WO2005091396A2 - Galvanic element - Google Patents

Galvanic element Download PDF

Info

Publication number
WO2005091396A2
WO2005091396A2 PCT/EP2005/002864 EP2005002864W WO2005091396A2 WO 2005091396 A2 WO2005091396 A2 WO 2005091396A2 EP 2005002864 W EP2005002864 W EP 2005002864W WO 2005091396 A2 WO2005091396 A2 WO 2005091396A2
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
collector
galvanic element
positive electrode
coating
Prior art date
Application number
PCT/EP2005/002864
Other languages
German (de)
French (fr)
Other versions
WO2005091396A3 (en
Inventor
Thomas Wöhrle
Claudia Rathmann
Fatima Birke-Salam
Peter Haug
Peter Birke
Arno Perner
Rainer Hald
Dejan Ilic
Original Assignee
Varta Microbattery Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Varta Microbattery Gmbh filed Critical Varta Microbattery Gmbh
Priority to DE112005000540T priority Critical patent/DE112005000540A5/en
Publication of WO2005091396A2 publication Critical patent/WO2005091396A2/en
Publication of WO2005091396A3 publication Critical patent/WO2005091396A3/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a galvanic element with at least one lithium intercalating electrode, the positive electrode of which has a collector consisting essentially of aluminum, and a method for producing the element.
  • the documents DE 101 14 232 C2 and DE 34 12 234 A1 describe an adhesion promoter which is made electrically conductive by the addition of metallic particles.
  • the adhesion-promoting component is a plastic.
  • the electrically conductive component is metallic.
  • the most common method for pretreating aluminum collectors is coating with a so-called primer.
  • the primer consists in the case of an organic adhesion promoter, electrical conductive material (in particular conductive carbon black, conductive graphite or mixtures of these) and optionally a dispersant. These components are dissolved or suspended in a carrier solvent.
  • An example of an application in a lithium polymer battery is given in the publication DE 100 30 571 C1.
  • Free acid groups (-COOH) are present in the adhesion promoter used there. These polyacids build chemical bonding forces to the aluminum surface and cause adhesion.
  • the positive electrode material is bonded to the organic bonding agent in the primer by means of a direct coating or hot lamination.
  • the presence of electrically highly conductive components in the primer apparently lowers the breakdown voltage between aluminum and positive electrode through the aluminum oxide layer and thus significantly reduces the contact resistance. The result is low impedances and a high load capacity for the cell despite the presence of this oxide layer.
  • collectors with adhesion promoters are the possibility to use special low-adhesion electrode formulations. Examples of this are highly binder-reduced recipes.
  • the problem often arises when using metal-coated or etched aluminum collectors that there is insufficient adhesion to such a positive electrode (based on a strongly reduced formulation).
  • a known problem when using organically based adhesion promoters is their electrochemical instability at high temperatures (e.g. 80 ° C) and maximum permissible cell voltages (approx. 4.2 V). This produces gaseous reaction products in an irreversible process, and the cell swells as a result. This is particularly true in flexible softpack packaging made of aluminum composite film good to see. In addition, the impedance rises sharply when stored at 80 ° C, and the capacity that can still be used decreases. Overall, the cell is irreversibly damaged.
  • the invention has for its object to provide an adhesion promoter that does not decompose under the storage conditions described (4.2 V, 80 ° C).
  • the aluminum collector of the positive electrode is coated with an adhesive which contains a polar modified polyvinylidene difluoride (PVDF) and an electrical conductivity improver.
  • PVDF polyvinylidene difluoride
  • the adhesion promoter preferably contains only these two components.
  • the conductivity improver preferably consists of carbon black and / or graphite. If necessary, other components can also be included. However, the conductivity improver particularly preferably has only a mixture of conductive carbon black and graphite.
  • Organofluorine polymers such as polytetrafluoroethylene (PTFE), polyvinylidene difluoride (PVDF) and the polyvinylidene difluoride-hexafluoropropylene copolymer (PVDF-HFP) are very stable electrochemically under the conditions in galvanic elements of the type mentioned. Because of their remarkable electrochemical resistance, these polymers are used as binders for the electrode materials in 4 V cells. Basically, polymers of this type are electrical insulators.
  • polar modified PVDF polymers can be used as a primer component. They combine electrochemical stability with good adhesive properties.
  • the polar group is also a free acid group (-COOH).
  • the primer is preferably prepared from a mixture of a polar modified fluorinated PVDF, a carrier solvent, for example N-methyl-2-pyrrolidone (NMP), and from portions of a conductivity improver.
  • NMP N-methyl-2-pyrrolidone
  • carbon black or graphite can be used as conductivity improvers.
  • a mixture of carbon blacks and graphites is added to the polar-modified PVDF polymers as conductivity improvers.
  • Such mixtures are particularly preferred as conductivity improvers.
  • Galvanic elements according to the invention with these coated aluminum collectors show very low internal resistances (impedances) due to their excellent mechanical adhesion and good electrical connection.
  • the coating thickness is between 1 and 10 ⁇ m, preferably between 1 and 3 ⁇ m.
  • the coating can be produced by spraying or rolling.
  • the connection between the adhesion promoter and the positive electrode is preferably carried out in a lamination. Direct wet coating is also possible.
