパク質と保護されていない糖鎖を利用して、均 一な組成を有する糖ペプチドを簡便に製造するために用いる糖鎖—ペプチド結合剤 、および該糖鎖—ペプチド結合剤を用いて糖ペプチドを製造する方法に関する。 本発明により、組成が一定している糖ペプチドを提供することが可能となるので、よ り高品質なノィォ医薬を提供することができる。
発明を実施するための最良の形態
[0010] 以下、本発明を説明する。本明細書の全体にわたり、単数形の表現は、特に言及 しない限り、その複数形の概念をも含むことが理解されるべきである。また、本明細書 において使用される用語は、特に言及しない限り、当該分野で通常用いられる意味 で用いられることが理解されるべきである。
(用語)
以下に本明細書において特に使用される用語の定義を列挙する。
[0011] 本明細書において「糖鎖」とは、単位糖 (単糖および Zまたはその誘導体)が 1っ以 上連なってできたィ匕合物をいう。単位糖が 2つ以上連なる場合は、各々の単位糖同 士の間は、グリコシド結合による脱水縮合によって結合する。このような糖鎖としては 、例えば、生体中に含有される多糖類 (グルコース、ガラクトース、マンノース、フコー ス、キシロース、 N—ァセチルダルコサミン、 N—ァセチルガラタトサミン、シアル酸な らびにそれらの複合体および誘導体)の他、分解された多糖、糖タンパク質、プロテ ォグリカン、グリコサミノダリカン、糖脂質などの複合生体分子から分解または誘導さ れた糖鎖など広範囲なものが挙げられるがそれらに限定されない。したがって、本明 細書では、糖鎖は、「多糖 (ポリサッカリド)」、「糖質」、「炭水化物」と互換可能に使用 され得る。また、特に言及しない場合、本明細書において「糖鎖」は、糖鎖および糖 鎖含有物質の両方を包含する。
本明細書において「単糖」とは、これより簡単な分子に加水分解されず、一般式 C H Oで表される化合物をいう。ここで、 n= 2、 3、 4、 5、 6、 7、 8、 9および 10である ものを、それぞれジオース、トリオース、テトロース、ペントース、へキソース、ヘプトー ス、オタトース、ノノースおよびデコースという。一般に鎖式多価アルコールのアルデヒ ドまたはケトンに相当するもので、前者をアルドース,後者をケトースという。
[0012] 本明細書にぉ 、て「単糖の誘導体」とは、単糖上の一つ以上の水酸基が別の置換 基に置換され、結果生じる物質が単糖の範囲内にないものをいう。そのような単糖の 誘導体としては、カルボキシル基を有する糖 (例えば、 C 1位が酸ィ匕されてカルボン 酸となったアルドン酸(例えば、 D—グルコースが酸化された D ダルコン酸)、末端 の C原子がカルボン酸となったゥロン酸(D—グルコースが酸化された D グルクロン 酸)、アミノ基またはァミノ基の誘導体 (例えば、ァセチルイ匕されたァミノ基)を有する 糖 (例えば、 N ァセチル— D—ダルコサミン、 N ァセチル— D ガラクトサミンなど )、アミノ基およびカルボキシル基を両方とも有する糖 (例えば、 N ァセチルノイラミ ン酸 (シアル酸)、 N ァセチルムラミン酸など)、デォキシィ匕された糖 (例えば、 2— デォキシ—D リボース)、硫酸基を含む硫酸化糖、リン酸基を含むリン酸化糖など があるがそれらに限定されない。あるいは、へミアセタール構造を形成した糖におい て、アルコールと反応してァセタール構造のグリコシドもまた、単糖の誘導体の範囲 内にある。
本明細書にぉ ヽて「糖鎖含有物質」とは、糖鎖および糖鎖以外の物質を含む物質 をいう。このような糖鎖含有物質は、生体内に多く見出され、例えば、生体中に含有 される多糖類の他、分解された多糖、糖タンパク質、プロテオダリカン、グリコサミノグ リカン、糖脂質などの複合生体分子力も分解または誘導された糖鎖など広範囲なも のが挙げられるがそれらに限定されない。
[0013] 本明細書において使用される用語「タンパク質」、「ポリペプチド」、「オリゴペプチド」 および「ペプチド」は、本明細書において同じ意味で使用され、任意の長さのアミノ酸 のポリマーをいう。このポリマーは、直鎖であっても分岐していてもよぐ環状であって もよい。アミノ酸は、天然のものであっても非天然のものであってもよぐ改変されたァ ミノ酸であってもよい。この用語はまた、複数のポリペプチド鎖の複合体へとァセンブ ルされたものを包含し得る。この用語はまた、天然または人工的に改変されたァミノ 酸ポリマーも包含する。そのような改変としては、例えば、ジスルフイド結合形成、ダリ コシル化、脂質化、ァセチル化、リン酸ィ匕または任意の他の操作もしくは改変(例え ば、標識成分との結合体化)。この定義にはまた、例えば、アミノ酸の 1または 2以上 のアナログを含むポリペプチド (例えば、非天然のアミノ酸などを含む)、ペプチド様 化合物(例えば、ぺプトイド)および当該分野にお!、て公知の他の改変が包含される 。本発明の遺伝子産物は、通常ポリペプチド形態をとる。このようなポリペプチド形態 の本発明の遺伝子産物は、本発明の診断、予防、治療または予後のための組成物 として有用である。特に、生理活性を有するペプチドが好ましい。例えば、インスリン、 エリスロポエチン、トロンボポェチン、インターロイキン 1、インターロイキン 2、イン ターロイキン 3、インターロイキン 4、インターロイキン 5、インターロイキン 6、 インターロイキン 7、インターロイキン 8、インターロイキン 9、インターロイキン 10、インターロイキン 11、インターロイキン 12、インターロイキン 13、インター ロイキン一 14、インターロイキン一 15、インターフェロン a、インターフェロン一 13、 インターフェロン γ、 G— CSF、 GM— CSF、 M— CSF、 GLP—1、ステムセノレファ クタ一、 mpl—リガンド、ソマトスタチン、バソプレツシン、グノレ力ゴン、成長ホノレモン、 レプチン、コレシストキ-ン、サブスタンス P、アドレナリン、 ADF、副腎皮質刺激ホル モン、 j8エンドルフィン、ネオエンドルフィンなど人体中で生理的に働いているべプチ ドおよびこれらを改変したペプチド、動物由来のペプチド、微生物由来のペプチド、 植物由来のペプチドなどが挙げられる。
本明細書において「糖タンパク質」としては、例えば、酵素、ホルモン、サイト力イン、 抗体、ワクチン、レセプター、血清タンパク質などが挙げられるがそれらに限定されな い。
本明細書において「糖鎖—ペプチド結合剤」とは、糖ペプチドを形成する際に、糖 鎖とペプチドの間に介在する「リンカ一」として働く基のことをいう。例えば、一般式 (I)
X-Y-Z (I)
[式中、 Xは H N—または式:
2
[化 11]
Figure imgf000011_0001
で表される基;
Yは—A1—、 -A' -O-A2- , - (CH CH O) —A1—、 - (CH CH O) A1
2 2 n 2 2 n
O - A2 -、 一 A1 - NH - C ( = 0) - A2 -、 一 A1 - C ( = 0) - NH - A2 -、 一 A1 -(
CH CH O) NH— C ( = 0)— A2 、 一 A1— (CH CH O) 一 C ( = 0)— NH—
2 2
A2—、式:
[化 12]
0
、Α1
Η で表される基、または式:
[化 13]
Figure imgf000011_0002
で表される基 (式中、 Α1および Α2はそれぞれ独立して、置換されていてもよい C1— 1 5アルキレン、置換されて!、てもよ 、C2— 15ァルケ-レンまたは置換されて!、てもよ い C2— 15アルキ-レン; nは 1〜 5の整数; R1はヒドロキシまたは NH (R2) (式中、 R2は水素原子、低級アルキル、ァリールまたはァラルキル); R3は水素原子または— C ( = 0)— R5 (式中、 R5は低級アルキル、ァリールまたはァラルキル));および、 Zは一 O— NH (R4)、 一 NH— OR4、 一 C ( = 0)— NH— NH— R4、または一 C ( = S )— NH— NH— R4 (式中、 R4は水素原子、低級アルキル、またはァリール)] で表される化合物を含む糖鎖 ペプチド結合剤、が例示される。 特に、
1)式: H N— A1— O— NH (R4) (式中、 A1は置換されていてもよい CI— 15アルキレ
2
ン; R4は水素原子または低級アルキル)、
2)式: H N-A1-NH-C ( = 0)— A2— O— NH (R4) (式中、 A1および A2はそれ
2
ぞれ独立して置換されていてもよい C1— 15アルキレン; R4は水素原子または低級ァ ノレキノレ)、
3)式: H N— A1— C ( = 0)— NH— A2— O— NH (R4) OLE LINK3 (式中、 A1およ
2
び A2はそれぞれ独立して置換されていてもよい C1— 15アルキレン; R4は水素原子 または低級アルキル) OLE丄 INK3
4)式: H N— (CH CH O) — A1— O— NH (R4) (式中、 A1は置換されていてもよい
2 2 2 η
C1— 15アルキレン; R4は水素原子または低級アルキル)、
5)式: H N— (CH CH Ο) — A1— O— A2— O— NH (R4) (式中、 A1および A2はそ
2 2 2 η
れぞれ独立して置換されていてもよい C1— 15アルキレン; R4は水素原子または低級 アルキル)、
6)式: H N— (CH CH O) -A1-NH-C ( = 0)— A2— O— NH (R4) (式中、 A1
2 2 2 η
および Α2はそれぞれ独立して置換されて!、てもよ!/、C1— 15アルキレン; R4は水素 原子または低級アルキル)、
7)式: H N— (CH CH O) -A1-C ( = 0)— NH— A2— O— NH (R4) (式中、 A1
2 2 2 η
および Α2はそれぞれ独立して置換されて!、てもよ!/、C1— 15アルキレン; R4は水素 原子または低級アルキル)、
8)式:
[化 14]
Figure imgf000012_0001
(式中、 A1は C1— 5アルキレン; R4は水素原子、低級アルキル、またはァリール;およ び R1は— NH (R2) (式中、 R2は水素原子、低級アルキル、ァリールまたはァラルキル ) )、および 9)一般式 (ΠΙ) :
[化 15]
Figure imgf000013_0001
(式中、 A1は置換されていてもよい CI— 15アルキレン; R4は水素原子、低級アルキ ル、またはァリール)、で表される化合物を含む糖鎖—ペプチド結合剤好ましい。 上記 1)〜7)および 9)において、 A1は、 C3— 8アルキレンが好ましい。 また、上記 1)〜9)において、 R4は水素原子または低級アルキルが好ましい。
[0016] 本明細書において「流体」は、本発明糖鎖 ペプチド結合剤が、糖鎖と相互作用を する環境を提供することができる流体であればどのようなものでも使用することができ る。好ましくは、そのような流体はケト基を含む物質は実質的に含まない。なぜなら、 ケト基を含む物質が有意に含有されている場合、流体中のアルデヒド基と本発明の 物質との反応が充分に進まないからである。したがって、ケト基を含む物質を含まな Vヽ形態は必須ではな 、が、好ま 、実施形態である。
したがって、本明細書において使用される流体は、糖を環状のへミアセタール型と 非環状のアルデヒド型との平衡にもたらすようなものであることが好まし 、。そのような 流体としては、例えば、水溶液、有機溶媒およびこれらの混合物などが挙げられるが それに限定されない。好ましくは、流体は水溶液である。
[0017] 本明細書において「トランスグルタミナーゼ」(時に、 TGaseと略す)とは、タンパク質 およびペプチド鎖の中のグルタミン残基 (Gin)における γ カルボキシアミド基と、リ ジン残基 (Lys)における εーァミノ基またはアルキルァミンとの間のァシル転位反応 を触媒する酵素をいう。トランスダルタミナーゼは、動物 (種々の組織、血球および血 漿)および微生物などに広く分布する。従って、トランスダルタミナーゼは、種々の分 子形態をとつているが、その分子形態は多岐にわたる。トランスダルタミナーゼは、生 体内においてペプチド鎖間または内の ε (γ ダルタミル)リジン イソペプチド結 合による架橋形成反応を触媒する。トランスダルタミナーゼは Gin残基に対する基質 特異性が極めて高いことから、アルキルァミンなどの分子を用いることにより、タンパク 質中の特定の Gin残基のみを改変することができる。トランスダルタミナーゼは、フィ ブリン分子架橋、表皮細胞の角質化、***凝固および創傷組織の治癒などに関与 するといわれている。
トランスダルタミナーゼの存在下、グルタミン含有ペプチドに糖鎖—ペプチド結合剤 を作用させることにより、ペプチドのグルタミン残基に糖鎖 ペプチド結合剤が容易 に導入される。
トランスダルタミナーゼの存在下、システィン含有ペプチドに糖鎖—ペプチド結合剤 を作用させることにより、ペプチドのシスティン残基に糖鎖 ペプチド結合剤が容易 に導入される。
本明細書において「転移酵素」とは、基転移反応を触媒する酵素をいう。本明細書 において使用される代表的な転移酵素としては、糖転移酵素があり、糖転移酵素は 、糖の転移を触媒する。例示的な糖転移酵素としては、例えば、 β 1, 4—ガラタト— ス転移酵素、 α— 1, 3—ガラタト—ス転移酵素, |81, 4—ガラタト—ス転移酵素, β ΐ , 3—ガラクトース転移酵素, β ΐ, 6—ガラクトース転移酵素、 ひ 2, 6 シアル酸転移 酵素、 ひ1, 4 ガラクトース転移酵素、セラミドガラタトース転移酵素、 ひ1, 2 フコ ース転移酵素、 αΐ, 3 フコース転移酵素、 《1, 4 フコース転移酵素、 《1, 6— フコース転移酵素、 ひ1, 3— Ν ァセチルガラタトサミン転移酵素、 ひ1, 6— Ν ァ セチルガラタトサミン転移酵素、 j81, 4— N ァセチルガラタトサミン転移酵素、ポリ ペプチド N ァセチルガラタトサミン転移酵素、 β ΐ, 4 Νァセチルダルコサミン転移 酵素、 β ΐ, 2— Νァセチルダルコサミン転移酵素、 β ΐ, 3—Νァセチルダルコサミン 転移酵素、 β ΐ, 6— Νァセチルダルコサミン転移酵素、 αΐ, 4— Νァセチルダルコ サミン転移酵素、 β ΐ, 4 マンノース転移酵素、 《1, 2 マンノース転移酵素、 《1 , 3—マンノース転移酵素、 αΐ, 4—マンノース転移酵素、 αΐ, 6—マンノース転移 酵素、 αΐ, 2 グルコース転移酵素、 αΐ, 3 グルコース転移酵素、 α 2, 3 シァ ル酸転移酵素、 α2, 8 シアル酸転移酵素、 《1, 6—ダルコサミン転移酵素、 《1, 6—キシロース転移酵素、 /3キシロース転移酵素(プロテオダリカンコア構造合成酵 素)、 j81, 3 グルクロン酸転移酵素およびヒアルロン酸合成酵素が挙げられるがそ れらに限定されない。
[0019] 本明細書において、「アミノ酸」は、本発明の目的を満たす限り、天然のものでも非 天然のものでもよい。「誘導体アミノ酸」または「アミノ酸アナログ」とは、天然に存在す るアミノ酸とは異なるがもとのアミノ酸と同様の機能を有するものを 、う。そのような誘 導体アミノ酸およびアミノ酸アナログは、当該分野において周知である。用語「天然の アミノ酸」とは、天然のアミノ酸の L—異性体を意味する。天然のアミノ酸は、グリシン、 ァラニン、ノ リン、ロイシン、イソロイシン、セリン、メチォニン、トレオニン、フエニノレアラ ニン、チロシン、トリプトファン、システィン、プロリン、ヒスチジン、ァスパラギン酸、ァス ノ ラギン、グルタミン酸、グルタミン、 —カルボキシグルタミン酸、アルギニン、オル 二チン、およびリジンである。特に示されない限り、本明細書でいう全てのアミノ酸は L 体であるが、 D体のアミノ酸を用いた形態もまた本発明の範囲内にある。用語「非天 然アミノ酸」とは、タンパク質中で通常は天然に見出されないアミノ酸を意味する。非 天然アミノ酸の例として、ノルロイシン、パラー-トロフエ-ルァラニン、ホモフエ-ルァ ラニン、パラ一フルオロフェ-ルァラニン、 3—アミノー 2—ベンジルプロピオン酸、ホ モアルギニンの D体または L体および D—フエ-ルァラニンが挙げられる。「アミノ酸ァ ナログ」とは、アミノ酸ではないが、アミノ酸の物性および Zまたは機能に類似する分 子をいう。アミノ酸アナログとしては、例えば、ェチォニン、カナバニン、 2—メチルダ ルタミンなどが挙げられる。アミノ酸模倣物とは、アミノ酸の一般的な化学構造とは異 なる構造を有するが、天然に存在するアミノ酸と同様な様式で機能する化合物をいう アミノ酸は、その一般に公知の 3文字記号力、または IUPAC— IUB Biochemica 1 Nomenclature Commissionにより推奨される 1文字記号のいずれかにより、本 明細書中で言及され得る。
[0020] 本明細書において「生物学的活性」および「生理活性」は、本明細書において互換 的に使用され、ある因子 (例えば、ヌクレオチド、ポリヌクレオチド、タンパク質など)が 、生体内において有し得る活性のことをいい、種々の機能 (例えば、転写促進活性) を発揮する活性が包含される。例えば、 2つの因子が相互作用する(例えば、インスリ ンが肝臓などにおけるインスリンレセプターに作用する)場合、その生物学的活性は 、その二分子との間の結合およびそれによつて生じる生物学的変化、例えば、一つ の分子を抗体を用いて沈降させたときに他の分子も共沈するとき、 2分子は結合して いると考えられる。したがって、そのような共沈を見ることが一つの判断手法として挙 げられる。また、神経突起の伸展を指標にしてある分子と他の分子とが機能的に関連 していると関連付けることができる。具体的には、インスリンの血糖低下作用を確認す ることなどを包含する。例えば、ある因子が酵素である場合、その生物学的活性は、 その酵素活性を包含する。別の例では、ある因子がリガンドである場合、そのリガンド が対応するレセプターへの結合を包含する。そのような生物学的活性は、当該分野 において周知の技術によって測定することができる。
