WO2005075552A1 - 熱可塑性樹脂組成物およびそれを用いる複層ガラス - Google Patents

熱可塑性樹脂組成物およびそれを用いる複層ガラス Download PDF

Info

Publication number
WO2005075552A1
WO2005075552A1 PCT/JP2005/001588 JP2005001588W WO2005075552A1 WO 2005075552 A1 WO2005075552 A1 WO 2005075552A1 JP 2005001588 W JP2005001588 W JP 2005001588W WO 2005075552 A1 WO2005075552 A1 WO 2005075552A1
Authority
WO
WIPO (PCT)
Prior art keywords
spacer
thermoplastic resin
double
glass
sealing material
Prior art date
Application number
PCT/JP2005/001588
Other languages
English (en)
French (fr)
Inventor
Tomohiro Kawasaki
Shigeru Yamauchi
Hidenori Uechi
Original Assignee
The Yokohama Rubber Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Yokohama Rubber Co., Ltd. filed Critical The Yokohama Rubber Co., Ltd.
Priority to US10/565,803 priority Critical patent/US7875329B2/en
Priority to EP05709681A priority patent/EP1712588A4/en
Priority to KR1020057022788A priority patent/KR101160476B1/ko
Publication of WO2005075552A1 publication Critical patent/WO2005075552A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing
    • C03C27/10Joining glass to glass by processes other than fusing with the aid of adhesive specially adapted for that purpose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • C08L23/28Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment by reaction with halogens or compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/18Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
    • C08L23/20Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
    • C08L23/22Copolymers of isobutene; Butyl rubber ; Homo- or copolymers of other iso-olefins
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/663Elements for spacing panes
    • E06B3/66309Section members positioned at the edges of the glazing unit
    • E06B3/66328Section members positioned at the edges of the glazing unit of rubber, plastics or similar materials
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/663Elements for spacing panes
    • E06B3/66309Section members positioned at the edges of the glazing unit
    • E06B3/66342Section members positioned at the edges of the glazing unit characterised by their sealed connection to the panes