  • the carrier solvent is then removed by drying.
  • the aluminum Collector foil can be, for example, an expanded metal or a perforated foil.
  • Example 1 describes the preparation of a primer suspension and the subsequent coating of an aluminum collector. A galvanic cell with this aluminum collector is checked for its cycle stability and its storage properties.
  • polar-modified fluorinated PVDF MKB212 from ELF ATOFINA
  • NMP magnetic stirrer
  • a yellow-brown solution is formed, which is stirred for an hour.
  • the lead materials are introduced with a dissolver stirrer, namely 1.0 g of carbon black (Super P, manufacturer Timcal Belgium) and 2.0 g of graphite (manufacturer Superior Graphite, type ABG1005), and 20 min. stirred.
  • This primer suspension is sprayed onto the aluminum expanded metal with an airbrush gun.
  • the coated aluminum collector is dried for a few hours at room temperature.
  • the layer thickness of the primer layer is approx. 2 ⁇ m per side.
  • the aluminum collectors thus produced according to the invention are optionally laminated against a positive electrode or coated directly with a positive electrode coating compound.
  • the electrode coating compositions and the electrode film are produced.
  • a binder-reduced electrode that does not adhere to bare aluminum or an alloy coating, for example, can be used as the positive electrode mass.
  • trode mass are used, e.g. from the following components: 4.2% Kynar Powerflex® (ELF ATOFINA), 84.8% lithium cobalt oxide (LiCo0 2 ), 7% di-butyl phthalate (DBP) and 4% conductive graphite. Electrode masses with an even higher proportion of lithium cobalt oxide are also suitable, for example electrodes made of 4.2% Kynar Powerflex® (ELF ATOFINA), 87.8% lithium cobalt oxide (LiCo0 2 ), 7% dibutyl phthalate (DBP) and 1% conductive carbon black.
  • a graphitized carbon modification is used as the electrochemically active material for the negative electrode, as described in EP1235286 (negative electrode made of spheroidal graphite, conductive carbon black, dibutyl phthalate and a PVDF-HFP copolymer as a binder).
  • the positive electrode (cathode) and the negative electrode (anode) are laminated onto the pretreated aluminum or copper collector.
  • the electrodes are punched out and combined to form an element using separators.
  • a three-layer separator with the layer sequence polypropylene / polyethylene / polypropylene is used as the separator, for example.
  • the packaging is carried out in aluminum composite foil and after the electrolyte (preferably an organic carbonate electrolyte with a lithium conductive salt) has been metered in, the formation.
  • Lithium polymer cells were built with the aluminum collector coated according to the invention, and for comparison cells with a collector with a commercially available primer application (EB-012 from Acheson; this primer layer consists of a mixture of carbon black and graphite and an organic binder containing acrylic acid) ).
  • EB-012 from Acheson; this primer layer consists of a mixture of carbon black and graphite and an organic binder containing acrylic acid
  • Polymer cells obtained in this way were cycled at room temperature (in a plant 1) and at 60 ° C. (in a plant 2) and also stored in a fully charged state in a temperature cabinet (4.2 V / 80 ° C./62 h), with the gassing behavior of the cells was observed.
  • a temperature cabinet 4.2 V / 80 ° C./62 h
  • cells with the primer according to the present invention show that the gassing is delayed considerably compared to corresponding cells with a commercially available primer and that the 1 kHz AC alternating current resistance only under these extreme storage conditions increases slightly.
  • Table 1 Gassing behavior of a lithium polymer cell with an aluminum collector coated according to the invention compared to that of a comparison cell when stored at 80 ° C. in a temperature cabinet after 15.5 h, 24 h, 38 h, 42 h, 45 h, 48 h, 62 H. With room temperature cycles, the cycle stability of a galvanic element according to the invention is comparable to that of a cell with a commercially available primer.
  • FIG. 1 shows the discharge capacity as a function of the number of cycles N when cycled at room temperature and 1 C (one-hour current) load. Curve A applies to commercially available primers, curve B to primers according to the invention.
  • Figure 2 shows the same cyclization at 60 ° C.
  • Curve B also describes the behavior of a cell with a primer after the induction. Particularly noteworthy is that compared to polymer cells with hand standard primers outstanding cycle stability at elevated temperature.
  • Example 2 describes the production of an aluminum collector coated with a further primer suspension.
  • a primer suspension was prepared analogously to Example 1.
  • MKB212 from ELF ATOFINA the alternative product MKB272 from ELF ATOFINA was used as the polar modified fluorinated PVDF.
  • Example 1 The treated collector was built into a galvanic cell in the usual way. This was then examined for cycle stability and storage properties, especially at higher temperatures. With regard to storage properties and cycle stability, identical results were obtained as in Example 1 (arrester coated with MKB212).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The invention relates to a galvanic element comprising at least one lithium-intercalating electrode, the positive electrode of which has a collector substantially consisting of aluminum. The aluminum collector is coated with an adhesion promoter containing a polar modified polyvinylidene difluoride (PVDF) and an electrical conductivity improver. The electrical conductivity improver is preferably conductive soot and/or graphite or an electrically conductive polymer. The collector contains a coating of a thickness from 1 to 10 µm obtained by spraying or rolling, laminating or direct wet coating.

