WO2005076418A1 - Process for producing anisotropic conductive sheet - Google Patents

Process for producing anisotropic conductive sheet Download PDF

Info

Publication number
WO2005076418A1
WO2005076418A1 PCT/JP2005/001419 JP2005001419W WO2005076418A1 WO 2005076418 A1 WO2005076418 A1 WO 2005076418A1 JP 2005001419 W JP2005001419 W JP 2005001419W WO 2005076418 A1 WO2005076418 A1 WO 2005076418A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
material layer
magnetic field
conductive material
thickness direction
Prior art date
Application number
PCT/JP2005/001419
Other languages
French (fr)
Japanese (ja)
Inventor
Hisao Igarashi
Original Assignee
Jsr Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr Corporation filed Critical Jsr Corporation
Publication of WO2005076418A1 publication Critical patent/WO2005076418A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/22Contacts for co-operating by abutting
    • H01R13/24Contacts for co-operating by abutting resilient; resiliently-mounted
    • H01R13/2407Contacts for co-operating by abutting resilient; resiliently-mounted characterized by the resilient means
    • H01R13/2414Contacts for co-operating by abutting resilient; resiliently-mounted characterized by the resilient means conductive elastomers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • H01F1/26Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated by macromolecular organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/44Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of magnetic liquids, e.g. ferrofluids
    • H01F1/447Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of magnetic liquids, e.g. ferrofluids characterised by magnetoviscosity, e.g. magnetorheological, magnetothixotropic, magnetodilatant liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/03Contact members characterised by the material, e.g. plating, or coating materials