本明細書において「生理活性物質」は、上述のような生物学的活性を有する任意の 物質をいう。そのような物質としては、例えば、酵素、抗体、ワクチン、血清タンパク質 、ホルモン、サイト力イン、増殖因子、細胞接着分子、レセプター、シグナル伝達因子 などが挙げられるがそれに限定されない。
本明細書にぉ 、て「活性」は、結合 (直接的または間接的の 、ずれか)を示すかま たは明らかにする力 ;応答に影響する (すなわち、いくらかの曝露または刺激に応答 する測定可能な影響を有する)、種々の測定可能な指標をいい、例えば、本発明の ポリペプチドまたはポリヌクレオチドに直接結合する化合物の親和性、または例えば 、いくつかの刺激後または事象後の上流または下流のタンパク質の量あるいは他の 類似の機能の尺度が、挙げられる。このような活性は、競合阻害のようなアツセィによ つて測定され得る。
本明細書中で使用される用語「結合」は、 2つのタンパク質もしくは化合物または関 連するタンパク質もしくは化合物の間、あるいはそれらの組み合わせの間での、物理 的相互作用または化学的相互作用を意味する。結合には、イオン結合、非イオン結 合、水素結合、ファンデルワールス結合、疎水性相互作用などが含まれる。物理的 相互作用(結合)は、直接的または間接的であり得、間接的なものは、別のタンパク 質または化合物の効果を介する力または起因する。直接的な結合とは、別のタンパク 質または化合物の効果を介してもまたはそれらに起因しても起こらず、他の実質的な 化学中間体を伴わない、相互作用をいう。 [0022] 本明細書においては、特に言及がない限り、「置換」は、ある有機化合物または置 換基中の 1または 2以上の水素原子を他の原子または原子団で置き換えることをいう 。水素原子を 1つ除去して 1価の置換基に置換することも可能であり、そして水素原 子を 2つ除去して 2価の置換基に置換することも可能である。
本明細書において「アルキル」とは、メタン、ェタン、プロパンのような脂肪族炭化水 素(アルカン)力も水素原子が一つ失われて生ずる 1価の基をいい、一般に C H
n 2n+ l 一で表される(ここで、 nは正の整数である)。アルキルは、直鎖または分枝鎖であり得 る。本明細書において「置換されたアルキル」とは、以下に規定する置換基によって アルキルの Hが置換されたアルキルをいう。これらの具体例は、 C1〜C2アルキル、 C1〜C3アルキル、 C1〜C4アルキル、 C1〜C5アルキル、 C1〜C6アルキル、 C1 〜C7アルキル、 C1〜C8アルキル、 C1〜C9アルキル、 C1〜C10アルキル、 Cl〜 C11アルキルまたは C1〜C12アルキル、 C1〜C2置換されたアルキル、 C1〜C3置 換されたアルキル、 C1〜C4置換されたアルキル、 C1〜C5置換されたアルキル、 C 1〜C6置換されたアルキル、 C1〜C7置換されたアルキル、 C1〜C8置換されたァ ルキル、 C1〜C9置換されたアルキル、 C1〜C10置換されたアルキル、 C1〜C11 置換されたアルキルまたは C1〜C 12置換されたアルキルであり得る。ここで、例えば C 1〜C 10アルキルとは、炭素原子を 1〜 10個有する直鎖または分枝状のアルキル を意味し、メチル(CH—)、ェチル(C H一)、 n—プロピル(CH CH CH—)、イソ
3 2 5 3 2 2 プロピル((CH ) CH―)、 n—ブチル(CH CH CH CH―)、 n—ペンチル(CH C
3 2 3 2 2 2 3
H CH CH CH一)、 n—へキシル(CH CH CH CH CH CH一)、 n—ヘプチル
2 2 2 2 3 2 2 2 2 2
(CH CH CH CH CH CH CH― )、 n—ォクチル(CH CH CH CH CH CH C
3 2 2 2 2 2 2 3 2 2 2 2 2
H CH ―)、 n—ノニル(CH CH CH CH CH CH CH CH CH ―)、 n—デシル
2 2 3 2 2 2 2 2 2 2 2
(CH CH CH CH CH CH CH CH CH CH一)、 C (CH ) CH CH CH (C
3 2 2 2 2 2 2 2 2 2 3 2 2 2
H ) 、— CH CH (CH ) などが例示される。また、例えば、 C1〜C10置換されたァ
3 2 2 3 2
ルキルとは、 C1〜C10アルキルであって、そのうち 1または複数の水素原子が置換 基により置換されて 、るものを 、う。
[0023] 本明細書において、「低級アルキル」は、好ましくは、 C1〜C6アルキルであり、より 好ましくは、 C1〜C3アルキルである。 本明細書中、「アルキレン」とは、「アルキル」から導かれる 2価の基であって、例え ば、メチレン、エチレン、トリメチレン、テトラメチレン、ペンタメチレン、へキサメチレン、 ヘプタメチレン、才クタメチレン、ノナンメチレン、デカンメチレン、ゥンデカメチレン、ド デカメチレン等が挙げられる。
本明細書において「ァルケ-ル」とは、エチレン、プロピレンのような、分子内に二重 結合を一つ有する脂肪族炭化水素力 水素原子が一つ失われて生ずる 1価の基を いい、一般に C H 一で表される(ここで、 nは 2以上の正の整数である)。「置換さ
n 2n_ l
れたァルケ-ル」とは、以下に規定する置換基によってァルケ-ルの Hが置換された ァルケ-ルをいう。具体例としては、 C2〜C3アルケ-ル、 C2〜C4アルケ-ル、 C2 〜C5アルケニル、 C2〜C6ァルケ-ル、 C2〜C7ァルケ-ル、 C2〜C8アルケ -ル、 C2〜C9ァルケ-ル、 C2〜C10ァルケ-ル、じ2〜じ11ァルケ-ルまたはじ2〜じ12 ァルケ-ル、 C2〜C3置換されたァルケ-ル、 C2〜C4置換されたァルケ-ル、 C2 〜C5置換されたァルケ-ル、 C2〜C6置換されたァルケ-ル、 C2〜C7置換された ァルケ-ル、 C2〜C8置換されたァルケ-ル、 C2〜C9置換されたァルケ-ル、 C2 〜C 10置換されたァルケ-ル、じ2〜じ11置換されたァルケ-ルまたはじ2〜じ12置 換されたァルケ-ルであり得る。ここで、例えば C2〜C10アルキルとは、炭素原子を 2〜: L0個含む直鎖または分枝状のァルケ-ルを意味し、ビュル (CH =CH— )、ァリ
2
ル(CH =CHCH―)、 CH CH = CH—などが例示される。また、例えば、 C2〜C
2 2 3
10置換されたァルケ-ルとは、 C2〜C10ァルケ-ルであって、そのうち 1または複数 の水素原子が置換基により置換されて 、るものを 、う。
本明細書中、「ァルケ-レン」とは、「ァルケ-ル」から導かれる 2価の基であって、例 えば、ビ-レン、プロべ-レン、ブテ-レン等が挙げられる。
本明細書において「アルキニル」とは、アセチレンのような、分子内に三重結合を一 つ有する脂肪族炭化水素から水素原子が一つ失われて生ずる 1価の基を 、い、一 般に C H 一で表される(ここで、 nは 2以上の正の整数である)。「置換されたアル n 2n_3
キ -ル」とは、以下に規定する置換基によってアルキ-ルの Hが置換されたアルキ- ルをいう。具体例としては、 C2〜C3アルキ-ル、 C2〜C4アルキ-ル、 C2〜C5アル キ -ル、 C2〜C6アルキ-ル、 C2〜C7アルキ-ル、 C2〜C8アルキ-ル、 C2〜C9 アルキ -ル、 C2〜C10アルキ-ル、 C2〜C11アルキ-ル、 C2〜C12アルキニル、 C2〜C3置換されたアルキ-ル、 C2〜C4置換されたアルキ-ル、 C2〜C5置換され たアルキ-ル、 C2〜C6置換されたアルキ-ル、 C2〜C7置換されたアルキ-ル、 C 2〜C8置換されたアルキ-ル、 C2〜C9置換されたアルキ-ル、 C2〜C10置換され たアルキ-ル、 C2〜C11置換されたアルキ-ルまたは C2〜C12置換されたアルキ -ルであり得る。ここで、例えば、 C2〜C10アルキ-ルとは、例えば炭素原子を 2〜1 0個含む直鎖または分枝状のアルキ-ルを意味し、ェチュル(CH≡C—)、 1 プロ ピニル(CH C≡C )などが例示される。また、例えば、 C2〜C10置換されたアルキ
3
ニルとは、 C2〜C10アルキ-ルであって、そのうち 1または複数の水素原子が置換 基により置換されて 、るものを 、う。
本明細書にぉ 、て「アルキ-レン」とは、「アルキ -ル」から導かれる 2価の基であつ て、例えば、プロピ-レン、プチ-レン等が挙げられる。
本明細書において、「置換されていてもよい C1 15アルキレン」、「置換されていて もよい C2— 15ァルケ-レン」または「置換されて!、てもよ!/ヽ C2— 15アルキ-レンの 置換基としては、置換基群 Aから選択される置換基により置換されて 、てもよ 、ァリー ル、置換基群 Aから選択される置換基により置換されていてもよいへテロアリール、置 換基群 Aカゝら選択される置換基により置換されていてもよい非芳香族炭素環式基、 置換基群 Aから選択される置換基により置換されていてもよい非芳香族複素環式基 、ヒドロキシ、アルキルォキシ、メルカプト、アルキルチオ、ハロゲン、ニトロ、シァ入力 ルボキシ、アルキルォキシカルボ-ル、ハロアルキル、ハロアルキルォキシ、置換され ていてもよいアミ入置換されていてもよいアミノカルボ-ル、ァシル、ァシルォキシ、 ァリールォキシ(例えば、フエ-ルォキシ)、ァラルキルォキシ(例えば、ベンジルォキ シ)、低級アルキルスルホニル、グァ-ジノ、ァゾ基等が挙げられる。これらは、全ての 可能な位置で 1個以上置換しうる。
本明細書にぉ ヽて、「置換基群 Aから選択される置換基により置換されて 、てもよ V、」とは、以下の置換基群 Aにより 1またはそれ以上置換されて 、てもよ 、ことを意味 する。
置換基群 A:アルキル、ヒドロキシ、アルキルォキシ、メルカプト、アルキルチオ、ハロ ゲン、ニトロ、シァ入カルボキシ、アルキルォキシカルボ-ル、ハロアルキル、ハロア ルキルォキシ、置換されていてもよいアミ入置換されていてもよいアミノカルボ-ル、 ァシル、ァシルォキシ、ァリールォキシ(例えば、フエ-ルォキシ)、ァラルキルォキシ (例えば、ベンジルォキシ)、低級アルキルスルホニル、グァ-ジノ、ァゾ基、置換基 群 B力 選択される置換基により置換されて 、てもよ 、ァリール、置換基群 Bから選択 される置換基により置換されて 、てもよ 、ヘテロァリール、置換基群 Bから選択される 置換基により置換されて ヽてもよ ヽ非芳香族炭素環式基、および置換基群 Bから選 択される置換基により置換されて ヽてもよ ヽ非芳香族複素環式基。
本明細書において、「置換基群 B力 選択される置換基により置換されていてもよい 」とは、以下の置換基群 Bにより 1またはそれ以上置換されて 、てもよ 、ことを意味す る。
置換基群 B :アルキル、ヒドロキシ、アルキルォキシ、メルカプト、アルキルチオ、ハロ ゲン、ニトロ、シァ入カルボキシ、アルキルォキシカルボ-ル、ハロアルキル、ハロア ルキルォキシ、置換されていてもよいアミ入置換されていてもよいアミノカルボ-ル、 ァシル、ァシルォキシ、ァリールォキシ(例えば、フエ-ルォキシ)、ァラルキルォキシ (例えば、ベンジルォキシ)、低級アルキルスルホニル、グァ-ジノ、ァゾ基、ァリール 、ヘテロァリール、非芳香族炭素環式基、および非芳香族複素環式基。
本明細書において「ァリール」とは、芳香族炭化水素の環に結合する水素原子が 1 個離脱して生ずる基をいい、本明細書において、「炭素環基」に包含される。例えば 、フエ-ル、 a—ナフチル、 13—ナフチル、アンス-ル、インデュル、フエナンスリル等 が挙げられる。「置換されたァリール」とは、下記において選択される置換基で置換さ れて 、るァリールを意味する。
本明細書において、「保護基」は、アミノ基およびィミノ基の保護基である場合、ベン ジル、ベンゾィル、ァセチル、 t ブトキシカルボニル、ベンジルォキシカルボニルが 挙げられる。ァセチルが好ましい。保護反応および脱保護反応は、 Protective uroups in Organic Synthesis, Theodora W ureen (John Wiley & Sons)等【こ ci載の 方法に従って行うことができる。
本明細書において、 Cl、 C2、、、 Cnは、炭素数を表す。従って、 C1は炭素数 1個 の置換基を表すために使用される。
[0027] 本明細書においては、特に言及がない限り、置換は、ある有機化合物または置換 基中の 1または 2以上の水素原子を他の原子または原子団で置き換えることをいう。 水素原子を 1つ除去して 1価の置換基に置換することも可能であり、そして水素原子 を 2つ除去して 2価の置換基に置換することも可能である。
置換基としては、アルキル、シクロアルキル、ァルケ-ル、シクロアルケ-ル、アルキ -ル、アルコキシ、炭素環基、ヘテロ環基、ハロゲン、ヒドロキシ、チオール、シァノ、 ニトロ、ァミノ、カルボキシ、力ルバモイル、ァシル、ァシルァミノ、チォカルボキシ、アミ ド、カルボ-ル、チォカルボ-ル、スルホ-ルまたはスルフィエルが挙げられるがそれ らに限定されない。置換基が置換された場合は、アルキル、シクロアルキル、ァルケ -ル、シクロアルケ-ル、アルキ -ル、アルコキシ、ァルケ-ルォキシ、アルキ -ルォ キシ、アルコキシアルキル、ハロゲノアルキル、ハロゲン、ニトロ、シァ入ァシル、ァシ ルォキシ、ヒドロキシ、メルカプト、カルボキシ、チォカルボキシ、アルコキシカルボ- ル、ァリールォキシカルボ-ル、力ルバモイル、置換されていてもよいァミノで置換さ れ得る。この「置換されていてもよいァミノ」は、アルキル、ァルケ-ル、ァリールまたは ァリールアルキルで 1または 2ケ所置換されて 、てもよ 、ァミノを意味する。
[0028] (有機化学)
有機化学については、例えば、モリソン ボイド有機化学 (上)(中)(下)第 5版 (東 京化学同人発行(1989年))、 March, Advanced Organic Chemstry 第 4版( Wiley Intersience, JOHN WILEY & SONS, 1992)などに記載されており 、これらは本明細書において関連する部分が参考として援用される。
本明細書において「保護反応」とは、 Boc (t—ブトキシカルボ-ル)、ァセチル、ベ ンジル、 Cbz (ベンジルォキシカルボ-ル)、 Fmoc (9—フルォレ -ルメトキシカルボ ニル)のような保護基を、保護が所望される官能基に付加する反応をいう。保護基に より官能基を保護することによって、より反応性の高い官能基の反応を抑制し、より反 応性の低 、官能基のみを反応させることができる。
本明細書にぉ 、て「脱保護反応」とは、上で列挙したような保護基を脱離させる反 応をいう。脱保護反応としては、 Boc (t—ブトキシカルボ-ル)に対してはトリフルォロ 酢酸 (TF A)による反応およびべンジルエーテルに対しては H、 PdZCを用いる還
2
元反応のような反応が挙げられる。「保護反応」および「脱保護反応」については、例 えば、 T. W. Greeneおよび P. G. M. Wuts、 PROTECTIVE GROUPS IN ORGANIC SYNTHESIS、第 3版 (JOHN WILE Y& SONS, Inc. (1999) )に 詳細に記載され、その内容は、本明細書中に参考として援用される。
(本明細書にぉ 、て用いられる一般技術)
本明細書において使用される技術は、そうではないと具体的に指示しない限り、当 該分野の技術範囲内にある、分析化学、有機化学、生化学、遺伝子工学、分子生物 学、微生物学、遺伝学および関連する分野における周知慣用技術を使用する。その ような技術は、例えば、以下に列挙した文献および本明細書において他の場所おい て引用した文献においても十分に説明されている。
本明細書において用いられる分子生物学的手法、生化学的手法、微生物学的手 法は、当該分野において周知であり慣用されるものであり、例えば、 Maniatis, T. e t al. (,1989) . Molecular Cloning: A Laboratory Manual, Cold Spring
Harborおよびその 3rd Ed. (2001); Ausubel, F. M. , et al. eds, Current Protocols in Molecular Biology, John Wiley & Sons Inc. , NY, 101 58 (2000) ;Innis, M. A. (1990) . PCR Protocols : A Guide to Methods and Applications, Academic Press ;Innis, M. A. et al. (1995) . PCR St rategies, Academic Press ; Sninsky, J. J. et al. "999) . PCR Application s : Protocols for Functional Genomics, Academic Press ; Gait, M. J. ( 1985) . Oligonucleotide Synthesis : A Practical Approach, IRL Press ; G ait, M. J. (1990) . Oligonucleotide Synthesis : A Practical Approach, IR L Press ; Eckstein, F. (1991) . Oligonucleotides and Analogues : A Prac tical Approac , IRL Press ; Adams, R. L. et al. (1992) . The Biochemis try of the Nucleic Acids, Chapman & Hall; Shabarova, Z. et al. (19 94) . Advanced Organic Chemistry of Nucleic Acids, Weinheim ; Blac kburn, G. M. et al. (1996) . Nucleic Acids in Chemistry and Biology , Oxford University Press; Hermanson, G. T. (1996) . Bioconjugate Te chniques, Academic Press ; Method in Enzymology 230、 242、 247、 Ac ademic Press, 1994 ;別冊実験医学「遺伝子導入 &発現解析実験法」羊土社、 1 997 ;畑中、西村ら、糖質の科学と工学、講談社サイェンティフイク、 1997 ;糖鎖分子 の設計と生理機能 日本化学会編、学会出版センター、 2001などに記載されており 、これらは本明細書において関連する部分 (全部であり得る)が参考として援用される (遺伝子、タンパク質分子などの改変)