Description

Beschreibung description
Galvanisches ElementGalvanic element
Gegenstand der Erfindung ist ein galvanisches Element mit mindestens einer Lithium interkalierenden Elektrode, dessen positive Elektrode einen im wesentlichen aus Aluminium bestehenden Kollektor besitzt, und ein Verfahren zur Herstellung des Elements.The invention relates to a galvanic element with at least one lithium intercalating electrode, the positive electrode of which has a collector consisting essentially of aluminum, and a method for producing the element.
In Lithium-Ionen-Zellen bzw. Lithium-Polymer-Zellen wird als Kollektor- Material auf der positiven Seite in der Regel Aluminium verwendet. Die natürliche Oxidschicht des Aluminiums verhindert jedoch eine optimale Elektrodenanbindung. Eine Folge davon sind schlechte Belastbarkeit speziell bei Pulsprofilen wie GSM (alle 4,6 ms Puls von 575 μs; Puls high 2A, Puls low 0,2A) und GPRS (alle 4,6 ms Puls von 1150 /s; Puls high 2A, Puls low 0,2A) und ein hoher Kapazitätsabfall im Verlauf der zyklischen Belastung und Aufladung. Daraus resultieren für den Anwender niedrigere Nutzkapazitäten.In lithium-ion cells or lithium-polymer cells, aluminum is generally used as the collector material on the positive side. However, the natural oxide layer of aluminum prevents an optimal electrode connection. One consequence of this is poor resilience, especially with pulse profiles such as GSM (every 4.6 ms pulse of 575 μs; pulse high 2A, pulse low 0.2A) and GPRS (every 4.6 ms pulse of 1150 / s; pulse high 2A, Pulse low 0.2A) and a large drop in capacity in the course of the cyclic loading and charging. This results in lower useful capacities for the user.
Zur Vorbehandlung von Aluminium-Kollektoren in Lithium-Ionen- bzw. Lithium-Polymer-Batterien sind verschiedene Verfahren bekannt. So beschreibt das Dokument DE 198 07 192 A1 eine Beschichtung des Aluminium-Kollektors für eine Lithium-Ionen Zelle mittels Zink und Zink- Oxid. Bei eigenen Versuchen zeigte sich durch diese Art der Vorbehand- lung des Aluminiums jedoch schlechtes Zyklisierungsverhalten.Various methods are known for pretreating aluminum collectors in lithium-ion or lithium-polymer batteries. Document DE 198 07 192 A1 describes a coating of the aluminum collector for a lithium-ion cell using zinc and zinc oxide. In our own experiments, however, this type of pretreatment of the aluminum showed poor cyclization behavior.
Die Dokumente DE 101 14 232 C2 und DE 34 12 234 A1 beschreiben einen Haftvermittler, der durch Zusatz von metallischen Partikeln elektrisch leitfähig gemacht wird. Die haftvermittelnde Komponente ist ein Kunststoff. Der elektrisch leitfähige Bestandteil ist metallisch.The documents DE 101 14 232 C2 and DE 34 12 234 A1 describe an adhesion promoter which is made electrically conductive by the addition of metallic particles. The adhesion-promoting component is a plastic. The electrically conductive component is metallic.
Die gängigste Methode zur Vorbehandlung von Aluminiumkollektoren ist die Beschichtung mit einem sogenannten Primer. Der Primer besteht da- bei aus einem organischen Haftvermittler, elektrischem Leitmaterial (insbesondere Leitruße, Leitgraphite oder Mischungen aus diesen) und optional einem Dispersionsmittel. Diese Bestandteile werden in einem Trägerlösungsmittel gelöst bzw. suspendiert. Ein Beispiel für eine Anwen- düng in einer Lithium-Polymer-Batterie ist in der Druckschrift DE 100 30 571 C1 angeführt. In dem dort verwendeten Haftvermittler sind freie Säure-Gruppen (-COOH) anwesend. Diese Polysäuren bauen chemische Bindungskräfte zur Aluminium-Oberfläche auf und bewirken die Haftung. Die Anbindung des positiven Elektrodenmaterials an den orga- nischen Haftvermittler im Primer erfolgt durch eine Direktbeschichtung oder Heißlamination.The most common method for pretreating aluminum collectors is coating with a so-called primer. The primer consists in the case of an organic adhesion promoter, electrical conductive material (in particular conductive carbon black, conductive graphite or mixtures of these) and optionally a dispersant. These components are dissolved or suspended in a carrier solvent. An example of an application in a lithium polymer battery is given in the publication DE 100 30 571 C1. Free acid groups (-COOH) are present in the adhesion promoter used there. These polyacids build chemical bonding forces to the aluminum surface and cause adhesion. The positive electrode material is bonded to the organic bonding agent in the primer by means of a direct coating or hot lamination.
Durch Anwesenheit von elektrisch hochleitenden Bestandteilen im Primer wird offenbar die Durchschlagsspannung zwischen Aluminium und positiver Elektrode durch die Aluminium-Oxid-Schicht herabgesetzt und damit der Übergangswiderstand deutlich verringert. Es resultieren niedrige Impedanzen und eine hohe Belastbarkeit für die Zelle trotz der Anwesenheit dieser Oxidschicht.The presence of electrically highly conductive components in the primer apparently lowers the breakdown voltage between aluminum and positive electrode through the aluminum oxide layer and thus significantly reduces the contact resistance. The result is low impedances and a high load capacity for the cell despite the presence of this oxide layer.
Der große Vorteil von Kollektoren mit Haftvermittlern ist die Möglichkeit, spezielle haftungsarme Elektrodenrezepturen verwenden zu können. Beispiele dafür sind stark Binder-reduzierte Rezepturen. Oftmals tritt bei Verwendung von metallisch beschichteten oder geätzten Aluminium- Kollektoren das Problem auf, daß keine ausreichende Haftung zu einer derartigen positiven Elektrode (basierend auf einer stark Binderreduzierten Rezeptur) erfolgt.The great advantage of collectors with adhesion promoters is the possibility to use special low-adhesion electrode formulations. Examples of this are highly binder-reduced recipes. The problem often arises when using metal-coated or etched aluminum collectors that there is insufficient adhesion to such a positive electrode (based on a strongly reduced formulation).