Definitions

  • the present invention relates to a method for producing an anisotropic conductive sheet, and more particularly to a method for producing an anisotropic conductive sheet that can be suitably used for electrical inspection of a circuit device such as an integrated circuit formed on a wafer. It relates to a manufacturing method.
  • An anisotropic conductive elastomer sheet is a sheet having conductivity only in the thickness direction, or a sheet having a pressurized conductive portion which is conductive only in the thickness direction when pressed in the thickness direction.
  • compact electrical connection can be achieved without using means such as soldering or mechanical fitting, and soft connection is possible by absorbing mechanical shock and strain.
  • circuit devices such as printed circuit boards and leadless chip carriers, and liquid crystal panels can be used in fields such as electronic calculators, electronic digital watches, electronic cameras, and computer keyboards. It is widely used as a connector to achieve an electrical connection between them.
  • one side of the circuit device to be inspected is used.
  • the inspection of the electrode region to be inspected of the circuit device and the inspection of the circuit board for inspection are performed.
  • An anisotropic conductive elastomer sheet is interposed between the electrodes and the electrode region.
  • Patent Document 1 disclose thick conductive particles exhibiting magnetism in the elastomer.
  • Patent Document 2 discloses a method of dispersing conductive particles exhibiting magnetism in an elastomer in a non-uniform manner.
  • Anisotropic conductive elastomer sheet (hereinafter referred to as “uniformly distributed anisotropic conductive sheet”) in which a large number of conductive path forming portions extending in the direction of movement and insulating portions for insulating these from each other are formed.
  • Patent Document 3 and the like disclose an unevenly distributed anisotropic conductive sheet in which a step is formed between a surface of a conductive path forming portion and an insulating portion.
  • conductive particles are contained in an elastic polymer substance in a state of being aligned in the thickness direction to form a chain of conductive particles. Form a conductive path.
  • such an anisotropic conductive elastomer sheet is used for a conductive material layer in which conductive particles exhibiting magnetism are dispersed in a polymer material forming material which is cured to become an elastic polymer material.
  • the conductive particles in the conductive material layer are oriented so as to be aligned in the thickness direction, and then, after stopping the action of the magnetic field on the conductive material layer or continuing the action of the magnetic field. Meanwhile, the conductive material layer is manufactured through a step of curing.
  • the step of applying a magnetic field to the conductive material layer in the thickness direction, that is, in the direction perpendicular to the surface of the conductive material layer. It is important to form a chain of conductive particles on the surface.
  • the magnetic field is applied in the thickness direction of the conductive material layer.
  • the chain of the conductive particles P is formed not only in the thickness direction of the conductive material layer 80 but also in a direction inclined with respect to the thickness direction.
  • the conductive particles are magnetodynamically stable and the individual conductive particles are constrained by the magnetic force, the conductive particles form a chain in the thickness direction even when the action of the magnetic field is continued. I can't move. Then, in this state, the conductive material layer 80 is cured, whereby the obtained anisotropic conductive sheet is also formed in a direction in which the chain of the conductive particles is inclined with respect to the thickness direction. Therefore, it is difficult to obtain high conductivity with a small pressing force. In the case of a dispersion type anisotropic conductive sheet, when the chain of conductive particles is formed in a direction inclined with respect to the thickness direction, high resolution, that is, necessary insulation between adjacent electrodes is secured. In such a state, it is difficult to obtain the performance of achieving high-level and reliable electrical connection to each of the electrodes.
  • the method for producing the unevenly distributed anisotropic conductive sheet has the following problems.
  • a ferromagnetic layer 92 is formed on a substrate 91 in accordance with the same pattern as a conductive path forming portion to be formed.
  • An upper die 90 in which a nonmagnetic layer 93 is formed in a region, and a ferromagnetic layer 97 formed on a substrate 96 according to a pattern opposite to the ferromagnetic layer 92 of the upper die 90.
  • Conductive particles P having magnetic properties are dispersed in a polymer material forming material which is cured to become an elastic polymer material, between a lower mold 95 having a non-magnetic layer 98 formed in a region.
  • the conductive material layer 80 is formed.
  • a pair of electromagnets (not shown) are arranged on the upper surface of the upper die 90 and the lower surface of the lower die 95 and actuated, whereby the ferromagnetic layer 92 of the upper die 90 in the conductive material layer 80 is formed.
  • a magnetic field having a higher intensity is applied to the portion located between the lower mold 95 and the ferromagnetic layer 97 of the lower mold 95.
  • the conductive particles P dispersed in the conductive material layer 80 are located between the ferromagnetic layer 92 of the upper die 90 and the ferromagnetic layer 97 of the lower die 95, that is, the conductive path forming portion.
  • a curing treatment of the conductive material layer 80 is performed.
  • the conductive particles P present in the conductive material layer 80 at the central position between the adjacent conductive path forming portions are formed by the balance of the magnetic field acting on the conductive particles P.
  • the ferromagnetic material of the upper die 90 may be accumulated as shown in FIG. A chain of conductive particles P is formed between the layer 92 and the ferromagnetic layer 97 adjacent to the corresponding ferromagnetic layer 97 of the lower mold 95, and as a result, between the adjacent conductive path forming portions. It is difficult to obtain an anisotropic conductive sheet having the required insulation. Such a phenomenon is more remarkable as the pitch of the conductive path forming portion is smaller.
  • Patent Document 1 JP-A-51-93393
  • Patent Document 2 JP-A-53-147772
  • Patent Document 3 JP-A-61-250906
  • the present invention has been made based on the above circumstances, and a first object of the present invention is to provide a stable electric conductivity with a low electric resistance value even when pressurized with a small pressing force.
  • An object of the present invention is to provide a method capable of manufacturing an anisotropic conductive sheet.
  • a second object of the present invention is to provide an anisotropic device having a plurality of conductive path forming portions containing conductive particles oriented in the thickness direction, and an insulating portion for insulating these conductive path forming portions from each other.
  • a method for manufacturing a conductive sheet which has a low electric resistance value and shows stable conductivity even when pressed with a small pressing force, and is adjacent to the conductive sheet even if the pitch of the conductive path forming portion is small. It is an object of the present invention to provide a method capable of manufacturing an anisotropic conductive sheet that can reliably obtain required insulation between conductive path forming portions.
  • a third object of the present invention is a method for producing an anisotropic conductive sheet comprising conductive particles contained in a state oriented in the thickness direction, and has a low electric resistance value even when pressed with a small pressing force.
  • An object of the present invention is to provide a method capable of producing an anisotropic conductive sheet exhibiting stable and stable conductivity and having high resolution.
  • the method for producing an anisotropic conductive sheet according to the present invention is directed to a method for producing a conductive polymer sheet, wherein a liquid polymer material forming material which is cured to become an insulating elastic polymer material contains conductive particles exhibiting magnetism. Applying a magnetic field to the conductive material layer in the thickness direction thereof to orient the conductive particles in the thickness direction of the conductive material layer,
  • the operation of applying the magnetic field to the conductive material layer is performed at least once again.
  • the method for producing an anisotropic conductive sheet of the present invention provides a method for forming a plurality of conductive paths, wherein conductive particles exhibiting magnetism are contained in an insulating elastic polymer material in a state oriented in a thickness direction. And a method of manufacturing an anisotropic conductive sheet having an insulating portion made of an insulating elastic polymer material that insulates these conductive path forming portions from each other.
  • Magnetic in liquid polymeric material forming material that cures into insulating elastic polymeric material By applying a magnetic field having a strength greater than that of the other portion to the portion serving as the conductive path forming portion in the thickness direction of the conductive material layer with respect to the conductive material layer containing the conductive particles showing A step of assembling conductive particles in a portion to be the conductive path forming portion and orienting the conductive particles in a thickness direction of the conductive material layer,
  • the operation of applying the magnetic field to the conductive material layer is performed at least once again.
  • the method for producing an anisotropic conductive sheet of the present invention provides an anisotropic conductive sheet comprising magnetically conductive particles in an insulating elastic polymer material oriented in the thickness direction.
  • the operation of applying the magnetic field to the conductive material layer is performed at least once again.
  • the method for producing an anisotropic conductive sheet of the present invention provides a method for forming a plurality of conductive paths, wherein conductive particles exhibiting magnetism are contained in an insulating elastic polymer material in a state oriented in a thickness direction. And a method of manufacturing an anisotropic conductive sheet having an insulating portion made of an insulating elastic polymer material that insulates these conductive path forming portions from each other.
  • An insulating sheet material made of an insulating elastic polymer material having a plurality of through holes formed in accordance with a pattern corresponding to a pattern of a conductive path forming portion to be formed is prepared.
  • the thickness of the conductive material layer in which the magnetic conductive particles are contained in the liquid polymer material forming material which is cured and becomes an insulating elastic high molecular material filled in A step of orienting the conductive particles in the thickness direction of the conductive material layer by applying a magnetic field to
  • the operation of applying the magnetic field to the conductive material layer again includes It is preferable that the direction of the magnetic flux lines of the magnetic field applied again to the conductive material layer is opposite to the direction of the magnetic flux lines of the magnetic field before the stop.
  • the operation of applying a magnetic field to the conductive material layer is performed five times or more again.
  • the individual conductive particles in the conductive material layer are in this stopped state. Is released from the constraint by the magnetic force. Then, by applying a magnetic field again to the conductive material layer in the thickness direction, this operation is triggered, and the movement of the conductive particles starts again. A chain of conductive particles is formed in a more faithful direction.
  • the formation of chains of conductive particles in a direction inclined with respect to the thickness direction can be suppressed, so that even if the pressure is applied with a small pressing force, the electric resistance value is low and the conductive property is stable. Can be produced.
  • FIG. 1 is an explanatory cross-sectional view showing a configuration of an example of an anisotropic conductive sheet obtained by a production method of the present invention.
  • FIG. 2 is an enlarged cross-sectional view illustrating a main part of the anisotropic conductive sheet shown in FIG. 1.
  • FIG. 3 is an explanatory sectional view showing a configuration of a mold used for manufacturing the anisotropic conductive sheet shown in FIG. 1.
  • FIG. 4 is an explanatory cross-sectional view showing a state where a conductive material is applied to molding surfaces of an upper mold and a lower mold in the mold shown in FIG. 1.
  • FIG. 5 is an explanatory sectional view showing a state in which a conductive material layer is formed in a cavity of a mold.
  • FIG. 6 is an explanatory sectional view showing a state where a mold is set in an electromagnet device.
  • FIG. 7 is an explanatory sectional view showing directions of magnetic flux lines in a magnetic field before stop.
  • FIG. 8 is an explanatory cross-sectional view showing directions of magnetic flux lines in a magnetic field applied again.
  • FIG. 9 is an explanatory cross-sectional view showing a state where conductive particles in a conductive material layer are gathered at a portion to be a conductive path forming portion and are aligned so as to be arranged in a thickness direction.
  • FIG. 10 is an explanatory cross-sectional view showing a configuration of another example of the anisotropic conductive sheet obtained by the production method of the present invention.
  • FIG. 11 is an explanatory cross-sectional view showing an enlarged main part of the anisotropic conductive sheet shown in FIG. 10.
  • FIG. 12 is an explanatory cross-sectional view showing a configuration of a molded member used for manufacturing the anisotropic conductive sheet shown in FIG.
  • FIG. 13 is an explanatory cross-sectional view showing a state where a conductive material layer is formed between one support and the other support in a molded member.
  • FIG. 14 is an explanatory cross-sectional view showing an enlarged conductive material layer.
  • FIG. 15 is an explanatory cross-sectional view showing a state where a molded member is set in an electromagnet device.
  • FIG. 16 is an explanatory cross-sectional view showing a state in which conductive particles in a conductive material layer are oriented so as to be arranged in a thickness direction.
  • FIG. 17 shows still another example of the anisotropic conductive sheet obtained by the production method of the present invention. It is explanatory sectional drawing for showing a structure.
  • FIG. 18 is an explanatory cross-sectional view showing a main part of the anisotropic conductive sheet shown in FIG. 17 in an enlarged manner.
  • FIG. 19 is an explanatory cross-sectional view showing a configuration of an insulating portion sheet body for producing the anisotropic conductive sheet shown in FIG. 17.
  • FIG. 20 is an explanatory cross-sectional view showing a state where a laser mask is arranged on a sheet for obtaining an insulating sheet.
  • FIG. 21 is an explanatory cross-sectional view showing a state where an insulating portion sheet is formed.
  • FIG. 22 is an explanatory cross-sectional view showing an intermediate composite including a laser mask, an insulating sheet, and a conductive material layer.
  • FIG. 23 is an explanatory cross-sectional view showing an enlarged conductive material layer in the intermediate composite.
  • FIG. 24 is an explanatory cross-sectional view showing a state where the intermediate composite is set in the electromagnet device.
  • FIG. 25 is an explanatory cross-sectional view showing a state in which conductive particles in a conductive material layer are oriented so as to be arranged in a thickness direction.
  • FIG. 26 is an explanatory cross-sectional view showing a state in which a chain of conductive particles in a conductive material layer is formed in a direction inclined with respect to a thickness direction in a conventional method of manufacturing an anisotropic conductive sheet. .
  • FIG. 27 is an explanatory cross-sectional view showing a state in which a conductive material layer is formed between an upper die and a lower die in a conventional method for manufacturing an anisotropic conductive sheet.
  • FIG. 28 In a conventional method of manufacturing an anisotropic conductive sheet, a conductive layer is formed between an upper ferromagnetic layer and a corresponding ferromagnetic layer adjacent to a lower ferromagnetic layer.
  • FIG. 3 is an explanatory cross-sectional view showing a state in which a chain of particles is formed.
  • the first method is a method for producing an anisotropic conductive sheet 10 having a configuration as shown in FIG.
  • the anisotropic conductive sheet 10 will be described.
  • the anisotropic conductive sheet 10 is an unevenly distributed anisotropic conductive sheet and corresponds to an electrode to be connected, for example, a pattern of an electrode to be inspected of a circuit device to be inspected.
  • a plurality of conductive path forming portions 11 each extending in the thickness direction and an insulating portion 12 insulating these conductive path forming portions 11 from each other are arranged.
  • Each of the conductive path forming portions 11 is, as shown in an enlarged view in FIG. 2, formed by containing conductive particles P in an insulating elastic polymer substance E in a state of being aligned in the thickness direction.
  • a conductive path is formed by a chain of conductive particles P in the thickness direction.
  • each of the conductive path forming portions 11 is formed so as to protrude from both surfaces of the insulating portion 12.
  • the insulating portion 12 is made of an insulating elastic polymer material and contains no or almost no conductive particles P, and has conductivity in both the thickness direction and the plane direction. Not shown.
  • a frame-shaped frame plate 15 is provided integrally with a peripheral portion of the insulating portion 12.
  • the content ratio of the conductive particles P in the conductive path forming portion 11 is preferably 1060% by volume, preferably 15 to 50%. If this ratio is less than 10%, the conductive path forming portion 11 having a sufficiently low electric resistance may not be obtained. On the other hand, if this ratio exceeds 60%, the resulting conductive path forming portion 11 may become fragile, or the elasticity required for the conductive path forming portion 11 may not be obtained immediately.
  • the pitch of the conductive path forming portions 11 is, for example, a force of 60 to 500 zm.
  • the manufacturing method of the present invention is extremely effective. It is.
  • a mold as shown in FIG. 3 is used.
  • the mold shown in FIG. 3 will be specifically described.
  • This mold is configured by arranging an upper mold 50 and a lower mold 55 that is a pair with the upper mold 50 such that their molding surfaces face each other.
  • a cavity is formed between the molding surface 50 (the lower surface in FIG. 3) and the molding surface of the lower mold 55 (the upper surface in FIG. 3).
  • a ferromagnetic layer 52 is formed on the lower surface of the ferromagnetic substrate 51 according to a pattern opposite to the arrangement pattern of the conductive path forming portions 11 of the anisotropic conductive sheet 10 to be manufactured.
  • a non-magnetic layer 53 having a thickness larger than the thickness of the ferromagnetic layer 52 is formed in a portion other than the ferromagnetic layer 52, whereby the strength of the upper mold 50 on the molding surface is reduced.
  • a recess is formed where the magnetic layer 52 is located.
  • a ferromagnetic layer 57 is formed on the upper surface of the ferromagnetic substrate 56 according to the same pattern as the arrangement pattern of the conductive path forming portions 11 of the anisotropic conductive sheet 10 to be manufactured.
  • a non-magnetic layer 58 having a thickness larger than the thickness of the ferromagnetic layer 57 is formed in a portion other than the ferromagnetic layer 57, whereby the strength of the lower mold 55 on the molding surface is reduced.
  • a recess is formed where the magnetic layer 57 is located.
  • Materials forming the ferromagnetic substrates 51 and 56 in each of the upper mold 50 and the lower mold 55 include ferromagnetic metals such as iron, iron-nickel alloy, iron-cobalt alloy, nickel, and cobalt. Can be used.
  • the ferromagnetic substrates 51 and 56 preferably have a thickness of 0.1 to 50 mm and have a smooth surface, are chemically degreased, and are mechanically polished. But preferred.
  • a ferromagnetic material such as iron, iron-nickel alloy, iron-cobalt alloy, nickel, cobalt, or the like is used as a material forming the ferromagnetic layers 52 and 57 in each of the upper mold 50 and the lower mold 55.
  • a ferromagnetic material such as iron, iron-nickel alloy, iron-cobalt alloy, nickel, cobalt, or the like is used as a material forming the ferromagnetic layers 52 and 57 in each of the upper mold 50 and the lower mold 55.
  • Metals can be used as a ferromagnetic material such as iron, iron-nickel alloy, iron-cobalt alloy, nickel, cobalt, or the like is used as a ferromagnetic material such as iron, iron-nickel alloy, iron-cobalt alloy, nickel, cobalt, or the like is used as a ferromagnetic material such as iron, iron-nickel alloy, iron-cobalt alloy, nickel, cobalt, or the like is used as
  • the thickness is less than 10 xm, it is difficult to apply a magnetic field having a sufficient intensity distribution to the conductive material layer formed in the mold, and as a result, the conductive material Since it becomes difficult to collect the conductive particles at a high density in the portion of the layer that becomes the conductive path forming portion, a sheet having good anisotropic conductivity may not be obtained.
  • a nonmagnetic metal such as copper, a heat-resistant polymer substance, or the like may be used.
  • the ability to form the nonmagnetic layers 53 and 58 easily by using a photolithography technique is preferable because it is preferable to use a polymer substance cured by radiation.
  • Photoresists such as a system dry film resist, an epoxy system liquid resist, and a polyimide system liquid resist can be used.
  • the thickness of the nonmagnetic layers 53 and 58 is set according to the thickness of the ferromagnetic layers 52 and 57 and the height of the projected conductive path forming portion 11 of the desired anisotropic conductive sheet 10.
  • the anisotropic conductive sheet 10 is manufactured.
  • a conductive material is prepared by dispersing conductive particles exhibiting magnetism in a liquid polymer material forming material which is cured to become an insulating elastic polymer material. I do.
  • polymer substance forming material for preparing the conductive material examples thereof include silicone rubber, polybutadiene rubber, natural rubber, polyisoprene rubber, and styrene-butadiene copolymer.
  • Conjugated rubbers such as rubber, acrylonitrile-butadiene copolymer rubber and hydrogenated products thereof, and block copolymer rubbers such as styrene-butadiene-gen block copolymer rubber, styrene-isoprene block copolymer, and the like. Examples include hydrogenated products, chloroprene rubber, urethane rubber, polyester rubber, epichlorohydrin rubber, ethylene-propylene copolymer rubber, ethylene propylene-gen copolymer rubber, and soft liquid epoxy rubber.
  • silicone rubber is preferred from the viewpoints of durability, moldability and electrical properties.
  • the silicone rubber is preferably one obtained by crosslinking or condensing a liquid silicone rubber.
  • the liquid silicone rubber may be any of a condensation type, an addition type, and a compound having a Bier group ⁇ hydroxyl group. Specific examples include dimethyl silicone raw rubber, methyl vinyl silicone raw rubber, and methylphenyl vinyl silicone raw rubber.
  • an addition type liquid silicone rubber a one-part liquid silicone rubber which is cured by a reaction between a bullet group and a Si—H bond and is composed of a polysiloxane containing both a bullet group and a Si—H bond is used.
  • the ability to use the two-component type (two-component type) consisting of a polysiloxane containing a butyl group and a polysiloxane containing a Si—H bond (a one-component type) It is preferable to use a two-part addition type liquid silicone rubber.
  • liquid silicone rubber containing a bullet group (polydimethyl containing a bullet group) Siloxane) is usually obtained by subjecting dimethyldichlorosilane or dimethyldialkoxysilane to hydrolysis and condensation in the presence of dimethylvinylchlorosilane or dimethylvinylalkoxysilane, for example, by subsequent fractionation by repeated dissolution and precipitation.
  • dimethyldichlorosilane or dimethyldialkoxysilane is usually obtained by subjecting dimethyldichlorosilane or dimethyldialkoxysilane to hydrolysis and condensation in the presence of dimethylvinylchlorosilane or dimethylvinylalkoxysilane, for example, by subsequent fractionation by repeated dissolution and precipitation.
  • Liquid silicone rubbers containing butyl groups at both ends undergo anion polymerization of a cyclic siloxane such as otatamethylcyclotetrasiloxane in the presence of a catalyst, and use, for example, dimethyldibutylsiloxane as a polymerization terminator. And other reaction conditions (for example, the amount of the cyclic siloxane and the amount of the polymerization terminator) are appropriately selected.
  • the catalyst for the anion polymerization alkalis such as tetramethylammonium hydroxide and n-butylphosphonium hydroxide or silanolate solutions thereof can be used.
  • the reaction temperature is, for example, 80 130 ° C. It is.
  • Such a butyl group-containing polydimethylsiloxane preferably has a molecular weight Mw (standard polystyrene-equivalent weight average molecular weight; the same applies hereinafter) of 10,000 to 40,000.
  • Mw standard polystyrene-equivalent weight average molecular weight
  • the molecular weight distribution index (refers to the value of the ratio Mw / Mn between the weight average molecular weight Mw in terms of standard polystyrene and the number average molecular weight Mn in terms of standard polystyrene. The same applies hereinafter. ) Is preferably 2 or less.
  • a liquid silicone rubber containing a hydroxyl group (polydimethylsiloxane containing a hydroxyl group) is usually hydrolyzed and condensed with dimethyldichlorosilane or dimethyldialkoxysilane, for example, followed by separation by repeated dissolution and precipitation. It can be obtained by:
  • anionic polymerization of a cyclic siloxane in the presence of a catalyst may be performed by using norekoxysilane or the like as a polymerization terminator and appropriately selecting other reaction conditions (for example, the amount of the cyclic siloxane and the amount of the polymerization terminator).
  • a catalyst for the anion polymerization alkali such as tetramethylammonium hydroxide and n-butylphosphonium hydroxide or a silanolate solution thereof can be used.
  • the reaction temperature is, for example, 80-130. . C.
  • Such a hydroxyl group-containing polydimethylsiloxane preferably has a molecular weight Mw of 10,000 to 40,000. From the viewpoint of the heat resistance of the obtained anisotropic conductive sheet 10, those having a molecular weight distribution index of 2 or less are preferred.
  • either one of the above-mentioned polydimethylsiloxane containing a butyl group and polydimethylsiloxane containing a hydroxyl group can be used, or both can be used in combination.
  • the cured product of the anisotropic conductive sheet 150 is used as a liquid silicone rubber. It is preferable to use one having a compression set of 10% or less in C, more preferably 8% or less, and even more preferably 6% or less. When the compression set exceeds 10%, when the obtained anisotropic conductive sheet 10 is repeatedly used many times or repeatedly under a high temperature environment, the conductive path forming portion 11 is formed. Immediately after the permanent strain is generated, the chain of the conductive particles in the conductive path forming portion 11 is disturbed. As a result, it may be difficult to maintain the required conductivity.
  • the compression set of the cured product of the liquid silicone rubber can be measured by a method based on JIS K 6249.
  • the liquid silicone rubber it is preferable to use a cured product having a durometer A hardness of 10-60 at 23 ° C, more preferably 15-60, particularly preferably 20-60. Things. If the durometer A hardness is less than 10, the insulating portion 12 that insulates the conductive path forming portions 11 from each other when pressurized is easily deformed excessively, and the required insulating property between the conductive path forming portions 11 May be difficult to maintain. On the other hand, if the durometer A hardness exceeds 60, a considerably large load is required to apply an appropriate strain to the conductive path forming portion 11, so that, for example, deformation or breakage of the inspection object. Tends to occur.
  • the durometer A hardness of the cured liquid silicone rubber can be measured by a method based on JIS K 6249.
  • the cured product thereof is 23. It is preferable to use a material having a tear strength of 8 k NZm or more in C, more preferably 10 kN / m or more, more preferably It is preferably at least 15 kN / m, particularly preferably at least 20 kN / m. If the tear strength is less than 8 kN / m, the durability tends to decrease when the anisotropic conductive sheet 10 is given an excessive strain.
  • the tear strength of the cured product of the liquid silicone rubber can be measured by a method based on JIS K 6249.
  • liquid silicone rubber those having a viscosity at 23 ° C of 100-1 and 250 Pa's are preferably used, more preferably 150-800 Pa's, and particularly preferably 250 500 Pa's. belongs to.
  • the viscosity is less than 100 Pa's, the resulting conductive material is liable to cause sedimentation of the conductive particles in the liquid silicone rubber, failing to obtain good storage stability, and a process described below.
  • (b-1) when a magnetic field is applied to the conductive material layer in the thickness direction, the conductive particles are not aligned so as to be aligned in the thickness direction, and form a chain of conductive particles in a uniform state. It can be difficult.
  • the resulting conductive material has a high viscosity, which may make it difficult to form a conductive material layer in the mold.
  • the conductive particles do not move sufficiently, which makes it difficult to orient the conductive particles in the thickness direction. There is s .
  • the viscosity of the liquid silicone rubber can be measured by a B-type viscometer.
  • the polymer substance-forming material may contain a curing catalyst for curing the polymer substance-forming material.
  • a curing catalyst an organic peroxide, a fatty acid azo compound, a hydrosilylide catalyst, or the like can be used.
  • organic peroxide used as the curing catalyst examples include benzoyl peroxide, bisdicyclobenzoyl peroxide, dicumyl peroxide, and ditertiary butyl peroxide.
  • fatty acid azo compound used as a curing catalyst examples include azobisisobutyl nitrile.
  • Specific examples of those which can be used as a catalyst for the hydrosilylation reaction include chloroplatinic acid and salts thereof, a platinum-unsaturated group-containing siloxane complex, and siloxane and platinum.
  • Known complexes such as a complex of platinum, a complex of platinum with 1,3_divinyltetramethyldisiloxane, a complex of triorganophosphine or phosphite with platinum, a complex of acetyl acetate platinum chelate, and a complex of cyclic gen and platinum. It is possible.
  • the amount of the curing catalyst used is appropriately selected in consideration of the type of the polymer substance-forming material, the type of the curing catalyst, and other curing treatment conditions. Parts by weight.
  • the polymer substance forming material may be a material containing an inorganic filler such as ordinary silica powder, colloidal silica, air-port gel silica, or anolemina.
  • an inorganic filler such as ordinary silica powder, colloidal silica, air-port gel silica, or anolemina.
  • the use amount of such an inorganic filler is not particularly limited. However, when used in a large amount, the movement of the conductive particles P due to the magnetic field in the step (b-1) described later is greatly inhibited. Therefore, it is not preferable.
  • the conductive particles for preparing the conductive material those exhibiting magnetism are used, and specific examples thereof include metal particles exhibiting magnetism such as iron, nickel, and cono-kurt, or particles thereof. Alloy particles or particles containing these metals, or these particles as core particles, and the surface of the core particles is plated with a metal having good conductivity such as gold, silver, palladium, or rhodium Or core particles of inorganic material particles or polymer particles such as non-magnetic metal particles or glass beads, and the surface of the core particles is coated with a conductive magnetic material such as nickel or cobalt; Examples thereof include those coated with both a conductive magnetic material and a metal having good conductivity.
  • nickel particles as core particles, whose surfaces are plated with a metal having good conductivity such as gold or silver.
  • Means for coating the surface of the core particles with the conductive metal is not particularly limited, but can be performed by, for example, electroless plating.
  • the conductive particles are formed by coating the surface of a core particle with a conductive metal.
  • the ratio of the conductive metal covering area to the surface area of the core particles is preferably 40% or more, more preferably 45% or more, and particularly preferably 47-95%.
  • the coating amount of the conductive metal is preferably 2.550% by weight of the core particles, more preferably 330% by weight, further preferably 3.5-25% by weight, and particularly preferably 4% by weight.
  • the coating amount is preferably 330 to 30% by weight of the core particles, more preferably 3.5 to 25% by weight, and even more preferably 4 to 20% by weight. % By weight.
  • the coating amount is preferably 3 to 30% by weight of the core particles, more preferably 4 to 25% by weight, and still more preferably 5 to 25% by weight. — 23% by weight, particularly preferably 620% by weight.
  • the particle diameter of the conductive particles is preferably 1 to 500 ⁇ m, more preferably 2 to 300 ⁇ , still more preferably 3 to 200 zm, and particularly preferably 5 to 150 ⁇ m. It is.
  • the particle size distribution (Dw / Dn) of the conductive particles is preferably 11 to 10, more preferably 117, still more preferably 115, and particularly preferably 114. .
  • the obtained anisotropic conductive sheet 10 can be easily deformed under pressure, and the conductive path forming portion 11 in the anisotropic conductive sheet 10 can be obtained. Thus, a sufficient electrical contact between the conductive particles P can be obtained.
  • the shape of the conductive particles is not particularly limited, but is spherical, star-shaped, or agglomerated because they can be easily dispersed in the polymer-forming material. It is preferably a lump formed by secondary particles.
  • the water content of the conductive particles is preferably 5% or less, more preferably 3% or less, further preferably 2% or less, and particularly preferably 1% or less.
  • Such a conductive material is applied to one or both of the molding surface of the upper mold 50 and the molding surface of the lower mold 55 in the mold shown in Fig. 3 by, for example, a screen printing method.
  • the lower spacer 59 By superimposing the frame plate 15, the upper spacer 54, and the upper die 50 coated with the conductive material from the bottom in this order, a high level is provided in the cavity between the upper die 50 and the lower die 55 in the die.
  • the conductive material layer 1OA in which the conductive particles P are contained in the molecular substance forming material is formed. In the conductive material layer 1OA, as shown in FIG. 5, the conductive particles P are in a state of being dispersed in the conductive material layer 1OA.
  • various materials such as a metal material, a ceramic material, and a resin material can be used as a material constituting the frame plate 15, and specific examples thereof include iron, copper, nickel, chromium, and chromium.
  • Metals such as cobalt, magnesium, manganese, molybdenum, indium, lead, palladium, titanium, tungsten, anoremium, gold, platinum, silver, or metal materials such as alloys or alloy steels combining two or more thereof, silicon nitride, carbonized
  • Examples of such materials include ceramic materials such as silicon and alumina, epoxy resins reinforced with non-woven cloth of aramide, polyimide resins reinforced with non-woven woven cloth, and resin materials such as bismaleimide triazine resin reinforced with non-woven cloth of aramide.
  • the material constituting the frame plate 15 has a linear thermal expansion coefficient of the linear thermal expansion coefficient of the material constituting the wafer to be inspected. It is preferable to use one having the same or approximate expansion coefficient.
  • the material constituting the wafer is silicon, a coefficient of linear thermal expansion 1 ⁇ 5 X 10- 4 / K or less, in particular, 3 X 10- 6 - of 8 X 10- 6 / K
  • the preferred materials include invar-type alloys such as invar, elinvar-type alloys such as elinvar, metal materials such as Super Invar, Kovar, 42 alloy, and aramid non-woven fabric reinforced organic resin. Materials.
  • the thickness of the frame plate 15 is, for example, 0.03 to lmm, preferably 0.05 to 0.25 mm.
  • the conductive material layer 1 OA formed in the step (a-1) is subjected to a magnetic field having a greater intensity than the other parts in the portion to be the conductive path forming portion, in the conductive material layer 1OA.
  • a magnetic field having a greater intensity than the other parts in the portion to be the conductive path forming portion, in the conductive material layer 1OA.
  • conductive particles are gathered in a portion to be the conductive path forming portion and oriented so as to be arranged in the thickness direction of the conductive material layer 10A. More specifically, as shown in FIG. 6, an electromagnet device 60 having an upper electromagnet 61 and a lower electromagnet 65 and having the magnetic poles 62 and 66 opposed to each other is prepared.
  • a mold having the conductive material layer 1OA formed in the cavity is arranged between the magnetic pole 62 of the upper electromagnet 61 and the magnetic pole 66 of the lower electromagnet 65 in the device 60.
  • the nonmagnetic layer 53 of the upper die 50 is placed between the ferromagnetic layer 52 of the upper die 50 and the corresponding ferromagnetic layer 57 of the lower die 55.
  • a stronger magnetic field is formed between the lower mold 55 and the non-magnetic layer 58 of the lower mold 55. That is, a magnetic field having a higher intensity is applied to the conductive material layer 10A on the portion serving as the conductive path forming portion, thereby dispersing the conductive particles P dispersed in the conductive material layer 10A.
  • the conductive material layer 10A is oriented so as to be aligned in the thickness direction of the conductive material layer 10A by gathering in a portion to be a conductive path forming portion.
  • the intensity of the magnetic field applied to the conductive material layer 10A has an average value of 0.02 to 2.5 Tesla.
  • This step (b-1) is preferably performed under conditions that do not promote the curing of the conductive material layer 1OA, for example, at room temperature.
  • this step (b_l) the operation of the magnetic field on the conductive material layer 10A is temporarily stopped, and then, the operation of applying the magnetic field to the conductive material layer 1OA again (
  • this operation is referred to as “re-operation operation.”) Is performed at least once.
  • this restarting operation is performed by stopping the operation of the electromagnet device 60 and then operating the electromagnetic device 60 again.
  • operation stop time the time from stopping the action of the magnetic field on the conductive material layer 10A until the action of the magnetic field on the conductive material layer 10A again (hereinafter referred to as “operation stop time”) is as follows. It is appropriately set in consideration of the viscosity of the conductive material layer 10A, the ratio of the conductive particles in the conductive material layer 1OA, the average particle size of the conductive particles, and the like, but is preferably 200 seconds or less. More preferably, it is 60 seconds or less.
  • the operation stop time is excessively long, the time required for the step (b-1) becomes too long, so that the production efficiency throughout the entire production process is extremely low, and the liquid polymer material forming material is in a liquid state.
  • the conductive material layer 10A changes due to the start of curing In some cases, a sufficient effect cannot be obtained.
  • the magnetic field applied to the conductive material layer 1OA again does not stop even if the direction of the magnetic flux lines is the same as the direction of the magnetic flux lines of the magnetic field before the stop.
  • the direction may be opposite to the direction of the magnetic flux lines of the previous magnetic field, but is preferably opposite to the direction of the magnetic flux lines of the magnetic field before the stop because the influence of the residual magnetic field is small.
  • the strength of the magnetic field is preferably substantially equal to the strength of the magnetic field before the stop.
  • the polarity of the magnetic pole 62 of the upper electromagnet 61 and the polarity of the magnetic pole 66 of the lower electromagnetic stone 65 in the electromagnet device 60 are required. You can change it.
  • the magnetic pole 62 of the upper electromagnet 61 is the N pole and the magnetic pole 66 of the lower electromagnet 65 is the S pole
  • Activate device 60 when a magnetic field is first applied to the conductive material layer 10A, for example, under the condition that the magnetic pole 62 of the upper electromagnet 61 is the N pole and the magnetic pole 66 of the lower electromagnet 65 is the S pole, Activate device 60.
  • the ferromagnetic layer 52 of the upper mold 50 functions as the N pole and the ferromagnetic layer 57 of the lower mold 55 functions as the S pole, as shown in FIG.
  • the direction of the magnetic flux lines in the acting magnetic field is the direction from the ferromagnetic layer 52 of the upper die 50 to the corresponding ferromagnetic layer 57 of the lower die 55, that is, from the top to the bottom.
  • the operation of the electromagnet device 60 is temporarily stopped after a predetermined time has elapsed while the magnetic field is applied to the conductive material layer 1OA. Thereafter, the electromagnet device 60 is operated again under the condition that the magnetic pole 62 of the upper electromagnet 61 becomes the S pole and the magnetic pole 66 of the lower electromagnet 65 becomes the N pole. In this state, since the ferromagnetic layer 52 of the upper mold 50 functions as the S pole and the ferromagnetic layer 57 of the lower mold 55 functions as the N pole, it acts on the conductive material layer 10A as shown in FIG.
  • the direction of the magnetic flux lines in the applied magnetic field is the direction from the ferromagnetic layer 57 of the lower die 55 to the corresponding ferromagnetic layer 52 of the upper die 50, that is, the direction from the bottom to the top.
  • the restarting operation may be performed at least once in step (b-1), but is preferably performed repeatedly. Specifically, the number of restarting operations is five. That is all Preferably, it is 10-500 times.
  • the time from when the magnetic field is again applied to the conductive material layer to when the magnetic field is not applied to the conductive material layer is stopped.
  • reactivation time is appropriately set in consideration of the viscosity of the conductive material layer 10A, the ratio of the conductive particles in the conductive material layer 10A, the average particle size of the conductive particles, and the like.
  • the force is preferably 10-300 seconds, more preferably 10 200 seconds.
  • the reactivation time is too short, a high-intensity magnetic field is not formed, so that the conductive particles P in the conductive material layer 10A do not move sufficiently, and as a result, the conductive material layer 10A In some cases, it is difficult to form a chain of the conductive particles P in a direction more faithful to the thickness direction.
  • the reactivation time is too long, the time required for the step (b-1) becomes too long, and the production efficiency throughout the entire production process becomes extremely low. Since curing starts, the viscosity of the conductive material layer 10A changes, and as a result, a sufficient effect may not be obtained.
  • the ferromagnetic layer 52 of the upper die 50 and the ferromagnetic layer 57 of the lower die 55 corresponding thereto are formed.
  • a conductive material layer 1OA densely contained with conductive particles P oriented in the thickness direction is formed in a portion therebetween, that is, a portion serving as a conductive path forming portion.
  • a curing treatment is performed on the conductive material layer 1OA in which the conductive particles P are densely contained in a portion to be the conductive path forming portion in a state of being oriented in the thickness direction.
  • the hardening treatment of the conductive material layer 1 OA is performed after stopping the action of the magnetic field on the conductive material layer 1 OA, and is performed while applying the magnetic field to the conductive material layer 10 A. It may be carried out while applying a magnetic field.
  • the curing treatment of the conductive material layer 1OA is generally performed by a heat treatment which varies depending on the material used.
  • the specific heating temperature and heating time are appropriately set in consideration of the type of the polymer substance forming material constituting the conductive material layer 1OA.
  • the anisotropic conductive sheet 10 shown in FIGS. 1 and 2 is obtained.
  • the individual conductive particles P in the conductive material layer 10A are in this stopped state. Is released from the constraint by the magnetic force. Then, by applying a magnetic field to the conductive material layer 1OA again in the thickness direction, this operation triggers and the movement of the conductive particles P starts again. A chain of conductive particles P is formed in a direction more faithful to the thickness direction.
  • the formation of chains of conductive particles P in a direction inclined with respect to the thickness direction can be suppressed, so that even when pressed with a small pressing force, the electric resistance value is low and stable. Since the conductive particles P exhibit high conductivity and prevent the formation of a chain of conductive particles P that connects adjacent conductive path forming portions, the pitch of the conductive path forming portions 11 is small. In addition, it is possible to manufacture the anisotropic conductive sheet 10 that ensures the required insulation between the adjacent conductive path forming portions 11.
  • the second method is a method of manufacturing an anisotropic conductive sheet 20 having a configuration as shown in FIG.
  • the anisotropic conductive sheet 20 will be described.
  • the anisotropic conductive sheet 20 is a dispersion-type anisotropic conductive sheet. As shown in FIG.
  • the conductive particles P are aligned in the thickness direction to form a chain of the conductive particles P, and the chains of the conductive particles P are uniformly distributed in the plane direction. By pressing an arbitrary location on the surface in the thickness direction, a conductive path is formed by a chain of the conductive particles P in the thickness direction at the location.
  • the content ratio of the conductive particles P in the anisotropic conductive sheet 20 is 10% by volume. It is preferably 60%, preferably 15-50%. If the ratio is less than 10%, the conductive path forming portion 11 having a sufficiently small electric resistance may not be obtained. On the other hand, when this ratio exceeds 60%, the obtained anisotropic conductive sheet 20 becomes brittle, and the elasticity required for the anisotropic conductive sheet 20 may not be obtained immediately.
  • (B-2) a step of applying a magnetic field to the conductive material layer in the thickness direction to orient the conductive particles in the thickness direction of the conductive material layer;
  • (C-12) a step of curing the conductive material layer after stopping the action of the magnetic field on the conductive material layer or while continuing the action of the magnetic field.
  • the anisotropic conductive sheet 20 is manufactured.
  • step (a-2) first, in the same manner as in step (a-1) in the first method, magnetism is added to the liquid polymer substance forming material which is cured to become an insulating elastic polymer substance.
  • a conductive material is prepared by dispersing the conductive particles shown.
  • a molded member 25 including one support 26, the other support 27, and a spacer 28 is prepared, and a conductive material is formed on the other support 27 of the molded member 25.
  • a conductive material layer 20A is formed between them.
  • the conductive particles P are in a state of being dispersed in the conductive material layer 20A.
  • the conductive particles are caused to act on the conductive material layer 20A formed in the step (a-2) in the thickness direction, whereby the conductive material layer 20A is formed. In the thickness direction.
  • an electromagnet device 60 having an upper electromagnet 61 and a lower electromagnet 65 and having the magnetic poles 62 and 66 opposed to each other is prepared.
  • the molded member 25 on which the conductive material layer 20A is formed is arranged between the magnetic pole 62 of the upper electromagnet 61 and the magnetic pole 66 of the lower electromagnet 65 in the device 60.
  • a magnetic field is applied to the conductive material layer 20A in the thickness direction thereof, thereby causing the conductive particles P dispersed in the conductive material layer 20A to become conductive. It is oriented so as to be aligned in the thickness direction of the material layer 20A.
  • the intensity of the magnetic field applied to the conductive material layer 20A has an average value of 0.02 to 2.5 Tesla.
  • This step (b_2) is preferably performed under conditions that do not promote the curing of the conductive material layer 20A, for example, at room temperature.
  • step (b_2) after the operation of the electromagnet device 60 is stopped, the electromagnet device 60 is operated again to perform a re-operation operation.
  • the magnetic field that is applied to the conductive material layer 20A again is the same as that of the magnetic field before the stop. It may be in the opposite direction to the direction of the line, but is preferably in the opposite direction in that the effect of the residual magnetic field is small. Further, when a magnetic field whose direction of the magnetic flux lines is opposite to that of the magnetic field before the stop is applied, it is preferable that the strength of the magnetic field is substantially equal to the strength of the magnetic field before the stop.
  • the restarting operation may be performed at least once in step (b-2), but is preferably performed repeatedly. Specifically, the number of restarting operations is 5 or more. Is more preferably 10 to 500 times.
  • the conductive material layer 20A containing the conductive particles P in a state of being oriented in the thickness direction is formed.
  • Step (c-1 2) In the step (c-12), a hardening treatment is performed on the conductive material layer 20A containing the conductive particles P in a state of being oriented in the thickness direction.
  • the hardening treatment of the conductive material layer 20A may be performed after stopping the action of the magnetic field on the conductive material layer 20A, or may be performed while applying the magnetic field to the conductive material layer 20A. It is preferable to carry out the reaction.
  • the curing treatment of the conductive material layer 20A varies depending on the material used, but is usually performed by a heating treatment.
  • the specific heating temperature and heating time are appropriately set in consideration of the type of the polymer substance forming material constituting the conductive material layer 2OA.
  • the conductive material layer 20A is cooled to room temperature and taken out of the molded member, whereby the anisotropic conductive sheet 20 shown in FIGS. 10 and 11 is obtained.
  • the formation of chains of conductive particles P in a direction inclined with respect to the thickness direction can be suppressed, so that even when pressed with a small pressing force, the electric resistance value is low and stable. It is possible to surely manufacture the anisotropic conductive sheet 20 having high conductivity and high resolution.
  • the third method is a method of manufacturing an anisotropic conductive sheet 30 having a configuration as shown in FIG.
  • the anisotropic conductive sheet 30 will be described.
  • the anisotropic conductive sheet 30 is an unevenly distributed anisotropic conductive sheet and corresponds to an electrode to be connected, for example, a pattern of a test electrode of a circuit device to be detected.
  • a plurality of conductive path forming portions 31 each extending in the thickness direction, arranged in accordance with a pattern to be formed, and an insulating portion 32 for insulating these conductive path forming portions 31 from each other. It consists of:
  • Each of the conductive path forming portions 31 is, as shown in an enlarged view in FIG. 18, formed by containing conductive particles P in an insulating elastic polymer material E in a state of being aligned in the thickness direction.
  • a conductive path is formed by a chain of conductive particles P in the thickness direction.
  • the insulating portion 32 is made of an insulating elastic polymer material, does not contain the conductive particles P at all, and does not exhibit conductivity in the thickness direction and the plane direction.
  • each of the conductive path forming portions 31 is formed so as to protrude from one surface (the upper surface in the drawing) of the insulating portion 32.
  • the content ratio of the conductive particles P in the conductive path forming portion 31 is preferably 1060% by volume, and more preferably 15 to 50%. If this ratio is less than 10%, the conductive path forming portion 31 having a sufficiently small electric resistance value may not be obtained. On the other hand, if this ratio exceeds 60%, the obtained conductive path forming portion 31 becomes fragile, and the elasticity required for the conductive path forming portion 31 cannot be obtained immediately.
  • An insulating sheet body made of an insulating elastic polymer material having a plurality of through holes formed according to a pattern corresponding to a pattern of a conductive path forming portion to be formed is prepared. Forming a conductive material layer in which conductive particles are contained in a liquid polymer material forming material that becomes a cured insulating elastic polymer material filled in the pores (a-3) When,
  • (B-3) a step of applying a magnetic field to the conductive material layer in the thickness direction thereof to orient the conductive particles in the thickness direction of the conductive material layer;
  • the anisotropic conductive sheet 30 is manufactured.
  • step (a-3) first, as shown in FIG. 19, an insulating elastic member in which a plurality of through holes 31H are formed in accordance with a pattern corresponding to the pattern of the conductive path forming portion 31 to be formed.
  • An insulating sheet 32A made of a conductive polymer material is manufactured.
  • a sheet 32B made of an insulating elastic polymer material is prepared, and a pattern corresponding to the pattern of the conductive path forming portion to be formed is prepared on the sheet 32B.
  • a laser mask 35 having a plurality of openings 36 formed according to the above is arranged, and the sheet 32B is subjected to laser processing through the openings 36 of the laser mask 35, thereby forming the sheet 32B as shown in FIG.
  • An insulating portion sheet 32A in which a plurality of through holes 31H are formed in accordance with the pattern corresponding to the pattern of the conductive path forming portion to be obtained is obtained.
  • the conductive particles are dispersed in a liquid polymer material forming material which is cured to become an insulating elastic polymer material, thereby obtaining a conductive material.
  • a liquid polymer material forming material which is cured to become an insulating elastic polymer material, thereby obtaining a conductive material.
  • a conductive material is applied to the surface of the laser mask 35 disposed on the insulating portion sheet 32A by, for example, a screen printing method, thereby forming the insulating portion sheet 32 as shown in FIG.
  • a conductive material layer 31A is formed in each of the through holes 31H and each of the openings 36 of the laser mask 35, thereby forming an insulating sheet 32A and a laser mask 35 disposed on one surface thereof.
  • An intermediate composite 34 including the through-holes 31H of the insulating sheet 32 and the conductive material layers 31A formed in the openings 36 of the laser mask 35 is obtained.
  • the conductive particles P are in a state of being dispersed in the conductive material layer 31A.
  • the conductive particles act on the conductive material layer 31A formed in the step (a-3) in the thickness direction thereof, so that the conductive particles are applied to the conductive material layer 31A. In the thickness direction.
  • an electromagnet device 60 having an upper electromagnet 61 and a lower electromagnet 65 and having the magnetic poles 62 and 66 opposed to each other is prepared.
  • the intermediate composite 34 is arranged between the magnetic pole 62 of the upper electromagnet 61 and the magnetic pole 66 of the lower electromagnet 65 in the device 60.
  • a magnetic field is applied to each of the conductive material layers 31A in the intermediate composite 34 in the thickness direction thereof, whereby the conductive material dispersed in the conductive material layer 31A is formed.
  • Sex particles P is oriented so as to be aligned in the thickness direction of the conductive material layer 31A.
  • the intensity of the magnetic field applied to the conductive material layer 31A has an average value of 0.02 to 2.5 Tesla.
  • this step (b_3) is preferably performed under conditions that do not promote curing of the conductive material layer 31A, for example, at room temperature.
  • the magnetic field applied again to the conductive material layer 31A is the same as that of the magnetic field before the stop even if the direction of the magnetic flux lines is the same as the direction of the magnetic flux lines of the magnetic field before the stop. It may be in the opposite direction to the direction of the magnetic flux lines, but is preferably in the opposite direction in that the effect of the residual magnetic field is small. Further, when a magnetic field whose direction of the magnetic flux lines is opposite to that of the magnetic field before the stop is applied, it is preferable that the strength of the magnetic field is substantially equal to the strength of the magnetic field before the stop.
  • the restart operation may be performed at least once in step (b-3), but is preferably performed repeatedly. Specifically, the number of restart operations is 5 or more. Is more preferably 10 to 500 times.
  • a conductive material layer 31A densely contained with the conductive particles P oriented in the thickness direction is formed.
  • step (c_2) a hardening treatment is performed on each of the conductive material layers 31A in which the conductive particles P are oriented in the thickness direction.
  • the hardening treatment of the conductive material layer 31A is performed after applying the magnetic field to each of the conductive material layers 31A, even after stopping the action of the magnetic field on each of the conductive material layers 31A. It may be carried out while applying a magnetic field.
  • the curing treatment of the conductive material layer 31A varies depending on the material used, but is usually performed by a heating treatment.
  • the specific heating temperature and heating time depend on the conductive material layer 3. It is appropriately set in consideration of the type of the polymer substance forming material constituting 1A and the like.
  • the plurality of conductive path forming portions are formed integrally with the insulating portion while being insulated from each other by the insulating portion. Then, after the curing treatment of the conductive material layer 31A is completed, for example, it is cooled to room temperature and the laser mask 35 is removed, whereby the anisotropic conductive sheet 30 shown in FIGS. 17 and 18 is obtained.
  • the conductive material layer 31A is cooled to room temperature and the laser mask 35 is removed, whereby the anisotropic conductive sheet 30 shown in FIGS. 17 and 18 is obtained.
  • the individual conductive particles P in the conductive material layer 31A are in this stopped state. It is released from the restraint by the magnetic force. Then, by applying a magnetic field to the conductive material layer 31A again in the thickness direction, this operation triggers and the movement of the conductive particles P starts again, so that the conductive material layer 31A A chain of conductive particles P is formed in a direction more faithful to the thickness direction.
  • the conductive path forming part 31 is formed in each through hole 31H of the insulating part sheet 32A, the insulating part 32 in which the conductive particles P are not present at all is formed. It is possible to manufacture the anisotropic conductive sheet 30 that ensures the required insulation between the adjacent conductive path forming portions 31 even if the sheet is small.
  • the method for producing an anisotropic conductive sheet of the present invention is not limited to the first method to the third method, but is a liquid polymer that is cured to become an insulating elastic polymer material.
  • a frame plate having the following specifications was produced.
  • the frame plate is made of 42 alloy, has a rectangular shape of 25 mm X 25 mm X 0.03 mm, and a rectangular opening of 10. Omm X IO. Omm is formed at the center position.
  • the upper and lower spacers are made of stainless steel (SUS-304) and have a rectangular shape of 25mm X 25mm X 0.03mm, and the center position is 11. Omm XI 1 A rectangular opening of Omm is formed.
  • the upper mold (50) and the lower mold (55) each have a ferromagnetic substrate (51, 56) made of 42 alloy having a thickness of 6 mm, and the surface of each ferromagnetic substrate (51, 56) 2,000 rectangular ferromagnetic layers (52, 57) each made of nickel-cobalt are formed.
  • the dimensions of each of the ferromagnetic layers (52, 57) are 80 ⁇ m (length) ⁇ 80 ⁇ m (width) ⁇ 50 ⁇ m (thickness), and the arrangement pitch is 130 ⁇ .
  • a non-magnetic 80 ⁇ m thick non-magnetic layer obtained by curing a dry film resist is used.
  • Body layers (53, 58) are formed.
  • a conductive material is prepared by adding and mixing 140 parts by weight of conductive particles having an average particle diameter of 8.7 / im to 100 parts by weight of an addition-type liquid silicone rubber, followed by defoaming under reduced pressure. did.
  • This conductive material is applied to the upper mold surface and the lower mold surface of the above-mentioned mold by screen printing, and then the lower mold, the frame plate, and the upper mold are applied to the lower mold.
  • the conductive material layer was formed in the cavity between the upper die and the lower die by overlapping the sample and the upper die in this order from the bottom.
  • nickel particles are used as core particles, and the core particles are subjected to electroless gold plating (average coating amount: 25% by weight of the core particles). Was used.
  • the addition-type liquid silicone rubber is a two-part type having a viscosity of liquid A of 250 Pa's and a viscosity of liquid B of 250 Pa's. Five . A cured product having a durometer A hardness of 35 and a cured product having a tear strength of 25 kNZm was used.
  • the viscosity at 23 ⁇ 2 ° C was measured by a B-type viscometer.
  • the liquid A and the liquid B in the two-part addition-type liquid silicone rubber were stirred and mixed at an equal ratio.
  • the mixture is poured into a mold, and the mixture is subjected to a defoaming treatment under reduced pressure, and then a curing treatment is performed at 120 ° C. for 30 minutes to have a thickness of 12.7 mm and a diameter of 12.7 mm.
  • a cylindrical body made of a 29 mm silicone rubber cured product was prepared, and post-curing was performed on the cylindrical body at 200 ° C. for 4 hours.
  • the compression set at 150 ⁇ 2 ° C was measured in accordance with JIS K 6249.
  • It has an upper electromagnet and a lower electromagnet, and each magnetic pole faces each other.
  • An electromagnet device arranged in this manner was prepared, and a mold having the conductive material layer formed thereon was set between the magnetic pole of the upper electromagnet and the magnetic pole of the lower electromagnet in this electromagnet device.
  • a magnetic field having a strength of 1.6 T is applied to a portion of the conductive material layer to be a conductive path forming portion, and further, a total of 200 reactivation operations are performed. While performing, a magnetic field was applied to a portion to be a conductive path forming portion.
  • the conditions for the restart operation are as follows: the operation stop time is 5 seconds, the restart time is 15 seconds, the direction of the magnetic flux lines of the magnetic field to be applied again is opposite to the direction of the magnetic flux lines of the magnetic field before the stop, Again, when a magnetic field is applied to a portion of the conductive material layer that becomes a conductive path forming portion, the strength of the magnetic field is 1.6 T in each case.
  • the conductive path forming portion in the conductive material layer is formed.
  • the conductive material is cured at 100 ° C for 2 hours while applying a magnetic field of 1.6T to the part, and then cooled to room temperature, and the mold force is removed. Then, an anisotropic conductive sheet in which a frame plate was integrally provided on a peripheral portion of the insulating portion was manufactured.
  • the conductive path forming portion has a vertical and horizontal dimension of 80/1 111 80 111 and a thickness of 80/111.
  • the thickness of the insulation was 150 ⁇ m
  • the protrusion height from both sides of the insulation was 30 ⁇ m
  • the thickness of the insulation was 90 ⁇ .
  • the volume fraction of all the conductive path forming portions was about 30%.
  • the electromagnet device is operated for 4000 seconds without performing a restarting operation, so that a magnetic field having a strength of 1.6 T is applied to a portion of the conductive material layer to be a conductive path forming portion. Except for this, in the same manner as in Example 1, an anisotropic conductive sheet in which a frame plate was integrally provided on the peripheral portion of the insulating portion was manufactured.
  • the obtained anisotropic conductive sheet 2000 rectangular conductive path forming portions were 130 ⁇ m. are arranged at a pitch of m, and the conductive path forming part has a vertical and horizontal dimension of 80/1 111 80 111, a thickness of 150 ⁇ m, and a protrusion height from both sides of the insulating part of 30 ⁇ m, respectively.
  • the thickness of the insulating part was 90 ⁇ .
  • the volume fraction of all the conductive path forming portions was about 30%.
  • Insulation between conductive path forming parts Insulation between conductive path forming parts:
  • Example 1 Comparative Example 1 Strain average value 0.6 4 4.10
  • Resistance value is 1 ⁇ 0 3 5