あるタンパク質分子 (例えば、インスリンなど)において、配列に含まれるあるアミノ酸 は、相互作用結合能力の明らかな低下または消失なしに、例えば、カチオン性領域 または基質分子の結合部位のようなタンパク質構造において他のアミノ酸に置換され 得る。あるタンパク質の生物学的機能を規定するのは、タンパク質の相互作用能力 および性質である。従って、特定のアミノ酸の置換がアミノ酸配列において、またはそ の DNAコード配列のレベルにおいて行われ得、置換後もなお、もとの性質を維持す るタンパク質が生じ得る。従って、生物学的有用性の明らかな損失なしに、種々の改 変力 本明細書にぉ 、て開示されたペプチドまたはこのペプチドをコードする対応す る DNAにお!/、て行われ得る。
上記のような改変を設計する際に、アミノ酸の疎水性指数が考慮され得る。タンパク 質における相互作用的な生物学的機能を与える際の疎水性アミノ酸指数の重要性 は、一般に当該分野で認められている(Kyte. Jおよび Doolittle, R. F. J. Mol. Bi ol. 157 (1) : 105 - 132, 1982)。アミノ酸の疎水的性質は、生成したタンパク質の 二次構造に寄与し、次いでそのタンパク質と他の分子 (例えば、酵素、基質、レセプ ター、 DNA、抗体、抗原など)との相互作用を規定する。各アミノ酸は、それらの疎水 性および電荷の性質に基づく疎水性指数を割り当てられる。それらは:イソロイシン( +4. 5);バリン(+4. 2);ロイシン( + 3. 8);フエ-ルァラニン( + 2. 8);システィン Zシスチン( + 2. 5);メチォニン( + 1. 9);ァラニン( + 1. 8);グリシン(一0. 4);スレ ォニン(一 0. 7) ;セリン(一0. 8);トリプトファン(一0. 9) ;チロシン(一1. 3) ;プロリン (— 1. 6) ;ヒスチジン(一3. 2);グノレタミン酸(一 3. 5);グノレタミン(一3. 5) ;ァスパラ ギン酸(一3. 5);ァスパラギン(一3. 5) ;リジン(一3. 9);およびアルギニン(一4. 5) )である。
あるアミノ酸を、同様の疎水性指数を有する他のアミノ酸により置換して、そして依 然として同様の生物学的機能を有するタンパク質 (例えば、酵素活性において等価 なタンパク質)を生じさせ得ることが当該分野で周知である。このようなアミノ酸置換に おいて、疎水性指数が ± 2以内であることが好ましぐ ± 1以内であることがより好まし ぐおよび ±0. 5以内であることがさらにより好ましい。疎水性に基づくこのようなァミノ 酸の置換は効率的であることが当該分野において理解される。米国特許第 4, 554, 101号に記載されるように、以下の親水性指数がアミノ酸残基に割り当てられて!/、る: アルギニン( + 3. 0);リジン( + 3. 0);ァスパラギン酸( + 3. 0± 1);グルタミン酸(+ 3. 0± 1);セリン( + 0. 3);ァスパラギン( + 0. 2);グルタミン( + 0. 2);グリシン(0); スレオニン(一0. 4);プロリン(一0. 5± 1);ァラニン(一0. 5);ヒスチジン(一0. 5); システィン(一1. 0);メチォニン(一1. 3);バリン(一 1. 5);ロイシン(一1. 8);ィソロ イシン(一 1. 8) ;チロシン(一2. 3);フエ-ルァラニン(一2. 5);およびトリプトファン( 3. 4)。アミノ酸が同様の親水性指数を有しかつ依然として生物学的等価体を与え 得る別のものに置換され得ることが理解される。このようなアミノ酸置換において、親 水性指数が ± 2以内であることが好ましぐ ± 1以内であることがより好ましぐおよび ±0. 5以内であることがさらにより好ましい。
本明細書にぉ 、て、「保存的置換」とは、アミノ酸置換にぉ 、て、元のアミノ酸と置 換されるアミノ酸との親水性指数または Zおよび疎水性指数が上記のように類似して いる置換をいう。保存的置換の例としては、例えば、親水性指数または疎水性指数 力 ± 2以内のもの同士、好ましくは ± 1以内のもの同士、より好ましくは ±0. 5以内 のもの同士のものが挙げられるがそれらに限定されない。従って、保存的置換の例は 、当業者に周知であり、例えば、次の各グループ内での置換:アルギニンおよびリジ ン;グルタミン酸およびァスパラギン酸;セリンおよびスレオニン;グルタミンおよびァス パラギン;ならびにパリン、ロイシン、およびイソロイシン、などが挙げられるがこれらに 限定されない。
本明細書において、「改変体」とは、もとのペプチドまたはポリペプチドなどの物質 に対して、一部が変更されているものをいう。そのような改変体としては、置換改変体 、付加改変体、欠失改変体、短縮 (truncated)改変体、対立遺伝子変異体などが 挙げられる。そのような改変体としては、基準となる核酸分子またはペプチドに対して 、 1または数個の置換、付加および Zまたは欠失、あるいは 1つ以上の置換、付加お よび Zまたは欠失を含むものが挙げられるがそれらに限定されない。対立遺伝子 (all ele)とは、同一遺伝子座に属し、互いに区別される遺伝的改変体のことをいう。従つ て、「対立遺伝子変異体」とは、ある遺伝子に対して、対立遺伝子の関係にある改変 体をいう。そのような対立遺伝子変異体は、通常その対応する対立遺伝子と同一ま たは非常に類似性の高い配列を有し、通常はほぼ同一の生物学的活性を有するが 、まれに異なる生物学的活性を有することもある。「種相同体またはホモログ (homol og)」とは、ある種の中で、ある遺伝子とアミノ酸レベルまたはヌクレオチドレベルで、 相同性 (好ましくは、 60%以上の相同性、より好ましくは、 80%以上、 85%以上、 90 %以上、 95%以上の相同性)を有するものをいう。 BLASTなるソフトを用いて相同 性を計算することが出来る。そのような種相同体を取得する方法は、本明細書の記載 から明らかである。「オルソログ(ortholog)」とは、オルソロガス遺伝子(orthologous gene)ともいい、二つの遺伝子がある共通祖先力 の種分ィ匕に由来する遺伝子を いう。例えば、多重遺伝子構造をもつヘモグロビン遺伝子ファミリーを例にとると、ヒト およびマウスの αヘモグロビン遺伝子はオルソログである力 ヒトの αヘモグロビン遺 伝子および j8ヘモグロビン遺伝子はパラログ (遺伝子重複で生じた遺伝子)である。 オルソログは、分子系統樹の推定に有用である。オルソログは、通常別の種において 、もとの種と同様の機能を果たしていることがあり得ることから、本発明のオルソログも また、本発明において有用であり得る。
本明細書にぉ 、て「保存的(に改変された)改変体」は、アミノ酸配列および核酸配 列の両方に適用される。特定の核酸配列に関して、保存的に改変された改変体とは 、同一のまたは本質的に同一のアミノ酸配列をコードする核酸をいい、核酸がァミノ 酸配列をコードしない場合には、本質的に同一な配列をいう。遺伝コードの縮重のた め、多数の機能的に同一な核酸が任意の所定のタンパク質をコードする。例えば、コ ドン GCA、 GCC、 GCG、および GCUはすべて、アミノ酸ァラニンをコードする。した がって、ァラニンがコドンにより特定される全ての位置で、そのコドンは、コードされた ポリペプチドを変更することなぐ記載された対応するコドンの任意のものに変更され 得る。このような核酸の変動は、保存的に改変された変異の 1つの種である「サイレン ト改変(変異)」である。ポリペプチドをコードする本明細書中のすべての核酸配列は また、その核酸の可能なすべてのサイレント変異を記載する。当該分野において、核 酸中の各コドン(通常メチォニンのための唯一のコドンである AUG、および通常トリプ トフアンのための唯一のコドンである TGGを除く) 1S 機能的に同一な分子を産生す るため〖こ改変され得ることが理解される。したがって、ポリペプチドをコードする核酸 の各サイレント変異は、記載された各配列において暗黙に含まれる。好ましくは、そ のような改変は、ポリペプチドの高次構造に多大な影響を与えるアミノ酸であるシステ インの置換を回避するようになされ得る。このような塩基配列の改変法としては、制限 酵素などによる切断、 DNAポリメラーゼ、 Klenowフラグメント、 DNAリガーゼなどに よる処理等による連結等の処理、合成オリゴヌクレオチドなどを用いた部位特異的塩 基置換法(特定部位指向突然変異法; Mark Zoller and Michael Smith, Me thods in Enzymology, 100, 468— 500 (1983) )力挙げ、られる力 この他にも 通常分子生物学の分野で用いられる方法によって改変を行うこともできる。
本明細書中において、機能的に等価なポリペプチドを作製するために、アミノ酸の 置換のほかに、アミノ酸の付加、欠失、または修飾もまた行うことができる。アミノ酸の 置換とは、もとのペプチドを 1つ以上、例えば、 1〜: L0個、好ましくは 1〜5個、より好ま しくは 1〜3個のアミノ酸で置換することをいう。アミノ酸の付加とは、もとのペプチド鎖 に 1つ以上、例えば、 1〜10個、好ましくは 1〜5個、より好ましくは 1〜3個のアミノ酸 を付加することをいう。アミノ酸の欠失とは、もとのペプチドから 1つ以上、例えば、 1〜 10個、好ましくは 1〜5個、より好ましくは 1〜3個のアミノ酸を欠失させることをいう。ァ ミノ酸修飾は、アミド化、カルボキシル化、硫酸化、ハロゲン化、短縮化、脂質化 (lipi dation)、ホスホリル化、アルキル化、グリコシル化、リン酸化、水酸化、ァシル化(例 えば、ァセチル化)などを含む力 これらに限定されない。置換、または付加されるァ ミノ酸は、天然のアミノ酸であってもよぐ非天然のアミノ酸、またはアミノ酸アナログで もよい。天然のアミノ酸が好ましい。
本明細書において使用される用語「ペプチド誘導体」とは、ペプチドとは異なる化合 物であるが、ペプチドと少なくとも 1つの化学的機能または生物学的機能が等価であ るものをいう。したがって、ペプチドアナログには、もとのペプチドに対して、 1つ以上 のアミノ酸アナログまたはアミノ酸誘導体が付加または置換されているものが含まれる
。ペプチドアナログは、その機能力 もとのペプチドの機能 (例えば、 PKa値が類似し ていること、官能基が類似していること、他の分子との結合様式が類似していること、 水溶性が類似していることなど)と実質的に同様であるように、このような付加または 置換がされている。そのようなペプチドアナログは、当該分野において周知の技術を 用いて作製することができる。したがって、ペプチドアナログは、アミノ酸アナログを含 むポリマーであり得る。
本明細書において使用される核酸分子は、発現されるペプチドが天然型のぺプチ ドと実質的に同一の活性を有する限り、上述のようにその核酸の配列の一部が欠失 または他の塩基により置換されていてもよぐあるいは他の核酸配列が一部挿入され ていてもよい。あるいは、 5'末端および Zまたは 3'末端に他の核酸が結合していて もよい。また、ペプチドをコードする遺伝子をストリンジヱントな条件下でノ、イブリダィズ し、そのペプチドと実質的に同一の機能を有するペプチドをコードする核酸分子でも よい。このような遺伝子は、当該分野において公知であり、本発明において利用する ことができる。
このような核酸は、周知の PCR法により得ることができ、化学的に合成することもで きる。これらの方法に、例えば、部位特異的変位誘発法、ハイブリダィゼーシヨン法な どを組み合わせてもよい。
本明細書にぉ 、て、ペプチドまたはポリペプチドの「置換、付加または欠失」とは、 もとのペプチドまたはポリペプチドに対して、それぞれアミノ酸もしくはその代替物力 置き換わること、付け加わることまたは取り除かれることをいう。このような置換、付加ま たは欠失の技術は、当該分野において周知であり、そのような技術の例としては、部 位特異的変異誘発技術などが挙げられる。置換、付加または欠失は、 1つ以上であ れば任意の数でよぐそのような数は、その置換、付加または欠失を有する改変体に ぉ 、て目的とする機能 (例えば、ホルモン、サイト力インの情報伝達機能など)が保持 される限り、多くすることができる。例えば、そのような数は、 1または数個であり得、そ して好ましくは、全体の長さの 20%以内、 10%以内、または 100個以下、 50個以下 、 25個以下などであり得る。
(遺伝子工学)
本発明にお ヽて用いられる生理活性ペプチドなどならびにそのフラグメントおよび 改変体は、遺伝子工学技術を用いて生産することができる。
本明細書にぉ 、て遺伝子にっ 、て言及する場合、「ベクター」または「組み換えべ クタ一」とは、 目的のポリヌクレオチド配列を目的の細胞へと移入させることができるべ クタ一をいう。そのようなベクターとしては、原核細胞、酵母、動物細胞、植物細胞、 昆虫細胞、動物個体および植物個体などの宿主細胞において自立複製が可能、ま たは染色体中への糸且込みが可能で、本発明のポリヌクレオチドの転写に適した位置 にプロモーターを含有しているものが例示される。ベクターのうち、クローニングに適 したベクターを「クロー-ングベクター」という。そのようなクロー-ングベクターは通常 、制限酵素部位を複数含むマルチプルクローユング部位を含む。そのような制限酵 素部位およびマルチプルクローユング部位は、当該分野において周知であり、当業 者は、 目的に合わせて適宜選択して使用することができる。そのような技術は、本明 細書に記載される文献 (例えば、 Sambrookら、前出)に記載されている。好ましいベ クタ一としては、プラスミド、ファージ、コスミド、ェピソ一ム、ウィルス粒子またはウィル スおよび組み込み可能な DNAフラグメント(すなわち、相同組換えによって宿主ゲノ ム中に組み込み可能なフラグメント)が挙げられる力 これらに限定されない。好まし いウィルス粒子としては、アデノウイルス、バキュロウィルス、パルボウイルス、ヘルぺ スウィルス、ボックスウィルス、アデノ随伴ウィルス、セムリキ森林ウィルス、ワクシニア ウィルスおよびレトロウイルスが挙げられる力 これらに限定されない。
ベクターの 1つの型は、「プラスミド」であり、これは、さらなる DNAセグメントが連結 され得る環状二重鎖 DNAループをいう。別の型のベクターは、ウィルスベクターであ り、ここで、さらなる DNAセグメントは、ウィルスゲノム中に連結され得る。特定のベタ ター(例えば、細菌の複製起点を有する細菌ベクターおよびェピソ一ム哺乳動物べク ター)は、これらが導入される宿主細胞中で自律的に複製し得る。他のベクター(例え ば、非ェピソーム哺乳動物ベクター)は、宿主細胞中への導入の際に宿主細胞のゲ ノム中に組み込まれ、それにより、宿主ゲノムと共に複製される。さらに、特定のベクタ 一は、これらが作動可能に連結される遺伝子の発現を指向し得る。このようなベクタ 一は、本明細書中で、「発現ベクター」といわれる。
従って、本明細書において「発現ベクター」とは、構造遺伝子およびその発現を調 節するプロモーターにカ卩えて種々の調節エレメントが宿主の細胞中で作動し得る状 態で連結されている核酸配列をいう。調節エレメントは、好ましくは、ターミネータ一、 薬剤耐性遺伝子のような選択マーカーおよび、ェンハンサーを含み得る。生物(例え ば、動物)の発現ベクターのタイプおよび使用される調節エレメントの種類力 宿主細 胞に応じて変わり得ることは、当業者に周知の事項である。
本発明において用いられ得る原核細胞に対する「組み換えベクター」としては、 pc DNA3 ( + )、 pBluescript— SK( + Z一)、 pGEM— T、 pEF— BOS、 pEGFP、 p HAT、 pUC18、 pFT— DESTTM42GATEWAY(Invitrogen)などが例示される 本発明において用いられ得る動物細胞に対する「組み換えベクター」としては、 pc DNAI/Amp, pcDNAI、 pCDM8 (いずれもフナコシより巿販)、 pAGE107 [特開 平 3— 229 (Invitrogen)、 pAGE103 Q[. Biochem. , 101, 1307 (1987) ]、 ρΑΜ o、pAMoAQ[. Biol. Chem. , 268, 22782— 22787 (1993) ]、マウス幹細胞ウイ ルス(Murine Stem Cell Virus) (MSCV)に基づいたレトロウイルス型発現べク ター、 pEF— BOS、 pEGFPなどが例示される。
本明細書において「ターミネータ一」は、遺伝子のタンパク質をコードする領域の下 流に位置し、 DNAが mRNAに転写される際の転写の終結、ポリ A配列の付加に関 与する配列である。ターミネータ一は、 mRNAの安定性に関与して遺伝子の発現量 に影響を及ぼすことが知られて 、る。