Ein bekanntes Problem bei der Verwendung von organisch basierten Haftvermittlern ist jedoch deren elektrochemische Instabilität bei hohen Temperaturen (z. B. 80 °C) und maximal zulässiger Zeil-Spannungen (ca. 4,2 V). Hierbei entstehen in einem irreversiblen Prozeß gasförmige Reaktionsprodukte, und die Zelle schwillt dadurch an. Dies ist insbesondere in flexiblen Softpack-Verpackungen aus Aluminium-Verbundfolie gut erkennbar. Zudem steigt die Impedanz bei der Lagerung bei 80 °C stark an, und die noch nutzbare Kapazität sinkt. Insgesamt wird die Zelle irreversibel geschädigt.A known problem when using organically based adhesion promoters is their electrochemical instability at high temperatures (e.g. 80 ° C) and maximum permissible cell voltages (approx. 4.2 V). This produces gaseous reaction products in an irreversible process, and the cell swells as a result. This is particularly true in flexible softpack packaging made of aluminum composite film good to see. In addition, the impedance rises sharply when stored at 80 ° C, and the capacity that can still be used decreases. Overall, the cell is irreversibly damaged.
Der Erfindung liegt die Aufgabe zugrunde, einen Haftvermittler bereitzustellen, der sich unter den beschriebenen Lagerbedingungen (4,2 V, 80 °C) nicht zersetzt.The invention has for its object to provide an adhesion promoter that does not decompose under the storage conditions described (4.2 V, 80 ° C).
Diese Aufgabe wird erfindungsgemäß durch die Merkmale des An- Spruchs 1 gelöst. In den Unteransprüchen sind vorteilhafte Ausgestaltungen der Erfindung und Herstellungsverfahren angegeben.This object is achieved according to the invention by the features of claim 1. Advantageous refinements of the invention and production methods are specified in the subclaims.
Der Aluminium-Kollektor der positiven Elektrode ist mit einem Haftvermittler beschichtet, der ein polar modifiziertes Polyvinylidendifluorid (PVDF) und einen elektrischen Leitfähigkeitsverbesserer enthält. Erfindungsgemäß enthält der Haftvermittler bevorzugt ausschließlich diese beiden Komponenten. Der Leitfähigkeitsverbesserer besteht bevorzugt aus Leitruß und/oder Graphit. Gegebenenfalls können aber noch weitere Komponenten enthalten sein. Besonders bevorzugt weist der Leitfähig- keitsverbesserer jedoch ausschließlich ein Gemisch aus Leitruß und Graphit auf.The aluminum collector of the positive electrode is coated with an adhesive which contains a polar modified polyvinylidene difluoride (PVDF) and an electrical conductivity improver. According to the invention, the adhesion promoter preferably contains only these two components. The conductivity improver preferably consists of carbon black and / or graphite. If necessary, other components can also be included. However, the conductivity improver particularly preferably has only a mixture of conductive carbon black and graphite.
Fluororganische Polymere wie Polytetrafluorethylen (PTFE), Polyvinylidendifluorid (PVDF) und das Polyvinylidendifluorid-Hexafluorpropylen- Co-Polymer (PVDF-HFP) sind elektrochemisch unter den Bedingungen in galvanischen Elementen der genannten Art sehr stabil. Diese Polymere werden wegen ihrer bemerkenswerten elektrochemischen Beständigkeit als Binder für die Elektrodenmaterialien in 4 V-Zellen eingesetzt. Grundsätzlich handelt es sich bei Polymeren dieser Art um elektrische Isolatoren.Organofluorine polymers such as polytetrafluoroethylene (PTFE), polyvinylidene difluoride (PVDF) and the polyvinylidene difluoride-hexafluoropropylene copolymer (PVDF-HFP) are very stable electrochemically under the conditions in galvanic elements of the type mentioned. Because of their remarkable electrochemical resistance, these polymers are used as binders for the electrode materials in 4 V cells. Basically, polymers of this type are electrical insulators.
Aus dem Dokument Benoϊt Barriere, Yoshiyuki Miyaki, Marina Despoto- poulou, Mike Burchill, New PVDF Binders for Li-ION Batteries. „10th In- ternational Meeting on Lithium Batteries IMLB-10 - Lithium 2000", Cer- nobbio (Como), 28 May - 2 June 2000, ist ersichtlich, daß als Binder für Elektrodenmaterialien einsetzbare, im 4 V-Bereich stabile PVDFs mit zusätzlichen, polaren Gruppen versehen werden können.From the document Benoϊt Barriere, Yoshiyuki Miyaki, Marina Despotopoulou, Mike Burchill, New PVDF Binders for Li-ION Batteries. "10th In- ternational Meeting on Lithium Batteries IMLB-10 - Lithium 2000 ", Cer-nobbio (Como), May 28 - June 2, 2000, it can be seen that PVDFs which can be used in the 4 V range and which can be used as binders for electrode materials provide additional, polar groups can be.
Überraschenderweise wurde gefunden, dass sich derartige polar modifizierte PVDF-Polymere als Primer-Komponente verwenden lassen. Sie vereinen elektrochemische Stabilität mit gut haftenden Eigenschaften. Die polare Gruppe ist auch hier eine freie Säuregruppe (-COOH).Surprisingly, it was found that such polar modified PVDF polymers can be used as a primer component. They combine electrochemical stability with good adhesive properties. The polar group is also a free acid group (-COOH).
Gemäß der vorliegenden Erfindung wird der Primer vorzugsweise aus einem Gemenge eines polar modifizierten fluorierten PVDF, einem Trägerlösungsmittel, beispielsweise N-Methyl-2-pyrrolidon (NMP), und aus Anteilen eines Leitfähigkeitsverbesserers hergestellt. Wie bereits be- schrieben kommen als Leitfähigkeitsverbesserer Ruße oder Graphite in Frage. Überraschenderweise werden besonders gute Ergebnisse erzielt, wenn zu den polar modifizierten PVDF-Polymeren als Leitfähigkeitsverbesserer eine Mischung aus Rußen und aus Graphiten zugegeben wird. Solche Mischungen sind als Leitfähigkeitsverbesserer besonders bevor- zugt.According to the present invention, the primer is preferably prepared from a mixture of a polar modified fluorinated PVDF, a carrier solvent, for example N-methyl-2-pyrrolidone (NMP), and from portions of a conductivity improver. As already described, carbon black or graphite can be used as conductivity improvers. Surprisingly, particularly good results are achieved if a mixture of carbon blacks and graphites is added to the polar-modified PVDF polymers as conductivity improvers. Such mixtures are particularly preferred as conductivity improvers.