Abstract

A process for producing an anisotropic conductive sheet exhibiting a low electric resistance and stable conductivity even if it is pressurized with a small pressurizing force. The process for producing an anisotropic conductive sheet comprises a step for orienting conductive particles in the thickness direction of a conductive material layer by applying a magnetic field in the thickness direction to the conductive material layer where the conductive particles are contained in a liquid polymer substance forming material becoming an insulating elastic polymer substance by being cured, characterized in that the operation for applying a magnetic field to the conductive material layer is performed again at least once during that step after application of a magnetic field to the conductive material layer is stopped.

Description

明 細 書  Specification
異方導電性シートの製造方法  Method for producing anisotropic conductive sheet
技術分野  Technical field
[0001] 本発明は、異方導電性シートの製造方法に関し、更に詳しくはウェハに形成された 集積回路などの回路装置の電気的検査に好適に用いることができる異方導電性シ ートの製造方法に関する。  The present invention relates to a method for producing an anisotropic conductive sheet, and more particularly to a method for producing an anisotropic conductive sheet that can be suitably used for electrical inspection of a circuit device such as an integrated circuit formed on a wafer. It relates to a manufacturing method.
背景技術  Background art
[0002] 異方導電性エラストマ一シートは、厚み方向にのみ導電性を示すもの、または厚み 方向に加圧されたときに厚み方向にのみ導電性を示す加圧導電性導電部を有する ものであり、ハンダ付けあるいは機械的嵌合などの手段を用いずにコンパクトな電気 的接続を達成することが可能であること、機械的な衝撃やひずみを吸収してソフトな 接続が可能であることなどの特長を有するため、このような特長を利用して、例えば 電子計算機、電子式デジタル時計、電子カメラ、コンピューターキーボードなどの分 野において、回路装置、例えばプリント回路基板とリードレスチップキャリアー、液晶 パネルなどとの相互間の電気的な接続を達成するためのコネクタ一として広く用いら れている。  [0002] An anisotropic conductive elastomer sheet is a sheet having conductivity only in the thickness direction, or a sheet having a pressurized conductive portion which is conductive only in the thickness direction when pressed in the thickness direction. Yes, compact electrical connection can be achieved without using means such as soldering or mechanical fitting, and soft connection is possible by absorbing mechanical shock and strain. Utilizing such features, circuit devices such as printed circuit boards and leadless chip carriers, and liquid crystal panels can be used in fields such as electronic calculators, electronic digital watches, electronic cameras, and computer keyboards. It is widely used as a connector to achieve an electrical connection between them.
[0003] また、パッケージ IC、 MCM等の半導体集積回路装置、集積回路が形成されたゥ ェハ、プリント回路基板などの回路装置の電気的検查においては、検查対象である 回路装置の一面に形成された被検査電極と、検査用回路基板の表面に形成された 検査用電極との電気的な接続を達成するために、回路装置の被検査電極領域と検 查用回路基板の検查用電極領域との間に異方導電性エラストマ一シートを介在させ ることが行われている。  [0003] Furthermore, in the electrical inspection of semiconductor integrated circuit devices such as package ICs and MCMs, wafers on which integrated circuits are formed, and circuit devices such as printed circuit boards, one side of the circuit device to be inspected is used. In order to achieve electrical connection between the electrode to be inspected formed on the surface of the circuit board for inspection and the electrode for inspection formed on the surface of the circuit board for inspection, the inspection of the electrode region to be inspected of the circuit device and the inspection of the circuit board for inspection are performed. An anisotropic conductive elastomer sheet is interposed between the electrodes and the electrode region.
[0004] 従来、このような異方導電性エラストマ一シートとしては、種々の構造のものが知ら れており、例えば特許文献 1等には、磁性を示す導電性粒子をエラストマ一中に厚 み方向に並ぶよう配向した状態で分散させて得られる異方導電性エラストマ一シート [0004] Conventionally, as such an anisotropic conductive elastomer sheet, those having various structures are known. For example, Patent Document 1 and the like disclose thick conductive particles exhibiting magnetism in the elastomer. Anisotropic conductive elastomer sheet obtained by dispersing in an oriented state
(以下、これを「分散型異方導電性シート」という。)が開示され、また、特許文献 2等 には、磁性を示す導電性粒子をエラストマ一中に不均一に分布させることにより、厚 み方向に伸びる多数の導電路形成部と、これらを相互に絶縁する絶縁部とが形成さ れてなる異方導電性エラストマ一シート(以下、これを「偏在型異方導電性シート」と レ、う。)が開示され、更に、特許文献 3等には、導電路形成部の表面と絶縁部との間 に段差が形成された偏在型異方導電性シートが開示されている。 (Hereinafter, this is referred to as a “dispersion type anisotropic conductive sheet”). Patent Document 2 and the like disclose a method of dispersing conductive particles exhibiting magnetism in an elastomer in a non-uniform manner. Anisotropic conductive elastomer sheet (hereinafter referred to as “uniformly distributed anisotropic conductive sheet”) in which a large number of conductive path forming portions extending in the direction of movement and insulating portions for insulating these from each other are formed. Further, Patent Document 3 and the like disclose an unevenly distributed anisotropic conductive sheet in which a step is formed between a surface of a conductive path forming portion and an insulating portion.
これらの異方導電性エラストマ一シートにおいては、弾性高分子物質中に導電性 粒子が厚み方向に並ぶよう配向した状態で含有されて導電性粒子の連鎖が形成さ れており、この導電性粒子の連鎖によって導電路が形成される。  In these anisotropic conductive elastomer sheets, conductive particles are contained in an elastic polymer substance in a state of being aligned in the thickness direction to form a chain of conductive particles. Form a conductive path.
このような異方導電性エラストマ一シートは、従来、硬化されて弾性高分子物質とな る高分子物質形成材料中に磁性を示す導電性粒子が分散されてなる導電性材料層 に対して、その厚み方向に磁場を作用させることにより、当該導電性材料層中の導電 性粒子を厚み方向に並ぶよう配向させ、次いで、導電性材料層に対する磁場の作用 を停止した後または磁場の作用を継続しながら、当該導電性材料層を硬化処理する 工程を経由して製造されている。  Conventionally, such an anisotropic conductive elastomer sheet is used for a conductive material layer in which conductive particles exhibiting magnetism are dispersed in a polymer material forming material which is cured to become an elastic polymer material. By applying a magnetic field in the thickness direction, the conductive particles in the conductive material layer are oriented so as to be aligned in the thickness direction, and then, after stopping the action of the magnetic field on the conductive material layer or continuing the action of the magnetic field. Meanwhile, the conductive material layer is manufactured through a step of curing.
し力 ながら、従来の異方導電性エラストマ一シートの製造方法においては、以下 のような問題があることが判明した。  However, it has been found that the conventional method for producing an anisotropic conductive elastomer sheet has the following problems.
小さい加圧力で高い導電性を示す異方導電性シートを製造するためには、導電性 材料層に対して磁場を作用させる工程において、厚み方向すなわち導電性材料層 の表面に対して垂直な方向に導電性粒子の連鎖を形成することが肝要である。 然るに、磁場を作用させる前の導電性材料層においては、導電性粒子が当該導電 性材料層中に均一に分散した状態で存在するため、導電性材料層の厚み方向に磁 場を作用させても、図 26に示すように、導電性粒子 Pの連鎖は、導電性材料層 80の 厚み方向のみならず、厚み方向に対して傾斜した方向にも形成されてしまう。しかも 、この状態においては、磁気力学的に安定で、個々の導電性粒子が磁気力によって 拘束されているため、磁場の作用を継続しても、導電性粒子が厚み方向に連鎖を形 成するよう移動することがなレ、。そして、この状態で、導電性材料層 80が硬化処理さ れることにより、得られる異方導電性シートは、導電性粒子の連鎖が厚み方向に対し て傾斜した方向にも形成されたものとなり、そのため、小さい加圧力で高い導電性を 得ることが困難となる。 また、分散型異方導電性シートにおいては、導電性粒子の連鎖が厚み方向に対し て傾斜した方向に形成されている場合には、高い分解能、すなわち隣接する電極間 に必要な絶縁性が確保された状態で当該電極の各々に対する電気的な接続を高レ、 信頼性で達成する性能を得ることが困難である。 In order to produce an anisotropic conductive sheet exhibiting high conductivity with a small pressing force, in the step of applying a magnetic field to the conductive material layer, in the thickness direction, that is, in the direction perpendicular to the surface of the conductive material layer. It is important to form a chain of conductive particles on the surface. However, in the conductive material layer before applying a magnetic field, since the conductive particles are present in a state of being uniformly dispersed in the conductive material layer, the magnetic field is applied in the thickness direction of the conductive material layer. However, as shown in FIG. 26, the chain of the conductive particles P is formed not only in the thickness direction of the conductive material layer 80 but also in a direction inclined with respect to the thickness direction. Moreover, in this state, since the conductive particles are magnetodynamically stable and the individual conductive particles are constrained by the magnetic force, the conductive particles form a chain in the thickness direction even when the action of the magnetic field is continued. I can't move. Then, in this state, the conductive material layer 80 is cured, whereby the obtained anisotropic conductive sheet is also formed in a direction in which the chain of the conductive particles is inclined with respect to the thickness direction. Therefore, it is difficult to obtain high conductivity with a small pressing force. In the case of a dispersion type anisotropic conductive sheet, when the chain of conductive particles is formed in a direction inclined with respect to the thickness direction, high resolution, that is, necessary insulation between adjacent electrodes is secured. In such a state, it is difficult to obtain the performance of achieving high-level and reliable electrical connection to each of the electrodes.
[0006] 更に、偏在型異方導電性シートの製造方法においては、以下のような問題がある。  [0006] Furthermore, the method for producing the unevenly distributed anisotropic conductive sheet has the following problems.
偏在型異方導電性シートの製造プロセスにおいては、図 27に示すように、基板 91 上に、形成すべき導電路形成部と同一のパターンに従って強磁性体層 92が形成さ れ、それ以外の領域に非磁性体層 93が形成されてなる上型 90と、基板 96上に、上 型 90の強磁性体層 92と対掌なパターンに従って強磁性体層 97が形成され、それ以 外の領域に非磁性体層 98が形成されてなる下型 95との間に、硬化されて弾性高分 子物質となる高分子物質形成材料中に磁性を示す導電性粒子 Pが分散されてなる 導電性材料層 80を形成する。次いで、上型 90の上面および下型 95の下面に一対 の電磁石(図示せず)を配置してこれを作動させることにより、導電性材料層 80にお ける上型 90の強磁性体層 92と下型 95の強磁性体層 97との間に位置する部分に、 それ以外の部分より大きい強度の磁場を作用させる。その結果、導電性材料層 80中 に分散されていた導電性粒子 P力 上型 90の強磁性体層 92と下型 95の強磁性体 層 97との間に位置する部分すなわち導電路形成部となる部分に集合すると共に、厚 み方向に並ぶよう配向する。そして、この状態で、導電性材料層 80の硬化処理が行 われる。  In the manufacturing process of the unevenly distributed anisotropic conductive sheet, as shown in FIG. 27, a ferromagnetic layer 92 is formed on a substrate 91 in accordance with the same pattern as a conductive path forming portion to be formed. An upper die 90 in which a nonmagnetic layer 93 is formed in a region, and a ferromagnetic layer 97 formed on a substrate 96 according to a pattern opposite to the ferromagnetic layer 92 of the upper die 90. Conductive particles P having magnetic properties are dispersed in a polymer material forming material which is cured to become an elastic polymer material, between a lower mold 95 having a non-magnetic layer 98 formed in a region. The conductive material layer 80 is formed. Next, a pair of electromagnets (not shown) are arranged on the upper surface of the upper die 90 and the lower surface of the lower die 95 and actuated, whereby the ferromagnetic layer 92 of the upper die 90 in the conductive material layer 80 is formed. A magnetic field having a higher intensity is applied to the portion located between the lower mold 95 and the ferromagnetic layer 97 of the lower mold 95. As a result, the conductive particles P dispersed in the conductive material layer 80 are located between the ferromagnetic layer 92 of the upper die 90 and the ferromagnetic layer 97 of the lower die 95, that is, the conductive path forming portion. As well as being aligned in the thickness direction. Then, in this state, a curing treatment of the conductive material layer 80 is performed.
然るに、導電性材料層 80における、互いに隣接する導電路形成部となる部分の間 の中央位置に存在する導電性粒子 Pは、当該導電性粒子 Pに作用する磁場のバラ ンスにより、導電路形成部となる部分に向かって移動せずに滞留することがあり、この ような導電性粒子 Pに他の導電性粒子 Pが連なることにより、図 28に示すように、上型 90の強磁性体層 92とこれに対応する下型 95の強磁性体層 97に隣接する強磁性体 層 97との間に、導電性粒子 Pの連鎖が形成され、その結果、隣接する導電路形成部 間に所要の絶縁性が確保された異方導電性シートを得ることが困難となる。このよう な現象は、導電路形成部のピッチが小さければ小さい程、顕著である。  However, the conductive particles P present in the conductive material layer 80 at the central position between the adjacent conductive path forming portions are formed by the balance of the magnetic field acting on the conductive particles P. As shown in FIG. 28, the ferromagnetic material of the upper die 90 may be accumulated as shown in FIG. A chain of conductive particles P is formed between the layer 92 and the ferromagnetic layer 97 adjacent to the corresponding ferromagnetic layer 97 of the lower mold 95, and as a result, between the adjacent conductive path forming portions. It is difficult to obtain an anisotropic conductive sheet having the required insulation. Such a phenomenon is more remarkable as the pitch of the conductive path forming portion is smaller.
[0007] 特許文献 1 :特開昭 51— 93393号公報 特許文献 2:特開昭 53 - 147772号公報 Patent Document 1: JP-A-51-93393 Patent Document 2: JP-A-53-147772
特許文献 3:特開昭 61— 250906号公報  Patent Document 3: JP-A-61-250906
発明の開示  Disclosure of the invention
[0008] 本発明は、以上のような事情に基づいてなされたものであって、その第 1の目的は、 小さい加圧力で加圧しても、電気抵抗値が低くて安定な導電性を示す異方導電性シ ートを製造することができる方法を提供することにある。  [0008] The present invention has been made based on the above circumstances, and a first object of the present invention is to provide a stable electric conductivity with a low electric resistance value even when pressurized with a small pressing force. An object of the present invention is to provide a method capable of manufacturing an anisotropic conductive sheet.
本発明の第 2の目的は、導電性粒子が厚み方向に配向した状態で含有されてなる 複数の導電路形成部と、これらの導電路形成部を相互に絶縁する絶縁部とを有する 異方導電性シートの製造方法であって、小さい加圧力で加圧しても、電気抵抗値が 低くて安定な導電性を示し、しかも、導電路形成部のピッチが小さいものであっても、 隣接する導電路形成部間に所要の絶縁性が確実に得られる異方導電性シートを製 造することができる方法を提供することにある。  A second object of the present invention is to provide an anisotropic device having a plurality of conductive path forming portions containing conductive particles oriented in the thickness direction, and an insulating portion for insulating these conductive path forming portions from each other. A method for manufacturing a conductive sheet, which has a low electric resistance value and shows stable conductivity even when pressed with a small pressing force, and is adjacent to the conductive sheet even if the pitch of the conductive path forming portion is small. It is an object of the present invention to provide a method capable of manufacturing an anisotropic conductive sheet that can reliably obtain required insulation between conductive path forming portions.
本発明の第 3の目的は、導電性粒子が厚み方向に配向した状態で含有されてなる 異方導電性シートの製造方法であって、小さい加圧力で加圧しても、電気抵抗値が 低くて安定な導電性を示し、しかも、高い分解能を有する異方導電性シートを製造す ること力 Sできる方法を提供することにある。  A third object of the present invention is a method for producing an anisotropic conductive sheet comprising conductive particles contained in a state oriented in the thickness direction, and has a low electric resistance value even when pressed with a small pressing force. An object of the present invention is to provide a method capable of producing an anisotropic conductive sheet exhibiting stable and stable conductivity and having high resolution.
[0009] 本発明の異方導電性シートの製造方法は、硬化されて絶縁性の弾性高分子物質 となる液状の高分子物質形成材料中に磁性を示す導電性粒子が含有されてなる導 電性材料層に対して、その厚み方向に磁場を作用させることにより、導電性粒子を当 該導電性材料層の厚み方向に配向させる工程を有し、 [0009] The method for producing an anisotropic conductive sheet according to the present invention is directed to a method for producing a conductive polymer sheet, wherein a liquid polymer material forming material which is cured to become an insulating elastic polymer material contains conductive particles exhibiting magnetism. Applying a magnetic field to the conductive material layer in the thickness direction thereof to orient the conductive particles in the thickness direction of the conductive material layer,
この工程において、前記導電性材料層に対する磁場の作用を停止した後、再度、 当該導電性材料層に対して磁場を作用させる操作を少なくとも 1回行うことを特徴と する。  In this step, after stopping the action of the magnetic field on the conductive material layer, the operation of applying the magnetic field to the conductive material layer is performed at least once again.
[0010] また、本発明の異方導電性シートの製造方法は、絶縁性の弾性高分子物質中に 磁性を示す導電性粒子が厚み方向に配向した状態で含有されてなる複数の導電路 形成部と、これらの導電路形成部を相互に絶縁する絶縁性の弾性高分子物質よりな る絶縁部とを有する異方導電性シートを製造する方法であって、  [0010] Further, the method for producing an anisotropic conductive sheet of the present invention provides a method for forming a plurality of conductive paths, wherein conductive particles exhibiting magnetism are contained in an insulating elastic polymer material in a state oriented in a thickness direction. And a method of manufacturing an anisotropic conductive sheet having an insulating portion made of an insulating elastic polymer material that insulates these conductive path forming portions from each other.
硬化されて絶縁性の弾性高分子物質となる液状の高分子物質形成材料中に磁性 を示す導電性粒子が含有されてなる導電性材料層に対して、導電路形成部となる部 分にそれ以外の部分より大きい強度の磁場を当該導電性材料層の厚み方向に作用 させることにより、当該導電路形成部となる部分に導電性粒子を集合させて当該導電 性材料層の厚み方向に配向させる工程を有し、 Magnetic in liquid polymeric material forming material that cures into insulating elastic polymeric material By applying a magnetic field having a strength greater than that of the other portion to the portion serving as the conductive path forming portion in the thickness direction of the conductive material layer with respect to the conductive material layer containing the conductive particles showing A step of assembling conductive particles in a portion to be the conductive path forming portion and orienting the conductive particles in a thickness direction of the conductive material layer,
この工程において、前記導電性材料層に対する磁場の作用を停止した後、再度、 当該導電性材料層に対して磁場を作用させる操作を少なくとも 1回行うことを特徴と する。  In this step, after stopping the action of the magnetic field on the conductive material layer, the operation of applying the magnetic field to the conductive material layer is performed at least once again.
[0011] また、本発明の異方導電性シートの製造方法は、絶縁性の弾性高分子物質中に 磁性を示す導電性粒子が厚み方向に配向した状態で含有されてなる異方導電性シ ートを製造する方法であって、  [0011] Further, the method for producing an anisotropic conductive sheet of the present invention provides an anisotropic conductive sheet comprising magnetically conductive particles in an insulating elastic polymer material oriented in the thickness direction. A method of manufacturing a sheet,
硬化されて絶縁性の弾性高分子物質となる液状の高分子物質形成材料中に磁性 を示す導電性粒子が含有されてなる導電性材料層に対して、その厚み方向に磁場 を作用させることにより、導電性粒子を当該導電性材料層の厚み方向に配向させる 工程を有し、  By applying a magnetic field in the thickness direction to a conductive material layer in which conductive particles exhibiting magnetism are contained in a liquid polymer material forming material which is cured to become an insulating elastic polymer material. And orienting the conductive particles in the thickness direction of the conductive material layer,
この工程において、前記導電性材料層に対する磁場の作用を停止した後、再度、 当該導電性材料層に対して磁場を作用させる操作を少なくとも 1回行うことを特徴と する。  In this step, after stopping the action of the magnetic field on the conductive material layer, the operation of applying the magnetic field to the conductive material layer is performed at least once again.
[0012] また、本発明の異方導電性シートの製造方法は、絶縁性の弾性高分子物質中に 磁性を示す導電性粒子が厚み方向に配向した状態で含有されてなる複数の導電路 形成部と、これらの導電路形成部を相互に絶縁する絶縁性の弾性高分子物質よりな る絶縁部とを有する異方導電性シートを製造する方法であって、  [0012] Further, the method for producing an anisotropic conductive sheet of the present invention provides a method for forming a plurality of conductive paths, wherein conductive particles exhibiting magnetism are contained in an insulating elastic polymer material in a state oriented in a thickness direction. And a method of manufacturing an anisotropic conductive sheet having an insulating portion made of an insulating elastic polymer material that insulates these conductive path forming portions from each other.
形成すべき導電路形成部のパターンに対応するパターンに従って複数の貫通孔 が形成された、絶縁性の弾性高分子物質よりなる絶縁部用シート体を用意し、 この絶縁部用シート体の貫通孔の各々に充填された、硬化されて絶縁性の弾性高 分子物質となる液状の高分子物質形成材料中に磁性を示す導電性粒子が含有され てなる導電性材料層に対して、その厚み方向に磁場を作用させることにより、導電性 粒子を当該導電性材料層の厚み方向に配向させる工程を有し、  An insulating sheet material made of an insulating elastic polymer material having a plurality of through holes formed in accordance with a pattern corresponding to a pattern of a conductive path forming portion to be formed is prepared. The thickness of the conductive material layer in which the magnetic conductive particles are contained in the liquid polymer material forming material which is cured and becomes an insulating elastic high molecular material filled in A step of orienting the conductive particles in the thickness direction of the conductive material layer by applying a magnetic field to
この工程において、前記導電性材料層に対する磁場の作用を停止した後、再度、 当該導電性材料層に対して磁場を作用させる操作を少なくとも 1回行うことを特徴と する。 In this step, after stopping the action of the magnetic field on the conductive material layer, An operation of applying a magnetic field to the conductive material layer is performed at least once.
[0013] 本発明の異方導電性シートの製造方法においては、導電性材料層に対する磁場 の作用を停止した後、再度、当該導電性材料層に対して磁場を作用させる操作にお いて、導電性材料層に再度作用させる磁場の磁束線の方向が、停止前の磁場の磁 束線の方向と逆方向であることが好ましい。  [0013] In the method for producing an anisotropic conductive sheet of the present invention, after stopping the action of the magnetic field on the conductive material layer, the operation of applying the magnetic field to the conductive material layer again includes It is preferable that the direction of the magnetic flux lines of the magnetic field applied again to the conductive material layer is opposite to the direction of the magnetic flux lines of the magnetic field before the stop.
[0014] また、本発明の異方導電性シートの製造方法においては、導電性材料層に対する 磁場の作用を停止した後、再度、当該導電性材料層に対して磁場を作用させる操作 を繰り返して行うことが好ましレ、。 [0014] In the method for producing an anisotropic conductive sheet of the present invention, after stopping the action of the magnetic field on the conductive material layer, the operation of applying the magnetic field to the conductive material layer again is repeated. Les, prefer to do.
このような製造方法においては、導電性材料層に対する磁場の作用を停止した後 In such a manufacturing method, after stopping the action of the magnetic field on the conductive material layer,
、再度、当該導電性材料層に対して磁場を作用させる操作を 5回以上行うことが好ま しい。 It is preferable that the operation of applying a magnetic field to the conductive material layer is performed five times or more again.
[0015] 本発明の異方導電性シートの製造方法によれば、導電性材料層に対する磁場の 作用を一旦停止するため、この停止状態においては、導電性材料層中の個々の導 電性粒子が磁気力による拘束から開放される。そして、再度、導電性材料層に対して 厚み方向に磁場を作用させることにより、この動作がトリガーとなって、導電性粒子の 移動が再度開始するため、導電性材料層の厚み方向に対してより忠実な方向に導 電性粒子の連鎖が形成される。  According to the method for producing an anisotropic conductive sheet of the present invention, since the action of the magnetic field on the conductive material layer is temporarily stopped, the individual conductive particles in the conductive material layer are in this stopped state. Is released from the constraint by the magnetic force. Then, by applying a magnetic field again to the conductive material layer in the thickness direction, this operation is triggered, and the movement of the conductive particles starts again. A chain of conductive particles is formed in a more faithful direction.
このように、厚み方向に対して傾斜した方向に導電性粒子の連鎖が形成されること を抑制することができるので、小さい加圧力で加圧しても、電気抵抗値が低くて安定 な導電性を示す異方導電性シートを製造することができる。  As described above, the formation of chains of conductive particles in a direction inclined with respect to the thickness direction can be suppressed, so that even if the pressure is applied with a small pressing force, the electric resistance value is low and the conductive property is stable. Can be produced.
また、複数の導電路形成部が絶縁部によって相互に絶縁されてなる偏在型異方導 電性シートを製造する場合には、隣接する導電路形成部間を結ぶような導電性粒子 の連鎖が形成されることが防止されるので、導電路形成部のピッチが小さいものであ つても、隣接する導電路形成部間に所要の絶縁性が確実に得られる異方導電性シ ートを製造することができる。  In the case of manufacturing an unevenly distributed anisotropic conductive sheet in which a plurality of conductive path forming portions are mutually insulated by an insulating portion, a chain of conductive particles connecting adjacent conductive path forming portions is formed. Since formation is prevented, even if the pitch of the conductive path forming portions is small, an anisotropic conductive sheet that ensures the required insulation between adjacent conductive path forming portions is manufactured. can do.
また、分散型異方導電性シートを製造する場合には、厚み方向に対して傾斜した 方向に導電性粒子の連鎖が形成されることが抑制されるので、高い分解能を有する 異方導電性シートを製造することができる。 In addition, when a dispersion type anisotropic conductive sheet is manufactured, the formation of a chain of conductive particles in a direction inclined with respect to the thickness direction is suppressed, so that a high resolution is obtained. An anisotropic conductive sheet can be manufactured.
図面の簡単な説明 Brief Description of Drawings
[図 1]本発明の製造方法によって得られる異方導電性シートの一例における構成を 示す説明用断面図である。 FIG. 1 is an explanatory cross-sectional view showing a configuration of an example of an anisotropic conductive sheet obtained by a production method of the present invention.