本明細書において「プロモーター」とは、遺伝子の転写の開始部位を決定し、また その頻度を直接的に調節する DNA上の領域をいい、通常 RNAポリメラーゼが結合 して転写を始める塩基配列である。したがって、本明細書においてある遺伝子のプロ モーターの働きを有する部分を「プロモーター部分」と 、う。プロモーターの領域は、 通常、推定タンパク質コード領域の第 1ェキソンの上流約 2kbp以内の領域であること が多いので、 DNA解析用ソフトウェアを用いてゲノム塩基配列中のタンパク質コード 領域を予測すれば、プロモータ領域を推定することはできる。推定プロモーター領域 は、構造遺伝子ごとに変動するが、通常構造遺伝子の上流にあるが、これらに限定さ れず、構造遺伝子の下流にもあり得る。好ましくは、推定プロモーター領域は、第一 ェキソン翻訳開始点力も上流約 2kbp以内に存在する。
本明細書において「複製起点」とは、 DNA複製が開始する染色体上の特定領域を いう。複製起点は、内因性起点を含むようにそのベクターを構築することによって提 供され得るか、または宿主細胞の染色体複製機構により提供され得るかのいずれか であり得る。そのベクターが、宿主細胞染色体中に組み込まれる場合、後者が十分 であり得る。あるいは、ウィルス複製起点を含むベクターを使用するよりも、当業者は 、選択マーカーと本発明の DNAとを同時形質転換する方法によって、哺乳動物細 胞を形質転換し得る。適切な選択マーカーの例は、ジヒドロ葉酸還元酵素 (DHFR) またはチミジンキナーゼである(米国特許第 4, 399, 216号を参照)。
例えば、組織特異的調節エレメントを使用して核酸を発現することによって、組換え 哺乳動物発現ベクターでは、特定の細胞型において核酸の発現を優先的に指向し 得る。組織特異的調節エレメントは、当該分野で公知である。適切な組織特異的プロ モーターの非限定的な例としては、発生的に調節されたプロモーター(例えば、マウ ス hoxプロモーター(Kesselおよび Gruss ( 1990) Science 249, 374— 379)およ び α—フエトプロテインプロモーター(Campesおよび Tilghman ( 1989) Genes De v. 3, 537— 546) )、アルブミンプロモーター(肝臓特異的; Pinkertら(1987) Gene s Dev. 1, 268— 277)、リンパ特異的プロモーター(Calameおよび Eaton(1988) Adv. Immunol. 43, 235— 275)、特に T細胞レセプター(Winotoおよび Baltimo re (1989) EMBO J. 8, 729— 733)および免疫グロブリン(Banerjiら(1983) Cell
33, 729— 740 ; Queenおよび Baltimore (1983) Cell 33, 741— 748)のプロ モーター、ニューロン特異的プロモーター(例えば、神経線維プロモーター; Byrne および Ruddle (1989) Proc. Natl. Acad. Sci. USA 86, 5473— 5477)、脾臓 特異的プロモーター(Edlundら(1985) Science 230, 912— 916)、および乳腺 特異的プロモーター(例えば、乳清プロモーター;米国特許第 4, 873, 316号および 欧州出願公開番号 264, 166)が挙げられるがそれらに限定されない。
[0038] 本明細書にぉ 、て「ェンノヽンサ一」とは、目的遺伝子の発現効率を高めるために用 いられる配列をいう。そのようなェンノ、ンサ一は当該分野において周知である。ェン ハンサ一は複数個用いられ得るが 1個用いられてもよ!/、し、用いなくともよ!/、。
本明細書にぉ 、て「作動可能に連結された (る)」とは、所望の配列の発現 (作動) がある転写翻訳調節配列(例えば、プロモーター、ェンノ、ンサ一など)または翻訳調 節配列の制御下に配置されることをいう。プロモーターが遺伝子に作動可能に連結 されるためには、通常、その遺伝子のすぐ上流にプロモーターが配置される力 必ず しも隣接して配置される必要はな 、。
本明細書において、核酸分子を細胞に導入する技術は、どのような技術でもよぐ 例えば、形質転換、形質導入、トランスフエクシヨンなどが挙げられる。そのような核酸 分子の導入技術は、当該分野において周知であり、かつ、慣用されるものであり、例 えば、 Ausubel F. A.ら編 (1988)、 Current Protocols in Molecular Biol ogy、 Wiley、 New York、 NY; Sambrook Jら(1987) Molecular Cloning : A Laboratory Manual, 2nd Ed.およびその第三版, Cold Spring Harbor La boratory Press, Cold Spring Harbor, NY、別冊実験医学「遺伝子導入 &発 現解析実験法」羊土社、 1997などに記載される。遺伝子の導入は、ノーザンプロット 、ウェスタンプロット分析のような本明細書に記載される方法または他の周知慣用技 術を用いて確認することができる。
また、ベクターの導入方法としては、細胞に DNAを導入する上述のような方法であ ればいずれも用いることができ、例えば、トランスフエクシヨン、形質導入、形質転換な ど(例えば、リン酸カルシウム法、リボソーム法、 DEAEデキストラン法、エレクトロボレ ーシヨン法、パーティクルガン (遺伝子銃)を用いる方法など)が挙げられる。
[0039] 本明細書において「形質転換体」とは、形質転換によって作製された細胞などの生 命体の全部または一部をいう。形質転換体としては、原核細胞、酵母、動物細胞、植 物細胞、昆虫細胞などが例示される。形質転換体は、その対象に依存して、形質転 換細胞、形質転換組織、形質転換宿主などともいわれる。本発明において用いられ る細胞は、形質転換体であってもよい。 本発明にお!ヽて遺伝子操作などにお!ヽて原核生物細胞が使用される場合、原核 生物糸田胞としては、 Escherichia属、 Serratia属、 Bacillus属、 Brevibacterium属 、 Corynebacterium,禺、 Microbacterium晨、 Pseudomonas厲などに属す 原核 生物細胞、例えば、 Escherichia coli XL 1— Blueゝ Escherichia coli XL2— B lueゝ Escherichia coli DH1、 BL— 21、 JM109が例示される。
本明細書において使用される場合、動物細胞としては、マウス'ミエローマ細胞、ラ ット.ミエローマ細胞、マウス'ノ、イブリドーマ細胞、チャイニーズ'ノ、ムスターの細胞で ある CHO細胞、 BHK細胞、アフリカミドリザル腎臓細胞、ヒト白血病細胞、 HBT563 7 (特開昭 63— 299)、ヒト結腸癌細胞株などを挙げることができる。マウス'ミエローマ 細胞としては、 ps20、 NSOなど、ラット 'ミエローマ細胞としては YB2Z0など、ヒト胎 児腎臓細胞としては HEK293 (ATCC : CRL— 1573)など、ヒト白血病細胞としては BALL— 1など、アフリカミドリザル腎臓細胞としては COS— 1、 COS— 7、ヒト結腸癌 細胞株としては HCT— 15、ヒト神経芽細胞腫 SK—N— SH、 SK—N— SH— 5Y、 マウス神経芽細胞腫 Neuro2Aなどが例示される。
本明細書において使用される場合、組換えベクターの導入方法としては、 DNAを 導入する方法であればいずれも用いることができ、例えば、塩化カルシウム法、エレ タトロポレーシヨン法 [Methods. Enzymol. , 194, 182 (1990) ]、リポフエクシヨン 法、スフエロプラスト法 [Proc. Natl. Acad. Sci. USA, 84, 1929 (1978) ]、酢酸 リチウム法 Q[. Bacteriol. , 153, 163 (1983) ]、 Proc. Natl. Acad. Sci. USA, 7 5, 1929 (1978)記載の方法などが例示される。
本明細書において、レトロウイルスの感染方法は、例えば、 Current Protocols i n Molecular Biology 前出(特に Units 9. 9— 9. 14)などに記載されるように、 当該分野において周知であり、例えば、トリプシナイズして胚性幹細胞を単一細胞懸 淘物 ^single— cell suspension)【こした後、ウイノレス産生糸田胞 (virus― producing cells) (パッケージング細胞株 = packaging cell lines)の培養上清と一緒に 1〜 2時間共培養 (co— culture)することにより、十分量の感染細胞を得ることができる。 本明細書において使用されるゲノムまたは遺伝子座などを除去する方法において 用いられる、 Cre酵素の一過的発現、染色体上での DNAマッピングなどは、細胞ェ 学別冊実験プロトコールシリーズ「FISH実験プロトコール ヒト 'ゲノム解析力 染色 体 ·遺伝子診断まで」松原謙一、吉川 寛 監修 秀潤社 (東京)などに記載されるよ うに、当該分野において周知である。
本明細書において遺伝子発現 (たとえば、 mRNA発現、ポリペプチド発現)の「検 出」または「定量」は、例えば、 mRNAの測定および免疫学的測定方法を含む適切 な方法を用いて達成され得る。分子生物学的測定方法としては、例えば、ノーザンブ ロット法、ドットプロット法または PCR法などが例示される。免疫学的測定方法としては 、例えば、方法としては、マイクロタイタープレートを用いる ELISA法、 RIA法、蛍光 抗体法、ウェスタンプロット法、免疫組織染色法などが例示される。また、定量方法と しては、 ELISA法または RIA法などが例示される。アレイ(例えば、 DNAアレイ、プロ ティンアレイ)を用いた遺伝子解析方法によっても行われ得る。 DNAアレイにっ 、て は、(秀潤社編、細胞工学別冊「DNAマイクロアレイと最新 PCR法」)に広く概説され ている。プロテインアレイについては、 Nat Genet. 2002 Dec ; 32 Suppl: 526 —32に詳述されている。遺伝子発現の分析法としては、上述にカ卩えて、 RT— PCR、 RACE法、 SSCP法、免疫沈降法、 two— hybridシステム、インビトロ翻訳などが挙 げられるがそれらに限定されない。そのようなさらなる分析方法は、例えば、ゲノム解 析実験法 · 中村祐輔ラボ'マ-ユアル、編集'中村祐輔 羊土社 (2002)などに記 載されており、本明細書においてそれらの記載はすべて参考として援用される。 本明細書において「発現量」とは、対象となる細胞などにおいて、ポリペプチドまた は mRNAが発現される量をいう。そのような発現量としては、本発明の抗体を用いて ELISA法、 RIA法、蛍光抗体法、ウェスタンプロット法、免疫組織染色法などの免疫 学的測定方法を含む任意の適切な方法により評価される本発明ポリペプチドのタン パク質レベルでの発現量、またはノーザンブロット法、ドットブロット法、 PCR法などの 分子生物学的測定方法を含む任意の適切な方法により評価される本発明のポリべ プチドの mRNAレベルでの発現量が挙げられる。「発現量の変ィ匕」とは、上記免疫学 的測定方法または分子生物学的測定方法を含む任意の適切な方法により評価され る本発明のポリペプチドのタンパク質レベルまたは mRNAレベルでの発現量が増加 あるいは減少することを意味する。 本明細書にぉ 、て「上流」と 、う用語は、特定の基準点力 ポリヌクレオチドの 5 '末 端に向カゝぅ位置を示す。
本明細書にぉ 、て「下流」と 、う用語は、特定の基準点力もポリヌクレオチドの 3 '末 端に向カゝぅ位置を示す。
[0042] 本明細書において「塩基対の」および「Watson & Crick塩基対の」という表現は、本 明細書では同義に用いられ、二重らせん状の DNAにおいて見られるものと同様に、 アデニン残基が 2つの水素結合によってチミン残基またはゥラシル残基と結合し、 3つ の水素結合によってシトシン残基とグァニン残基とが結合するという配列の正体に基 づいて互いに水素結合可能なヌクレオチドを示す(Stryer, L. , Biochemistry, 4t h edition, 1995を参照)。
本明細書において「相補的」または「相補体」という用語は、本明細書では、相補領 域全体がそのまま別の特定のポリヌクレオチドと Watson & Crick塩基対を形成す ることのできるポリヌクレオチドの配列を示す。本発明の目的で、第 1のポリヌクレオチ ドの各塩基がその相補塩基と対になっている場合に、この第 1のポリヌクレオチドは第 2のポリヌクレオチドと相補であるとみなす。相補塩基は一般に、 Aと T (あるいは Aと U )、または Cと Gである。本願明細書では、「相補」という語を「相補ポリヌクレオチド」、「 相補核酸」および「相補ヌクレオチド配列」の同義語として使用する。これらの用語は 、その配列のみに基づいてポリヌクレオチドの対に適用されるものであり、 2つのポリ ヌクレオチドが事実上結合状態にある特定のセットに適用されるものではない。
[0043] (ペプチドの製造方法)
本発明で使用するペプチド (例えば、インスリンまたはその改変体もしくはフラグメン トなど)をコードする DNAを組み込んだ組換え体ベクターを保有する微生物、動物細 胞などに由来する形質転換体を、通常の培養方法に従って培養し、本発明のポリべ プチドを生成蓄積させ、本発明の培養物より本発明のペプチドを採取することにより 、本発明に係るペプチドを製造することができる。
本発明の形質転換体を培地に培養する方法は、宿主の培養に用いられる通常の 方法に従って行うことができる。大腸菌等の原核生物ある 、は酵母等の真核生物を 宿主として得られた形質転換体を培養する培地としては、本発明の生物が資化し得 る炭素源、窒素源、無機塩類等を含有し、形質転換体の培養を効率的に行える培地 であれば天然培地、合成培地の!/、ずれを用いてもょ 、。
[0044] 炭素源としては、それぞれの微生物が資化し得るものであればよぐグルコース、フ ラタトース、スクロース、グリセロール、これらを含有する糖蜜、デンプンあるいはデン プン加水分解物等の炭水化物、酢酸、プロピオン酸等の有機酸、エタノール、プロパ ノール等のアルコール類を用いることができる。
窒素源としては、アンモニア、塩化アンモ-ゥム、硫酸アンモ-ゥム、酢酸アンモ- ゥム、リン酸アンモ-ゥム等の各種無機酸または有機酸のアンモ-ゥム塩、その他含 窒素物質、ならびに、ペプトン、肉エキス、酵母エキス、コーンスチープリカー、カゼィ ン加水分解物、大豆粕および大豆粕加水分解物、各種発酵菌体およびその消化物 等を用いることができる。
無機塩としては、リン酸第一カリウム、リン酸第二カリウム、リン酸マグネシウム、硫 酸マグネシウム、塩ィ匕ナトリウム、硫酸第一鉄、硫酸マンガン、硫酸銅、炭酸カルシゥ ム等を用いることができる。培養は、振盪培養または深部通気攪拌培養等の好気的 条件下で行う。
[0045] 培養温度は 15〜40°Cがよぐ培養時間は、通常 5時間〜 7日間である。培養中 pH は、 3. 0〜9. 0に保持する。 pHの調整は、無機あるいは有機の酸、アルカリ溶液、 尿素、炭酸カルシウム、アンモニア等を用いて行う。また培養中必要に応じて、アンピ シリンまたはテトラサイクリン等の抗生物質を培地に添加してもよい。
プロモーターとして誘導性のプロモーターを用いた発現ベクターで形質転換した微 生物を培養するときには、必要に応じてインデューサーを培地に添加してもよい。例 えば、 lacプロモーターを用いた発現ベクターで形質転換した微生物を培養するとき にはイソプロピル一 β—D—チォガラタトピラノシド等を、 trpプロモーターを用いた発 現ベクターで形質転換した微生物を培養するときにはインドールアクリル酸等を培地 に添加してもよい。遺伝子を導入した細胞または器官は、ジャーフアーメンターを用 V、て大量培養することができる。
例えば、動物細胞を用いる場合、本発明の細胞を培養する培地は、一般に使用さ れている RPMI 1640培地(The Journal of the American Medical Associ ation, 199, 519 (1967) )、 Eagleの MEM培地(Science, 122, 501 (1952) )、 DMEM培地(Virology, 8, 396 (1959) )、 199培地(Proceedings of the So ciety for the Biological Medicine, 73, 1 (1950) )またはこれら培地にゥシ 胎児血清等を添加した培地等が用いられる。
培養は、通常 pH6〜8、 25〜40°C、 5%C02存在下等の条件下で 1〜7日間行う。 また培養中必要に応じて、カナマイシン、ペニシリン、ストレプトマイシン等の抗生物 質を培地に添加してもよい。
本発明に使用するペプチドをコードする核酸配列で形質転換された形質転換体の 培養物から、本発明に使用するペプチドを単離または精製するためには、当該分野 で周知慣用の通常の酵素の単離または精製法を用いることができる。例えば、本発 明に使用するペプチドが本発明のペプチド製造用形質転換体の細胞外に本発明に 使用するペプチドが分泌される場合には、その培養物を遠心分離等の手法により処 理し、可溶性画分を取得する。その可溶性画分から、溶媒抽出法、硫安等による塩 析法脱塩法、有機溶媒による沈澱法、ジェチルアミノエチル (DEAE) - Sepharose 、 DIAION HPA— 75 (三菱ィ匕学)等榭脂を用いた陰イオン交換クロマトグラフィー 法、 S— Sepharose FF (Pharmacia)等の榭脂を用いた陽イオン交換クロマトグラ フィ一法、ブチルセファロース、フエ-ルセファロース等の榭脂を用いた疎水性クロマ トグラフィ一法、分子篩を用いたゲルろ過法、ァフィユティークロマトグラフィー法、クロ マトフォーカシング法、等電点電気泳動等の電気泳動法等の手法を用い、精製標品 を得ることができる。