Diese Gemenge läßt sich gut in dünnen Schichten im μm-Bereich auf Aluminium auftragen. Erfindungsgemäße galvanische Elemente mit diesen beschichteten Aluminium-Kollektoren zeigen aufgrund ihrer hervor- ragenden mechanischen Haftung und der guten elektrischen Anbindung sehr niedrige Innen-Widerstände (Impedanzen).This mixture can be applied to aluminum in thin layers in the μm range. Galvanic elements according to the invention with these coated aluminum collectors show very low internal resistances (impedances) due to their excellent mechanical adhesion and good electrical connection.
Die Beschichtungsdicke liegt zwischen 1 und 10 μm, vorzugsweise zwischen 1 bis 3 μm. Die Herstellung der Beschichtung kann durch Auf- sprühen oder Aufwalzen erfolgen. Die Verbindung zwischen dem Haftvermittler und der positiven Elektrode erfolgt bevorzugt bei einer Lamination. Es ist auch eine direkte Naßbeschichtung möglich. Das Trägerlösungsmittel wird danach durch Trocknen entfernt. Die Aluminium- Kollektorfolie kann dabei beispielsweise ein Streckmetall oder eine gelochte Folie sein.The coating thickness is between 1 and 10 μm, preferably between 1 and 3 μm. The coating can be produced by spraying or rolling. The connection between the adhesion promoter and the positive electrode is preferably carried out in a lamination. Direct wet coating is also possible. The carrier solvent is then removed by drying. The aluminum Collector foil can be, for example, an expanded metal or a perforated foil.
Beispiel 1example 1
Beispiel 1 beschreibt die Herstellung einer Primer-Suspension und die anschließende Beschichtung eines Aluminium-Kollektors. Eine galvanische Zelle mit diesem Aluminium-Kollektor wird auf ihre Zyklenstabilität und ihre Lagereigenschaften hin überprüft.Example 1 describes the preparation of a primer suspension and the subsequent coating of an aluminum collector. A galvanic cell with this aluminum collector is checked for its cycle stability and its storage properties.
In 100 ml NMP werden 1 ,5 g polar modifiziertes fluoriertes PVDF (MKB212 von Fa. ELF ATOFINA) bei 40 °C gelöst (Magnetrührer). Es entsteht eine gelbbraune Lösung, die eine Stunde nachgerührt wird. Da- nach werden mit einem Dissolverrührer die Leitmaterialien eingetragen, nämlich 1 ,0 g Ruß (Super P, Hersteller Timcal Belgien) und 2,0 g Graphit (Hersteller Superior Graphite, Typ ABG1005), und 20 min. nachgerührt.1.5 g of polar-modified fluorinated PVDF (MKB212 from ELF ATOFINA) are dissolved in 100 ml of NMP at 40 ° C. (magnetic stirrer). A yellow-brown solution is formed, which is stirred for an hour. Then the lead materials are introduced with a dissolver stirrer, namely 1.0 g of carbon black (Super P, manufacturer Timcal Belgium) and 2.0 g of graphite (manufacturer Superior Graphite, type ABG1005), and 20 min. stirred.
Diese Primer-Suspension wird mit einer Airbrush-Pistole auf das Aluminium-Streckmetall aufgesprüht. Der beschichtete Aluminiumkollektor wird einige Stunden bei Raumtemperatur getrocknet. Die Schichtdicke der Primerschicht beträgt pro Seite ca. 2 μm. Die so erfindungsgemäß hergestellten Aluminiumkollektoren werden wahlweise gegen eine posi- tive Elektrode laminiert oder mit positiver Elektrodenbeschichtungs- masse direkt beschichtet.This primer suspension is sprayed onto the aluminum expanded metal with an airbrush gun. The coated aluminum collector is dried for a few hours at room temperature. The layer thickness of the primer layer is approx. 2 μm per side. The aluminum collectors thus produced according to the invention are optionally laminated against a positive electrode or coated directly with a positive electrode coating compound.
Nach der erfindungsgemäßen Kollektoren-Vorbehandlung erfolgt die Herstellung der Elektroden-Beschichtungsmassen und die Elektroden- Film-Herstellung.After the collector pretreatment according to the invention, the electrode coating compositions and the electrode film are produced.
Als positive Elektrodenmasse kann z.B. eine Binder-reduzierte, nicht auf blankem Aluminium oder einer Legierungsbeschichtung haftende Elek- trodenmasse zum Einsatz kommen, z.B. aus den folgenden Bestandteilen: 4,2 % Kynar Powerflex® (ELF ATOFINA), 84,8 % Lithiumkobaltoxid (LiCo02), 7 % Di-butylphthalat (DBP) und 4 % Leit-Graphit. Auch Elektrodenmassen mit noch höherem Anteil an Lithiumkobaltoxid sind geeig- net, beispielsweise Elektroden aus 4,2 % Kynar Powerflex® (ELF ATOFINA), 87,8 % Lithiumkobaltoxid (LiCo02), 7 % Dibutylphthalat (DBP) und 1 % Leitruß.A binder-reduced electrode that does not adhere to bare aluminum or an alloy coating, for example, can be used as the positive electrode mass. trode mass are used, e.g. from the following components: 4.2% Kynar Powerflex® (ELF ATOFINA), 84.8% lithium cobalt oxide (LiCo0 2 ), 7% di-butyl phthalate (DBP) and 4% conductive graphite. Electrode masses with an even higher proportion of lithium cobalt oxide are also suitable, for example electrodes made of 4.2% Kynar Powerflex® (ELF ATOFINA), 87.8% lithium cobalt oxide (LiCo0 2 ), 7% dibutyl phthalate (DBP) and 1% conductive carbon black.
Als elektrochemisch aktives Material für die negative Elektrode wird bei- spielsweise eine graphitisierte Kohlenstoffmodifikation verwendet wie in der EP1235286 beschrieben (negative Elektrode aus Kugelgraphit, Leitruß, Dibutylphthalat und einem PVDF-HFP-Copolymer als Binder).For example, a graphitized carbon modification is used as the electrochemically active material for the negative electrode, as described in EP1235286 (negative electrode made of spheroidal graphite, conductive carbon black, dibutyl phthalate and a PVDF-HFP copolymer as a binder).
Die positive Elektrode (Kathode) und die negative Elektrode (Anode) werden auf den vorbehandelten Aluminium- bzw. Kupfer-Kollektor laminiert. Die Elektroden werden ausgestanzt und mit Separatoren zu einem Element vereinigt. Als Separator wird beispielsweise ein dreilagiger Separator mit der Schichtabfolge Polypropylen/Polyethylen/Polypropylen eingesetzt. Nach Extraktion des Dibutylphthalats (z.B. mit n-Hexan) er- folgt die Verpackung in Aluminium-Verbundfolie und nach Eindosieren des Elektrolyten (bevorzugt einem organischen Carbonat-Elektrolyten mit einem Lithium-Leitsalz) die Formation.The positive electrode (cathode) and the negative electrode (anode) are laminated onto the pretreated aluminum or copper collector. The electrodes are punched out and combined to form an element using separators. A three-layer separator with the layer sequence polypropylene / polyethylene / polypropylene is used as the separator, for example. After extraction of the dibutyl phthalate (e.g. with n-hexane) the packaging is carried out in aluminum composite foil and after the electrolyte (preferably an organic carbonate electrolyte with a lithium conductive salt) has been metered in, the formation.