[図 2]図 1に示す異方導電性シートの要部を拡大して示す説明用断面図である。  FIG. 2 is an enlarged cross-sectional view illustrating a main part of the anisotropic conductive sheet shown in FIG. 1.
[図 3]図 1に示す異方導電性シートを製造するために用レ、られる金型の構成を示す 説明用断面図である。 FIG. 3 is an explanatory sectional view showing a configuration of a mold used for manufacturing the anisotropic conductive sheet shown in FIG. 1.
[図 4]図 1に示す金型おける上型および下型の成形面に導電性材料が塗布された状 態を示す説明用断面図である。  FIG. 4 is an explanatory cross-sectional view showing a state where a conductive material is applied to molding surfaces of an upper mold and a lower mold in the mold shown in FIG. 1.
[図 5]金型のキヤビティ内に導電性材料層が形成された状態を示す説明用断面図で ある。  FIG. 5 is an explanatory sectional view showing a state in which a conductive material layer is formed in a cavity of a mold.
[図 6]金型が電磁石装置にセットされた状態を示す説明用断面図である。  FIG. 6 is an explanatory sectional view showing a state where a mold is set in an electromagnet device.
[図 7]停止前の磁場における磁束線の方向を示す説明用断面図である。  FIG. 7 is an explanatory sectional view showing directions of magnetic flux lines in a magnetic field before stop.
[図 8]再度作用させた磁場における磁束線の方向を示す説明用断面図である。  FIG. 8 is an explanatory cross-sectional view showing directions of magnetic flux lines in a magnetic field applied again.
[図 9]導電性材料層中の導電性粒子が導電路形成部となる部分に集合して厚み方 向に並ぶよう配向した状態を示す説明用断面図である。  FIG. 9 is an explanatory cross-sectional view showing a state where conductive particles in a conductive material layer are gathered at a portion to be a conductive path forming portion and are aligned so as to be arranged in a thickness direction.
[図 10]本発明の製造方法によって得られる異方導電性シートの他の例における構成 を示す説明用断面図である。  FIG. 10 is an explanatory cross-sectional view showing a configuration of another example of the anisotropic conductive sheet obtained by the production method of the present invention.
[図 11]図 10に示す異方導電性シートの要部を拡大して示す説明用断面図である。  FIG. 11 is an explanatory cross-sectional view showing an enlarged main part of the anisotropic conductive sheet shown in FIG. 10.
[図 12]図 10に示す異方導電性シートを製造するために用いられる成形部材の構成 を示す説明用断面図である。 FIG. 12 is an explanatory cross-sectional view showing a configuration of a molded member used for manufacturing the anisotropic conductive sheet shown in FIG.
[図 13]成形部材における一方の支持体および他方の支持体の間に導電性材料層が 形成された状態を示す説明用断面図である。  FIG. 13 is an explanatory cross-sectional view showing a state where a conductive material layer is formed between one support and the other support in a molded member.
[図 14]導電性材料層を拡大して示す説明用断面図である。  FIG. 14 is an explanatory cross-sectional view showing an enlarged conductive material layer.
[図 15]成形部材が電磁石装置にセットされた状態を示す説明用断面図である。  FIG. 15 is an explanatory cross-sectional view showing a state where a molded member is set in an electromagnet device.
[図 16]導電性材料層中の導電性粒子が厚み方向に並ぶよう配向した状態を示す説 明用断面図である。  FIG. 16 is an explanatory cross-sectional view showing a state in which conductive particles in a conductive material layer are oriented so as to be arranged in a thickness direction.
[図 17]本発明の製造方法によって得られる異方導電性シートの更に他の例における 構成を示す説明用断面図である。 FIG. 17 shows still another example of the anisotropic conductive sheet obtained by the production method of the present invention. It is explanatory sectional drawing for showing a structure.
[図 18]図 17に示す異方導電性シートの要部を拡大して示す説明用断面図である。  FIG. 18 is an explanatory cross-sectional view showing a main part of the anisotropic conductive sheet shown in FIG. 17 in an enlarged manner.
[図 19]図 17に示す異方導電性シートを製造するための絶縁部用シート体の構成を 示す説明用断面図である。 FIG. 19 is an explanatory cross-sectional view showing a configuration of an insulating portion sheet body for producing the anisotropic conductive sheet shown in FIG. 17.
[図 20]絶縁部用シート体を得るためのシート体上にレーザー用マスクが配置された状 態を示す説明用断面図である。  FIG. 20 is an explanatory cross-sectional view showing a state where a laser mask is arranged on a sheet for obtaining an insulating sheet.
[図 21]絶縁部用シート体が形成された状態を示す説明用断面図である。  FIG. 21 is an explanatory cross-sectional view showing a state where an insulating portion sheet is formed.
[図 22]レーザー用マスクと絶縁部用シート体と導電性材料層とからなる中間複合体を 示す説明用断面図である。  FIG. 22 is an explanatory cross-sectional view showing an intermediate composite including a laser mask, an insulating sheet, and a conductive material layer.
[図 23]中間複合体における導電性材料層を拡大して示す説明用断面図である。  FIG. 23 is an explanatory cross-sectional view showing an enlarged conductive material layer in the intermediate composite.
[図 24]中間複合体が電磁石装置にセットされた状態を示す説明用断面図である。 FIG. 24 is an explanatory cross-sectional view showing a state where the intermediate composite is set in the electromagnet device.
[図 25]導電性材料層中の導電性粒子が厚み方向に並ぶよう配向した状態を示す説 明用断面図である。 FIG. 25 is an explanatory cross-sectional view showing a state in which conductive particles in a conductive material layer are oriented so as to be arranged in a thickness direction.
[図 26]従来の異方導電性シートの製造方法において、導電性材料層中の導電性粒 子の連鎖が厚み方向に対して傾斜した方向に形成された状態を示す説明用断面図 である。  FIG. 26 is an explanatory cross-sectional view showing a state in which a chain of conductive particles in a conductive material layer is formed in a direction inclined with respect to a thickness direction in a conventional method of manufacturing an anisotropic conductive sheet. .
[図 27]従来の異方導電性シートの製造方法において、上型と下型との間に導電性材 料層が形成された状態を示す説明用断面図である。  FIG. 27 is an explanatory cross-sectional view showing a state in which a conductive material layer is formed between an upper die and a lower die in a conventional method for manufacturing an anisotropic conductive sheet.
[図 28]従来の異方導電性シートの製造方法において、上型の強磁性体層とこれに対 応する下型の強磁性体層に隣接する強磁性体層との間に、導電性粒子の連鎖が形 成された状態を示す説明用断面図である。  [FIG. 28] In a conventional method of manufacturing an anisotropic conductive sheet, a conductive layer is formed between an upper ferromagnetic layer and a corresponding ferromagnetic layer adjacent to a lower ferromagnetic layer. FIG. 3 is an explanatory cross-sectional view showing a state in which a chain of particles is formed.
符号の説明 Explanation of symbols
10 異方導電性シート 10 Anisotropic conductive sheet
10A 導電性材料層 10A conductive material layer
11 導電路形成部 11 Conductive path forming section
12 絶縁部 12 Insulation
15 フレーム板 15 Frame board
20 異方導電性シート A 導電性材料層 成形部材 一方の支持体 他方の支持体 スぺーサー 異方導電性シート 導電路形成部A 導電性材料層H 貫通孔 20 Anisotropic conductive sheet A Conductive material layer Molded member One support The other support Spacer Anisotropic conductive sheet Conductive path forming part A Conductive material layer H Through hole
絶縁部 Insulation
A 絶縁部用シート体B シート体 A Insulation sheet B Sheet
中間複合体 レーザー用マスク 開口  Intermediate complex Laser mask aperture
上型  Upper mold
強磁性体基板 強磁性体層 非磁性体層 上側スぺーサー "开1 Ferromagnetic substrate Ferromagnetic layer Nonmagnetic layer Upper spacer "开1
強磁性体基板 強磁性体層 非磁性体層 下側スぺーサー 電磁石装置 上側電磁石 嫩極 65 下側電磁石 Ferromagnetic substrate Ferromagnetic layer Non-magnetic layer Lower spacer Electromagnet device Upper electromagnet 65 Lower electromagnet
66 磁極  66 magnetic poles
90 上型  90 Upper type
91 基板  91 substrates
92 強磁性体層  92 Ferromagnetic layer
93 非磁性体層  93 Non-magnetic layer
95 下型  95 lower mold
96 基板  96 substrates
97 強磁性体層  97 Ferromagnetic layer
98 非磁性体層  98 Non-magnetic layer
80 導電性材料層  80 Conductive material layer
P 導電性粒子  P conductive particles
E 弾性高分子物質  E elastic polymer material
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、本発明の実施の形態について詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail.
[第 1の方法] [First method]
第 1の方法は、図 1に示すような構成の異方導電性シート 10を製造する方法である 。 異方導電性シート 10について説明すると、この異方導電性シート 10は偏在型異 方導電性シートであって、接続すべき電極例えば検查対象である回路装置の被検 查電極のパターンに対応するパターンに従って配置された、それぞれ厚み方向に伸 びる複数の導電路形成部 11と、これらの導電路形成部 11を相互に絶縁する絶縁部 12とにより構成されている。導電路形成部 11の各々は、図 2に拡大して示すように、 絶縁性の弾性高分子物質 E中に導電性粒子 Pが厚み方向に並ぶよう配向した状態 で含有されてなるものであって、厚み方向に加圧されることにより、厚み方向に導電 性粒子 Pの連鎖による導電路が形成されるものである。図示の例では、導電路形成 部 11の各々は、絶縁部 12の両面の各々力 突出するよう形成されている。これに対 して、絶縁部 12は、絶縁性の弾性高分子物質よりなり、導電性粒子 Pが全く或いは 殆ど含有されていないものであって、厚み方向および面方向のいずれにも導電性を 示さないものである。 The first method is a method for producing an anisotropic conductive sheet 10 having a configuration as shown in FIG. The anisotropic conductive sheet 10 will be described. The anisotropic conductive sheet 10 is an unevenly distributed anisotropic conductive sheet and corresponds to an electrode to be connected, for example, a pattern of an electrode to be inspected of a circuit device to be inspected. A plurality of conductive path forming portions 11 each extending in the thickness direction and an insulating portion 12 insulating these conductive path forming portions 11 from each other are arranged. Each of the conductive path forming portions 11 is, as shown in an enlarged view in FIG. 2, formed by containing conductive particles P in an insulating elastic polymer substance E in a state of being aligned in the thickness direction. By applying pressure in the thickness direction, a conductive path is formed by a chain of conductive particles P in the thickness direction. In the illustrated example, each of the conductive path forming portions 11 is formed so as to protrude from both surfaces of the insulating portion 12. On the other hand, the insulating portion 12 is made of an insulating elastic polymer material and contains no or almost no conductive particles P, and has conductivity in both the thickness direction and the plane direction. Not shown.
また、この例の異方導電性シートにおいては、枠状のフレーム板 15が絶縁部 12の 周縁部分に一体的に設けられている。  Further, in the anisotropic conductive sheet of this example, a frame-shaped frame plate 15 is provided integrally with a peripheral portion of the insulating portion 12.
ここで、導電路形成部 11における導電性粒子 Pの含有割合は、体積分率で 10 6 0%、好ましくは 15— 50%であることが好ましい。この割合が 10%未満の場合には、 十分に電気抵抗値の小さい導電路形成部 11が得られないことがある。一方、この割 合が 60%を超える場合には、得られる導電路形成部 11は脆弱なものとなりやすぐ 導電路形成部 11として必要な弾性が得られなレ、ことがある。  Here, the content ratio of the conductive particles P in the conductive path forming portion 11 is preferably 1060% by volume, preferably 15 to 50%. If this ratio is less than 10%, the conductive path forming portion 11 having a sufficiently low electric resistance may not be obtained. On the other hand, if this ratio exceeds 60%, the resulting conductive path forming portion 11 may become fragile, or the elasticity required for the conductive path forming portion 11 may not be obtained immediately.
また、導電路形成部 11のピッチは、例えば 60— 500 z mである力 このピッチが 2 00 μ m以下である異方導電性シート 10を製造する場合には、本発明の製造方法は 極めて有効である。  Further, the pitch of the conductive path forming portions 11 is, for example, a force of 60 to 500 zm. When manufacturing the anisotropic conductive sheet 10 in which the pitch is 200 μm or less, the manufacturing method of the present invention is extremely effective. It is.
[0019] このような異方導電性シート 10を製造するための第 1の方法においては、図 3に示 すような金型が用いられる。図 3に示す金型について具体的に説明すると、この金型 は、上型 50およびこれと対となる下型 55が、それぞれの成形面が互いに対向するよ う配置されて構成され、上型 50の成形面(図 3において下面)と下型 55の成形面(図 3において上面)との間にキヤビティが形成されている。  In a first method for manufacturing such an anisotropic conductive sheet 10, a mold as shown in FIG. 3 is used. The mold shown in FIG. 3 will be specifically described. This mold is configured by arranging an upper mold 50 and a lower mold 55 that is a pair with the upper mold 50 such that their molding surfaces face each other. A cavity is formed between the molding surface 50 (the lower surface in FIG. 3) and the molding surface of the lower mold 55 (the upper surface in FIG. 3).
上型 50においては、強磁性体基板 51の下面に、製造すべき異方導電性シート 10 の導電路形成部 11の配置パターンに対掌なパターンに従って強磁性体層 52が形 成され、この強磁性体層 52以外の個所には、当該強磁性体層 52の厚みより大きレ、 厚みを有する非磁性体層 53が形成されており、これにより、上型 50の成形面におけ る強磁性体層 52が位置する個所には、凹所が形成されている。  In the upper die 50, a ferromagnetic layer 52 is formed on the lower surface of the ferromagnetic substrate 51 according to a pattern opposite to the arrangement pattern of the conductive path forming portions 11 of the anisotropic conductive sheet 10 to be manufactured. A non-magnetic layer 53 having a thickness larger than the thickness of the ferromagnetic layer 52 is formed in a portion other than the ferromagnetic layer 52, whereby the strength of the upper mold 50 on the molding surface is reduced. A recess is formed where the magnetic layer 52 is located.
一方、下型 55においては、強磁性体基板 56の上面に、製造すべき異方導電性シ ート 10の導電路形成部 11の配置パターンと同一のパターンに従って強磁性体層 57 が形成され、この強磁性体層 57以外の個所には、当該強磁性体層 57の厚みより大 きい厚みを有する非磁性体層 58が形成されており、これにより、下型 55の成形面に おける強磁性体層 57が位置する個所には、凹所が形成されている。  On the other hand, in the lower mold 55, a ferromagnetic layer 57 is formed on the upper surface of the ferromagnetic substrate 56 according to the same pattern as the arrangement pattern of the conductive path forming portions 11 of the anisotropic conductive sheet 10 to be manufactured. A non-magnetic layer 58 having a thickness larger than the thickness of the ferromagnetic layer 57 is formed in a portion other than the ferromagnetic layer 57, whereby the strength of the lower mold 55 on the molding surface is reduced. A recess is formed where the magnetic layer 57 is located.
[0020] 上型 50および下型 55の各々における強磁性体基板 51 , 56を構成する材料として は、鉄、鉄一ニッケル合金、鉄一コバルト合金、ニッケル、コバルトなどの強磁性金属を 用いることができる。この強磁性体基板 51 , 56は、その厚みが 0. 1— 50mmであるこ とが好ましぐ表面が平滑で、化学的に脱脂処理され、また、機械的に研磨処理され たものであることが好ましレ、。 [0020] Materials forming the ferromagnetic substrates 51 and 56 in each of the upper mold 50 and the lower mold 55 include ferromagnetic metals such as iron, iron-nickel alloy, iron-cobalt alloy, nickel, and cobalt. Can be used. The ferromagnetic substrates 51 and 56 preferably have a thickness of 0.1 to 50 mm and have a smooth surface, are chemically degreased, and are mechanically polished. But preferred.
[0021] また、上型 50および下型 55の各々における強磁性体層 52, 57を構成する材料と しては、鉄、鉄一ニッケル合金、鉄一コバルト合金、ニッケル、コバルトなどの強磁性金 属を用いることができる。この強磁性体層 52, 57は、その厚みが 10 x m以上である ことが好ましい。この厚みが 10 x m未満である場合には、金型内に形成される導電 性材料層に対して、十分な強度分布を有する磁場を作用させることが困難となり、こ の結果、当該導電性材料層における導電路形成部となる部分に導電性粒子を高密 度に集合させることが困難となるため、良好な異方導電性を有するシートが得られな レ、ことがある。 [0021] In addition, as a material forming the ferromagnetic layers 52 and 57 in each of the upper mold 50 and the lower mold 55, a ferromagnetic material such as iron, iron-nickel alloy, iron-cobalt alloy, nickel, cobalt, or the like is used. Metals can be used. The ferromagnetic layers 52 and 57 preferably have a thickness of 10 × m or more. If the thickness is less than 10 xm, it is difficult to apply a magnetic field having a sufficient intensity distribution to the conductive material layer formed in the mold, and as a result, the conductive material Since it becomes difficult to collect the conductive particles at a high density in the portion of the layer that becomes the conductive path forming portion, a sheet having good anisotropic conductivity may not be obtained.
[0022] また、上型 50および下型 55の各々における非磁性体層 53, 58を構成する材料と しては、銅などの非磁性金属、耐熱性を有する高分子物質などを用いることができる 力 フォトリソグラフィ一の手法により容易に非磁性体層 53, 58を形成することができ る点で、放射線によって硬化された高分子物質を用いることが好ましぐその材料とし ては、例えばアクリル系のドライフィルムレジスト、エポキシ系の液状レジスト、ポリイミ ド系の液状レジストなどのフォトレジストを用いることができる。  As a material for forming the nonmagnetic layers 53 and 58 in each of the upper mold 50 and the lower mold 55, a nonmagnetic metal such as copper, a heat-resistant polymer substance, or the like may be used. The ability to form the nonmagnetic layers 53 and 58 easily by using a photolithography technique is preferable because it is preferable to use a polymer substance cured by radiation. Photoresists such as a system dry film resist, an epoxy system liquid resist, and a polyimide system liquid resist can be used.
また、非磁性体層 53, 58の厚みは、強磁性体層 52, 57の厚み、 目的とする異方 導電性シート 10の導電路形成部 11の突出高さに応じて設定される。  The thickness of the nonmagnetic layers 53 and 58 is set according to the thickness of the ferromagnetic layers 52 and 57 and the height of the projected conductive path forming portion 11 of the desired anisotropic conductive sheet 10.
[0023] そして、第 1の方法においては、  [0023] Then, in the first method,
金型内に、硬化されて絶縁性の弾性高分子物質となる液状の高分子物質形成材 料中に磁性を示す導電性粒子が含有されてなる導電性材料層を形成する工程 (a— 1)と、  Forming a conductive material layer in a mold, in which conductive particles exhibiting magnetism are contained in a liquid polymer material forming material which is cured to become an insulating elastic polymer material (a-1); )When,
前記導電性材料層に対して、導電路形成部となる部分にそれ以外の部分より大き い強度の磁場を当該導電性材料層の厚み方向に作用させることにより、当該導電路 形成部となる部分に導電性粒子を集合させて当該導電性材料層の厚み方向に配向 させる工程 (b_l)と、  By applying a magnetic field having a higher intensity to the conductive material layer in the thickness direction of the conductive material layer than in the other portions, the portion to be the conductive path formation portion is formed. (B_l) a process of assembling conductive particles and orienting them in the thickness direction of the conductive material layer;
前記導電性材料層に対する磁場の作用を停止した後または磁場の作用を継続し ながら、当該導電性材料層を硬化処理する工程 (c 1)と After stopping the action of the magnetic field on the conductive material layer or continuing the action of the magnetic field While curing the conductive material layer (c 1)
を経由して、異方導電性シート 10が製造される。  Through this, the anisotropic conductive sheet 10 is manufactured.
以下、各工程について具体的に説明する。  Hereinafter, each step will be specifically described.
[0024] 工程(a_l) : [0024] Step (a_l):
工程 (a - 1)においては、先ず、硬化されて絶縁性の弾性高分子物質となる液状の 高分子物質形成材料中に磁性を示す導電性粒子を分散させることにより、導電性材 料を調製する。  In the step (a-1), first, a conductive material is prepared by dispersing conductive particles exhibiting magnetism in a liquid polymer material forming material which is cured to become an insulating elastic polymer material. I do.
導電性材料を調製するための高分子物質形成材料としては、種々のものを用いる ことができ、その具体例としては、シリコーンゴム、ポリブタジエンゴム、天然ゴム、ポリ イソプレンゴム、スチレン一ブタジエン共重合体ゴム、アクリロニトリル一ブタジエン共重 合体ゴムなどの共役ジェン系ゴムおよびこれらの水素添加物、スチレン—ブタジエン —ジェンブロック共重合体ゴム、スチレン一イソプレンブロック共重合体などのブロック 共重合体ゴムおよびこれらの水素添加物、クロロプレンゴム、ウレタンゴム、ポリエステ ノレ系ゴム、ェピクロルヒドリンゴム、エチレン—プロピレン共重合体ゴム、エチレン プロ ピレン-ジェン共重合体ゴム、軟質液状エポキシゴムなどが挙げられる。  Various materials can be used as the polymer substance forming material for preparing the conductive material, and specific examples thereof include silicone rubber, polybutadiene rubber, natural rubber, polyisoprene rubber, and styrene-butadiene copolymer. Conjugated rubbers such as rubber, acrylonitrile-butadiene copolymer rubber and hydrogenated products thereof, and block copolymer rubbers such as styrene-butadiene-gen block copolymer rubber, styrene-isoprene block copolymer, and the like. Examples include hydrogenated products, chloroprene rubber, urethane rubber, polyester rubber, epichlorohydrin rubber, ethylene-propylene copolymer rubber, ethylene propylene-gen copolymer rubber, and soft liquid epoxy rubber.
これらの中では、耐久性、成形加工性、電気特性などの観点から、シリコーンゴムが 好ましい。  Among these, silicone rubber is preferred from the viewpoints of durability, moldability and electrical properties.
[0025] シリコーンゴムとしては、液状シリコーンゴムを架橋または縮合したものが好ましい。  [0025] The silicone rubber is preferably one obtained by crosslinking or condensing a liquid silicone rubber.
液状シリコーンゴムは、縮合型のもの、付加型のもの、ビエル基ゃヒドロキシル基を含 有するものなどのいずれであってもよい。具体的には、ジメチルシリコーン生ゴム、メ チルビ二ルシリコーン生ゴム、メチルフエ二ルビニルシリコーン生ゴムなどを挙げること ができる。  The liquid silicone rubber may be any of a condensation type, an addition type, and a compound having a Bier group ゃ hydroxyl group. Specific examples include dimethyl silicone raw rubber, methyl vinyl silicone raw rubber, and methylphenyl vinyl silicone raw rubber.
また、付加型の液状シリコーンゴムとしては、ビュル基と Si— H結合との反応によつ て硬化するものであって、ビュル基および Si— H結合の両方を含有するポリシロキサ ンからなる一液型(一成分型)のもの、およびビュル基を含有するポリシロキサンおよ び Si— H結合を含有するポリシロキサンからなる二液型(二成分型)のもののレ、ずれも 用いることができる力 二液型の付加型液状シリコーンゴムを用いることが好ましい。  Further, as an addition type liquid silicone rubber, a one-part liquid silicone rubber which is cured by a reaction between a bullet group and a Si—H bond and is composed of a polysiloxane containing both a bullet group and a Si—H bond is used. The ability to use the two-component type (two-component type) consisting of a polysiloxane containing a butyl group and a polysiloxane containing a Si—H bond (a one-component type) It is preferable to use a two-part addition type liquid silicone rubber.
[0026] これらの中で、ビュル基を含有する液状シリコーンゴム(ビュル基含有ポリジメチル シロキサン)は、通常、ジメチルジクロロシランまたはジメチルジアルコキシシランを、 ジメチルビユルクロロシランまたはジメチルビニルアルコキシシランの存在下において 、加水分解および縮合反応させ、例えば引続き溶解 沈殿の繰り返しによる分別を 行うことにより得られる。 [0026] Among these, liquid silicone rubber containing a bullet group (polydimethyl containing a bullet group) Siloxane) is usually obtained by subjecting dimethyldichlorosilane or dimethyldialkoxysilane to hydrolysis and condensation in the presence of dimethylvinylchlorosilane or dimethylvinylalkoxysilane, for example, by subsequent fractionation by repeated dissolution and precipitation. Can be
また、ビュル基を両末端に含有する液状シリコーンゴムは、オタタメチルシクロテトラ シロキサンのような環状シロキサンを触媒の存在下においてァニオン重合し、重合停 止剤として例えばジメチルジビュルシロキサンを用レ、、その他の反応条件(例えば、 環状シロキサンの量および重合停止剤の量)を適宜選択することにより得られる。ここ で、ァニオン重合の触媒としては、水酸化テトラメチルアンモニゥムおよび水酸化 n— ブチルホスホニゥムなどのアルカリまたはこれらのシラノレート溶液などを用いることが でき、反応温度は、例えば 80 130°Cである。  Liquid silicone rubbers containing butyl groups at both ends undergo anion polymerization of a cyclic siloxane such as otatamethylcyclotetrasiloxane in the presence of a catalyst, and use, for example, dimethyldibutylsiloxane as a polymerization terminator. And other reaction conditions (for example, the amount of the cyclic siloxane and the amount of the polymerization terminator) are appropriately selected. Here, as the catalyst for the anion polymerization, alkalis such as tetramethylammonium hydroxide and n-butylphosphonium hydroxide or silanolate solutions thereof can be used. The reaction temperature is, for example, 80 130 ° C. It is.
このようなビュル基含有ポリジメチルシロキサンは、その分子量 Mw (標準ポリスチレ ン換算重量平均分子量をいう。以下同じ。)が 10000— 40000のものであることが好 ましレ、。また、得られる異方導電性シート 10の耐熱性の観点から、分子量分布指数( 標準ポリスチレン換算重量平均分子量 Mwと標準ポリスチレン換算数平均分子量 M nとの比 Mw/Mnの値をいう。以下同じ。)が 2以下のものが好ましい。  Such a butyl group-containing polydimethylsiloxane preferably has a molecular weight Mw (standard polystyrene-equivalent weight average molecular weight; the same applies hereinafter) of 10,000 to 40,000. Further, from the viewpoint of heat resistance of the obtained anisotropic conductive sheet 10, the molecular weight distribution index (refers to the value of the ratio Mw / Mn between the weight average molecular weight Mw in terms of standard polystyrene and the number average molecular weight Mn in terms of standard polystyrene. The same applies hereinafter. ) Is preferably 2 or less.
一方、ヒドロキシノレ基を含有する液状シリコーンゴム(ヒドロキシノレ基含有ポリジメチ ルシロキサン)は、通常、ジメチルジクロロシランまたはジメチルジアルコキシシランを 加水分解および縮合反応させ、例えば引続き溶解 沈殿の繰り返しによる分別を行う ことにより得られる。  On the other hand, a liquid silicone rubber containing a hydroxyl group (polydimethylsiloxane containing a hydroxyl group) is usually hydrolyzed and condensed with dimethyldichlorosilane or dimethyldialkoxysilane, for example, followed by separation by repeated dissolution and precipitation. It can be obtained by:
また、環状シロキサンを触媒の存在下においてァニオン重合し、重合停止剤として ノレコキシシランなどを用い、その他の反応条件 (例えば、環状シロキサンの量および 重合停止剤の量)を適宜選択することによつても得られる。ここで、ァニオン重合の触 媒としては、水酸化テトラメチルアンモニゥムおよび水酸化 n ブチルホスホニゥムな どのアルカリまたはこれらのシラノレート溶液などを用いることができ、反応温度は、例 えば 80— 130。Cである。 [0028] このようなヒドロキシル基含有ポリジメチルシロキサンは、その分子量 Mwが 10000 一 40000のものであることが好ましレ、。また、得られる異方導電性シート 10の耐熱性 の観点から、分子量分布指数が 2以下のものが好ましレ、。 Alternatively, anionic polymerization of a cyclic siloxane in the presence of a catalyst may be performed by using norekoxysilane or the like as a polymerization terminator and appropriately selecting other reaction conditions (for example, the amount of the cyclic siloxane and the amount of the polymerization terminator). can get. Here, as a catalyst for the anion polymerization, alkali such as tetramethylammonium hydroxide and n-butylphosphonium hydroxide or a silanolate solution thereof can be used. The reaction temperature is, for example, 80-130. . C. Such a hydroxyl group-containing polydimethylsiloxane preferably has a molecular weight Mw of 10,000 to 40,000. From the viewpoint of the heat resistance of the obtained anisotropic conductive sheet 10, those having a molecular weight distribution index of 2 or less are preferred.
本発明においては、上記のビュル基含有ポリジメチルシロキサンおよびヒドロキシル 基含有ポリジメチルシロキサンのいずれか一方を用いることもでき、両者を併用するこ とあできる。  In the present invention, either one of the above-mentioned polydimethylsiloxane containing a butyl group and polydimethylsiloxane containing a hydroxyl group can be used, or both can be used in combination.