本発明に使用するペプチド (例えば、インスリンなど)が本発明に使用するペプチド 製造用形質転換体の細胞内に溶解状態で蓄積する場合には、培養物を遠心分離 することにより、培養物中の細胞を集め、その細胞を洗浄した後に、超音波破砕機、 フレンチプレス、マントンガウリンホモジナイザー、ダイノミル等により細胞を破砕し、無 細胞抽出液を得る。その無細胞抽出液を遠心分離することにより得られた上清から、 溶媒抽出法、硫安等による塩析法脱塩法、有機溶媒による沈澱法、ジェチルァミノ ェチル(DEAE) - Sepharose, DIAION HPA— 75 (三菱化学)等榭脂を用いた 陰イオン交換クロマトグラフィー法、 S— Sepharose FF (Pharmacia)等の榭脂を用 いた陽イオン交換クロマトグラフィー法、ブチルセファロース、フエ-ルセファロース等 の榭脂を用いた疎水性クロマトグラフィー法、分子篩を用いたゲルろ過法、ァフィ-テ ィークロマトグラフィー法、クロマトフォーカシング法、等電点電気泳動等の電気泳動 法等の手法を用いることによって、精製標品を得ることができる。
[0047] 本発明に使用するペプチドが細胞内に不溶体を形成して発現した場合は、同様に 細胞を回収後破砕し、遠心分離を行うことにより得られた沈澱画分より、通常の方法 により本発明のポリペプチドを回収後、そのポリペプチドの不溶体をポリペプチド変性 剤で可溶化する。この可溶ィ匕液を、ポリペプチド変性剤を含まないあるいはポリぺプ チド変性剤の濃度がペプチドが変性しな 、程度に希薄な溶液に希釈、あるいは透析 し、本発明に使用するペプチドを正常な立体構造に構成させた後、上記と同様の単 離精製法により精製標品を得ることができる。
また、通常のタンパク質の精製方法 Q[. Evan. Sadlerら: Methods in Enzymol ogy, 83, 458]に準じて精製できる。また、本発明に使用するペプチドを他のタンパ ク質との融合タンパク質として生産し、融合したタンパク質に親和性をもつ物質を用 Vヽたァフィ-ティークロマトグラフィーを利用して精製することもできる [山川彰夫,実 験医学(Experimental Medicine) , 13, 469— 474 (1995) ]。例えば、 Loweら の方法 [Proc. Natl. Acad. Sci. , USA, 86, 8227— 8231 (1989)、 GenesDev elop. , 4, 1288 (1990) ]に記載の方法に準じて、本発明に使用するペプチドをプ 口ティン Aとの融合タンパク質として生産し、ィムノグロブリン Gを用いるァフィユティー クロマトグラフィーにより精製することができる。
[0048] また、本発明に使用するペプチドを FLAGペプチドとの融合タンパク質として生産 し、抗 FLAG抗体を用いるァフィユティークロマトグラフィーにより精製することができ る [Proc. Natl. Acad. Sci. , USA, 86, 8227 (1989)、 Genes Develop. , 4, 1288 (1990) ]。このような融合タンパク質では、発現ベクターにおいて、タンパク質 分解切断部位は、融合タンパク質の精製に続いて、融合部分力ゝらの組換えタンパク 質の分離を可能にするために、融合部分と組換えタンパク質との接合部に導入され る。このような酵素およびこれらの同族の認識配列は、第 Xa因子、トロンビン、および ェンテロキナーゼを含む。代表的な融合発現ベクターとしては、それぞれ、ダルタチ オン一 S トランスフェラーゼ(GST)、マルトース E結合タンパク質、またはプロテイン Aを標的組換えタンパク質に融合する、 pGEX (Pharmacia Biotech; Smithおよ び Johnson (1988) Gene 67, 31〜40)、 pMAL (New England Biolabs, Bev erly, Mass. )および pRIT5 (Pharmacia, Piscataway, N. J. )が挙げられる。 さらに、本発明に使用するペプチド自身に対する抗体を用 、たァフィ-ティークロマ トグラフィ一で精製することもできる。本発明に使用するペプチドは、公知の方法 ϋ. Biomolecular NMR, 6, 129— 134、 Science, 242, 1162— 1164、 Bioche m. , 110, 166— 168 (1991) ]に準じて、 in vitro転写 ·翻訳系を用いてを生産す ることがでさる。
本発明に使用するペプチドは、そのアミノ酸情報を基に、 Fmoc法 (フルォレニルメ チルォキシカルボ-ル法)、 tBoc法(t ブチルォキシカルボ-ル法)等の化学合成 法によっても製造することができる。また、 Advanced ChemTech, Applied Bios ystems、 Pharmacia Biotech、 Protein echnology Instrument^ Synthec ell-Vega, PerSeptive,島津製作所等のペプチド合成機を利用し化学合成するこ とちでさる。
精製した本発明に使用するペプチドの構造解析は、タンパク質ィ匕学で通常用いら れる方法、例えば遺伝子クローユングのためのタンパク質構造解析 (平野久著、東京 化学同人発行、 1993年)に記載の方法により実施可能である。本発明に使用するぺ プチドの生理活性は、公知の測定法に準じて測定することができる。
本発明にお 、て有用な可溶性ペプチドの産生もまた、当該分野で公知の種々の方 法によって達成され得る。例えば、ペプチドは、ェキソぺプチダーゼ、エドマン分解ま たはその両方と組み合わせて特定のエンドべプチダーゼを使用することによるタンパ ク質分解によって、インタタトな膜貫通 P75ポリペプチド分子力も誘導され得る。このィ ンタタトな P75ペプチド分子は、従来の方法を使用して、その天然の供給源から精製 され得る。あるいは、インタタトな p75ペプチドは、 cDNA、発現ベクターおよび組換 え遺伝子発現のための周知技術を利用する組換え DNA技術によって生成され得る 好ましくは、本発明において有用な可溶性ペプチドは、直接的に産生され、従って 、出発材料としての p75ペプチド全体の必要性を排除する。これは、従来の化学合 成技術によって達成され得る力、または周知の組換え DNA技術 (ここで、所望のぺ プチドをコードする DNA配列のみが形質転換された宿主で発現される)によって達 成され得る。例えば、所望の可溶性 p75ペプチドをコードする遺伝子は、オリゴヌタレ ォチド合成機を使用する化学的手段によって合成され得る。このようなオリゴヌクレオ チドは、所望の可溶性 p75ペプチドのアミノ酸配列に基づいて設計される。所望のぺ プチドをコードする特定の DNA配列はまた、特定の制限エンドヌクレアーゼフラグメ ントの単離によって力、または cDNAからの特定の領域の PCR合成によって、全長 D NA配列から誘導され得る。
[0050] (改変体ペプチドの製造方法)
本発明に使用するペプチド (例えば、インスリンなど)のアミノ酸の欠失、置換もしく は付加 (融合を含む)は、周知技術である部位特異的変異誘発法により実施すること ができる。力かる 1もしくは数個のアミノ酸が欠失、置換もしくは付カ卩は、 Molecular Cloning, A Laboratory Manual, Second Edition, Cold Spring Harbor
Laboratory Press (1989)、 Current Protocols in Molecular Biology, S upplement 1〜38, JohnWiley & Sons (1987— 1997)、 Nucleic Acids R esearch, 10, 6487 (1982) , Proc. Natl. Acad. Sci. , USA, 79, 6409 (1982 ) , Gene, 34, 315 (1985)、 Nucleic Acids Research, 13, 4431 (1985)、 Pr oc. Natl. Acad. Sci USA, 82, 488 (1985)、 Proc. Natl. Acad. Sci. , USA , 81, 5662 (1984)、 Science, 224, 1431 (1984)、 PCT WO85/00817 (19 85)、 Nature, 316, 601 (1985)等に記載の方法に準じて調製することができる。
[0051] (医薬組成物)
別の局面において、本発明は、医薬 (例えば、ワクチン等の医薬品、健康食品、タ ンパク質または脂質は抗原性を低減した医薬品)およびィ匕粧品に関する。この医薬 およびィ匕粧品は、薬学的に受容可能なキャリアなどをさらに含み得る。本発明の医薬 に含まれる薬学的に受容可能なキャリアとしては、当該分野において公知の任意の 物質が挙げられる。
そのような適切な処方材料または薬学的に受容可能なキャリアとしては、抗酸化剤 、保存剤、着色料、風味料、および希釈剤、乳化剤、懸濁化剤、溶媒、フィラー、増 量剤、緩衝剤、送達ビヒクル、希釈剤、賦形剤および/または薬学的アジュバント挙 げられるがそれらに限定されない。代表的には、本発明の医薬は、化合物、またはそ の改変体もしくは誘導体を、 1つ以上の生理的に受容可能なキャリア、賦形剤または 希釈剤とともに含む組成物の形態で投与される。例えば、適切なビヒクルは、注射用 水、生理的溶液、または人工脳脊髄液であり得、これらには、非経口送達のための 組成物に一般的な他の物質を補充することが可能である。
本明細書で使用される受容可能なキャリア、賦形剤または安定化剤は、レシピエン トに対して非毒性であり、そして好ましくは、使用される投薬量および濃度において不 活性であり、そして以下が挙げられる:リン酸塩、クェン酸塩、または他の有機酸;ァス コルビン酸、 a トコフエロール;低分子量ポリペプチド;タンパク質(例えば、血清ァ ルブミン、ゼラチンまたは免疫グロブリン);親水性ポリマー(例えば、ポリビュルピロリ ドン);アミノ酸 (例えば、グリシン、グルタミン、ァスパラギン、アルギニンまたはリジン) ;モノサッカリド、ジサッカリドおよび他の炭水化物(グルコース、マンノース、またはデ キストリンを含む);キレート剤(例えば、 EDTA);糖アルコール (例えば、マン-トー ルまたはソルビトール);塩形成対イオン (例えば、ナトリウム);ならびに Zあるいは非 イオン性表面活性化剤(例えば、 Tween、プル口ニック (pluronic)またはポリエチレ ングリコール(PEG) )。
例示の適切なキャリアとしては、中性緩衝化生理食塩水、または血清アルブミンと 混合された生理食塩水が挙げられる。好ましくは、その生成物は、適切な賦形剤 (例 えば、スクロース)を用いて凍結乾燥剤として処方される。他の標準的なキャリア、希 釈剤および賦形剤は所望に応じて含まれ得る。他の例示的な組成物は、 pH7. 0— 8. 5の Tris緩衝剤または pH4. 0— 5. 5の酢酸緩衝剤を含み、これらは、さら〖こ、ソ ルビトールまたはその適切な代替物を含み得る。
以下に本発明の医薬組成物の一般的な調製法を示す。なお、動物薬組成物、医 薬部外品、水産薬組成物、食品組成物およびィヒ粧品組成物等についても公知の調 製法により製造することができる。
本発明の糖鎖が導入されたペプチドなどは、薬学的に受容可能なキャリアと配合し 、錠剤、カプセル剤、顆粒剤、散剤、粉剤、座剤等の固形製剤、またはシロップ剤、 注射剤、懸濁剤、溶液剤、スプレー剤等の液状製剤として経口または非経口的に投 与することができる。薬学的に受容可能なキャリアとしては、上述のように、固形製剤 における賦形剤、滑沢剤、結合剤、崩壊剤、崩壊阻害剤、吸収促進剤、吸着剤、保 湿剤、溶解補助剤、安定化剤、液状製剤における溶剤、溶解補助剤、懸濁化剤、等 張化剤、緩衝剤、無痛化剤等が挙げられる。また、必要に応じ、防腐剤、抗酸化剤、 着色剤、甘味剤等の製剤添加物を用いることができる。また、本発明の組成物には 本発明のポリヌクレオチド、ポリペプチドなど以外の物質を配合することも可能である 。非経口の投与経路としては、静脈内注射、筋肉内注射、経鼻、直腸、膣および経 皮等が挙げられるがそれらに限定されない。
固形製剤における賦形剤としては、例えば、グルコース、ラタトース、スクロース、 D マン-トール、結晶セルロース、デンプン、炭酸カルシウム、軽質無水ケィ酸、塩化 ナトリウム、カオリンおよび尿素等が挙げられる。
固形製剤における滑沢剤としては、例えば、ステアリン酸マグネシウム、ステアリン 酸カルシウム、ホウ酸末、コロイド状ケィ酸、タルクおよびポリエチレングリコール等が 挙げられるがそれらに限定されない。
固形製剤における結合剤としては、例えば、水、エタノール、プロパノール、白糖、 D マン-トール、結晶セルロース、デキストリン、メチルセルロース、ヒドロキシプロピ ノレセノレロース、ヒドロキシプロピノレメチノレセノレロース、カノレボキシメチノレセノレロース、デ ンプン溶液、ゼラチン溶液、ポリビニルピロリドン、リン酸カルシウム、リン酸カリウム、 およびシェラック等が挙げられる。
固形製剤における崩壊剤としては、例えば、デンプン、カルボキシメチルセルロース 、カルボキシメチルセルロースカルシウム、カンテン末、ラミナラン末、クロスカルメロ一 スナトリウム、カルボキシメチルスターチナトリウム、アルギン酸ナトリウム、炭酸水素ナ トリウム、炭酸カルシウム、ポリオキシエチレンソルビタン脂肪酸エステル類、ラウリル 硫酸ナトリウム、デンプン、ステアリン酸モノグリセリド、ラタトースおよび繊維素グリコー ル酸カルシウム等が挙げられるがそれらに限定されない。
固形製剤における崩壊阻害剤の好適な例としては、水素添加油、白糖、ステアリン 、カカオ脂および硬化油等が挙げられるがそれらに限定されない。
固形製剤における吸収促進剤としては、例えば、第四級アンモニゥム塩基類および ラウリル硫酸ナトリウム等が挙げられるがそれらに限定されない。
固形製剤における吸着剤としては、例えば、デンプン、ラタトース、カオリン、ベント ナイトおよびコロイド状ケィ酸等が挙げられるがそれらに限定されない。
固形製剤における保湿剤としては、例えば、グリセリン、デンプン等が挙げられるが それらに限定されない。
固形製剤における溶解補助剤としては、例えば、アルギニン、グルタミン酸、ァスパ ギン酸等が挙げられるがそれらに限定されない。
固形製剤における安定化剤としては、例えば、ヒト血清アルブミン、ラタトース等が挙 げられるがそれらに限定されない。
固形製剤として錠剤、丸剤等を調製する際には、必要により胃溶性または腸溶性 物質(白糖、ゼラチン、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセル口 ースフタレート等)のフィルムで被覆していてもよい。錠剤には、必要に応じ通常の剤 皮を施した錠剤、例えば、糖衣錠、ゼラチン被包錠、腸溶被錠、フィルムコーティング 錠あるいは二重錠、多層錠が含まれる。カプセル剤にはハードカプセルおよびソフト カプセルが含まれる。座剤の形態に成形する際には、上記に列挙した添加物以外に 、例えば、高級アルコール、高級アルコールのエステル類、半合成グリセライド等を添 加することができるがそれらに限定されない。
液状製剤における溶剤の好適な例としては、注射用水、アルコール、プロピレンダリ コール、マクロゴール、ゴマ油およびトウモロコシ油等が挙げられる。
液状製剤における溶解補助剤の好適な例としては、ポリエチレングリコール、プロピ レングリコール、 D—マン-トール、安息香酸ベンジル、エタノール、トリスァミノメタン 、コレステロール、トリエタノールァミン、炭酸ナトリウムおよびクェン酸ナトリウム等が 挙げられるがそれらに限定されない。
液状製剤における懸濁化剤の好適な例としては、ステアリルトリエタノールァミン、ラ ゥリル硫酸ナトリウム、ラウリルアミノプロピオン酸、レシチン、塩化ベンザルコ-ゥム、 塩ィ匕べンゼトニゥム、モノステアリン酸グリセリン等の界面活性剤、例えば、ポリビュル アルコール、ポリビュルピロリドン、カルボキシメチルセルロースナトリウム、メチルセル ロース、ヒドロキシメチノレセノレロース、ヒドロキシェチノレセノレロース、ヒドロキシェチノレセ ルロース、ヒドロキシプロピルセルロース等の親水性高分子等が挙げられるがそれら に限定されない。
液状製剤における等張化剤の好適な例としては、塩ィ匕ナトリウム、グリセリン、 D- マン-トール等が挙げられるがそれらに限定されない。
液状製剤における緩衝剤の好適な例としては、リン酸塩、酢酸塩、炭酸塩およびク ェン酸塩等の緩衝液等が挙げられるがそれらに限定されない。
液状製剤における無痛化剤の好適な例としては、ベンジルアルコール、塩化ベン ザルコ -ゥムおよび塩酸プロ力イン等が挙げられるがそれらに限定されない。
液状製剤における防腐剤の好適な例としては、ノラオキシ安息香酸エステル類、ク ロロブタノール、ベンジルアルコール、 2—フエ-ルエチルアルコール、デヒドロ酢酸、 ソルビン酸等が挙げられるがそれらに限定されない。
液状製剤における抗酸化剤の好適な例としては、亜硫酸塩、ァスコルビン酸、 a - トコフエロールおよびシスティン等が挙げられるがそれらに限定されない。
注射剤として調製する際には、液剤および懸濁剤は殺菌され、かっ血液と等張で あることが好ましい。通常、これらは、ノ クテリア保留フィルタ一等を用いるろ過、殺菌 剤の配合または照射によって無菌化する。さらにこれらの処理後、凍結乾燥等の方 法により固形物とし、使用直前に無菌水または無菌の注射用希釈剤 (塩酸リドカイン 水溶液、生理食塩