Definitions

  • the present invention relates to a double-glazed glass and a thermoplastic resin composition, and more particularly, to a double-glazed glass and a thermoplastic resin used for the double-glazed glass which are excellent in heat resistance, moldability and dew point characteristics and have high productivity.
  • the present invention relates to a fat composition.
  • FIG. 5 is a schematic sectional view showing an example of the configuration of such a (conventional) double-glazed glass.
  • the conventional double-glazed glass 50 shown in FIG. 5 generally has at least two glass plates 1 opposed to each other via a metal spacer 7 made of aluminum, etc.
  • a hollow layer (air layer) 2 is formed, and a primary seal (adhesive layer) 4 is interposed between the spacer 7 and the glass plate 1 to cut off the air layer 2 from the outside air.
  • a secondary seal of a two-component mixed type typified by a polysulfide type or a silicone type, a room temperature curing type, or a butyl rubber type hot melt. (Sealing material) 5.
  • a desiccant (hygroscopic agent) 6 is filled in a hollow portion of a metal spacer 7 having a hollow structure (particularly, aluminum spacer).
  • a spacer the spacer 7 is disposed between the glass plates 1 and the width between the glass plates 1 is set at a predetermined interval, and then the sealing material 5 is cast.
  • the work process is complicated, and furthermore, in the case of a double glazing using a room temperature-curable sealing material 5, there is a problem that it takes a long time until the sealing material is hardened and cannot be shipped immediately after production. . Especially in winter, it is necessary to put in a heating room to cure the sealing material. For this reason, there is a need for a technique that simplifies the manufacturing process of a double-glazed glass, shortens the curing time, and increases productivity.
  • thermoplastic resin having a water vapor transmission rate of 100 gZ (m 2 ⁇ 24h) or less (thickness of 30 ⁇ m)
  • a thermoplastic elastomer composition having a dispersed phase composed of a rubber composition at least partially dynamically crosslinked in a thermoplastic resin continuous phase has been proposed.
  • thermoplastic resin composition and a thermoplastic elastomer composition can play a role as a sealing material together with a spacer.
  • the thermoplastic resin composition or the thermoplastic elastomer composition is cast on the end of the multi-layer glass material which is arranged oppositely, so that the opposite end of the glass plate having a spacer is sealed. It is possible to produce a laminated glass. Therefore, it is easier than the manufacturing process of a double glazing using a metal spacer, and the productivity can be improved to some extent.
  • Patent Document 1 JP-A-10-110072
  • Patent Document 2 JP-A-10-114551
  • Patent Document 3 JP-A-10-114552
  • Patent Document 4 JP-A-2000-119537
  • thermoplastic resin compositions described in Patent Document 1, Patent Document 2, and Patent Document 3 can simplify the production process and improve the productivity to some extent.
  • the heat resistance is inferior, and if the thermoplastic resin is used as the continuous phase and the dynamically crosslinked rubber is used as the dispersed phase, a strong shear force cannot be obtained.
  • these thermoplastic resin compositions shrink when cooled after being cast on a glass plate having a high heat shrinkage, so that the air layer of the double-glazed glass becomes narrower than a desired interval, and is formed. Properties (dimensional stability) may be poor.
  • thermoplastic elastomer composition described in Patent Document 4 can simplify the manufacturing process and improve the productivity to some extent.
  • this composition is a composition that is dynamically crosslinked. For this reason, in the production process of a double glazing, particularly in a molten state when the composition is applied to a glass plate, the composition may partially undergo a cross-linking reaction to increase the viscosity and reduce the production efficiency.
  • the present invention solves the above-mentioned problems, and specifically, is excellent in heat resistance, heat shrinkage, and water vapor permeation resistance, and improves the productivity of double glazing.
  • the purpose is to provide a composition that can be used.
  • the present inventor aims to provide a double-glazed glass which uses the above-described composition, can be easily produced and has high productivity, and is excellent in heat resistance, moldability and dew point characteristics. Means to solve
  • thermoplastic resin having specific physical properties, a specific unvulcanized rubber, and a moisture absorbent containing a specific mass ratio are contained. It was found that the plastic resin composition had low heat resistance, heat shrinkage, and low moisture permeability, which is a measure of excellent water vapor permeability.
  • thermoplastic resin composition having more excellent moldability and maintaining dischargeability (fluidity) is obtained.
  • thermoplastic resin composition as a spacer or the like
  • a double glazing using the thermoplastic resin composition as a spacer or the like can be easily produced, has high productivity, and is excellent in heat resistance, moldability and dew point characteristics.
  • the present invention provides the following (1)-(14).
  • thermoplastic resin (A) having a moisture permeability of 1. OX 10 " 13 cm 3 -cm / (cm 2 'sec'Pa) or less,
  • a halogenated isoolefin, a paraalkylstyrene copolymer and an ethylene propylene rubber comprising at least one unvulcanized rubber (B) selected and a hygroscopic agent (C);
  • thermoplastic resin (A) and the unvulcanized rubber (B) mass ratio between the thermoplastic resin (A) and the unvulcanized rubber (B) is 85Z15-15Z85
  • thermoplastic resin composition wherein the content of the moisture absorbent (C) is 10 to 70 parts by mass with respect to 100 parts by mass in total of the thermoplastic resin (A) and the unvulcanized rubber (B).
  • thermoplastic resin (A) having a moisture permeability of 1.OX 10 " 13 cm 3 -cm / (cm 2 'sec'Pa) or less;
  • Halogenated isoolephine Z-paraalkylstyrene copolymer and ethylene propylene rubber force At least one unvulcanized rubber (B) selected and a moisture absorbent (C) are mixed in the following mixing ratio.
  • the thermoplastic resin composition obtained by the above.
  • hygroscopic agent (C) 10 to 70 parts by mass with respect to 100 parts by mass in total of the thermoplastic resin (A) and the unvulcanized rubber (B).
  • the halogenated isoolefin Z-paraalkylstyrene copolymer is preferably a halide of a copolymer of paramethylstyrene and polyisobutylene (X IPMS). More preferably, Br—IPMS.
  • thermoplastic resin (A) as described in (1) or (1), wherein the thermoplastic resin (A) is at least one selected from the group consisting of low-density polyethylene (LDPE) and linear low-density polyethylene (LLDPE).
  • LDPE low-density polyethylene
  • LLDPE linear low-density polyethylene
  • thermoplastic resin composition according to any one of (1) to (3), further comprising an inorganic filler.
  • thermoplastic resin composition according to any one of the claims.
  • a double glazing comprising the thermoplastic resin composition according to any one of (1) to (5) above as a spacer.
  • a double glazing comprising the thermoplastic resin composition according to any one of (1) to (5) as a spacer and a sealing material.
  • thermoplastic resin composition according to any one of (1) to (5) above is used as a spacer and a sealing material, and the thermoplastic resin composition and the glass are interposed between the thermoplastic resin composition and glass. Double-glazed glass further having an adhesive layer.
  • a double glazing comprising an air layer formed by the two glass plates and the spacer.
  • An air layer is formed by the two glass plates and the spacer / sealing material, and the two glass plates are held at a predetermined interval as the spacer / sealing material spacer. And a double glazing that seals and holds the air layer as a sealing material.
  • An air layer is formed by the two glass plates, the spacer / sealing material, and the adhesive layer,
  • a double glazing system in which the spacer and the sealing material hold the two glass plates at a predetermined interval as a spacer and simultaneously seal and hold the air space as a sealing material.
  • thermoplastic resin composition of the present invention has excellent heat resistance, small heat shrinkage and excellent water vapor permeability, and can improve the productivity of double-glazed glass.
  • the double glazing of the present invention can be easily produced and has high productivity, and is excellent in heat resistance, moldability and dew point characteristics.
  • FIG. 1 is a schematic sectional view showing an example of the configuration of a first embodiment of the double-glazed glass of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing one example of a configuration of a third embodiment of the double-glazed glass of the present invention.
  • FIG. 3 is a schematic cross-sectional view showing an example of a configuration of a first embodiment of a fourth embodiment of the double-glazed glass of the present invention.
  • FIG. 4 is a schematic cross-sectional view showing an example of a configuration of a second embodiment of the fourth embodiment of the double-glazed glass of the present invention.
  • FIG. 5 is a schematic cross-sectional view showing an example of a configuration of a conventional double-glazing.
  • FIG. 6 is a schematic cross-sectional view of a cup used for measuring moisture permeability in an example.
  • thermoplastic resin composition of the present invention has a moisture permeability of 1.0 ⁇ 10—13 cm 3 ⁇ cm / (cm 2 ⁇ sec ⁇ Pa) or less.
  • a thermoplastic resin (A) a group consisting of a halogenated isophorfin Z-paraalkylstyrene copolymer and ethylene propylene rubber, and at least one unvulcanized rubber (B) selected from a thermoplastic resin (B) and a hygroscopic agent (C)
  • the mass ratio of the thermoplastic resin composition (A) to the unvulcanized rubber (B) (thermoplastic resin (A) Z unvulcanized rubber (B)) is 85Z15-15Z85.
  • the content of the hygroscopic agent (C) is 10 to 70 parts by mass with respect to 100 parts by mass in total of the thermoplastic resin (A) and the unvulcanized rubber (B).
  • composition of the present invention is used for a double-glazed glass spacer or the like, a double-glazed glass having high heat resistance, excellent moldability and excellent dew point characteristics can be obtained.
  • the composition of the present invention moisture permeability is 1. 0 X 10- 13 cm 3 -cm / (cm 2 'sec' Pa) using a Der Ru thermoplastic ⁇ (A) below.
  • the thermoplastic resin (A) is not particularly limited, and examples thereof include polyolefin-based resins (for example, high-density polyethylene (HDPE), low-density polyethylene (LDPE), and linear low-density polyethylene). (LLDPE), ultra-high molecular weight polyethylene (UHMWPE), isotactic polypropylene, syndiotactic polypropylene, ethylene propylene copolymer resin); polyamide resin (for example, nylon 6 (N6), nylon 6, 6 (N6, 6), Nylon 4, 6 (N4, 6), Nylon 11 (? ⁇ 11), Nylon 12 (?
  • polyolefin-based resins for example, high-density polyethylene (HDPE), low-density polyethylene (LDPE), and linear low-density polyethylene).
  • LLDPE linear low-density polyethylene
  • UHMWPE ultra-high molecular weight polyethylene
  • isotactic polypropylene syndiotactic polypropylene
  • Nylon 6, 10 N6, 10
  • Nylon 6, 12 N6 , 12
  • nylon 6Z6, 6 copolymer N6Z6, 6
  • nylon 6Z6, 6/6, 10 copolymer N6 / 6, 6/6, 10
  • nylon MXD6 MXD6
  • nylon 6T nylon 6/6 copolymer
  • nylon 6,6 copolymer nylon 6,6ZPPS copolymer
  • polyester resin for example, aromatic polyester such as polybutylene terephthalate ( ⁇ ) and polyethylene terephthalate (PET)
  • Polyether-based resin for example, polyphenylene oxide (PP 0), modified polyphenylene oxide ( Denatured PPO), polysulfone (PSF), polyether ether ketone (PEEK)
  • polymethacrylate resins eg, polymethyl methacrylate (PMMA), polyethyl methacrylate
  • polybutyl resins eg, BURU alcohol Z
  • the moldability of the obtained composition of the present invention is good, and when the composition of the present invention is used as a spacer for a double-glazing described later, the heat-resistant deformation resistance to the outside temperature and the like is high.
  • Polyolefin-based resin, polyester-based resin, polyether-based resin, and fluorine-based resin that have a heat distortion temperature of 50 ° C or more in terms of good water vapor permeability due to water absorption, etc. Fats are preferred.
  • thermoplastic resin is a low-density polyethylene (LDPE) because it has a low heat shrinkage ratio when formed into a composition, has good moldability, and has a low moisture permeability and excellent initial dew point characteristics when formed into a double-glazed glass.
  • LDPE low-density polyethylene
  • LLDPE linear low density polyethylene
  • thermoplastic resin (A) may be used alone or as a mixture of two or more.
  • moisture permeability of the thermoplastic ⁇ (A) is 1. OX 10- 13 cm 3 - is cm / (cm 2 'sec' Pa) or less. Within this range, the composition of the present invention will have excellent dew point properties when used in a double glazing.
  • thermoplastic resin (A) of the above-mentioned thermoplastic resin (A) is excellent in that it satisfies the dew point characteristics of the accelerated durability test described in JIS R3209-1998, Class I and Class III, and also has excellent dew point characteristics under initial conditions and high temperature and humidity conditions.
  • moisture permeability is, 5. 0 X 10- 14 cm 3 - cm / (cm 2 'sec' Pa) or less and even not preferable.
  • thermoplastic resin (A) has a moisture permeability of at least 1. OX 10—15 cm 3 -cm / (cm 2 -sec ⁇ Pa) (1.0 X 10—13 cm 3 ⁇ Cm / (cm 2 ⁇ sec ⁇ Pa) or less), since dew point characteristics are more excellent.
  • the unvulcanized rubber (B) used in the present invention is at least one unvulcanized rubber selected from the group consisting of a halogenated isophylfin Z-paraalkylstyrene copolymer and ethylene propylene rubber.
  • the composition of the present invention is particularly excellent in the retention stability during melting and heating when applied to a glass plate, and the viscosity of the composition does not increase.
  • the productivity of the double glazing can be improved.
  • the halogenated isolefin z-paraalkylstyrene copolymer is not particularly limited, and the mixing ratio of the halogenated isolefin and paraalkylstyrene, the polymerization rate, the average molecular weight, the polymerization form (block copolymer, random copolymer, etc.), The viscosity, halogen atom, and the like can be arbitrarily selected according to the physical properties required of the thermoplastic resin composition.
  • halogenated isoolefin Z paraalkylstyrene copolymer a halogenated product (X-IPMS) of a copolymer of paramethylstyrene and polyisobutylene is preferable because of its excellent effect. More preferably, Br—IPMS.
  • the halogenated isoolefin Z-paraalkylstyrene copolymer may be synthesized according to a conventional method, or a commercially available product may be used.
  • a commercially available product for example, Br-I manufactured by Exxon Co., Ltd. PMS “Exxpro3433” and the like.
  • the ethylene propylene rubber is not particularly limited, either, and can be arbitrarily selected according to the physical properties required for the thermoplastic resin composition.
  • Examples of the ethylene propylene rubber include EPDM and EPM.
  • ethylene propylene rubber a commercially available product that can be synthesized according to a conventional method may be used.
  • examples of commercially available products include EPDM “EPT3045” and Esprene514 manufactured by Mitsui Chemicals, Inc.
  • the unvulcanized rubber (B) at least one selected from the group consisting of the above-mentioned halogenated isoolefin Z paraalkylstyrene copolymer and the above-mentioned ethylene propylene rubber force is used. In this case, two or more uncured rubbers of the same type may be used.
  • the unvulcanized rubber (B) may be used as an unvulcanized rubber composition containing the following additives and the like.
  • Additives include reinforcing materials, fillers, softeners, and cross-linking agents that are commonly blended to improve the dispersibility of unvulcanized rubber (B) in thermoplastic resin (A), heat resistance, etc. And antioxidants, processing aids, and the like, which can be appropriately added as necessary.
  • the combination of the thermoplastic resin (A) and the unvulcanized rubber (B) is not particularly limited, and may be one selected from the above thermoplastic resins.
  • the above thermoplastic resin (A) and one or more unvulcanized rubbers (B) selected from the above rubber strengths can be used in combination.
  • thermoplastic resin (A) is made of low-density polyethylene (LDPE) and linear low-density polyethylene (LLDPE) because of the effect of the present invention.
  • (B) is a combination of a halogenated isophorefin Z-paraalkylstyrene copolymer and ethylene propylene rubber (EPDM, EPM) with!
  • the mixing ratio of the thermoplastic resin (A) and the unvulcanized rubber (B) is such that the thermoplastic resin (A) Z unvulcanized rubber (B ) 1S mass ratio is 85Z15-15Z85.
  • the mass ratio described above the hardness of the composition becomes a suitable range, and it is possible to suppress the production failure due to the crushing of the composition at the time of producing the double-glazed glass (excellent strength). ) o
  • the mass ratio is more preferably 30 / 70-70 / 30, and the force is more preferably 40 / 60-60 / 40! / ⁇ .
  • the criticality of the above mass ratio can be cut in half by the volume ratio and the viscosity ratio of the thermoplastic resin (A) and the unvulcanized rubber (B).
  • the unvulcanized rubber (B) is used as a dispersed phase, and the thermoplastic resin (A) is used as a continuous phase.
  • a thermoplastic resin composition having a dispersed structure cannot be obtained.
  • is the temperature and shear during kneading of the thermoplastic resin ( ⁇ ) and the unvulcanized rubber ( ⁇ ).
  • thermoplastic resin
  • melt viscosity
  • unvulcanized rubber ( ⁇ ) may become a continuous phase. Also, 0.5 ⁇ 7? / ⁇ ⁇ 3
  • the unvulcanized rubber ( ⁇ ) is dispersed in the thermoplastic resin ( ⁇ ) as particles having a size of about 0.1 to several tens / zm.
  • the melt viscosity refers to the melt viscosity of each component at an arbitrary temperature during kneading. Since the melt viscosity of the polymer component varies depending on the temperature, the shear rate (sec— and the shear stress), it generally melts in a capillary at any temperature in the molten state, especially at the temperature range during kneading. It is a value obtained by flowing a polymer component in a state, measuring stress and shear rate, and calculating according to the following equation.
  • melt viscosity for example, a capillary rheometer capillary pyrograph 1C manufactured by Toyo Seiki Co., Ltd. can be used.
  • the composition of the present invention uses a moisture absorbent (C).
  • a moisture absorbent By adding a moisture absorbent to the composition of the present invention, the composition of the present invention can be used as a sealing material or spacer for double-glazing, particularly as a spacer and sealing material.
  • the spacer / sealing material is a spacer that is disposed between the peripheral portions of the facing glass plates of the double-glazed glass to secure the thickness of the air layer of the double-glazed glass.
  • the composition is also used as a sealing material that cuts off the air layer with outside air by pressing the spacer onto the glass plate without separately placing a sealing material between the spacer and the glass plate. It means to use. That is, when used as a spacer and a sealing material, the composition of the present invention simultaneously serves as a spacer and as a sealing material.
  • the composition of the present invention may be used as a sealing material for a double glazing or as a spacer together with a sealing material.
  • the productivity of the double glazing can be improved, and the composition is contained in the air layer in the double glazing structure. It absorbs moisture and dries the inside of the air layer, and also absorbs the intrusion of the external force of the double glazing to prevent the dew point of the air sealed in the air layer from rising.
  • the dew point in the multilayer glass is the maximum temperature at which dew condensation is visually observed on the inner surface of the multilayer glass.
  • the moisture-absorbing agent (C) for the double-glazed glass of the present invention a moisture-absorbing agent which is generally filled in a metal spacer or the like of the double-glazed glass can be used without particular limitation.
  • synthetic zeolite, silica gel, and alumina can be used.
  • the amount of the hygroscopic agent (C) is 10 to 70 parts by mass with respect to 100 parts by mass of the total of the thermoplastic resin (A) and the unvulcanized rubber (B).
  • the amount is preferably 10 to 30 parts by mass from the viewpoint of more excellent hygroscopicity.
  • the composition of the present invention preferably further contains a water vapor permeable barrier resin (hereinafter, simply referred to as "barrier resin").
  • barrier resin water vapor permeable barrier resin
  • the noria resin is a resin having a water vapor transmission rate equal to or lower than the water vapor transmission rate of the continuous phase thermoplastic resin (A), and is the same type as the continuous phase thermoplastic resin (A).
  • the resin may be a resin that can become a barrier by performing high crystallization or the like.
  • the barrier resin is a resin kneaded with the composition of the present invention in a kneaded state, preferably in the form of a layer.
  • the layer has an aspect ratio of 10 to 500 (long axis length a, short axis length a). When the shaft length is b, it is more preferable that the initial ratio: aZb)! / ,.
  • the barrier resin is present in the continuous phase of the composition of the present invention, and is resistant to water vapor transmission.
  • the particles are dispersed as a plate-like layered material parallel to the peripheral surface of the double-glazed glass.
  • the resin component constituting the barrier resin is not particularly limited.
  • polyolefins such as high-density polyethylene (HDPE) and ultrahigh molecular weight polyethylene (UHMWPE), nylon 6, nylon 6, 6, aromatics Polyamide resin such as nylon (MXD6), polyester resin such as polyethylene terephthalate (PET), polybutyl resin such as ethylene butyl alcohol (EVOH), polychlorinated butyl resin, polychloride butylidene (PVDC)) resin
  • the barrier resin may have only one of these strengths, or may have a combined strength of two or more!
  • the content of the barrier resin is determined by removing the barrier resin from the composition of the present invention and removing the thermoplastic resin (A) and the barrier resin. It is preferable that the melt viscosity and the volume fraction of the resin are appropriately determined so as to satisfy the following formulas (1) and (2).
  • the mass ratio of the thermoplastic resin (A) to the barrier resin is preferably 90Z10-50Z50, particularly preferably 90Z10-70Z30.
  • represents the melt viscosity (poise) of the barrier resin
  • is the solution dm of the thermoplastic resin ( ⁇ ).
  • r? / n is more preferably 3.0 or more.
  • the barrier resin is a thermoplastic resin (A)
  • the composition of the present invention preferably further contains an inorganic filler in addition to the above components.
  • composition of the present invention contains an inorganic filler
  • the heat shrinkage is reduced, the moldability is improved, and the dischargeability (fluidity) is also maintained.
  • the inorganic filler is not particularly limited, and includes, for example, talc; my strength; fumed silica, calcined silica, precipitated silica, crushed silica, fused silica; diatomaceous earth; oxidized iron, zinc oxide, titanium oxide, oxide Barium, magnesium oxide; carbonates, sulfates, sulfites, phosphates, and the like of alkaline earth metals such as calcium, magnesium, and barium; limestone clay, clay or clay, calcined clay; Fatty acids, fatty acid esters and the like can be mentioned. These may be used alone or in combination of two or more.
  • talc and calcium carbonate are preferably used because they have an excellent effect of improving moldability, and talc is particularly preferably used.
  • the talc used in the present invention is not particularly limited, and may be surface-treated or untreated.
  • Examples of the surface treatment include ridge coupling or physical treatment using a treating agent such as a silane coupling agent, a higher fatty acid, a fatty acid metal salt, or an organic titanate.
  • a treating agent such as a silane coupling agent, a higher fatty acid, a fatty acid metal salt, or an organic titanate.
  • a treating agent such as a silane coupling agent, a higher fatty acid, a fatty acid metal salt, or an organic titanate.
  • Talc F manufactured by Nippon Talc Co., Ltd., Mythrone Vapor manufactured by Nippon Mistron Co., Ltd. and the like are preferably used. These may be used alone or in combination of two or more.
  • the calcium carbonate used in the present invention is not particularly limited, and includes, for example, heavy calcium carbonate, precipitated calcium carbonate (light calcium carbonate), colloidal calcium carbonate, and the like.
  • fatty acids, fatty acids, fatty acid esters, Surface-treated calcium carbonate that has been surface-treated with a cyanate ligature or the like may be used.
  • Specific examples of the above calcium carbonate include heavy calcium carbonate, heavy calcium carbonate manufactured by Maruo Calcium Co., Ltd., Whiten P-30 manufactured by Shiroishi Industry Co., Ltd., and Takehara Chemical Co., Ltd. ) Is preferably used. These may be used alone or in combination of two or more.
  • the content of the inorganic filler is from 30 to 200 parts by mass based on the total of 100 parts by mass of the thermoplastic resin (A) and the unvulcanized rubber (B) from the viewpoint of more excellent moldability. 50 to 150 parts by mass is more preferable! / ,.
  • the composition of the present invention includes the above-mentioned inorganic materials such as carbon black in order to improve the fluidity, heat resistance, heat shrinkage, physical strength, and cost, as long as the object of the present invention is not impaired.
  • Fillers other than fillers such as hydrogenated petroleum resin, terpene phenol resin, rosin ester, coumarone resin, antioxidants, heat stabilizers, antioxidants, softeners, processing aids, etc. Can also be added.
  • an inorganic pigment or an organic pigment can be added to the composition of the present invention for the purpose of coloring or the like.
  • composition of the present invention is admixed with an adhesion-imparting agent in order to improve the adhesion to glass.