[0029] また、回路装置のプローブ試験またはバーンイン試験などに用レ、られる異方導電 性シート 10を製造する場合には、液状シリコーンゴムとして、その硬化物の 150。Cに おける圧縮永久歪みが 10%以下であるものを用いることが好ましぐより好ましくは 8 %以下、さらに好ましくは 6%以下である。この圧縮永久歪みが 10%を超える場合に は、得られる異方導電性シート 10を多数回にわたって繰り返し使用したとき或いは高 温環境下におレ、て繰り返し使用したときには、導電路形成部 11に永久歪みが発生し やすぐこれにより、導電路形成部 11における導電性粒子の連鎖に乱れが生じる結 果、所要の導電性を維持することが困難となることがある。  [0029] When the anisotropic conductive sheet 10 used for a probe test or a burn-in test of a circuit device is manufactured, the cured product of the anisotropic conductive sheet 150 is used as a liquid silicone rubber. It is preferable to use one having a compression set of 10% or less in C, more preferably 8% or less, and even more preferably 6% or less. When the compression set exceeds 10%, when the obtained anisotropic conductive sheet 10 is repeatedly used many times or repeatedly under a high temperature environment, the conductive path forming portion 11 is formed. Immediately after the permanent strain is generated, the chain of the conductive particles in the conductive path forming portion 11 is disturbed. As a result, it may be difficult to maintain the required conductivity.
ここで、液状シリコーンゴムの硬化物の圧縮永久歪みは、 JIS K 6249に準拠した 方法によって測定することができる。  Here, the compression set of the cured product of the liquid silicone rubber can be measured by a method based on JIS K 6249.
[0030] また、液状シリコーンゴムとしては、その硬化物の 23°Cにおけるデュロメーター A硬 度が 10— 60のものを用いることが好ましぐさらに好ましくは 15— 60、特に好ましく は 20— 60のものである。このデュロメーター A硬度が 10未満である場合には、加圧 されたときに、導電路形成部 11を相互に絶縁する絶縁部 12が過度に歪みやすく、 導電路形成部 11間の所要の絶縁性を維持することが困難となることがある。一方、こ のデュロメーター A硬度が 60を超える場合には、導電路形成部 11に適正な歪みを 与えるために相当に大きい荷重による加圧力が必要となるため、例えば検查対象物 の変形や破損が生じやすくなる。  [0030] As the liquid silicone rubber, it is preferable to use a cured product having a durometer A hardness of 10-60 at 23 ° C, more preferably 15-60, particularly preferably 20-60. Things. If the durometer A hardness is less than 10, the insulating portion 12 that insulates the conductive path forming portions 11 from each other when pressurized is easily deformed excessively, and the required insulating property between the conductive path forming portions 11 May be difficult to maintain. On the other hand, if the durometer A hardness exceeds 60, a considerably large load is required to apply an appropriate strain to the conductive path forming portion 11, so that, for example, deformation or breakage of the inspection object. Tends to occur.
ここで、液状シリコーンゴムの硬化物のデュロメーター A硬度は、 JIS K 6249に 準拠した方法によって測定することができる。  Here, the durometer A hardness of the cured liquid silicone rubber can be measured by a method based on JIS K 6249.
[0031] また、液状シリコーンゴムとしては、その硬化物の 23。Cにおける引き裂き強度が 8k NZm以上のものを用いることが好ましぐさらに好ましくは 10kN/m以上、より好ま しくは 15kN/m以上、特に好ましくは 20kN/m以上のものである。この引き裂き強 度が 8kN/m未満である場合には、異方導電性シート 10に過度の歪みが与えられ たときに、耐久性の低下を起こしやすい。 [0031] As the liquid silicone rubber, the cured product thereof is 23. It is preferable to use a material having a tear strength of 8 k NZm or more in C, more preferably 10 kN / m or more, more preferably It is preferably at least 15 kN / m, particularly preferably at least 20 kN / m. If the tear strength is less than 8 kN / m, the durability tends to decrease when the anisotropic conductive sheet 10 is given an excessive strain.
ここで、液状シリコーンゴムの硬化物の引き裂き強度は、 JIS K 6249に準拠した 方法によって測定することができる。  Here, the tear strength of the cured product of the liquid silicone rubber can be measured by a method based on JIS K 6249.
[0032] また、液状シリコーンゴムとしては、その 23°Cにおける粘度が 100—1 , 250Pa' sの ものを用いることが好ましぐさらに好ましくは 150— 800Pa' s、特に好ましくは 250 500Pa' sのものである。この粘度が lOOPa' s未満である場合には、得られる導電性 材料において、当該液状シリコーンゴム中における導電性粒子の沈降が生じやすく 、良好な保存安定性が得られず、また、後述する工程 (b— 1)において、導電性材料 層に対して厚み方向に磁場を作用させたときに、導電性粒子が厚み方向に並ぶよう 配向せず、均一な状態で導電性粒子の連鎖を形成することが困難となることがある。 一方、この粘度が 1, 250Pa' sを超える場合には、得られる導電性材料が粘度の高 レ、ものとなるため、金型内に導電性材料層を形成しにくいものとなることがあり、また、 導電性材料層に対して厚み方向に磁場を作用させても、導電性粒子が十分に移動 せず、そのため、導電性粒子を厚み方向に並ぶよう配向させることが困難となること 力 sある。 [0032] As the liquid silicone rubber, those having a viscosity at 23 ° C of 100-1 and 250 Pa's are preferably used, more preferably 150-800 Pa's, and particularly preferably 250 500 Pa's. belongs to. When the viscosity is less than 100 Pa's, the resulting conductive material is liable to cause sedimentation of the conductive particles in the liquid silicone rubber, failing to obtain good storage stability, and a process described below. In (b-1), when a magnetic field is applied to the conductive material layer in the thickness direction, the conductive particles are not aligned so as to be aligned in the thickness direction, and form a chain of conductive particles in a uniform state. It can be difficult. On the other hand, if the viscosity exceeds 1,250 Pa's, the resulting conductive material has a high viscosity, which may make it difficult to form a conductive material layer in the mold. In addition, even when a magnetic field is applied to the conductive material layer in the thickness direction, the conductive particles do not move sufficiently, which makes it difficult to orient the conductive particles in the thickness direction. There is s .
ここで、液状シリコーンゴムの粘度は、 B型粘度計によって測定することができる。  Here, the viscosity of the liquid silicone rubber can be measured by a B-type viscometer.
[0033] 高分子物質形成材料中には、当該高分子物質形成材料を硬化させるための硬化 触媒を含有させることができる。このような硬化触媒としては、有機過酸化物、脂肪酸 ァゾ化合物、ヒドロシリルイ匕触媒などを用いることができる。 [0033] The polymer substance-forming material may contain a curing catalyst for curing the polymer substance-forming material. As such a curing catalyst, an organic peroxide, a fatty acid azo compound, a hydrosilylide catalyst, or the like can be used.
硬化触媒として用いられる有機過酸化物の具体例としては、過酸化べンゾィル、過 酸化ビスジシクロべンゾィル、過酸化ジクミル、過酸化ジターシャリーブチルなどが挙 げられる。  Specific examples of the organic peroxide used as the curing catalyst include benzoyl peroxide, bisdicyclobenzoyl peroxide, dicumyl peroxide, and ditertiary butyl peroxide.
硬化触媒として用いられる脂肪酸ァゾ化合物の具体例としては、ァゾビスイソプチ口 二トリルなどが挙げられる。  Specific examples of the fatty acid azo compound used as a curing catalyst include azobisisobutyl nitrile.
ヒドロシリル化反応の触媒として使用し得るものの具体例としては、塩化白金酸およ びその塩、白金—不飽和基含有シロキサンコンプレックス、ビュルシロキサンと白金と のコンプレックス、白金と 1, 3_ジビニルテトラメチルジシロキサンとのコンプレックス、 トリオルガノホスフィンあるいはホスファイトと白金とのコンプレックス、ァセチルァセテ ート白金キレート、環状ジェンと白金とのコンプレックスなどの公知のものが挙げられ る。 Specific examples of those which can be used as a catalyst for the hydrosilylation reaction include chloroplatinic acid and salts thereof, a platinum-unsaturated group-containing siloxane complex, and siloxane and platinum. Known complexes such as a complex of platinum, a complex of platinum with 1,3_divinyltetramethyldisiloxane, a complex of triorganophosphine or phosphite with platinum, a complex of acetyl acetate platinum chelate, and a complex of cyclic gen and platinum. It is possible.
硬化触媒の使用量は、高分子物質形成材料の種類、硬化触媒の種類、その他の 硬化処理条件を考慮して適宜選択されるが、通常、高分子物質形成材料 100重量 部に対して 3 15重量部である。  The amount of the curing catalyst used is appropriately selected in consideration of the type of the polymer substance-forming material, the type of the curing catalyst, and other curing treatment conditions. Parts by weight.
[0034] 高分子物質形成材料は、通常のシリカ粉、コロイダルシリカ、エア口ゲルシリカ、ァ ノレミナなどの無機充填材が含有されてなるものが含有されてなるものであってもよい 。このような無機充填材が含有されることにより、得られる導電性材料のチクソトロピー 性が確保され、その粘度が高くなり、しかも、導電性粒子 Pの分散安定性が向上する と共に、硬化処理されて得られる異方導電性シート 10の強度が高くなる。  [0034] The polymer substance forming material may be a material containing an inorganic filler such as ordinary silica powder, colloidal silica, air-port gel silica, or anolemina. By containing such an inorganic filler, the thixotropic property of the obtained conductive material is secured, the viscosity thereof is increased, and the dispersion stability of the conductive particles P is improved, and the conductive material P is cured. The strength of the obtained anisotropic conductive sheet 10 increases.
このような無機充填材の使用量は、特に限定されるものではないが、多量に使用す ると、後述する工程 (b— 1)において、磁場による導電性粒子 Pの移動が大きく阻害さ れるため、好ましくない。  The use amount of such an inorganic filler is not particularly limited. However, when used in a large amount, the movement of the conductive particles P due to the magnetic field in the step (b-1) described later is greatly inhibited. Therefore, it is not preferable.
[0035] 導電性材料を調製するための導電性粒子としては、磁性を示すものが用いられ、そ の具体例としては、鉄、ニッケル、コノくルトなどの磁性を示す金属の粒子若しくはこれ らの合金の粒子またはこれらの金属を含有する粒子、またはこれらの粒子を芯粒子と し、当該芯粒子の表面に金、銀、パラジウム、ロジウムなどの導電性の良好な金属の メツキを施したもの、あるいは非磁性金属粒子若しくはガラスビーズなどの無機物質 粒子またはポリマー粒子を芯粒子とし、当該芯粒子の表面に、ニッケル、コバルトな どの導電性磁性体のメツキを施したもの、あるいは芯粒子に、導電性磁性体および導 電性の良好な金属の両方を被覆したものなどが挙げられる。  As the conductive particles for preparing the conductive material, those exhibiting magnetism are used, and specific examples thereof include metal particles exhibiting magnetism such as iron, nickel, and cono-kurt, or particles thereof. Alloy particles or particles containing these metals, or these particles as core particles, and the surface of the core particles is plated with a metal having good conductivity such as gold, silver, palladium, or rhodium Or core particles of inorganic material particles or polymer particles such as non-magnetic metal particles or glass beads, and the surface of the core particles is coated with a conductive magnetic material such as nickel or cobalt; Examples thereof include those coated with both a conductive magnetic material and a metal having good conductivity.
これらの中では、ニッケル粒子を芯粒子とし、その表面に金や銀などの導電性の良 好な金属のメツキを施したものを用いることが好ましい。  Among these, it is preferable to use nickel particles as core particles, whose surfaces are plated with a metal having good conductivity such as gold or silver.
芯粒子の表面に導電性金属を被覆する手段としては、特に限定されるものではな レ、が、例えば無電解メツキにより行うことができる。  Means for coating the surface of the core particles with the conductive metal is not particularly limited, but can be performed by, for example, electroless plating.
[0036] 導電性粒子として、芯粒子の表面に導電性金属が被覆されてなるものを用いる場 合には、良好な導電性が得られる観点から、粒子表面における導電性金属の被覆率[0036] When the conductive particles are formed by coating the surface of a core particle with a conductive metal. In the case, from the viewpoint of obtaining good conductivity, the coverage of the conductive metal on the particle surface
(芯粒子の表面積に対する導電性金属の被覆面積の割合)が 40%以上であることが 好ましぐさらに好ましくは 45%以上、特に好ましくは 47— 95%である。 The ratio of the conductive metal covering area to the surface area of the core particles is preferably 40% or more, more preferably 45% or more, and particularly preferably 47-95%.
また、導電性金属の被覆量は、芯粒子の 2. 5 50重量%であることが好ましぐよ り好ましくは 3 30重量%、さらに好ましくは 3. 5— 25重量%、特に好ましくは 4一 20 重量%である。被覆される導電性金属が金である場合には、その被覆量は、芯粒子 の 3 30重量%であることが好ましぐより好ましくは 3. 5— 25重量%、さらに好ましく は 4一 20重量%である。また、被覆される導電性金属が銀である場合には、その被 覆量は、芯粒子の 3— 30重量%であることが好ましぐより好ましくは 4一 25重量%、 さらに好ましくは 5— 23重量%、特に好ましくは 6 20重量%である。  The coating amount of the conductive metal is preferably 2.550% by weight of the core particles, more preferably 330% by weight, further preferably 3.5-25% by weight, and particularly preferably 4% by weight. One 20% by weight. When the conductive metal to be coated is gold, the coating amount is preferably 330 to 30% by weight of the core particles, more preferably 3.5 to 25% by weight, and even more preferably 4 to 20% by weight. % By weight. When the conductive metal to be coated is silver, the coating amount is preferably 3 to 30% by weight of the core particles, more preferably 4 to 25% by weight, and still more preferably 5 to 25% by weight. — 23% by weight, particularly preferably 620% by weight.
[0037] また、導電性粒子の粒子径は、 1— 500 μ mであることが好ましぐより好ましくは 2 一 300 μ πι、さらに好ましくは 3— 200 z m、特に好ましくは 5— 150 μ mである。 また、導電性粒子の粒子径分布(Dw/Dn)は、 1一 10であることが好ましぐより好 ましくは 1一 7、さらに好ましくは 1一 5、特に好ましくは 1一 4である。 The particle diameter of the conductive particles is preferably 1 to 500 μm, more preferably 2 to 300 μπι, still more preferably 3 to 200 zm, and particularly preferably 5 to 150 μm. It is. The particle size distribution (Dw / Dn) of the conductive particles is preferably 11 to 10, more preferably 117, still more preferably 115, and particularly preferably 114. .
このような条件を満足する導電性粒子を用いることにより、得られる異方導電性シー ト 10は、加圧変形が容易なものとなり、また、当該異方導電性シート 10における導電 路形成部 11において導電性粒子 P間に十分な電気的接触が得られる。  By using the conductive particles satisfying such conditions, the obtained anisotropic conductive sheet 10 can be easily deformed under pressure, and the conductive path forming portion 11 in the anisotropic conductive sheet 10 can be obtained. Thus, a sufficient electrical contact between the conductive particles P can be obtained.
また、導電性粒子の形状は、特に限定されるものではないが、高分子物質形成材 料中に容易に分散させることができる点で、球状のもの、星形状のものあるいはこれ らが凝集した 2次粒子による塊状のものであることが好ましい。  Further, the shape of the conductive particles is not particularly limited, but is spherical, star-shaped, or agglomerated because they can be easily dispersed in the polymer-forming material. It is preferably a lump formed by secondary particles.
[0038] また、導電性粒子の含水率は、 5%以下であることが好ましぐより好ましくは 3%以 下、さらに好ましくは 2%以下、特に好ましくは 1%以下である。このような条件を満足 する導電性粒子を用いることにより、後述する工程(c一 1)において、導電性材料層を 硬化処理する際に、当該導電性材料層内に気泡が生ずることが防止または抑制され る。 [0038] The water content of the conductive particles is preferably 5% or less, more preferably 3% or less, further preferably 2% or less, and particularly preferably 1% or less. By using conductive particles satisfying such conditions, it is possible to prevent or prevent generation of air bubbles in the conductive material layer when the conductive material layer is cured in the step (c-11) described later. Suppressed.
[0039] このような導電性材料を、例えばスクリーン印刷法によって、図 3に示す金型におけ る上型 50の成形面および下型 55の成形面のいずれか一方または両方に塗布し、そ の後、図 4に示すように、導電性材料が塗布された下型 55に、下側スぺーサー 59、 フレーム板 15、上側スぺーサー 54および導電性材料が塗布された上型 50を下から この順で重ね合わせることにより、金型における上型 50および下型 55の間のキヤビ ティ内に、高分子物質形成材料中に導電性粒子 Pが含有されてなる導電性材料層 1 OAが形成される。この導電性材料層 1 OAにおいては、図 5に示すように、導電性粒 子 Pは当該導電性材料層 1 OA中に分散された状態である。 [0039] Such a conductive material is applied to one or both of the molding surface of the upper mold 50 and the molding surface of the lower mold 55 in the mold shown in Fig. 3 by, for example, a screen printing method. After that, as shown in FIG. 4, the lower spacer 59, By superimposing the frame plate 15, the upper spacer 54, and the upper die 50 coated with the conductive material from the bottom in this order, a high level is provided in the cavity between the upper die 50 and the lower die 55 in the die. The conductive material layer 1OA in which the conductive particles P are contained in the molecular substance forming material is formed. In the conductive material layer 1OA, as shown in FIG. 5, the conductive particles P are in a state of being dispersed in the conductive material layer 1OA.
[0040] 以上において、フレーム板 15を構成する材料としては、金属材料、セラミックス材料 、樹脂材料などの種々の材料を用いることができ、その具体例としては、鉄、銅、ニッ ケル、クロム、コバルト、マグネシウム、マンガン、モリブデン、インジウム、鉛、パラジゥ ム、チタン、タングステン、ァノレミニゥム、金、白金、銀などの金属またはこれらを 2種 以上組み合わせた合金若しくは合金鋼などの金属材料、窒化珪素、炭化珪素、アル ミナなどのセラミックス材料、ァラミツド不繊布補強型エポキシ樹脂、ァラミツド不繊布 補強型ポリイミド樹脂、ァラミツド不繊布補強型ビスマレイミドトリアジン樹脂などの樹 脂材料が挙げられる。 In the above, various materials such as a metal material, a ceramic material, and a resin material can be used as a material constituting the frame plate 15, and specific examples thereof include iron, copper, nickel, chromium, and chromium. Metals such as cobalt, magnesium, manganese, molybdenum, indium, lead, palladium, titanium, tungsten, anoremium, gold, platinum, silver, or metal materials such as alloys or alloy steels combining two or more thereof, silicon nitride, carbonized Examples of such materials include ceramic materials such as silicon and alumina, epoxy resins reinforced with non-woven cloth of aramide, polyimide resins reinforced with non-woven woven cloth, and resin materials such as bismaleimide triazine resin reinforced with non-woven cloth of aramide.
また、バーンイン試験に用いられる異方導電性シート 10を製造する場合には、フレ ーム板 15を構成する材料としては、線熱膨張係数が検査対象であるウェハを構成す る材料の線熱膨張係数と同等若しくは近似したものを用いることが好ましい。具体的 には、ウェハを構成する材料がシリコンである場合には、線熱膨張係数が 1 · 5 X 10— 4 /K以下、特に、 3 X 10— 6— 8 X 10— 6/Kのものを用いることが好ましぐその具体例と しては、インバーなどのインバー型合金、エリンバーなどのエリンバー型合金、スーパ 一インバー、コバール、 42ァロイなどの金属材料、ァラミツド不繊布補強型有機樹脂 材料が挙げられる。 When the anisotropic conductive sheet 10 used for the burn-in test is manufactured, the material constituting the frame plate 15 has a linear thermal expansion coefficient of the linear thermal expansion coefficient of the material constituting the wafer to be inspected. It is preferable to use one having the same or approximate expansion coefficient. Specifically, when the material constituting the wafer is silicon, a coefficient of linear thermal expansion 1 · 5 X 10- 4 / K or less, in particular, 3 X 10- 6 - of 8 X 10- 6 / K Specific examples of the preferred materials include invar-type alloys such as invar, elinvar-type alloys such as elinvar, metal materials such as Super Invar, Kovar, 42 alloy, and aramid non-woven fabric reinforced organic resin. Materials.
また、フレーム板 15の厚みは、例えば 0. 03— lmm、好ましくは 0. 05-0. 25mm である。  The thickness of the frame plate 15 is, for example, 0.03 to lmm, preferably 0.05 to 0.25 mm.
[0041] 工程(b— 1) : Step (b-1):
工程 (b_l)においては、工程 (a-1)において形成された導電性材料層 1 OAに対 して、導電路形成部となる部分にそれ以外の部分より大きい強度の磁場を当該導電 性材料層 10Aの厚み方向に作用させることにより、当該導電路形成部となる部分に 導電性粒子を集合させて当該導電性材料層 10Aの厚み方向に並ぶよう配向させる 具体的に説明すると、図 6に示すように、上側電磁石 61および下側電磁石 65を有 してなり、それぞれの磁極 62, 66が互いに対向するよう配置された電磁石装置 60を 用意し、この電磁石装置 60における上側電磁石 61の磁極 62と下側電磁石 65の磁 極 66との間に、キヤビティ内に導電性材料層 1 OAが形成された金型を配置する。次 いで、電磁石装置 60を作動させることにより、上型 50の強磁性体層 52とこれに対応 する下型 55の強磁性体層 57との間には、上型 50の非磁性体層 53と下型 55の非磁 性体層 58との間より強度の大きい磁場が形成される。すなわち、導電性材料層 10A に、導電路形成部となる部分にそれ以外の部分より大きい強度の磁場を作用させ、こ れにより、導電性材料層 10A中に分散されている導電性粒子 Pを導電路形成部とな る部分に集合させて当該導電性材料層 10Aの厚み方向に並ぶよう配向させる。 ここで、導電性材料層 10Aに作用させる磁場の強度は、平均で 0. 02-2. 5テスラ となる大きさが好ましい。 In the step (b_l), the conductive material layer 1 OA formed in the step (a-1) is subjected to a magnetic field having a greater intensity than the other parts in the portion to be the conductive path forming portion, in the conductive material layer 1OA. By acting in the thickness direction of the layer 10A, conductive particles are gathered in a portion to be the conductive path forming portion and oriented so as to be arranged in the thickness direction of the conductive material layer 10A. More specifically, as shown in FIG. 6, an electromagnet device 60 having an upper electromagnet 61 and a lower electromagnet 65 and having the magnetic poles 62 and 66 opposed to each other is prepared. Between the magnetic pole 62 of the upper electromagnet 61 and the magnetic pole 66 of the lower electromagnet 65 in the device 60, a mold having the conductive material layer 1OA formed in the cavity is arranged. Next, by operating the electromagnet device 60, the nonmagnetic layer 53 of the upper die 50 is placed between the ferromagnetic layer 52 of the upper die 50 and the corresponding ferromagnetic layer 57 of the lower die 55. A stronger magnetic field is formed between the lower mold 55 and the non-magnetic layer 58 of the lower mold 55. That is, a magnetic field having a higher intensity is applied to the conductive material layer 10A on the portion serving as the conductive path forming portion, thereby dispersing the conductive particles P dispersed in the conductive material layer 10A. The conductive material layer 10A is oriented so as to be aligned in the thickness direction of the conductive material layer 10A by gathering in a portion to be a conductive path forming portion. Here, it is preferable that the intensity of the magnetic field applied to the conductive material layer 10A has an average value of 0.02 to 2.5 Tesla.
また、この工程 (b— 1)は、導電性材料層 1 OAの硬化を促進しない条件下、例えば 室温下で行われることが好ましレ、。  This step (b-1) is preferably performed under conditions that do not promote the curing of the conductive material layer 1OA, for example, at room temperature.
そして、第 1の方法においては、この工程 (b_l )において、導電性材料層 10Aに 対する磁場の作用を一旦停止し、その後、再度、導電性材料層 1 OAに対して磁場を 作用させる操作 (以下、この操作を「再作動操作」という。)が少なくとも 1回行われる。 この再作動操作は、具体的には、電磁石装置 60の作動を停止した後、再度、電磁 石装置 60を作動させることによって行われる。  Then, in the first method, in this step (b_l), the operation of the magnetic field on the conductive material layer 10A is temporarily stopped, and then, the operation of applying the magnetic field to the conductive material layer 1OA again ( Hereinafter, this operation is referred to as “re-operation operation.”) Is performed at least once. Specifically, this restarting operation is performed by stopping the operation of the electromagnet device 60 and then operating the electromagnetic device 60 again.
この再作動操作において、導電性材料層 10Aに対する磁場の作用を停止してから 、再度、導電性材料層 10Aに対して磁場を作用させるまでの時間(以下、「作動停止 時間」という。)は、導電性材料層 10Aの粘度、導電性材料層 1 OA中の導電性粒子 の割合、導電性粒子の平均粒子径などを考慮して適宜設定されるが、 200秒間以下 であることが好ましぐより好ましくは 60秒間以下である。  In this restarting operation, the time from stopping the action of the magnetic field on the conductive material layer 10A until the action of the magnetic field on the conductive material layer 10A again (hereinafter referred to as “operation stop time”) is as follows. It is appropriately set in consideration of the viscosity of the conductive material layer 10A, the ratio of the conductive particles in the conductive material layer 1OA, the average particle size of the conductive particles, and the like, but is preferably 200 seconds or less. More preferably, it is 60 seconds or less.
この作動停止時間が過大である場合には、工程 (b— 1)に要する時間が長くなりす ぎて製造工程全体を通しての生産効率が極めて低いものとなると共に、液状の高分 子物質形成材料の硬化が開始するため、導電性材料層 10Aの粘度が変化する結果 、十分な効果が得られないことがある。 If the operation stop time is excessively long, the time required for the step (b-1) becomes too long, so that the production efficiency throughout the entire production process is extremely low, and the liquid polymer material forming material is in a liquid state. Of the conductive material layer 10A changes due to the start of curing In some cases, a sufficient effect cannot be obtained.
[0043] また、再作動操作において、導電性材料層 1 OAに再度作用させる磁場は、その磁 束線の方向が停止前の磁場の磁束線の方向と同方向のものであっても、停止前の 磁場の磁束線の方向と逆方向のものであってもよいが、残留磁場の影響が少ない点 で、停止前の磁場の磁束線の方向と逆方向のものであることが好ましい。  [0043] In the restart operation, the magnetic field applied to the conductive material layer 1OA again does not stop even if the direction of the magnetic flux lines is the same as the direction of the magnetic flux lines of the magnetic field before the stop. The direction may be opposite to the direction of the magnetic flux lines of the previous magnetic field, but is preferably opposite to the direction of the magnetic flux lines of the magnetic field before the stop because the influence of the residual magnetic field is small.
また、磁束線の方向が停止前の磁場の磁束線と逆方向の磁場を作用させる場合に は、当該磁場の強度は、停止前の磁場の強度と同程度であることが好ましい。  When a magnetic field whose direction of the magnetic flux lines is opposite to that of the magnetic field before the stop is applied, the strength of the magnetic field is preferably substantially equal to the strength of the magnetic field before the stop.
磁束線の方向が停止前の磁場の磁束線の方向と逆方向である磁場を作用させる ためには、電磁石装置 60における上側電磁石 61の磁極 62の極性および下側電磁 石 65の磁極 66の極性を変更すればよレ、。  In order to apply a magnetic field in which the direction of the magnetic flux line is opposite to the direction of the magnetic flux line of the magnetic field before the stop, the polarity of the magnetic pole 62 of the upper electromagnet 61 and the polarity of the magnetic pole 66 of the lower electromagnetic stone 65 in the electromagnet device 60 are required. You can change it.
具体的に説明すると、導電性材料層 10Aに対して最初に磁場を作用させるときに、 例えば上側電磁石 61の磁極 62が N極および下側電磁石 65の磁極 66が S極となる 条件で、電磁石装置 60を作動させる。この状態においては,上型 50の強磁性体層 5 2が N極、下型 55の強磁性体層 57が S極として機能するため、図 7に示すように、導 電性材料層 10Aに作用する磁場における磁束線の方向は、上型 50の強磁性体層 5 2からこれに対応する下型 55の強磁性体層 57に向う方向、すなわち上から下に向か う方向である。このようにして、導電性材料層 1 OAに磁場を作用させた状態で所定の 時間が経過した後、電磁石装置 60の作動を一旦停止する。その後、上側電磁石 61 の磁極 62が S極および下側電磁石 65の磁極 66が N極となる条件で、再度、電磁石 装置 60を作動させる。この状態においては,上型 50の強磁性体層 52が S極、下型 5 5の強磁性体層 57が N極として機能するため、図 8に示すように、導電性材料層 10A に作用する磁場における磁束線の方向は、下型 55の強磁性体層 57からこれに対応 する上型 50の強磁性体層 52に向う方向、すなわち下から上に向かう方向である。 このような方法によれば、電磁石装置 60の作動を停止したときに、残留磁場が生じ ていても、電磁石装置 60を再度作動させることによって消磁されるので、残留磁場に よる影響が少なくなる。  More specifically, when a magnetic field is first applied to the conductive material layer 10A, for example, under the condition that the magnetic pole 62 of the upper electromagnet 61 is the N pole and the magnetic pole 66 of the lower electromagnet 65 is the S pole, Activate device 60. In this state, since the ferromagnetic layer 52 of the upper mold 50 functions as the N pole and the ferromagnetic layer 57 of the lower mold 55 functions as the S pole, as shown in FIG. The direction of the magnetic flux lines in the acting magnetic field is the direction from the ferromagnetic layer 52 of the upper die 50 to the corresponding ferromagnetic layer 57 of the lower die 55, that is, from the top to the bottom. In this way, the operation of the electromagnet device 60 is temporarily stopped after a predetermined time has elapsed while the magnetic field is applied to the conductive material layer 1OA. Thereafter, the electromagnet device 60 is operated again under the condition that the magnetic pole 62 of the upper electromagnet 61 becomes the S pole and the magnetic pole 66 of the lower electromagnet 65 becomes the N pole. In this state, since the ferromagnetic layer 52 of the upper mold 50 functions as the S pole and the ferromagnetic layer 57 of the lower mold 55 functions as the N pole, it acts on the conductive material layer 10A as shown in FIG. The direction of the magnetic flux lines in the applied magnetic field is the direction from the ferromagnetic layer 57 of the lower die 55 to the corresponding ferromagnetic layer 52 of the upper die 50, that is, the direction from the bottom to the top. According to such a method, when the operation of the electromagnet device 60 is stopped, even if a residual magnetic field is generated, it is demagnetized by operating the electromagnet device 60 again, so that the influence of the residual magnetic field is reduced.