水、ブドウ糖水溶液、エタノールまたはこれらの混合溶液等)を添加してもよい。 さらに、必要ならば、医薬組成物は、着色料、保存剤、香料、矯味矯臭剤、甘味料 等、ならびに他の薬剤を含んでいてもよい。
本発明の医薬は、経口的または非経口的に投与され得る。あるいは、本発明の医 薬は、静脈内または皮下で投与され得る。全身投与されるとき、本発明において使用 される医薬は、発熱物質を含まない、薬学的に受容可能な水溶液の形態であり得る 。そのような薬学的に受容可能な組成物の調製は、 pH、等張性、安定性などを考慮 することにより、当業者は、容易に行うことができる。本明細書において、投与方法は 、経口投与、非経口投与 (例えば、静脈内投与、筋肉内投与、皮下投与、皮内投与 、粘膜投与、直腸内投与、膣内投与、患部への局所投与、皮膚投与など)であり得る 。そのような投与のための処方物は、任意の製剤形態で提供され得る。そのような製 剤形態としては、例えば、液剤、注射剤、徐放剤が挙げられる。
本発明の医薬は、必要に応じて生理学的に受容可能なキャリア、賦型剤または安 定化剤 (日本薬局方第 14版またはその最新版、 Remington' s Pharmaceutical sciences, 18th Edition, A. R. Gennaro, ed. , MacK Publishing Compan y, 1990などを参照)と、所望の程度の純度を有する糖鎖組成物とを混合すること〖こ よって、凍結乾燥されたケーキまたは水溶液の形態で調製され保存され得る。
様々な送達系が公知であり、そして本発明の化合物を投与するために用いられ得 る(例えば、リボソーム、微粒子、マイクロカプセルなど)。導入方法としては、皮内、筋 内、腹腔内、静脈内、皮下、鼻腔内、硬膜外、および経口経路が挙げられるがそれら に限定されない。化合物または組成物は、任意の好都合な経路により(例えば、注入 またはボーラス注射により、上皮または粘膜内層(例えば、口腔粘膜、直腸粘膜およ び腸粘膜など)を通しての吸収により)投与され得、そして他の生物学的に活性な薬 剤と一緒に投与され得る。投与は、全身的または局所的であり得る。さらに、本発明 の薬学的化合物または組成物を、任意の適切な経路 (脳室内注射および髄腔内注 射を包含し;脳室内注射は、例えば、 Ommayaリザーバのようなリザーバに取り付け られた脳室内カテーテルにより容易にされ得る)により中枢神経系に導入することが 望まれ得る。例えば、吸入器または噴霧器の使用、およびエアロゾル化剤を用いた 処方により、肺投与もまた使用され得る。
特定の実施形態において、本発明のポリペプチド、ポリヌクレオチドまたは組成物を 、処置の必要な領域 (例えば、中枢神経、脳など)に局所的に投与することが望まれ 得る;これは、制限する目的ではないが、例えば、手術中の局部注入、局所適用(例 えば、手術後の創傷包帯との組み合わせて)により、注射により、カテーテルにより、 坐剤により、またはインプラント(このインプラントは、シァラスティック(sialastic)膜の ような膜または繊維を含む、多孔性、非多孔性、または膠様材料である)により達成さ れ得る。好ましくは、抗体を含む本発明のタンパク質を投与する際、タンパク質が吸 収されな!/ヽ材料を使用するために注意が払われなければならな!/ヽ。
別の実施形態において、化合物または組成物は、小胞、特に、リボソーム中に封入 された状態で送達され得る(Langer, Science 249 : 1527- 1533 (1990); Treat ら, Liposomes m the Therapy of Infectious Disease and Cancer, Lo pez— Beresteinおよび Fidler (編), Liss, New York, 353〜365頁(1989) ;Lo pez— Berestein,同書 317〜327頁を参照のこと;広く同書を参照のこと)。
さらに別の実施形態において、化合物または組成物は、制御された徐放系中で送 達され得る。 1つの実施形態において、ポンプが用いられ得る(Langer (前出); Seft on, CRC Crit. Ref. Biomed. Eng. 14 : 201 (1987); Buchwaldら, Surgery 88 : 507 (1980) ; Saudekら, N. Engl. J. Med. 321 : 574 (1989)を参照のこと)。 別の実施形態において、高分子材料が用いられ得る(Medical Applications of
Controlled
Release, Langerおよび Wise (編), CRC Pres. , Boca
Raton, Florida (1974); Controlled Drug Bioavailability, Drug Product Design and Performance, Smolenおよび Ball (編), Wiley, New York (19
84); Rangerおよび Peppas, J.、 MacromoL Sci. Rev. MacromoL Chem. 23 :
61 (1983)を参照のこと; Levyら, Science 228: 190 (1985) ; Duringら, Ann.
Neurol. 25 : 351 (1989); Howard^, J. Neurosurg. 71 : 105 (1989)もまた参 照のこと)。
さらに別の実施形態において、制御された徐放系は、治療標的、即ち、脳の近くに 置かれ得、従って、全身用量の一部のみを必要とする(例えば、 Goodson, Medical
Applications of Controlled Release, (前出),第 2卷, 115〜138頁(1984 )を参照のこと)。
他の制御された徐放系は、 Langerにより総説において議論される(Science 249 : 1527—1533 (1990) )。
本発明の処置方法において使用される組成物の量は、使用目的、対象疾患 (種類 、重篤度など)、患者の年齢、体重、性別、既往歴、細胞の形態または種類などを考 慮して、当業者が容易に決定することができる。本発明の処置方法を被験体 (または 患者)に対して施す頻度もまた、使用目的、対象疾患 (種類、重篤度など)、患者の 年齢、体重、性別、既往歴、および治療経過などを考慮して、当業者が容易に決定 することができる。頻度としては、例えば、毎日 数ケ月に 1回(例えば、 1週間に 1回 1ヶ月に 1回)の投与が挙げられる。 1週間ー1ヶ月に 1回の投与を、経過を見なが ら施すことが好ましい。
本発明の糖鎖が導入されたペプチドなどの投与量は、被験体の年齢、体重、症状 または投与方法などにより異なり、特に限定されないが、通常成人 1日あたり、経口投 与の場合、 0. Olmg〜: LOgであり、好ましくは、 0. lmg〜: Lg、 lmg〜: L00mg、 0. 1 mg〜: LOmgなどであり得る。非経口投与の場合、 0. Olmg〜: Lgであり、好ましくは、 0. 01mg〜100mg、 0. lmg〜100mg、 lmg〜100mg、 0. lmg〜10mgなどでめ り得る。
本明細書中、「投与する」とは、本発明の糖鎖が導入されたペプチドなどまたはそれ を含む医薬組成物を、単独で、または他の治療剤と組み合わせて、生物の細胞また は組織に化合物を取り込むことを意味する。組み合わせは、例えば、混合物として同 時に、別々であるが同時にもしくは並行して;または逐次的にかのいずれかで投与さ れ得る。これは、組み合わされた薬剤が、治療混合物としてともに投与される提示を 含み、そして組み合わせた薬剤が、別々であるが同時に (例えば、同じ個体へ別々 の静脈ラインを通じての場合)投与される手順もまた含む。「組み合わせ」投与は、第 1に与えられ、続いて第 2に与えられる化合物または薬剤のうちの 1つを別々に投与 することをさらに含む。
異常な状態はまた、生物へのシグナル伝達経路に異常を有する細胞の群に化合 物を投与することによって予防または処置され得る。次いで、化合物を投与すること の生物機能に対する効果力 モニターされ得る。この生物は、好ましくは、マウス、ラ ット、ゥサギ、モルモット、またはャギ、より好ましくは、サル(monkeyまたは ape)、お よび最も好ましくは、ヒトである。
本明細書において「指示書」は、本発明の医薬などを投与する方法または診断する 方法などを医師、患者など投与を行う人、診断する人 (患者本人であり得る)に対して 記載したものである。この指示書は、本発明の診断薬、医薬などを投与する手順を指 示する文言が記載されている。この指示書は、本発明が実施される国の監督官庁( 例えば、 日本であれば厚生労働省、米国であれば食品医薬品局 (FDA)など)が規 定した様式に従って作成され、その監督官庁により承認を受けた旨が明記される。指 示書は、いわゆる添付文書 (package insert)であり、通常は紙媒体で提供される 力 それに限定されず、例えば、電子媒体 (例えば、インターネットで提供されるホー ムページ (ウェブサイト)、電子メール)のような形態でも提供され得る。
本発明の方法による治療の終了の判断は、商業的に利用できるアツセィもしくは機 器使用による標準的な臨床検査室の結果またはインスリンなどに関連する疾患 (例え ば、神経疾患)に特徴的な臨床症状の消滅によって支持され得る。治療は、インスリ ンなどに関連する疾患 (例えば、神経疾患)の再発により再開することができる。 本発明はまた、本発明の医薬組成物の 1つ以上の成分を満たした 1つ以上の容器 を備える薬学的パックまたはキットを提供する。医薬品または生物学的製品の製造、
: p I
使用または販売を規制する政府機関が定めた形式の通知が、このような容器に任意 に付属し得、この通知は、ヒトへの投与に対する製造、使用または販売に関する政府 機関による承認を表す。
本発明が化粧品として使用されるときもまた、当局の規定する規制を遵守しながら 化粧品を調製することができる。
[0058] 以下に、本発明の好ましい実施形態について説明する。
本発明糖鎖 ペプチド結合剤は以下の方法で得ることができる。
[0059] (方法 1)
[化 16]
A1 A1 CHal4/Ph3P A1
H2N OH HN OH H Hal
Pro
Figure imgf000047_0001
(式中、 A1は(1)と同意義、 Proは保護基、 Halはハロゲン、 Ph Pはトリフ フィンおよび Alkはアルキル)
(方法 2)
[化 17]
Figure imgf000048_0001
(式中、 A1は(1)と同意義、 Proは保護基、 DEADはジェチルァゾジカルボキシレー ト)
(方法 3)
[化 18]
Figure imgf000048_0002
(式中、 Proは保護基)
(方法 4)
[化 19]
Figure imgf000048_0003
(式中、 A1および R4は(1)と同意義、 Proは保護基) [0063] (ペプチドと該糖鎖 ペプチド結合剤の反応)
1つの局面において、本発明は、グルタミンが糖鎖で修飾された糖ペプチドを提供 する。この糖ペプチドでは、生物学的活性を有する形態のペプチドのアミノ酸配列に おいて、少なくとも 1つのアミノ酸残基にグルタミンを有することが特徴であり、そのグ ルタミンが糖鎖で修飾されている。ここで、修飾は、直接的または間接的な結合を意 味する。糖鎖で修飾されるグルタミンは、ペプチドに含まれる少なくとも 1つのダルタミ ンであればよぐ好ましくは、複数 (例えば、 2つ、 3つ)、あるいは、存在するグルタミン のすべてが糖鎖で修飾されていてもよい。結合は、通常共有結合であるが、それに 限定されず、糖鎖が、結合したペプチドと同一の存在物 (entity)を構成することがで きる限り、他の相互作用(例えば、疎水結合、水素結合など)を介していてもよい。
[0064] 1つの実施形態において、使用される生物学的活性を有する形態のペプチドは、ト ランスダルタミナーゼの酵素活性が発揮される少なくとも 1つの条件において水溶性 であることが好ましい。そのような条件は、使用されるトランスダルタミナーゼおよび基 質などによって変動するが、当業者は、そのような条件を適宜設定することができる。 例示的な条件としては、例えば、 pH4〜pH9、塩濃度 OmM〜: LM、 0°C〜42°Cの温 度などが挙げられるがそれらに限定されない。使用される緩衝塩もまた、任意のもの が使用され得る。そのような緩衝塩としては、用いられる緩衝液としては pH4〜pH9 のものであればいずれの種類の緩衝液でもよぐ例えば、 Hepes緩衝液、 Tris 塩 酸緩衝液 (PH8. 0)、リン酸緩衝液 (pH6. 4〜7. 4)等が挙げられる。また、動物由来 のトランスダルタミナーゼはカルシウム依存性のタンパク質であることが多いことから、 酵素活性を発現させるために、塩ィ匕カルシウム、炭酸カルシウム等のカルシウム塩を 反応系に添加するのが好ましぐその添加量は通常 0. 1〜: LOOミリモル濃度が好まし い。なお、微生物由来のトランスダルタミナーゼはカルシウム依存性ではないため、力 ルシゥム塩の添カ卩は必要でない。トランスダルタミナーゼとしては、ストレブトべルティ シリウム属(例えば、 Streptoverticillium sp. Strain s— 8112)等の微生物の 産生するもの、モルモット、ヒト等の動物由来のもの、さらに魚類由来のものなどいず れも用い得る。また汎用食品の増貼剤として市販もされており、本発明ではかかる巿 販のトランスダルタミナーゼでも用いられる。 より好ましくは、そのような条件は、「穏和な条件」であり得る。そのような穏和な条件 とは、分子内ジスルフイド結合が切れない条件、立体構造に変化を与えない条件な どが挙げられるがそれらに限定されない。このような穏和な条件を決定する条件とし ては、例えば、ペプチドまたはタンパク質濃度、基質濃度、カルシウムイオン濃度、 P H、温度、共存する塩の種類および濃度、 GSHの存否、還元剤の存否などが挙げら れるがそれらに限定されない。必要に応じて、これらの因子は複数考慮してもよい。 そのような条件の具体的な例としては、例えば、インスリン(0. lmM)、 Lac. Amino Hex(0. 9mM)ゝ CaC12 (5mM)ゝ Tris— HCl(20mM、 pH7. 5)、トランスグルタミ ナーゼ(3. 5U/ml) ; 37°Cおよび 30分間反応などが挙げられるがそれに限定され ない。 GSHを加えると、野生型のインスリンでトランスダルタミナーゼの反応が進むが 、そのような添カ卩はペプチドの生物学的活性に悪影響があることから、好ましくない。 他の穏和な条件の具体例としては、例えば、ペプチドまたはタンパク質 (例えば、リジ ン残基を含むタンパク質 (例えば、インスリン))の濃度を 0. 2mM以下 (好ましくは、 0 . ImM以下)にすること、カルシウム濃度を 2mM以上 (好ましくは、 5mM以上、より 好ましくは lOmM)とすること、 GSHをカ卩えた場合に 37°Cでの反応を短く(例えば、 3 時間以下、好ましくは 1時間以下)すること、市販のトランスダルタミナーゼを使用する 場合、還元剤の影響がな 、程度の量または緩衝液交換を行 、還元剤を減少させて 用いることなどが挙げられるがそれに限定されない。
本発明の方法において使用されるトランスダルタミナーゼは、どのような由来のもの であってもよぐ動物由来のもの (種々の組織、血漿成分由来など)または微生物由 来のもの、あるいは人工的に作製したものであってもよ 、。
トランスダルタミナーゼを用いて糖鎖を導入した場合、反応生成物は、遠心分離法 、クロマトグラフィー(例えば、逆相系 HPLC、レクチンカラムによるァフィ二ティーク口 マトグラフィー、ゲル濾過等)の当該分野において周知の方法により反応混合物から 単離精製することができる。あるいは、得られた糖鎖結合型インスリンは、複数種の混 合物として単離することができる。また、複数の異なる糖鎖または他の置換基で改変 されたものを含んで 、てもよ 、。
反応生成物の分析は、高速液体クロマトグラフィ、核磁気共鳴スペクトル、質量分析 (MALDI TOFマススペクトル分析など)などの各種分光分析法により行なうことがで きる。
好ま 、実施形態にぉ 、て、本発明にお 、て生物学的活性を有する形態のぺプ チドにおいてグルタミンに置換されるアミノ酸残基は、そのペプチドの表面に存在す るものであることが好ましい。表面上にあるアミノ酸残基をグルタミンに変化させ、糖鎖 を結合させることによって、従来達成できな力つた外的な攻撃力もペプチド分子を保 護することができる。そのような表面上にあるアミノ酸残基の同定は、当該分野におい て周知の結晶構造分析によって行うことができる。ペプチドの空間的コンフオメーショ ンを決定する方法は、当該分野で公知であり、例えば、 X線結晶学、および 2次元核 磁気共鳴分光法を含む。表面上に存在する部分を同定する方法には、ェピトープを 同定する方法が含まれる。所定のタンパク質におけるそのようなェピトープの同定は 、当該分野で周知の技術を使用して容易に達成される。例えば、 Geysenら(1984) Proc. Natl. Acad. Sci. USA 81 : 3998 (所定の抗原における免疫原性ェピトー プの位置を決定するために迅速にペプチドを合成する一般的な方法);米国特許第 4, 708, 871号 (抗原のェピトープを同定し、そして化学的に合成するための手順); および Geysenら(1986) Molecular Immunology 23 : 709 (所定の抗体に対し て高い親和性を有するペプチドを同定するための技術)を参照されたい。