Es wurden Lithium-Polymer-Zellen mit dem erfindungsgemäß beschich- teten Aluminiumkollektor gebaut sowie zum Vergleich Zellen mit einem Kollektor mit handelsüblichem Primerauftrag (EB-012 Fa. Acheson; diese Primerschicht besteht aus einem Gemenge aus Ruß und Graphit sowie einem Acrylsäure-haltigen organischen Binder).Lithium polymer cells were built with the aluminum collector coated according to the invention, and for comparison cells with a collector with a commercially available primer application (EB-012 from Acheson; this primer layer consists of a mixture of carbon black and graphite and an organic binder containing acrylic acid) ).
So erhaltene Polymer-Zellen wurden bei Raumtemperatur (in einer Anlage 1) und bei 60 °C (in einer Anlage 2) zyklisiert und zudem im vollgeladenen Zustand im Temperaturschrank gelagert (4,2 V / 80 °C / 62 h) wobei das Gasungsverhalten der Zellen beobachtet wurde. Bei entsprechenden Lagertests bei 80 °C, 4,2 V, zeigen Zellen mit dem Primer gemäß der vorliegenden Erfindung, daß die Gasung gegenüber entsprechenden Zellen mit handelsüblichem Primer zeitlich stark verzögert wird und daß der 1 kHz AC Wechselstrom-Widerstand bei diesen extremen Lagerbedingungen nur geringfügig ansteigt.Polymer cells obtained in this way were cycled at room temperature (in a plant 1) and at 60 ° C. (in a plant 2) and also stored in a fully charged state in a temperature cabinet (4.2 V / 80 ° C./62 h), with the gassing behavior of the cells was observed. In corresponding storage tests at 80 ° C., 4.2 V, cells with the primer according to the present invention show that the gassing is delayed considerably compared to corresponding cells with a commercially available primer and that the 1 kHz AC alternating current resistance only under these extreme storage conditions increases slightly.
Diese Ergebnisse sind in der folgenden Tabelle 1 dargestellt. Während die Vergleichszelle mit handelsüblichem Primerauftrag (Acheson) bereits nach 15,5 Stunden anfing zu gasen, war bei der Lithium-Polymer-Zelle mit erfindungsgemäß beschichtetem Aluminiumkollektor eine leichte Gasung erst nach 62 Stunden Lagerung bei 80 °C zu bemerken. Die Zellspannung blieb bei der erfindungsgemäßen Li-Polymer-Zelle über diesen Zeitraum im wesentlichen konstant.These results are shown in Table 1 below. While the comparison cell with a commercially available primer application (Acheson) already started to gas after 15.5 hours, in the lithium polymer cell with an aluminum collector coated according to the invention, a slight gassing was only noticeable after storage at 80 ° C. for 62 hours. The cell voltage of the Li-polymer cell according to the invention remained essentially constant over this period.
Figure imgf000008_0001
Figure imgf000008_0001
Tabelle 1 : Gasungsverhalten einer Lithium-Polymer-Zelle mit erfindungsgemäß beschichtetem Aluminiumkollektor im Vergleich zu dem einer Vergleichszelle bei Lagerung bei 80 °C im Temperaturschrank nach 15,5 h, 24 h, 38 h, 42 h, 45 h, 48 h, 62 h. Bei Raumtemperatur-Zyklisierungen ist die Zyklenstabilität eines erfindungsgemäßen galvanischen Elements mit der einer Zelle mit handelsüblichem Primer vergleichbar. Figur 1 zeigt die Entladekapazität in Abhängigkeit von der Zyklenzahl N bei Zyklisierung bei Raumtemperatur und 1 C (einstündiger Strom) Belastung. Kurve A gilt für handelsübliche Primer, Kurve B für erfindungsgemäße Primer.Table 1: Gassing behavior of a lithium polymer cell with an aluminum collector coated according to the invention compared to that of a comparison cell when stored at 80 ° C. in a temperature cabinet after 15.5 h, 24 h, 38 h, 42 h, 45 h, 48 h, 62 H. With room temperature cycles, the cycle stability of a galvanic element according to the invention is comparable to that of a cell with a commercially available primer. FIG. 1 shows the discharge capacity as a function of the number of cycles N when cycled at room temperature and 1 C (one-hour current) load. Curve A applies to commercially available primers, curve B to primers according to the invention.
Figur 2 zeigt die gleiche Zyklisierung bei 60 °C. Kurve B beschreibt auch hier das Verhalten einer Zelle mit einem Primer nach der Er indung. Besonders hervorzuheben ist die im Vergleich zu Polymer-Zellen mit han- delsüblichen Primern herausragende Zyklenfestigkeit bei erhöhter Temperatur.Figure 2 shows the same cyclization at 60 ° C. Curve B also describes the behavior of a cell with a primer after the induction. Particularly noteworthy is that compared to polymer cells with hand standard primers outstanding cycle stability at elevated temperature.
Beispiel 2Example 2
Beispiel 2 beschreibt die Herstellung eines mit einer weiteren Primer- Suspension beschichteten Aluminium-Kollektors. Analog zu Beispiel 1 wurde eine Primer-Suspension hergestellt. Als polar modifiziertes fluo- riertes PVDF wurde statt MKB212 der Fa. ELF ATOFINA das alternative Produkt MKB272 der Fa. ELF ATOFINA verwendet.Example 2 describes the production of an aluminum collector coated with a further primer suspension. A primer suspension was prepared analogously to Example 1. Instead of MKB212 from ELF ATOFINA, the alternative product MKB272 from ELF ATOFINA was used as the polar modified fluorinated PVDF.
Wie in Bsp. 1 wurde mit der hergestellten Primer-Suspension ein Aluminiumkollektor beschichtet und anschließend getrocknet.As in Example 1, an aluminum collector was coated with the primer suspension prepared and then dried.
Der behandelte Kollektor wurde auf übliche Art zu einer galvanischen Zelle verbaut. Diese wurde anschließend auf Zyklenfestigkeit und Lagereigenschaften, insbesondere auch bei höheren Temperaturen, untersucht. In Bezug auf Lagereigenschaften und Zyklenstabilität wurden identische Resultate wie in Beispiel 1 (Ableiter beschichtet mit MKB212) erhalten. The treated collector was built into a galvanic cell in the usual way. This was then examined for cycle stability and storage properties, especially at higher temperatures. With regard to storage properties and cycle stability, identical results were obtained as in Example 1 (arrester coated with MKB212).