[0044] また、再作動操作は、工程 (b— 1)において少なくとも 1回行われればよいが、繰り返 して行われることが好ましぐ具体的には、再作動操作の回数が 5回以上であることが 好ましく、より好ましくは 10— 500回である。 [0044] The restarting operation may be performed at least once in step (b-1), but is preferably performed repeatedly. Specifically, the number of restarting operations is five. That is all Preferably, it is 10-500 times.
再作動操作の回数が過小である場合には、導電性材料層 10A中の個々の導電性 粒子 Pが磁気力による拘束から開放される機会が少なぐ従って、導電性粒子 Pの移 動が再度開始する機会が少ないため、導電性材料層 1 OAの厚み方向に対してより 忠実な方向に導電性粒子 Pの連鎖が形成されにくくなり、その結果、得られる異方導 電性シートにおいて、隣接する導電路形成部間を結ぶような導電性粒子 Pの連鎖が 形成されることを確実に防止することが困難となることがある。  If the number of restart operations is too small, there is little chance that the individual conductive particles P in the conductive material layer 10A will be released from the restraint by the magnetic force. Since there is little opportunity to start, the chain of the conductive particles P is less likely to be formed in a direction more faithful to the thickness direction of the conductive material layer 1OA, and as a result, the adjacent anisotropic conductive sheet In some cases, it is difficult to reliably prevent the formation of a chain of conductive particles P connecting the conductive path forming portions.
[0045] このように、再作動操作を繰り返して行う場合においては、再度、導電性材料層に 対して磁場を作用させてから、当該導電性材料層に対する磁場の作用を停止するま での時間(以下、「再作動時間」という。)は、導電性材料層 10Aの粘度、導電性材料 層 10A中の導電性粒子の割合、導電性粒子の平均粒子径などを考慮して適宜設定 される力 10— 300秒間であることが好ましぐより好ましくは 10 200秒間である。 この再作動時間が過小である場合には、高い強度の磁場が形成されず、そのため 、導電性材料層 10A中の導電性粒子 Pが十分に移動せず、その結果、導電性材料 層 10Aの厚み方向に対してより忠実な方向に導電性粒子 Pの連鎖が形成されにくく なることがある。一方、再作動時間が過大である場合には、工程 (b-1)に要する時間 が長くなりすぎて製造工程全体を通しての生産効率が極めて低いものとなると共に、 液状の高分子物質形成材料の硬化が開始するため、導電性材料層 10Aの粘度が 変化する結果、十分な効果が得られなレ、ことがある。 [0045] As described above, in the case where the restarting operation is repeatedly performed, the time from when the magnetic field is again applied to the conductive material layer to when the magnetic field is not applied to the conductive material layer is stopped. (Hereinafter referred to as “reactivation time”) is appropriately set in consideration of the viscosity of the conductive material layer 10A, the ratio of the conductive particles in the conductive material layer 10A, the average particle size of the conductive particles, and the like. The force is preferably 10-300 seconds, more preferably 10 200 seconds. If the reactivation time is too short, a high-intensity magnetic field is not formed, so that the conductive particles P in the conductive material layer 10A do not move sufficiently, and as a result, the conductive material layer 10A In some cases, it is difficult to form a chain of the conductive particles P in a direction more faithful to the thickness direction. On the other hand, if the reactivation time is too long, the time required for the step (b-1) becomes too long, and the production efficiency throughout the entire production process becomes extremely low. Since curing starts, the viscosity of the conductive material layer 10A changes, and as a result, a sufficient effect may not be obtained.
[0046] 以上のようにして、工程(b— 1)においては、図 9に示すように、上型 50の強磁性体 層 52とこれに対応する下型 55の強磁性体層 57との間の部分、すわなち導電路形成 部となる部分に導電性粒子 Pが厚み方向に配向した状態で密に含有された導電性 材料層 1 OAが形成される。 As described above, in the step (b-1), as shown in FIG. 9, the ferromagnetic layer 52 of the upper die 50 and the ferromagnetic layer 57 of the lower die 55 corresponding thereto are formed. A conductive material layer 1OA densely contained with conductive particles P oriented in the thickness direction is formed in a portion therebetween, that is, a portion serving as a conductive path forming portion.
[0047] 工程(c一 1) : Step (c-1):
工程 (c一 1)においては、導電路形成部となる部分に導電性粒子 Pが厚み方向に配 向した状態で密に含有された導電性材料層 1 OAに対して、硬化処理を行う。  In the step (c-11), a curing treatment is performed on the conductive material layer 1OA in which the conductive particles P are densely contained in a portion to be the conductive path forming portion in a state of being oriented in the thickness direction.
導電性材料層 1 OAの硬化処理は、当該導電性材料層 1 OAに対する磁場の作用を 停止した後に行われても、導電性材料層 10Aに対して磁場を作用させながら行われ てもよいが、磁場を作用させながら行われることが好ましい。 The hardening treatment of the conductive material layer 1 OA is performed after stopping the action of the magnetic field on the conductive material layer 1 OA, and is performed while applying the magnetic field to the conductive material layer 10 A. It may be carried out while applying a magnetic field.
また、導電性材料層 1 OAの硬化処理は、使用される材料によって異なる力 通常、 加熱処理によって行われる。具体的な加熱温度および加熱時間は、導電性材料層 1 OAを構成する高分子物質形成材料の種類などを考慮して適宜設定される。  The curing treatment of the conductive material layer 1OA is generally performed by a heat treatment which varies depending on the material used. The specific heating temperature and heating time are appropriately set in consideration of the type of the polymer substance forming material constituting the conductive material layer 1OA.
そして、導電性材料層 10Aの硬化処理が終了した後、例えは室温に冷却して金型 力 取り出すことにより、図 1および図 2に示す異方導電性シート 10が得られる。  Then, after the curing treatment of the conductive material layer 10A is completed, for example, by cooling to room temperature and removing the mold force, the anisotropic conductive sheet 10 shown in FIGS. 1 and 2 is obtained.
[0048] 以上のような第 1の方法によれば、導電性材料層 10Aに対する磁場の作用を一旦 停止するため、この停止状態においては、導電性材料層 10A中の個々の導電性粒 子 Pが磁気力による拘束から開放される。そして、導電性材料層 1 OAに対して、再度 、厚み方向に磁場を作用させることにより、この動作がトリガーとなって、導電性粒子 Pの移動が再度開始するため、導電性材料層 10Aの厚み方向に対してより忠実な方 向に導電性粒子 Pの連鎖が形成される。 According to the first method as described above, since the action of the magnetic field on the conductive material layer 10A is temporarily stopped, the individual conductive particles P in the conductive material layer 10A are in this stopped state. Is released from the constraint by the magnetic force. Then, by applying a magnetic field to the conductive material layer 1OA again in the thickness direction, this operation triggers and the movement of the conductive particles P starts again. A chain of conductive particles P is formed in a direction more faithful to the thickness direction.
このように、厚み方向に対して傾斜した方向に導電性粒子 Pの連鎖が形成されるこ とを抑制することができるので、小さい加圧力で加圧しても、電気抵抗値が低くて安 定な導電性を示し、しかも、隣接する導電路形成部間を結ぶような導電性粒子 Pの連 鎖が形成されることが防止されるので、導電路形成部 11のピッチが小さいものであつ ても、隣接する導電路形成部 11間に所要の絶縁性が確実に得られる異方導電性シ ート 10を製造することができる。  In this way, the formation of chains of conductive particles P in a direction inclined with respect to the thickness direction can be suppressed, so that even when pressed with a small pressing force, the electric resistance value is low and stable. Since the conductive particles P exhibit high conductivity and prevent the formation of a chain of conductive particles P that connects adjacent conductive path forming portions, the pitch of the conductive path forming portions 11 is small. In addition, it is possible to manufacture the anisotropic conductive sheet 10 that ensures the required insulation between the adjacent conductive path forming portions 11.
[0049] [第 2の方法] [Second method]
第 2の方法は、図 10に示すような構成の異方導電性シート 20を製造する方法であ る。  The second method is a method of manufacturing an anisotropic conductive sheet 20 having a configuration as shown in FIG.
異方導電性シート 20について説明すると、この異方導電性シート 20は分散型異方 導電性シートであって、図 11にも拡大して示すように、絶縁性の弾性高分子物質 E 中に、導電性粒子 Pが厚み方向に並ぶよう配向して導電性粒子 Pの連鎖が形成され た状態で、かつ、導電性粒子 Pの連鎖が面方向に均一に分布した状態で含有されて なり、表面の任意の箇所を厚み方向に加圧することにより、当該箇所において厚み 方向に導電性粒子 Pの連鎖による導電路が形成されるものである。  The anisotropic conductive sheet 20 will be described. The anisotropic conductive sheet 20 is a dispersion-type anisotropic conductive sheet. As shown in FIG. The conductive particles P are aligned in the thickness direction to form a chain of the conductive particles P, and the chains of the conductive particles P are uniformly distributed in the plane direction. By pressing an arbitrary location on the surface in the thickness direction, a conductive path is formed by a chain of the conductive particles P in the thickness direction at the location.
ここで、異方導電性シート 20における導電性粒子 Pの含有割合は、体積分率で 10 一 60%、好ましくは 15— 50%であることが好ましい。この割合が 10%未満の場合に は、十分に電気抵抗値の小さい導電路形成部 11が得られないことがある。一方、こ の割合が 60%を超える場合には、得られる異方導電性シート 20は脆弱なものとなり やすぐ異方導電性シート 20として必要な弾性が得られないことがある。 Here, the content ratio of the conductive particles P in the anisotropic conductive sheet 20 is 10% by volume. It is preferably 60%, preferably 15-50%. If the ratio is less than 10%, the conductive path forming portion 11 having a sufficiently small electric resistance may not be obtained. On the other hand, when this ratio exceeds 60%, the obtained anisotropic conductive sheet 20 becomes brittle, and the elasticity required for the anisotropic conductive sheet 20 may not be obtained immediately.
[0050] そして、第 2の方法においては、 [0050] Then, in the second method,
適宜の支持体上に、硬化されて絶縁性の弾性高分子物質となる液状の高分子物 質形成材料中に磁性を示す導電性粒子が含有されてなる導電性材料層を形成する 工程 (a_2)と、  Forming a conductive material layer on a suitable support, in which conductive particles exhibiting magnetism are contained in a liquid polymer material forming material which is cured to become an insulating elastic polymer material (a_2 )When,
前記導電性材料層に対して、その厚み方向に磁場を作用させることにより、導電性 粒子を当該導電性材料層の厚み方向に配向させる工程 (b— 2)と、  (B-2) a step of applying a magnetic field to the conductive material layer in the thickness direction to orient the conductive particles in the thickness direction of the conductive material layer;
前記導電性材料層に対する磁場の作用を停止した後または磁場の作用を継続し ながら、当該導電性材料層を硬化処理する工程 (c一 2)と  (C-12) a step of curing the conductive material layer after stopping the action of the magnetic field on the conductive material layer or while continuing the action of the magnetic field.
を経由して、異方導電性シート 20が製造される。  Through this, the anisotropic conductive sheet 20 is manufactured.
以下、各工程について具体的に説明する。  Hereinafter, each step will be specifically described.
[0051] 工程(a-2) : Step (a-2):
工程 (a— 2)においては、先ず、第 1の方法における工程 (a— 1)と同様にして、硬化 されて絶縁性の弾性高分子物質となる液状の高分子物質形成材料中に磁性を示す 導電性粒子を分散させることにより、導電性材料を調製する。  In step (a-2), first, in the same manner as in step (a-1) in the first method, magnetism is added to the liquid polymer substance forming material which is cured to become an insulating elastic polymer substance. A conductive material is prepared by dispersing the conductive particles shown.
そして、図 12に示すように、一方の支持体 26、他方の支持体 27およびスぺーサー 28からなる成形部材 25を用意し、この成形部材 25における他方の支持体 27上に、 導電性材料を、例えばスクリーン印刷法によって塗布し、その後、一方の支持体 26 をスぺーサー 28を介してを重ね合わせることにより、図 13に示すように、一方の支持 体 26と他方の支持体 27との間に導電性材料層 20Aが形成される。この導電性材料 層 20Aにおいては、図 14に示すように、導電性粒子 Pは当該導電性材料層 20A中 に分散された状態である。  Then, as shown in FIG. 12, a molded member 25 including one support 26, the other support 27, and a spacer 28 is prepared, and a conductive material is formed on the other support 27 of the molded member 25. Is applied by, for example, a screen printing method, and then one of the supports 26 is overlapped with a spacer 28 via a spacer 28, thereby forming one of the supports 26 and the other of the supports 27 as shown in FIG. A conductive material layer 20A is formed between them. In the conductive material layer 20A, as shown in FIG. 14, the conductive particles P are in a state of being dispersed in the conductive material layer 20A.
[0052] 工程(b— 2) : [0052] Step (b-2):
工程 (b_2)においては、工程(a— 2)において形成された導電性材料層 20Aに対 して、その厚み方向に作用させることにより、導電性粒子を当該導電性材料層 20A の厚み方向に配向させる。 In the step (b_2), the conductive particles are caused to act on the conductive material layer 20A formed in the step (a-2) in the thickness direction, whereby the conductive material layer 20A is formed. In the thickness direction.
具体的に説明すると、図 15に示すように、上側電磁石 61および下側電磁石 65を 有してなり、それぞれの磁極 62, 66が互いに対向するよう配置された電磁石装置 60 を用意し、この電磁石装置 60における上側電磁石 61の磁極 62と下側電磁石 65の 磁極 66との間に、導電性材料層 20Aが形成された成形部材 25を配置する。次いで 、電磁石装置 60を作動させることにより、導電性材料層 20Aに対してその厚み方向 に磁場を作用させ、これにより、導電性材料層 20A中に分散されている導電性粒子 Pを当該導電性材料層 20Aの厚み方向に並ぶよう配向させる。  More specifically, as shown in FIG. 15, an electromagnet device 60 having an upper electromagnet 61 and a lower electromagnet 65 and having the magnetic poles 62 and 66 opposed to each other is prepared. The molded member 25 on which the conductive material layer 20A is formed is arranged between the magnetic pole 62 of the upper electromagnet 61 and the magnetic pole 66 of the lower electromagnet 65 in the device 60. Next, by operating the electromagnet device 60, a magnetic field is applied to the conductive material layer 20A in the thickness direction thereof, thereby causing the conductive particles P dispersed in the conductive material layer 20A to become conductive. It is oriented so as to be aligned in the thickness direction of the material layer 20A.
ここで、導電性材料層 20Aに作用させる磁場の強度は、平均で 0. 02-2. 5テスラ となる大きさが好ましい。  Here, it is preferable that the intensity of the magnetic field applied to the conductive material layer 20A has an average value of 0.02 to 2.5 Tesla.
また、この工程 (b_2)は、導電性材料層 20Aの硬化を促進しない条件下、例えば 室温下で行われることが好ましレ、。  This step (b_2) is preferably performed under conditions that do not promote the curing of the conductive material layer 20A, for example, at room temperature.
[0053] そして、第 2の方法においては、この工程(b_2)において、電磁石装置 60の作動 を停止した後、再度、電磁石装置 60を作動させることによって、再作動操作が行わ れる。 Then, in the second method, in this step (b_2), after the operation of the electromagnet device 60 is stopped, the electromagnet device 60 is operated again to perform a re-operation operation.
この再作動操作において、導電性材料層 20Aに再度作用させる磁場は、その磁束 線の方向が停止前の磁場の磁束線の方向と同方向のものであっても、停止前の磁 場の磁束線の方向と逆方向のものであってもよいが、残留磁場の影響が少ない点で 、逆方向のものであることが好ましい。また、磁束線の方向が停止前の磁場の磁束線 と逆方向の磁場を作用させる場合には、当該磁場の強度は、停止前の磁場の強度と 同程度であることが好ましレ、。 また、再作動操作は、工程 (b— 2)におレ、て少なくとも 1回行われればよいが、繰り返して行われることが好ましぐ具体的には、再作動操作 の回数が 5回以上であることが好ましぐより好ましくは 10— 500回である。  In this restarting operation, the magnetic field that is applied to the conductive material layer 20A again, even if the direction of the magnetic flux line is the same as the direction of the magnetic flux line of the magnetic field before the stop, is the same as that of the magnetic field before the stop. It may be in the opposite direction to the direction of the line, but is preferably in the opposite direction in that the effect of the residual magnetic field is small. Further, when a magnetic field whose direction of the magnetic flux lines is opposite to that of the magnetic field before the stop is applied, it is preferable that the strength of the magnetic field is substantially equal to the strength of the magnetic field before the stop. In addition, the restarting operation may be performed at least once in step (b-2), but is preferably performed repeatedly. Specifically, the number of restarting operations is 5 or more. Is more preferably 10 to 500 times.
再作動操作の具体的な条件および再作動操作を繰り返す場合の具体的な条件は 、前述の第 1の方法における工程 (b_l)で示したものと同様である。  The specific conditions of the reactivation operation and the specific conditions when the reactivation operation is repeated are the same as those shown in the step (b_l) in the first method described above.
以上のようにして、工程 (b_2)においては、図 16に示すように、導電性粒子 Pが厚 み方向に配向した状態で含有された導電性材料層 20Aが形成される。  As described above, in the step (b_2), as shown in FIG. 16, the conductive material layer 20A containing the conductive particles P in a state of being oriented in the thickness direction is formed.
[0054] 工程(c一 2) : 工程 (c一 2)においては、導電性粒子 Pが厚み方向に配向した状態で含有された導 電性材料層 20Aに対して、硬化処理を行う。 Step (c-1 2): In the step (c-12), a hardening treatment is performed on the conductive material layer 20A containing the conductive particles P in a state of being oriented in the thickness direction.
導電性材料層 20Aの硬化処理は、当該導電性材料層 20Aに対する磁場の作用を 停止した後に行われても、導電性材料層 20Aに対して磁場を作用させながら行われ てもよいが、磁場を作用させながら行われることが好ましい。  The hardening treatment of the conductive material layer 20A may be performed after stopping the action of the magnetic field on the conductive material layer 20A, or may be performed while applying the magnetic field to the conductive material layer 20A. It is preferable to carry out the reaction.
また、導電性材料層 20Aの硬化処理は、使用される材料によって異なるが、通常、 加熱処理によって行われる。具体的な加熱温度および加熱時間は、導電性材料層 2 OAを構成する高分子物質形成材料の種類などを考慮して適宜設定される。  The curing treatment of the conductive material layer 20A varies depending on the material used, but is usually performed by a heating treatment. The specific heating temperature and heating time are appropriately set in consideration of the type of the polymer substance forming material constituting the conductive material layer 2OA.
そして、導電性材料層 20Aの硬化処理が終了した後、例えは室温に冷却して成形 部材から取り出すことによって、図 10および図 11に示す異方導電性シート 20が得ら れる。  After the curing process of the conductive material layer 20A is completed, for example, the conductive material layer is cooled to room temperature and taken out of the molded member, whereby the anisotropic conductive sheet 20 shown in FIGS. 10 and 11 is obtained.
[0055] このような第 2の方法によれば、導電性材料層 20Aに対する磁場の作用を一旦停 止するため、この停止状態においては、導電性材料層 20A中の個々の導電性粒子 Pが磁気力による拘束から開放される。そして、導電性材料層 20Aに対して、再度、 厚み方向に磁場を作用させることにより、この動作がトリガーとなって、導電性粒子 P の移動が再度開始するため、導電性材料層 20Aの厚み方向に対してより忠実な方 向に導電性粒子 Pの連鎖が形成される。  [0055] According to such a second method, since the action of the magnetic field on the conductive material layer 20A is temporarily stopped, the individual conductive particles P in the conductive material layer 20A are in this stopped state. It is released from the restraint by the magnetic force. Then, by applying a magnetic field again to the conductive material layer 20A in the thickness direction, this operation triggers and the movement of the conductive particles P starts again, so that the thickness of the conductive material layer 20A is reduced. A chain of conductive particles P is formed in a direction more faithful to the direction.
このように、厚み方向に対して傾斜した方向に導電性粒子 Pの連鎖が形成されるこ とを抑制することができるので、小さい加圧力で加圧しても、電気抵抗値が低くて安 定な導電性を示し、しかも、高い分解能を有する異方導電性シート 20を確実に製造 すること力 Sできる。  In this way, the formation of chains of conductive particles P in a direction inclined with respect to the thickness direction can be suppressed, so that even when pressed with a small pressing force, the electric resistance value is low and stable. It is possible to surely manufacture the anisotropic conductive sheet 20 having high conductivity and high resolution.
[0056] [第 3の方法]  [0056] [Third method]
第 3の方法は、図 17に示すような構成の異方導電性シート 30を製造する方法であ る。  The third method is a method of manufacturing an anisotropic conductive sheet 30 having a configuration as shown in FIG.
異方導電性シート 30について説明すると、この異方導電性シート 30は偏在型異方 導電性シートであって、接続すべき電極例えば検查対象である回路装置の被検查 電極のパターンに対応するパターンに従って配置された、それぞれ厚み方向に伸び る複数の導電路形成部 31と、これらの導電路形成部 31を相互に絶縁する絶縁部 32 とにより構成されている。導電路形成部 31の各々は、図 18に拡大して示すように、絶 縁性の弾性高分子物質 E中に導電性粒子 Pが厚み方向に並ぶよう配向した状態で 含有されてなるものであって、厚み方向に加圧されることにより、厚み方向に導電性 粒子 Pの連鎖による導電路が形成されるものである。これに対して、絶縁部 32は、絶 縁性の弾性高分子物質よりなり、導電性粒子 Pが全く含有されていないものであって 、厚み方向および面方向に導電性を示さないものである。また、この例の異方導電性 シート 30においては、導電路形成部 31の各々は、絶縁部 32の一面(図において上 面)から突出するよう形成されている。 The anisotropic conductive sheet 30 will be described. The anisotropic conductive sheet 30 is an unevenly distributed anisotropic conductive sheet and corresponds to an electrode to be connected, for example, a pattern of a test electrode of a circuit device to be detected. A plurality of conductive path forming portions 31 each extending in the thickness direction, arranged in accordance with a pattern to be formed, and an insulating portion 32 for insulating these conductive path forming portions 31 from each other. It consists of: Each of the conductive path forming portions 31 is, as shown in an enlarged view in FIG. 18, formed by containing conductive particles P in an insulating elastic polymer material E in a state of being aligned in the thickness direction. In addition, by applying pressure in the thickness direction, a conductive path is formed by a chain of conductive particles P in the thickness direction. On the other hand, the insulating portion 32 is made of an insulating elastic polymer material, does not contain the conductive particles P at all, and does not exhibit conductivity in the thickness direction and the plane direction. . Further, in the anisotropic conductive sheet 30 of this example, each of the conductive path forming portions 31 is formed so as to protrude from one surface (the upper surface in the drawing) of the insulating portion 32.
ここで、導電路形成部 31における導電性粒子 Pの含有割合は、体積分率で 10 6 0%、好ましくは 15— 50%であることが好ましい。この割合が 10%未満の場合には、 十分に電気抵抗値の小さい導電路形成部 31が得られないことがある。一方、この割 合が 60%を超える場合には、得られる導電路形成部 31は脆弱なものとなりやすぐ 導電路形成部 31として必要な弾性が得られなレ、こと力 Sある。  Here, the content ratio of the conductive particles P in the conductive path forming portion 31 is preferably 1060% by volume, and more preferably 15 to 50%. If this ratio is less than 10%, the conductive path forming portion 31 having a sufficiently small electric resistance value may not be obtained. On the other hand, if this ratio exceeds 60%, the obtained conductive path forming portion 31 becomes fragile, and the elasticity required for the conductive path forming portion 31 cannot be obtained immediately.
[0057] そして、第 3の方法においては、 [0057] Then, in the third method,
形成すべき導電路形成部のパターンに対応するパターンに従って複数の貫通孔 が形成された、絶縁性の弾性高分子物質よりなる絶縁部用シート体を用意し、当該 絶縁部用シート体の各貫通孔内に充填された、硬化されて絶縁性の弾性高分子物 質となる液状の高分子物質形成材料中に導電性粒子が含有されてなる導電性材料 層を形成する工程 (a— 3)と、  An insulating sheet body made of an insulating elastic polymer material having a plurality of through holes formed according to a pattern corresponding to a pattern of a conductive path forming portion to be formed is prepared. Forming a conductive material layer in which conductive particles are contained in a liquid polymer material forming material that becomes a cured insulating elastic polymer material filled in the pores (a-3) When,
前記導電性材料層に対して、その厚み方向に磁場を作用させることにより、導電性 粒子を当該導電性材料層の厚み方向に配向させる工程 (b— 3)と、  (B-3) a step of applying a magnetic field to the conductive material layer in the thickness direction thereof to orient the conductive particles in the thickness direction of the conductive material layer;
前記導電性材料層に対する磁場の作用を停止した後または磁場の作用を継続し ながら、当該導電性材料層を硬化処理する工程 (c一 3)と  (C-13) curing the conductive material layer after stopping the action of the magnetic field on the conductive material layer or while continuing the action of the magnetic field.
を経由して、異方導電性シート 30が製造される。  Through this, the anisotropic conductive sheet 30 is manufactured.
以下、各工程について具体的に説明する。  Hereinafter, each step will be specifically described.
[0058] 工程(a_3) : Step (a_3):
工程 (a— 3)においては、先ず、図 19に示すように、形成すべき導電路形成部 31の パターンに対応するパターンに従って複数の貫通孔 31Hが形成された、絶縁性の弾 性高分子物質よりなる絶縁部用シート体 32Aを製造する。 In the step (a-3), first, as shown in FIG. 19, an insulating elastic member in which a plurality of through holes 31H are formed in accordance with a pattern corresponding to the pattern of the conductive path forming portion 31 to be formed. An insulating sheet 32A made of a conductive polymer material is manufactured.