別の実施形態において、グルタミンは、生物学的活性を有するペプチドの野生型 形態に存在していてもよいし、野生型において存在していない場合、グルタミンを置 換または付加してもよい。あるいは、このような付加または置換型のペプチドの生産 は、合成または遺伝子工学的に行うことができる。そのような生産方法は、本明細書 にお ヽて上述し、実施例にお!ヽて例示されるように当業者に周知なぎ術を用いて実 施することができる。グルタミンが置換または付加される位置は、プロテアーゼ消化を 受けやす 、部位にあることが好ま U、。プロテアーゼ消化を受けやす!/、部分をグルタ ミンとし、糖鎖で「マスク」することによって、プロテアーゼ消化を受けに《することが できる力 である。そのようなプロテアーゼ消化を受けやす 、部位であるかどうかは、 ペプチドを任意のプロテアーゼとインキュベートして消化した部分ペプチドの配列を 決定することによって判定することができる。 糖鎖が導入されるグルタミン残基の個数は少なくとも 1つであり、 2つ以上、 3つ以上 のグルタミン残基に糖鎖が導入されていても力まわない。また、複数のグルタミン残基 に糖鎖が導入される場合、導入される糖鎖は同一であっても異なっていてもよい。あ るいは、 1つのグルタミン残基に糖鎖が導入される場合であっても、導入される糖鎖 は均一であっても混合物であってもよ 、。均一であるものが好まし!/、。
遊離のシスティン残基 (チオール基)を持つペプチドと一般式 (V)で表される化合物 を含む糖鎖—ペプチド結合剤を緩衝溶液中、混ぜるだけで反応がおこり、 目的とす るペプチドに糖鎖 ペプチド結合剤が導入された誘導体が得られる。
[0067] (ペプチドの製造方法)
本発明の糖ペプチドにおいて、ペプチド部分は、当該分野に周知の技術を用いて 合成または遺伝子工学的に製造することができ、そのような合成および遺伝子工学 的製造の方法は、本明細書において他の場所に詳述されている。また、少なくとも 1 つのアミノ酸残基にグルタミンを有するようなペプチドの製造もまた、当該分野にぉ ヽ て周知の合成および Zまたは遺伝子工学の技術を用いて製造することができる。こ のような場合、野生型のペプチドにおいて、少なくとも 1つのアミノ酸残基にグルタミン を有しな 、場合、その範囲内にグルタミンを有するようにアミノ酸配列を改変すること ができる。そのような改変方法もまた、当該分野において周知であり、本明細書にお
V、て他の場所に記載されて 、る。グルタミンの導入位置はどのような位置でもよ!/、。 別の実施形態において、本発明の糖ペプチドは、 1または数個のアミノ酸残基の置 換、付加および Zもしくは欠失、ならびに Zまたは糖鎖および脂質力 なる群より選 択される少なくとも 1つの生体分子をさらに含むことが有利であり得る。このような糖べ プチドのさらなる改変は、所望の機能を付与または消失または調節したい場合に、行 うことができる。そのような改変を行うことは、当業者により実施され得る。
[0068] 別の局面において、本発明は糖鎖—ペプチド結合剤を介した機能的糖ペプチドを 調製する方法を提供する。このような方法は、 A)少なくとも 1つのアミノ酸残基にダル タミンを含む、 目的とするペプチドを提供する工程;および B)該グルタミンに糖鎖一 ペプチド結合剤を導入する工程、を包含する。ここで、 目的とするペプチドは、野生 型形態のペプチドにお 、て、少なくとも 1つのグルタミン以外のアミノ酸残基をグルタ ミンに置換することにより提供されてもよぐあるいは、そのような位置にグルタミンを有 する野生型形態のペプチドを直接提供してもよい。このようなグルタミン残基は、上記 ペプチドの C末端または N末端から 12アミノ酸以内に存在してもよいがそれに限定さ れない。
好ましい実施形態では、本発明の方法では、 目的とするペプチドのアミノ酸配列に おいて、グルタミンに変化させても目的とするペプチドの生物学的活性を喪失しない 残基を同定する工程をさらに包含する。このような工程を有することによって、本発明 において、着実に機能的糖ペプチドを生産することができる。ここで、グルタミンが置 換される少なくとも 1つのアミノ酸残基は、このような方法によって同定された残基であ る力 このような残基以外の残基が改変されていてもよい。このような同定工程は、例 えば、糖ペプチドの表面上のアミノ酸残基を同定することを包含してもよい。 目的とす るペプチドは、 目的とするペプチドの野生型形態においてプロテアーゼ消化を受け やすい部位を同定し、その部位にグルタミンが存在しない場合、プロテアーゼ消化を 受けやすい部位をグルタミンに置換することによって提供され得る。
改変されるペプチドは、野生型ペプチドであっても、合成された人工改変ペプチド であってもよい。
グルタミンへの糖鎖の導入は、通常、トランスダルタミナーゼを利用し、前記糖鎖は アミノ基を含むが、それに限定されない。トランスダルタミナーゼは、グルタミンに特異 性が高!ヽことから、グルタミン残基のみに糖鎖を導入するために有利に用いられる。 ァミノ基と糖鎖とは直接結合されて 、てもよ 、が、スぺーサーを介して結合されて ヽ てもよい。
(糖鎖)
本発明において使用される糖鎖としては、任意のものが使用され得る。好ましくは、 使用される糖鎖は、ラタトースまたはシアル酸を含むことが有利である。より好ましくは 、使用される糖鎖は、シアル酸を含むことがさらに有利である。
従って、本発明において使用される糖鎖の例示としては、例えば、 Lac, Sia a 2, 3 — Lac、 Sia a 2, o— Lac、 uc α丄, 2— Lac、 Sia a 2, 8— ¾ia a 2, 3— Lac、 ¾ia 2, 8— ¾ia 2, 6— Lac、 Sia 2, 8— Sia a 2, 3— (Fuc 1, 2— ) Lac、 ¾ia 2 , 8-Sia- a ~2, 6— (Fuc— a— 1, 2— )Lacなど、これらを含む 3糖、 4糖、 5糖、 6糖、または n糖 (ここで、 nは 7以上の任意の整数)などが挙げられるがそれらに限定 されない。これらの例示される糖鎖は、直鎖状であっても分枝状であっても榭状であ つてもよい。糖鎖が分枝状である場合、その糖鎖の形態が、二本鎖型、三本鎖型ま たは四本鎖型であることが好ましい。
導入される糖鎖の大きさもまた、どのようなものであってもよい。好ましくは、使用さ れる糖鎖は、少なくとも 2糖の大きさであり、より好ましくは少なくとも 3糖の大きさであ る。このような糖鎖は、直鎖であっても、分岐していてもよぐあるいは環化されていて ちょい。
好ましい実施形態において、本発明の糖鎖—ペプチド結合剤を介した糖ペプチド 生産法では、糖鎖をさらに伸長する工程をさらに包含してもよい。伸長工程を有する ことによって、原理的には、無限に糖鎖を付加することができる。また、トランスグルタ ミナーゼを用いる場合に、限界となる導入される糖鎖の大きさの限度を事実上なくす ことにちなる。
そのような糖鎖伸長は、 β ΐ, 4—ガラタト一ス転移酵素、ひ1, 3—ガラタト一ス転 移酵素、 β ΐ, 4 ガラクトース転移酵素、 /31, 3—ガラクトース転移酵素、 /31, 6— ガラクトース転移酵素、 a 2, 6 シアル酸転移酵素、ひ1, 4 ガラクトース転移酵素 、セラミドガラタトース転移酵素、ひ1, 2 フコース転移酵素、ひ1, 3 フコース転移 酵素、 al, 4 フコース転移酵素、 al, 6 フコース転移酵素、 a 1, 3— N ァセ チルガラタトサミン転移酵素、 al, 6— N ァセチルガラタトサミン転移酵素、 β ΐ, 4 Ν ァセチルガラタトサミン転移酵素、ポリペプチド Ν ァセチルガラタトサミン転移 酵素、 /31, 4 Νァセチルダルコサミン転移酵素、 131, 2—Νァセチルダルコサミン 転移酵素、 β ΐ, 3— Νァセチルダルコサミン転移酵素、 β ΐ, 6—Νァセチルダルコ サミン転移酵素、ひ1, 4— Nァセチルダルコサミン転移酵素、 β ΐ, 4 マンノース転 移酵素、 al, 2 マンノース転移酵素、 al, 3 マンノース転移酵素、 a 1, 4 マ ンノース転移酵素、 al, 6 マンノース転移酵素、 al, 2 グルコース転移酵素、 al, 3 グルコース転移酵素、《2, 3 シアル酸転移酵素、《2, 8 シアル酸転 移酵素、 al, 6—ダルコサミン転移酵素、 al, 6—キシロース転移酵素、 βキシロー ス転移酵素 (プロテオダリカンコア構造合成酵素)、 β ΐ , 3—グルクロン酸転移酵素 およびヒアルロン酸合成酵素からなる群より選択される酵素を利用してもよいが、それ に限定されない。糖鎖伸長に使用する酵素は、それぞれの適切な条件下で用いるこ とが好ましい。
[0071] 以上、本発明を、理解の容易のために好ましい実施形態を示して説明してきた。以 下に、実施例に基づいて本発明を説明するが、上述の説明および以下の実施例は 、例示の目的のみに提供され、本発明を限定する目的で提供したのではない。従つ て、本発明の範囲は、本明細書に具体的に記載された実施形態にも実施例にも限 定されず、特許請求の範囲によってのみ限定される。
実施例
[0072] 次に、実施例により本発明を説明するが、本発明の範囲はこれら実施例に限定さ れるものではない。
実施例中、以下の略号を使用する。
Boc: t—ブトキシカノレボニノレ
Me :メチル
Et:ェチル
Ph:フエ-ル
DMF:ジメチルホルムアミド
THF:テトラヒドロフラン
TFA:トリフルォロ酢酸
TGase:トランスグルタミナーゼ
DTT:ジチオスレィトール
Ac :ァセチノレ
[0073] (実施例 1)化合物(1)の合成
[化 20]
Me、 ,ΟΗ (Boc)20 e. .OH
N H HC, Et3N I MeOH
Boc
1 [0074] N—メチルヒドロキシルァミン塩酸塩(lOg)を約 10倍容量のメタノール(100ml)へ 溶解し、氷浴で冷却した。トリェチルァミンを 1等量(16. 7ml)添加後、 1. 1当量の二 炭酸ジ -t-ブチル (28. 7g)を滴下した。約 1時間攪拌した後、室温まで昇温し、さら に 1時間攪拌した。溶媒を減圧留去し、残渣に酢酸ェチルおよび水を添加して抽出 を行い、有機層を硫酸マグネシウムで乾燥した後、酢酸ェチルを減圧留去した。シリ 力ゲルカラムクロマトグラフィーによって精製を行い、 目的物を得た (収率 63%)。 'H-NMR CCDCl ) , δ 3. 16 (s, 3H) , 1. 49 (s, 9H)
3
[0075] (実施例 2)化合物(2)の合成
[化 21]
Figure imgf000056_0001
[0076] 6 アミノー 1一へキサノール(17. 7g)を約 9倍量の 4. 4%水酸化ナトリウム水溶液
(164. 4g)へ溶解し、さらに約 6倍容量のァセトニトリル(100ml)をカ卩えた。氷浴で 冷却後、 1. 2等量の二炭酸ジー t ブチル (39. 3g)を滴下した。約 1時間攪拌した 後、 0. 2等量の二炭酸ジ— t—ブチル (6. 6g)を追加し、さらに 1時間攪拌した。反応 液を室温まで昇温させ、ァセトニトリルを減圧留去した後に酢酸ェチルを加えた。有 機層を水洗、抽出し、硫酸マグネシウムで乾燥した後に酢酸ェチルを減圧留去した。 シリカゲルカラムクロマトグラフィーによって精製を行って定量的に目的物を得た。
— NMR (CDC1 ) , 6 4. 54 (br, 1H) , 3. 63 (bt, 2H) , 3. 15, 3. 12, 3. 10
3
, 3. 07 (dd, 2H) , 1. 67—1. 20 (m, 17H)
[0077] (実施例 3)化合物(3)の合成
[化 22]
Figure imgf000056_0002
[0078] 化合物(2) (10. 9g)と 1. 2等量の四臭化炭素(19. 9g)を約 40倍溶量のジクロロメ タン (400ml)に溶解した。氷浴で冷却後、 1. 2等量のトリフエ-ルホスフィン 15. 7g を添加し、約 1時間攪拌した。反応液を室温まで昇温して、さらに 2時間攪拌した。反 応液を飽和炭酸水素ナトリウム水溶液へ注ぎ、有機層を水洗、抽出し、硫酸マグネシ ゥムで乾燥した後、溶媒を減圧留去した。シリカゲルカラムクロマトグラフィーによって 精製を行って目的物を得た (収率 91%)。
— NMR (CDC1 ) , 6 4. 53 (br, 1H) , 3. 42, 3. 40, 3. 37 (t, 2H) , 3. 14
3
, 3. 12, 3. 10, 3. 07 (dd, 2H) , 1. 92- 1. 80 (m, 2H) , 1. 60— 1. 23 (m, 15H)
[0079] (実施例 4)化合物 (4)の合成
[化 23]
Figure imgf000057_0001
Me、.,OH NaH
M N
Boc DMF I THF Boc oc H
.· ,、^/\/-\/^ 、„
Me Ό 〜 Boc
4
[0080] 化合物(1) (3. lg)を約 32倍溶量の DMF (100ml)に溶解し、さらに約 32倍溶量 の THF (lOOml)を添加後、約 1. 1等量の 60〜72%水素化ナトリウム 油性(0. 9 6g)をカ卩ぇ攪拌した。 0. 95等量の化合物(3) (5. 58g)を加えて 50〜60°Cに加温し て 1時間攪拌した。反応液を 0. ImolZLの塩酸へ注ぎ、さらに酢酸ェチルをカ卩えて 有機層を水洗、抽出し、硫酸マグネシウムで乾燥した後に溶媒を減圧留去した。シリ 力ゲルカラムクロマトグラフィーによって精製を行い、 目的物を得た (収率 93%)。 OLE丄 INK2
'H-NMR CCDCl ) , δ OLE LINK24. 52 (br, 1H) , 3. 84, 3. 82, 3. 79 (t, 2
3
H) , 3. 20- 3. 00 (s, m, 5H) , 1. 72—1. 24 (m, 26H)
[0081] (実施例 5)化合物(5)の合成
[化 24]
Figure imgf000058_0001
4
[0082] 化合物(4)(1. Og)を約 10倍容量の 90%トリフルォロ酢酸ジクロロメタン溶液(10m 1) 溶解し、室温で 1.5時間攪拌した。その後溶媒を減圧留去して目的物のトリフル ォロ酢酸塩を得た。この溶液を水酸ィ匕ナトリウム水溶液によって pH6 8に調整して 2 OOmM水溶液とした。
— NMR(D O), 64.03, 4.01, 3.99 (t, 2H), 2.93— 2.85 (s, m, 5H),
2
1.65-1.50(m, 4H), 1.40-1.25 (m, 4H)
[0083] (実施例 6)化合物(5)誘導体のペプチドへの導入
[化 25]
Figure imgf000058_0002
ImMのマストパラン及び 20mMのォキシァミンリンカ を含む反応液(lOOmMTr is-HCl pH7.5 lOmM CaCl 5mM DTT)に TGase (和光純薬社製) (5.6
2
U)を添加し、 37°C 4時間反応した。途中、 TGase (5.6U)を追加した。反応液と同 溶量の 10% TFAを添加し、反応を停止した。逆相 HPLCにより精製して主生成物 を単離し(Inertsil (登録商標) ODS- 3 20X 250mmカラム、移動層 A:0.1%TF A水溶液に対して移動層 B : 0. 1%TFA含有ァセトニトリルの 10%力も 40%のグラジ ェント)、 MALDI— TOF/MSによって [M(average) + H]+ = 1764. 3、 [M(avera ge) + Na] + = 1786. 3、 [M(average) +K]+ = 1802. 5のピーク (理論値 [M(averag e) + H]+ = 1765. 2、 [M(average) + Na]+ = 1787. 2、 [M(average) + K] + = 180 3. 3)を確認することによって目的物を確認した。
[0085] (実施例 7)糖の導入
[化 26]
Figure imgf000059_0001
[0086] ImMのォキシァミンリンカ一付カ卩マストパランおよび lOOmMのグルコースを含む 反応液(50mM AcOH/Na buffer pH4. 5)を 37°Cで 24時間反応させた。反 応液の逆相 HPLC (Inertsil (登録商標) ODS- 3 4. 6 X 250mmカラム、移動層 A: 0. 1%TFA水溶液に対する B: 0. 1%TFA含有ァセトニトリルの 20%力 40% のグラジェント)で分取後、 OLE丄 INK1MALDI—TOFZMSOLE丄 INK1で [M(ave rage) + H]+ = 1927. 3のピーク (理論値 [M(average) + H]+ = 1927. 3)を確認する ことによって目的物の生成を確認した。
[0087] 実施例 7と同様に N—ァセチルダルコサミン、ラタトース、マルトースに関してもマスト ノ《ランへの糖鎖導入を実施し、逆相 HPLC (実施例 7と同条件)および MALDI— T OF/MSによってそれぞれ [M(average) + H]+ = 1968. 0 (N—ァセチルダルコサ ミン:理論値 [M(avemge) + H] + = 1968. 4)、 [M(average) + H]+ = 2088. 3 (ラタ トース:理論値 [M(avemge) + H]+ = 2089. 5)、 [M(average) + H]+ = 2089. 7 (マ ルトース:理論値 [M(avemge) + H]+ = 2089. 5)のピークを確認することによって目 的物の生成を確認した。
産業上の利用可能性
本発明は、天然または非天然のタンパク質と保護されていない糖鎖を利用して、均 一な組成を有する糖ペプチドを簡便に製造するために用いる糖鎖—ペプチド結合剤 、および該糖鎖—ペプチド結合剤を用いて糖ペプチドを製造方法に関する。
本発明により、組成が一定している糖ペプチドを提供することが可能となるので、よ り高品質なノィォ医薬を提供することができる。