Claims

Patentansprüche claims
1. Galvanisches Element mit mindestens einer Lithium interkalierenden Elektrode, dessen positive Elektrode einen im wesentlichen aus Aluminium bestehenden Kollektor besitzt, dadurch gekennzeichnet, daß der Aluminiumkollektor mit einem Haftvermittler enthaltend ein polar modifiziertes Polyvinylidendifluorid (PVDF) und einen elektrischen Leitfähigkeitsverbesserer beschichtet ist.1. Galvanic element with at least one lithium intercalating electrode, the positive electrode of which has an essentially aluminum collector, characterized in that the aluminum collector is coated with an adhesion promoter containing a polar modified polyvinylidene difluoride (PVDF) and an electrical conductivity improver.
2. Galvanisches Element nach Anspruch 1 , dadurch gekennzeichnet, daß der Leitfähigkeitsverbesserer Leitruß und/oder Graphit aufweist.2. Galvanic element according to claim 1, characterized in that the conductivity improver comprises carbon black and / or graphite.
3. Galvanisches Element nach Anspruch 1 , dadurch gekennzeichnet, daß der Leitfähigkeitsverbesserer ein elektrisch leitfähiges Polymer ist.3. Galvanic element according to claim 1, characterized in that the conductivity improver is an electrically conductive polymer.
4. Galvanisches Element nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Kollektor ein Aluminium-Streckgitter oder eine gelochte Aluminium-Folie ist.4. Galvanic element according to one of claims 1 to 3, characterized in that the collector is an aluminum expanded metal or a perforated aluminum foil.
5. Galvanisches Element nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Beschichtungsdicke zwischen 1 und 10 μm, vorzugsweise zwischen 1 bis 3 /ym, liegt.5. Galvanic element according to one of claims 1 to 4, characterized in that the coating thickness is between 1 and 10 microns, preferably between 1 to 3 / ym.
6. Verfahren zu Herstellung eines galvanischen Elements nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Beschichtung durch Aufsprühen oder Aufwalzen erfolgt.6. A method for producing a galvanic element according to one of claims 1 to 5, characterized in that the coating is carried out by spraying or rolling.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß die Verbindung zwischen dem Haftvermittler und der positiven Elektrode bei einer Lamination erfolgt. Verfahren nach einem der Ansprüche 6 oder 7, dadurch gekennzeichnet, daß die Verbindung zwischen dem Haftvermittler und der positiven Elektrode durch eine direkte Naßbeschichtung erfolgt. 7. The method according to claim 6, characterized in that the connection between the adhesion promoter and the positive electrode takes place in a lamination. Method according to one of claims 6 or 7, characterized in that the connection between the adhesion promoter and the positive electrode is effected by a direct wet coating.
PCT/EP2005/002864 2004-03-18 2005-03-17 Galvanic element WO2005091396A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112005000540T DE112005000540A5 (en) 2004-03-18 2005-03-17 Galvanic element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004014383A DE102004014383A1 (en) 2004-03-18 2004-03-18 Galvanic element
DE102004014383.8 2004-03-18

Publications (2)

Publication Number Publication Date
WO2005091396A2 true WO2005091396A2 (en) 2005-09-29
WO2005091396A3 WO2005091396A3 (en) 2006-04-06

Family

ID=34980729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/002864 WO2005091396A2 (en) 2004-03-18 2005-03-17 Galvanic element

Country Status (2)