具体的に説明すると、図 20に示すように、絶縁性の弾性高分子物質よりなるシート 体 32Bを用意し、このシート体 32B上に、形成すべき導電路形成部のパターンに対 応するパターンに従って複数の開口 36が形成されたレーザー用マスク 35を配置し、 当該シート体 32Bに、レーザー用マスク 35の開口 36を介してレーザー加工を施すこ とにより、図 21に示すように、形成すべき導電路形成部のパターンに対応するパター ンに従って複数の貫通孔 31Hが形成された絶縁部用シート体 32Aが得られる。 一方、第 1の方法における工程(a— 1)と同様にして、硬化されて絶縁性の弾性高分 子物質となる液状の高分子物質形成材料中に導電性粒子を分散させることにより、 導電性材料を調製する。  More specifically, as shown in FIG. 20, a sheet 32B made of an insulating elastic polymer material is prepared, and a pattern corresponding to the pattern of the conductive path forming portion to be formed is prepared on the sheet 32B. A laser mask 35 having a plurality of openings 36 formed according to the above is arranged, and the sheet 32B is subjected to laser processing through the openings 36 of the laser mask 35, thereby forming the sheet 32B as shown in FIG. An insulating portion sheet 32A in which a plurality of through holes 31H are formed in accordance with the pattern corresponding to the pattern of the conductive path forming portion to be obtained is obtained. On the other hand, in the same manner as in the step (a-1) in the first method, the conductive particles are dispersed in a liquid polymer material forming material which is cured to become an insulating elastic polymer material, thereby obtaining a conductive material. Prepare a conductive material.
そして、絶縁部用シート体 32A上に配置されたレーザー用マスク 35の表面に、導 電性材料を、例えばスクリーン印刷法によって塗布することにより、図 22に示すように 、絶縁部用シート体 32の各貫通孔 31Hおよびレーザー用マスク 35の各開口 36内に 導電性材料層 31 Aが形成され、これにより、絶縁部用シート体 32Aと、その一面に配 置されたレーザー用マスク 35と、絶縁部用シート体 32の各貫通孔 31Hおよびレーザ 一用マスク 35の各開口 36内に形成された導電性材料層 31 Aとからなる中間複合体 34が得られる。この中間複合体 34における導電性材料層 31Aにおいては、図 23に 示すように、導電性粒子 Pは当該導電性材料層 31A中に分散された状態である。 工程 (b-3):  Then, a conductive material is applied to the surface of the laser mask 35 disposed on the insulating portion sheet 32A by, for example, a screen printing method, thereby forming the insulating portion sheet 32 as shown in FIG. A conductive material layer 31A is formed in each of the through holes 31H and each of the openings 36 of the laser mask 35, thereby forming an insulating sheet 32A and a laser mask 35 disposed on one surface thereof. An intermediate composite 34 including the through-holes 31H of the insulating sheet 32 and the conductive material layers 31A formed in the openings 36 of the laser mask 35 is obtained. In the conductive material layer 31A of the intermediate composite 34, as shown in FIG. 23, the conductive particles P are in a state of being dispersed in the conductive material layer 31A. Step (b-3):
工程 (b-3)においては、工程 (a— 3)において形成された導電性材料層 31 Aに対 して、その厚み方向に作用させることにより、導電性粒子を当該導電性材料層 31 A の厚み方向に配向させる。  In the step (b-3), the conductive particles act on the conductive material layer 31A formed in the step (a-3) in the thickness direction thereof, so that the conductive particles are applied to the conductive material layer 31A. In the thickness direction.
具体的に説明すると、図 24に示すように、上側電磁石 61および下側電磁石 65を 有してなり、それぞれの磁極 62, 66が互いに対向するよう配置された電磁石装置 60 を用意し、この電磁石装置 60における上側電磁石 61の磁極 62と下側電磁石 65の 磁極 66との間に、中間複合体 34を配置する。次いで、電磁石装置 60を作動させる ことにより、中間複合体 34における導電性材料層 31Aの各々に対してその厚み方向 に磁場を作用させ、これにより、導電性材料層 31A中に分散されている導電性粒子 Pを当該導電性材料層 31Aの厚み方向に並ぶよう配向させる。 More specifically, as shown in FIG. 24, an electromagnet device 60 having an upper electromagnet 61 and a lower electromagnet 65 and having the magnetic poles 62 and 66 opposed to each other is prepared. The intermediate composite 34 is arranged between the magnetic pole 62 of the upper electromagnet 61 and the magnetic pole 66 of the lower electromagnet 65 in the device 60. Next, by operating the electromagnet device 60, a magnetic field is applied to each of the conductive material layers 31A in the intermediate composite 34 in the thickness direction thereof, whereby the conductive material dispersed in the conductive material layer 31A is formed. Sex particles P is oriented so as to be aligned in the thickness direction of the conductive material layer 31A.
ここで、導電性材料層 31Aに作用させる磁場の強度は、平均で 0. 02-2. 5テスラ となる大きさが好ましい。  Here, it is preferable that the intensity of the magnetic field applied to the conductive material layer 31A has an average value of 0.02 to 2.5 Tesla.
また、この工程 (b_3)は、導電性材料層 31Aの硬化を促進しない条件下、例えば 室温下で行われることが好ましレ、。  In addition, this step (b_3) is preferably performed under conditions that do not promote curing of the conductive material layer 31A, for example, at room temperature.
[0060] そして、第 3の方法においては、この工程 (b_3)において、電磁石装置 60の作動 を停止した後、再度、電磁石装置 60を作動させることによって、再作動操作が行わ れる。 Then, in the third method, in this step (b_3), after the operation of the electromagnet device 60 is stopped, the electromagnet device 60 is operated again to perform a re-operation operation.
この再作動操作において、導電性材料層 31 Aに再度作用させる磁場は、その磁束 線の方向が停止前の磁場の磁束線の方向と同方向のものであっても、停止前の磁 場の磁束線の方向と逆方向のものであってもよいが、残留磁場の影響が少ない点で 、逆方向のものであることが好ましい。また、磁束線の方向が停止前の磁場の磁束線 と逆方向の磁場を作用させる場合には、当該磁場の強度は、停止前の磁場の強度と 同程度であることが好ましレ、。 また、再作動操作は、工程 (b— 3)におレ、て少なくとも 1回行われればよいが、繰り返して行われることが好ましぐ具体的には、再作動操作 の回数が 5回以上であることが好ましぐより好ましくは 10— 500回である。  In this restart operation, the magnetic field applied again to the conductive material layer 31A is the same as that of the magnetic field before the stop even if the direction of the magnetic flux lines is the same as the direction of the magnetic flux lines of the magnetic field before the stop. It may be in the opposite direction to the direction of the magnetic flux lines, but is preferably in the opposite direction in that the effect of the residual magnetic field is small. Further, when a magnetic field whose direction of the magnetic flux lines is opposite to that of the magnetic field before the stop is applied, it is preferable that the strength of the magnetic field is substantially equal to the strength of the magnetic field before the stop. The restart operation may be performed at least once in step (b-3), but is preferably performed repeatedly. Specifically, the number of restart operations is 5 or more. Is more preferably 10 to 500 times.
再作動操作の具体的な条件および再作動操作を繰り返す場合の具体的な条件は 、前述の第 1の方法における工程 (b— 1)で示したものと同様である。  The specific conditions for the reactivation operation and the specific conditions for repeating the reactivation operation are the same as those described in the step (b-1) in the first method described above.
以上のようにして、工程 (b-3)においては、図 25に示すように、導電性粒子 Pが厚 み方向に配向した状態で密に含有された導電性材料層 31 Aが形成される。  As described above, in the step (b-3), as shown in FIG. 25, a conductive material layer 31A densely contained with the conductive particles P oriented in the thickness direction is formed. .
[0061] 工程(c一 3) : Step (c-1 3):
工程 (c_2)においては、導電性粒子 Pが厚み方向に配向した状態で含有された導 電性材料層 31Aの各々に対して、硬化処理を行う。  In the step (c_2), a hardening treatment is performed on each of the conductive material layers 31A in which the conductive particles P are oriented in the thickness direction.
導電性材料層 31 Aの硬化処理は、当該導電性材料層 31Aの各々に対する磁場 の作用を停止した後に行われても、導電性材料層 31Aの各々に対して磁場を作用さ せながら行われてもよいが、磁場を作用させながら行われることが好ましい。  The hardening treatment of the conductive material layer 31A is performed after applying the magnetic field to each of the conductive material layers 31A, even after stopping the action of the magnetic field on each of the conductive material layers 31A. It may be carried out while applying a magnetic field.
また、導電性材料層 31 Aの硬化処理は、使用される材料によって異なるが、通常、 加熱処理によって行われる。具体的な加熱温度および加熱時間は、導電性材料層 3 1Aを構成する高分子物質形成材料の種類などを考慮して適宜設定される。 Further, the curing treatment of the conductive material layer 31A varies depending on the material used, but is usually performed by a heating treatment. The specific heating temperature and heating time depend on the conductive material layer 3. It is appropriately set in consideration of the type of the polymer substance forming material constituting 1A and the like.
以上のようにして、導電性材料層 31Aの各々が硬化処理されることにより、複数の 導電路形成部が絶縁部によって相互に絶縁された状態で当該絶縁部に一体的に形 成される。 そして、導電性材料層 31 Aの硬化処理が終了した後、例えは室温に冷 却し、レーザー用マスク 35を除去することによって、図 17および図 18に示す異方導 電性シート 30が得られる。  As described above, by curing each of the conductive material layers 31A, the plurality of conductive path forming portions are formed integrally with the insulating portion while being insulated from each other by the insulating portion. Then, after the curing treatment of the conductive material layer 31A is completed, for example, it is cooled to room temperature and the laser mask 35 is removed, whereby the anisotropic conductive sheet 30 shown in FIGS. 17 and 18 is obtained. Can be
[0062] このような第 3の方法によれば、導電性材料層 31Aに対する磁場の作用を一旦停 止するため、この停止状態においては、導電性材料層 31A中の個々の導電性粒子 Pが磁気力による拘束から開放される。そして、導電性材料層 31 Aに対して、再度、 厚み方向に磁場を作用させることにより、この動作がトリガーとなって、導電性粒子 P の移動が再度開始するため、導電性材料層 31Aの厚み方向に対してより忠実な方 向に導電性粒子 Pの連鎖が形成される。 According to such a third method, since the action of the magnetic field on the conductive material layer 31A is temporarily stopped, the individual conductive particles P in the conductive material layer 31A are in this stopped state. It is released from the restraint by the magnetic force. Then, by applying a magnetic field to the conductive material layer 31A again in the thickness direction, this operation triggers and the movement of the conductive particles P starts again, so that the conductive material layer 31A A chain of conductive particles P is formed in a direction more faithful to the thickness direction.
このように、厚み方向に対して傾斜した方向に導電性粒子 Pの連鎖が形成されるこ とを抑制することができるので、小さい加圧力で加圧しても、電気抵抗値が低くて安 定な導電性を示す異方導電性シート 30を製造することができる。  In this way, the formation of chains of conductive particles P in a direction inclined with respect to the thickness direction can be suppressed, so that even when pressed with a small pressing force, the electric resistance value is low and stable. An anisotropic conductive sheet 30 exhibiting excellent conductivity can be manufactured.
また、絶縁部用シート体 32Aの各貫通孔 31H内に導電路形成部 31を形成するた め、導電性粒子 Pが全く存在しない絶縁部 32が形成されるので、導電路形成部 31 のピッチが小さいものであっても、隣接する導電路形成部 31間に所要の絶縁性が確 実に得られる異方導電性シート 30を製造することができる。  Further, since the conductive path forming part 31 is formed in each through hole 31H of the insulating part sheet 32A, the insulating part 32 in which the conductive particles P are not present at all is formed. It is possible to manufacture the anisotropic conductive sheet 30 that ensures the required insulation between the adjacent conductive path forming portions 31 even if the sheet is small.
[0063] 本発明の異方導電性シートの製造方法は、上記の第 1の方法一第 3の方法に限定 されるものではなぐ硬化されて絶縁性の弾性高分子物質となる液状の高分子物質 形成材料中に導電性粒子が含有されてなる導電性材料層に対して、その厚み方向 に磁場を作用させることにより、導電性粒子を当該導電性材料層の厚み方向に配向 させる工程を有する全ての製造方法に適用することができる。 [0063] The method for producing an anisotropic conductive sheet of the present invention is not limited to the first method to the third method, but is a liquid polymer that is cured to become an insulating elastic polymer material. A step of applying a magnetic field in the thickness direction to the conductive material layer containing the conductive particles in the substance forming material to orient the conductive particles in the thickness direction of the conductive material layer. It can be applied to all manufacturing methods.
実施例  Example
[0064] 以下、本発明に係る異方導電性シートの製造方法の具体的な実施例について説 明する力 本発明はこれらに限定されるものではない。  Hereinafter, the ability to explain specific examples of the method for producing an anisotropic conductive sheet according to the present invention is not limited thereto.
[0065] 〈実施例 1〉 (1)フレーム板の作製: <Example 1> (1) Fabrication of frame plate:
以下の仕様のフレーム板を作製した。  A frame plate having the following specifications was produced.
フレーム板は、材質が 42ァロイで、寸法が 25mm X 25mm X 0. 03mmの矩形で あり、その中央位置には、 10. Omm X IO. Ommの矩形の開口が形成されている。 (¾スぺーサ一の作製:  The frame plate is made of 42 alloy, has a rectangular shape of 25 mm X 25 mm X 0.03 mm, and a rectangular opening of 10. Omm X IO. Omm is formed at the center position. (Preparation of spacer:
以下の仕様の上側スぺーサ一および下側スぺーサーを作製した。  An upper spacer and a lower spacer having the following specifications were produced.
上側スぺーサ一および下側スぺーサ一は、材質がステンレス(SUS—304)で、寸 法が 25mm X 25mm X 0. 03mmの矩形であり、その中央位置には、 11. Omm X I 1. Ommの矩形の開口が形成されている。  The upper and lower spacers are made of stainless steel (SUS-304) and have a rectangular shape of 25mm X 25mm X 0.03mm, and the center position is 11. Omm XI 1 A rectangular opening of Omm is formed.
[0066] (3)金型の作製: [0066] (3) Production of mold:
図 3に示す構成に従い、下記の仕様の金型を作製した。  According to the configuration shown in Fig. 3, a mold having the following specifications was produced.
上型(50)および下型(55)は、それぞれ厚みが 6mmの 42ァロイよりなる強磁性体 基板(51 , 56)を有し、各強磁性体基板(51 , 56)の表面上には、それぞれニッケル -コバルトよりなる 2000個の矩形の強磁性体層(52, 57)が形成されている。強磁性 体層(52, 57)の各々の寸法は 80 μ m (縦) X 80 μ m (横) X 50 μ m (厚み)で、配 置ピッチが 130 μ ΐηである。また、強磁性体基板(51 , 56)の表面における強磁性体 層(52, 57)が形成された以外の領域には、ドライフィルムレジストが硬化処理されて なる厚みが 80 μ mの非磁性体層(53, 58)が形成されている。  The upper mold (50) and the lower mold (55) each have a ferromagnetic substrate (51, 56) made of 42 alloy having a thickness of 6 mm, and the surface of each ferromagnetic substrate (51, 56) 2,000 rectangular ferromagnetic layers (52, 57) each made of nickel-cobalt are formed. The dimensions of each of the ferromagnetic layers (52, 57) are 80 μm (length) × 80 μm (width) × 50 μm (thickness), and the arrangement pitch is 130 μΐη. In addition, in the area of the surface of the ferromagnetic substrate (51, 56) other than where the ferromagnetic layers (52, 57) are formed, a non-magnetic 80 μm thick non-magnetic layer obtained by curing a dry film resist is used. Body layers (53, 58) are formed.
[0067] (4)工程(a— 1) : (4) Step (a-1):
付加型液状シリコーンゴム 100重量部に、平均粒子径が 8. 7 /i mの導電性粒子 14 0重量部を添加して混合した後、減圧による脱泡処理を行うことにより、導電性材料を 調製した。  A conductive material is prepared by adding and mixing 140 parts by weight of conductive particles having an average particle diameter of 8.7 / im to 100 parts by weight of an addition-type liquid silicone rubber, followed by defoaming under reduced pressure. did.
この導電性材料を、スクリーン印刷法によって、上記の金型における上型の成形面 および下型の成形面に塗布し、その後、下型に、下側スぺーサ一、フレーム板、上側 スぺーサ一および上型を下からこの順で重ね合わせることにより、上型および下型の 間のキヤビティ内に導電性材料層を形成した。  This conductive material is applied to the upper mold surface and the lower mold surface of the above-mentioned mold by screen printing, and then the lower mold, the frame plate, and the upper mold are applied to the lower mold. The conductive material layer was formed in the cavity between the upper die and the lower die by overlapping the sample and the upper die in this order from the bottom.
以上において、導電性粒子としては、ニッケル粒子を芯粒子とし、この芯粒子に無 電解金メッキが施されてなるもの(平均被覆量:芯粒子の重量の 25重量%となる量) を用いた。 In the above, as the conductive particles, nickel particles are used as core particles, and the core particles are subjected to electroless gold plating (average coating amount: 25% by weight of the core particles). Was used.
また、付加型液状シリコーンゴムとしては、 A液の粘度が 250Pa' sで、 B液の粘度が 250Pa' sである二液型のものであって、硬化物の 150°Cにおける永久圧縮歪みが 5 。に硬化物のデュロメーター A硬度が 35、硬化物の引裂強度が 25kNZmのものを 用いた。  The addition-type liquid silicone rubber is a two-part type having a viscosity of liquid A of 250 Pa's and a viscosity of liquid B of 250 Pa's. Five . A cured product having a durometer A hardness of 35 and a cured product having a tear strength of 25 kNZm was used.
[0068] また、上記の付加型液状シリコーンゴムおよびその硬化物の特性は、次のようにし て測定した。  The properties of the above-mentioned addition type liquid silicone rubber and the cured product thereof were measured as follows.
(i)付加型液状シリコーンゴムの粘度:  (i) Viscosity of addition type liquid silicone rubber:
B型粘度計により、 23 ± 2°Cにおける粘度を測定した。  The viscosity at 23 ± 2 ° C was measured by a B-type viscometer.
(ii)シリコーンゴム硬化物の圧縮永久歪み:  (ii) Compression set of silicone rubber cured product:
二液型の付加型液状シリコーンゴムにおける A液と B液とを等量となる割合で攪拌 混合した。次いで、この混合物を金型に流し込み、当該混合物に対して減圧による 脱泡処理を行った後、 120°C、 30分間の条件で硬化処理を行うことにより、厚みが 1 2. 7mm、直径が 29mmのシリコーンゴム硬化物よりなる円柱体を作製し、この円柱 体に対して、 200°C、 4時間の条件でポストキュアを行った。このようにして得られた円 柱体を試験片として用い、 JIS K 6249に準拠して 150 ± 2°Cにおける圧縮永久歪 みを測定した。  The liquid A and the liquid B in the two-part addition-type liquid silicone rubber were stirred and mixed at an equal ratio. Next, the mixture is poured into a mold, and the mixture is subjected to a defoaming treatment under reduced pressure, and then a curing treatment is performed at 120 ° C. for 30 minutes to have a thickness of 12.7 mm and a diameter of 12.7 mm. A cylindrical body made of a 29 mm silicone rubber cured product was prepared, and post-curing was performed on the cylindrical body at 200 ° C. for 4 hours. Using the thus obtained cylinder as a test piece, the compression set at 150 ± 2 ° C was measured in accordance with JIS K 6249.
(iii)シリコーンゴム硬化物の引裂強度:  (iii) Tear strength of cured silicone rubber:
上記(ii)と同様の条件で付加型液状シリコーンゴムの硬化処理およびポストキュア を行うことにより、厚みが 2. 5mmのシートを作製した。このシートから打ち抜きによつ てタレセント形の試験片を作製し、 JIS K 6249に準拠して 23 ± 2。Cにおける引裂 強度を測定した。  By subjecting the addition type liquid silicone rubber to a curing treatment and post-curing under the same conditions as in (ii) above, a sheet having a thickness of 2.5 mm was produced. A turret-shaped test piece was prepared from this sheet by punching, and was 23 ± 2 in accordance with JIS K 6249. The tear strength at C was measured.
(iv)デュロメーター A硬度:  (iv) Durometer A hardness:
上記 (iii)と同様にして作製されたシートを 5枚重ね合わせ、得られた積重体を試験 片として用レ、、 JIS K 6249に準拠して 23 ± 2°Cにおけるデュロメーター A硬度を測 定した。  Five sheets prepared in the same manner as in (iii) above are stacked, and the obtained stack is used as a test piece.The durometer A hardness at 23 ± 2 ° C is measured according to JIS K 6249. did.
[0069] (5)工程(b— 1) : [0069] (5) Step (b-1):
上側電磁石および下側電磁石を有してなり、それぞれの磁極が互いに対向するよ う配置された電磁石装置を用意し、この電磁石装置における上側電磁石の磁極と下 側電磁石の磁極との間に、上記の導電性材料層が形成された金型をセットした。次 いで、室温で、電磁石装置を 15秒間作動させることにより、導電性材料層における導 電路形成部となる部分に 1. 6Tの強度の磁場を作用させ、更に、再作動操作を合計 で 200回行いながら、導電路形成部となる部分に磁場を作用させた。ここで、再作動 操作の条件は、作動停止時間が 5秒間、再作動時間が 15秒間、再度作用させる磁 場の磁束線の方向が停止前の磁場の磁束線の方向と逆方向であり、再度、導電性 材料層における導電路形成部となる部分に対して磁場を作用させたときの当該磁場 の強度は、いずれも 1. 6Tである。 It has an upper electromagnet and a lower electromagnet, and each magnetic pole faces each other. An electromagnet device arranged in this manner was prepared, and a mold having the conductive material layer formed thereon was set between the magnetic pole of the upper electromagnet and the magnetic pole of the lower electromagnet in this electromagnet device. Next, by operating the electromagnet device for 15 seconds at room temperature, a magnetic field having a strength of 1.6 T is applied to a portion of the conductive material layer to be a conductive path forming portion, and further, a total of 200 reactivation operations are performed. While performing, a magnetic field was applied to a portion to be a conductive path forming portion. Here, the conditions for the restart operation are as follows: the operation stop time is 5 seconds, the restart time is 15 seconds, the direction of the magnetic flux lines of the magnetic field to be applied again is opposite to the direction of the magnetic flux lines of the magnetic field before the stop, Again, when a magnetic field is applied to a portion of the conductive material layer that becomes a conductive path forming portion, the strength of the magnetic field is 1.6 T in each case.
[0070] (6)工程 (c一 1) : (6) Step (c-1):
電磁石装置における上側電磁石の磁極と下側電磁石の磁極との間に、金型をセッ トしたままの状態で、当該電磁石装置を作動させることにより、導電性材料層におけ る導電路形成部となる部分に 1. 6Tの強度の磁場を作用させながら、 100°Cで 2時 間の条件で、当該導電性材料の硬化処理を行い、次いで、室温に冷却した後、金型 力 取り出すことにより、絶縁部の周縁部分にフレーム板が一体的に設けられた異方 導電性シートを製造した。  By operating the electromagnet device with the mold set between the magnetic pole of the upper electromagnet and the magnetic pole of the lower electromagnet in the electromagnet device, the conductive path forming portion in the conductive material layer is formed. The conductive material is cured at 100 ° C for 2 hours while applying a magnetic field of 1.6T to the part, and then cooled to room temperature, and the mold force is removed. Then, an anisotropic conductive sheet in which a frame plate was integrally provided on a peripheral portion of the insulating portion was manufactured.
得られた異方導電性シートにおいては、 2000個の矩形の導電路形成部が 130 / mのピッチで配置されており、導電路形成部は、縦横の寸法が80 /1 111 80 111、厚 みが 150 μ m、絶縁部の両面からの突出高さがそれぞれ 30 μ mであり、絶縁部の厚 みが 90 μ ΐηであった。  In the obtained anisotropic conductive sheet, 2,000 rectangular conductive path forming portions are arranged at a pitch of 130 / m, and the conductive path forming portion has a vertical and horizontal dimension of 80/1 111 80 111 and a thickness of 80/111. The thickness of the insulation was 150 μm, the protrusion height from both sides of the insulation was 30 μm, and the thickness of the insulation was 90 μΐη.
また、導電路形成部中の導電性粒子の含有割合を調べたところ、全ての導電路形 成部について体積分率で約 30%であった。  Further, when the content ratio of the conductive particles in the conductive path forming portion was examined, the volume fraction of all the conductive path forming portions was about 30%.
[0071] 〈比較例 1〉 <Comparative Example 1>
工程 (b - 1)において、再作動操作を行わずに、電磁石装置を 4000秒間作動させ ることにより、導電性材料層における導電路形成部となる部分に 1. 6Tの強度の磁場 を作用させたこと以外は実施例 1と同様にして、絶縁部の周縁部分にフレーム板が一 体的に設けられた異方導電性シートを製造した。  In the step (b-1), the electromagnet device is operated for 4000 seconds without performing a restarting operation, so that a magnetic field having a strength of 1.6 T is applied to a portion of the conductive material layer to be a conductive path forming portion. Except for this, in the same manner as in Example 1, an anisotropic conductive sheet in which a frame plate was integrally provided on the peripheral portion of the insulating portion was manufactured.
得られた異方導電性シートにおいては、 2000個の矩形の導電路形成部が 130 μ mのピッチで配置されており、導電路形成部は、縦横の寸法が80 /1 111 80 111、厚 みが 150 μ m、絶縁部の両面からの突出高さがそれぞれ 30 μ mであり、絶縁部の厚 みが 90 μ ΐηであった。 In the obtained anisotropic conductive sheet, 2000 rectangular conductive path forming portions were 130 μm. are arranged at a pitch of m, and the conductive path forming part has a vertical and horizontal dimension of 80/1 111 80 111, a thickness of 150 μm, and a protrusion height from both sides of the insulating part of 30 μm, respectively. The thickness of the insulating part was 90 μΐη.
また、導電路形成部中の導電性粒子の含有割合を調べたところ、全ての導電路形 成部について体積分率で約 30%であった。  Further, when the content ratio of the conductive particles in the conductive path forming portion was examined, the volume fraction of all the conductive path forming portions was about 30%.
[0072] 〔異方導電性シートの評価〕 [Evaluation of Anisotropic Conductive Sheet]
導電路形成部の導電性:  Conductivity of conductive path forming part:
異方導電性シートの全ての導電路形成部を、その厚み方向の歪み率が 10%、 20 %、 30%および 40%となるよう加圧した状態で、当該導電路形成部の各々の厚み方 向の電気抵抗値を測定した。その結果を表 1に示す。  While all the conductive path forming portions of the anisotropic conductive sheet are pressed so that the strain rate in the thickness direction is 10%, 20%, 30%, and 40%, the thickness of each conductive path forming portion is reduced. The electrical resistance in the direction was measured. The results are shown in Table 1.
導電路形成部間の絶縁性:  Insulation between conductive path forming parts:
異方導電性シートの全ての導電路形成部を、その厚み方向の歪み率が 20%となる よう加圧した状態で、隣接する導電路形成部間の電気抵抗値を測定し、その値が 1 Μ Ω未満のものの数を求めた。その結果を表 1に示す。  In a state where all the conductive path forming portions of the anisotropic conductive sheet are pressed so that the strain rate in the thickness direction is 20%, the electric resistance value between the adjacent conductive path forming portions is measured, and the value is measured. Numbers less than 1 ΜΩ were determined. The results are shown in Table 1.
[0073] [表 1] [0073] [Table 1]
実施例 1 比較例 1 歪 平均値 0. 6 4 4. 1 0 Example 1 Comparative Example 1 Strain average value 0.6 4 4.10
 Only
率 最大値 1. 0 5 1 0. 5  Rate Maximum value 1.0 5 1 0.5
10  Ten
% 最小値 0. 5 2 3. 4 0  % Minimum value 0.5 2 3.40
 Electric
路 歪 平均値 0. 2 0 3. 3 0  Road strain average value 0.2 0 3.3 0
形 み  Shape
成 最大値 0. 3 8 5. 4 5  Result Maximum value 0.3 8 5. 4 5
部 20  Part 20
の % 最小値 0. 1 3 2. 1 0 平均値 0. 1 5 2. 6 5  % Of the minimum value 0.1 3 2. 1 0 Average value 0.1 5 2. 6 5
抵 み  Concession
抗 率 最大値 0. 2 6 4. 8 0  Maximum resistivity 0.2 2 6.4.8 0
値 30  Value 30
% 最小値 0. 1 2 1. 6 5  % Minimum value 0.1 1 2 1. 6 5
Ω  Ω
歪 平均値 0. 1 2 1 0. 0  Distortion average value 0.12 1 10.0
 Only
率 最大値 0. 2 4 5 8. 0  Rate Maximum value 0.2 4 5 8.0
40  40
% 最小値 0. 0 9 3. 2 5 隣接する導電路  % Minimum value 0.0 9 3.2.5 Adjacent conductive paths
形成部間の電気  Electricity between forming parts
抵抗値が 1 ΜΩ 0 3 5  Resistance value is 1 ΜΩ 0 3 5
未満のものの数  Number of things less than
(個) 表 1の結果から明らかなように、実施例 1によれば、小さい加圧力で加圧しても、電 気抵抗値が低くて安定な導電性を示す導電路形成部を有し、し力、も、隣接する導電 路形成部間に所要の絶縁性を有する異方導電性シートが得られることが確認された  (Pieces) As is evident from the results in Table 1, according to Example 1, even when pressurized with a small pressing force, a conductive path forming portion having a low electric resistance value and showing stable conductivity was provided. In addition, it was confirmed that an anisotropic conductive sheet having required insulation between adjacent conductive path forming portions could be obtained.