  • the adhesion-imparting agent is not particularly limited, and for example, a silane coupling agent such as vinyl silane, methacryl silane, aminosilane, epoxy silane, mercapto silane, or a polymer having a maleic acid group, a carboxy group, a hydroxy group, an epoxy group, or the like. Can be used.
  • a silane coupling agent such as vinyl silane, methacryl silane, aminosilane, epoxy silane, mercapto silane, or a polymer having a maleic acid group, a carboxy group, a hydroxy group, an epoxy group, or the like. Can be used.
  • Examples of such a polymer include a maleic acid-modified polyethylene, a maleic acid-modified polypropylene, a maleic acid-modified ethylene ethyl acrylate, an epoxy-modified styrene-butadiene copolymer, an epoxy-modified ethylene acetate-butyl copolymer, and an ethylene-butyl acetate copolymer. And polymers and saponified products thereof.
  • thermoplastic resin (A) and the unvulcanized rubber (B) have different chemical compatibility
  • a suitable compatibilizer to make the two compatible. ⁇ ⁇ .
  • the compatibilizer is not particularly limited.
  • a copolymer having one or both structures of a resin component and a rubber component, an epoxy group capable of reacting with the resin component or the rubber component Those having a structure of a copolymer having a group, a carboyl group, a halogen atom, an amino group, an oxazoline group, a hydroxy group and the like can be mentioned. These can be selected according to the type of the thermoplastic resin (A) and the unvulcanized rubber (B) to be mixed.
  • SEBS styrene-ethylene-butylene-styrene-based block copolymer
  • EPDM ethylene-butylene-styrene-based block copolymer
  • EPM styrene-ethylene-butylene-styrene-based block copolymer
  • EPDMZ styrene or EPDMZ acrylonitrile graft copolymer and its modified maleic acid, styrene-Z maleic acid copolymer, and reactive phenoxine.
  • the blending amount is not particularly limited, and is based on 100 parts by mass in total of the thermoplastic resin (A) and the unvulcanized rubber (B). It is preferably 0.5 to 20 parts by mass.
  • the composition of the present invention is prepared by mixing a thermoplastic resin (A) and an unvulcanized rubber (B) at the above-mentioned mass ratio, and further containing the absorbent (C) at the above-mentioned content, using a twin-screw kneader. And melted and kneaded to disperse the unvulcanized rubber (B) as a dispersed phase (domain) in a thermoplastic resin (A) that forms a continuous phase (matrix phase). .
  • thermoplastic resin (A) or the unvulcanized rubber (B) may be performed during the above-mentioned kneading operation. Is preferred,.
  • the kneader used for the above kneading is not particularly limited, and for example, a screw extruder, a kneader, a Banbury mixer, a twin-screw kneading extruder and the like can be used. In particular, it is preferable to use a twin-screw kneading extruder. In addition, two or more kinds of kneaders may be used and kneading may be performed sequentially.
  • the temperature may be any temperature as long as it is equal to or higher than the temperature at which the thermoplastic resin (A) melts. In the case of containing a thermoplastic resin, it is sufficient that the temperature is not lower than the melting temperature of the thermoplastic resin (A) and lower than the thermal deformation temperature of the reactive resin.
  • the shear rate at the time of kneading is preferably 500- 7 500 sec 1. The total kneading time is preferably 30 seconds to 10 minutes.
  • the prepared thermoplastic resin composition is extruded into a strand from a kneading extruder, cooled with water or the like, formed into a pellet with a resin pelletizer, and then molded.
  • the prepared high-temperature thermoplastic resin composition is directly used as a sealing material for a double-glazed glass in a gap surrounded by a spacer already disposed between the vicinity of the periphery of the glass plate of the double-glazed glass and the spacer already disposed. It may be cast and filled. In this case, it is preferable to use a high-temperature thermoplastic resin composition discharged from the molding machine, since the adhesiveness between the glass plate and the spacer is increased.
  • the prepared thermoplastic resin composition may be molded into a spacer shape by extrusion molding, injection molding, or the like.
  • the pellet obtained by molding the thermoplastic resin composition prepared as described above and the pellet of the above-mentioned barrier resin are used. , Should be mixed at a predetermined ratio.
  • the mixing of both pellets is performed according to a slipping method, such as a dry blending method using a conventional blender or a method in which each pellet is supplied from an independent feeder to a kneader at a predetermined ratio.
  • the mixture of the two pellets is subjected to a low shear rate (for example, 30 sec- 1 or more and less than 300 sec- 1 ), for example, in a single screw extruder, to obtain a thermoplastic resin composition and a barrier resin.
  • a low shear rate for example, 30 sec- 1 or more and less than 300 sec- 1
  • the melt-kneaded material may be directly supplied to a molding machine to produce a spacer. Alternatively, it may be extruded in a strand shape, palletized, and provided for molding.
  • the above-mentioned barrier resin is preferably oriented as a plate-like layered material parallel to the peripheral surface of the double-glazed glass.
  • the shape of the nozzle when extruding the composition of the present invention is made flat and the shear rate is 30 to 300 sec- 1 at the exit of the injection machine or the extruder. It is effective to do so.
  • the composition of the present invention has excellent heat resistance, small heat shrinkage, and excellent water vapor permeability, and can improve the productivity of double-glazing.
  • a first embodiment of the double glazing of the present invention is a double glazing using the composition of the present invention as a spacer.
  • it is a double-layer glass in which two or more glass plates are arranged to face each other via a spacer, and an air layer is formed by the two glass plates and the spacer.
  • Pisa is a double glazing which is the composition of the present invention.
  • FIG. 1 illustrates the present invention. It is a schematic sectional drawing which shows an example of a structure of the 1st aspect of a double glazing.
  • 1 is a glass plate
  • 2 is an air layer
  • 3 is a spacer
  • 10 is a double glazing.
  • the double-glazed glass of the first embodiment has two glass plates so that the two glass plates 1 arranged opposite to each other form an air layer 2 having a predetermined volume therebetween.
  • This is a double-glazed glass 10 in which a spacer 3 for determining an interval between the two is provided between two glass plates 1, and the composition of the present invention is used as the spacer 3.
  • the double-glazed glass of the first embodiment uses a spacer obtained from the composition of the present invention as a spacer, so that the production process is easy and the heat resistance, moldability and dew point are high. It has excellent characteristics. Furthermore, the double glazing of the present invention is a double glazing of the warm edge type, and is used as a spacer.
  • the composition of the present invention has a high thermal conductivity through which heat of the outside air is hardly transmitted, and a metal spacer. Excellent heat insulation compared to the double glazing used.
  • the configuration and structure of the double-glazed glass of the first embodiment are not particularly limited as long as the composition of the present invention is used as a spacer.
  • the shape of the spacer 3 is not limited to the shape shown in FIG. 1 and may be any shape such as the shape shown in FIG. 3 or the like.
  • a sealing material or the like for sealing the spacer or the like with outside air may be provided at the peripheral edge of the glass plate where an adhesive layer may be provided.
  • the number of glass plates 1 is not limited to two, but may be two or more and can be determined as needed.
  • the interval between the glass plates 1 forming the air layer 2 is not particularly limited, but is usually preferably about 6 mm or about 12 mm.
  • the hardness of the spacer obtained from the composition of the present invention is preferably 50-100 in JIS A hardness.
  • the glass may be damaged if the bonding strength is strong, or the bonding strength may be insufficient. In this case, peeling of the glass plate and the spacer can be avoided.
  • the double glazing is not deformed by the weight of the glass plate.
  • a second embodiment of the double glazing of the present invention is a double glazing using the composition of the present invention as a spacer and a sealing material. That is, in the double-glazed glass of the first embodiment, the spacer 3 simultaneously holds the air layer as a sealing material while sealing the air layer with outside air.
  • the spacer 3 functions as a sealing material that prevents intrusion of moisture from the outside without using a primary sealing material (adhesive layer), a secondary sealing material, or the like. At the same time, it also serves as a spacer 3 for holding two glass plates at a predetermined interval.
  • the double glazing of the second embodiment has the characteristics of the double glazing of the first embodiment, and does not require the use of a primary sealing material, a secondary sealing material, or the like. The process can be more simplified.
  • the double-glazed glass of the second embodiment is not particularly limited in the other structure, structure, etc., as long as the composition of the present invention is used as a spacer and a sealing material. It is the same as double-glazing.
  • the composition of the present invention is used as a spacer and a sealing material, and a part or all of the adhesive between the composition and the glass is used.
  • It is a double glazing having layers.
  • two or more glass plates are arranged to face each other via a spacer, and two glass plates, the spacer, and an adhesive provided between the glass plate and the spacer.
  • a double glazing comprising an air layer formed by layers, wherein the spacer is a double glazing which is the composition of the present invention.
  • FIG. 2 is a schematic sectional view showing an example of the configuration of the third embodiment of the double glazing of the present invention.
  • 1 is a glass plate
  • 2 is an air layer
  • 3 is a spacer
  • 4 is an adhesive layer
  • 12 is a double glass.
  • the double-glazed glass shown in FIG. 2 has the structure of the first embodiment of the double-glazed glass, and further includes an adhesive layer 4 between the spacer 3 also serving as a sealing material and the glass plate 1. Having.
  • the double-glazed glass of the third embodiment has the properties of the double-glazed glass of the first embodiment and also has the adhesive layer 4, so that the adhesiveness between the spacer 3 and the glass plate 1 is improved and the double-glazed glass is improved. Prevents intrusion of moisture from the outside of the laminated glass, and is superior in the dew point characteristics of the air layer 2.
  • the double-glazed glass of the third embodiment uses the above-described composition of the present invention as a spacer and a sealing material, and if it further has an adhesive layer, the other configurations and structures are particularly limited. This is not the same as in the double glazing of the first embodiment.
  • the fourth embodiment of the present invention further comprises a secondary glass in addition to the double-glazed glass of the first embodiment and the third embodiment. It is a double glazing having a seal.
  • it is a double-layer glass in which two or more glass plates are arranged to face each other via a spacer, and a hollow layer is formed by the two glass plates and the spacer.
  • a composition of the present invention and a double-glazed glass for sealing a gap formed by the outer peripheral surface of the spacer and the inner surfaces of the peripheral portions of the two glass plates with a sealing material (first embodiment of the fourth embodiment) Form), and two or more glass plates are arranged to face each other via a spacer, and two glass plates, the spacer, and a space between the glass plate and the spacer.
  • This is a double-glazed glass (second embodiment of the fourth embodiment).
  • FIG. 3 is a schematic sectional view showing an example of the configuration of the first embodiment of the fourth embodiment of the double glazing of the present invention.
  • FIG. 4 is a schematic sectional view showing an example of the configuration of the second embodiment of the fourth embodiment of the double-glazed glass of the present invention.
  • 1 is a glass plate
  • 2 is an air layer
  • 3 is a spacer
  • 4 is an adhesive layer
  • 5 is a secondary sealing material
  • 14 and 16 are double-glazing.
  • the spacer 3 is provided near the periphery of the glass plate 1 so that the secondary sealing material 5 can be provided.
  • This is a double glazing obtained by sealing (filling) a gap formed by the outer peripheral surface of the spacer 3 and the inner surfaces of the two glass plate 1 peripheral edges with a sealing material.
  • the laminated glass according to the second embodiment of the fourth embodiment is a double-layer glass obtained by providing the adhesive layer 4 between the glass plate 1 and the spacer 3 in the laminated glass according to the first embodiment of the fourth embodiment. .
  • the laminated glass of the fourth aspect has the properties of the double-glazed glass of the first aspect and the third aspect, and further has excellent dew point properties, particularly excellent dew point properties under high-temperature and high-humidity conditions. Extremely high reliability.
  • the double-glazed glass of the present invention has the above-mentioned properties according to the above-described embodiments
  • the double-glazed glass of any one of the above-described embodiments may be arbitrarily used according to the application in which the double-glazed glass is used or used. You can choose.
  • the glass sheet 1 used in each embodiment of the double-glazed glass of the present invention a glass sheet used for a building material, a vehicle, or the like can be used without any particular limitation. Examples include glass, tempered glass, glass with a metal mesh, heat ray absorbing glass, heat ray reflecting glass, and organic glass which are usually used for windows and the like. Further, the thickness of the glass is appropriately determined.
  • the resin used for the adhesive layer 4 provided in the third and fourth embodiments of the double-glazed glass of the present invention is not particularly limited, and examples thereof include a butyl rubber and an adhesive based on polyisobutylene (PIB). And hot melt adhesives. Among them, a PIB sealing material is preferable because it has high adhesion to glass and has excellent sealing properties and excellent dew point performance.
  • PIB polyisobutylene
  • the secondary seal provided in the fourth embodiment of the double glazing of the present invention is preferably used as a composition containing the following main materials.
  • a butyl rubber-based hot melt, a low moisture permeability material, and a butyl rubber-based, polysulfide-based, silicone-based, or urethane-based material are preferably used because of their quick curing.
  • the double glazing of the present invention is basically bonded between two parallel glass plates 1 fixed to a machine while extruding the composition of the present invention with a nozzle or the like connected to an extruder. By performing the above, it can be manufactured. At this time, a primer may be applied to the portion of the glass plate 1 to which the spacer 3 is adhered, if necessary, and an adhesive may be further applied, if necessary. In some cases, the composition of the present invention can be extruded onto one glass plate surface, and the other glass plate can be pressed and bonded before cooling.
  • the method of applying the primer and the adhesive it may be applied manually by an applicator or the like, or may be applied by a robot that automatically extrudes the primer or the adhesive.
  • the composition of the present invention and the adhesive are co-extruded with an extruder, extruded so that the outer layer has the structure of the adhesive and the inner side of the outer layer has the structure of the composition of the present invention, and molded into a predetermined shape of the spacer.
  • the extruded composition of the present invention and the adhesive may be directly discharged between the peripheral edges of the glass plate.
  • the composition of the present invention that forms a spacer can be used either when the composition is formed as a spacer and disposed on a glass plate, or when the extruder is directly discharged between glass plates. It is preferable to use one that is in a high temperature state after kneading. This is a force that provides stronger adhesion between the spacer and the glass plate.
  • the double glazing of the fourth embodiment provided with a secondary seal can also be manufactured basically in the same manner as described above. That is, in the same manner as described above, a spacer is formed by applying a spacer and, if necessary, a primer and Z or an adhesive, and then the secondary sealing material is applied to the gap by an applicator or an extruder (filling). ).
  • the double glazing of the present invention having such a configuration has the characteristics of the above-described embodiments and also has the following advantages.
  • the manufacturing process of the double glazing of the present invention is very simple because the manufacturing process is greatly reduced as compared with a double glazing manufactured using a conventional metal spacer and a sealing material. Yes, excellent heat insulation.
  • the double-glazing of the present invention uses the thermoplastic resin composition of the present invention as a spacer or the like, it does not require a long time to cure as in a conventional two-component sealing material. Production ⁇ ⁇ High.
  • the unvulcanized rubber, moisture absorbent, liquid rubber and filler shown in Table 1 were mixed with a Banbury mixer or a pressurized mixer, and pelletized at about 100 ° C with a rubber pelletizer. Thereafter, the thermoplastic resins were dry-blended at the compounding ratios (parts by mass) shown in Table 1, charged into a twin-screw kneader, and melt-kneaded. At this time, the temperature of the twin-screw kneader was set to 150 ° C and the shear rate was set to 100 Osec- 1 .
  • thermoplastic resin composition extruded in the form of a strand from a twin-screw kneader was cooled with water, and then pelletized with a resin pelletizer.
  • thermoplastic resin composition pellets were formed into a lmm sheet by press molding to obtain a sample (sample sheet) for measurement of water vapor transmission rate.
  • a double-glazed glass having no secondary seal was produced in the same manner as in Example 1 except that the secondary seal was not provided.
  • the unvulcanized rubber shown in Table 1 was pelletized with a rubber pelletizer at about 100 ° C., and then the unvulcanized rubber and the thermoplastic resin were mixed at each mixing ratio (parts by mass) shown in Table 1.
  • the fat, antioxidant, filler, and tackifier were dry-blended, placed in a twin-screw kneader, melt-kneaded, and then a vulcanizing agent was added through an intermediate inlet to perform dynamic vulcanization.
  • thermoplastic resin composition extruded in the form of a strand from a twin-screw kneader was cooled with water and cooled, and then pelletized with a resin verifier.
  • thermoplastic resin composition pellets were formed into a lmm sheet by press molding to obtain a sample (sample sheet) to be used for measuring the water vapor transmission rate.
  • thermoplastic resin composition used for the double-glazed glass of Comparative Example 3 was disposed on the periphery of one square glass plate having a side of 300 mm while being extruded with a nozzle. Then, another square glass plate having another side of 300 mm was pressure-bonded and bonded. In addition, the inner surface of the two glass plate peripheral edges and the gap that also has the outer peripheral surface force of the spacer formed above are filled as a secondary seal with a composition that also has a butyl rubber force filled with a hot melt applicator. Then, a double glazing provided with a secondary seal was produced.
  • a secondary seal was provided in the same manner as in Comparative Example 5 except that no secondary seal was provided. However, a double-glazed glass was produced.
  • Anti-aging agent 1. 4 1. 4
  • ⁇ LDPE JREX KM908A, manufactured by Nippon Polyolefin Co., Ltd.
  • LLDPE Sumikasen GA802, manufactured by Sumitomo Mitsui Polyolefin Co., Ltd.
  • EPDM EPT3045, manufactured by Mitsui Chemicals, Inc. or Esprene514, manufactured by Sumitomo Chemical Co., Ltd.
  • Butyl rubber Exxon Butyl 365, manufactured by Exxon Corporation
  • Hygroscopic agent Zeolum 3—A, manufactured by Tosoh Corporation
  • PIB Opanol B15, manufactured by BASF Corporation
  • Carbon black Asahi # 60, manufactured by Asahi Carbon Co., Ltd.
  • Calcium carbonate heavy calcium carbonate, manufactured by Maruo Calcium Co., Ltd.
  • ZnO Zinc flower No. 3, manufactured by Shodo Chemical Co., Ltd.
  • Zinc stearate Zinc stearate, manufactured by Shodo Chemical Co., Ltd.
  • Stearic acid Bead stearic acid, manufactured by NOF Corporation
  • Anti-aging agent Noxeller NS, Ouchi Shinko Chemical Co., Ltd.
  • Tackifier (rosin ester): Pencel AD, Arakawa Chemical Co., Ltd.
  • Adhesion-imparting agent silane coupling agent: A-174, manufactured by Nucker Corporation
  • thermoplastic resin used in each of the above Examples and Comparative Examples was calculated by the following method.
  • thermoplastic resins described in Table 1 were formed into a lmm sheet by press molding to obtain a sample (sample sheet) to be used for measuring the moisture permeability.
  • FIG. 6 is a cross-sectional view of the cup used for measuring the moisture permeability.
  • 20 is a cup
  • 22 is water
  • 24 is a sample sheet
  • 26 is a sintered metal plate
  • 28 is a fixing member
  • 30 is a bolt
  • 32 is a nut.
  • A represents the transmission area [m 2 ]
  • T represents the test time [day]
  • M represents the reduced mass [g].
  • the moisture permeability was measured using five samples for each sample sheet, and the average value was defined as the moisture permeability.
  • thermoplastic resin compositions used in each of the above Examples and Comparative Examples were calculated in the same manner.
  • JIS R3209 Class I-III of "Classification by Accelerated Durability of Sealing” specified in 1998, and dew point characteristics under initial and high temperature and humidity conditions were evaluated.
  • Class I 7 days of moisture and light resistance test, followed by 12 cycles of cooling and heating tests.
  • Category II Following the test process of Class I above, moisture and light resistance test of 7 days, then 12 cycles of cooling and heating tests.
  • Class III Following the test process of Class II above, a moisture and light resistance test was performed for 28 days, and a repeated cooling and heating test was performed for 48 cycles.
  • High temperature and high humidity conditions 55 ° C, 95RH% environment for 28 days [0118]
  • the evaluation was “ ⁇ ” when the dew point was ⁇ 50 ° C or lower, “ ⁇ ” when the dew point was higher than ⁇ 50 ° C and ⁇ 35 ° C or lower, and higher than —35 ° C.
  • the case where the temperature was below 0 ° C was marked with “ ⁇ ”, and the case where the temperature was above 0 ° C was marked with “X”.
  • the moldability of the double glazing was evaluated by the heat shrinkage of the thermoplastic resin composition. If the heat shrinkage of the composition is large, the composition applied to the glass plate shrinks, and the distance between the two glass plates becomes narrow, so that a desired volume of the air layer cannot be obtained.
  • the heat shrinkage was evaluated by measuring the dimensional change by the following method.
  • the workability was evaluated based on the degree of crushing of the composition at the time of applying the composition (crushing at the time of application). The evaluation method is described below.
  • the thickness dimension of the glass when pressed with a 1.5-ton load press at room temperature was shown as a rate of change.
  • the evaluation is ⁇ when the dimensional change rate is 5% or less, ⁇ when it is more than 5% and 10% or less, and ⁇ when it is more than 10% and 15% or less. " ⁇ ” was given, and "X” was given when the strength was greater than 15%.
  • the retention stability was determined based on the state of the composition in the heated and molten state when each of the above thermoplastic resin compositions was applied to a glass plate.
  • the compositions of Comparative Examples 3 and 4 containing the vulcanizing agent in the above-mentioned heated and molten state, the vulcanization reaction may progress and the viscosity may be increased. Therefore, the determination was made based on the change in viscosity in the heated and molten state.
  • the productivity of the double glazing was determined comprehensively based on the results of comparison of the productivity of the conventional double glazing and the evaluation results of the above-mentioned retention stability.
  • the evaluation was performed as a relative evaluation when the productivity of the conventional double-glazed glass was assumed to be “X” (three stages of ⁇ , ⁇ , and ⁇ ⁇ in order of productivity).
  • each of the double glazings of Examples 110 using the thermoplastic resin composition of the present invention was excellent in heat shrinkage, moldability and dew point characteristics, and improved in productivity. I could improve it.
  • thermoplastic resin was excellent in the initial manifestation of dew point characteristics and moldability.
  • each of the double-glazed glasses of Examples 5 and 7-9 using the composition of the present invention to which a specific amount of talc was added was excellent in moldability.
  • the double glazing of Example 10 using the composition of the present invention to which a specific amount of calcium carbonate was added was also excellent in moldability.
  • the compositions of the present invention used in each of the double-glazed glasses of Examples 5 and 7 110 maintained the dischargeability (fluidity).
  • the double-glazed glass using the thermoplastic resin composition containing no unvulcanized rubber was not able to satisfy the dew point characteristics and was inferior in moldability.
  • the double glazing (Comparative Example 2) using a thermoplastic resin composition in which the mass ratio between the thermoplastic resin and the unvulcanized rubber is not within the range of the present invention has the dew point characteristics (classes 1 and 2). Class) as well as poor kakunae properties.
  • thermoplastic resin composition in which the vulcanized rubber was dispersed had poor retention stability and poor moldability.
  • thermoplastic resin composition in which butyl rubber was selected as the unvulcanized rubber (Comparative Examples 5-8) was strong enough to have sufficient heat resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Sealing Material Composition (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