Country Link
DE (1) DE102004014383A1 (en)
WO (1) WO2005091396A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7443082B2 (en) 2006-03-03 2008-10-28 Basf Corporation Piezoelectric polymer composite article and system
DE102012112186A1 (en) 2012-12-12 2014-06-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Composite material, process for its production, system made therefrom and use thereof
DE102022112020A1 (en) 2022-05-13 2023-11-16 Bayerische Motoren Werke Aktiengesellschaft Lithium ion battery, cathode for a lithium ion battery and method for producing a cathode for a lithium ion battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19807192A1 (en) * 1997-02-21 1998-08-27 Samsung Display Devices Co Ltd Current take-off for lithium-ion battery manufacture
EP1198022A2 (en) * 2000-10-11 2002-04-17 Matsushita Electric Industrial Co., Ltd. Lithium polymer battery and method for producing the same
US6409867B1 (en) * 1997-07-23 2002-06-25 Accentus Plc Extrusion of polymer-based cell components
EP1261048A2 (en) * 2001-05-25 2002-11-27 Microbatterie GmbH Process for making electrode foils for galvanic cells
WO2003099715A1 (en) * 2002-05-17 2003-12-04 Valence Technology, Inc. Synthesis of metal compounds useful as cathode active materials
EP1381097A1 (en) * 2001-04-10 2004-01-14 Mitsubishi Materials Corporation Lithium ion polymer secondary battery, its electrode and method for synthesizing polymer compound in binder used in adhesion layer thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5824120A (en) * 1996-04-10 1998-10-20 Valence Technology, Inc. Electrically conductive adhesion promoters for current collectors
DE10232379B4 (en) * 2002-07-17 2006-09-14 Dilo Trading Ag Electrically conductive adhesion promoter, electrode, process for its production and secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19807192A1 (en) * 1997-02-21 1998-08-27 Samsung Display Devices Co Ltd Current take-off for lithium-ion battery manufacture
US6409867B1 (en) * 1997-07-23 2002-06-25 Accentus Plc Extrusion of polymer-based cell components
EP1198022A2 (en) * 2000-10-11 2002-04-17 Matsushita Electric Industrial Co., Ltd. Lithium polymer battery and method for producing the same
EP1381097A1 (en) * 2001-04-10 2004-01-14 Mitsubishi Materials Corporation Lithium ion polymer secondary battery, its electrode and method for synthesizing polymer compound in binder used in adhesion layer thereof
EP1261048A2 (en) * 2001-05-25 2002-11-27 Microbatterie GmbH Process for making electrode foils for galvanic cells
WO2003099715A1 (en) * 2002-05-17 2003-12-04 Valence Technology, Inc. Synthesis of metal compounds useful as cathode active materials

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7443082B2 (en) 2006-03-03 2008-10-28 Basf Corporation Piezoelectric polymer composite article and system
DE102012112186A1 (en) 2012-12-12 2014-06-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Composite material, process for its production, system made therefrom and use thereof
DE102022112020A1 (en) 2022-05-13 2023-11-16 Bayerische Motoren Werke Aktiengesellschaft Lithium ion battery, cathode for a lithium ion battery and method for producing a cathode for a lithium ion battery

Also Published As

Publication number Publication date
DE102004014383A1 (en) 2005-10-06
WO2005091396A3 (en) 2006-04-06

Similar Documents

Publication Publication Date Title
EP1359637B1 (en) Method for manufacturing of a galvanic element
EP1261048B1 (en) Electrode/Separator Laminate for galvanic cells and and process for its manufacture
DE102013225734A1 (en) Lithium powder anode and galvanic element containing a lithium powder anode
EP1922776A1 (en) Special purpose lithium polymer batteries special purpose arrangements and method for prodcution thereof
EP2104957A1 (en) Galvanic element with composite of electrodes, and separator formed by an adhesive
WO2015043564A1 (en) Method for producing electrochemical cells of a solid-state battery
DE10104988A1 (en) Process for the production of electrode foils
EP1058327B1 (en) Negative electrode for high energy lithium ion cell and method for manufacturing the same
DE10150227A1 (en) Process for producing an electrode / separator assembly for galvanic elements
WO2005091396A2 (en) Galvanic element
WO2004008561A1 (en) Electrically conductive bonding agent
DE102004012476B4 (en) Process for producing a lithium polymer cell and a lithium polymer battery
DE102016217397A1 (en) Electrode stack with edge coating
DE102016217383A1 (en) Process for producing electrodes with improved current collector structure
DE102019001737A1 (en) Lithium battery, lithium battery multistack and process for manufacturing the same
EP1261046B1 (en) Method of manufacturing an electrode/separator assembly for galvanic elements
DE10107384B4 (en) Use of a special polymer as adhesion promoter and lithium polymer battery
DE10251194B4 (en) A method of making a lithium polymer battery precursor and use of the method
DE10328572B4 (en) Lithium polymer battery systems and method of manufacture
EP0977291B1 (en) Positive electrode of a lithium ion cell for use at high load
DE102004044478B4 (en) Lithium secondary battery and method of making a lithium secondary battery
WO2012100983A1 (en) Electrodes for lithium-ion batteries and the production thereof
DE10115210B4 (en) Use of special polymers as adhesion promoters for lithium batteries and lithium polymer battery
DE102010020647A1 (en) High-power battery based on lithium-polymer system, comprises graphite foil with lithium intercalatable titanate on primed aluminum arresters, and lithium-intercalated iron- or vanadium-phosphates on primed titanium or aluminum arresters
DE102006007220B4 (en) Process for producing lithium polymer energy storage devices

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1120050005402

Country of ref document: DE

122 Ep: pct application non-entry in european phase
REF Corresponds to

Ref document number: 112005000540

Country of ref document: DE

Date of ref document: 20070726

Kind code of ref document: P

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607