Claims

請求の範囲 The scope of the claims
[1] 硬化されて絶縁性の弾性高分子物質となる液状の高分子物質形成材料中に磁性 を示す導電性粒子が含有されてなる導電性材料層に対して、その厚み方向に磁場 を作用させることにより、導電性粒子を当該導電性材料層の厚み方向に配向させる 工程を有し、  [1] A magnetic field acts in the thickness direction on a conductive material layer that contains conductive particles exhibiting magnetism in a liquid polymer material forming material that is cured to become an insulating elastic polymer material. Having a step of orienting the conductive particles in the thickness direction of the conductive material layer,
この工程において、前記導電性材料層に対する磁場の作用を停止した後、再度、 当該導電性材料層に対して磁場を作用させる操作を少なくとも 1回行うことを特徴と する異方導電性シートの製造方法。  In this step, after the action of the magnetic field on the conductive material layer is stopped, an operation of applying the magnetic field to the conductive material layer is performed at least once again. Method.
[2] 絶縁性の弾性高分子物質中に磁性を示す導電性粒子が厚み方向に配向した状 態で含有されてなる複数の導電路形成部と、これらの導電路形成部を相互に絶縁す る絶縁性の弾性高分子物質よりなる絶縁部とを有する異方導電性シートを製造する 方法であって、  [2] A plurality of conductive path forming portions in which conductive particles exhibiting magnetism are contained in an insulating elastic polymer material in a state oriented in the thickness direction, and these conductive path forming portions are insulated from each other. A method of manufacturing an anisotropic conductive sheet having an insulating portion made of an insulating elastic polymer material,
硬化されて絶縁性の弾性高分子物質となる液状の高分子物質形成材料中に磁性 を示す導電性粒子が含有されてなる導電性材料層に対して、導電路形成部となる部 分にそれ以外の部分より大きい強度の磁場を当該導電性材料層の厚み方向に作用 させることにより、当該導電路形成部となる部分に導電性粒子を集合させて当該導電 性材料層の厚み方向に配向させる工程を有し、  The conductive material layer, which contains conductive particles exhibiting magnetism in the liquid polymer material forming material that becomes an insulating elastic polymer material when cured, By applying a magnetic field having a greater intensity in the thickness direction of the conductive material layer than in other portions, conductive particles are aggregated in a portion to be the conductive path forming portion and oriented in the thickness direction of the conductive material layer. Process
この工程において、前記導電性材料層に対する磁場の作用を停止した後、再度、 当該導電性材料層に対して磁場を作用させる操作を少なくとも 1回行うことを特徴と する異方導電性シートの製造方法。  In this step, after the action of the magnetic field on the conductive material layer is stopped, an operation of applying the magnetic field to the conductive material layer is performed at least once again. Method.
[3] 絶縁性の弾性高分子物質中に磁性を示す導電性粒子が厚み方向に配向した状 態で含有されてなる異方導電性シートを製造する方法であって、  [3] A method for producing an anisotropic conductive sheet in which conductive particles exhibiting magnetism are contained in an insulating elastic polymer material in a state oriented in a thickness direction,
硬化されて絶縁性の弾性高分子物質となる液状の高分子物質形成材料中に磁性 を示す導電性粒子が含有されてなる導電性材料層に対して、その厚み方向に磁場 を作用させることにより、導電性粒子を当該導電性材料層の厚み方向に配向させる 工程を有し、  By applying a magnetic field in the thickness direction to a conductive material layer in which conductive particles exhibiting magnetism are contained in a liquid polymer material forming material which is cured to become an insulating elastic polymer material. And orienting the conductive particles in the thickness direction of the conductive material layer,
この工程において、前記導電性材料層に対する磁場の作用を停止した後、再度、 当該導電性材料層に対して磁場を作用させる操作を少なくとも 1回行うことを特徴と する異方導電性シートの製造方法。 In this step, after stopping the action of the magnetic field on the conductive material layer, the operation of applying the magnetic field to the conductive material layer is performed at least once again. For producing an anisotropic conductive sheet.
[4] 絶縁性の弾性高分子物質中に磁性を示す導電性粒子が厚み方向に配向した状 態で含有されてなる複数の導電路形成部と、これらの導電路形成部を相互に絶縁す る絶縁性の弾性高分子物質よりなる絶縁部とを有する異方導電性シートを製造する 方法であって、  [4] A plurality of conductive path forming portions in which conductive particles exhibiting magnetism are contained in an insulating elastic polymer material in a state oriented in the thickness direction, and these conductive path forming portions are insulated from each other. A method of manufacturing an anisotropic conductive sheet having an insulating portion made of an insulating elastic polymer material,
形成すべき導電路形成部のパターンに対応するパターンに従って複数の貫通孔 が形成された、絶縁性の弾性高分子物質よりなる絶縁部用シート体を用意し、 この絶縁部用シート体の貫通孔の各々に充填された、硬化されて絶縁性の弾性高 分子物質となる液状の高分子物質形成材料中に磁性を示す導電性粒子が含有され てなる導電性材料層に対して、その厚み方向に磁場を作用させることにより、導電性 粒子を当該導電性材料層の厚み方向に配向させる工程を有し、  An insulating sheet material made of an insulating elastic polymer material having a plurality of through holes formed in accordance with a pattern corresponding to a pattern of a conductive path forming portion to be formed is prepared. The thickness of the conductive material layer in which the magnetic conductive particles are contained in the liquid polymer material forming material which is cured and becomes an insulating elastic high molecular material filled in A step of orienting the conductive particles in the thickness direction of the conductive material layer by applying a magnetic field to
この工程において、前記導電性材料層に対する磁場の作用を停止した後、再度、 当該導電性材料層に対して磁場を作用させる操作を少なくとも 1回行うことを特徴と する異方導電性シートの製造方法。  In this step, after the action of the magnetic field on the conductive material layer is stopped, an operation of applying the magnetic field to the conductive material layer is performed at least once again. Method.
[5] 導電性材料層に対する磁場の作用を停止した後、再度、当該導電性材料層に対し て磁場を作用させる操作において、導電性材料層に再度作用させる磁場の磁束線 の方向が、停止前の磁場の磁束線の方向と逆方向であることを特徴とする請求項 1 乃至請求項 4のいずれか一に記載の異方導電性シートの製造方法。  [5] After stopping the action of the magnetic field on the conductive material layer, in the operation of applying the magnetic field again to the conductive material layer, the direction of the magnetic flux lines of the magnetic field applied again on the conductive material layer is stopped. 5. The method for manufacturing an anisotropic conductive sheet according to claim 1, wherein the direction is opposite to the direction of the magnetic flux lines of the previous magnetic field.
[6] 導電性材料層に対する磁場の作用を停止した後、再度、当該導電性材料層に対し て磁場を作用させる操作を繰り返して行うことを特徴とする請求項 1乃至請求項 5の いずれか一に記載の異方導電性シートの製造方法。  [6] The method according to any one of claims 1 to 5, wherein after the operation of the magnetic field on the conductive material layer is stopped, the operation of applying the magnetic field to the conductive material layer is performed again. The method for producing an anisotropic conductive sheet according to claim 1.
[7] 導電性材料層に対する磁場の作用を停止した後、再度、当該導電性材料層に対し て磁場を作用させる操作を 5回以上行うことを特徴とする請求項 6に記載の異方導電 性シートの製造方法。  7. The anisotropic conductive material according to claim 6, wherein the operation of applying the magnetic field to the conductive material layer is performed five or more times after stopping the action of the magnetic field on the conductive material layer. Method for producing a functional sheet.
PCT/JP2005/001419 2004-02-06 2005-02-01 Process for producing anisotropic conductive sheet WO2005076418A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-030180 2004-02-06
JP2004030180A JP2005222826A (en) 2004-02-06 2004-02-06 Manufacturing method of anisotropic conductive sheet

Publications (1)

Publication Number Publication Date
WO2005076418A1 true WO2005076418A1 (en) 2005-08-18

Family

ID=34835983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/001419 WO2005076418A1 (en) 2004-02-06 2005-02-01 Process for producing anisotropic conductive sheet

Country Status (4)

Country Link
JP (1) JP2005222826A (en)
CN (1) CN1918756A (en)
TW (1) TW200527754A (en)
WO (1) WO2005076418A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005322492A (en) * 2004-05-07 2005-11-17 Polymatech Co Ltd Conductive elastic body and its manufacturing method
EP2942846B1 (en) * 2014-05-07 2017-01-11 ABB Schweiz AG Electrical device with low friction contact parts
TWI700188B (en) * 2018-04-18 2020-08-01 呂奇恩 Methods of preparing anisotropic conductive sheet and resulting product
CN109867961A (en) * 2019-02-14 2019-06-11 青岛科技大学 A kind of pressure drag composite membrane
CN110767348A (en) * 2019-11-12 2020-02-07 业成科技(成都)有限公司 Anisotropic conductive film and manufacturing method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5193393A (en) * 1975-02-12 1976-08-16 Erasuteitsuku kontakutoshiitonoseizohoho
JPS53147772A (en) * 1977-05-31 1978-12-22 Japan Synthetic Rubber Co Ltd Manufacture of pressure-conductive elastomer
JPS61250906A (en) * 1985-04-26 1986-11-08 ジェイエスアール株式会社 Conductive elastomer sheet
JPH11260518A (en) * 1998-03-13 1999-09-24 Jsr Corp Manufacture of anisotropic conductive sheet and its manufacturing device
JPH11283718A (en) * 1998-03-27 1999-10-15 Jsr Corp Manufacture of and manufacturing device for anisotropic conductive sheet
JPH11354178A (en) * 1998-06-08 1999-12-24 Jsr Corp Anisotropic conductive sheet and its manufacture, and test device and test method for circuit device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5193393A (en) * 1975-02-12 1976-08-16 Erasuteitsuku kontakutoshiitonoseizohoho
JPS53147772A (en) * 1977-05-31 1978-12-22 Japan Synthetic Rubber Co Ltd Manufacture of pressure-conductive elastomer
JPS61250906A (en) * 1985-04-26 1986-11-08 ジェイエスアール株式会社 Conductive elastomer sheet
JPH11260518A (en) * 1998-03-13 1999-09-24 Jsr Corp Manufacture of anisotropic conductive sheet and its manufacturing device
JPH11283718A (en) * 1998-03-27 1999-10-15 Jsr Corp Manufacture of and manufacturing device for anisotropic conductive sheet
JPH11354178A (en) * 1998-06-08 1999-12-24 Jsr Corp Anisotropic conductive sheet and its manufacture, and test device and test method for circuit device

Also Published As

Publication number Publication date
CN1918756A (en) 2007-02-21
TW200527754A (en) 2005-08-16
JP2005222826A (en) 2005-08-18

Similar Documents

Publication Publication Date Title
JP3543765B2 (en) Probe device for wafer inspection
JPWO2007043350A1 (en) Anisotropic conductive connector device and circuit device inspection device
WO2004112195A1 (en) Anisotropc conductive connector device and production method therefor and circuit device inspection device
JP2002324600A (en) Anisotropic conductive connector and applied product thereof
WO2004066449A1 (en) Anisotropic conductive connector and production method therefor and inspectioon unit for circuit device
KR101167750B1 (en) Probe member for wafer inspection, probe card for wafer inspection and wafer inspection equipment
WO2006008784A1 (en) Anisotropic conductive connector and inspection equipment for circuit device
JP2004342597A (en) Anisotropic conductive sheet and its manufacturing method, adapter device and its manufacturing method as well as electrical testing device of circuit device
WO2005101589A1 (en) Die for manufacturing anisotropic conductive sheet and method for manufacturing anisotropic conductive sheet
JP3573120B2 (en) Anisotropic conductive connector, method of manufacturing the same, and application product thereof
JP3900732B2 (en) Anisotropic conductive sheet and manufacturing method thereof
WO2005076418A1 (en) Process for producing anisotropic conductive sheet
KR101167748B1 (en) Probe member for wafer inspection, probe card for wafer inspection and wafer inspection apparatus
JP2005241291A (en) Adapter for circuit board inspection and circuit board inspection device
JP4470316B2 (en) Anisotropic conductive sheet and electrical inspection device for circuit device
JP3928389B2 (en) Anisotropic conductive sheet and manufacturing method thereof
JP4479477B2 (en) Anisotropic conductive sheet, manufacturing method thereof, and applied product thereof
JP2008164476A (en) Anisotropic conductive connector apparatus and manufacturing method of the same, and inspection apparatus for circuit apparatus
JP3928607B2 (en) Anisotropic conductive sheet, its production method and its application
JP2004361395A (en) Sheet-like probe, manufacturing method therefor and application thereof
JP2004055514A (en) Anisotropic conductivity connector, method for manufacturing the same, and inspection device for circuit device
JP2005327706A (en) Mold and method for manufacturing anisotropic conductive sheet
JP4385767B2 (en) Anisotropic conductive connector, manufacturing method thereof, and circuit device inspection apparatus
JP4161475B2 (en) Mold, method for manufacturing the same, and method for manufacturing anisotropic conductive sheet
JP3873503B2 (en) Anisotropic conductive sheet and manufacturing method thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067014605

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580004183.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 1020067014605

Country of ref document: KR

122 Ep: pct application non-entry in european phase