 耐熱性に優れ、熱収縮が小さく耐水蒸気透過性にも優れ、複層ガラスの生産性を改善できる組成物、および、前記組成物を用いる複層ガラスの提供。  特定の透湿率を持つ熱可塑性樹脂(A)と、パラメチルスチレンとポリイソブチレンの共重合体のハロゲン化物およびエチレンプロピレンゴムからなる群から選択される少なくとも1種の未加硫ゴム(B)と、吸湿剤(C)とを含有し、前記熱可塑性樹脂(A)と前記未加硫ゴム(B)との質量比が85/15~15/85であり、かつ、前記吸湿剤(C)の含量が前記(A)と(B)との合計100質量部に対して10~70質量部である熱可塑性樹脂組成物、および、前記組成物を少なくともスペーサに用いる複層ガラス。

Description

明 細 書
熱可塑性樹脂組成物およびそれを用いる複層ガラス
技術分野
[0001] 本発明は、複層ガラスおよび熱可塑性榭脂組成物に関し、特に、耐熱性、成形性 および露点特性に優れ生産性が高 、複層ガラスおよび該複層ガラスに用いられる熱 可塑性榭脂組成物に関する。
背景技術
[0002] 近年、室内や車内等の温度を維持する等のうえで、断熱性に優れる複層ガラスが、 建築分野や、 自動車等の車両製造分野等で注目されている。
このような (従来の)複層ガラスの構成の一例を示す概略断面図を図 5に示す。 図 5に示される従来の複層ガラス 50は、一般的には、最低 2枚のガラス板 1をアルミ -ゥム製等の金属スぺーサ 7を介して対向させ、ガラス板 1の間に中空層(空気層) 2 を形成させ、スぺーサ 7とガラス板 1との間に一次シール (接着剤層) 4を介在させて 空気層 2を外気からしゃ断し、更に、スぺーサ 7と、一次シール 4と、対向するガラス板 1とで囲まれる端部の空隙に、ポリサルファイド系またはシリコーン系に代表される二 液混合型で常温硬化型や、ブチルゴム系ホットメルトの二次シール (シーリング材) 5 を設けてなる構造である。
[0003] この複層ガラスの製造方法としては、まず、中空構造の金属スぺーサ (特にアルミ- ゥム製スぺーサ) 7の中空部分に乾燥剤(吸湿剤) 6を充填してスぺーサとし、ガラス 板 1間にこのスぺーサ 7を配設してガラス板 1間の幅を所定間隔にセットし、その後、 シーリング材 5を打設すると 、う方法が採られて!/、る。このように作業工程は煩雑であ り、更に、常温硬化型のシーリング材 5を用いる複層ガラスでは、シーリング材が硬化 するまで長時間かかり、製造後すぐに出荷することができないという問題がある。特に 冬季には、シーリング材の養生のために加温室に入れる必要がある。このため、複層 ガラスの製造工程を簡略ィ匕し、養生時間を短縮して、生産性を高める技術が求めら れている。
[0004] 上記要求に応えることを目的として、例えば、上記アルミニウム製スぺーサの代わり に必要に応じて乾燥剤を練りこんだ榭脂組成物をスぺーサとして用いる複層ガラスが 提案されている(例えば、特許文献 1一 3参照。 )0上記榭脂組成物の一例として、ブ チル系ゴムと結晶性ポリオレフインと無機フィラーとを含み、ブチル系ゴムと結晶性ポ リオレフインとの合計量に対するブチル系ゴムの割合が 50— 98重量0 /0、結晶性ポリ ォレフィンの割合が 2— 50重量0 /0であり、ブチル系ゴムと結晶性ポリオレフインとの合 計 100重量部に対する無機フィラーの割合が 200重量部以下である熱可塑性榭脂 組成物が挙げられる(特許文献 2の請求項 6参照。 )0
[0005] また、例えば、水蒸気透過率が lOOgZ (m2 · 24h)以下(30 μ m厚)の熱可塑性榭 脂と、架橋した場合には水蒸気透過率が 300gZ (m2,24h) (30 /z m厚)以下となる ゴムを原料とし、熱可塑性榭脂連続相中に少なくとも一部が動的に架橋されたゴム組 成物からなる分散相を有する熱可塑性エラストマ一組成物も提案されて 、る(特許文 献 4参照。)。
[0006] このような熱可塑性榭脂組成物および熱可塑性エラストマ一組成物はスぺーサとと もにシーリング材としての役割を果たすことができる。そのため、これらの熱可塑性榭 脂組成物または熱可塑性エラストマ一組成物を対向配置された複層ガラス材料の端 部に打設することにより、スぺーサを有し対向するガラス板端部がシールされた複層 ガラスを製造することができる。したがって、金属スぺーサを用いる複層ガラスの製造 工程に比べて容易であり、生産性をある程度改善することができる。
[0007] 特許文献 1:特開平 10— 110072号公報
特許文献 2:特開平 10-114551号公報
特許文献 3:特開平 10-114552号公報
特許文献 4:特開 2000-119537号公報
発明の開示
発明が解決しょうとする課題
[0008] 上記特許文献 1、特許文献 2および特許文献 3に記載されている熱可塑性榭脂組 成物により、製造工程の簡素化および生産性をある程度改善することができるが、ブ チル系ゴムを用いると耐熱性が劣り、熱可塑性榭脂を連続相とし動的架橋ゴムを分 散相とすると強 、せん断力を得ることができな 、と 、う問題がある。 また、これらの熱可塑性榭脂組成物は、熱収縮率が高ぐガラス板に打設された後 に冷されると収縮し、複層ガラスの空気層が所望の間隔よりも狭くなり、成形性 (寸法 安定性)に劣る場合がある。
[0009] 一方、特許文献 4に記載された熱可塑性エラストマ一組成物により、製造工程の簡 素化および生産性をある程度改善することができるが、この組成物は動的架橋される 組成物であるため、複層ガラスの製造工程、特に、組成物をガラス板に塗布する際の 溶融状態において、組成物が一部架橋反応して粘度が上昇し、製造効率が低下す る場合がある。
[0010] ところで、建築分野、車両分野等にお!、て、住宅、車室等の高気密化、高断熱化 等が強く要求されるようになっており、複層ガラスの更なる露点特性の改善、特に耐 久性の向上が望まれている。
[0011] 本発明は、上記問題点を解決するものであり、具体的には、耐熱性に優れ、熱収縮 力 、さぐ耐水蒸気透過性にも優れ、複層ガラスの生産性を改善することができる組 成物を提供することを目的とする。
また、本発明者は、上記組成物を用いた、容易に製造することができて生産性が高 ぐ耐熱性、成形性および露点特性に優れる複層ガラスを提供することを目的とする 課題を解決するための手段
[0012] 本発明者は、上記課題を解決すべく鋭意検討した結果、特定の物性を有する熱可 塑性榭脂と特定の未加硫ゴムと吸湿剤とを特定の質量比で含有させた熱可塑性榭 脂組成物が、耐熱性、熱収縮率および優れた耐水蒸気透過性の目安である透湿率 が小さいことを知見した。
また、未加硫ゴムを含有する上記組成物を用いると、組成物の粘度変化を抑えられ 複層ガラスの生産性が高くなることも知見した。
また、無機充填材を特定の割合で含有すると、成形性により優れ、吐出性 (流動性 )が維持された熱可塑性榭脂組成物となることを知見した。
更に、該熱可塑性榭脂組成物をスぺーサ等として用いた複層ガラスは、容易に製 造することができ生産性が高ぐ耐熱性、成形性および露点特性にも優れることを知 ^¾した。
[0013] 本発明者は、これらの知見に基づき、本発明を完成させた。
即ち、本発明は、以下の(1)一(14)を提供する。
[0014] (1)透湿率が 1. O X 10"13 cm3 - cm/ (cm2 ' sec 'Pa)以下である熱可塑性榭脂(A )と、
ハロゲン化イソォレフィン zパラアルキルスチレン共重合体およびエチレンプロピレ ンゴム力 なる群力 選択される少なくとも 1種の未加硫ゴム(B)と、吸湿剤 (C)とを含 有し、
前記熱可塑性榭脂 (A)と前記未加硫ゴム (B)との質量比が 85Z15— 15Z85で あり、
かつ、
前記吸湿剤 (C)の含量が前記熱可塑性榭脂 (A)と前記未加硫ゴム (B)との合計 1 00質量部に対して 10— 70質量部である熱可塑性榭脂組成物。
[0015] (2)透湿率が 1. O X 10"13 cm3 - cm/ (cm2 ' sec 'Pa)以下である熱可塑性榭脂(A )と、
ハロゲン化イソォレフィン Zパラアルキルスチレン共重合体およびエチレンプロピレ ンゴム力 なる群力 選択される少なくとも 1種の未加硫ゴム(B)と、吸湿剤 (C)とを、 以下の混合比で混合して得られる熱可塑性榭脂組成物。
前記熱可塑性榭脂 (A)と前記未加硫ゴム (B)との質量比: 85/15-15/85,か つ、
前記吸湿剤 (C)の含量:前記熱可塑性榭脂 (A)と前記未加硫ゴム (B)との合計 10 0質量部に対して 10— 70質量部
[0016] 上記(1)および(2)において、前記ハロゲン化イソォレフィン Zパラアルキルスチレ ン共重合体は、パラメチルスチレンとポリイソブチレンの共重合体のハロゲン化物(X IPMS)であるのが好ましぐ Br— IPMSであるのがより好ましい。
また、上記(1)および(2)において、各種添加剤を更に配合させるのが好ましい。
[0017] (3)前記熱可塑性榭脂 (A)が、低密度ポリエチレン (LDPE)および直鎖状低密度 ポリエチレン (LLDPE)力もなる群力も選択される少なくとも 1種である上記(1)または (2)に記載の熱可塑性榭脂組成物。
[0018] (4)更に、無機充填材を含有する上記(1)一 (3)の 、ずれかに記載の熱可塑性榭 脂組成物。
[0019] (5) 5. 0 X 10— 13 cm3 ' cmZ (cm2 ' sec ' Pa)以下の透湿率を持つ上記(1)一(4)の
V、ずれかに記載の熱可塑性榭脂組成物。
[0020] (6)上記(1)一 (5)の 、ずれかに記載の熱可塑性榭脂組成物をスぺーサとして用 いる複層ガラス。
[0021] (7)上記(1)一 (5)の 、ずれかに記載の熱可塑性榭脂組成物をスぺーサ兼シーリ ング材として用いる複層ガラス。
[0022] (8)上記(1)一 (5)の 、ずれかに記載の熱可塑性榭脂組成物をスぺーサ兼シーリ ング材として用い、前記熱可塑性榭脂組成物とガラスとの間に更に接着剤層を有す る複層ガラス。
[0023] (9)更に、二次シールを有する上記(6)または(8)に記載の複層ガラス。
[0024] (10)上記(6)に記載の複層ガラスであって、
対向する 2枚のガラス板と、前記 2枚のガラス板の間に設けられる前記スぺーサとを 有し、
前記 2枚のガラス板と前記スぺーサとにより空気層が形成されてなる複層ガラス。
[0025] (11)前記スぺーサ外周面と前記 2枚のガラス板周縁部の内面とにより形成される 空隙が二次シール材でシールされて 、る上記(10)に記載の複層ガラス。
[0026] (12)上記(7)に記載の複層ガラスであって、
対向する 2枚のガラス板と、前記 2枚のガラス板の間に設けられる前記スぺーサ兼 シーリング材とを有し、
前記 2枚のガラス板と前記スぺーサ兼シーリング材とにより空気層が形成されてなり 、前記スぺーサ兼シーリング材カ スぺーサとして前記 2枚のガラス板を所定の間隔 に保持すると同時に、シーリング材として前記空気層を外気力 シールして保持する 複層ガラス。
[0027] ( 13)上記(8)に記載の複層ガラスであって、
対向する 2枚のガラス板と、前記 2枚のガラス板の間に設けられる前記スぺーサ兼 シーリング材と、前記ガラス板と前記スぺーサ兼シーリング材との間に設けられる接着 剤層とを有し、
前記 2枚のガラス板、前記スぺーサ兼シーリング材および前記接着剤層により空気 層が形成されてなり、
前記スぺーサ兼シーリング材が、スぺーサとして前記 2枚のガラス板を所定の間隔 に保持すると同時に、シーリング材として前記空気層を外気力 シールして保持する 複層ガラス。
[0028] (14)前記スぺーサ兼シーリング材の外周面と前記接着剤層と前記 2枚のガラス板 周縁部の内面とにより形成される空隙が二次シール材でシールされている上記(13) に記載の複層ガラス。
発明の効果
[0029] 本発明の熱可塑性榭脂組成物は、耐熱性に優れ、熱収縮が小さぐ耐水蒸気透過 性にも優れ、複層ガラスの生産性を改善することができる。
また、本発明の複層ガラスは、容易に製造することができて生産性が高ぐ耐熱性、 成形性および露点特性に優れる。
図面の簡単な説明
[0030] [図 1]本発明の複層ガラスの第一態様の構成の一例を示す概略断面図である。
[図 2]本発明の複層ガラスの第三態様の構成の一例を示す概略断面図である。
[図 3]本発明の複層ガラスの第四態様の第一形態の構成の一例を示す概略断面図 である。
[図 4]本発明の複層ガラスの第四態様の第二形態の構成の一例を示す概略断面図 である。
[図 5]従来の複層ガラスの構成の一例を示す概略断面図である。
[図 6]実施例において透湿度の測定に用いたカップの概略断面図である。
符号の説明
[0031] 1 ガラス板
2 空気層(中空層)
3 スぺーサ 4 接着剤層
5 二次シール材
6 吸湿剤
7 金属スぺーサ
10、 12、 14、 16、 50 複層ガラス
20 カップ
22 水
24 試料シート
26 燒結金属板
28 固定部材
30 ボノレト
32 ナット
発明を実施するための最良の形態
[0032] 以下、本発明を詳細に説明する。
本発明の熱可塑性榭脂組成物(以下「本発明の組成物」ともいう。)は、透湿率が 1 . 0 X 10— 13 cm3 · cm/ (cm2 · sec · Pa)以下である熱可塑性榭脂(A)と、ハロゲンィ匕 イソォレフィン Zパラアルキルスチレン共重合体およびエチレンプロピレンゴムからな る群力 選択される少なくとも 1種の未加硫ゴム (B)と、吸湿剤(C)とを含有し、前記 熱可塑性榭脂組成物 (A)と前記未加硫ゴム (B)との質量比 (熱可塑性榭脂 (A) Z未 加硫ゴム(B) )が 85Z15— 15Z85であり、かつ、前記吸湿剤(C)の含量が前記熱 可塑性榭脂 (A)と未加硫ゴム (B)との合計 100質量部に対して 10— 70質量部であ る熱可塑性榭脂組成物である。
[0033] 本発明の組成物を複層ガラスのスぺーサ等に用いると、生産性が高ぐ耐熱性、成 形性および露点特性に優れる複層ガラスが得られる。
本発明の組成物には、透湿率が 1. 0 X 10— 13 cm3 -cm/ (cm2 ' sec 'Pa)以下であ る熱可塑性榭脂 (A)を用いる。
熱可塑性榭脂 (A)は、特に限定されず、例えば、ポリオレフイン系榭脂 (例えば、高 密度ポリエチレン (HDPE)、低密度ポリエチレン (LDPE)、直鎖状低密度ポリエチレ ン(LLDPE)、超高分子量ポリエチレン(UHMWPE)、ァイソタクチックポリプロピレ ン、シンジオタクチックポリプロピレン、エチレンプロピレン共重合体榭脂);ポリアミド 系榭脂(例えば、ナイロン 6 (N6)、ナイロン 6, 6 (N6, 6)、ナイロン 4, 6 (N4, 6)、ナ ィロン11 (?^11)、ナィロン12 (?^12)、ナィロン6, 10 (N6, 10)、ナイロン 6, 12 (N6 , 12)、ナイロン 6Z6, 6共重合体(N6Z6, 6)、ナイロン 6Z6, 6/6, 10共重合体 (N6/6, 6/6, 10)、ナイロン MXD6 (MXD6)、ナイロン 6T、ナイロン 6/6Τ共重 合体、ナイロン 6, 6ΖΡΡ共重合体、ナイロン 6, 6ZPPS共重合体);ポリエステル系 榭脂(例えば、ポリブチレンテレフタレート(ΡΒΤ)、ポリエチレンテレフタレート(PET) 等の芳香族ポリエステル);ポリエーテル系榭脂(例えば、ポリフエ-レンォキシド (PP 0)、変成ポリフエ-レンォキシド(変成 PPO)、ポリサルフォン(PSF)、ポリエーテル エーテルケトン (PEEK) );ポリメタクリレート系榭脂(例えば、ポリメタクリル酸メチル( PMMA)、ポリメタクリル酸ェチル);ポリビュル系榭脂(例えば、ビュルアルコール Z エチレン共重合体 (EVOH)、ポリ塩ィ匕ビユリデン (PVDC)、塩ィ匕ビユリデン Zメチル アタリレート共重合体);フッ素系榭脂(例えば、ポリフッ化ビ-リデン (PVDF)、ポリク ロルフルォロエチレン(PCTFE) )、ポリアクリロニトリル榭脂(PAN)が挙げられる。
[0034] 中でも、得られる本発明の組成物の成形性が良好で、かつ、本発明の組成物を後 述する複層ガラスのスぺーサ等として用いた場合に外気温等に対する耐熱変形性が 良好であり、吸水による水蒸気透過性の低下を抑えられる等の点で、熱変形温度が 50°C以上である、ポリオレフイン系榭脂、ポリエステル系榭脂、ポリエーテル系榭脂、 フッ素系榭脂が好ましい。
また、組成物としたときの熱収縮率が小さく成形性が良好で、透湿率が小さく複層 ガラスとしたときの初期露点特性に優れる点で、熱可塑性榭脂は低密度ポリエチレン (LDPE)、直鎖状低密度ポリエチレン (LLDPE)がより好ま ヽ。
ここで、 LDPEおよび LLDPEが初期露点特性に優れる理由は、詳細には不明で あるが、 LDPEおよび LLDPEの透湿率が好適範囲にあり、スぺーサ(熱可塑性榭脂 組成物)中に空気層の水分が浸透しやすくなり、空気層の水分の吸湿が速やかに行 われるためであると考えられる。
[0035] 熱可塑性榭脂 (A)は、 1種単独で用いても、 2種以上を混合して用いてもょ ヽ。 [0036] 本発明においては、上記熱可塑性榭脂 (A)の透湿率は 1. O X 10— 13 cm3 - cm/ (c m2 ' sec ' Pa)以下である。この範囲であると、本発明の組成物を複層ガラスに用いた ときの露点特性が優れたものになる。
特に、 JIS R3209— 1998に記載の加速耐久試験 I類一 III類の露点特性を満足し 、かつ、初期および高温多湿条件での露点特性にも優れる点で、上記熱可塑性榭 脂(A)の透湿率は、 5. 0 X 10— 14 cm3 - cm/ (cm2 ' sec ' Pa)以下であるのが好まし い。
同様の点で、上記熱可塑性榭脂 (A)の透湿率は、 1. O X 10— 15 cm3 - cm/ (cm2 - s ec · Pa)以上( 1. 0 X 10— 13 cm3 · cm/ (cm2 · sec · Pa)以下)であるのが、露点特性 により優れる点で、好ましい。
[0037] 本発明に用いられる未加硫ゴム(B)は、ハロゲン化イソォレフィン Zパラアルキルス チレン共重合体およびエチレンプロピレンゴム力 なる群力 選択される少なくとも 1 種の未加硫ゴムである。
未加硫ゴム (B)を用いると、複層ガラスの製造において、本発明の組成物をガラス 板に塗布するときの溶融加熱時の滞留安定性に特に優れ、組成物の粘度上昇がな く複層ガラスの生産性を改善することができる。
[0038] 未加硫ゴムとして、ハロゲン化イソォレフィン Zパラアルキルスチレン共重合体もしく はエチレンプロピレンゴムまたはこれらの混合物を用いると、耐熱性が極めて優れた ものになる。
ハロゲン化イソォレフィン zパラアルキルスチレン共重合体は、特に限定されず、ハ ロゲン化イソォレフィンとパラアルキルスチレンの混合比、重合率、平均分子量、重合 形態 (ブロック共重合体、ランダム共重合体等)、粘度、ハロゲン原子等について、熱 可塑性榭脂組成物に要求される物性等に応じて任意に選択することができる。
[0039] ハロゲンィ匕イソォレフィン Zパラアルキルスチレン共重合体としては、上記効果によ り優れる点で、パラメチルスチレンとポリイソブチレンの共重合体のハロゲン化物(X— I PMS)であるのが好ましぐ Br— IPMSであるのがより好ましい。
ハロゲンィ匕イソォレフィン Zパラアルキルスチレン共重合体は、常法に従って合成 してもよく、市販品を用いてもよい。市販品としては、例えば、ェクソン (株)製の Br-I PMS「Exxpro3433」等が挙げられる。
[0040] エチレンプロピレンゴムも、特に限定されず、熱可塑性榭脂組成物に要求される物 性等に応じて任意に選択できる。エチレンプロピレンゴムとしては、例えば、 EPDM、 EPM等が挙げられる。
エチレンプロピレンゴムは、常法に従って合成してもよぐ巿販品を用いてもよい。 市販品としては、例えば、三井化学 (株)製の EPDM「EPT3045」、 Esprene514等 が挙げられる。
[0041] 未加硫ゴム(B)は、上記ハロゲン化イソォレフィン Zパラアルキルスチレン共重合体 および上記エチレンプロピレンゴム力もなる群力も選択される少なくとも 1種を用いる。 この場合、同種の未加硫ゴムを 2種以上用いてもよい。
また、未加硫ゴム (B)は、以下の添加剤等を含有する未加硫ゴム組成物として用い てもよい。
添加剤としては、未加硫ゴム (B)の熱可塑性榭脂 (A)への分散性、耐熱性等の改 善等のため、一般に配合される補強材、充填剤、軟化剤、架橋剤、老化防止剤、加 ェ助剤等が挙げられ、これらを必要に応じて適宜配合することができる。
[0042] 本発明の組成物にぉ ヽて、熱可塑性榭脂 (A)と未加硫ゴム (B)との組み合わせは 、特に限定されず、上記の各熱可塑性榭脂から選ばれる 1種以上の熱可塑性榭脂( A)と、上記の各ゴム力 選ばれる 1種以上の未加硫ゴム(B)のそれぞれとを組み合 わせて用いることができる。
好ましくは、本発明の効果により優れる点で、熱可塑性榭脂 (A)として低密度ポリエ チレン(LDPE)および直鎖状低密度ポリエチレン(LLDPE)の!、ずれ力 1種と、未加 硫ゴム(B)としてハロゲン化イソォレフィン Zパラアルキルスチレン共重合体およびェ チレンプロピレンゴム(EPDM、 EPM)の!、ずれか 1種との組み合わせが挙げられる
[0043] 本発明の組成物にぉ ヽては、上記熱可塑性榭脂 (A)と未加硫ゴム (B)との配合比 は、熱可塑性榭脂 (A)Z未加硫ゴム(B) 1S 質量比で、 85Z15— 15Z85である。 上記質量比であると、組成物としたときの硬度が好適範囲になり、複層ガラスの製 造時における組成物のつぶれによる製造不良を抑えることができる (力卩ェ性に優れる ) oまた、 JIS R3209— 1998に記載の加速耐久試験、特に II類および III類の露点 特性に優れる。
上記効果により優れる点で、質量比は、 30/70— 70/30であるのがより好ましぐ 40/60— 60/40であるの力更に好まし!/ヽ。
[0044] 上記質量比の臨界は熱可塑性榭脂 (A)と未加硫ゴム (B)との体積比率と粘度比率 とにより半 U断することができる。
本発明の組成物では、未加硫ゴム (B)を分散相とし、熱可塑性榭脂 (A)を連続相 とするが、単純に両成分を溶融状態で混練しても、必ずしも目的とする分散構造の熱 可塑性榭脂組成物を得ることができな ヽ。両成分の体積比の配合比率を制御して、 熱可塑性榭脂 (A)と未加硫ゴム (B)のそれぞれの混練温度における溶融粘度との 関係を、下記式で求められる α の値が 1未満となるように調整するのが好ましい。
1
[0045] = ( φ / ) X ( η / r\ )
1 R P P R
[0046] (式中、 φ は未加硫ゴム (B)の体積分率を表し、 φ は熱可塑性榭脂 (A)の体積分
R P
率を表し、 η は熱可塑性榭脂 (Α)と未加硫ゴム (Β)の混練時の温度およびせん断
R
速度条件における未加硫ゴム(B)の溶融粘度 (Poise)を表し、 η は熱可塑性榭脂(
Ρ
Α)と未加硫ゴム (Β)の混練時の温度およびせん断速度条件における熱可塑性榭脂 (Α)の溶融粘度 (Poise)を表す。
[0047] 上記式により得られる α の値が 1以上であると、本発明の組成物の分散構造が逆
1
転し、未加硫ゴム (Β)が連続相となってしまう場合がある。また、 0. 5≤ 7? / η ≤3
R Ρ
. 0であるのが好ましい。上記範囲であると、未加硫ゴム (Β)が熱可塑性榭脂 (Α)中 に、 0. 1—数十/ z m程度の大きさの粒子として分散される。
[0048] 本発明にお 、て、溶融粘度とは、混練加工時の任意の温度における各成分の溶 融粘度をいう。重合体成分の溶融粘度は、温度、せん断速度(sec— およびせん断 応力に依存して変化するため、一般には、溶融状態にある任意の温度、特に、混練 時の温度領域において、細管中に溶融状態の重合体成分を流し、応力とせん断速 度を測定して、下記式にしたがって求められる値である。
[0049] [数 1] η = σ / γ
(式中、 σ :せん断応力、 :せん断速度)
[0050] なお、溶融粘度の測定には、例えば、東洋精機社製キヤビラリ一レオメーターキヤ ピログラフ 1Cを使用することができる。
[0051] 本発明の組成物には吸湿剤 (C)を用いる。本発明の組成物に吸湿剤を含有させる ことにより、本発明の組成物を複層ガラスのシーリング材またはスぺーサ、特にスぺー サ兼シーリング材として用いることができる。
ここで、スぺーサ兼シーリング材とは、組成物を、複層ガラスの対向するガラス板の 周縁部間に、複層ガラスの空気層の厚みを確保するために配置されるスぺーサとし て用い、該スぺーサとガラス板の間に別途シーリング材を打設することなぐ該スぺ一 サをガラス板に圧着して、組成物を、空気層を外気カゝらしゃ断するシール材としても 用いることをいう。即ち、スぺーサ兼シーリング材として用いる場合には、本発明の組 成物は、スぺーサとしての役割と、シーリング材としての役割とを同時に果たしている 。なお、本発明の組成物は、複層ガラスのシーリング材としても、また、スぺーサとして シーリング材と併用してもよ 、。
[0052] 吸湿剤を含有する本発明の組成物を複層ガラスのスぺーサ兼シーリング材として 用いると、複層ガラスの生産性を向上できるうえ、複層ガラス構造内の空気層に含ま れる湿気を吸着して空気層内を乾燥し、また、複層ガラス外部力 侵入する水分を吸 収し、空気層に封入される空気の露点の上昇を防止することができる。なお、複層ガ ラスにおける露点とは、複層ガラスの内面に、 目視で結露が認められる最高温度であ る。
[0053] 本発明の複層ガラスの吸湿剤 (C)としては、一般に複層ガラスの金属製スぺーサ 等に充填される吸湿剤を特に限定されずに使用することができる。例えば、合成ゼォ ライト、シリカゲル、アルミナが挙げられる。
吸湿剤 (C)の配合量は、熱可塑性榭脂 (A)と未加硫ゴム (B)との合計 100質量部 に対し、 10— 70質量部である。上記範囲であると、得られる本発明の組成物が吸湿 性に優れる。より吸湿性に優れる点で、好ましくは 10— 30質量部である。 [0054] 本発明の組成物は、更に、水蒸気透過バリア榭脂(以下、単に「バリア榭脂」という。 )を含有するのが好ましい。本発明の組成物は耐水蒸気透過性に優れるが、更にバ リア榭脂を含有すると得られる組成物の耐水蒸気透過性がより優れたものとなる。 ここで、ノリア樹脂とは、連続相である熱可塑性榭脂 (A)の水蒸気透過率と同等以 下の水蒸気透過率を持つ樹脂で、連続相の熱可塑性榭脂 (A)と同一種類の榭脂で あってもよぐ高結晶化等することによりバリアとなりうる榭脂であってもよい。バリア榭 脂は、本発明の組成物に混練された状態で、好ましくは形状が層形状をなして混練 される榭脂であり、層形状がアスペクト比 10— 500 (長軸長さ a、短軸長さ bのとき、ァ スぺタト比: aZb)であるのがより好まし!/、。
本発明の組成物をスぺーサ兼シーリング材として使用する複層ガラス (本発明の第 二態様)において、上記バリア榭脂は、本発明の組成物の連続相中に存在し、耐水 蒸気透過性の観点から、複層ガラスの周縁面に平行な板状の層状物として分散して いるのが好ましい。層状に分散することにより水蒸気の透過を妨げ、水蒸気透過率を /J、さくすることができる。
[0055] バリア榭脂を構成する榭脂成分は、特に限定されず、例えば、高密度ポリエチレン( HDPE)、超高分子量ポリエチレン(UHMWPE)等のポリオレフイン、ナイロン 6、ナ ィロン 6, 6、芳香族ナイロン (MXD6)等のポリアミド榭脂、ポリエチレンテレフタレート (PET)等のポリエステル榭脂、エチレン ビュルアルコール(EVOH)等のポリビュル 榭脂、ポリ塩化ビュル榭脂、ポリ塩ィ匕ビユリデン (PVDC) )榭脂が挙げられる。本発 明において、バリア榭脂は、これらの 1種のみ力もなるものでもよいし、 2種以上の組 み合わせ力 なるものでもよ!/、。
[0056] 本発明の組成物がバリア榭脂を含む場合、このバリア榭脂の含有量は、本発明の 組成物からバリア榭脂を除 、た部分からなる熱可塑性榭脂 (A)およびバリア榭脂の 溶融粘度および体積分率が、下記式(1)および (2)を満足するように適宜決定される のが好ましい。通常、熱可塑性榭脂 (A)とバリア榭脂の質量比は、 90Z10— 50Z5 0の割合、特に 90Z10— 70Z30の割合が好ましい。
[0057] r] / ≥2. 0 ( 1)
d m
α = ( Φ / Φ ) X ( τ? / η ) < 1. 0 (2)
2 d m m d [0058] (式中、 η はバリア榭脂の溶融粘度 (poise)を表し、 η は熱可塑性榭脂 (Α)の溶 d m
融粘度 (poise)を表し、 Φ はバリア榭脂の体積分率を表し、 Φ は熱可塑性榭脂 (Α d m
)の体積分率を表す。)
[0059] 上記式(1)において、 7? / n の値が 2. 0以上であると、ノ リアとしての機能がより d m
優れたものになるので、好ましい。 r? / n の値は、より好ましくは 3. 0以上である。
d m
また、上記式 (2)において、 a が 1. 0未満であると、バリア榭脂は熱可塑性榭脂 (A
2
)の連続相中に分散相として存在することができる。
[0060] 本発明の組成物は、上記各成分の他に、更に、無機充填材を含有するのが好まし い態様の 1つである。
本発明の組成物は、無機充填材を含有すると、熱収縮率が低減されて成形性が向 上し、吐出性 (流動性)も維持される。
上記無機充填材としては、特に限定されず、例えば、タルク;マイ力;ヒュームドシリ 力、焼成シリカ、沈降シリカ、粉砕シリカ、溶融シリカ;けいそう土;酸ィ匕鉄、酸化亜鉛、 酸化チタン、酸化バリウム、酸ィ匕マグネシウム;カルシウム、マグネシウム、バリウム等 のアルカリ土類金属の炭酸塩、硫酸塩、亜硫酸塩、リン酸塩等;ろう石クレー、力オリ ンクレー、焼成クレー;およびこれらの脂肪酸、榭脂酸、脂肪酸エステル等が挙げら れる。これらは単独で用いてもよぐ 2種以上を併用してもよい。
これらの中でも、タルクおよび炭酸カルシウムが成形性を向上させる効果に優れる 点から好適に用いられ、特にタルクが好適に用いられる。
本発明に用いられるタルクとしては、特に限定されず、表面処理されたものでも、無 処理のものでもよい。表面処理としては、例えば、シランカップリング剤、高級脂肪酸 、脂肪酸金属塩、有機チタネート等の処理剤を用いたィ匕学的または物理的処理が挙 げられる。上記タルクとしては、具体的には、 日本タルク (株)製のタルク F、 日本ミスト ロン (株)製のミストロンべ一パー等が好適に用いられる。これらは単独で用いてもよく 、 2種以上を併用してもよい。
本発明に用いられる炭酸カルシウムとしては、特に限定されず、例えば、重質炭酸 カルシウム、沈降性炭酸カルシウム (軽質炭酸カルシウム)、コロイダル炭酸カルシゥ ム等が挙げられる。また、脂肪酸、榭脂酸、脂肪酸エステル、高級アルコール付加ィ ソシァネートイ匕合物等により表面処理された表面処理炭酸カルシウムを用いてもよい 。上記炭酸カルシウムとしては、具体的には、重質炭酸カルシウムとして、丸尾カルシ ゥム (株)製の重質炭酸カルシウム、白石工業 (株)製のホワイトン P— 30、竹原化学ェ 業 (株)製のサンライト SL— 100等が好適に使用される。これらは単独で用いてもよく 、 2種以上を併用してもよい。
[0061] 上記無機充填材の含有量は、より成形性に優れる点から、上記熱可塑性榭脂 (A) と上記未加硫ゴム (B)との合計 100質量部に対して、 30— 200質量部が好ましぐ 5 0— 150質量部がより好まし!/、。
[0062] 本発明の組成物には、流動性、耐熱性、熱収縮率、物理的強度の改善、コスト低 減等のため、本発明の目的を損なわない範囲で、カーボンブラック等の上記無機充 填材以外の充填剤;水素添加石油榭脂、テルペンフエノール榭脂、ロジンエステル、 クマロン榭脂等の粘着付与剤、老化防止剤、熱安定剤、酸化防止剤、軟化剤、加工 助剤等の添加剤を添加することもできる。更に、本発明の組成物には、着色等を目 的として、無機顔料、有機顔料を添加することもできる。
[0063] 更に、本発明の組成物には、ガラスとの接着性を向上させるために、接着付与剤を 添カロすることちでさる。
接着付与剤は、特に限定されず、例えば、ビニルシラン、メタクリルシラン、アミノシ ラン、エポキシシラン、メルカプトシラン等のシランカップリング剤、または、マレイン酸 基、カルボキシ基、ヒドロキシ基、エポキシ基等を有するポリマーを用いることができる 。このようなポリマーとして、例えば、マレイン酸変成ポリエチレン、マレイン酸変成ポリ プロピレン、マレイン酸変成エチレンェチルアタリレート、エポキシ変成スチレンブタジ ェン共重合体、エポキシ変成エチレン酢酸ビュル共重合体、エチレン酢酸ビュル共 重合体およびそのケン化物が挙げられる。
[0064] 上記熱可塑性榭脂 (A)と未加硫ゴム (B)との化学的相溶性が異なる場合には、適 当な相溶化剤を用いて両者を相溶ィ匕させるのが好まし ヽ。相溶化剤を混合すること により、熱可塑性榭脂 (A)と未加硫ゴム (B)との界面張力が低下し、その結果、分散 相を形成して ヽる未加硫ゴム (B)の粒子径が微細になることから熱可塑性榭脂 (A) および未加硫ゴム (B)の特性がより有効に発現されることになる。 相溶化剤は、特に限定されず、例えば、一般的に榭脂成分およびゴム成分の一方 もしくは両方の構造を有する共重合体、または、榭脂成分もしくはゴム成分と反応可 能なエポキシ基、カルボキシ基、カルボ-ル基、ハロゲン原子、アミノ基、ォキサゾリ ン基、ヒドロキシ基等を有する共重合体の構造を有するものが挙げられる。これらは 混合される上記熱可塑性榭脂 (A)と未加硫ゴム (B)の種類によって選定することが できる。汎用のものとして、例えば、スチレン'エチレン'ブチレン'スチレン系ブロック 共重合体(SEBS)およびそのマレイン酸変成物、 EPDM、 EPMおよびそれらのマ レイン酸変成物、 EPDMZスチレンまたは EPDMZアクリロニトリルグラフト共重合体 およびそのマレイン酸変成物、スチレン Zマレイン酸共重合体、反応性フエノキシン を挙げることができる。
[0065] 本発明の組成物に相溶化剤を配合する場合、その配合量には特に限定はなぐ上 記熱可塑性榭脂 (A)と未加硫ゴム (B)の合計 100質量部に対して、 0. 5— 20質量 部であるのが好ましい。
[0066] 本発明の組成物の調製は、熱可塑性榭脂 (A)と未加硫ゴム (B)とを、上記質量比 で、更に吸収剤 (C)を上記含量で、 2軸混練機等の混練機に供給して、溶融混練し 、連続相(マトリックス相)を形成する熱可塑性榭脂 (A)中に未加硫ゴム(B)を分散相 (ドメイン)として分散させることによって行う。
熱可塑性榭脂 (A)または未加硫ゴム (B)への各種添加剤の添加は、上記の混練 操作中に行ってもよ 、が、混練の前にあら力じめ混合しておくのが好ま 、。
[0067] 上記混練に使用する混練機は、特に限定されず、例えば、スクリュー押出機、ニー ダ、バンバリ一ミキサー、 2軸混練押出機等を用いることができる。特に、 2軸混練押 出機を用いるのが好ましい。また、 2種以上の混練機を使用し、順次混練してもよい。
[0068] 溶融混練の条件として、温度は熱可塑性榭脂 (A)が溶融する温度以上であればよ い。ノ リア榭脂を含有する場合は、熱可塑性榭脂 (A)の溶融温度以上であり、かつ、 ノ リア樹脂の熱変形温度未満であればよい。また、混練時のせん断速度は 500— 7 500sec 1であるのが好ましい。混練の合計時間は 30秒一 10分であるのが好ましい。
[0069] つぎに、調製された熱可塑性榭脂組成物は、混練押出機から、ストランド状に押し 出して、水等で冷却後、榭脂用ペレタイザ一でペレット状とし、その後、成形を行うこ ともできる。また、調製された高温の熱可塑性榭脂組成物を、複層ガラスのシーリング 材として直接、複層ガラスのガラス板周縁近傍間とすでに配置されたスぺーサとによ り囲まれた空隙に打設し、充填してもよい。この場合、成形機から出た高温の熱可塑 性榭脂組成物を用いると、ガラス板とスぺーサとの間の接着性が高くなるので好まし い。または、調製された熱可塑性榭脂組成物を押出成形、射出成形等によってスぺ ーサの形状に成形してもよ 、。
[0070] また、本発明の組成物に上記ノ リア榭脂を含む場合は、上記のように調製された熱 可塑性榭脂組成物を成形して得られるペレットと、上記バリア榭脂のペレットを、所定 の割合で混合させればょ 、。両ペレットの混合は常用のプレンダ一等を使用してドラ ィブレンドする方法、各ペレットをそれぞれ独立のフィーダ一より混練機に所定の割 合となるように供給する方法等の 、ずれの方法に従って行ってもょ 、。
[0071] つぎに、この両ペレットの混合物を、低速(例えば、 30sec— 1以上、 300sec— 1未満) のせん断速度で、例えば、単軸押出機中で熱可塑性榭脂組成物とバリア榭脂とを溶 融混練させ、押出機の先端力 押し出し、または、射出成形し、直接、成形機に溶融 混練物を供給してスぺーサの製造に供してもよいし、また、押出機の先端からストラン ド状に押し出し、ペレツトイ匕して、成形に供してもよい。
本発明の組成物を複層ガラスのスぺーサ等に用いる場合、上記バリア榭脂は複層 ガラスの周縁面に平行な板状の層状物として配向して 、るのが好まし 、。このように ノ リア榭脂を配向させる方法としては、本発明の組成物を押し出す際のノズルの形状 を扁平状にして射出機出口または押出機出口において 30— 300sec— 1のせん断速 度となるようにするのが有効である。
[0072] 本発明の組成物は、耐熱性に優れ、熱収縮が小さぐ耐水蒸気透過性にも優れ、 複層ガラスの生産性を改善することができる。
[0073] つぎに、本発明の複層ガラスについて説明する。
本発明の複層ガラスの第一態様は、上記本発明の組成物をスぺーサとして用いる 複層ガラスである。例えば、スぺーサを介して 2枚以上のガラス板が対向して配置さ れ、 2枚のガラス板と前記スぺーサとにより空気層が形成されてなる複層ガラスであつ て、前記スぺーサが上記本発明の組成物である複層ガラスである。図 1は、本発明の 複層ガラスの第一態様の構成の一例を示す概略断面図である。
図 1において、 1はガラス板、 2は空気層、 3はスぺーサ、 10は複層ガラスである。
[0074] 第一態様の複層ガラスは、対向して配置される 2枚のガラス板 1が、それらの間に所 定の体積を有する空気層 2を形成するように、 2枚のガラス板 1間の間隔を決めるスぺ ーサ 3を 2枚のガラス板 1間に設けてなる複層ガラス 10であり、スぺーサ 3として上記 本発明の組成物を用いるものである。
[0075] 第一態様の複層ガラスは、スぺーサとして上記本発明の組成物により得られるスぺ ーサを用いているので、製造工程が容易であるうえ、耐熱性、成形性および露点特 性にも優れる。更に、本発明の複層ガラスは、ウォームエッジタイプの複層ガラスであ りスぺーサとして用いる上記本発明の組成物力 外気の熱が伝導しにくぐ熱伝導度 の高 、金属スぺーサを用いる複層ガラスに比して断熱性に優れる。
[0076] 第一態様の複層ガラスは、スぺーサとして本発明の組成物を用いるものであれば、 それ以外の構成、構造等を特に限定されない。
例えば、スぺーサ 3の形状は図 1に示した形状に限定されず図 3等に示した形状等 いずれの形状でもよぐスぺーサ 3とガラス板 1との間にシール材および Zまたは接着 剤層を設けてもよぐガラス板周縁端部に上記スぺーサ等を外気カゝらシールするため のシール材等を併設してもよい。また、ガラス板 1は 2枚に限らず、 2枚以上であって もよぐ必要に応じて決めることができる。
本発明の複層ガラスにおいて、空気層 2を形成するガラス板 1の間隔は、特に限定 されないが、通常、約 6mmまたは約 12mmであるのが好ましい。
[0077] 本発明の組成物より得られるスぺーサの硬度は、 JIS A硬度で 50— 100であるの が好ましい。上記範囲であると、空気層の温度が上昇してガラス板とスぺーサの接着 面に応力がカゝかる場合でも接着力が強固な場合にガラスが破損したり、接着力が不 十分な場合にガラス板とスぺーサとがはく離することを回避できる。また、この範囲で あれば、ガラス板の自重により複層ガラスが変形することもない。
[0078] 本発明の複層ガラスの第二態様は、上記本発明の組成物をスぺーサ兼シーリング 材として用いる複層ガラスである。即ち、上記した第一態様の複層ガラスにおいて、 上記スぺーサ 3が同時にシーリング材として空気層を外気カゝらシールして保持してい る。このように第二態様においては、スぺーサ 3が、一次シール材 (接着剤層)、二次 シール材等を用いずとも外部からの水分の浸入を防ぐシーリング材としての役割を果 たすとともに、 2枚のガラス板を所定の間隔に保持するスぺーサ 3としての役割をも果 たしている。
[0079] 第二態様の複層ガラスは、上記第一態様の複層ガラスが有する特性を備えるうえ、 一次シール材、二次シール材等を用いなくてもよいため、製造コストを低減でき製造 工程の簡素化がより可能となる。
[0080] 第二態様の複層ガラスは、スぺーサ兼シーリング材として上記本発明の組成物を 用いるものであれば、それ以外の構成、構造等を特に限定されないのは、第一態様 の複層ガラスと同様である。
[0081] 本発明の複層ガラスの第三態様は、上記本発明の組成物をスぺーサ兼シーリング 材として用い、上記本発明の組成物とガラスとの間の一部または全部に接着剤層を 有する複層ガラスである。例えば、スぺーサを介して 2枚以上のガラス板が対向して 配置され、 2枚のガラス板、前記スぺーサ、および、前記ガラス板と前記スぺーサとの 間に設けられる接着剤層により空気層が形成されてなる複層ガラスであって、前記ス ぺーサが上記本発明の組成物である複層ガラスである。
図 2は、本発明の複層ガラスの第三態様の構成の一例を示す概略断面図である。 図 2において、 1はガラス板、 2は空気層、 3はスぺーサ、 4は接着剤層、 12は複層 ガラスである。
[0082] 図 2に示した複層ガラスは、上記複層ガラスの第一態様の構造を有し、更に、シーリ ング材を兼ねるスぺーサ 3とガラス板 1との間に接着剤層 4を有する。この第三態様の 複層ガラスは、上記第一態様の複層ガラスが有する特性を備えるうえ、接着剤層 4を 有するため、スぺーサ 3とガラス板 1の間の接着性が向上し複層ガラスの外部からの 水分の浸入を防止し、空気層 2の露点特性により優れる。
[0083] 第三態様の複層ガラスは、スぺーサ兼シーリング材として上記本発明の組成物を 用い、更に接着剤層を有するものであれば、それ以外の構成、構造等を特に限定さ れないのは、第一態様の複層ガラスと同様である。
[0084] 本発明の第四態様は、上記第一態様および第三態様の複層ガラスに、更に、二次 シールを有する複層ガラスである。
例えば、スぺーサを介して 2枚以上のガラス板が対向して配置され、 2枚のガラス板 と前記スぺーサとにより中空層が形成されてなる複層ガラスであって、前記スぺーサ が上記本発明の組成物であり、前記スぺーサ外周面と前記 2枚のガラス板周縁部の 内面とにより形成される空隙をシール材でシールする複層ガラス (第四態様の第一形 態)、および、スぺーサを介して 2枚以上のガラス板が対向して配置され、 2枚のガラ ス板、前記スぺーサ、および、前記ガラス板と前記スぺーサとの間の一部または全部 に設けられる接着剤層により中空層が形成されてなる複層ガラスであって、前記スぺ ーサが上記本発明の組成物であり、前記スぺーサ外周面と前記接着剤層と前記 2枚 のガラス板周縁部の内面とにより形成される空隙をシール材でシールする複層ガラス (第四態様の第二形態)である。
[0085] 図 3は、本発明の複層ガラスの第四態様の第一形態の構成の一例を示す概略断 面図である。図 4は、本発明の複層ガラスの第四態様の第二形態の構成の一例を示 す概略断面図である。
図 3および図 4において、 1はガラス板、 2は空気層、 3はスぺーサ、 4は接着剤層、 5は二次シール材、 14および 16は複層ガラスである。
[0086] 二次シール材を設けた第四態様の第一形態の積層ガラスは、二次シール材 5を設 けられるように、スぺーサ 3をガラス板 1の周縁部近傍に設けて、スぺーサ 3の外周面 と 2枚のガラス板 1周縁部の内面とにより形成される空隙をシール材でシール (充填) してなる複層ガラスである。第四態様の第二形態の積層ガラスは、上記第四態様の 第一形態の積層ガラスにおいて、ガラス板 1とスぺーサ 3との間に接着剤層 4を設け てなる複層ガラスである。
これらの第四態様の積層ガラスは、上記第一態様および第三態様の複層ガラスが 有する特性を備えるうえ、更に、露点特性、特に、高温多湿条件での露点特性に優 れ、露点性能の信頼性に極めて優れる。
[0087] 本発明の複層ガラスは、上記各態様に応じて上記した各特性を有するため、複層 ガラスが用 、られる用途等に応じて上記 、ずれかの態様の複層ガラスを任意に選択 することができる。 [0088] 本発明の複層ガラスの各態様に用いるガラス板 1としては、建材、車両等に用いら れるガラス板を特に制限されず使用することができる。例えば、通常窓等に使用され るガラス、強化ガラス、金属網入りガラス、熱線吸収ガラス、熱線反射ガラス、有機ガ ラスが挙げられる。また、ガラスの厚さは、適宜決められる。
[0089] 本発明の複層ガラスの第三態様および第四態様で設ける接着剤層 4に用いる榭脂 は、特に限定されず、例えば、ブチルゴム、ポリイソブチレン (PIB)ベースとする粘接 着剤や、ホットメルト接着剤が挙げられる。中でも、ガラスとの密着性が高くシール性 に優れ露点性能に優れる点で PIBシール材であるのが好ましい。
[0090] 本発明の複層ガラスの第四態様で設ける二次シールは、以下の主材料を含有する 組成物として用いるのが好ましい。主材料としては、ブチルゴム系ホットメルト、低透 湿率材料、速硬化である点で、ブチルゴム系、ポリサルファイド系、シリコーン系、ウレ タン系が好適に用いられる。
[0091] 本発明の複層ガラスは、基本的には、機械に固定された 2枚の平行なガラス板 1の 間に、押出機に連結したノズル等で本発明の組成物を押し出しながら接着を行うこと により作製することができる。この際、ガラス板 1のスぺーサ 3が接着される部分に、必 要に応じてプライマーを塗布し、更に必要に応じて接着剤を塗布することもできる。 場合によっては、一方のガラス板面に本発明の組成物を押し出しておき、冷却しない うちにもう一方のガラス板を圧着して作製することもできる。
[0092] プライマーおよび接着剤の塗布方法は、アプリケータ等により手作業で塗布しても よぐ自動でプライマーや接着剤を押し出すロボットによって塗布してもよい。特に、 本発明の組成物と接着剤とを押出機により共押出しし、外層が接着剤、外層の内側 が本発明の組成物という構造をとるよう押し出し、スぺーサの所定の形状に成形して もよいし、押し出された本発明の組成物と接着剤とを直接ガラス板周縁部間に吐出し てもよい。
[0093] スぺーサを形成する本発明の組成物は、スぺーサとして成形してガラス板に配設さ れる場合においても、押出機カゝら直接ガラス板間に吐出される場合においても、混練 後の高温の状態であるものを用いるのが好ましい。スぺーサとガラス板との間により強 固な接着性が得られる力 である。 [0094] 二次シールを設けた第四態様の複層ガラスも基本的には、上記と同様にして製造 することができる。即ち、上記と同様にして、スぺーサ、必要によりプライマーおよび Z または接着剤を塗布してスぺーサを形成したのち、二次シール材をアプリケータまた は押出機等により空隙に塗布 (充填)して作製することができる。
[0095] このような構成を採る本発明の複層ガラスは、上記した各態様の特性を有するうえ、 以下の利点をも有する。
即ち、本発明の複層ガラスは、従来の金属製スぺーサとシーリング材とを用いて製 造される複層ガラスと比べて、製造工程が大幅に削減されるため製造が非常に簡便 であり、断熱性にも優れる。
また、本発明の複層ガラスは、本発明の熱可塑性榭脂組成物をスぺーサ等として 使用するので、従来の 2液型のシーリング材のように硬化までに長時間を要すること がなく生産 ¾が高い。
実施例
[0096] 以下に実施例を示して本発明を具体的に説明する。ただし、本発明はこれらに限ら れるものではない。
[0097] <実施例 1一 5および 7— 10ならびに比較例 1、 2および 5— 7 >
第 1表に示す未加硫ゴム、吸湿剤、液状ゴムおよび充填剤をバンバリ一ミキサーま たは加圧-一ダ一で混合し、ゴム用ペレタイザ一で約 100°Cにてペレツトイ匕し、その 後、第 1表に示す配合比 (質量部)で、熱可塑性榭脂をドライブレンドし、 2軸混練機 に投入し、溶融混練した。このときの 2軸混練機は、温度 150°Cで、せん断速度 100 Osec— 1に設定した。
2軸混練機よりストランド状に押し出された熱可塑性榭脂組成物を水冷して冷却し た後、榭脂用ペレタイザ一でペレツトイ匕した。
[0098] 一辺が 300mmの角ガラス板 1枚の周縁部に上記材料をノズルで押出成形しなが ら配設した。ついで、別の一辺が 300mmの角ガラス板 1枚を圧着し、接着させた。更 に、上記 2枚のガラス板周縁部の内面と上記で形成されたスぺーサの外周面力ゝらな る空隙部に、ホットメルトアプリケータにて充填させたブチルゴム力もなる組成物を二 次シールとして充填し、二次シールを備える複層ガラスを作製した。 [0099] また、上記熱可塑性榭脂組成物のペレットをプレス成形にて lmmのシート状に成 形し、水蒸気透過率の測定に供するサンプル (試料シート)とした。
[0100] <実施例 6 >
二次シールを設けなかった以外は、実施例 1と同様の方法により、二次シールを有 しな 、複層ガラスを作製した。
[0101] <比較例 3 >
第 1表に示す未加硫ゴムをゴム用ペレタイザ一で約 100°Cにてペレツトイ匕し、その 後、第 1表に示す各配合比 (質量部)で、未加硫ゴムと熱可塑性榭脂、老化防止剤、 充填剤、粘着付与剤をドライブレンドし、 2軸混練機に投入し、溶融混練した後、中間 の投入口から加硫剤を添加し、動的加硫を行った。このときの 2軸混練機は、温度 15 0°Cで、せん断速度 lOOOsec— 1に設定した。
更に、 2軸混練機の最終投入口より吸湿剤、接着付与剤を投入した。 2軸混練機よ りストランド状に押し出された熱可塑性榭脂組成物を水冷して冷却した後、榭脂用べ レタイザ一でペレット化した。
[0102] 一辺が 300mmの角ガラス板 1枚の周縁部に上記材料をノズルで押出成形しなが ら配設した。ついで、別の一辺が 300mmの角ガラス板 1枚を圧着し、接着させ、二 次シールを有しな ヽ複層ガラスを作製した。
また、上記熱可塑性榭脂組成物のペレットをプレス成形にて lmmのシート状に成 形し、水蒸気透過率の測定に供するサンプル (試料シート)とした。
[0103] <比較例 4>
一辺が 300mmの角ガラス板 1枚の周縁部に比較例 3の複層ガラスに用いた熱可 塑性榭脂組成物をノズルで押出成形しながら配設した。ついで、別の一辺が 300m mの角ガラス板 1枚を圧着し、接着させた。更に、上記 2枚のガラス板周縁部の内面と 上記で形成されたスぺーサの外周面力もなる空隙部に、ホットメルトアプリケータにて 充填させたブチルゴム力もなる組成物を二次シールとして充填し、二次シールを備え る複層ガラスを作製した。
[0104] <比較例 8 >
二次シールを設けなかった以外は、比較例 5と同様の方法により、二次シールを有 しな 、複層ガラスを作製した。
[表 1]
第 1 表 (その 1)
難例 1 WJ3 IWJ6 H iJ7 難例 9 雄例 10 熱 樹脂 HDPE Q. 60 60
LDPE O C 60 60 60 60 60 60 60 しし DPE 60 喊ゴム 40 40 40 40 40 40 40 40 40
40 口励 J 33. 3 33. 3 33. 3 33. 3 33. 3 33. 3 33. 3 33. 3 33. 3 33. 3 液状ゴム P 1 B 1 3. 3 1 3. 3 1 3. 3 1 3. 3 1 3. 3 1 3. 3 1 3. 3 1 3. 3 1 3. 3 1 3. 3 カーポンブラック 1. 3 1. 3 1. 3 1. 3 1. 3 1. 3 1, 3 1. 3 1. 3 1. 3 タルク 33. 3 50 1 00 200 炭酸カルシウム 1 00 二次シ ー ル あり あり あり ぁリ あり なし あり あり あ1」 あり
Js#^ (¾)¾ HDPE:REX K;M890K;, 第 1 表 (その 2)
. 1 2 例 5 itt扉 tra7 i m 8 熱 HDPE 100 5 30 30 60 60
し DPE 60
しし DPE δ 0 未力 05巟ゴム B r - 1 PMS 95 70 70
プチルゴム 40 40 40 40 呖 1¾ 33. 3 33. 3 25 25 33. 3 33. 3 33. 3 33. 3 液状ゴム P 1 B 1 3. 3 1 3. 3 1 3. 3 1 3. 3 1 3. 3 1 3. 3 カーボンブラック 1. 3 1. 3 1. 3 1. 3 1. 3 1. 3
Figure imgf000027_0001
タルク 50 50 力 ZnO 3. 5 3. 5
ステアリン 1. 4 1.
ステアリン酸 0. 7 0. 7
老化防止剤 1. 4 1. 4
粘着付与剤 (ロジンエステル) 50 50
mm^\ (シラン力ップリング剤) 2 2
二次シ 一 ル あり あり なし あり あり あり あり なし
^ LDPE :JREX KM908A、 日本ポリオレフイン(株)製
LLDPE:スミカセン GA802、三井住友ポリオレフイン (株)製
Br— IPMS :Exxpro3433、ェクソン(株)製
EPDM :EPT3045、三井化学 (株)製、または、 Esprene514、住友化学工業 (株 )製
ブチルゴム: Exxon Butyl 365、 Exxon (株)製
吸湿剤:ゼオラム 3— A、東ソー (株)製
PIB:ォパノール B15、 BASF (株)製
カーボンブラック:アサヒ # 60、アサヒカーボン (株)製
タルク:ミストロンべ一パー、 日本ミストロン (株)製
炭酸カルシウム:重質炭酸カルシウム、丸尾カルシウム (株)製
ZnO :亜鉛華 3号、正同化学 (株)製
ステアリン酸亜鉛:ステアリン酸亜鉛、正同化学 (株)製
ステアリン酸:ビーズステアリン酸、 日本油脂 (株)製
老化防止剤:ノクセラー NS、大内新興化学 (株)製
粘着付与剤 (ロジンエステル):ペンセル AD、荒川化学 (株)製
接着付与剤 (シランカップリング剤): A-174、 日本ュ-カー (株)製
[0108] <熱可塑性榭脂の透湿率の算出 >
上記各実施例および比較例で用いた熱可塑性榭脂の透湿率を以下の方法により 算出した。
第 1表に記載の熱可塑性榭脂をそれぞれプレス成形にて lmmのシート状に成形し 、透湿度の測定に供するサンプル (試料シート)を得た。
図 6は、透湿度の測定に用いたカップの断面図である。
図 6において、 20はカップ、 22は水、 24は試料シート、 26は燒結金属板、 28は固 定部材、 30はボルト、 32はナットである。
[0109] 図 6に示されるようなステンレス製のカップ 20に、カップ容量の半分の水 22を入れ た。カップ 20の上部開口を、上記で得られた試料シートを切断して得られた試料シ ート 24 (lmm厚)で覆い、その上部に燒結金属板 26をのせ、固定部材 28を介して、 ボルト 30とナット 32で締めた。このカップを 25°Cの雰囲気下に放置し、 1箇月後に全 体の質量を測定し、その減少量を下記式により 24時間あたりに換算して算出した。
[0110] 透湿度[8 24111:* 1112 ] =1^7(丁^)
[0111] 式中、 Aは透過面積 [m2 ]を表し、 Tは試験時間 [day]を表し、 Mは減少質量 [g]を 表す。
[0112] このようにして求められた透湿度から、下記式に従って透湿率を求めた。
[0113] 透湿率 [cm3 - cm/ (cm2 - sec -Pa) ] = l. 744 X 10—" 透湿度[87(24111:.1112 ) ] X厚さ [mm]
[0114] なお、透湿率の測定は各試料シートについて 5検体を用いて行い、その平均値を 透湿率とした。
その結果を第 2表に示す。
[0115] <熱可塑性榭脂組成物の透湿率の算出 >
上記各実施例および比較例で用いた熱可塑性榭脂組成物についても同様にして 透湿率を算出した。
その結果を第 2表に示す。
[0116] 上記で得られた各複層ガラスについて、露点特性、成形性、加工性、滞留安定性 および生産性を評価した。その結果を第 2表に示す。
[0117] <露点特性 >
JIS R3209— 1998に規定されている「封止の加速耐久性による区分」の I一 III類、 更に初期および高温多湿条件での露点特性を評価した。
具体的には、以下に示す各条件 (試験過程)を終了後、露点を測定した。 I類:耐湿耐光試験を 7日間実施、引き続き冷熱繰り返し試験を 12サイクル実施 II類:上記 I類の試験過程に続き、耐湿耐光試験を 7日間実施、引き続き冷熱繰り返 し試験を 12サイクル実施
III類:上記 II類の試験過程に続き、耐湿耐光試験を 28日間実施、引き続き冷熱繰 り返し試験を 48サイクル実施
初期 (初期発現性):複層ガラス作製後、 24時間経過時
高温多湿条件: 55°C、 95RH%の環境下に 28日間放置 [0118] 評価は、露点が— 50°C以下であった場合を「◎」とし、— 50°Cより高く— 35°C以下で あった場合を「〇」とし、— 35°Cより高く 0°C未満であった場合を「△」とし、 0°C以上で あった場合を「X」とした。
[0119] <成形性 (熱収縮率) >
複層ガラスの成形性は、熱可塑性榭脂組成物の熱収縮率により評価した。 組成物の熱収縮率が大きいと、ガラス板に塗布した組成物が収縮し、 2枚のガラス 板間隔が狭くなり所望の空気層の体積を得ることができないという問題がある。 熱収縮率は以下の方法により寸法変化率を測定して評価した。
即ち、 150°Cにて塗布形成した組成物を 60°Cから常温(20°C)まで温度を低下さ せたときの、初期寸法 300mm長に対する寸法変化率で示した。
評価は、寸法変化率が、 0. 8%以下であった場合を「◎◎」とし、 1. 0%以下であ つた場合を「◎」とし、 1. 0%より大きく 5. 0%以下であった場合を「〇」とし、 5. 0%よ り大きく 10%未満であった場合を「△」とし、 10%以上であった場合を「 X」とした。
[0120] <加工性(施工時のつぶれ) >
加工性は、組成物を施工する時の組成物のつぶれ具合 (施工時のつぶれ)により 評価した。評価方法を以下に示す。
組成物を施工した後、ガラスを室温条件で 1. 5t荷重プレスにて圧着させたときの その厚み寸法を変化率で示した。
評価は、寸法変化率が、 5%以下であった場合を「◎」とし、 5%より大きく 10%以下 であった場合を「〇」とし、 10%より大きく 15%以下であった場合を「△」とし、 15%よ り大き力つた場合を「 X」とした。
[0121] <滞留安定性 >
滞留安定性は、上記各熱可塑性榭脂組成物をガラス板に塗布するときの加熱溶融 状態における組成物の状態により判断した。加硫剤を含有する比較例 3および 4の組 成物では、上記加熱溶融状態において、加硫反応が進行し粘度の上昇が見られる 場合があるため、加熱溶融状態の粘度変化により判断した。
評価は、粘度の上昇が認められた場合を「X」とし、まったく認められなかった場合 を「〇」とした。 [0122] <生産性 >
複層ガラスの生産性は、従来の複層ガラスの生産性を比較した結果と上記滞留安 定性の評価結果とを総合的に判断した。
評価は、従来の複層ガラスの生産性を「 X」とした場合の相対評価 (生産性が高 ヽ 方から順に、◎、〇、△の 3段階)で行った。
[0123] [表 3]
第 I 表 (その 1 )
離例 1 難例 2 鏹例 3 難例 4 ¾»J5 ¾»J6 麵' J 7 麵例 8 麵 |J9 熱 樹脂の 显率 4.0 5.0 3.0 5.0 5.0 4.0 5.0 5.0 5.0 5.0
0- 15 x10-15 era3 , cm/、c m2 ' sec ' Pa) X10"'6 X10— 15 X10 -'1 Χ1 X10"15 χΐο-'6 χΐο ,! xlO—'5 xlO-15 熱 ΗΤ ϊ樹脂謹 toiiS率 6.0 7.0 5.0 7.0 8.0 6.0 8.0 8.0 7.0 8.0 cm3 - am/ (cm' ■ sec ■ Pa) X10"16 X10-'5 χΐΟ-', X10", S X10",S X10"16 XIO"'5 xlO-15 xlO " 露点雕 初期 Δ 0 ◎ 〇 〇 Δ 0 〇 〇 〇 i類 ◎ ◎ ◎ ◎ ◎ © ◎ ◎ ◎ ◎
II類 ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎
III類 ◎ ◎ ◎ ◎ ◎ 〇 ◎ ◎ ◎ ◎
(3]'皿タ'; (牛 © ◎ © ◎ ◎ © ◎ ◎ ◎ © 成 形 性 Δ 〇 〇 Ο ◎ Δ © ◎ 加 工 性 ◎ O 0 〇 ◎ © ◎ © © ®
-: 安定性 O 〇 0 〇 〇 〇 0 O 〇 〇 生 産 性 ◎ © ◎ ◎ ◎ ◎ © ◎ © ◎ 二次シール ぁリ あり ぁリ あり あり なし ぁリ あり あり 1
ο 第 2 表 (その 2)
mm 1 z J±WJ4 mm i
熱 樹脂の ®显率 4.0 4.0 4.0 4.0 4.0 5.0 3.0 4.0
xlO一16 X10-16 X10 16 xicr'6 xlO—'6 x10-'5 x10— 14 x10_1 B 熱^ 14樹脂繊物の逸显率 5.0 9.0 8.0 8.0 6.0 7.0 5.0 6.0
cm3 · cm/ (cm' ■ sec ■ Pa) x10 16 xlO 16 X10- 16 xlO-16 xlO-'6 xlO— 15 X10 xlO—'6 露点 ί 初期 Δ Δ Δ Δ Δ 〇 ◎ Δ
1類 ◎ ◎ ◎ ◎ ◎ ◎ ◎ Δ
11類 〇 〇 ◎ ◎ 〇 Δ △ X
III類 Δ △ ◎ ◎ Δ △ 厶 X
Figure imgf000033_0001
X X Δ ◎ X X X X 成 形 性 X 〇 Δ Δ Δ 〇 〇 Δ 加 ェ 性 ◎ X ◎ ◎ Δ Δ Δ Δ 安定性 〇 〇 X X O 〇 O 〇
生 産 性 ◎ ◎ 〇 Δ O 〇 〇 〇
二次シ一ル あり あり なし あり あり あり あり なし
0124 [0125] 第 2表に示すように、本発明の熱可塑性榭脂組成物を用いた実施例 1一 10の各複 層ガラスは、熱収縮率、成形性および露点特性に優れ、生産性を改善できた。
また、熱可塑性榭脂として LDPEまたは LLDPEを選択した本発明の組成物を用い た実施例 2— 5の各複層ガラスは、露点特性の初期発現性および成形性により優れ た。
また、タルクを特定量添加した本発明の組成物を用いた実施例 5および 7— 9の各 複層ガラスは、成形性により優れた。炭酸カルシウムを特定量添加した本発明の組 成物を用いた実施例 10の複層ガラスも成形性に優れていた。また、実施例 5および 7 一 10の各複層ガラスに用いた本発明の組成物は、吐出性 (流動性)を維持していた
[0126] 未加硫ゴムを含有しな ヽ熱可塑性榭脂組成物を用いた複層ガラス (比較例 1)は、 露点特性を満足できず成形性にも劣った。また、熱可塑性榭脂と未加硫ゴムとの質 量比が本発明の範囲内にない熱可塑性榭脂組成物を用いた複層ガラス (比較例 2) は、露点特性 (Π類および ΠΙ類)ならびにカ卩ェ性に劣った。
更に、加硫ゴムを分散させた熱可塑性榭脂組成物を用いた複層ガラス (比較例 3お よび 4)では、滞留安定性に難があり成形性にも劣った。
[0127] また、未加硫ゴムとしてブチルゴムを選択した熱可塑性榭脂組成物を用いた複層ガ ラス (比較例 5— 8)は耐熱性が十分でな力つた。

Claims

請求の範囲
[1] 透湿率が 1. 0 X 10— 13 cm3 -cm/ (cm2 ' sec 'Pa)以下である熱可塑性榭脂 (A)と ハロゲン化イソォレフィン/パラアルキルスチレン共重合体およびエチレンプロピレ ンゴム力 なる群力 選択される少なくとも 1種の未加硫ゴム(B)と、
吸湿剤 (C)とを含有し、
前記熱可塑性榭脂 (A)と前記未加硫ゴム (B)との質量比が 85Z15— 15Z85で あり、
かつ、
前記吸湿剤 (C)の含量が前記熱可塑性榭脂 (A)と前記未加硫ゴム (B)との合計 1
00質量部に対して 10— 70質量部である熱可塑性榭脂組成物。
[2] 前記熱可塑性榭脂 (A)が、低密度ポリエチレン (LDPE)および直鎖状低密度ポリ エチレン (LLDPE)力 なる群力 選択される少なくとも 1種である請求項 1に記載の 熱可塑性榭脂組成物。
[3] 更に、無機充填材を含有する請求項 1または 2に記載の熱可塑性榭脂組成物。
[4] 請求項 1一 3のいずれかに記載の熱可塑性榭脂組成物をスぺーサとして用いる複 層ガラス。
[5] 請求項 1一 3の ヽずれかに記載の熱可塑性榭脂組成物をスぺーサ兼シーリング材 として用いる複層ガラス。
[6] 請求項 1一 3の ヽずれかに記載の熱可塑性榭脂組成物をスぺーサ兼シーリング材 として用い、前記熱可塑性榭脂組成物とガラスとの間に更に接着剤層を有する複層 ガラス。
[7] 更に、二次シールを有する請求項 4または 6に記載の複層ガラス。
[8] 請求項 4に記載の複層ガラスであって、
対向する 2枚のガラス板と、前記 2枚のガラス板の間に設けられる前記スぺーサとを 有し、
前記 2枚のガラス板と前記スぺーサとにより空気層が形成されてなる複層ガラス。
[9] 前記スぺーサ外周面と前記 2枚のガラス板周縁部の内面とにより形成される空隙が 二次シール材でシールされて 、る請求項 8に記載の複層ガラス。
[10] 請求項 5に記載の複層ガラスであって、
対向する 2枚のガラス板と、前記 2枚のガラス板の間に設けられる前記スぺーサ兼 シーリング材とを有し、
前記 2枚のガラス板と前記スぺーサ兼シーリング材とにより空気層が形成されてなり 前記スぺーサ兼シーリング材が、スぺーサとして前記 2枚のガラス板を所定の間隔 に保持すると同時に、シーリング材として前記空気層を外気力 シールして保持する 複層ガラス。
[11] 請求項 6に記載の複層ガラスであって、
対向する 2枚のガラス板と、前記 2枚のガラス板の間に設けられる前記スぺーサ兼 シーリング材と、前記ガラス板と前記スぺーサ兼シーリング材との間に設けられる接着 剤層とを有し、
前記 2枚のガラス板、前記スぺーサ兼シーリング材および前記接着剤層により空気 層が形成されてなり、
前記スぺーサ兼シーリング材が、スぺーサとして前記 2枚のガラス板を所定の間隔 に保持すると同時に、シーリング材として前記空気層を外気力 シールして保持する 複層ガラス。
[12] 前記スぺーサ兼シーリング材の外周面と前記接着剤層と前記 2枚のガラス板周縁 部の内面とにより形成される空隙が二次シール材でシールされて!/、る請求項 11に記 載の複層ガラス。
PCT/JP2005/001588 2004-02-06 2005-02-03 熱可塑性樹脂組成物およびそれを用いる複層ガラス WO2005075552A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/565,803 US7875329B2 (en) 2004-02-06 2005-02-03 Thermoplastic resin composition and double glazed glass unit using the same
EP05709681A EP1712588A4 (en) 2004-02-06 2005-02-03 THERMOPLASTIC COMPOSITION AND DOUBLE GLAZING GLASS UNIT THEREWITH
KR1020057022788A KR101160476B1 (ko) 2004-02-06 2005-02-03 열가소성 수지 조성물 및 이를 사용한 복층 유리

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004030868 2004-02-06
JP2004-030868 2004-02-06
JP2004195438A JP3764744B2 (ja) 2004-02-06 2004-07-01 熱可塑性樹脂組成物およびそれを用いる複層ガラス
JP2004-195438 2004-07-01

Publications (1)

Publication Number Publication Date
WO2005075552A1 true WO2005075552A1 (ja) 2005-08-18

Family

ID=34840155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/001588 WO2005075552A1 (ja) 2004-02-06 2005-02-03 熱可塑性樹脂組成物およびそれを用いる複層ガラス

Country Status (5)

Country Link
US (1) US7875329B2 (ja)
EP (1) EP1712588A4 (ja)
JP (1) JP3764744B2 (ja)
KR (1) KR101160476B1 (ja)
WO (1) WO2005075552A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113187359A (zh) * 2021-03-26 2021-07-30 安徽明坤铝业有限公司 一种塑钢门窗防火工艺

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2895427B1 (fr) * 2005-12-23 2009-06-12 Saint Gobain Paroi en verre
US8101251B2 (en) * 2006-07-03 2012-01-24 Dow Corning Corporation Chemically curing all-in-one warm edge spacer and seal
WO2009039240A2 (en) * 2007-09-20 2009-03-26 Cardinal Lg Company Glazing assembly and method
US8101039B2 (en) 2008-04-10 2012-01-24 Cardinal Ig Company Manufacturing of photovoltaic subassemblies
US20090194156A1 (en) * 2008-02-01 2009-08-06 Grommesh Robert C Dual seal photovoltaic glazing assembly and method
US20110072961A1 (en) * 2008-11-20 2011-03-31 GKN Aerospace Transparency Systems, Inc. Environmental seal technology for spaced transparent armor
US8813439B2 (en) * 2009-09-29 2014-08-26 Stephen E. Howes Method and apparatus for making insulating translucent panel assemblies
EP2597244B1 (en) * 2010-07-22 2018-10-03 Toho Sheet & Frame Co., Ltd. Multi-layered window structure
US8782971B2 (en) * 2010-07-22 2014-07-22 Advanced Glazing Technologies Ltd. (Agtl) System for pressure equalizing and drying sealed translucent glass glazing units
US20130319598A1 (en) 2012-05-30 2013-12-05 Cardinal Ig Company Asymmetrical insulating glass unit and spacer system
KR20180039074A (ko) * 2015-08-11 2018-04-17 아르콘스 리미티드 디자인 물품 및 이의 제조 방법
MX2018007537A (es) * 2015-12-21 2018-09-07 Saint Gobain Elemento aislante de vidrio para un gabinete de refrigeracion.
CN106522799B (zh) * 2016-12-13 2018-02-02 营口暖万佳科技开发有限公司 非金属中空玻璃密封胶条
PL423221A1 (pl) * 2017-10-20 2019-04-23 Es System K Spolka Z Ograniczona Odpowiedzialnoscia Sposób otrzymywania szyby zespolonej, szyba zespolona i urządzenie dociskające do szyb zespolonych
US11320194B2 (en) * 2019-04-30 2022-05-03 Whirlpool Corporation Barrier layer for insulated structures
CN110280462B (zh) * 2019-06-28 2021-11-02 上海市第一人民医院 一种具有超疏水疏油性能的复合涂层镍钛合金材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08143340A (ja) * 1994-11-22 1996-06-04 Asahi Glass Co Ltd 複層ガラスおよびその製造方法
JPH0977536A (ja) * 1995-09-14 1997-03-25 Asahi Glass Co Ltd 複層ガラス
JPH1081548A (ja) * 1996-09-05 1998-03-31 Nippon Sheet Glass Co Ltd 複層ガラス及びその製造方法
JP2000119537A (ja) * 1998-10-20 2000-04-25 Yokohama Rubber Co Ltd:The 熱可塑性エラストマー組成物および該組成物を使用した複層ガラス
JP2001049075A (ja) * 1999-06-04 2001-02-20 Kanegafuchi Chem Ind Co Ltd 硬化性組成物及びその使用方法
JP2001342314A (ja) * 2000-06-05 2001-12-14 Kanegafuchi Chem Ind Co Ltd 組成物

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4607074A (en) * 1984-07-11 1986-08-19 Exxon Research & Engineering Co. Dynamically cured thermoplastic olefin polymers
US4622249A (en) * 1985-04-15 1986-11-11 Ppg Industries, Inc. Multiple pane unit having a flexible spacing and sealing assembly
US5502112A (en) * 1992-07-30 1996-03-26 Exxon Chemical Patents Inc. Thermoplastic olefins
JPH10114552A (ja) 1995-12-26 1998-05-06 Asahi Glass Co Ltd 樹脂スペーサを用いた複層ガラス
DE69632314T2 (de) 1995-12-26 2005-08-04 Asahi Glass Co., Ltd. Harzzusammensetzung umfassende Doppelverglasungseinheit
JP4006772B2 (ja) 1995-12-26 2007-11-14 旭硝子株式会社 複層ガラス
JPH10110072A (ja) 1995-12-26 1998-04-28 Asahi Glass Co Ltd シーリング剤組成物
US5851609A (en) * 1996-02-27 1998-12-22 Truseal Technologies, Inc. Preformed flexible laminate
DE19950535A1 (de) * 1998-10-20 2000-05-11 Yokohama Rubber Co Ltd Thermoplastische Elastomerzusammensetzung, Isolierglas, worin die Zusammensetzung verwendet wird, Verfahren zur Herstellung des Isolierglases und Düse zur Herstellung des Isolierglases
US6491992B1 (en) 1998-10-20 2002-12-10 The Yokohama Rubber Co., Ltd. Thermoplastic elastomer composition, insulating glass using the composition, process for producing the insulating glass

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08143340A (ja) * 1994-11-22 1996-06-04 Asahi Glass Co Ltd 複層ガラスおよびその製造方法
JPH0977536A (ja) * 1995-09-14 1997-03-25 Asahi Glass Co Ltd 複層ガラス
JPH1081548A (ja) * 1996-09-05 1998-03-31 Nippon Sheet Glass Co Ltd 複層ガラス及びその製造方法
JP2000119537A (ja) * 1998-10-20 2000-04-25 Yokohama Rubber Co Ltd:The 熱可塑性エラストマー組成物および該組成物を使用した複層ガラス
JP2001049075A (ja) * 1999-06-04 2001-02-20 Kanegafuchi Chem Ind Co Ltd 硬化性組成物及びその使用方法
JP2001342314A (ja) * 2000-06-05 2001-12-14 Kanegafuchi Chem Ind Co Ltd 組成物

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113187359A (zh) * 2021-03-26 2021-07-30 安徽明坤铝业有限公司 一种塑钢门窗防火工艺
CN113187359B (zh) * 2021-03-26 2022-09-06 安徽明坤铝业有限公司 一种防火塑钢门窗的生产工艺

Also Published As

Publication number Publication date
KR101160476B1 (ko) 2012-06-28
KR20060128613A (ko) 2006-12-14
EP1712588A4 (en) 2009-11-11
JP2005248145A (ja) 2005-09-15
EP1712588A1 (en) 2006-10-18
US7875329B2 (en) 2011-01-25
JP3764744B2 (ja) 2006-04-12
US20070003717A1 (en) 2007-01-04

Similar Documents

Publication Publication Date Title
WO2005075552A1 (ja) 熱可塑性樹脂組成物およびそれを用いる複層ガラス
KR100693779B1 (ko) 단열 유리의 제조방법
JP5719647B2 (ja) シーリング組成物、複層ガラスおよび太陽電池パネル
JP4229575B2 (ja) シーリング材組成物およびそれを用いた複層ガラス
US6911103B2 (en) Thermoplastic elastomer composition, insulating glass using the composition, process for producing the insulating glass and nozzle for producing the insulating glass
EP1987962B1 (en) Multilayer body and pneumatic tire using same
CA2535503C (en) Heat shrinkable laminated covering
WO1997023561A1 (fr) Composition a base de resine pour materiaux de construction et panneaux a double vitrage
EP1995079A1 (en) Low permeable rubber laminate and pneumatic tire using same
WO2014045907A1 (ja) ブチルゴム組成物及びそれを用いたホース
EP3553145B1 (en) Adhesive resin composition, film for fluorine resin adhesion, laminate, and method for producing laminate
JP4049906B2 (ja) 熱可塑性エラストマー組成物および該組成物を使用した複層ガラス
JP6747020B2 (ja) 積層体及び延伸積層体
CN100475896C (zh) 热塑性树脂组合物和使用该组合物的复层玻璃
JP2006315492A (ja) 熱可塑性エラストマー積層体
JPH10114551A (ja) 複層ガラス
JP2010269485A (ja) 熱可塑性樹脂組成物とゴム組成物の積層ホース
JP4456460B2 (ja) ポリイソブチレンを用いたシーリング材
JP2666079B2 (ja) 振動減衰性複合板
JP2926535B2 (ja) シート材料の接合方法
WO2021181315A1 (ja) 接着性樹脂組成物、接着性樹脂成形体、接着性樹脂積層体、及び筐体封止材
KR100776074B1 (ko) 공기입 타이어의 인너라이너용 조성물 및 그의 제조방법
WO2021181314A1 (ja) 接着性樹脂組成物、接着性樹脂成形体、接着性樹脂積層体、及び筐体封止材
JP2843267B2 (ja) 防水シート
JPH10114552A (ja) 樹脂スペーサを用いた複層ガラス

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580000585.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020057022788

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2005709681

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007003717

Country of ref document: US

Ref document number: 10565803

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 2005709681

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057022788

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10565803

Country of ref document: US