Claims

請求の範囲
[1] -般式 (I):
Figure imgf000061_0001
[式中、 Xは Η Ν—または式:
2
[化 1]
Figure imgf000061_0002
で表される基;
Υは一 Α1—、 一 Α1— Ο— Α2—、 一 (CH CH Ο) 一 Α1—、 一 (CH CH Ο)
2 2 η 2 2
Ο - Α2 -、 一 A1 - NH - C( = 0) - A2 -、 一 A1 - C( = 0) - NH - A2 -、
CH CH O) 一 NH— C( = 0)— A2—、 一 A1—(CH CH O) — C( = 0)_
2 2 η 2 2 η
Α2-、式:
[化 2]
Figure imgf000061_0003
で表される基、または式:
[化 3]
Figure imgf000061_0004
で表される基 (式中、 A1および A2はそれぞれ独立して、置換されていてもよい C1— 1 5アルキレン、置換されて!、てもよ!/、C2— 15ァルケ-レンまたは置換されて!、てもよ い C2— 15アルキニレン; nは 1〜5の整数; R1はヒドロキシまたは— NH(R2) (式中、 R2は水素原子、低級アルキル、ァリールまたはァラルキル); R3は水素原子または— C ( = 0)— R5 (式中、 R5は低級アルキル、ァリールまたはァラルキル));および、 Zは一 O— NH (R4)、 一 NH— OR4、 一 C ( = 0)— NH— NH— R4、または一 C ( = S )— NH— NH— R4 (式中、 R4は水素原子、低級アルキル、またはァリール)] で表される化合物を含む糖鎖 ペプチド結合剤。
[2] Xが— NHおよび Zが— O— NH (R4) (式中、 R4は水素原子、低級アルキル、または
2
ァリール)である請求項 1記載の糖鎖 ペプチド結合剤。
[3] Xが式:
[化 4]
Figure imgf000062_0001
で表される基および Zが— O— NH (R4) (式中、 R4は水素原子、低級アルキル、また はァリール)である請求項 1記載の糖鎖 ペプチド結合剤。
[4] 一般式 (II) :
H N— A1— O— NH (R4) (II)
2
(式中、 A1は置換されていてもよい C 1—15アルキレン; R4は水素原子、低級アルキ ル、またはァリール)で表わされる化合物またはその塩。
[5] 一般式 (ΠΙ) :
[化 5]
Figure imgf000062_0002
(式中、 A1は置換されていてもよい C 1—15アルキレン; R4は水素原子、低級アルキ ル、またはァリール)で表わされる化合物またはその塩。 以下の工程:
1)一般式 (IV):
H N-Y-Z (IV)
2
[式中、 Yは— A1—、— A1— O— A2—、 - (CH CH O) — A1—、 - (CH CH O)
2 2 η 2 2 一 Α1 - Ο - Α2 -、 一 A1 - NH - C( = 0) - A2 -、 一 A1 - C( = 0) - NH - A2 -、 一 A1—(CH CH O) — NH— C( = 0)— A2—、 一 A1—(CH CH O) — C( = 0)
2 2 η 2 2 η NH - Α2 -、式:
[化 6]
Figure imgf000063_0001
で表される基 (式中、 A1および A2はそれぞれ独立して、置換されていてもよい C1— 1
5アルキレン、置換されて!、てもよ 、C2— 15ァルケ-レンまたは置換されて!、てもよ い C2— 15アルキ-レン; nは 1〜 5の整数; R1はヒドロキシまたは NH (R2) (式中、
R2は水素原子、低級アルキル、ァリールまたはァラルキル); R3は水素原子または—
C( = 0)— R5 (式中、 R5は低級アルキル、ァリールまたはァラルキル));および、
Zは O— NH(R4)、一 NH— OR4、 一 C ( = 0)— NH— NH— R4、または C( = S
)— NH— NH— R4 (式中、 R4は水素原子、低級アルキル、またはァリール)] で表される化合物と、
グルタミン残基を有するペプチドを、
トランスダルタミナーゼの存在下で反応させる工程、および
2) 1)工程で得られたペプチドと、糖鎖を反応させる工程を包含する、 糖ペプチドの製造方法。
以下の工程:
1)一般式 (V) :
[化 8]
Figure imgf000064_0001
[式中、 Yは - A1 O A2—、 一(CH CH O) 一 A1- (CH CH O)
2 2
2
A NH— C ( = 0)— A' C ( = 0)— NH— A2—、
-A NH-C ( = 0) -A2- (CH CH O) C ( = 0) 一而 A'
Figure imgf000064_0002
[化 9]
Figure imgf000064_0003
で表される基、または式:
[化 10]
Figure imgf000064_0004
で表される基 (式中、 A1および A2はそれぞれ独立して、置換されていてもよい C1— 1 5アルキレン、置換されて!、てもよ 、C2— 15ァルケ-レンまたは置換されて!、てもよ い C2— 15アルキ-レン; nは 1〜 5の整数; R1はヒドロキシまたは NH (R2) (式中、 R2は水素原子、低級アルキル、ァリールまたはァラルキル); R3は水素原子または— C ( = 0)— R5 (式中、 R5は低級アルキル、ァリールまたはァラルキル));および、 Zは一 O— NH (R4)、 一 NH— OR4、 一 C ( = 0)— NH— NH— R4、または一 C ( = S )— NH— NH— R4 (式中、 R4は水素原子、低級アルキル、またはァリール)] で表される化合物と、
システィン残基を含有するペプチドを反応させる工程、および
2) 1)工程で得られたペプチドと、糖鎖を反応させる工程を包含する、
糖ペプチドの製造方法。
[8] Zが— O— NH (R4) (式中、 R4は水素原子、低級アルキル、またはァリール)である請 求項 6または 7記載の製造方法。
[9] Yが— A1— (式中、 A1は置換されていてもよい C1— 15アルキレン)である請求項 6ま たは 7記載の製造方法。
[10] 請求項 6または 7に記載の製造方法で製造されうる糖ペプチド。
[11] 請求項 6または 7に記載の製造方法で製造されうる糖ペプチドを有効成分として含有 する医薬組成物。
PCT/JP2005/005810 2004-03-31 2005-03-29 糖鎖-ペプチド結合剤 WO2005095331A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006511656A JPWO2005095331A1 (ja) 2004-03-31 2005-03-29 糖鎖−ペプチド結合剤

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004106322 2004-03-31
JP2004-106322 2004-03-31

Publications (1)

Publication Number Publication Date
WO2005095331A1 true WO2005095331A1 (ja) 2005-10-13

Family

ID=35063684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/005810 WO2005095331A1 (ja) 2004-03-31 2005-03-29 糖鎖-ペプチド結合剤

Country Status (2)

Country Link
JP (1) JPWO2005095331A1 (ja)
WO (1) WO2005095331A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009153960A1 (ja) 2008-06-17 2009-12-23 大塚化学株式会社 糖鎖付加glp-1ペプチド
US8058394B2 (en) 2006-03-29 2011-11-15 Otsuka Chemical Co., Ltd. Method for production of peptide thioester compound
WO2013047372A1 (ja) 2011-09-26 2013-04-04 株式会社糖鎖工学研究所 Ncl法に適した、ポリペプチド断片の効率的な製造方法
JP2014506239A (ja) * 2010-12-08 2014-03-13 エヴォニク ゴールドシュミット ゲーエムベーハー 疎水性化タンパク質加水分解物
WO2014080730A1 (ja) 2012-11-22 2014-05-30 株式会社糖鎖工学研究所 糖鎖付加リンカー、糖鎖付加リンカー部分と生理活性物質部分とを含む化合物またはその塩、及びそれらの製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1077256A (ja) * 1996-08-19 1998-03-24 Sigma Tau Ind Farmaceut Riunite Spa 心臓血管系に活性のある新規のseco−ステロイドおよびそれらの調製方法およびそれらを含有する製薬用組成物
JP2002536357A (ja) * 1999-02-05 2002-10-29 オリディム コーポレイション アンチザイムモジュレーターおよびその使用
US20030149246A1 (en) * 2002-02-01 2003-08-07 Russell John C. Macromolecular conjugates and processes for preparing the same
EP1400533A1 (en) * 2002-09-11 2004-03-24 Fresenius Kabi Deutschland GmbH HASylated polypeptides, especially HASylated erythropoietin

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1077256A (ja) * 1996-08-19 1998-03-24 Sigma Tau Ind Farmaceut Riunite Spa 心臓血管系に活性のある新規のseco−ステロイドおよびそれらの調製方法およびそれらを含有する製薬用組成物
JP2002536357A (ja) * 1999-02-05 2002-10-29 オリディム コーポレイション アンチザイムモジュレーターおよびその使用
US20030149246A1 (en) * 2002-02-01 2003-08-07 Russell John C. Macromolecular conjugates and processes for preparing the same
EP1400533A1 (en) * 2002-09-11 2004-03-24 Fresenius Kabi Deutschland GmbH HASylated polypeptides, especially HASylated erythropoietin

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KEINAENEN T.A. ET AL: "Derivatives of 1-aminooxy-3-aminopropane as polyamine antimetabolites: stability and effects on BHK21/C13 cells.", JOURNAL OF BIOCHEMISTRY., vol. 116, no. 5, 1994, pages 1056 - 1062, XP002990889 *
LEWIS L. ET AL: "Computation of the conventional strain energy in oxaziridine.", THEOCHEM., 2002, pages 161 - 171, XP002990888 *
MIKOLA H. ET AL: "Syntheses of europium-labeled digoxin derivatives and their use in time-resolved fluoroimmunoassay.", STEROIDS., vol. 59, no. 8, 1994, pages 472 - 478, XP002025385 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8058394B2 (en) 2006-03-29 2011-11-15 Otsuka Chemical Co., Ltd. Method for production of peptide thioester compound
WO2009153960A1 (ja) 2008-06-17 2009-12-23 大塚化学株式会社 糖鎖付加glp-1ペプチド
JP2014506239A (ja) * 2010-12-08 2014-03-13 エヴォニク ゴールドシュミット ゲーエムベーハー 疎水性化タンパク質加水分解物
WO2013047372A1 (ja) 2011-09-26 2013-04-04 株式会社糖鎖工学研究所 Ncl法に適した、ポリペプチド断片の効率的な製造方法
WO2014080730A1 (ja) 2012-11-22 2014-05-30 株式会社糖鎖工学研究所 糖鎖付加リンカー、糖鎖付加リンカー部分と生理活性物質部分とを含む化合物またはその塩、及びそれらの製造方法

Also Published As

Publication number Publication date
JPWO2005095331A1 (ja) 2008-02-21

Similar Documents

Publication Publication Date Title
JPWO2004101619A1 (ja) 機能的糖ペプチドの合理的設計および合成
JP3193301B2 (ja) 生理活性タンパク質p160
ES2563748T3 (es) Derivados de amiloide P sérico y su preparación y uso
US20130059780A1 (en) Branched peg remodeling and glycosylation of glucagon-like peptide-1 [glp-1]
KR20160067219A (ko) 저밀도 지단백질 수용체를 암호화하는 폴리뉴클레오타이드
US20080145899A1 (en) Production of Oligosaccharides By Microorganisms
CA2868422A1 (en) Modified polynucleotides for the production of membrane proteins
WO2000009692A1 (en) Novel peptides capable of modulating inflammatory heart disease
US20200246420A1 (en) pHLIP® peptide-mediated epitope tethering at cell surfaces
JPH10508742A (ja) ヒトケモカインポリペプチド
WO2005095331A1 (ja) 糖鎖-ペプチド結合剤
KR20220156636A (ko) 요산산화효소-알부민 접합체, 그 제조방법 및 용도
WO2003060125A1 (fr) Procede de production du peptide kiss-1
JP5174022B2 (ja) 膵臓β細胞増加促進剤及び膵臓β細胞増加促進組成物
PT1012286E (pt) Variante alélica stat3 humana
EP1180525B1 (en) Transcriptional activation inhibitory protein
WO2001096574A1 (fr) Nouveau gene enzymatique et son produit d'expression
RU2005141524A (ru) Производные phl p 5а, обладающие сниженной аллергенностью и сохраненной т-клеточной реактивностью
JPH10512145A (ja) ヒトゲラニルゲラニルピロリン酸シンセターゼ
JP5721211B2 (ja) 糖尿病の治療剤
WO2024097788A1 (en) Glycosyltransferase engineering for chemoenzymatic total synthesis of gangliosides
KR101223666B1 (ko) 나이트릴레이즈 orn을 이용한 카르복실산의 제조방법
KR101223663B1 (ko) 나이트릴레이즈 vmn1을 이용한 카르복실산의 제조방법
US5945321A (en) Ubiquitin conjugating enzymes 7, 8 and 9
RU2143491C1 (ru) Полинуклеотидная последовательность (варианты), полипептид (варианты), слитый белок, фармацевтическая композиция, моноклональное антитело, штамм гибридных культивируемых клеток

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006511656

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase