WO2005073763A1 - Antidazzle coating composition, antidazzle film and process for producing the same - Google Patents

Antidazzle coating composition, antidazzle film and process for producing the same Download PDF

Info

Publication number
WO2005073763A1
WO2005073763A1 PCT/JP2005/001217 JP2005001217W WO2005073763A1 WO 2005073763 A1 WO2005073763 A1 WO 2005073763A1 JP 2005001217 W JP2005001217 W JP 2005001217W WO 2005073763 A1 WO2005073763 A1 WO 2005073763A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
antiglare
film
coating composition
resin
Prior art date
Application number
PCT/JP2005/001217
Other languages
French (fr)
Japanese (ja)
Inventor
Hiromasa Minamino
Seiji Yamamichi
Keiichi Okajima
Kazuyuki Suga
Hiroyuki Hashiguchi
Masashi Ohata
Akira Matsumura
Original Assignee
Nippon Paint Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paint Co., Ltd. filed Critical Nippon Paint Co., Ltd.
Priority to KR1020067015219A priority Critical patent/KR101154807B1/en
Priority to JP2005517515A priority patent/JP3998697B2/en
Publication of WO2005073763A1 publication Critical patent/WO2005073763A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0221Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having an irregular structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0268Diffusing elements; Afocal elements characterized by the fabrication or manufacturing method
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0294Diffusing elements; Afocal elements characterized by the use adapted to provide an additional optical effect, e.g. anti-reflection or filter
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements

Definitions

  • Anti-glare coating composition composition, anti-glare film and method for producing the same
  • the present invention relates to an anti-glare coating composition capable of imparting anti-glare properties to transparent substrates such as various transparent plastic films, transparent plastic plates, and glass, and from the anti-glare coating composition BACKGROUND ART Regarding an anti-glare film having an anti-glare layer formed
  • Liquid crystal display devices have advantages such as thinness, light weight, and low power consumption, and are used in various fields such as computers, word processors, televisions, mobile phones, and personal digital assistants. ing.
  • an antiglare (AG) film for roughening the surface a low reflection (LR) film for adjusting the refractive index, and an antireflection film (LR) are formed on the display surface.
  • AR Anti Reflection
  • Patent Document 1 discloses an anti-glare film in which an anti-glare layer including a light-transmitting resin and light-transmitting fine particles is laminated, wherein the light-transmitting resin and the light-transmitting resin are laminated. It describes an antiglare film in which the difference in refractive index from the optical fine particles is 0.3 or less and the translucent resin protrudes 0.10. From the surface of the antiglare layer.
  • an antiglare film for example, there is a problem that fine particles used are not uniformly dispersed.
  • attention must be paid to, for example, controlling and adjusting the solution viscosity. If the fine particles are aggregated without being uniformly dispersed, the irregularities on the surface will be in the desired range. This may cause problems such as loss of clarity of the transmitted image and so-called white blurring.
  • the antiglare layer is formed by embossing
  • a step of embossing the antiglare layer and a step of washing the mold used for the embossing are required, which is complicated.
  • care must be taken to prevent foreign matter from adhering to the molding surface of the mold used for embossing.
  • Patent Document 2 discloses a polarizing plate with an antiglare layer provided with an antiglare film and a polarizer, wherein the arrangement direction of the fine unevenness structure of the antiglare layer is as described above. There is described a polarizing plate with an antiglare layer, wherein the angle is 22.5 ° ⁇ 12.5 ° with respect to the absorption axis direction or transmission axis direction of the polarizer.
  • the angle is 22.5 ° ⁇ 12.5 ° with respect to the absorption axis direction or transmission axis direction of the polarizer.
  • Patent Document 3 discloses an electrode for a reflection type liquid crystal display device, which includes a step of applying a mixed resin liquid in which a plurality of kinds of resins which are easily separated from each other are mixed. A method for manufacturing a substrate is described. Also, Japanese Patent Application Laid-Open No. 2001-305316 (Patent Document 4) describes a reflection plate having a resin layer in which at least two types of resin portions are formed to have irregularities by dispersing and holding at least two types of resin portions.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-221610
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2003-004917
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2000-267086
  • Patent Document 4 JP 2001-305316 A
  • An object of the present invention is to solve the above-mentioned problems of the conventional technology. More specifically, an object of the present invention is to provide an anti-glare coating composition that can easily form an anti-glare film with improved glare, white blur, and the like.
  • the present invention is an antiglare coating composition which is applied on a transparent substrate to form an antiglare layer.
  • the antiglare coating composition comprises a first component and a second component
  • the first component and the second component undergo phase separation based on the difference in physical properties of the first component and the second component, and the surface has random irregularities.
  • the first component and the second component are each independently one kind or a combination of two or more kinds selected from the group consisting of a monomer, an oligomer and a resin.
  • the difference between the SP value of the first component and the SP value of the second component is 0.5 or more.
  • the antiglare coating composition of the present invention may further contain an organic solvent.
  • the SP value of the first component (SP), the SP value of the second component (SP), and the SP value of the organic solvent (SP) may further contain an organic solvent.
  • the difference between SP and SP is 2 or less;
  • the first component is an oligomer or a resin
  • the second component is a monomer
  • the first component is an unsaturated double bond-containing acrylic copolymer
  • the second component is a polyfunctional unsaturated double bond-containing monomer
  • the first component is a silicone acrylic block copolymer
  • the second component is an acryl copolymer
  • the first component and the second component are resins, and one of the first component and the second component is lower than the ambient temperature at the time of application of the composition. It is also preferred that the other has a low Tg and the other has a Tg higher than the ambient temperature at the time of application of the composition.
  • the antiglare coating composition of the present invention wherein one of the first component and the second component is a monomer
  • the difference between the Tg of the first component and the second component is 20 ° C or more, and
  • first component and the second component those having higher Tg and Tg of 20 ° C. or higher are also preferable.
  • the antiglare coating composition of the present invention may further contain a curing agent.
  • the antiglare coating composition of the present invention is preferably characterized by not containing resin particles.
  • the present invention also provides an antiglare film.
  • This antiglare film has a transparent substrate and an antiglare layer, and the antiglare layer is formed from the above antiglare coating composition.
  • the anti-glare film preferably has a thickness of less than 20%.
  • the R (ten-point average roughness) of the antiglare film is preferably 1. O x m or less.
  • the average length (Sm) of the roughness curve element on the surface of the antiglare film is 100 ⁇ m or less.
  • the scattered light intensity with respect to the scattering angle of the antiglare film does not have a maximum value.
  • the present invention also provides a method for producing an antiglare film.
  • a drying step of drying and phase-separating the obtained coating film and
  • the present invention also provides an antiglare film obtained by the above method for producing an antiglare film.
  • the present invention is also a polarizing plate comprising the above antiglare film and a polarizing element, wherein the surface of the antiglare film and the surface of the polarizing element opposite to the antiglare layer provided on the transparent substrate are provided. Also provided is a polarizing plate in which are laminated opposite to each other.
  • the present invention also provides a flat light-transmitting display, a light source device for irradiating the light-transmitting display from the back, and the above-described antiglare film laminated on the surface of the light-transmitting display.
  • a transmission type display device having:
  • the present invention also provides a liquid crystal display device in which the above antiglare film is used for the outermost layer of a display.
  • the antiglare coating composition of the present invention may be applied on a substrate, dried if necessary, and then cured, to provide an antiglare layer which is a resin layer having irregularities on the surface. it can. Therefore, an antiglare layer having unevenness on the surface can be formed in a simpler process than a method that involves two steps, such as forming a resin layer and then forming a projection serving as a base for unevenness. Able to shape.
  • the unevenness is formed on the surface of the antiglare layer according to the present invention
  • the unevenness arrangement is determined spontaneously, so that an irregular unevenness shape can be formed on the surface of the antiglare layer.
  • moire caused by the regularity of the uneven arrangement does not occur.
  • an antiglare layer having irregularities on the surface can be easily formed, and an antiglare film can be easily produced using the antiglare layer.
  • the resulting anti-glare film has excellent performance, such as low glare, low haze (haze value) and high total light transmittance.
  • haze refers to the ratio of the amount of transmitted scattered light to the amount of transmitted light.
  • FIG. 1 is a schematic cross-sectional view of an antiglare film of the present invention.
  • FIG. 2 is an explanatory diagram of a parameter R.
  • FIG. 3 is a schematic illustration of the total light transmittance.
  • FIG. 4 is a schematic cross-sectional view of a polarizing plate using the antiglare film of the present invention.
  • FIG. 5 is a schematic cross-sectional view of a transmission type display device using the antiglare film of the present invention.
  • FIG. 6 is a three-dimensional image of the anti-glare layer of the anti-glare film of Example 1 taken by a super-depth shape measuring microscope.
  • FIG. 7 is a three-dimensional image of the anti-glare layer of the anti-glare film of Example 2 taken by a super-depth shape measuring microscope.
  • FIG. 8 is a three-dimensional image of the anti-glare layer of the anti-glare film of Example 3 taken by a super-depth shape measuring microscope.
  • the antiglare coating composition of the present invention is applied on a transparent substrate to form an antiglare layer Things.
  • This antiglare coating composition contains at least two types of components, a first component and a second component.
  • the first component and the second component are based on the difference in physical properties between the first component and the second component. It has the characteristic that components and phase are separated.
  • Examples of the first component and the second component include a case where each of them is independently one kind or a combination of two or more kinds selected from the group consisting of a monomer, an oligomer and a resin.
  • a monomer such as a polyfunctional monomer, a (meth) acrylic resin, an olefin resin, a polyether resin, a polyester resin, a polyurethane resin, a polysiloxane resin, a polysilane resin, a polyimide Resin or a resin containing a fluorine resin in the skeleton structure can be used.
  • resins may be so-called oligomers having a low molecular weight.
  • the polyfunctional monomer for example, a dealcoholation reaction product of a polyhydric alcohol and (meth) phthalate, specifically, dipentaerythritol hexa (meth) acrylate, trimethylolpropane tri (meth) acrylate Can be used.
  • resins containing olefin resin in the skeleton structure examples include polyethylene, polypropylene, ethylene propylene copolymer, ethylene biel acetate copolymer, ionomer, ethylene biel alcohol copolymer, and ethylene butyl chloride copolymer.
  • the resin containing a polyether resin in the skeleton structure is a resin containing an ether bond in a molecular chain, and examples thereof include polyethylene glycol, polypropylene glycol, and polytetramethylene glycol.
  • the resin containing a polyester resin in the skeleton structure is a resin containing an ester bond in a molecular chain, and examples thereof include unsaturated polyester resins, alkyd resins, and polyethylene terephthalate.
  • the resin containing a polyurethane resin in the skeleton structure is a resin containing a urethane bond in a molecular chain.
  • the resin containing a polysiloxane resin in the skeleton structure is a resin containing a siloxane bond in a molecular chain.
  • the resin containing a polysilane resin in the skeleton structure is a resin containing a silane bond in a molecular chain.
  • Resins containing a polyimide resin in the skeletal structure have an imide bond in the molecular chain. Containing resin.
  • the resin containing a fluorine resin in the skeletal structure is a resin containing a structure in which part or all of hydrogen of polyethylene is replaced with fluorine.
  • the oligomer and the resin may be a copolymer comprising two or more of the above skeleton structures, or a copolymer comprising the above skeleton structure and other monomers.
  • first component and the second component in the present invention an oligomer or a resin having the same kind of skeleton structure may be used, or an oligomer or a resin having a different skeleton structure may be used.
  • one of the first component and the second component may be a monomer, and the other may be an oligomer or a resin.
  • the first component and the second component in the present invention each preferably have a functional group that reacts with each other.
  • a functional group having an active hydrogen such as a hydroxyl group, an amino group, a thiol group, and a carboxyl group
  • an epoxy group such as a hydroxyl group, an amino group, a thiol group, and a carboxyl group
  • a functional group having an active hydrogen and an isocyanate group such as a hydroxyl group, an amino group, a thiol group, and a carboxyl group
  • an epoxy group such as a hydroxyl group, an amino group, a thiol group, and a carboxyl group
  • an epoxy group such as a hydroxyl group, an amino group, a thiol group, and a carboxyl group
  • an epoxy group such as a hydroxyl group, an amino group, a thiol group, and a carboxyl group
  • an epoxy group such as a hydroxyl group
  • An ethylenically unsaturated group (polymerization of an ethylenically unsaturated group occurs), a silanol group and a silanol group (condensation of a silanol group occurs), a silanol group and an epoxy group, a functional group having active hydrogen and an active hydrogen.
  • Functional groups active methylene and atalyloyl groups, oxazoline groups and carboxy group, and the like.
  • the term “functional groups that react with each other” as used herein means that the reaction does not proceed only by mixing the first component and the second component alone, but reacts with each other by mixing the catalyst or the curing agent together. Also included.
  • Examples of the catalyst that can be used here include a photoinitiator, a radical initiator, an acid-base catalyst, and a metal catalyst.
  • Examples of the curing agent that can be used include a melamine curing agent, a (block) isocyanate curing agent, and an epoxy curing agent.
  • the mixture of the first component and the second component is heat-curable, photocurable (ultraviolet curable, visible light curable). , Infrared curability, etc.).
  • a resin containing a (meth) acrylic resin in the skeleton structure can be used as the first component and the second component.
  • the molecular weight of the first component and the second component is based on the molecular weight (where the first component and the second component are trees). If it is a fat, the weight average molecular weight is preferably 100-100,000.
  • Differences in physical properties of the first component and the second component that cause phase separation between the first component and the second component include, for example, an SP value of each resin, a glass transition temperature (Tg), a surface tension, There are cases where the number average molecular weight and the like have a certain difference.
  • the SP value is an abbreviation for solubility parameter, and is a measure of solubility. The higher the SP value, the higher the polarity, and the lower the SP value, the lower the polarity.
  • the SP value can be measured by the following method [References: SUH, CLAR
  • Turbidity point measurement Poor solvent is dropped using a 50 ml burette, and the point at which turbidity occurs is defined as the amount of dropping.
  • the difference between the physical properties of the first component and the second component that causes phase separation between the first component and the second component is the SP value difference
  • the SP value of the first component and the SP value of the second component Preferably, the difference is more than 0.5. More preferably, the difference between the SP values is 0.8 or more.
  • the upper limit of the difference between the SP values is not particularly limited, but is generally 15 or less. If the difference between the SP value of the first component and the SP value of the second component is 0.5 or more, the compatibility of the resins with each other is low, whereby the first component and the second component are mixed with each other after application of the coating composition. It is thought that phase separation of
  • the antiglare coating composition of the present invention may further contain an organic solvent. Then, for the first component, the second component, and the organic solvent contained in the antiglare coating composition, the SP value of the first component (SP), the SP value of the second component (SP), and the SP value of the organic solvent ( SP)
  • the difference between SP and SP is 2 or less;
  • An anti-glare film having a low haze and excellent in anti-glare performance can be prepared. More preferably, the difference between SP and SP is 1 or less, that is, in the range of 0-1.
  • SP and SP have a difference of 2 or less. Even if SP is SP
  • the first component and the second component satisfying the relationship of the above formula there is a case where the first component is an oligomer or a resin and the second component is a monomer. More preferably, the oligomer or resin of the first component is an unsaturated double bond-containing acrylic copolymer. More preferably, the monomer of the second component is a polyfunctional unsaturated double bond-containing monomer.
  • the “oligomer” referred to in the present specification is a polymer having a repeating unit and having 3 to 10 repeating units.
  • the unsaturated double bond-containing acrylic copolymer is, for example, a resin obtained by polymerizing or copolymerizing a (meth) acrylic monomer, or a monomer having a (meth) acrylic monomer and another ethylenically unsaturated double bond. And (meth) acrylic monomer and other ethylenically unsaturated Resins in which a monomer having a heavy bond and an epoxy group are reacted, and resins in which a (meth) acrylic monomer is reacted with another monomer having an ethylenically unsaturated double bond and an isocyanate group.
  • One of these unsaturated double bond-containing acrylic copolymers may be used alone, or two or more of them may be used in combination.
  • the above-mentioned polyfunctional monomers for example, a dealcoholation reaction product of a polyhydric alcohol and (meth) atalylate, specifically, dipentaerythritol hexane Uses (meth) atalylate, dipentaerythritol penta (meth) atalylate, trimethylolpropane tri (meth) atalylate, ditrimethylolpropane tetra (meth) atalylate, neopentyldarichol di (meth) acrylate be able to.
  • a dealcoholation reaction product of a polyhydric alcohol and (meth) atalylate specifically, dipentaerythritol hexane
  • an atalylate monomer having a polyethylene glycol skeleton such as polyethylene glycol # 200 diatalylate (manufactured by Kyoeisha Chemical Co., Ltd.), can also be used.
  • polyethylene glycol # 200 diatalylate manufactured by Kyoeisha Chemical Co., Ltd.
  • These polyfunctional unsaturated double bond-containing monomers may be used singly or as a mixture of two or more.
  • first component and the second component satisfying the relationship of the above formula is a case where both the first component and the second component are oligomers or resins.
  • first component and the second component it is preferable to use a resin containing a (meth) acrylic resin in a skeleton structure. More preferably, the first component is an unsaturated double bond containing acrylic copolymer and the second component is a polyfunctional unsaturated double bond containing monomer.
  • the organic solvent is preferably, for example, a ketone solvent such as methyl ethyl ketone, acetone, methyl isobutyl ketone, cyclohexanone; methanol, ethanol Alcohol solvents such as isopropyl alcohol, propanol, isopropanol and butanol; ethers such as anisol, phenetole propylene glycol monomethyl ether, ethylene glycol dimethyl ether methyl ether, ethylene glycol dimethyl alcohol ether, diethylene glycol dimethyl ether, diethylene glycol dimethyl ether and the like.
  • System solvents and the like These solvents may be used alone or as a mixture of two or more organic solvents. When two or more kinds of organic solvents are used, at least one of the organic solvents used has a difference between the above SP and SP.
  • the glass transition temperature (Tg) can be obtained by a method similar to the usual method of measuring Tg by dynamic viscoelasticity.
  • This Tg can be measured using, for example, RHEOVIBRON MODEL RHEO2000, 3000 (trade name, manufactured by Orientec).
  • the difference in physical properties between the first component and the second component that causes phase separation between the first component and the second component is a difference in Tg.
  • one of the first component and the second component has a Tg lower than the environmental temperature at the time of application of the composition, and the other has a Tg higher than the environmental temperature at the time of application of the composition.
  • the resin having a Tg higher than the ambient temperature is in a glass state in which the molecular motion is controlled at the ambient temperature, so that the resin is agglomerated in the coating composition after application, whereby the first component and the first component are coagulated. It is believed that a phase separation with the two components results.
  • the environmental temperature at the time of application of the composition is 20 to 150 ° C, and has a lower Tg than the environmental temperature at the time of application of the composition.
  • the resin may have a Tg force of S-70 to 120 ° C, a temperature higher than the ambient temperature at the time of application of the composition, and a resin having a Tg of 90 to 200 ° C.
  • the above ambient temperature is preferably lower than the ambient temperature, which is preferably 40-120 ° C.
  • the Tg of the resin having Tg is preferably -60-80 ° C and the Tg higher than the ambient temperature.
  • the resin has a Tg of 100-150 ° C.
  • the first component may be a resin having a Tg lower than the ambient temperature at the time of application of the composition
  • the second component may be a resin having a Tg higher than the ambient temperature at the time of application of the composition. May be reversed.
  • the difference in Tg between the first component and the second component is 20 ° C. or more, and in the second component, the component having a higher Tg preferably has a Tg of 20 ° C or more.
  • the difference between the Tg of the first component and the Tg of the second component is more preferably 30 ° C or more, more preferably 50 ° C or more.
  • the upper limit of the difference between the Tg of the first component and the Tg of the second component is not particularly limited, but may be, for example, 100 ° C. or less.
  • the component having a higher Tg has more controlled molecular motion, so that the coating after coating is applied. It is believed that the agglomeration in the wing composition results in a phase separation force S between the first component and the second component.
  • the component having a lower Tg and a lower Tg that is, the Tg of the monomer is -70-0. C, and a resin having a higher Tg and a Tg of 20 to 200 ° C.
  • the environmental temperature at the time of application of the composition may be, for example, 20 120 ° C.
  • the Tg of the monomer component having a lower Tg is ⁇ 600 ° C.
  • the Tg of the resin having a higher Tg is 30150 ° C.
  • the ambient temperature at the time of application of the composition may be, for example, 20 120 ° C.
  • the monomer may be the first component or the second component.
  • the glass transition temperature of a monomer is approximately equal to the melting point of the monomer.
  • the Tg of the monomer is equal to the melting point of the monomer.
  • the surface tension of the first component and the surface tension of the second component Difference with — preferably 70dyn / cm. More preferably, this difference is 5-30 dyn / cm. If the difference between the surface tension of the first component and the surface tension of the second component is 110 dyn / cm, the resin having the higher surface tension tends to agglomerate, whereby the resin having the higher surface tension tends to coagulate after application of the composition. It is considered that the phase separation force S between the first component and the second component is provided.
  • the surface tension can be measured by obtaining a static surface tension measured by a ring method using a dynamometer manufactured by Big Chemie.
  • the coating composition of the present invention may contain a commonly used resin.
  • the coating composition of the present invention is characterized in that a resin layer having irregularities can be formed by using the first component and the second component as described above without including resin particles and the like. . Therefore, it is preferable that the coating composition of the present invention does not contain resin particles.
  • the coating composition of the present invention is prepared by mixing the first component and the second component together with a solvent, a catalyst, and a curing agent as required.
  • the ratio of the first component to the second component in the coating composition is preferably 1:99 to 99: 1, more preferably 1:99 to 50:50, and more preferably 1:99 to 20:80. preferable.
  • a catalyst When a catalyst is used, 0.01 to 20 parts by weight, preferably 100 to 100 parts by weight of the first component, the second component, and other resin as required (these components are collectively referred to as “resin component”) are used. One to ten parts by weight can be added. When a curing agent is used, it can be added in an amount of 0.1 to 50 parts by weight, preferably 1 to 30 parts by weight, based on 100 parts by weight of the resin component. When a solvent is used, it can be added in an amount of 11900 parts by weight, preferably 100-900 parts by weight, based on 100 parts by weight of the resin component.
  • the solvent in the coating composition used in the present invention is not particularly limited, and takes into consideration the first component and the second component, the material of the base portion of the coating, the method of coating the composition, and the like. Selected in a timely manner.
  • Specific examples of the solvent used include, for example, aromatic solvents such as toluene and xylene; ketone solvents such as methyl ethyl ketone, acetone, methyl isobutyl ketone and cyclohexanone; getyl ether, isopropyl ether, Ether-based solvents such as tetrahydrofuran, dioxane, ethylene glycol dimethyl ether, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, diethylene glycol oleletyl ether, propylene glycol monomethyl ether, anisol, and phenetol; ethyl acetate, butyl acetate, isopropyl acetate; Ester solvents
  • the antiglare coating composition of the present invention may contain various additives as necessary.
  • additives include conventional additives such as antistatic agents, plasticizers, surfactants, antioxidants, and ultraviolet absorbers.
  • Anti-glare film may contain various additives as necessary.
  • additives include conventional additives such as antistatic agents, plasticizers, surfactants, antioxidants, and ultraviolet absorbers.
  • the antiglare film of the present invention has a transparent substrate and an antiglare layer. This antiglare layer is formed from the above antiglare coating composition.
  • transparent plastic films various transparent plastic films, transparent plastic plates, glass, and the like can be used.
  • transparent plastic films for example, triacetyl cellulose (TAC) film, polyethylene terephthalate (PET) film, diacetylene cenorellos finolem, acetate butyrate cenorellose finolem, polyetherenolesanolefin finolem, polyacrylic resin film
  • TAC triacetyl cellulose
  • PET polyethylene terephthalate
  • diacetylene cenorellos finolem acetate butyrate cenorellose finolem
  • polyetherenolesanolefin finolem polyacrylic resin film
  • Polyurethane resin film polyester phenol film, polycarbonate film, polysulfone film, polyether film, polymethylpentene film, polyetherketone film, (meth) acrylic nitrile film and the like can be used. It is preferable to use triacetyl cellulose as
  • the refractive index of triacetyl cellulose is about 1.48. Since triacetyl cellulose is widely used as a protective film for protecting a polarizing layer of a polarizing plate, an antiglare film obtained by using it as a transparent substrate can be used as it is as a protective film. In addition, the thickness of the transparent base material is a force that can be appropriately selected depending on the application, and is generally about 25 to 1000 / im.
  • the antiglare layer is formed by applying the above antiglare coating composition on a transparent substrate.
  • the method of applying the coating composition can be appropriately selected according to the conditions of the coating composition and the coating process, and examples thereof include dip coating, air knife coating, curtain coating, roller coating, wire bar coating, and wire bar coating. It can be applied by a gravure coating method or an etastrusion coating method (US Pat. No. 2,681,294).
  • the thickness of the anti-glare layer can be appropriately set in consideration of various factors which are not particularly limited.
  • the coating composition can be applied so that the dry film thickness is 0.01 to 20 zm.
  • the coating film applied to the transparent substrate may be cured as it is, or the coating film may be dried before curing, and the phase may be separated before curing. 30-200 if the coating is allowed to dry before curing. C, more preferably 40-150. C, 0.1--1 60 minutes, better Preferably, drying is carried out for 1 to 30 minutes to remove the solvent, and the phases can be separated in advance.
  • drying before curing to separate the phases in advance can effectively remove the solvent in the anti-glare layer and is desirable. There is an advantage in that the unevenness having the size as described above can be provided.
  • a method of irradiating a coating film with light to cause phase separation can be used.
  • the irradiation light for example, light having an exposure amount of 0.1 to 1.5 jZcm 2 , and preferably light of 0.5 to 1.5 j / cm 2 can be used.
  • the wavelength of the irradiation light is not particularly limited. For example, irradiation light having a wavelength of 360 nm or less can be used. For example, when 2-methyl-1 [4- (methylthio) phenyl] -12-morpholinopropane-11-one is used as a photoinitiator, it is preferable to irradiate light having a wavelength around 310 nm.
  • Irradiate light having a wavelength around 360 nm can be obtained using a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, or the like. Irradiation of light in this manner causes phase separation and hardening. Irradiation of light to cause phase separation has an advantage that unevenness of the surface shape due to uneven drying of the solvent contained in the coating composition can be avoided.
  • An antiglare layer is formed by curing a coating film obtained by applying the coating composition or a dried coating film. 40-280 if the mixture of the first and second components is thermosetting. C, more preferably 80-250. Curing can be accomplished by heating at C for 0.1-180 minutes, more preferably 1-160 minutes. When the mixture of the first component and the second component is photocurable, the mixture can be cured by irradiating the light with a light source that emits light of a necessary wavelength. Note that light irradiation can also be used for the purpose of phase separation as described above.
  • FIG. 1 shows a schematic cross-sectional view of the antiglare film thus formed.
  • the antiglare film 1 has an antiglare layer 3 and a transparent substrate 5. Since the unevenness of the surface of the antiglare film of the present invention is determined spontaneously, an irregular uneven shape can be formed on the surface of the resin layer.
  • This R is an index that represents the height and roughness of the irregularities on the surface.
  • FIG. 2 is an explanatory diagram of the meter R.
  • the solid curve is
  • the ten-point average roughness (R) is, for example,
  • JIS B0601 is a Japanese Industrial Standard created by translating ISO 4287 and changing the technical content and standard form.
  • the antiglare film of the present invention preferably has R of 1. Ozm or less.
  • R is more preferably 0.8 ⁇ m or less, and 0.5 ⁇ m
  • the lower limit is preferably 0.:m.
  • the anti-glare film of the present invention preferably has a total light transmittance of 90% or more, more preferably 95% or more.
  • a high total light transmittance as described above can be achieved.
  • the total light transmittance can be measured using, for example, a haze meter (manufactured by Suga Test Instruments Co., Ltd.).
  • the antiglare film of the present invention preferably has a haze of less than 20%, more preferably 18% or less, and more preferably 15. / 0 or less is more preferable, and 10% or less is particularly preferable. According to the present invention, it is possible to prepare an antiglare film having an excellent performance of having a low haze and an excellent antiglare property as described above. Advantages of low haze include that when an anti-glare film is provided in a liquid crystal display device, the sharpness of an image to be displayed is not impaired, and white blur is less likely to occur. Such an antiglare film having a low haze does not impair the sharpness of an image displayed particularly on a high-definition liquid crystal display device. There is an advantage that.
  • the haze can be calculated from the following equation in accordance with JIS K7105.
  • Haze can be measured, for example, using a haze meter (manufactured by Suga Test Instruments Co., Ltd.).
  • the antiglare film of the present invention preferably has an R force of Si or less.
  • R is preferably less than or equal to 1.
  • the anti-glare film of the present invention is characterized in that it can be prepared without containing particles such as resin particles. When using resin particles or the like to form irregularities on the antiglare film, the resin particles often aggregate during the preparation of the antiglare film. And due to this aggregation, the value of R (maximum height roughness) is high
  • Sm is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less.
  • the lower limit is preferably 5 z m.
  • Sm is the average length of the surface roughness curve element, which is generally called the average interval between peaks and valleys of the roughness curve or the average interval between irregularities.
  • Sm can be measured according to JIS B0633 using, for example, an ultra-depth shape measurement microscope manufactured by Keyence Corporation.
  • JIS B0633 is a Japanese industrial standard created by translating ISO 4288 without changing the technical contents and the format of the standard form.
  • the irregular irregular arrangement on the surface of the antiglare layer is naturally generated. It is something that is decided.
  • the scattered light intensity with respect to the scattering angle preferably does not have a maximum value.
  • the transmitted light is the direction in which the irradiated light proceeds as it is, that is, the direction in which the scattering angle is 0 °, Is the largest.
  • the irradiation light is scattered by the anti-glare film, the light is transmitted also in a direction whose angle is shifted from the normal direction.
  • This dispersed light is scattered light (transmitted scattered light).
  • the scattered light intensity for this scattering angle does not have a maximum value.
  • the scattered light is collected at a specific angle, which may cause light interference.
  • the occurrence of light interference is not preferable because it may cause a reduction in the sharpness of an image transmitted through the antiglare film.
  • the antiglare film of the present invention may further have a low refractive index layer.
  • the low refractive index layer is made of a low refractive index resin.
  • external light such as an external light source
  • the low-refractive-index layer is disposed on the outermost surface of an optical member or the like.
  • the low refractive index layer is disposed so as to be the outermost surface, that is, an antiglare layer is formed on a transparent base material, and the low refractive index layer is further formed on the antiglare layer to obtain a protective layer.
  • the refractive index of the low refractive index resin is, for example, about 1.35 to 1.39, preferably about 1.36 to 1.39, and more preferably about 1.38 to 1.39.
  • the thickness of the low refractive index layer is, for example, about 0.052 xm, preferably about 0.1 lxm (for example, 0.1-0.5 xm), and more preferably about 0.1-0.3 zm. It is.
  • the low refractive index resin examples include a fluororesin such as a methylpentene resin, a diethylene glycol bis (aryl carbonate) resin, a polyvinylidene fluoride (PVDF), and a polyvinyl fluoride (PVF).
  • the low refractive index layer usually preferably contains a fluorine-containing compound. By using a fluorine-containing compound, the refractive index of the low refractive index layer can be reduced as desired.
  • the fluorine-containing compound has a fluorine atom and a functional group (such as a curable group such as a crosslinkable group or a polymerizable group) that reacts with heat or an active energy ray (such as an ultraviolet ray or an electron beam).
  • a fluorine-containing resin precursor capable of forming a fluorine-containing resin (particularly, a cured or crosslinked resin) by being cured or cross-linked by heat or active energy rays.
  • fluorine-containing resin precursor examples include, for example, a fluorine-containing thermosetting compound or resin (including a fluorine atom, a reactive group (epoxy group, isocyanate group, carboxyl group, hydroxy group, etc.), Low molecular weight compounds having a functional group (such as a butyl group, an aryl group, or a (meth) atalyloyl group), a fluorine-containing photocurable compound or resin curable by actinic rays (such as ultraviolet rays). UV curable compounds such as fluorine-containing monomers or oligomers).
  • a fluorine-containing thermosetting compound or resin including a fluorine atom, a reactive group (epoxy group, isocyanate group, carboxyl group, hydroxy group, etc.
  • Low molecular weight compounds having a functional group such as a butyl group, an aryl group, or a (meth) atalyloyl group
  • the fluorine atom-containing thermosetting compound or resin for example, a low molecular weight resin obtained by using at least a fluorine-containing monomer, for example, a fluorine-containing polyol (in place of part or all of the polyol component as a constituent monomer) Epoxy-containing resin obtained by using a diol), and a fluorine-containing polyol and / or a polycarboxylic acid component instead of a polyol and / or a polycarboxylic acid component.
  • a fluorine-containing monomer for example, a fluorine-containing polyol (in place of part or all of the polyol component as a constituent monomer) Epoxy-containing resin obtained by using a diol
  • a fluorine-containing polyol and / or a polycarboxylic acid component instead of a polyol and / or a polycarboxylic acid component.
  • thermosetting compounds or resins can be used alone or in combination of two or more.
  • the fluorine atom-containing photocurable compound includes, for example, a monomer and an oligomer (or a resin, particularly a low molecular weight resin).
  • oligomer or a resin, particularly a low molecular weight resin.
  • the monomer include those described in the section of the antiglare layer.
  • Fluorine atom-containing monomers corresponding to monofunctional and polyfunctional monomers [fluorine atom-containing (meth) acrylic monomers such as fluorinated alkyl esters of (meth) atalylic acid, Monofunctional monomers such as butyl monomers such as fluoroolefins; di (meth) acrylates of fluorinated alkylene glycols such as 1_fluoro-1,2-di (meth) atalyloyloxyethylene Can be exemplified. Further, as the oligomer or resin, a fluorine atom-containing oligomer or resin corresponding to the oligomer or resin exemplified in the section of the antiglare layer is used. Can be used. These photocurable compounds can be used alone or in combination of two or more.
  • the curable precursor of the fluorine-containing resin can be obtained, for example, in the form of a solution (coating solution).
  • a solution coating solution
  • examples of such a coating solution include "TT1006A” and “JN7215” manufactured by Nippon Synthetic Rubber Co., Ltd. And available as "Defensa TR-330" manufactured by Dainippon Ink and Chemicals, Inc.
  • the antiglare film of the present invention may be composed of an antiglare layer and a low refractive index layer using a low refractive index layer as a transparent substrate.
  • the anti-glare film of the present invention may also be composed of a transparent substrate, an anti-glare layer and a low refractive index layer sequentially formed on the transparent substrate.
  • the antiglare antireflection film of the present invention can be used for a polarizing plate of a liquid crystal display device (liquid crystal display).
  • FIG. 4 is a schematic cross-sectional view of a polarizing plate using the antiglare film of the present invention.
  • the polarizing plate 10 illustrated in FIG. 4 has a configuration in which the anti-glare film 1 is provided on one surface (the upper surface side in FIG. 4) of a polarizing layer (polarizing element) 12.
  • the polarizing layer 12 is laminated between the two transparent substrates 5 and 14. TAC films can be used as the transparent substrates 5 and 14.
  • the polarizing layer 12 has a three-layer structure.
  • the first and third layers are made of a film obtained by adding iodine to polyvinyl alcohol (PVA), and the intermediate second layer is made of a PVA film.
  • the anti-glare film 1 has a configuration in which an anti-glare layer 3 is laminated on a transparent substrate 5.
  • a TAC film is used as a transparent base material provided on both outer sides of the polarizing layer 12, since there is no birefringence and polarization is not disturbed, the TAC film is laminated with PVA and PVA + iodine film serving as a polarizing element. Even, polarization is not disturbed. Accordingly, a liquid crystal display device having excellent display quality can be obtained by using such a polarizing plate 10.
  • polarizing element constituting the polarizing layer 12 in the polarizing plate 10 as described above, a PVA film dyed and stretched with iodine or a dye, a polybulformal film, a polybulacetal film, an ethylene There are saponified films of butyl monoacetate copolymer.
  • the transparent substrate When laminating the films constituting the polarizing layer 12, the transparent substrate may be subjected to a quenching treatment in order to increase adhesiveness and prevent static electricity.
  • the antiglare antireflection film of the present invention can be used for a liquid crystal display device (liquid crystal display).
  • FIG. 5 is a schematic cross-sectional view of a transmission type display device using the antiglare film of the present invention.
  • the liquid crystal display device 20 shown in FIG. 5 has a polarizing plate 22, a liquid crystal panel 24, and a polarizing plate 26, which are similar to the above-described polarizing plate 10, stacked in this order, and the polarizing plate 26 side.
  • This is a transparent liquid crystal display device having a backlight 28 on the back.
  • the liquid crystal mode used in the liquid crystal panel 24 in the liquid crystal display device 20 may be a top (PC), a polymer dispersion type (PDLC) or the like, or may be a deviation.
  • PC top
  • PDLC polymer dispersion type
  • the driving mode of the liquid crystal in the case of the active matrix type, which can be either a simple matrix type or an active matrix type, a driving method such as TFT or MIM is adopted.
  • the liquid crystal panel 24 may be either a color type or a monochrome type.
  • the antiglare antireflection film of the present invention can be used for an image display device such as a plasma display panel (PDP), an electroluminescent display (ELD), and a cathode ray tube display (CRT) in addition to a liquid crystal display device. Can also be used.
  • PDP plasma display panel
  • ELD electroluminescent display
  • CRT cathode ray tube display
  • the anti-glare film of the present invention can be disposed on the outermost surface of the display, for example, by providing an adhesive layer on the surface of the transparent substrate on which the anti-glare layer is not provided.
  • the anti-glare layer of the anti-glare film according to the present invention may be further subjected to an anti-reflection treatment or the like.
  • VPS-1001N (azo group-containing polysiloxane compound, manufactured by Wako Pure Chemical Industries, Ltd., polysiloxane chain molecular weight 10,000, solid content 50%) 243.9 g, cyclohexino remetharylate 1444.0 g, styrene
  • Butyl acetate 270.Og heated to 120 ° C under a nitrogen atmosphere in a 1000 ml reaction vessel equipped with a cooling tube and a dropping funnel. Mix for minutes and react.
  • a butyl acetate solution containing 0.60 g of tert-butylperoxy 2-ethylhexanoate in 15.Og solution was added dropwise at a constant speed over 30 minutes, and the mixture was further reacted by mixing at 120 ° C for 1 hour.
  • a silicone acrylic block copolymer having an average molecular weight of 34,000 and a weight average molecular weight of 125,000 was obtained.
  • This resin had a Sp value of 10.8, a Tg of 69 ° C, and a surface tension of 16 dynZcm.
  • VPS-1001N (azo group-containing polysiloxane compound, manufactured by Wako Pure Chemical Industries, Ltd., polysiloxane chain molecular weight 10,000, solid content 50%) 243.9 g, cyclohexinolemethatalate 68.2 g, styrene 103.9 g, 44.3 g of glycidinolemetharylate and 343.3 g of butynole acetate were mixed.
  • This mixed solution was added to 270.Og of butyl acetate heated at 120 ° C under a nitrogen atmosphere in a 1000 ml reaction vessel equipped with stirring blades, a nitrogen inlet tube, a cooling tube, and a dropping funnel at a constant speed over 3 hours.
  • This resin had a Sp value of 10.6, a Tg of 76 ° C, and a surface tension of 18 dyn / cm.
  • a solution of 120 g of propylene glycol monomethyl ether containing Og is dropped at a constant speed over 30 minutes, and then tert-butyl peroxy 2-ethyl hexanoate is added.
  • a 25.5 g solution of propylene glycol monomethyl ether containing 3 g was added dropwise for 30 minutes to obtain an acrylic copolymer having a number average molecular weight of 6,400 and a weight average molecular weight of 14,800.
  • This resin had a Sp value of 9.9, a Tg of 113 ° C., and a surface tension of 29 dyn / cm.
  • a solution of propylene glycol monomethyl ether containing butylperoxy-1-ethylhexanoate in 80.0 g was simultaneously added dropwise at a constant rate over 3 hours over a period of 3 hours, and then reacted at 100 ° C for 1 hour. Thereafter, a propylene glycol monomethyl ether solution containing 0.2 g of tert-butylperoxy-2-ethylhexanoate was added dropwise and reacted at 100 ° C for 1 hour.
  • This mixed solution was added to tert.butyl butyl ether (20.0 g) heated to 110 ° C. under a nitrogen atmosphere in a 1000 ml reaction vessel equipped with a stirring blade, a nitrogen inlet tube, a cooling tube, and a dropping funnel.
  • the propylene glycol monomethyl ether solution containing 2 g of noroxy-2-ethylhexanoate was dropped at a constant rate over 3 hours simultaneously with the 80. Og solution of propylene glycol monomethyl ether, and then reacted at 110 ° C for 30 minutes. Thereafter, a solution of 17 g of propylene glycol monomethyl ether containing 0.2 g of tert-butylperoxy-2-ethylhexanoate was added dropwise and reacted at 110 ° C. for 30 minutes.
  • a mixture consisting of 171.6 g of isoboroninolemethatalylate, 2.6 g of methinolemethatalylate, and 9.2 g of methinolate-clinoleic acid was mixed. This mixture was added to 330.Og of propylene glycol monomethyl ether heated to 110 ° C under a nitrogen atmosphere in a 1000 ml reaction vessel equipped with stirring blades, a nitrogen inlet tube, a cooling tube, and a dropping funnel.
  • a propylene glycol monomethyl ether solution containing 1.8 g of oxy-2-ethylhexanoate was added dropwise at a constant rate over 3 hours at the same time as a solution of 80.Og of propylene glycol, followed by a reaction at 110 ° C for 30 minutes. Then, a solution of tert-butylperoxy-2-ethylhexanoate (0.2 g) and propylene glycol monomethyl ether (17.0 g) was added dropwise, and tetrabutylammonium bromide (1.4 g) and hydroquinone (0.1 g) containing 5.0 g were added.
  • This resin had a Sp value of 10.0, a Tg of 92 ° C., and a surface tension of 31 dyn / cm.
  • Preparation Example 1 silicone acrylic block copolymer (Sp value of this resin: 10.8, Tg: 69 ° C ) 32 parts by weight, 48 parts by weight of the acrylic copolymer of Preparation Example 3 (Sp value of this resin: 9.9, Tg: ll 3 ° C), 20 parts by weight of a melamine curing agent which is a thermosetting agent, and thermosetting 6 parts by weight of p-toluenesulfonic acid as a catalyst and 0.1 part by weight of a perfluoroalkyl group-containing oligomer are mixed with anisol (Sp value: 9.5) as a solvent to reduce the nonvolatile content to 23% by weight.
  • anisol Sp value: 9.5
  • a solution was prepared so that The resulting solution was applied to a triacetyl cellulose film substrate at an ambient temperature of 23 ° C. by a spin coater at 800 rpm for 10 seconds.
  • the applied film having a thickness of 10 minutes was cured by heating at 100 ° C. for 10 minutes to obtain an antiglare film.
  • the maximum height roughness (R) of the roughness curve of the unevenness on the surface is made by Keyence, super-depth shape z JIS
  • the maximum height roughness (R) of the height curve was measured only in Examples 4 and 5.
  • a three-dimensional image of the unevenness of the antiglare layer surface by an ultra-deep shape measurement microscope showed a sea-island structure as shown in FIG.
  • the obtained anti-glare film was excellent in anti-glare properties, with no reflection of the fluorescent lamp under the fluorescent lamp.
  • This solution was applied on a triacetyl cellulose film substrate at an ambient temperature of 23 ° C for 10 seconds with a spin coater at a rotation speed of 100 rpm, and then heated at 120 ° C for 10 minutes to evaporate the solvent to form a film.
  • the film was irradiated with ultraviolet light from an ultra-high pressure mercury lamp so that the energy of the ultraviolet light became U / cm 2 .
  • the obtained anti-glare film and anti-glare layer surface irregularities were evaluated in the same manner as in Example 1. Table 2 shows the evaluation results.
  • a three-dimensional image obtained by measuring the unevenness of the surface of the antiglare layer with an ultra-depth shape measurement microscope showed a sea-island structure as shown in FIG.
  • the resulting anti-glare film reflects the fluorescent light under fluorescent light. It was excellent in anti-glare properties with no blemishes.
  • a bar coat (No. 18) was applied to a triacetyl cellulose film substrate with a bar coater, and the mixture was heated at 50 ° C. for 10 minutes so that the film thickness became 6 ⁇ m, and the solvent was removed and dried. Thereafter, this film was exposed to ultraviolet light with an ultrahigh-pressure mercury lamp at an energy of ljZcm 2 to form an antiglare layer.
  • the unevenness of the obtained antiglare film and antiglare layer surface was evaluated in the same manner as in Example 1. Table 2 shows the evaluation results.
  • a three-dimensional image of the irregularities on the surface of the antiglare layer by an ultra-deep shape measurement microscope showed a sea-island structure as shown in FIG.
  • the obtained anti-glare film was excellent in anti-glare properties, with no reflection of the fluorescent lamp under the fluorescent lamp.
  • Example 5 This solution was applied to a triacetyl cellulose finolem substrate with a bar coater (No. 12) at an ambient temperature of 23 ° C with a bar coater, and heated at 60 ° C for 1 minute to a film thickness of 6 zm. Then, the solvent was removed and dried to form an antiglare layer. Thereafter, the film was cured by exposing it to ultraviolet light with an energy of ljZcm 2 using an ultra-high pressure mercury lamp. The unevenness of the obtained antiglare film and antiglare layer surface was evaluated in the same manner as in Example 1. Table 2 shows the evaluation results. [0131] Example 5
  • Ratio 1 (Reference example based on Patent Document 1)
  • the solvent was dried at 80 ° C for 10 minutes, and then irradiated with ultraviolet rays at 200 mj / cm (superscript: 2) to form an antiglare layer.
  • the obtained antiglare film and antiglare layer were evaluated in the same manner as in Example 1. Table 2 shows the evaluation results.
  • the anti-glare film formed from the coating composition of the present invention has excellent performance such as a high total light transmittance and no white blur as compared with the comparative example. confirmed. Further, as shown in Examples 4 and 5, it was confirmed that the present invention can prepare an antiglare film having a low haze, a high total light transmittance, and excellent performance without white blur. Was.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Liquid Crystal (AREA)
  • Laminated Bodies (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Paints Or Removers (AREA)

Abstract

An antidazzle coating composition capable of easily forming an antidazzle film improved with respect to extra reflection, white blur, etc. There is provided an antidazzle coating composition to be applied onto a transparent substrate to thereby form an antidazzle layer, which antidazzle coating composition comprises a first component and a second component that after application of this antidazzle coating composition onto a substrate, undergo a phase separation due to a difference in properties between the first component and the second component to thereby form a resin layer having a surface with random unevenness.

Description

明 細 書  Specification
防眩性コーティング組成物、防眩フィルムおよびその製造方法  Anti-glare coating composition, anti-glare film and method for producing the same
技術分野  Technical field
[0001] 本発明は、各種透明プラスチックフィルム、透明プラスチック板およびガラスなどの 透明基材に対して防眩性を付与することができる防眩性コーティング組成物、および この防眩性コーティング組成物から形成される防眩層を有する防眩フィルムに関する 背景技術  The present invention relates to an anti-glare coating composition capable of imparting anti-glare properties to transparent substrates such as various transparent plastic films, transparent plastic plates, and glass, and from the anti-glare coating composition BACKGROUND ART Regarding an anti-glare film having an anti-glare layer formed
[0002] 液晶表示装置 (液晶ディスプレイ)は、薄型、軽量、低消費電力などの利点を有して おり、コンピュータ、ワードプロセッサ、テレビジョン、携帯電話、携帯情報端末機器等 の様々な分野で使用されている。これらの液晶表示装置においては、ディスプレイ表 面上に、表面を粗面化する防眩 (AG : Anti Glare)フィルム、屈折率を調整する低反 射(LR : Low Reflection)フィルム、無反射フィルム(AR : Anti Reflection)などが設けら れている。これらによって、外光の反射によるコントラスト低下、およびディスプレイ表 面に背景が反射する映り込みなどといった不具合の解消が図られている。  [0002] Liquid crystal display devices (liquid crystal displays) have advantages such as thinness, light weight, and low power consumption, and are used in various fields such as computers, word processors, televisions, mobile phones, and personal digital assistants. ing. In these liquid crystal display devices, an antiglare (AG) film for roughening the surface, a low reflection (LR) film for adjusting the refractive index, and an antireflection film (LR) are formed on the display surface. AR: Anti Reflection). As a result, problems such as reduction in contrast due to reflection of external light and reflection of the background on the display surface are eliminated.
[0003] 液晶表示装置の表示性能を改善する防眩フィルムの製造方法として、一般に、フィ ルム製造時に、切肖 I」、型押し成型、貝占り合わせなどの加工によってその表面を粗面 化する方法、または、樹脂粒子を含む層をフィルム上に設けてフィルムの表面を粗面 化する方法、などが挙げられる。現在、後者の樹脂粒子を含む層をフィルム上に設け る方法が広く用いられている。  [0003] As a method for producing an anti-glare film for improving the display performance of a liquid crystal display device, generally, during film production, the surface thereof is roughened by processing such as "cutting I", embossing, and shell cladding. Or a method in which a layer containing resin particles is provided on a film to roughen the surface of the film. At present, the latter method of providing a layer containing resin particles on a film is widely used.
[0004] 特開 2002— 221610号公報 (特許文献 1)には、透光性樹脂と透光性微粒子とを 含む防眩層が積層された防眩フィルムであって、透光性樹脂と透光性微粒子との屈 折率の差が 0. 3以下であって、透光性樹脂が防眩層の表面より 0. 1 0. 突 出してなる防眩フィルムが記載されている。このような防眩フィルムの製造において、 例えば使用する微粒子が均一に分散しないという問題が挙げられる。溶液中に樹脂 を均一に分散させるためには、例えば溶液粘度を制御 ·調整するなどの注意が必要 とされる。微粒子が均一に分散せずに凝集すると、表面上の凹凸形状が所望の範囲 力 外れてしまい、透過画像鮮明性が低下したり、いわゆる白ぼけが起こるなどの不 具合が生じることがある。 [0004] Japanese Patent Application Laid-Open No. 2002-221610 (Patent Document 1) discloses an anti-glare film in which an anti-glare layer including a light-transmitting resin and light-transmitting fine particles is laminated, wherein the light-transmitting resin and the light-transmitting resin are laminated. It describes an antiglare film in which the difference in refractive index from the optical fine particles is 0.3 or less and the translucent resin protrudes 0.10. From the surface of the antiglare layer. In the production of such an antiglare film, for example, there is a problem that fine particles used are not uniformly dispersed. In order to uniformly disperse the resin in the solution, attention must be paid to, for example, controlling and adjusting the solution viscosity. If the fine particles are aggregated without being uniformly dispersed, the irregularities on the surface will be in the desired range. This may cause problems such as loss of clarity of the transmitted image and so-called white blurring.
[0005] 一方、フィルム製造時に、切肖 lj、型押し成型、貝占り合わせなどの加工によって表面 を粗面化する場合は、その粗面の凹凸をランダムに設けることが困難であり、凹凸が ある規則に従ってしまうことがある。凹凸がある規則に従う場合は、凹凸面で反射され る光が互いに干渉を起こすことがあり、反射光を強めあったりモアレ模様が生じたりな どディスプレイの表示に不具合を起こす原因となる。すなわち、モアレ模様の発生は 、表示装置の画素の配列方向に対して、防眩層の微細凹凸構造の配列方向が重な ること力 s原因である。画素が規則的に並んでいるのに対して、その規則に重なる様に 微細凹凸構造が位置した場合に起きる傾向がある。また、型押し成型によって防眩 層を形成する場合は、防眩層の型押し工程、そしてこの型押しに用いられる型の洗 浄などの工程が必要となり、煩雑である。さらに、型押しに用いられる型の成型表面 上に異物が付着しないように注意を払う必要もある。 [0005] On the other hand, when the surface is roughened by processing such as cutting, embossing, and shellfish forging during film production, it is difficult to randomly form the irregularities on the rough surface. May obey certain rules. When irregularities follow a rule, the light reflected by the irregularities may interfere with each other, causing problems with the display on the display, such as strengthening the reflected light or generating moiré patterns. That is, the generation of the moiré pattern is caused by the force s that the arrangement direction of the fine uneven structure of the antiglare layer overlaps the arrangement direction of the pixels of the display device. While the pixels are regularly arranged, there is a tendency to occur when the fine uneven structure is positioned so as to overlap the rule. Further, when the antiglare layer is formed by embossing, a step of embossing the antiglare layer and a step of washing the mold used for the embossing are required, which is complicated. In addition, care must be taken to prevent foreign matter from adhering to the molding surface of the mold used for embossing.
[0006] 特開 2003-004917号公報(特許文献 2)には、防眩フィルムと偏光子とを備える 防眩層付偏光板であって、前記防眩層の微細凹凸構造の配列方向が前記偏光子 の吸収軸方向又は透過軸方向に対して 22. 5° ± 12. 5° であることを特徴とする 防眩層付偏光板が記載されている。ここに記載されるように、加工によって微細凹凸 構造を設ける場合は配列方向の角度などを細力べ調節する必要があり、製造工程が 煩雑となる。また、表示画面の高精細化、カラー化により表示素子の画素がより小さく なると、モアレ模様の発生の確率がより高くなると考えられる。そのため、この問題を 解決する技術が必要とされてレ、る。  [0006] Japanese Patent Application Laid-Open No. 2003-004917 (Patent Document 2) discloses a polarizing plate with an antiglare layer provided with an antiglare film and a polarizer, wherein the arrangement direction of the fine unevenness structure of the antiglare layer is as described above. There is described a polarizing plate with an antiglare layer, wherein the angle is 22.5 ° ± 12.5 ° with respect to the absorption axis direction or transmission axis direction of the polarizer. As described herein, when a fine uneven structure is formed by processing, it is necessary to finely adjust the angle in the arrangement direction and the like, and the manufacturing process becomes complicated. Further, when the pixels of the display element become smaller due to the higher definition and colorization of the display screen, it is considered that the probability of occurrence of a moiré pattern becomes higher. Therefore, the technology to solve this problem is needed.
[0007] 特開 2000—267086号公報(特許文献 3)には、互いに相分離しやすい複数の種 類の樹脂を混合した混合樹脂液を塗布する工程を含む、反射型液晶表示装置用電 極基板の製造方法が記載されている。また、特開 2001 - 305316号公報 (特許文献 4)には、少なくとも 2種類の樹脂部を互いに分散保持する構成により、凹凸が形成さ れてなる樹脂層を有する反射板が記載されている。しかし、これらの基板または反射 板は、ディスプレイ表面に背景が反射する映り込み、そして透過画像鮮明性、白ぼけ といった性能を全く考慮しなくてもよいものであるため、これらの性能が重要視される 防眩フィルムとは解決課題が異なるものである。 [0007] Japanese Patent Application Laid-Open No. 2000-267086 (Patent Document 3) discloses an electrode for a reflection type liquid crystal display device, which includes a step of applying a mixed resin liquid in which a plurality of kinds of resins which are easily separated from each other are mixed. A method for manufacturing a substrate is described. Also, Japanese Patent Application Laid-Open No. 2001-305316 (Patent Document 4) describes a reflection plate having a resin layer in which at least two types of resin portions are formed to have irregularities by dispersing and holding at least two types of resin portions. However, since these substrates or reflectors do not need to take into account the reflection of the background on the display surface, and the clarity of transmitted images and the blurring of the performance, these performances are regarded as important. To The problem to be solved is different from that of the antiglare film.
[0008] 特許文献 1 :特開 2002 - 221610号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2002-221610
特許文献 2:特開 2003 - 004917号公報  Patent Document 2: Japanese Patent Application Laid-Open No. 2003-004917
特許文献 3:特開 2000 - 267086号公報  Patent Document 3: Japanese Patent Application Laid-Open No. 2000-267086
特許文献 4 :特開 2001— 305316号公報  Patent Document 4: JP 2001-305316 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] 本発明は上記従来技術の問題点を解決することを課題とする。より特定すれば、本 発明は、映り込み、白ぼけ等が改善された防眩フィルムを簡便に形成することができ る防眩性コーティング組成物を提供することを課題とする。 [0009] An object of the present invention is to solve the above-mentioned problems of the conventional technology. More specifically, an object of the present invention is to provide an anti-glare coating composition that can easily form an anti-glare film with improved glare, white blur, and the like.
課題を解決するための手段  Means for solving the problem
[0010] 本発明は、透明基材上に塗布され防眩層を形成する防眩性コーティング組成物で あってヽ [0010] The present invention is an antiglare coating composition which is applied on a transparent substrate to form an antiglare layer.
この防眩性コーティング組成物が第 1成分および第 2成分を含み、  The antiglare coating composition comprises a first component and a second component,
この防眩性コーティング組成物を基材上に塗布した後に、この第 1成分および第 2成 分の物性の差に基づいて第 1成分と第 2成分とが相分離し、表面にランダムな凹凸を 有する樹脂層が形成される、  After applying the antiglare coating composition onto a substrate, the first component and the second component undergo phase separation based on the difference in physical properties of the first component and the second component, and the surface has random irregularities. Forming a resin layer having
防眩性コーティング組成物、を提供するものであり、これにより上記目的が達成される  An anti-glare coating composition, whereby the above object is achieved.
[0011] 上記第 1成分および第 2成分が、それぞれ独立して、モノマー、オリゴマーおよび樹 脂からなる群から選択される 1種または 2種以上の組み合わせであるのが好ましい。 [0011] It is preferable that the first component and the second component are each independently one kind or a combination of two or more kinds selected from the group consisting of a monomer, an oligomer and a resin.
[0012] また、第 1成分の SP値と第 2成分の SP値との差が 0. 5以上であるのが好ましい。 [0012] Preferably, the difference between the SP value of the first component and the SP value of the second component is 0.5 or more.
[0013] 本発明の防眩性コーティング組成物は、さらに有機溶媒を含んでもよい。そして、 第 1成分の SP値 (SP )、第 2成分の SP値 (SP )および有機溶媒の SP値 (SP )が、 [0013] The antiglare coating composition of the present invention may further contain an organic solvent. The SP value of the first component (SP), the SP value of the second component (SP), and the SP value of the organic solvent (SP)
1 2 sol 下記条件;  1 2 sol The following conditions;
SPく SP、および  SP then SP, and
1 2  1 2
SPと SP との差が 2以下である;  The difference between SP and SP is 2 or less;
1 sol  1 sol
を満たす関係にあるのが好ましい。 [0014] 上記第 1成分がオリゴマーまたは樹脂であり、上記第 2成分がモノマーであるのが 好ましい。 It is preferable that the relationship is satisfied. Preferably, the first component is an oligomer or a resin, and the second component is a monomer.
[0015] また、上記第 1成分が不飽和二重結合含有アクリル共重合体であり、上記第 2成分 が多官能性不飽和二重結合含有モノマーであるのが好ましい。  Preferably, the first component is an unsaturated double bond-containing acrylic copolymer, and the second component is a polyfunctional unsaturated double bond-containing monomer.
[0016] また、上記第 1成分がシリコーンアクリルブロック共重合体であり、上記第 2成分がァ クリル共重合体であるのも好ましレ、。  [0016] It is also preferable that the first component is a silicone acrylic block copolymer, and the second component is an acryl copolymer.
[0017] 本発明の防眩性コーティング組成物は、上記第 1成分および第 2成分が樹脂であ つて、第 1成分および第 2成分のうちいずれか一方が、組成物塗布時の環境温度より 低レ、 Tgを有し、他の一方が組成物塗布時の環境温度より高い Tgを有するのも好ま しい。  [0017] In the antiglare coating composition of the present invention, the first component and the second component are resins, and one of the first component and the second component is lower than the ambient temperature at the time of application of the composition. It is also preferred that the other has a low Tg and the other has a Tg higher than the ambient temperature at the time of application of the composition.
[0018] また本発明の防眩性コーティング組成物は、上記第 1成分または第 2成分のいずれ か一方がモノマーであって、  [0018] Further, the antiglare coating composition of the present invention, wherein one of the first component and the second component is a monomer,
第 1成分および第 2成分の Tgの差が 20°C以上であり、および  The difference between the Tg of the first component and the second component is 20 ° C or more, and
第 1成分および第 2成分において、より高レ、 Tgを有する成分の Tgが 20°C以上である ものも好ましい。  Among the first component and the second component, those having higher Tg and Tg of 20 ° C. or higher are also preferable.
[0019] 本発明の防眩性コーティング組成物は、さらに硬化剤を含んでもよい。  [0019] The antiglare coating composition of the present invention may further contain a curing agent.
[0020] また、本発明の防眩性コーティング組成物は、好ましくは樹脂粒子を含まないことを 特徴とする。 [0020] Further, the antiglare coating composition of the present invention is preferably characterized by not containing resin particles.
[0021] 本発明はまた、防眩フィルムも提供する。この防眩フィルムは、透明基材および防 眩層を有するものであって、この防眩層は上記の防眩性コーティング組成物から形 成される。  [0021] The present invention also provides an antiglare film. This antiglare film has a transparent substrate and an antiglare layer, and the antiglare layer is formed from the above antiglare coating composition.
[0022] 防眩フィルムの^ ^一ズが 20%未満であるのが好ましレ、。  [0022] The anti-glare film preferably has a thickness of less than 20%.
[0023] また、防眩フィルムの R (十点平均粗さ)が 1. O x m以下であるのが好ましレ、。  [0023] The R (ten-point average roughness) of the antiglare film is preferably 1. O x m or less.
z JIS94  z JIS94
[0024] さらに、防眩フィルムの表面の粗さ曲線要素の平均長さ(Sm)が 100 x m以下であ るのが好ましい。  Further, it is preferable that the average length (Sm) of the roughness curve element on the surface of the antiglare film is 100 × m or less.
[0025] さらに、防眩フィルムの散乱角に対する散乱光強度が極大値を有さないのが好まし レ、。  Furthermore, it is preferable that the scattered light intensity with respect to the scattering angle of the antiglare film does not have a maximum value.
[0026] 本発明はまた、防眩フィルムの製造方法も提供する。製造方法の一例として、下記 工程: [0026] The present invention also provides a method for producing an antiglare film. As an example of the manufacturing method, Process:
透明基材に、上記の防眩性コーティング組成物を塗布する塗布工程、および 得られた塗膜を硬化させる硬化工程、  On a transparent substrate, an application step of applying the antiglare coating composition, and a curing step of curing the obtained coating film,
を包含する方法が挙げられる。  And the like.
[0027] また、製造方法の他の例として、  [0027] As another example of the manufacturing method,
透明基材に、上記の防眩性コーティング組成物を塗布する塗布工程、  An application step of applying the antiglare coating composition to a transparent substrate,
得られた塗膜を乾燥させて相分離させる乾燥工程、および  A drying step of drying and phase-separating the obtained coating film, and
乾燥させた塗膜を硬化させる硬化工程、  A curing step of curing the dried coating film,
を包含する方法も挙げられる。  And a method including:
[0028] さらに、製造方法の他の例として、 Further, as another example of the manufacturing method,
透明基材に、上記の防眩性コーティング組成物を塗布する塗布工程、および 得られた塗膜に光を照射して、相分離および硬化させる光照射工程、  On a transparent substrate, a coating step of applying the above antiglare coating composition, and irradiating the obtained coating film with light, a light irradiation step of phase separation and curing,
を包含する方法も挙げられる。  And a method including:
[0029] 本発明は、上記の防眩フィルムの製造方法により得られる防眩フィルムも提供する [0029] The present invention also provides an antiglare film obtained by the above method for producing an antiglare film.
[0030] 本発明はまた、上記の防眩フィルムと偏光素子とを有する偏光板であって、透明基 材に設けられた防眩層とは反対面である防眩フィルム表面と偏光素子表面とが対向 して積層されている、偏光板も提供する。 [0030] The present invention is also a polarizing plate comprising the above antiglare film and a polarizing element, wherein the surface of the antiglare film and the surface of the polarizing element opposite to the antiglare layer provided on the transparent substrate are provided. Also provided is a polarizing plate in which are laminated opposite to each other.
[0031] 本発明はまた、平面状の透光性表示体と、この透光性表示体を背面から照射する 光源装置と、この透光性表示体の表面に積層された上記の防眩フィルムと、を有する 透過型表示装置も提供する。 [0031] The present invention also provides a flat light-transmitting display, a light source device for irradiating the light-transmitting display from the back, and the above-described antiglare film laminated on the surface of the light-transmitting display. And a transmission type display device having:
[0032] 本発明はまた、上記の防眩フィルムがディスプレイの最表層に用レ、られた液晶表示 装置も提供する。 [0032] The present invention also provides a liquid crystal display device in which the above antiglare film is used for the outermost layer of a display.
発明の効果  The invention's effect
[0033] 本発明の防眩性コーティング組成物は、基材上に塗布し必要に応じて乾燥させた 後に、硬化させるのみで、表面に凹凸を有する樹脂層である防眩層を設けることがで きる。従って、樹脂層を形成してから凹凸の下地となる突起物を形成するなどといつ た 2つの工程を経る方法と比べると、表面に凹凸を有する防眩層をより簡便な工程で 形成すること力できる。 [0033] The antiglare coating composition of the present invention may be applied on a substrate, dried if necessary, and then cured, to provide an antiglare layer which is a resin layer having irregularities on the surface. it can. Therefore, an antiglare layer having unevenness on the surface can be formed in a simpler process than a method that involves two steps, such as forming a resin layer and then forming a projection serving as a base for unevenness. Able to shape.
[0034] また、本発明により防眩層の表面に凹凸を形成した場合、 自然発生的に凹凸配置 が決まるので、防眩層の表面に不規則な凹凸形状を形成することができる。このため 、凹凸配置の規則性に起因するモアレが発生しないという特長を有する。本発明の 防眩性コーティング組成物を用いることにより、表面に凹凸を有した防眩層を容易に 形成することができ、これを用いて防眩フィルムを容易に製造することができる。得ら れる防眩フィルムは、映り込みがなぐそしてヘーズ (曇価)が低く全光線透過率が高 レ、という、優れた性能を有するものである。ここでヘーズとは、全光線透過量に対する 散乱光透過量の比をいう。  Further, when the unevenness is formed on the surface of the antiglare layer according to the present invention, the unevenness arrangement is determined spontaneously, so that an irregular unevenness shape can be formed on the surface of the antiglare layer. For this reason, there is an advantage that moire caused by the regularity of the uneven arrangement does not occur. By using the antiglare coating composition of the present invention, an antiglare layer having irregularities on the surface can be easily formed, and an antiglare film can be easily produced using the antiglare layer. The resulting anti-glare film has excellent performance, such as low glare, low haze (haze value) and high total light transmittance. Here, haze refers to the ratio of the amount of transmitted scattered light to the amount of transmitted light.
図面の簡単な説明  Brief Description of Drawings
[0035] [図 1]本発明の防眩フィルムの断面該略図である。  FIG. 1 is a schematic cross-sectional view of an antiglare film of the present invention.
[図 2]パラメーター R の説明図である。  FIG. 2 is an explanatory diagram of a parameter R.
z JIS94  z JIS94
[図 3]全光線透過率の概略説明図である。  FIG. 3 is a schematic illustration of the total light transmittance.
[図 4]本発明の防眩フィルムを用いた偏光板の断面概略図である。  FIG. 4 is a schematic cross-sectional view of a polarizing plate using the antiglare film of the present invention.
[図 5]本発明の防眩フィルムを用いた透過型表示装置の断面概略図である。  FIG. 5 is a schematic cross-sectional view of a transmission type display device using the antiglare film of the present invention.
[図 6]実施例 1の防眩フィルムの防眩層表面上の、超深度形状測定顕微鏡による三 次元画像である。  FIG. 6 is a three-dimensional image of the anti-glare layer of the anti-glare film of Example 1 taken by a super-depth shape measuring microscope.
[図 7]実施例 2の防眩フィルムの防眩層表面上の、超深度形状測定顕微鏡による三 次元画像である。  FIG. 7 is a three-dimensional image of the anti-glare layer of the anti-glare film of Example 2 taken by a super-depth shape measuring microscope.
[図 8]実施例 3の防眩フィルムの防眩層表面上の、超深度形状測定顕微鏡による三 次元画像である。  FIG. 8 is a three-dimensional image of the anti-glare layer of the anti-glare film of Example 3 taken by a super-depth shape measuring microscope.
符号の説明  Explanation of symbols
[0036] 1…防眩フィルム、 3…防眩層、 5…透明基材、 10…偏光板、 12…偏光層、 14…透 明基材、 20…液晶表示装置、 22…偏光板、 24…液晶パネル、 26…偏光板、 28· · · バックライト。  1 ... Anti-glare film, 3 ... Anti-glare layer, 5 ... Transparent substrate, 10 ... Polarizer, 12 ... Polarizer, 14 ... Transparent substrate, 20 ... Liquid crystal display device, 22 ... Polarizer, 24 ... LCD panel, 26… polarizer, 28 · · backlight.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0037] 防眩性コーティング組成物 [0037] Anti-glare coating composition
本発明の防眩性コ一ティング組成物は、透明基材上に塗布され防眩層を形成する ものである。この防眩性コーティング組成物には、第 1成分および第 2成分の 2種類の 成分が少なくとも含まれる。これら第 1成分および第 2成分は、防眩性コーティング組 成物を基材上に塗布される場合において、第 1成分および第 2成分それぞれの物性 の差に基づいて、第 1成分と第 2成分とが相分離する、という特徴を有する。 The antiglare coating composition of the present invention is applied on a transparent substrate to form an antiglare layer Things. This antiglare coating composition contains at least two types of components, a first component and a second component. When the antiglare coating composition is applied on a substrate, the first component and the second component are based on the difference in physical properties between the first component and the second component. It has the characteristic that components and phase are separated.
[0038] この第 1成分および第 2成分の例として、それぞれ独立して、モノマー、オリゴマー および樹脂からなる群から選択される 1種または 2種以上の組み合わせである場合が 挙げられる。 Examples of the first component and the second component include a case where each of them is independently one kind or a combination of two or more kinds selected from the group consisting of a monomer, an oligomer and a resin.
[0039] 第 1成分および第 2成分として、例えば、多官能性モノマーなどのモノマー、(メタ) アクリル樹脂、ォレフィン樹脂、ポリエーテル樹脂、ポリエステル樹脂、ポリウレタン樹 脂、ポリシロキサン樹脂、ポリシラン樹脂、ポリイミド樹脂またはフッ素樹脂を骨格構造 に含む樹脂などを用いることができる。これらの樹脂は、低分子量であるいわゆるオリ ゴマーであってもよい。多官能性モノマーとして、例えば、多価アルコールと(メタ)ァ タリレートとの脱アルコール反応物、具体的には、ジペンタエリスリトールへキサ(メタ) アタリレート、トリメチロールプロパントリ(メタ)アタリレートなどを用いることができる。 (メ タ)アクリル樹脂を骨格構造に含む樹脂として、 (メタ)アクリルモノマーを重合または 共重合した樹脂、(メタ)アクリルモノマーと他のエチレン性不飽和二重結合を有する モノマーとを共重合した樹脂などが挙げられる。ォレフィン樹脂を骨格構造に含む樹 脂として、ポリエチレン、ポリプロピレン、エチレン 'プロピレン共重合体、エチレン.酢 酸ビエル共重合体、アイオノマー、エチレン'ビエルアルコール共重合体、エチレン' 塩化ビュル共重合体などが挙げられる。ポリエーテル樹脂を骨格構造に含む樹脂は 、分子鎖中にエーテル結合を含む樹脂であり、例えばポリエチレングリコール、ポリプ ロピレンダリコール、ポリテトラメチレングリコールなどが挙げられる。ポリエステル樹脂 を骨格構造に含む樹脂は、分子鎖中にエステル結合を含む樹脂であり、例えば不飽 和ポリエステル樹脂、アルキド樹脂、ポリエチレンテレフタレートなどが挙げられる。ポ リウレタン樹脂を骨格構造に含む樹脂は、分子鎖中にウレタン結合を含む樹脂であ る。ポリシロキサン樹脂を骨格構造に含む樹脂は、分子鎖中にシロキサン結合を含 む樹脂である。ポリシラン樹脂を骨格構造に含む樹脂は、分子鎖中にシラン結合を 含む樹脂である。ポリイミド樹脂を骨格構造に含む樹脂は、分子鎖中にイミド結合を 含む樹脂である。フッ素樹脂を骨格構造に含む樹脂は、ポリエチレンの水素の一部 または全部をフッ素で置きかえられた構造を含む樹脂である。 As the first component and the second component, for example, a monomer such as a polyfunctional monomer, a (meth) acrylic resin, an olefin resin, a polyether resin, a polyester resin, a polyurethane resin, a polysiloxane resin, a polysilane resin, a polyimide Resin or a resin containing a fluorine resin in the skeleton structure can be used. These resins may be so-called oligomers having a low molecular weight. As the polyfunctional monomer, for example, a dealcoholation reaction product of a polyhydric alcohol and (meth) phthalate, specifically, dipentaerythritol hexa (meth) acrylate, trimethylolpropane tri (meth) acrylate Can be used. A resin containing (meth) acrylic resin in its skeletal structure, polymerized or copolymerized with (meth) acrylic monomer, or copolymerized with (meth) acrylic monomer and another monomer having an ethylenically unsaturated double bond Resins. Examples of resins containing olefin resin in the skeleton structure include polyethylene, polypropylene, ethylene propylene copolymer, ethylene biel acetate copolymer, ionomer, ethylene biel alcohol copolymer, and ethylene butyl chloride copolymer. No. The resin containing a polyether resin in the skeleton structure is a resin containing an ether bond in a molecular chain, and examples thereof include polyethylene glycol, polypropylene glycol, and polytetramethylene glycol. The resin containing a polyester resin in the skeleton structure is a resin containing an ester bond in a molecular chain, and examples thereof include unsaturated polyester resins, alkyd resins, and polyethylene terephthalate. The resin containing a polyurethane resin in the skeleton structure is a resin containing a urethane bond in a molecular chain. The resin containing a polysiloxane resin in the skeleton structure is a resin containing a siloxane bond in a molecular chain. The resin containing a polysilane resin in the skeleton structure is a resin containing a silane bond in a molecular chain. Resins containing a polyimide resin in the skeletal structure have an imide bond in the molecular chain. Containing resin. The resin containing a fluorine resin in the skeletal structure is a resin containing a structure in which part or all of hydrogen of polyethylene is replaced with fluorine.
[0040] オリゴマーおよび樹脂として、上記骨格構造の 2種以上からなる共重合体であって もよぐ上記骨格構造とそれ以外のモノマーとからなる共重合体であってもよい。  [0040] The oligomer and the resin may be a copolymer comprising two or more of the above skeleton structures, or a copolymer comprising the above skeleton structure and other monomers.
[0041] 本発明における第 1成分および第 2成分は、同種の骨格構造を含むオリゴマーまた は樹脂を用いてもよぐまた互いに異なる骨格構造を含むオリゴマーまたは樹脂を用 いてもよレ、。また、第 1成分および第 2成分のうち何れか一方がモノマーであって、他 の一方がオリゴマーまたは樹脂であってもよい。  As the first component and the second component in the present invention, an oligomer or a resin having the same kind of skeleton structure may be used, or an oligomer or a resin having a different skeleton structure may be used. Further, one of the first component and the second component may be a monomer, and the other may be an oligomer or a resin.
[0042] また本発明における第 1成分および第 2成分はそれぞれ、互いに反応する官能基 を有しているのが好ましい。このような官能基を互いに反応させることによって、コー ティング組成物によって得られる防眩層の耐性を高めることができる。このような官能 基の組合せとして、例えば、活性水素を有する官能基 (水酸基、アミノ基、チオール 基、カルボキシル基など)とエポキシ基、活性水素を有する官能基とイソシァネート基 、エチレン性不飽和基とエチレン性不飽和基(エチレン性不飽和基の重合が生じる) 、シラノール基とシラノール基(シラノール基の縮重合が生じる)、シラノール基とェポ キシ基、活性水素を有する官能基と活性水素を有する官能基、活性メチレンとアタリ ロイル基、ォキサゾリン基とカルボキシノレ基などが挙げられる。また、ここにいう「互い に反応する官能基」とは、第 1成分および第 2成分のみを混合しただけでは反応は進 行しないが、触媒または硬化剤を併せて混合することにより互いに反応するものも含 まれる。ここで使用できる触媒として、例えば光開始剤、ラジカル開始剤、酸'塩基触 媒、金属触媒などが挙げられる。使用できる硬化剤として、例えば、メラミン硬化剤、( ブロック)イソシァネート硬化剤、エポキシ硬化剤などが挙げられる。  [0042] The first component and the second component in the present invention each preferably have a functional group that reacts with each other. By reacting such functional groups with each other, the resistance of the antiglare layer obtained by the coating composition can be increased. Examples of such a combination of functional groups include a functional group having an active hydrogen (such as a hydroxyl group, an amino group, a thiol group, and a carboxyl group) and an epoxy group, a functional group having an active hydrogen and an isocyanate group, and an ethylenically unsaturated group. An ethylenically unsaturated group (polymerization of an ethylenically unsaturated group occurs), a silanol group and a silanol group (condensation of a silanol group occurs), a silanol group and an epoxy group, a functional group having active hydrogen and an active hydrogen. Functional groups, active methylene and atalyloyl groups, oxazoline groups and carboxy group, and the like. The term “functional groups that react with each other” as used herein means that the reaction does not proceed only by mixing the first component and the second component alone, but reacts with each other by mixing the catalyst or the curing agent together. Also included. Examples of the catalyst that can be used here include a photoinitiator, a radical initiator, an acid-base catalyst, and a metal catalyst. Examples of the curing agent that can be used include a melamine curing agent, a (block) isocyanate curing agent, and an epoxy curing agent.
[0043] 第 1成分および第 2成分それぞれが、互いに反応する官能基を有する場合は、第 1 成分と第 2成分との混合物は、熱硬化性、光硬化性 (紫外線硬化性、可視光硬化性 、赤外線硬化性など)といった硬化性を有することとなる。  When each of the first component and the second component has a functional group that reacts with each other, the mixture of the first component and the second component is heat-curable, photocurable (ultraviolet curable, visible light curable). , Infrared curability, etc.).
[0044] 本発明においては、好ましくは第 1成分および第 2成分として、(メタ)アクリル樹脂を 骨格構造に含む樹脂を使用することができる。  In the present invention, preferably, a resin containing a (meth) acrylic resin in the skeleton structure can be used as the first component and the second component.
[0045] また、第 1成分および第 2成分の分子量は、分子量 (第 1成分および第 2成分が樹 脂である場合は重量平均分子量)で 100— 100000であるのが好ましい。 [0045] The molecular weight of the first component and the second component is based on the molecular weight (where the first component and the second component are trees). If it is a fat, the weight average molecular weight is preferably 100-100,000.
[0046] 第 1成分と第 2成分との相分離をもたらす、第 1成分および第 2成分それぞれの物 性の差として、例えばそれぞれの樹脂の SP値、ガラス転移温度 (Tg)、表面張力、数 平均分子量などが一定の差異を有する場合が挙げられる。 [0046] Differences in physical properties of the first component and the second component that cause phase separation between the first component and the second component include, for example, an SP value of each resin, a glass transition temperature (Tg), a surface tension, There are cases where the number average molecular weight and the like have a certain difference.
[0047] SP値とは、 solubility parameter (溶解性パラメーター)の略であり、溶解性の尺 度となるものである。 SP値は数値が大きいほど極性が高ぐ逆に数値が小さいほど極 性が低いことを示す。 [0047] The SP value is an abbreviation for solubility parameter, and is a measure of solubility. The higher the SP value, the higher the polarity, and the lower the SP value, the lower the polarity.
[0048] 例えば、 SP値は次の方法によって実測することができる [参考文献: SUH、 CLAR [0048] For example, the SP value can be measured by the following method [References: SUH, CLAR
KE、J. P. S. A— 1、 5、 1671 1681 (1967) ]。 KE, J.P.S.A—1, 5, 1671 1681 (1967)].
[0049] 測定温度: 20°C [0049] Measurement temperature: 20 ° C
サンプル:樹脂 0. 5gを 100mlビーカーに秤量し、良溶媒 10mlをホールピペットを用 いてカ卩え、マグネティックスターラーにより溶解する。  Sample: 0.5g of resin is weighed into a 100ml beaker, 10ml of a good solvent is washed with a whole pipette and dissolved with a magnetic stirrer.
溶媒:  Solvent:
良溶媒…ジォキサン、アセトンなど  Good solvent: dioxane, acetone, etc.
貧溶媒… n-へキサン、イオン交換水など  Poor solvent: n-hexane, ion-exchanged water, etc.
濁点測定: 50mlビュレットを用いて貧溶媒を滴下し、濁りが生じた点を滴下量とする  Turbidity point measurement: Poor solvent is dropped using a 50 ml burette, and the point at which turbidity occurs is defined as the amount of dropping.
[0050] 樹脂の SP値 δは次式によって与えられる。 [0050] The SP value δ of the resin is given by the following equation.
[0051] [数 1] δ = (Vml 0 ml十 Vmh δ mh ) / ( ml 十 Vmh ) [Equation 1] δ = (V m l 0 m l ten V m h δ m h) / ( m l ten V m h)
[数 2] [Number 2]
Figure imgf000011_0001
Figure imgf000011_0001
[数 3]  [Number 3]
ΐ δ ι十 φ 2 δ 2 ΐ δ ι10 φ 2 δ 2
[0052] Vi:溶媒の分子容(ml/mol)  Vi: molecular volume of solvent (ml / mol)
Φ i:濁点における各溶媒の体積分率  Φ i: volume fraction of each solvent at the cloud point
δ ί :溶媒の SP値  δ ί: SP value of solvent
ml :低 SP貧溶媒混合系 mh :高 SP貧溶媒混合系 ml: Low SP poor solvent mixed system mh: High SP poor solvent mixed system
[0053] 第 1成分と第 2成分との相分離をもたらす第 1成分および第 2成分それぞれの物性 の差が SP値の差である場合、第 1成分の SP値と第 2成分の SP値との差は 0. 5以上 であるのが好ましレ、。この SP値の差が 0. 8以上であるのがさらに好ましレ、。この SP値 の差の上限は特に限定されないが、一般には 15以下である。第 1成分の SP値と第 2 成分の SP値との差が 0. 5以上ある場合は、互いの樹脂の相溶性が低ぐそれにより コーティング組成物の塗布後に第 1成分と第 2成分との相分離がもたらされると考えら れる。 [0053] If the difference between the physical properties of the first component and the second component that causes phase separation between the first component and the second component is the SP value difference, the SP value of the first component and the SP value of the second component Preferably, the difference is more than 0.5. More preferably, the difference between the SP values is 0.8 or more. The upper limit of the difference between the SP values is not particularly limited, but is generally 15 or less. If the difference between the SP value of the first component and the SP value of the second component is 0.5 or more, the compatibility of the resins with each other is low, whereby the first component and the second component are mixed with each other after application of the coating composition. It is thought that phase separation of
[0054] 本発明の防眩性コーティング組成物は、さらに有機溶媒を含んでもよい。そして、 防眩性コーティング組成物に含まれる、第 1成分、第 2成分および有機溶媒について 、第 1成分の SP値 (SP )、第 2成分の SP値 (SP )および有機溶媒の SP値 (SP )が  [0054] The antiglare coating composition of the present invention may further contain an organic solvent. Then, for the first component, the second component, and the organic solvent contained in the antiglare coating composition, the SP value of the first component (SP), the SP value of the second component (SP), and the SP value of the organic solvent ( SP)
1 2 sol 1 2 sol
、下記条件; , The following conditions;
SPく SP、および  SP then SP, and
1 2  1 2
SPと SP との差が 2以下である;  The difference between SP and SP is 2 or less;
1 sol  1 sol
を満たす関係にあるのがより好ましい。 SPと SP との差が 2以下であることによって、  It is more preferable that the relation is satisfied. Because the difference between SP and SP is 2 or less,
1 sol  1 sol
低ヘーズでありかつ防眩性能に優れた防眩フィルムを調製することができることとなる 。 SPと SP との差は 1以下、つまり 0— 1の範囲内であるのがさらに好ましい。  An anti-glare film having a low haze and excellent in anti-glare performance can be prepared. More preferably, the difference between SP and SP is 1 or less, that is, in the range of 0-1.
1 sol  1 sol
[0055] なお、 SPおよび SP は、これらの差が 2以下であればよい。 SPく SP であっても  [0055] It is sufficient that SP and SP have a difference of 2 or less. Even if SP is SP
1 sol 1 sol  1 sol 1 sol
よく、 SP > SP であってもよい。  Often, SP> SP.
1 sol  1 sol
[0056] 上記式の関係を満たす第 1成分および第 2成分の一例として、第 1成分がオリゴマ 一または樹脂であり、前記第 2成分がモノマーである場合が挙げられる。第 1成分の オリゴマーまたは樹脂として、不飽和二重結合含有アクリル共重合体であるのがより 好ましレ、。第 2成分のモノマーとして、多官能性不飽和二重結合含有モノマーである のがより好ましい。なお、本明細書でいう「オリゴマー」とは、繰り返し単位を有する重 合体であって、この繰り返し単位の数が 3— 10であるものをレ、う。  As an example of the first component and the second component satisfying the relationship of the above formula, there is a case where the first component is an oligomer or a resin and the second component is a monomer. More preferably, the oligomer or resin of the first component is an unsaturated double bond-containing acrylic copolymer. More preferably, the monomer of the second component is a polyfunctional unsaturated double bond-containing monomer. The “oligomer” referred to in the present specification is a polymer having a repeating unit and having 3 to 10 repeating units.
[0057] 不飽和二重結合含有アクリル共重合体は、例えば (メタ)アクリルモノマーを重合ま たは共重合した樹脂、 (メタ)アクリルモノマーと他のエチレン性不飽和二重結合を有 するモノマーとを共重合した樹脂、(メタ)アクリルモノマーと他のエチレン性不飽和二 重結合およびエポキシ基を有するモノマーとを反応させた樹脂、(メタ)アクリルモノマ 一と他のエチレン性不飽和二重結合およびイソシァネート基を有するモノマーとを反 応させた樹脂、などが挙げられる。これらの不飽和二重結合含有アクリル共重合体は 1種を単独で用いてもよく、また 2種以上を混合して用いてもょレ、。 [0057] The unsaturated double bond-containing acrylic copolymer is, for example, a resin obtained by polymerizing or copolymerizing a (meth) acrylic monomer, or a monomer having a (meth) acrylic monomer and another ethylenically unsaturated double bond. And (meth) acrylic monomer and other ethylenically unsaturated Resins in which a monomer having a heavy bond and an epoxy group are reacted, and resins in which a (meth) acrylic monomer is reacted with another monomer having an ethylenically unsaturated double bond and an isocyanate group. One of these unsaturated double bond-containing acrylic copolymers may be used alone, or two or more of them may be used in combination.
[0058] 多官能性不飽和二重結合含有モノマーとして、上記の多官能性モノマー、例えば 、多価アルコールと(メタ)アタリレートとの脱アルコール反応物、具体的には、ジペン タエリスリトールへキサ(メタ)アタリレート、ジペンタエリスリトールペンタ(メタ)アタリレ ート、トリメチロールプロパントリ(メタ)アタリレート、ジトリメチロールプロパンテトラ(メタ )アタリレート、ネオペンチルダリコールジ (メタ)アタリレートなどを用いることができる。 この他にも、ポリエチレングリコール # 200ジアタリレート(共栄社化学 (株)社製)など の、ポリエチレングリコール骨格を有するアタリレートモノマーを使用することもできる。 これらの多官能性不飽和二重結合含有モノマーは 1種を単独で用いてもよぐまた 2 種以上を混合して用いてもょレ、。 [0058] As the polyfunctional unsaturated double bond-containing monomer, the above-mentioned polyfunctional monomers, for example, a dealcoholation reaction product of a polyhydric alcohol and (meth) atalylate, specifically, dipentaerythritol hexane Uses (meth) atalylate, dipentaerythritol penta (meth) atalylate, trimethylolpropane tri (meth) atalylate, ditrimethylolpropane tetra (meth) atalylate, neopentyldarichol di (meth) acrylate be able to. In addition, an atalylate monomer having a polyethylene glycol skeleton, such as polyethylene glycol # 200 diatalylate (manufactured by Kyoeisha Chemical Co., Ltd.), can also be used. These polyfunctional unsaturated double bond-containing monomers may be used singly or as a mixture of two or more.
[0059] 上記式の関係を満たす第 1成分および第 2成分の他の一例として、第 1成分および 第 2成分が、共にオリゴマーまたは樹脂である場合が挙げられる。第 1成分および第 2成分として、(メタ)アクリル樹脂を骨格構造に含む樹脂を用いるのが好ましい。この 第 1成分は、不飽和二重結合含有アクリル共重合体であるのがより好ましぐまた第 2 成分は多官能性不飽和二重結合含有モノマーであるのがより好ましい。  [0059] Another example of the first component and the second component satisfying the relationship of the above formula is a case where both the first component and the second component are oligomers or resins. As the first component and the second component, it is preferable to use a resin containing a (meth) acrylic resin in a skeleton structure. More preferably, the first component is an unsaturated double bond containing acrylic copolymer and the second component is a polyfunctional unsaturated double bond containing monomer.
[0060] 第 1成分および第 2成分が上記組み合わせである場合に好ましレ、有機溶媒として、 例えば、メチルェチルケトン、アセトン、メチルイソブチルケトン、シクロへキサノンなど のケトン系溶媒;メタノール、エタノール、プロパノール、イソプロパノール、ブタノール などのアルコール系溶媒;ァニソール、フエネトールプロピレングリコールモノメチルェ ーテノレ、エチレングリコーノレジメチノレエーテノレ、エチレングリコーノレジェチノレエーテノレ 、ジエチレングリコールジメチルエーテル、ジエチレングリコールジェチルエーテルな どのエーテル系溶媒などが挙げられる。これらの溶媒は 1種を単独で用いてもよぐま た 2種以上の有機溶媒を混合して用いてもよい。また、 2種以上の有機溶媒を用いる 場合は、用いられる有機溶媒のうち少なくとも 1種が、上記の「SPと SP との差が 2  [0060] When the first component and the second component are in the above combination, the organic solvent is preferably, for example, a ketone solvent such as methyl ethyl ketone, acetone, methyl isobutyl ketone, cyclohexanone; methanol, ethanol Alcohol solvents such as isopropyl alcohol, propanol, isopropanol and butanol; ethers such as anisol, phenetole propylene glycol monomethyl ether, ethylene glycol dimethyl ether methyl ether, ethylene glycol dimethyl alcohol ether, diethylene glycol dimethyl ether, diethylene glycol dimethyl ether and the like. System solvents and the like. These solvents may be used alone or as a mixture of two or more organic solvents. When two or more kinds of organic solvents are used, at least one of the organic solvents used has a difference between the above SP and SP.
1 sol  1 sol
以下である」という条件を満たせばよぐ使用する全ての有機溶媒が上記条件を満た す必要はない。 All the organic solvents used satisfy the above condition. You don't have to.
[0061] 第 1成分および第 2成分が樹脂である場合、ガラス転移温度 (Tg)は、通常の動的 粘弾性による Tgの測定方法と同様の方法により得ることができる。この Tgは、例えば 、 RHEOVIBRON MODEL RHEO2000, 3000 (商品名、オリエンテック社製)等 を用いて測定することができる。  [0061] When the first component and the second component are resins, the glass transition temperature (Tg) can be obtained by a method similar to the usual method of measuring Tg by dynamic viscoelasticity. This Tg can be measured using, for example, RHEOVIBRON MODEL RHEO2000, 3000 (trade name, manufactured by Orientec).
[0062] 第 1成分および第 2成分が樹脂である場合において、第 1成分と第 2成分との相分 離をもたらす第 1成分および第 2成分それぞれの物性の差が Tgの差である場合、第 1成分および第 2成分のうちいずれか一方が、組成物塗布時の環境温度より低い Tg を有し、他の一方が組成物塗布時の環境温度より高い Tgを有するのが好ましい。こ の場合は、環境温度より高い Tgを有する樹脂は、その環境温度では分子運動が制 御されたガラス状態であるため、塗布後にコーティング組成物中で凝集し、それによ り第 1成分と第 2成分との相分離がもたらされると考えられる。  [0062] In the case where the first component and the second component are resins, the difference in physical properties between the first component and the second component that causes phase separation between the first component and the second component is a difference in Tg. Preferably, one of the first component and the second component has a Tg lower than the environmental temperature at the time of application of the composition, and the other has a Tg higher than the environmental temperature at the time of application of the composition. In this case, the resin having a Tg higher than the ambient temperature is in a glass state in which the molecular motion is controlled at the ambient temperature, so that the resin is agglomerated in the coating composition after application, whereby the first component and the first component are coagulated. It is believed that a phase separation with the two components results.
[0063] 例として、第 1成分および第 2成分が樹脂である場合において、組成物塗布時の環 境温度が 20— 150°Cであって、組成物塗布時の環境温度より低い Tgを有する樹脂 の Tg力 S-70— 120°C、そして組成物塗布時の環境温度より高レ、 Tgを有する樹脂の Tgが 90— 200°Cである場合が挙げられる。上記の環境温度は 40— 120°Cであるの が好ましぐ環境温度より低レ、 Tgを有する樹脂の Tgは- 60— 80°Cであるのが好まし ぐそして環境温度より高い Tgを有する樹脂の Tgは 100— 150°Cであるのが好まし レ、。この場合、組成物塗布時の環境温度より低い Tgを有する樹脂が第 1成分であつ て、組成物塗布時の環境温度より高レ、 Tgを有する樹脂が第 2成分であってもよぐま たはその逆であってもよい。  [0063] As an example, when the first component and the second component are resins, the environmental temperature at the time of application of the composition is 20 to 150 ° C, and has a lower Tg than the environmental temperature at the time of application of the composition. The resin may have a Tg force of S-70 to 120 ° C, a temperature higher than the ambient temperature at the time of application of the composition, and a resin having a Tg of 90 to 200 ° C. The above ambient temperature is preferably lower than the ambient temperature, which is preferably 40-120 ° C. The Tg of the resin having Tg is preferably -60-80 ° C and the Tg higher than the ambient temperature. Preferably, the resin has a Tg of 100-150 ° C. In this case, the first component may be a resin having a Tg lower than the ambient temperature at the time of application of the composition, and the second component may be a resin having a Tg higher than the ambient temperature at the time of application of the composition. May be reversed.
[0064] また、第 1成分または第 2成分のうち何れか一方がモノマーである場合は、これらの 第 1成分および第 2成分の Tgの差が 20°C以上であり、そして第 1成分および第 2成 分において、より高い Tgを有する成分の Tgが 20°C以上であるのが好ましい。この第 1成分および第 2成分の Tgの差は、 30°C以上であるのがより好ましぐ 50°C以上で あるのがさらに好ましい。この第 1成分および第 2成分の Tgの差の上限は、特に制限 されるものではなレ、が、例えば 100°C以下である場合などが挙げられる。この場合は 、より高い Tgを有する成分は、より分子運動が制御されているため、塗布後にコーテ イング組成物中で凝集し、それにより第 1成分と第 2成分との相分離力 Sもたらされると 考えられる。 When one of the first component and the second component is a monomer, the difference in Tg between the first component and the second component is 20 ° C. or more, and In the second component, the component having a higher Tg preferably has a Tg of 20 ° C or more. The difference between the Tg of the first component and the Tg of the second component is more preferably 30 ° C or more, more preferably 50 ° C or more. The upper limit of the difference between the Tg of the first component and the Tg of the second component is not particularly limited, but may be, for example, 100 ° C. or less. In this case, the component having a higher Tg has more controlled molecular motion, so that the coating after coating is applied. It is believed that the agglomeration in the wing composition results in a phase separation force S between the first component and the second component.
[0065] 例として、第 1成分または第 2成分のうち何れか一方がモノマーである場合におい て、より低レ、 Tgを有する成分、つまりモノマーの Tgが— 70— 0。Cであり、そしてより高 レ、 Tgを有する樹脂の Tgが 20 200°Cである場合が挙げられる。この場合、組成物 塗布時の環境温度として、例えば 20 120°Cである場合などが挙げられる。より好ま しい例として、より低レ、 Tgを有するモノマー成分の Tgが— 60 0°Cであり、そしてより 高レ、 Tgを有する樹脂の Tgは 30 150°Cである場合が挙げられる。この場合、組成 物塗布時の環境温度として、例えば 20 120°Cである場合などが挙げられる。これ らの場合において、モノマーが第 1成分であってもよぐまた第 2成分であってもよい。  [0065] As an example, when one of the first component and the second component is a monomer, the component having a lower Tg and a lower Tg, that is, the Tg of the monomer is -70-0. C, and a resin having a higher Tg and a Tg of 20 to 200 ° C. In this case, the environmental temperature at the time of application of the composition may be, for example, 20 120 ° C. A more preferable example is a case where the Tg of the monomer component having a lower Tg is −600 ° C., and the Tg of the resin having a higher Tg is 30150 ° C. In this case, the ambient temperature at the time of application of the composition may be, for example, 20 120 ° C. In these cases, the monomer may be the first component or the second component.
[0066] なお、第 1成分または第 2成分がモノマーである場合は、上記方法を用いてガラス 転移温度を測定することは困難である。一般にモノマーのガラス転移温度は、そのモ ノマーの融点とほぼ等しいと考えられている。本明細書において、第 1成分または第 2成分がモノマーである場合、このモノマーの Tgはモノマーの融点と等しいものとす る。  When the first component or the second component is a monomer, it is difficult to measure the glass transition temperature using the above method. It is generally believed that the glass transition temperature of a monomer is approximately equal to the melting point of the monomer. In the present specification, when the first component or the second component is a monomer, the Tg of the monomer is equal to the melting point of the monomer.
[0067] 第 1成分と第 2成分との相分離をもたらす第 1成分および第 2成分それぞれの物性 の差が表面張力の差である場合、第 1成分の表面張力と第 2成分の表面張力との差 力 — 70dyn/cmであるのが好ましレ、。この差が 5— 30dyn/cmであるのがさらに 好ましレ、。第 1成分の表面張力と第 2成分の表面張力との差が 1一 70dyn/cmであ る場合は、より高い表面張力を有する樹脂が凝集する傾向にあり、それにより組成物 の塗布後に第 1成分と第 2成分との相分離力 Sもたらされると考えられる。  [0067] When the difference in physical properties between the first component and the second component that causes phase separation between the first component and the second component is the difference in surface tension, the surface tension of the first component and the surface tension of the second component Difference with — preferably 70dyn / cm. More preferably, this difference is 5-30 dyn / cm. If the difference between the surface tension of the first component and the surface tension of the second component is 110 dyn / cm, the resin having the higher surface tension tends to agglomerate, whereby the resin having the higher surface tension tends to coagulate after application of the composition. It is considered that the phase separation force S between the first component and the second component is provided.
[0068] 表面張力は、ビックケミー社製ダイノメーターを用いて輪環法で測定した静的表面 張力を求めることによって測定することができる。  [0068] The surface tension can be measured by obtaining a static surface tension measured by a ring method using a dynamometer manufactured by Big Chemie.
[0069] 本発明のコーティング組成物には、上記の第 1成分および第 2成分のほかに、通常 使用される樹脂が含まれてもよい。本発明のコーティング組成物は、上記のような第 1 成分および第 2成分を用いることによって、樹脂粒子などを含ませなくても、凹凸を有 する樹脂層を形成することができることに特徴がある。そのため、本発明のコーティン グ組成物は、樹脂粒子を含まないのが好ましい。 [0070] 本発明のコーティング組成物は、第 1成分と第 2成分を、必要に応じた溶媒、触媒、 硬化剤と併せて混合することにより調製される。コーティング組成物中における第 1成 分と第 2成分との比率は、 1 : 99一 99 : 1が好ましぐ 1 : 99一 50 : 50力 Sより好ましく、 1 : 99一 20 : 80がさらに好ましい。触媒を用いる場合は、第 1成分および第 2成分そして 必要に応じた他の樹脂(これらを合わせて「樹脂成分」という。 ) 100重量部に対して、 0. 01— 20重量部、好ましくは 1一 10重量部加えることができる。硬化剤を用いる場 合は、上記樹脂成分 100重量部に対して、 0. 1一 50重量部、好ましくは 1一 30重量 部加えることができる。溶媒を用いる場合は、上記樹脂成分 100重量部に対して、 1 一 9900重量部、好ましくは 100— 900重量部加えることができる。 [0069] In addition to the first and second components described above, the coating composition of the present invention may contain a commonly used resin. The coating composition of the present invention is characterized in that a resin layer having irregularities can be formed by using the first component and the second component as described above without including resin particles and the like. . Therefore, it is preferable that the coating composition of the present invention does not contain resin particles. [0070] The coating composition of the present invention is prepared by mixing the first component and the second component together with a solvent, a catalyst, and a curing agent as required. The ratio of the first component to the second component in the coating composition is preferably 1:99 to 99: 1, more preferably 1:99 to 50:50, and more preferably 1:99 to 20:80. preferable. When a catalyst is used, 0.01 to 20 parts by weight, preferably 100 to 100 parts by weight of the first component, the second component, and other resin as required (these components are collectively referred to as “resin component”) are used. One to ten parts by weight can be added. When a curing agent is used, it can be added in an amount of 0.1 to 50 parts by weight, preferably 1 to 30 parts by weight, based on 100 parts by weight of the resin component. When a solvent is used, it can be added in an amount of 11900 parts by weight, preferably 100-900 parts by weight, based on 100 parts by weight of the resin component.
[0071] 本発明で用いられるコーティング組成物中の溶媒は、特に限定されるものではなく 、第 1成分および第 2成分、塗装の下地となる部分の材質および組成物の塗装方法 などを考慮して適時選択される。用いられる溶媒の具体例としては、例えば、トルエン 、キシレンなどの芳香族系溶媒;メチルェチルケトン、アセトン、メチルイソプチルケト ン、シクロへキサノンなどのケトン系溶媒;ジェチルエーテル、イソプロピルエーテル、 テトラヒドロフラン、ジォキサン、エチレングリコールジメチルエーテル、エチレングリコ 一ルジェチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコー ノレジェチルエーテル、プロピレングリコールモノメチルエーテル、ァニソール、フエネト ールなどのエーテル系溶媒;酢酸ェチル、酢酸ブチル、酢酸イソプロピル、エチレン グリコールジアセテートなどのエステル系溶媒;ジメチルホルムアミド、ジェチルホルム アミド、 N—メチルピロリドンなどのアミド系溶媒;メチルセ口ソルブ、ェチルセ口ソルブ、 ブチルセ口ソルブなどのセロソルブ系溶媒;メタノール、エタノール、プロパノールなど のアルコール系溶媒;ジクロロメタン、クロ口ホルムなどのハロゲン系溶媒;などが挙げ られる。これらの溶媒を単独で使用してもよぐまた 2種以上を併用して使用してもよ レ、。これらの溶媒のうち、エステル系溶媒、エーテル系溶媒、アルコール系溶媒およ びケトン系溶媒が好ましく使用される。  [0071] The solvent in the coating composition used in the present invention is not particularly limited, and takes into consideration the first component and the second component, the material of the base portion of the coating, the method of coating the composition, and the like. Selected in a timely manner. Specific examples of the solvent used include, for example, aromatic solvents such as toluene and xylene; ketone solvents such as methyl ethyl ketone, acetone, methyl isobutyl ketone and cyclohexanone; getyl ether, isopropyl ether, Ether-based solvents such as tetrahydrofuran, dioxane, ethylene glycol dimethyl ether, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, diethylene glycol oleletyl ether, propylene glycol monomethyl ether, anisol, and phenetol; ethyl acetate, butyl acetate, isopropyl acetate; Ester solvents such as ethylene glycol diacetate; amide solvents such as dimethylformamide, getylformamide and N-methylpyrrolidone; Cellosolve, Echiruse port cellosolve, cellosolve-based solvents such as Buchiruse port cellosolve; methanol, ethanol, alcohol solvents such as propanol; and the like; dichloromethane, halogenated solvents such as black hole Holm. These solvents may be used alone or in combination of two or more. Among these solvents, ester solvents, ether solvents, alcohol solvents and ketone solvents are preferably used.
[0072] 本発明の防眩性コーティング組成物は、必要に応じて、種々の添加剤を添加する ことができる。このような添加剤として、帯電防止剤、可塑剤、界面活性剤、酸化防止 剤、及び紫外線吸収剤などの常用の添加剤が挙げられる。 [0073] 防眩フィルム [0072] The antiglare coating composition of the present invention may contain various additives as necessary. Such additives include conventional additives such as antistatic agents, plasticizers, surfactants, antioxidants, and ultraviolet absorbers. [0073] Anti-glare film
本発明の防眩フィルムは、透明基材と防眩層とを有する。この防眩層は、上記の防 眩性コーティング組成物から形成される。  The antiglare film of the present invention has a transparent substrate and an antiglare layer. This antiglare layer is formed from the above antiglare coating composition.
[0074] 透明基材としては、各種透明プラスチックフィルム、透明プラスチック板およびガラス などを使用することができる。透明プラスチックフィルムとして、例えばトリァセチルセ ルロース(TAC)フィルム、ポリエチレンテレフタレート(PET)フィルム、ジアセチレン セノレロースフイノレム、アセテートブチレートセノレロースフイノレム、ポリエーテノレサノレホン フイノレム、ポリアクリル系樹脂フィルム、ポリウレタン系樹脂フィルム、ポリエステルフィ ノレム、ポリカーボネートフィルム、ポリスルホンフィルム、ポリエーテルフィルム、ポリメ チルペンテンフィルム、ポリエーテルケトンフィルム、 (メタ)アクリル二トリルフィルム等 が使用できる。透明基材として、トリァセチルセルロースを使用するのが好ましい。トリ ァセチルセルロースの屈折率は 1. 48程である。トリァセチルセルロースは、偏光板 の偏光層を保護する保護フィルムとして汎用されているため、透明基材として使用す ることにより得られる防眩フィルムをそのまま保護フィルムとして用いることができる。な お、透明基材の厚さは、用途に応じて適時選択することができる力 一般に 25— 10 00 /i m程で用いられる。  [0074] As the transparent substrate, various transparent plastic films, transparent plastic plates, glass, and the like can be used. As transparent plastic films, for example, triacetyl cellulose (TAC) film, polyethylene terephthalate (PET) film, diacetylene cenorellos finolem, acetate butyrate cenorellose finolem, polyetherenolesanolefin finolem, polyacrylic resin film Polyurethane resin film, polyester phenol film, polycarbonate film, polysulfone film, polyether film, polymethylpentene film, polyetherketone film, (meth) acrylic nitrile film and the like can be used. It is preferable to use triacetyl cellulose as the transparent substrate. The refractive index of triacetyl cellulose is about 1.48. Since triacetyl cellulose is widely used as a protective film for protecting a polarizing layer of a polarizing plate, an antiglare film obtained by using it as a transparent substrate can be used as it is as a protective film. In addition, the thickness of the transparent base material is a force that can be appropriately selected depending on the application, and is generally about 25 to 1000 / im.
[0075] 防眩層は、透明基材上に、上記の防眩性コーティング組成物を塗布することにより 形成される。コーティング組成物の塗布方法は、コーティング組成物および塗装工程 の状況に応じて適時選択することができ、例えばディップコート法、エアーナイフコー ト法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法や エタストルージョンコート法(米国特許 2681294号明細書)などにより塗布することが できる。  [0075] The antiglare layer is formed by applying the above antiglare coating composition on a transparent substrate. The method of applying the coating composition can be appropriately selected according to the conditions of the coating composition and the coating process, and examples thereof include dip coating, air knife coating, curtain coating, roller coating, wire bar coating, and wire bar coating. It can be applied by a gravure coating method or an etastrusion coating method (US Pat. No. 2,681,294).
[0076] 防眩層の厚みは、特に制限されるものではなぐ種々の要因を考慮して適時設定 すること力 Sできる。例えば、乾燥膜厚が 0. 01— 20 z mとなるようにコーティング組成 物を塗布することができる。  [0076] The thickness of the anti-glare layer can be appropriately set in consideration of various factors which are not particularly limited. For example, the coating composition can be applied so that the dry film thickness is 0.01 to 20 zm.
[0077] 透明基材に塗布された塗膜をそのまま硬化させてもよぐまた硬化させる前に塗膜 を乾燥させて、硬化前に予め相分離させておいてもよい。塗膜を硬化させる前に乾 燥させる場合は、 30— 200。C、より好ましくは 40— 150。Cで、 0. 1一 60分間、より好 ましくは 1一 30分間乾燥させて、溶媒を除去し、予め相分離させることができる。第 1 成分と第 2成分との混合物が光硬化性である場合に、硬化前に乾燥させて予め相分 離させておくことは、防眩層中の溶媒を効果的に除去でき、かつ所望の大きさの凹凸 を設けることができるとレ、う利点がある。 [0077] The coating film applied to the transparent substrate may be cured as it is, or the coating film may be dried before curing, and the phase may be separated before curing. 30-200 if the coating is allowed to dry before curing. C, more preferably 40-150. C, 0.1--1 60 minutes, better Preferably, drying is carried out for 1 to 30 minutes to remove the solvent, and the phases can be separated in advance. When the mixture of the first component and the second component is photocurable, drying before curing to separate the phases in advance can effectively remove the solvent in the anti-glare layer and is desirable. There is an advantage in that the unevenness having the size as described above can be provided.
[0078] 硬化させる前に相分離させる他の方法として、塗膜に光を照射して相分離させる方 法を用レ、ることもできる。照射する光として、例えば露光量 0. 1-1. 5jZcm2の光、 好ましくは 0. 5-1. 5j/cm2の光を用いることができる。またこの照射光の波長は特 に限定されるものではないが、例えば 360nm以下の波長を有する照射光などを用い ること力 Sできる。例えば光開始剤として 2—メチルー 1 [4一 (メチルチオ)フエニル]一 2_ モルフォリノプロパン一 1一オンなどを用いる場合は、照射光は 310nm付近の波長を 有する光を照射するのが好ましぐそしてさらに 360nm付近の波長を有する光を照 射するのがより好ましい。このような光は、高圧水銀灯、超高圧水銀灯などを用いて 得ること力 Sできる。このように光を照射することによって、相分離および硬化が生じるこ ととなる。光を照射して相分離させることによって、コーティング組成物に含まれる溶 媒の乾燥ムラに起因する表面形状のムラを回避できるという利点がある。 [0078] As another method of performing phase separation before curing, a method of irradiating a coating film with light to cause phase separation can be used. As the irradiation light, for example, light having an exposure amount of 0.1 to 1.5 jZcm 2 , and preferably light of 0.5 to 1.5 j / cm 2 can be used. The wavelength of the irradiation light is not particularly limited. For example, irradiation light having a wavelength of 360 nm or less can be used. For example, when 2-methyl-1 [4- (methylthio) phenyl] -12-morpholinopropane-11-one is used as a photoinitiator, it is preferable to irradiate light having a wavelength around 310 nm. It is more preferable to irradiate light having a wavelength around 360 nm. Such light can be obtained using a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, or the like. Irradiation of light in this manner causes phase separation and hardening. Irradiation of light to cause phase separation has an advantage that unevenness of the surface shape due to uneven drying of the solvent contained in the coating composition can be avoided.
[0079] コーティング組成物の塗布により得られた塗膜を、または乾燥させた塗膜を、硬化さ せることによって、防眩層が形成される。第 1成分と第 2成分との混合物が熱硬化性 である場合は、 40— 280。C、より好ましくは 80— 250。Cで、 0. 1一 180分間、より好 ましくは 1一 60分間加熱することにより、硬化させることができる。第 1成分と第 2成分 との混合物が光硬化性である場合は、必要に応じた波長の光を発する光源を用いて 光を照射することによって、硬化させることができる。なお、光照射は、上記のとおり相 分離させる目的で用いることもできる。  [0079] An antiglare layer is formed by curing a coating film obtained by applying the coating composition or a dried coating film. 40-280 if the mixture of the first and second components is thermosetting. C, more preferably 80-250. Curing can be accomplished by heating at C for 0.1-180 minutes, more preferably 1-160 minutes. When the mixture of the first component and the second component is photocurable, the mixture can be cured by irradiating the light with a light source that emits light of a necessary wavelength. Note that light irradiation can also be used for the purpose of phase separation as described above.
[0080] こうして形成される防眩フィルムの断面該略図を図 1に示す。防眩フィルム 1は、防 眩層 3と透明基材 5とを有している。本発明の防眩フィルム表面の凹凸は自然発生的 に凹凸配置が決まるので、樹脂層の表面に不規則な凹凸形状を形成することができ る。  FIG. 1 shows a schematic cross-sectional view of the antiglare film thus formed. The antiglare film 1 has an antiglare layer 3 and a transparent substrate 5. Since the unevenness of the surface of the antiglare film of the present invention is determined spontaneously, an irregular uneven shape can be formed on the surface of the resin layer.
[0081] 防眩層の表面の凹凸形状は、 R (十点平均粗さ)のパラメーターを使用して評  [0081] The uneven shape of the surface of the antiglare layer was evaluated using the parameter of R (ten-point average roughness).
z JIS94  z JIS94
価すること力 Sできる。ここで R は、 JIS B0601の付属書 1表 1において規格化さ  Power to value S can. Where R is standardized in Table 1 of Annex 1 of JIS B0601.
z JIS94 れたパラメーターである。この R は、表面上の凹凸の高さ粗さを表わす指標で z JIS94 Parameters. This R is an index that represents the height and roughness of the irregularities on the surface.
z JIS94  z JIS94
ある。図 2は、ノ メーター R の説明図である。この図中において、実線曲線は  is there. FIG. 2 is an explanatory diagram of the meter R. In this figure, the solid curve is
z JIS94  z JIS94
防眩層の断面を示している。十点平均粗さ(R )は、例えば (株)キーエンス製、  2 shows a cross section of an antiglare layer. The ten-point average roughness (R) is, for example,
z JIS94  z JIS94
超深度形状測定顕微鏡などを用いて、 JIS B0601の付属書 1に準拠して測定する ことができる。なお、 JIS B0601は、 ISO 4287を翻訳し、技術的内容及び規格票 の様式を変更することなく作成した日本工業規格である。  It can be measured using an ultra-depth shape measuring microscope, etc., in accordance with Annex 1 of JIS B0601. JIS B0601 is a Japanese Industrial Standard created by translating ISO 4287 and changing the technical content and standard form.
[0082] 本発明の防眩フィルムは、 R が 1. O z m以下であるのが好ましレ、。 R [0082] The antiglare film of the present invention preferably has R of 1. Ozm or less. R
z JIS94 z JIS94 z JIS94 z JIS94
1. O z mを超える場合は、ヘーズが高くなり、白ぼけが発生するなど、防眩用途とし て不具合が生じることがある。 R は 0. 8 μ m以下であるのがより好ましく、 0. 5 μ 1. If it exceeds O z m, the haze becomes high, and there is a case where a problem occurs as an anti-glare use such as white blurring. R is more preferably 0.8 μm or less, and 0.5 μm
z JIS94  z JIS94
m以下であるのがさらに好ましい。下限は 0.: mであるのが好ましい。  More preferably, it is m or less. The lower limit is preferably 0.:m.
[0083] 本発明の防眩フィルムは、全光線透過率が 90%以上であるのが好ましぐ 95%以 上であるのがより好ましい。特に本件発明においては、樹脂粒子を含有していないた め、上記のように高い全光線透過率を達成することが可能となる。全光線透過率 (T ( t[0083] The anti-glare film of the present invention preferably has a total light transmittance of 90% or more, more preferably 95% or more. In particular, in the present invention, since no resin particles are contained, a high total light transmittance as described above can be achieved. Total light transmittance (T (t
%))は、防眩フィルムに対する入射光強度 (τ )と防眩フィルムを透過した全透過光 %)) Is the incident light intensity (τ) to the anti-glare film and the total transmitted light transmitted through the anti-glare film
0  0
強度 (T )とを測定し、下記式により算出される。全光線透過率の概略説明図を図 3 に示す。  The strength (T) is measured and calculated by the following equation. Figure 3 shows a schematic illustration of the total light transmittance.
[数 4]  [Number 4]
T t (%) =— X 1 0 0 T t (%) = — X 1 0 0
TO  TO
[0084] 全光線透過率の測定は、例えばヘーズメーター (スガ試験機社製)を用いて測定す ること力 Sできる。  [0084] The total light transmittance can be measured using, for example, a haze meter (manufactured by Suga Test Instruments Co., Ltd.).
[0085] 本発明の防眩フィルムは、ヘーズが 20%未満であるのが好ましぐ 18%以下であ るのがより好ましく、 15。/0以下であるのがさらに好ましぐ 10%以下であるのがとりわ け好ましい。本発明によって、上記の通りヘーズが低ぐかつ防眩性に優れるという、 優れた性能を有する防眩フィルムを調製することができる。ヘーズが低いことの利点 として、防眩フィルムを液晶表示装置に設けた場合に、表示される画像の鮮明性を 損なわないこと、白ぼけが発生しにくいことなどが挙げられる。このようなヘーズの低 い防眩フィルムは、特に高詳細液晶表示装置に表示される画像の鮮明性を損なわな いという利点がある。 [0085] The antiglare film of the present invention preferably has a haze of less than 20%, more preferably 18% or less, and more preferably 15. / 0 or less is more preferable, and 10% or less is particularly preferable. According to the present invention, it is possible to prepare an antiglare film having an excellent performance of having a low haze and an excellent antiglare property as described above. Advantages of low haze include that when an anti-glare film is provided in a liquid crystal display device, the sharpness of an image to be displayed is not impaired, and white blur is less likely to occur. Such an antiglare film having a low haze does not impair the sharpness of an image displayed particularly on a high-definition liquid crystal display device. There is an advantage that.
[0086] ヘーズは、 JIS K7105に準拠して、下記式より算出することができる。  [0086] The haze can be calculated from the following equation in accordance with JIS K7105.
[数 5]  [Number 5]
H (%) =— X 1 0 0 H (%) = — X 1 0 0
T t  T t
H :ヘーズ (曇価) (%)  H: Haze (cloudiness value) (%)
T:拡散透光率(%)  T: Diffuse transmittance (%)
d  d
T:全光線透過率(%)  T: Total light transmittance (%)
t  t
[0087] ヘーズの測定は、例えばヘーズメーター (スガ試験機社製)を用いて測定すること ができる。  [0087] Haze can be measured, for example, using a haze meter (manufactured by Suga Test Instruments Co., Ltd.).
[0088] 本発明の防眩フィルムは、 R 力 Si . 以下であるのが好ましレ、。ここで R  [0088] The antiglare film of the present invention preferably has an R force of Si or less. Where R
Z JIS Z JIS  Z JIS Z JIS
とは、粗さ曲線の最大高さ粗さであり、 JIS B0601— 2001において規定されるパラメ 一ターである。 R が 1. O x m以下であるのがより好ましぐ 0. 以下であるの  Is the maximum height roughness of the roughness curve and is a parameter specified in JIS B0601-2001. R is preferably less than or equal to 1. O x m and less than or equal to 0.
Z JIS  Z JIS
力 Sさらに好ましい。下限は 0. 1 μ ΐηであるのが好ましい。本発明の防眩フィルムは、 樹脂粒子などの粒子を含むことなく調製できることを特徴とする。樹脂粒子などを用 レ、て防眩フィルム上の凹凸を形成する場合は、防眩フィルムの調製中に樹脂粒子の 凝集が生じることが多レ、。そしてこの凝集によって、 R (最大高さ粗さ)の値は高く  Force S is more preferred. The lower limit is preferably 0.1 μ μη. The anti-glare film of the present invention is characterized in that it can be prepared without containing particles such as resin particles. When using resin particles or the like to form irregularities on the antiglare film, the resin particles often aggregate during the preparation of the antiglare film. And due to this aggregation, the value of R (maximum height roughness) is high
Z JIS  Z JIS
なってしまう。防眩フィルムの R (最大高さ粗さ)の値が 1. 5 /i mを超える場合は、  turn into. If the value of R (maximum height roughness) of the anti-glare film exceeds 1.5 / im,
Z JIS  Z JIS
防眩フィルムを透過する画像の鮮明性が低下したり、白ぼけが生じるといった不具合 が生じる恐れがある。  There is a possibility that problems such as a decrease in the sharpness of an image transmitted through the anti-glare film and an occurrence of white blur may occur.
[0089] 本発明の防眩フィルムは、 Smが 100 μ m以下であるのが好ましぐ 50 μ m以下で あるのがさらに好ましレ、。下限は 5 z mであるのが好ましレ、。ここで Smとは、表面の粗 さ曲線要素の平均長さであり、一般に粗さ曲線の山谷平均間隔または凹凸の平均間 隔と言われるものである。 Smは、例えば (株)キーエンス製、超深度形状測定顕微鏡 などを用いて、 JIS B0633に準拠して測定することができる。なお、 JIS B0633は、 ISO 4288を翻訳し、技術的内容及び規格票の様式を変更することなく作成した日 本工業規格である。  [0089] In the antiglare film of the present invention, Sm is preferably 100 µm or less, more preferably 50 µm or less. The lower limit is preferably 5 z m. Here, Sm is the average length of the surface roughness curve element, which is generally called the average interval between peaks and valleys of the roughness curve or the average interval between irregularities. Sm can be measured according to JIS B0633 using, for example, an ultra-depth shape measurement microscope manufactured by Keyence Corporation. JIS B0633 is a Japanese industrial standard created by translating ISO 4288 without changing the technical contents and the format of the standard form.
[0090] 本発明の防眩フィルムは、防眩層の表面の不規則な凹凸形状の配置が、 自然発生 的に決まるものである。そして本発明の防眩フィルムは、散乱角に対する散乱光強度 が極大値を有さないのが好ましい。防眩フィルムの面に対して法線方向、つまりフィ ルム面に対して直角方向から光を照射した場合、透過光は、この照射光がそのまま 進行する方向、つまり散乱角が 0° の方向、が最大である。そして照射光が防眩フィ ルムにより散乱することによって、この法線方向から角度がずれた方向にも光が透過 することとなる。この散舌しした光が散乱光 (透過散乱光)である。本発明の防眩フィル ムは、この散乱角に対する散乱光強度が極大値を有さないのが好ましい。この散乱 光が極大値を有する場合は、特定の角度に対して散乱光が集まることとなり、これに より光の干渉が生じることがある。光の干渉の発生は、防眩フィルムを透過する画像 の鮮明性の低下をもたらす恐れがあるため、好ましくない。 [0090] In the antiglare film of the present invention, the irregular irregular arrangement on the surface of the antiglare layer is naturally generated. It is something that is decided. In the antiglare film of the present invention, the scattered light intensity with respect to the scattering angle preferably does not have a maximum value. When light is irradiated from the normal direction to the surface of the anti-glare film, that is, from the direction perpendicular to the film surface, the transmitted light is the direction in which the irradiated light proceeds as it is, that is, the direction in which the scattering angle is 0 °, Is the largest. Then, when the irradiation light is scattered by the anti-glare film, the light is transmitted also in a direction whose angle is shifted from the normal direction. This dispersed light is scattered light (transmitted scattered light). In the antiglare film of the present invention, it is preferable that the scattered light intensity for this scattering angle does not have a maximum value. When the scattered light has a maximum value, the scattered light is collected at a specific angle, which may cause light interference. The occurrence of light interference is not preferable because it may cause a reduction in the sharpness of an image transmitted through the antiglare film.
[0091] 本発明の防眩フィルムは、さらに低屈折率層を有していてもよい。低屈折率層は、 低屈折率樹脂で構成されている。低屈折率層を防眩層の少なくとも一方の面に積層 することにより、光学部材などにおいて、低屈折率層を最表面となるように配設した場 合などに、外部からの光(外部光源など)が、防眩性フィルムの表面で反射するのを 有効に防止することができる。また、低屈折率層を最表面となるように配置することに よって、防眩フィルムのヘーズをさらに低くすることができる。低屈折率層を最表面と なるように配置する、つまり透明基材の上に防眩層を形成し、この防眩層の上にさら に低屈折率層を形成することによって、得られる防眩フィルムのヘーズをさらに下げ ること力 Sできる。  [0091] The antiglare film of the present invention may further have a low refractive index layer. The low refractive index layer is made of a low refractive index resin. By laminating the low-refractive-index layer on at least one surface of the anti-glare layer, external light (such as an external light source) can be used when the low-refractive-index layer is disposed on the outermost surface of an optical member or the like. ) Can be effectively prevented from being reflected on the surface of the antiglare film. By arranging the low refractive index layer so as to be the outermost surface, the haze of the antiglare film can be further reduced. The low refractive index layer is disposed so as to be the outermost surface, that is, an antiglare layer is formed on a transparent base material, and the low refractive index layer is further formed on the antiglare layer to obtain a protective layer. The ability to further lower the haze of the glare film.
[0092] 低屈折率樹脂の屈折率は、例えば、 1. 35- 1. 39、好ましくは 1. 36-1. 39、さ らに好ましくは 1. 38- 1. 39程度である。  [0092] The refractive index of the low refractive index resin is, for example, about 1.35 to 1.39, preferably about 1.36 to 1.39, and more preferably about 1.38 to 1.39.
[0093] 低屈折率層の厚みは、例えば、 0. 05 2 x m、好ましくは 0. 1 l x m (例えば、 0 . 1—0. 5 x m)、さらに好ましくは 0. 1-0. 3 z m程度である。  [0093] The thickness of the low refractive index layer is, for example, about 0.052 xm, preferably about 0.1 lxm (for example, 0.1-0.5 xm), and more preferably about 0.1-0.3 zm. It is.
[0094] 低屈折率樹脂としては、例えば、メチルペンテン樹脂、ジエチレングリコールビス( ァリルカーボネート)樹脂、ポリビニリデンフルオライド(PVDF)、ポリビュルフルオラィ ド (PVF)などのフッ素樹脂などが挙げられる。また、低屈折率層は、通常、フッ素含 有化合物を含有するのが好ましい。フッ素含有化合物を用いることによって、低屈折 率層の屈折率を所望に応じて低減することができる。 [0095] フッ素含有化合物としては、フッ素原子と、熱や活性エネルギー線 (紫外線や電子 線など)などにより反応する官能基 (架橋性基又は重合性基などの硬化性基など)と を有し、熱や活性エネルギー線などにより硬化又は架橋してフッ素含有樹脂(特に硬 化又は架橋樹脂)を形成可能なフッ素含有樹脂前駆体が挙げられる。このようなフッ 素含有樹脂前駆体としては、例えば、フッ素原子含有熱硬化性化合物又は樹脂 [フ ッ素原子とともに、反応性基 (エポキシ基、イソシァネート基、カルボキシル基、ヒドロ キシル基など)、重合性基(ビュル基、ァリル基、(メタ)アタリロイル基など)などを有す る低分子量化合物]、活性光線 (紫外線など)により硬化可能なフッ素原子含有光硬 化性化合物又は樹脂(光硬化性フッ素含有モノマー又はオリゴマーなどの紫外線硬 化性化合物など)などを挙げることができる。 [0094] Examples of the low refractive index resin include a fluororesin such as a methylpentene resin, a diethylene glycol bis (aryl carbonate) resin, a polyvinylidene fluoride (PVDF), and a polyvinyl fluoride (PVF). In addition, the low refractive index layer usually preferably contains a fluorine-containing compound. By using a fluorine-containing compound, the refractive index of the low refractive index layer can be reduced as desired. [0095] The fluorine-containing compound has a fluorine atom and a functional group (such as a curable group such as a crosslinkable group or a polymerizable group) that reacts with heat or an active energy ray (such as an ultraviolet ray or an electron beam). And a fluorine-containing resin precursor capable of forming a fluorine-containing resin (particularly, a cured or crosslinked resin) by being cured or cross-linked by heat or active energy rays. Examples of such a fluorine-containing resin precursor include, for example, a fluorine-containing thermosetting compound or resin (including a fluorine atom, a reactive group (epoxy group, isocyanate group, carboxyl group, hydroxy group, etc.), Low molecular weight compounds having a functional group (such as a butyl group, an aryl group, or a (meth) atalyloyl group), a fluorine-containing photocurable compound or resin curable by actinic rays (such as ultraviolet rays). UV curable compounds such as fluorine-containing monomers or oligomers).
[0096] フッ素原子含有熱硬化性化合物又は樹脂としては、例えば、少なくともフッ素含有 モノマーを用いて得られる低分子量樹脂、例えば、構成モノマーとしてのポリオール 成分の一部又は全部に代えてフッ素含有ポリオール (特にジオール)を用いて得られ るエポキシ系フッ素含有樹脂;同様に、ポリオール及び/又はポリカルボン酸成分の 一部又は全部に代えて、フッ素原子含有ポリオール及び/又はフッ素原子含有ポリ カルボン酸成分を用いて得られる不飽和ポリエステル系フッ素含有樹脂;ポリオール 及び/又はポリイソシァネート成分の一部又は全部に代えて、フッ素原子含有ポリオ ール及び/又はポリイソシァネート成分を用いて得られるウレタン系フッ素含有樹脂 などが例示できる。これらの熱硬化性化合物又は樹脂は、単独で又は二種以上組み 合わせて使用できる。 [0096] As the fluorine atom-containing thermosetting compound or resin, for example, a low molecular weight resin obtained by using at least a fluorine-containing monomer, for example, a fluorine-containing polyol (in place of part or all of the polyol component as a constituent monomer) Epoxy-containing resin obtained by using a diol), and a fluorine-containing polyol and / or a polycarboxylic acid component instead of a polyol and / or a polycarboxylic acid component. Unsaturated polyester-based fluorine-containing resin obtained by using the above; urethane obtained by using a fluorine atom-containing polyol and / or polyisocyanate component instead of part or all of the polyol and / or polyisocyanate component Examples thereof include a fluorine-containing resin. These thermosetting compounds or resins can be used alone or in combination of two or more.
[0097] フッ素原子含有光硬化性化合物には、例えば、単量体、オリゴマー(又は樹脂、特 に低分子量樹脂)が含まれ、単量体としては、例えば、前記防眩層の項で例示の単 官能性単量体及び多官能性単量体に対応するフッ素原子含有単量体 [ (メタ)アタリ ル酸のフッ化アルキルエステルなどのフッ素原子含有(メタ)アクリル系単量体、フル ォロォレフイン類などのビュル系単量体などの単官能性単量体; 1_フルオロー 1 , 2- ジ (メタ)アタリロイルォキシエチレンなどのフッ化アルキレングリコールのジ (メタ)ァク リレートなど]が例示できる。また、オリゴマー又は樹脂としては、前記防眩層の項で 例示のオリゴマー又は樹脂に対応するフッ素原子含有オリゴマー又は樹脂などが使 用できる。これらの光硬化性化合物は単独で又は二種以上組み合わせて使用できる [0097] The fluorine atom-containing photocurable compound includes, for example, a monomer and an oligomer (or a resin, particularly a low molecular weight resin). Examples of the monomer include those described in the section of the antiglare layer. Fluorine atom-containing monomers corresponding to monofunctional and polyfunctional monomers [fluorine atom-containing (meth) acrylic monomers such as fluorinated alkyl esters of (meth) atalylic acid, Monofunctional monomers such as butyl monomers such as fluoroolefins; di (meth) acrylates of fluorinated alkylene glycols such as 1_fluoro-1,2-di (meth) atalyloyloxyethylene Can be exemplified. Further, as the oligomer or resin, a fluorine atom-containing oligomer or resin corresponding to the oligomer or resin exemplified in the section of the antiglare layer is used. Can be used. These photocurable compounds can be used alone or in combination of two or more.
[0098] フッ素含有樹脂の硬化性前駆体は、例えば、溶液(コート液)状の形態で入手でき 、このようなコート液は、例えば、 日本合成ゴム(株)製「TT1006A」及び「JN7215」 や、大日本インキ化学工業 (株)製「ディフェンサ TR— 330」などとして入手できる。 [0098] The curable precursor of the fluorine-containing resin can be obtained, for example, in the form of a solution (coating solution). Examples of such a coating solution include "TT1006A" and "JN7215" manufactured by Nippon Synthetic Rubber Co., Ltd. And available as "Defensa TR-330" manufactured by Dainippon Ink and Chemicals, Inc.
[0099] 本発明の防眩性フィルムは、透明基材として低屈折率層を用いて、防眩層及び低 屈折率層で構成してもよい。本発明の防眩性フィルムはまた、透明基材と、この透明 基材上に順次形成された防眩層及び低屈折率層とで構成してもよい。  [0099] The antiglare film of the present invention may be composed of an antiglare layer and a low refractive index layer using a low refractive index layer as a transparent substrate. The anti-glare film of the present invention may also be composed of a transparent substrate, an anti-glare layer and a low refractive index layer sequentially formed on the transparent substrate.
[0100] 偏光板  [0100] Polarizing plate
本発明の防眩性反射防止フィルムは、液晶表示装置 (液晶ディスプレイ)の偏光板 に用いることができる。本発明の防眩フィルムを用いた偏光板の断面概略図を図 4に 示す。図 4に例示される偏光板 10は、偏光層(偏光素子) 12の一方の面(図 4におい て上面側)に上記の防眩フィルム 1が設けられた構成である。  The antiglare antireflection film of the present invention can be used for a polarizing plate of a liquid crystal display device (liquid crystal display). FIG. 4 is a schematic cross-sectional view of a polarizing plate using the antiglare film of the present invention. The polarizing plate 10 illustrated in FIG. 4 has a configuration in which the anti-glare film 1 is provided on one surface (the upper surface side in FIG. 4) of a polarizing layer (polarizing element) 12.
[0101] 偏光層 12は、 2層の透明基材 5、 14の間に積層されていている。透明基材 5、 14と して TACフィルムを使用することができる。この偏光層 12は 3層構造であり、第 1層及 び第 3層がポリビュルアルコール(PVA)にヨウ素を加えたフィルム、中間の第 2層が PVAフィルムからなっている。この防眩フィルム 1は透明基材 5に防眩層 3を積層した 構成である。 [0101] The polarizing layer 12 is laminated between the two transparent substrates 5 and 14. TAC films can be used as the transparent substrates 5 and 14. The polarizing layer 12 has a three-layer structure. The first and third layers are made of a film obtained by adding iodine to polyvinyl alcohol (PVA), and the intermediate second layer is made of a PVA film. The anti-glare film 1 has a configuration in which an anti-glare layer 3 is laminated on a transparent substrate 5.
[0102] 前記偏光層 12の両外側に設けられる透明基材として、 TACフィルムを用いる場合 は、複屈折がなく偏光が乱されないので、偏光素子となる PVA及び PVA +ヨウ素フ イルムと積層しても、偏光が乱されなレ、。従って、このような偏光板 10を用いて表示品 位の優れた液晶表示装置を得ることができる。  [0102] When a TAC film is used as a transparent base material provided on both outer sides of the polarizing layer 12, since there is no birefringence and polarization is not disturbed, the TAC film is laminated with PVA and PVA + iodine film serving as a polarizing element. Even, polarization is not disturbed. Accordingly, a liquid crystal display device having excellent display quality can be obtained by using such a polarizing plate 10.
[0103] 上記のような偏光板 10における偏光層 12を構成する偏光素子としては、ヨウ素又 は染料により染色し、延伸してなる PVAフィルムに、ポリビュルホルマールフィルム、 ポリビュルァセタールフィルム、エチレン一酢酸ビュル共重合体系ケン化フィルム等が ある。  [0103] As the polarizing element constituting the polarizing layer 12 in the polarizing plate 10 as described above, a PVA film dyed and stretched with iodine or a dye, a polybulformal film, a polybulacetal film, an ethylene There are saponified films of butyl monoacetate copolymer.
[0104] なお、偏光層 12を構成する各フィルムを積層するにあたっては、接着性の増加及 び静電防止のために、前記透明基材にケンィ匕処理を行うとよい。 [0105] 液晶表示 置 When laminating the films constituting the polarizing layer 12, the transparent substrate may be subjected to a quenching treatment in order to increase adhesiveness and prevent static electricity. [0105] LCD display
本発明の防眩性反射防止フィルムは、液晶表示装置 (液晶ディスプレイ)に用いる こと力 Sできる。図 5は、本発明の防眩フィルムを用いた透過型表示装置の断面概略図 である。  The antiglare antireflection film of the present invention can be used for a liquid crystal display device (liquid crystal display). FIG. 5 is a schematic cross-sectional view of a transmission type display device using the antiglare film of the present invention.
[0106] 図 5に示される液晶表示装置 20は、上記偏光板 10と同様な偏光板 22と、液晶パ ネノレ 24と、偏光板 26とを、この順で積層すると共に、偏光板 26側の背面にバックライ ト 28を配置した透明型の液晶表示装置である。  The liquid crystal display device 20 shown in FIG. 5 has a polarizing plate 22, a liquid crystal panel 24, and a polarizing plate 26, which are similar to the above-described polarizing plate 10, stacked in this order, and the polarizing plate 26 side. This is a transparent liquid crystal display device having a backlight 28 on the back.
[0107] 前記液晶表示装置 20における液晶パネル 24で使用される液晶モードとしては、ッ プ (PC)、高分子分散タイプ (PDLC)等のレ、ずれであってもよレ、。  The liquid crystal mode used in the liquid crystal panel 24 in the liquid crystal display device 20 may be a top (PC), a polymer dispersion type (PDLC) or the like, or may be a deviation.
[0108] 液晶の駆動モードとしては、単純マトリックスタイプ、アクティブマトリックスタイプのど ちらでもよぐアクティブマトリックスタイプの場合では、 TFT、 MIM等の駆動方式が 取られる。液晶パネル 24は、カラータイプあるいはモノクロタイプのいずれであっても よい。 [0108] As the driving mode of the liquid crystal, in the case of the active matrix type, which can be either a simple matrix type or an active matrix type, a driving method such as TFT or MIM is adopted. The liquid crystal panel 24 may be either a color type or a monochrome type.
[0109] 本発明の防眩性反射防止フィルムは、液晶表示装置の他に、プラズマディスプレイ パネル(PDP)、エレクト口ルミネッセンスディスプレイ(ELD)や陰極管表示装置(CR T)のような画像表示装置にも用いることができる。本発明の防眩フィルムを液晶表示 装置に用いる場合、防眩層が設けられていない方の透明基材表面上に粘着層を設 ける等して、ディスプレイの最表面に配置することができる。本発明による防眩フィル ムの防眩層上に、さらに反射防止処理などを行なってもよい。  [0109] The antiglare antireflection film of the present invention can be used for an image display device such as a plasma display panel (PDP), an electroluminescent display (ELD), and a cathode ray tube display (CRT) in addition to a liquid crystal display device. Can also be used. When the anti-glare film of the present invention is used for a liquid crystal display device, it can be disposed on the outermost surface of the display, for example, by providing an adhesive layer on the surface of the transparent substrate on which the anti-glare layer is not provided. The anti-glare layer of the anti-glare film according to the present invention may be further subjected to an anti-reflection treatment or the like.
実施例  Example
[0110] 以下の実施例により本発明をさらに具体的に説明するが、本発明はこれらに限定さ れない。尚、特に断らない限り、「部」は重量部を表わす。  [0110] The present invention will be described more specifically with reference to the following examples, but the present invention is not limited thereto. Unless otherwise specified, "parts" means parts by weight.
[0111] 調製例 1 シリコーンアクリルブロック共重合体の調製  Preparation Example 1 Preparation of Silicone Acrylic Block Copolymer
VPS-1001N (ァゾ基含有ポリシロキサン化合物、和光純薬工業社製、ポリシロキ サン鎖の分子量 10, 000、固形分 50%) 243· 9gと、シクロへキシノレメタタリレート 1 44. 0g、スチレン 43. 7g、ヒドロキシノレェチノレメタタリレート 52. 3g及び酢酸ブチ ノレ 343. 3gからなる混合物とを混合した。この混合溶液を、撹拌羽根、窒素導入管 、冷却管及び滴下漏斗を備えた 1000ml反応容器中の、窒素雰囲気下で 120°Cに 加温した酢酸ブチル 270. Ogに、 3時間かけて等速で滴下し、その後、 120°Cで 30 分間混合し、反応させた。ターシャリーブチルペルォキシ 2—ェチルへキサノエート 0. 60gを含む酢酸ブチル 15. Og溶液を、 30分間かけて等速滴下してから、さらに 120°Cで 1時間混合して反応させて、数平均分子量 34, 000、重量平均分子量 125 , 000のシリコーンアクリルブロック共重合体を得た。この樹脂は、 Sp値: 10. 8、Tg : 69°C、表面張力: 16dynZcmであった。 VPS-1001N (azo group-containing polysiloxane compound, manufactured by Wako Pure Chemical Industries, Ltd., polysiloxane chain molecular weight 10,000, solid content 50%) 243.9 g, cyclohexino remetharylate 1444.0 g, styrene A mixture consisting of 43.7 g, 52.3 g of hydroxynolethinol methatalylate and 343.3 g of butinole acetate was mixed. This mixed solution is stirred with a stirring blade and a nitrogen inlet tube. Butyl acetate 270.Og heated to 120 ° C under a nitrogen atmosphere in a 1000 ml reaction vessel equipped with a cooling tube and a dropping funnel. Mix for minutes and react. A butyl acetate solution containing 0.60 g of tert-butylperoxy 2-ethylhexanoate in 15.Og solution was added dropwise at a constant speed over 30 minutes, and the mixture was further reacted by mixing at 120 ° C for 1 hour. A silicone acrylic block copolymer having an average molecular weight of 34,000 and a weight average molecular weight of 125,000 was obtained. This resin had a Sp value of 10.8, a Tg of 69 ° C, and a surface tension of 16 dynZcm.
[0112] 調製例 2 不飽和二重結合含有シリコーンアクリルブロック共重合体の調製  Preparation Example 2 Preparation of Unsaturated Double Bond-Containing Silicone Acrylic Block Copolymer
VPS—1001N (ァゾ基含有ポリシロキサン化合物、和光純薬工業社製、ポリシロキ サン鎖の分子量 10, 000、固形分 50%) 243. 9gと、シクロへキシノレメタタリレート 6 8. 2g、スチレン 103. 9g、グリシジノレメタタリレート 44. 3g及び酢酸ブチノレ 343 . 3gからなる混合物とを混合した。この混合溶液を、撹拌羽根、窒素導入管、冷却管 及び滴下漏斗を備えた 1000ml反応容器中の、窒素雰囲気下で 120°Cに加温した 酢酸ブチル 270. Ogに、 3時間かけて等速で滴下し、その後、 120°Cで 30分間反応 させた。ターシャリーブチルペルォキシ 2 ェチルへキサノエート 0. 60gを含む酢酸 ブチル 15. Og溶液を 30分間かけて等速滴下してから、さらに 120°Cで 1時間反応 させた。この反応液にターシャルブチルアンモニゥムブロマイド 3. 12gとハイドロキ ノン 0. 2gを含む酢酸ブチル 10g溶液を滴下し、空気バブリングしながら、アクリル 酸 23. 6gを 120°Cで 5時間かけて等速滴下した。さらに 120°Cで 1時間反応させて 、数平気分子量 19, 000、重量平均分子量 83, 000の不飽和二重結合含有シリコ ーンアクリルブロック共重合体を得た。この樹脂は、 Sp値: 10. 6、 Tg : 76°C、表面張 力: 18dyn/ cmであった。  VPS-1001N (azo group-containing polysiloxane compound, manufactured by Wako Pure Chemical Industries, Ltd., polysiloxane chain molecular weight 10,000, solid content 50%) 243.9 g, cyclohexinolemethatalate 68.2 g, styrene 103.9 g, 44.3 g of glycidinolemetharylate and 343.3 g of butynole acetate were mixed. This mixed solution was added to 270.Og of butyl acetate heated at 120 ° C under a nitrogen atmosphere in a 1000 ml reaction vessel equipped with stirring blades, a nitrogen inlet tube, a cooling tube, and a dropping funnel at a constant speed over 3 hours. Then, the mixture was reacted at 120 ° C. for 30 minutes. A butyl acetate 15.Og solution containing 0.60 g of tert-butylperoxy-2-ethylhexanoate was dropped at a constant speed over 30 minutes, and the mixture was further reacted at 120 ° C. for 1 hour. To this reaction solution, a 10 g solution of butyl acetate containing 3.12 g of tert-butylammonium bromide and 0.2 g of hydroquinone was added dropwise, and 23.6 g of acrylic acid was added at 120 ° C for 5 hours while bubbling with air. It was dropped quickly. The mixture was further reacted at 120 ° C. for 1 hour to obtain a silicone acrylic block copolymer containing unsaturated double bonds having a molecular weight of 19,000 and a weight average molecular weight of 83,000. This resin had a Sp value of 10.6, a Tg of 76 ° C, and a surface tension of 18 dyn / cm.
[0113] 調製例 3 アクリル共重合体の調製  Preparation Example 3 Preparation of Acrylic Copolymer
イソボロニノレメタタリレート 280. 8g、メチノレメタタリレート 4. 2g、メタクリノレ酸 15 . 0g及びプロピレングリコールモノメチルエーテル 340. 0gからなる混合物を混合し た。この混合液を、撹拌羽根、窒素導入管、冷却管及び滴下漏斗を備えた 1000ml 反応容器中の、窒素雰囲気下で 110°Cに加温したプロピレングリコールモノメチルェ 一テル 200gに、 3時間かけて等速で滴下し、その後、 110°Cで 30分間反応させた 。ターシャリーブチルペルォキシ 2 ェチルへキサノエート 3. Ogを含むプロピレン グリコールモノメチルエーテル 120gの溶液を、 30分間かけて等速滴下してから、さ らにターシャリーブチルペルォキシ 2 ェチルへキサノエート 0· 3gを含むプロピレ ングリコールモノメチルエーテルの 25. 5g溶液を 30分間滴下して、数平均分子量 6 , 400、重量平均分子量 14, 800のアクリル共重合体を得た。この樹脂は、 Sp値: 9. 9、Tg : 113°C、表面張力: 29dyn/cmであった。 A mixture consisting of 288.8 g of isoboroninolemethallate, 4.2 g of methinolemethallate, 15.0 g of methacryloleic acid and 340.0 g of propylene glycol monomethyl ether was mixed. This mixture was added to 200 g of propylene glycol monomethyl ether heated to 110 ° C under a nitrogen atmosphere in a 1000 ml reaction vessel equipped with a stirring blade, a nitrogen inlet tube, a cooling tube, and a dropping funnel over 3 hours. The solution was dropped at a constant speed, and then reacted at 110 ° C for 30 minutes . Tertiary butyl peroxy 2-ethylhexanoate 3. A solution of 120 g of propylene glycol monomethyl ether containing Og is dropped at a constant speed over 30 minutes, and then tert-butyl peroxy 2-ethyl hexanoate is added. A 25.5 g solution of propylene glycol monomethyl ether containing 3 g was added dropwise for 30 minutes to obtain an acrylic copolymer having a number average molecular weight of 6,400 and a weight average molecular weight of 14,800. This resin had a Sp value of 9.9, a Tg of 113 ° C., and a surface tension of 29 dyn / cm.
[0114] 調製例 4 不飽和二重結合含有アクリル共重合体の調製  Preparation Example 4 Preparation of Unsaturated Double Bond-Containing Acrylic Copolymer
イソボロニノレメタタリレート 187. 2g、メチノレメタタリレート 2. 8g、メタクリノレ酸 10 . Og及びプロピレングリコールモノメチルエーテル 160. Ogからなる混合物を混合し た。この混合液を、撹拌羽根、窒素導入管、冷却管及び滴下漏斗を備えた 1000ml 反応容器中の、窒素雰囲気下で 100°Cに加温したプロピレングリコールモノメチルェ 一テル 200. Ogに、ターシャルブチルペルォキシ一 2_ェチルへキサノエートを含む プロピレングリコールモノメチルエーテルの 80. 0g溶液と同時に 3時間かけて等速で 滴下し、その後、 1時間 100°Cで反応させた。その後、ターシャルブチルペルォキシ _2—ェチルへキサノエート 0. 2gを含むプロピレングリコールモノメチルエーテル溶 液を滴下して 100°Cで 1時間反応させた。その反応溶液にテトラプチルアンモニゥム ブロマイド 1. 5gとハイドロキノン 0· 2gを含む 5. 0gのプロピレングリコールモノメチ ルエーテル溶液を加え、空気バブリングしながら、さらにグリシジルメタタリレート 17 . 3gとプロピレングリコールモノメチルエーテル 5gの溶液を 1時間かけて滴下し、そ の後 5時間かけて更に反応させた。数平均分子量 8, 800、重量平均分子量 18, 00 0の不飽和二重結合含有アクリル共重合体を得た。この樹脂は、 Sp値: 9. 8、Tg : l l 3°C、表面張力: 31dynZcmであった。  A mixture consisting of 187.2 g of isoboroninolemethalylate, 2.8 g of methinolemethallate, 10.0 g of methacryloleic acid and 160 g of propylene glycol monomethyl ether was mixed. This mixture was placed in a 1000 ml reaction vessel equipped with a stirring blade, a nitrogen inlet tube, a cooling tube and a dropping funnel, and heated to 200.Og of propylene glycol monomethyl ether heated to 100 ° C under a nitrogen atmosphere. A solution of propylene glycol monomethyl ether containing butylperoxy-1-ethylhexanoate in 80.0 g was simultaneously added dropwise at a constant rate over 3 hours over a period of 3 hours, and then reacted at 100 ° C for 1 hour. Thereafter, a propylene glycol monomethyl ether solution containing 0.2 g of tert-butylperoxy-2-ethylhexanoate was added dropwise and reacted at 100 ° C for 1 hour. To the reaction solution was added 5.0 g of a propylene glycol monomethyl ether solution containing 1.5 g of tetrabutylammonium bromide and 0.2 g of hydroquinone, and while air bubbling, 17.3 g of glycidyl methacrylate and propylene glycol monomethyl were further added. A solution of 5 g of ether was added dropwise over 1 hour, followed by a further reaction over 5 hours. An unsaturated double bond-containing acrylic copolymer having a number average molecular weight of 8,800 and a weight average molecular weight of 18,000 was obtained. This resin had a Sp value of 9.8, a Tg of 11 ° C., and a surface tension of 31 dynZcm.
[0115] 調製例 5 不飽和二重結合含有アクリル共重合体の調製  Preparation Example 5 Preparation of Unsaturated Double Bond-Containing Acrylic Copolymer
イソボロニルメタタリレート 147. 2g、メチノレメタタリレート 2. 8g、ェチルヒドロキシ アタリレート 4. 0g、メチルアクリル酸 10. 0g及びプロピレングリコールモノメチルェ 一テル 160. 0gからなる混合物を混合した。この混合液を、撹拌羽根、窒素導入管 、冷却管及び滴下漏斗を備えた 1000ml反応容器中の、窒素雰囲気下で 110°Cに 加温したプロピレングリコールモノメチルエーテル 200. 0gに、ターシャルブチルぺ ノレォキシ _2—ェチルへキサノエート 2gを含むプロピレングリコールモノメチルエーテ ルの 80. Og溶液と同時に 3時間かけて等速で滴下し、その後、 110°Cで 30分間反 応させた。その後、ターシャルブチルペルォキシ 2—ェチルへキサノエート 0. 2gを 含むプロピレングリコールモノメチルエーテル 17gの溶液を滴下して 110°Cで 30分 間反応させた。その反応溶液にテトラプチルアンモニゥムブロマイド 1. 5gとハイド口 キノン 0. lgを含む 5. Ogのプロピレングリコールモノメチルエーテル溶液を加え、空 気バブリングしながら、グリシジルメタタリレート 17. 3gとプロピレングリコールモノメ チルエーテル 5gの溶液を 1時間かけて滴下し、その後 5時間かけて更に反応させ た。数平均分子量 8, 800、重量平均分子量 18, 000の不飽和二重結合含有アタリ ル共重合体を得た。この樹脂は、 Sp値: 9. 9、 Tg : 55°C、表面張力: 27dyn/cmで あった。 A mixture consisting of 147.2 g of isobornyl methacrylate, 2.8 g of methinole methacrylate, 4.0 g of ethylhydroxy acrylate, 10.0 g of methylacrylic acid and 160.0 g of propylene glycol monomethyl ether was mixed. . This mixed solution was added to tert.butyl butyl ether (20.0 g) heated to 110 ° C. under a nitrogen atmosphere in a 1000 ml reaction vessel equipped with a stirring blade, a nitrogen inlet tube, a cooling tube, and a dropping funnel. The propylene glycol monomethyl ether solution containing 2 g of noroxy-2-ethylhexanoate was dropped at a constant rate over 3 hours simultaneously with the 80. Og solution of propylene glycol monomethyl ether, and then reacted at 110 ° C for 30 minutes. Thereafter, a solution of 17 g of propylene glycol monomethyl ether containing 0.2 g of tert-butylperoxy-2-ethylhexanoate was added dropwise and reacted at 110 ° C. for 30 minutes. To the reaction solution was added 1.5 g of tetrabutylammonium bromide and 0.1 g of quinone quinone.5 Og of propylene glycol monomethyl ether solution was added, and 7.3 g of glycidyl methacrylate and propylene glycol were added while bubbling with air. A solution of 5 g of monomethyl ether was added dropwise over 1 hour, followed by a further reaction over 5 hours. An unsaturated double bond-containing acrylyl copolymer having a number average molecular weight of 8,800 and a weight average molecular weight of 18,000 was obtained. This resin had an Sp value of 9.9, a Tg of 55 ° C., and a surface tension of 27 dyn / cm.
[0116] 調製例 6 不飽和二重結合含有アクリル共重合体の調製  Preparation Example 6 Preparation of unsaturated double bond-containing acrylic copolymer
イソボロニノレメタタリレート 171. 6g、メチノレメタタリレート 2. 6g、メチノレ了クリノレ酸 9. 2gからなる混合物を混合した。この混合液を、攪拌羽根、窒素導入管、冷却管 及び滴下漏斗を備えた 1000ml反応容器中の、窒素雰囲気下で 110°Cに加温した プロピレングリコールモノメチルエーテル 330. Ogに、ターシャルブチルペルォキシ _2 ェチルへキサノエート 1. 8gを含むプロピレングリコールモノメチルエーテル 8 0. Og溶液と同時に 3時間かけて等速で滴下し、その後、 110°Cで 30分間反応させ た。その後、ターシャルブチルペルォキシ 2—ェチルへキサノエート 0· 2gをプロピ レングリコールモノメチルエーテル 17· 0gの溶液を滴下してテトラプチルアンモニゥ ムブロマイド 1 · 4gとハイドロキノン 0· lgを含む 5· 0gのプロピレングリコールモノメ チルエーテル溶液を加え、空気バブリングしながら、 4—ヒドロキシブチルアタリレート グリシジルエーテノレ 22. 4gとプロピレングリコールモノメチルエーテル 5. 0gの溶 液を 2時間かけて滴下し、その後 5時間かけて更に反応させた。数平均分子量 5, 50 0、重量平均分子量 18, 000の不飽和二重結合含有アクリル共重合体を得た。この 樹脂は、 Sp値: 10. 0、Tg : 92°C、表面張力: 31dyn/cmであった。  A mixture consisting of 171.6 g of isoboroninolemethatalylate, 2.6 g of methinolemethatalylate, and 9.2 g of methinolate-clinoleic acid was mixed. This mixture was added to 330.Og of propylene glycol monomethyl ether heated to 110 ° C under a nitrogen atmosphere in a 1000 ml reaction vessel equipped with stirring blades, a nitrogen inlet tube, a cooling tube, and a dropping funnel. A propylene glycol monomethyl ether solution containing 1.8 g of oxy-2-ethylhexanoate was added dropwise at a constant rate over 3 hours at the same time as a solution of 80.Og of propylene glycol, followed by a reaction at 110 ° C for 30 minutes. Then, a solution of tert-butylperoxy-2-ethylhexanoate (0.2 g) and propylene glycol monomethyl ether (17.0 g) was added dropwise, and tetrabutylammonium bromide (1.4 g) and hydroquinone (0.1 g) containing 5.0 g were added. Propylene glycol monomethyl ether solution, and a solution of 22.4 g of 4-hydroxybutyl phthalate glycidyl ether ether and 5.0 g of propylene glycol monomethyl ether was added dropwise over 2 hours while bubbling with air, and then over 5 hours To further react. An unsaturated double bond-containing acrylic copolymer having a number average molecular weight of 5,500 and a weight average molecular weight of 18,000 was obtained. This resin had a Sp value of 10.0, a Tg of 92 ° C., and a surface tension of 31 dyn / cm.
[0117] 実施例 1  [0117] Example 1
調製例 1のシリコーンアクリルブロック共重合体(この樹脂の Sp値: 10. 8、 Tg : 69°C ) 32重量部、調製例 3のアクリル共重合体 48重量部(この樹脂の Sp値: 9. 9、 Tg : l l 3°C)、更に熱硬化剤であるメラミン硬化剤 20重量部、熱硬化触媒であるパラトルエン スルホン酸 6重量部、パーフルォロアルキル基含有オリゴマー 0. 1重量部を、溶媒で あるァニソール(Sp値:9. 5)に混合して不揮発分率が 23重量%になるように溶液を 作成した。得られた溶液を、環境温度 23°Cで、トリァセチルセルロースフィルム基板 に、スピンコーターにて 800rpmの回転数で 10秒間にて薄膜塗布した。膜厚 の塗布膜を 100°Cで 10分間加熱硬化し、防眩フィルムを得た。 Preparation Example 1 silicone acrylic block copolymer (Sp value of this resin: 10.8, Tg: 69 ° C ) 32 parts by weight, 48 parts by weight of the acrylic copolymer of Preparation Example 3 (Sp value of this resin: 9.9, Tg: ll 3 ° C), 20 parts by weight of a melamine curing agent which is a thermosetting agent, and thermosetting 6 parts by weight of p-toluenesulfonic acid as a catalyst and 0.1 part by weight of a perfluoroalkyl group-containing oligomer are mixed with anisol (Sp value: 9.5) as a solvent to reduce the nonvolatile content to 23% by weight. A solution was prepared so that The resulting solution was applied to a triacetyl cellulose film substrate at an ambient temperature of 23 ° C. by a spin coater at 800 rpm for 10 seconds. The applied film having a thickness of 10 minutes was cured by heating at 100 ° C. for 10 minutes to obtain an antiglare film.
[0118] 得られた防眩フィルムの評価および防眩層表面の凹凸の評価を下記記載のように 行なった。なお、これらの評価方法により得られた結果を表 2に示す。  [0118] Evaluation of the obtained antiglare film and evaluation of unevenness on the surface of the antiglare layer were performed as described below. Table 2 shows the results obtained by these evaluation methods.
[0119] +点、 fflさ (R 1  [0119] + point, ffl (R 1
z TIS94  z TIS94
表面上の凹凸の十点平均粗さ (R )を、キーエンス製、超深度形状測定顕微 z JIS94  Ten points average roughness (R) of the irregularities on the surface is measured by KEYENCE, ultra-depth shape measurement microscope z JIS94
鏡を用いて JIS—B0601の付属書 1に準拠して測定し、 R 値を得た。  It was measured using a mirror in accordance with Annex 1 of JIS-B0601, and the R value was obtained.
z JIS94  z JIS94
[0120] ffl.さ曲線の最大高さ ffi.さ(R 1  [0120] ffl. The maximum height of the curve ffi. (R 1
z TIS  z TIS
表面上の凹凸の粗さ曲線の最大高さ粗さ(R )を、キーエンス製、超深度形状 z JIS  The maximum height roughness (R) of the roughness curve of the unevenness on the surface is made by Keyence, super-depth shape z JIS
測定顕微鏡を用いて JIS-B0601に準拠して測定し、 R 値を得た。なお、この粗 z JIS  Using a measuring microscope, it was measured in accordance with JIS-B0601, and an R value was obtained. Note that this coarse z JIS
さ曲線の最大高さ粗さ(R )は実施例 4および 5のみ測定した。  The maximum height roughness (R) of the height curve was measured only in Examples 4 and 5.
z JIS  z JIS
[0121] 全光線诱渦率  [0121] Total ray 诱 vortex rate
ヘーズメーター (スガ試験機社製)を用いて、防眩フィルムに対する入射光強度 (T  Using a haze meter (manufactured by Suga Test Instruments Co., Ltd.), the incident light intensity (T
0 0
)と防眩フィルムを透過した全透過光強度 (τ )とを測定し、下記式により全光線透過 ) And the total transmitted light intensity (τ) transmitted through the anti-glare film, and
1  1
率 (τ (%))を算出した。  The rate (τ (%)) was calculated.
t  t
 圆
T t (%) =— X 1 0 0 T t (%) = — X 1 0 0
TO  TO
[0122] 白ぼけ  [0122] White blur
防眩層の表面の凸凹により外光が拡散反射され視覚的に白濁感を与えること(白 ぼけ)を、 目視にて判断した。 目視判断にて白濁感がない場合を〇、少し白濁感がぁ る場合を△、白濁感が目視ではつきり確認できる場合を Xと評価した。  It was visually determined that uneven light on the surface of the anti-glare layer diffused and reflected external light to give a visually cloudy feeling (blur). The case where there was no cloudiness was visually evaluated, the case where slight cloudiness was observed, and the case where the cloudiness could be visually confirmed were evaluated as X.
[0123] 表面の ffi.さ曲線要素の平均長さ (Sm) 表面の粗さ曲線要素の平均長さ(Sm)を、キーエンス製、超深度形状測定顕微鏡 を用レ、て JIS— B0633に準拠して測定し、 Sm値を得た。 [0123] Average length of surface ffi. Curve element (Sm) The average length (Sm) of the surface roughness curve element was measured according to JIS-B0633 using an ultra-depth shape measuring microscope manufactured by KEYENCE to obtain an Sm value.
[0124] ヘーズ(曇価) [0124] Haze (cloudiness value)
ヘーズメーター (スガ試験機社製)を用いて、防眩フィルムの拡散透光率 (T (%) )  Using a haze meter (manufactured by Suga Test Instruments Co., Ltd.), diffuse transmittance (T (%)) of the antiglare film
d および上記全光線透過率 (τ (%))を測定し、ヘーズを算出した。  d and the total light transmittance (τ (%)) were measured, and haze was calculated.
t  t
[数 7]  [Number 7]
H (%) =— X 1 0 0 H (%) = — X 1 0 0
T t  T t
H :ヘーズ (曇価) (%)  H: Haze (cloudiness value) (%)
T:拡散透光率(%)  T: Diffuse transmittance (%)
d  d
T:全光線透過率(%)  T: Total light transmittance (%)
t  t
[0125] この防眩層表面の凹凸状態の超深度形状測定顕微鏡による三次元画像は図 6の ごとくの海島構造を示した。得られた防眩フィルムは、蛍光灯下での蛍光灯の映り込 みが無ぐ防眩性に優れたものであった。  [0125] A three-dimensional image of the unevenness of the antiglare layer surface by an ultra-deep shape measurement microscope showed a sea-island structure as shown in FIG. The obtained anti-glare film was excellent in anti-glare properties, with no reflection of the fluorescent lamp under the fluorescent lamp.
[0126] 実施例 2  [0126] Example 2
調製例 2の不飽和二重結合含有シリコーンアクリルブロック共重合体 (この樹脂の S p値: 10. 6、 Tg : 76°C) 40重量部、調製例 4の不飽和二重結合含有アクリル共重合 体(この樹脂の Sp値: 9. 8、Tg : 113°C) 60重量部、光開始剤である 2, 4, 6_トリメチ ノレべンゾィルジフエニルフォスフィンオキサイド 5重量部、パーフルォロアルキル基含 有オリゴマー 0. 1重量部を、溶媒であるァニソールに混合して不揮発分率が 20重量 %となるように溶液を作成した。この溶液を、環境温度 23°Cで、トリァセチルセルロー スフイルム基板にスピンコーターにて lOOOrpmの回転数で 10秒間塗布し、次いで 1 20°Cで 10分間加熱して溶媒を揮散させて、膜厚を 8 x mとした。そのフィルム膜を超 高圧水銀灯で紫外線を照射して紫外線エネルギーが U/cm2になるように露光した 。得られた防眩フィルムおよび防眩層表面の凹凸を実施例 1と同様に評価した。評価 結果を表 2に示す。 40 parts by weight of the unsaturated double bond-containing silicone acrylic block copolymer of Preparation Example 2 (Sp value of this resin: 10.6, Tg: 76 ° C), and 40 parts by weight of the unsaturated double bond-containing acrylic copolymer of Preparation Example 4. 60 parts by weight of a polymer (Sp value of this resin: 9.8, Tg: 113 ° C), 5 parts by weight of 2,4,6_trimethylbenzoyldiphenylphosphine oxide as a photoinitiator, 0.1 part by weight of a perfluoroalkyl group-containing oligomer was mixed with anisol as a solvent to prepare a solution so that the nonvolatile content became 20% by weight. This solution was applied on a triacetyl cellulose film substrate at an ambient temperature of 23 ° C for 10 seconds with a spin coater at a rotation speed of 100 rpm, and then heated at 120 ° C for 10 minutes to evaporate the solvent to form a film. Was set to 8 xm. The film was irradiated with ultraviolet light from an ultra-high pressure mercury lamp so that the energy of the ultraviolet light became U / cm 2 . The obtained anti-glare film and anti-glare layer surface irregularities were evaluated in the same manner as in Example 1. Table 2 shows the evaluation results.
[0127] この防眩層表面の凹凸状態を超深度形状測定顕微鏡測定した三次元画像は図 7 のごとくの海島構造を示した。得られた防眩フィルムは蛍光灯下での蛍光灯の映り込 みが無ぐ防眩性に優れたものであった。 [0127] A three-dimensional image obtained by measuring the unevenness of the surface of the antiglare layer with an ultra-depth shape measurement microscope showed a sea-island structure as shown in FIG. The resulting anti-glare film reflects the fluorescent light under fluorescent light. It was excellent in anti-glare properties with no blemishes.
[0128] 実施例 3  [0128] Example 3
多官能性不飽和二重結合含有モノマーであるジペンタエリスリトールへキサアタリレ ート(このモノマーの Sp値: 12. 1) 75重量部と調製例 5の不飽和二重結合含有アタリ ル共重合体 (この樹脂の Sp値: 9. 9、Tg : 55°C)、光開始剤である 2, 4, 6_トリメチル ベンゾィルジフエニルフォスフィンオキサイド 5重量部、パーフルォロアルキル基含有 オリゴマー 0. 1重量部に、プロピレングリコールモノメチルエーテル(SP値: 10. 1)を 溶媒として不揮発分率が 23重量%となるように調整した。この溶液を、環境温度 23 。Cで、トリァセチルセルロースフィルム基板にバーコ一ター(No. 18)にてバーコート 塗布し、膜厚が 6 x mとなるように 50°Cで 10分間加熱して溶媒を除去乾燥した。その 後、この膜を超高圧水銀灯で紫外線を ljZcm2のエネルギーとなるように露光して防 眩層を形成した。得られた防眩フィルムおよび防眩層表面の凹凸を実施例 1と同様 に評価した。評価結果を表 2に示す。 Dipentaerythritol hexaatalylate, a polyfunctional unsaturated double bond-containing monomer (Sp value of this monomer: 12.1), 75 parts by weight and the unsaturated double bond-containing acrylyl copolymer of Preparation Example 5 ( Sp value of this resin: 9.9, Tg: 55 ° C), 5,4 parts by weight of photoinitiator 2,4,6-trimethylbenzoyldiphenylphosphine oxide, oligomer containing perfluoroalkyl group 0 To 1 part by weight, propylene glycol monomethyl ether (SP value: 10.1) was used as a solvent to adjust the nonvolatile fraction to 23% by weight. The solution is brought to ambient temperature 23. In C, a bar coat (No. 18) was applied to a triacetyl cellulose film substrate with a bar coater, and the mixture was heated at 50 ° C. for 10 minutes so that the film thickness became 6 × m, and the solvent was removed and dried. Thereafter, this film was exposed to ultraviolet light with an ultrahigh-pressure mercury lamp at an energy of ljZcm 2 to form an antiglare layer. The unevenness of the obtained antiglare film and antiglare layer surface was evaluated in the same manner as in Example 1. Table 2 shows the evaluation results.
[0129] この防眩層表面の凹凸状態の超深度形状測定顕微鏡による三次元画像は、図 8 のごとく海島構造を示した。得られた防眩フィルムは、蛍光灯下での蛍光灯の映り込 みが無ぐ防眩性に優れたものであった。  [0129] A three-dimensional image of the irregularities on the surface of the antiglare layer by an ultra-deep shape measurement microscope showed a sea-island structure as shown in FIG. The obtained anti-glare film was excellent in anti-glare properties, with no reflection of the fluorescent lamp under the fluorescent lamp.
[0130] 実施例 4  [0130] Example 4
調製例 6の不飽和二重結合含有アクリル共重合体 (この樹脂の Sp値: 10. 0、 Tg : 9 2°C) 20重量部と多官能性不飽和二重結合含有モノマーであるペンタエリスリトール トリアタリレート(このモノマーの Sp値: 12· 7) 90重量部、光開始剤である 2—メチルー 1 [4 (メチルチオ)フエニル] _2—モルフォリノプロパン 1—オン 7重量部を、溶媒で あるイソブチルアルコール(SP値: 11. 3)に混合して不揮発分率が 40重量%となる ように溶液を作成した。この溶液を、環境温度 23°Cで、トリァセチルセルロースフィノレ ム基板にバーコ一ター(No. 12)にてバーコート塗布し、膜厚が 6 z mとなるように 60 °Cで 1分間加熱して溶媒を除去乾燥し、防眩層を形成した。その後、この膜を超高圧 水銀灯で紫外線を ljZcm2のエネルギーとなるように露光して硬化させた。得られた 防眩フィルム及び防眩層表面の凹凸を実施例 1と同様に評価した。評価結果を表 2 に示す。 [0131] 実施例 5 20 parts by weight of the unsaturated double bond-containing acrylic copolymer of Preparation Example 6 (Sp value of this resin: 10.0, Tg: 92 ° C) and pentaerythritol, a monomer having a polyfunctional unsaturated double bond 90 parts by weight of triatalylate (Sp value of this monomer: 12.7), 7 parts by weight of 2-methyl-1 [4 (methylthio) phenyl] _2-morpholinopropane 1-one, a photoinitiator, as a solvent A solution was prepared by mixing with isobutyl alcohol (SP value: 11.3) so that the nonvolatile content was 40% by weight. This solution was applied to a triacetyl cellulose finolem substrate with a bar coater (No. 12) at an ambient temperature of 23 ° C with a bar coater, and heated at 60 ° C for 1 minute to a film thickness of 6 zm. Then, the solvent was removed and dried to form an antiglare layer. Thereafter, the film was cured by exposing it to ultraviolet light with an energy of ljZcm 2 using an ultra-high pressure mercury lamp. The unevenness of the obtained antiglare film and antiglare layer surface was evaluated in the same manner as in Example 1. Table 2 shows the evaluation results. [0131] Example 5
調製例 6の不飽和二重結合含有アクリル共重合体 (この樹脂の Sp値: 10. 0、 Tg : 9 2°C) 5重量部と多官能性不飽和二重結合含有モノマーであるペンタエリスリトールト リアタリレート(このモノマーの Sp値: 12. 7) 50重量部、ポリエチレングリコーノレ # 200 ジアタリレート(このモノマーの Sp値: 13. 6) 50重量部、光開始剤である 2_メチル _1 [4— (メチルチオ)フエニル]一 2_モルフォリノプロパン一 1_オン 13重量部を、溶媒で あるメチルイソプチルケトン(SP値: 8. 3)に混合して不揮発分が 60重量%となるよう に溶液を作成した。この溶液を、環境温度 23°Cで、トリァセチルセルロースフィルム 基板にバーコ一ター(No. 5)にてバーコート塗布し、膜厚が となるように 80°C で 3分間加熱して溶媒を除去乾燥した。その後、この膜を超高圧水銀灯で紫外線を 1 j/cm2のエネルギーとなるように露光して防眩層を形成し、硬化させた。得られた防 眩フィルム及び防眩層表面の凹凸を実施例 1と同様に評価した。評価結果を表 2に 示す。 5 parts by weight of the unsaturated double bond-containing acrylic copolymer of Preparation Example 6 (Sp value of this resin: 10.0, Tg: 92 ° C) and pentaerythritol, a monomer having a polyfunctional unsaturated double bond 50 parts by weight of triatalylate (Sp value of this monomer: 12.7), polyethylene glycol # 200 diatalylate (Sp value of this monomer: 13.6) 50 parts by weight, photoinitiator 2_methyl_1 [4— (Methylthio) phenyl] -12-morpholinopropane-1-one 13 parts by weight was mixed with a solvent, methyl isobutyl ketone (SP value: 8.3), to give a solution having a nonvolatile content of 60% by weight. It was created. This solution was applied to a triacetyl cellulose film substrate with a bar coater (No. 5) at an ambient temperature of 23 ° C with a bar coater, and heated at 80 ° C for 3 minutes so that the film thickness became, and the solvent was removed. Removed and dried. Thereafter, this film was exposed to ultraviolet light with an ultrahigh-pressure mercury lamp so as to have an energy of 1 j / cm 2 to form an antiglare layer and was cured. The unevenness of the obtained antiglare film and antiglare layer surface was evaluated in the same manner as in Example 1. Table 2 shows the evaluation results.
[0132] 比 1 (特許文献 1に基づく参考例)  [0132] Ratio 1 (Reference example based on Patent Document 1)
紫外線硬化性樹脂(日本化薬製 PETA) 100部、トリァセチルセルロース (バイエ ル社製) 1 · 7重量部、光硬化開始剤(チバガイギ一社製、ィルガキュア一 184) 5 重量部およびスチレンビーズ (総研化学製、粒径 2. 5 / m) 20重量部を混合した。ト ルェンを用いて固形分 40%に調整し、環境温度 23°Cで、トリァセチルセルロースフィ ルム基板上に、スピンコーターを用いて乾燥膜厚 3. 5 μ ΐηとなるように塗布した。 80 °Cで 10分間溶剤乾燥し、次いで紫外線を 200mj/cm (superscript: 2)照射して、 防眩層を形成した。得られた防眩フィルムおよび防眩層を実施例 1と同様に評価した 。評価結果を表 2に示す。  100 parts of ultraviolet curable resin (Nippon Kayaku PETA), 1.7 parts by weight of triacetyl cellulose (manufactured by Bayer), 5 parts by weight of photocuring initiator (manufactured by Ciba Geigy Co., Ltd., 184 Irgacure) and styrene beads ( 20 parts by weight of Soken Chemical Co., Ltd., particle size 2.5 / m) were mixed. The solid content was adjusted to 40% using toluene, and the resulting solution was applied on a triacetyl cellulose film substrate at an ambient temperature of 23 ° C using a spin coater so as to have a dry film thickness of 3.5 μΐη. The solvent was dried at 80 ° C for 10 minutes, and then irradiated with ultraviolet rays at 200 mj / cm (superscript: 2) to form an antiglare layer. The obtained antiglare film and antiglare layer were evaluated in the same manner as in Example 1. Table 2 shows the evaluation results.
[0133] 比 (特許文献 3に基づく参考例)  [0133] Ratio (Reference Example Based on Patent Document 3)
トリァセチルセルロースフィルム基板上に、フッ素基を導入したエポキシ樹脂とアタリ ル樹脂とを 2 : 1の割合で混合した溶液を、環境温度 23°Cで、スピンコーターにて塗 布した。温度 80°Cで 90分間加熱処理して塗布した樹脂を硬化させ、凸凹表面形状 の防眩層を形成した。得られた防眩フィルムおよび防眩層を実施例 1と同様に評価し た。評価結果を表 2に示す。この防眩層表面は海島構造を示した。得られた防眩フィ ルムは、蛍光灯下での映り込みがないが、全光線透過率は 80%と低ぐまた白ぼけ 評価は Xであった。 On a triacetyl cellulose film substrate, a solution in which a fluorine group-introduced epoxy resin and an acryl resin were mixed at a ratio of 2: 1 was applied at an ambient temperature of 23 ° C. by a spin coater. The applied resin was cured by heating at a temperature of 80 ° C for 90 minutes to form an antiglare layer having an uneven surface shape. The obtained antiglare film and antiglare layer were evaluated in the same manner as in Example 1. Table 2 shows the evaluation results. The surface of the antiglare layer showed a sea-island structure. Obtained anti-glare filter LUM has no glare under fluorescent lighting, but its total light transmittance is low at 80% and the white blur rating is X.
[0134] [表 1] [Table 1]
Figure imgf000032_0001
Figure imgf000032_0001
[0135] [表 2] [0135] [Table 2]
Figure imgf000033_0001
上記実施例において、本発明のコーティング組成物から形成される防眩フィルムは 、比較例によるものと比較して、全光線透過率が高くまた白ぼけもない等の優れた性 能を有することが確認された。また、実施例 4および 5に示すとおり、本発明により、へ ーズが低くかつ全光線透過率が高くまた白ぼけもないとレ、う優れた性能を有する防 眩フィルムを調製できることが確認された。
Figure imgf000033_0001
In the above examples, the anti-glare film formed from the coating composition of the present invention has excellent performance such as a high total light transmittance and no white blur as compared with the comparative example. confirmed. Further, as shown in Examples 4 and 5, it was confirmed that the present invention can prepare an antiglare film having a low haze, a high total light transmittance, and excellent performance without white blur. Was.

Claims

請求の範囲 The scope of the claims
[1] 透明基材上に塗布され防眩層を形成する防眩性コーティング組成物であって、 該防眩性コーティング組成物が第 1成分および第 2成分を含み、  [1] An antiglare coating composition applied on a transparent substrate to form an antiglare layer, wherein the antiglare coating composition comprises a first component and a second component,
該防眩性コーティング組成物を基材上に塗布した後に、該第 1成分および第 2成分 の物性の差に基づいて第 1成分と第 2成分とが相分離し、表面にランダムな凹凸を有 する樹脂層が形成される、  After applying the antiglare coating composition on a substrate, the first component and the second component undergo phase separation based on the difference in physical properties between the first component and the second component, and random irregularities are formed on the surface. Forming a resin layer having
防眩性コーティング組成物。  Anti-glare coating composition.
[2] 前記第 1成分および第 2成分が、それぞれ独立して、モノマー、オリゴマーおよび樹 脂からなる群から選択される 1種または 2種以上の組み合わせである、請求項 1記載 の防眩性コ一ティング組成物。  [2] The antiglare property according to claim 1, wherein the first component and the second component are each independently one or a combination of two or more selected from the group consisting of a monomer, an oligomer and a resin. Coating composition.
[3] 第 1成分の SP値と第 2成分の SP値との差が 0. 5以上である、請求項 1または 2記 載の防眩性コ一ティング組成物。  [3] The antiglare coating composition according to claim 1 or 2, wherein the difference between the SP value of the first component and the SP value of the second component is 0.5 or more.
[4] さらに有機溶媒を含む防眩性コ一ティング組成物であって、  [4] An antiglare coating composition further comprising an organic solvent,
第 1成分の SP値(SP )、第 2成分の SP値(SP )および有機溶媒の SP値(SP )力  SP value of the first component (SP), SP value of the second component (SP), and SP value of the organic solvent (SP)
1 2 sol 下記条件;  1 2 sol The following conditions;
SPく SP、および  SP then SP, and
1 2  1 2
SPと SP との差が 2以下である;  The difference between SP and SP is 2 or less;
1 sol  1 sol
を満たす関係にある、請求項 3記載の防眩性コーティング組成物。  4. The antiglare coating composition according to claim 3, wherein the relationship satisfies the following.
[5] 前記第 1成分がオリゴマーまたは樹脂であり、前記第 2成分がモノマーである、請求 項 3または 4記載の防眩性コ一ティング組成物。 5. The antiglare coating composition according to claim 3, wherein the first component is an oligomer or a resin, and the second component is a monomer.
[6] 前記第 1成分が不飽和二重結合含有アクリル共重合体であり、前記第 2成分が多 官能性不飽和二重結合含有モノマーである、請求項 5記載の防眩性コーティング組 成物。 6. The antiglare coating composition according to claim 5, wherein the first component is an unsaturated double bond-containing acrylic copolymer, and the second component is a polyfunctional unsaturated double bond-containing monomer. object.
[7] 前記第 1成分がシリコーンアクリルブロック共重合体であり、前記第 2成分がアクリル 共重合体である、請求項 3または 4記載の防眩性コーティング組成物。  7. The antiglare coating composition according to claim 3, wherein the first component is a silicone acrylic block copolymer, and the second component is an acrylic copolymer.
[8] 前記第 1成分および第 2成分が樹脂であって、第 1成分および第 2成分のうちいず れか一方が、組成物塗布時の環境温度より低い Tgを有し、他の一方が組成物塗布 時の環境温度より高い Tgを有する、請求項 1または 2記載の防眩性コーティング組成 物。 [8] The first component and the second component are resins, and one of the first component and the second component has a Tg lower than the ambient temperature at the time of application of the composition, and the other one. The antiglare coating composition according to claim 1, wherein the composition has a Tg higher than the ambient temperature at the time of application of the composition. object.
[9] 前記第 1成分または第 2成分のいずれか一方がモノマーであって、  [9] One of the first component and the second component is a monomer,
第 1成分および第 2成分の Tgの差が 20°C以上であり、および  The difference between the Tg of the first component and the second component is 20 ° C or more, and
第 1成分および第 2成分において、より高レ、 Tgを有する成分の Tgが 20°C以上である 、請求項 1一 3いずれかに記載の防眩性コーティング組成物。  14. The antiglare coating composition according to claim 13, wherein in the first component and the second component, the component having a higher level and Tg has a Tg of 20 ° C. or higher.
[10] さらに硬化剤を含む、請求項 1一 9いずれかに記載の防眩性コーティング組成物。 [10] The antiglare coating composition according to any one of claims 119, further comprising a curing agent.
[11] 樹脂粒子を含まないことを特徴とする、請求項 1一 10いずれか記載の防眩性コー ティング組成物。 [11] The antiglare coating composition according to any one of claims 110 to 110, which does not contain resin particles.
[12] 透明基材および防眩層を有する防眩フィルムであって、該防眩層が請求項 1一 11 いずれかに記載の防眩性コーティング組成物から形成される、防眩フィルム。  [12] An anti-glare film having a transparent substrate and an anti-glare layer, wherein the anti-glare layer is formed from the anti-glare coating composition according to claim 11.
[13] 防眩フィルムのヘーズが 20。/o未満である、請求項 12記載の防眩フィルム。 [13] The antiglare film has a haze of 20. 13. The antiglare film according to claim 12, which is less than / o.
[14] 防眩フィルムの R (十点平均粗さ)が 1. O z m以下である、請求項 12記載の [14] The method according to claim 12, wherein R (ten-point average roughness) of the antiglare film is 1.O zm or less.
z JIS94  z JIS94
防眩フィルム。  Anti-glare film.
[15] 防眩フィルムの表面の粗さ曲線要素の平均長さ(Sm)が 100 /i m以下である、請求 項 12記載の防眩フィルム。  15. The antiglare film according to claim 12, wherein the average length (Sm) of the surface roughness curve element of the antiglare film is 100 / im or less.
[16] 防眩フィルムの散乱角に対する散乱光強度が極大値を有さない、請求項 12記載 の防眩フィルム。 16. The antiglare film according to claim 12, wherein the scattered light intensity with respect to the scattering angle of the antiglare film does not have a maximum value.
[17] 透明基材に、請求項 1一 11いずれかに記載の防眩性コーティング組成物を塗布す る塗布工程、および  [17] An application step of applying the antiglare coating composition according to any one of claims 11 to 11 to a transparent substrate, and
得られた塗膜を硬化させる硬化工程、  A curing step of curing the obtained coating film,
を包含する、防眩フィルムの製造方法。  A method for producing an antiglare film, comprising:
[18] 透明基材に、請求項 1一 11いずれかに記載の防眩性コーティング組成物を塗布す る塗布工程、 [18] An application step of applying the antiglare coating composition according to any one of claims 11 to 11 to a transparent substrate.
得られた塗膜を乾燥させて相分離させる乾燥工程、および  A drying step of drying and phase-separating the obtained coating film, and
乾燥させた塗膜を硬化させる硬化工程、  A curing step of curing the dried coating film,
を包含する、防眩フィルムの製造方法。  A method for producing an antiglare film, comprising:
[19] 透明基材に、請求項 1一 11いずれかに記載の防眩性コーティング組成物を塗布す る塗布工程、および 得られた塗膜に光を照射して、相分離および硬化させる光照射工程、 を包含する、防眩フィルムの製造方法。 [19] An application step of applying the antiglare coating composition according to any one of claims 11 to 11 to a transparent substrate, and A method for producing an antiglare film, comprising: irradiating the obtained coating film with light to perform phase separation and curing.
[20] 請求項 17— 19いずれかに記載の防眩フィルムの製造方法により得られる防眩フィ ノレム。  [20] An anti-glare finale obtained by the method for producing an anti-glare film according to any one of claims 17 to 19.
[21] 請求項 12— 16いずれかに記載の防眩フィルムと偏光素子とを有する偏光板であ つて、透明基材に設けられた防眩層とは反対面である防眩フィルム表面と偏光素子 表面とが対向して積層されている、偏光板。  [21] A polarizing plate comprising the anti-glare film according to any one of claims 12 to 16 and a polarizing element, wherein the surface of the anti-glare film opposite to the anti-glare layer provided on the transparent substrate is polarized. A polarizing plate in which an element surface is laminated to face.
[22] 平面状の透光性表示体と、該透光性表示体を背面から照射する光源装置と、該透 光性表示体の表面に積層された請求項 12— 16いずれかに記載の防眩フィルムと、 を有する透過型表示装置。 [22] The translucent display according to any one of claims 12 to 16, wherein the translucent display has a flat shape, a light source device for irradiating the transmissive display from the back, and a light-emitting device laminated on the surface of the transmissive display. A transmissive display device comprising: an anti-glare film;
[23] 請求項 12— 16いずれかに記載の防眩フィルムがディスプレイの最表層に用いられ た液晶表示装置。 [23] A liquid crystal display device, wherein the antiglare film according to any one of claims 12 to 16 is used as the outermost layer of a display.
PCT/JP2005/001217 2004-01-29 2005-01-28 Antidazzle coating composition, antidazzle film and process for producing the same WO2005073763A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020067015219A KR101154807B1 (en) 2004-01-29 2005-01-28 Antidazzle coating composition, antidazzle film and process for producing the same
JP2005517515A JP3998697B2 (en) 2004-01-29 2005-01-28 Antiglare coating composition, antiglare film and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004021805 2004-01-29
JP2004-021805 2004-01-29

Publications (1)

Publication Number Publication Date
WO2005073763A1 true WO2005073763A1 (en) 2005-08-11

Family

ID=34823808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/001217 WO2005073763A1 (en) 2004-01-29 2005-01-28 Antidazzle coating composition, antidazzle film and process for producing the same

Country Status (5)

Country Link
JP (1) JP3998697B2 (en)
KR (1) KR101154807B1 (en)
CN (1) CN1914523A (en)
TW (1) TW200537127A (en)
WO (1) WO2005073763A1 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005298722A (en) * 2004-04-14 2005-10-27 Nikko Kagaku Kenkyusho:Kk Polymer solution, lusterless coating material and decorative sheet
JP2007062102A (en) * 2005-08-30 2007-03-15 Nippon Zeon Co Ltd Anti-glaring film and its manufacturing method
JP2007182519A (en) * 2006-01-10 2007-07-19 Nippon Paint Co Ltd Antiblocking photosetting resin composition, antiblocking structure obtained by applying and curing the composition to substrate and method for producing the same
JP2007217606A (en) * 2006-02-17 2007-08-30 Fujifilm Corp Process for producing functional film
JP2007246714A (en) * 2006-03-16 2007-09-27 Nippon Paint Co Ltd Coating composition which forms finely uneven surfaces and application thereof
JP2008046497A (en) * 2006-08-18 2008-02-28 Dainippon Printing Co Ltd Optical laminate, its manufacturing method, polarizing plate, and image display device
JP2008046496A (en) * 2006-08-18 2008-02-28 Dainippon Printing Co Ltd Optical laminate, polarizing plate and image display device
JP2008062538A (en) * 2006-09-08 2008-03-21 Nakajima Kogyo Kk Glare shielding film
JP2008156452A (en) * 2006-12-22 2008-07-10 Shin Etsu Polymer Co Ltd Antistatic coating and antistatic coating film
WO2008088059A1 (en) 2007-01-16 2008-07-24 Teijin Limited Transparent conductive multilayer body and touch panel made of the same
JP2008225195A (en) * 2007-03-14 2008-09-25 Daicel Chem Ind Ltd Antiglare film and method for manufacturing the same
WO2008133113A1 (en) * 2007-04-18 2008-11-06 Toppan Printing Co., Ltd. True/false judging method, discriminator and polarizer
WO2009054464A1 (en) 2007-10-26 2009-04-30 Teijin Limited Transparent conductive laminate and transparent touch panel
WO2009054227A1 (en) 2007-10-26 2009-04-30 Teijin Limited Transparent conductive laminate and touch panel
JP2009120817A (en) * 2007-10-26 2009-06-04 Nippon Bee Chemical Co Ltd Weatherproof anti-glare coating composition, weatherproof anti-glare film, and method for manufacturing the same
JP2009137290A (en) * 2007-11-15 2009-06-25 Jsr Corp Norbornene resin film having hard coat layer and manufacturing process of norbornene resin film having hard coat layer
WO2010073781A1 (en) 2008-12-26 2010-07-01 帝人株式会社 Transparent conductive laminate and transparent touch panel comprising same
WO2010073797A1 (en) 2008-12-26 2010-07-01 帝人株式会社 Transparent electroconductive laminate and transparent touch panel
JP2010523788A (en) * 2007-04-13 2010-07-15 エルジー・ケム・リミテッド Optical film, retardation film, and liquid crystal display device including the same
JP2010525390A (en) * 2007-04-16 2010-07-22 エルジー・ケム・リミテッド Optical film and liquid crystal display device including the same
JP2010170986A (en) * 2008-12-26 2010-08-05 Teijin Ltd Transparent conductive laminate and transparent touch panel
JP2012022189A (en) * 2010-07-15 2012-02-02 Dainippon Printing Co Ltd Optical laminate, polarizing plate, and image display device
CN102676064A (en) * 2012-04-28 2012-09-19 烟台德邦科技有限公司 Matte adhesive and preparation method thereof
JP2014028506A (en) * 2012-06-27 2014-02-13 General Co Ltd Board sheet and white board using the same
JP2016049748A (en) * 2014-09-02 2016-04-11 日油株式会社 Antiglare film for insert molding and resin molded article prepared therewith
JP2017515153A (en) * 2014-04-25 2017-06-08 スリーエム イノベイティブ プロパティズ カンパニー Textured coating for optical products
JP2017177480A (en) * 2016-03-29 2017-10-05 日油株式会社 Anti-glare anti-reflection film for insert molding and resin molded product produced using the same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8431216B2 (en) 2007-05-05 2013-04-30 Lg Display Co., Ltd. Optical film for a display device and method of fabricating the same
JP2010191370A (en) 2009-02-20 2010-09-02 Nippon Bee Chemical Co Ltd Antiglare coating composition, antiglare film, and method for manufacturing the same
TWI477822B (en) * 2009-03-25 2015-03-21 Sumitomo Chemical Co Anti-glare film
KR101743785B1 (en) * 2009-03-30 2017-06-05 닛뽄세이시가부시끼가이샤 Antiglare hardcoat film
CN101749644B (en) * 2009-12-31 2013-02-27 长兴化学工业股份有限公司 Diffusion membrane and manufacturing method thereof
CN103323902B (en) * 2013-06-21 2016-03-16 南京中电熊猫液晶显示科技有限公司 A kind of anti-glare optical thin film and manufacture method thereof
CN106707605A (en) * 2017-02-28 2017-05-24 合肥鑫晟光电科技有限公司 Display panel and display equipment comprising same
CN112433278B (en) * 2020-11-27 2022-07-29 宁波东旭成新材料科技有限公司 Preparation method of light diffusion film
CN114231158A (en) * 2021-12-24 2022-03-25 惠州合益创光学材料有限公司 Composition for high-precision anti-dazzle coating and high-precision anti-dazzle film thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11199798A (en) * 1998-01-19 1999-07-27 Nikko Kagaku Kenkyusho:Kk Multiphase-structure-forming coating agent, method for forming multiphase-structure film, and optical-path conversion film
JP2000193808A (en) * 1998-12-25 2000-07-14 Asahi Glass Co Ltd Surface side substrate and manufacture of the same, and reflection display element
WO2001061403A1 (en) * 2000-02-16 2001-08-23 Matsushita Electric Industrial Co., Ltd. Formed body, reflecting plate, reflection display device, and method for fabricating reflecting plate
US6483562B1 (en) * 1999-03-15 2002-11-19 Toppan Printing Co., Ltd. Electrode substrate and reflection type liquid crystal display device having low compatibility between resins
US20030112520A1 (en) * 2001-12-17 2003-06-19 Hiroshi Takahashi Anti-glare film, and optical member and liquid crystal display apparatus using the same
JP2004008840A (en) * 2002-06-04 2004-01-15 Nitto Denko Corp Method for manufacturing coating film sheet, method for manufacturing antireflection sheet, antireflection sheet, optical element, and image display apparatus
JP2004306328A (en) * 2003-04-03 2004-11-04 Daicel Chem Ind Ltd Anti-glaring film

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11199798A (en) * 1998-01-19 1999-07-27 Nikko Kagaku Kenkyusho:Kk Multiphase-structure-forming coating agent, method for forming multiphase-structure film, and optical-path conversion film
JP2000193808A (en) * 1998-12-25 2000-07-14 Asahi Glass Co Ltd Surface side substrate and manufacture of the same, and reflection display element
US6483562B1 (en) * 1999-03-15 2002-11-19 Toppan Printing Co., Ltd. Electrode substrate and reflection type liquid crystal display device having low compatibility between resins
WO2001061403A1 (en) * 2000-02-16 2001-08-23 Matsushita Electric Industrial Co., Ltd. Formed body, reflecting plate, reflection display device, and method for fabricating reflecting plate
US20030112520A1 (en) * 2001-12-17 2003-06-19 Hiroshi Takahashi Anti-glare film, and optical member and liquid crystal display apparatus using the same
JP2004008840A (en) * 2002-06-04 2004-01-15 Nitto Denko Corp Method for manufacturing coating film sheet, method for manufacturing antireflection sheet, antireflection sheet, optical element, and image display apparatus
JP2004306328A (en) * 2003-04-03 2004-11-04 Daicel Chem Ind Ltd Anti-glaring film

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005298722A (en) * 2004-04-14 2005-10-27 Nikko Kagaku Kenkyusho:Kk Polymer solution, lusterless coating material and decorative sheet
JP4746845B2 (en) * 2004-04-14 2011-08-10 株式会社ニッコー化学研究所 Polymer solution, matte paint and decorative sheet
JP2007062102A (en) * 2005-08-30 2007-03-15 Nippon Zeon Co Ltd Anti-glaring film and its manufacturing method
JP2007182519A (en) * 2006-01-10 2007-07-19 Nippon Paint Co Ltd Antiblocking photosetting resin composition, antiblocking structure obtained by applying and curing the composition to substrate and method for producing the same
JP2007217606A (en) * 2006-02-17 2007-08-30 Fujifilm Corp Process for producing functional film
JP2007246714A (en) * 2006-03-16 2007-09-27 Nippon Paint Co Ltd Coating composition which forms finely uneven surfaces and application thereof
JP2008046497A (en) * 2006-08-18 2008-02-28 Dainippon Printing Co Ltd Optical laminate, its manufacturing method, polarizing plate, and image display device
JP2008046496A (en) * 2006-08-18 2008-02-28 Dainippon Printing Co Ltd Optical laminate, polarizing plate and image display device
JP2008062538A (en) * 2006-09-08 2008-03-21 Nakajima Kogyo Kk Glare shielding film
JP2008156452A (en) * 2006-12-22 2008-07-10 Shin Etsu Polymer Co Ltd Antistatic coating and antistatic coating film
WO2008088059A1 (en) 2007-01-16 2008-07-24 Teijin Limited Transparent conductive multilayer body and touch panel made of the same
US11327621B2 (en) 2007-01-16 2022-05-10 Teijin Limited Transparent conductive multilayer body and touch panel made of the same
EP2109116A4 (en) * 2007-01-16 2010-08-04 Teijin Ltd Transparent conductive multilayer body and touch panel made of the same
EP2109116A1 (en) * 2007-01-16 2009-10-14 Teijin Limited Transparent conductive multilayer body and touch panel made of the same
US20090315849A1 (en) * 2007-01-16 2009-12-24 Teijin Limited Transparent conductive multilayer body and touch panel made of the same
JP2008225195A (en) * 2007-03-14 2008-09-25 Daicel Chem Ind Ltd Antiglare film and method for manufacturing the same
JP2010523788A (en) * 2007-04-13 2010-07-15 エルジー・ケム・リミテッド Optical film, retardation film, and liquid crystal display device including the same
JP2013152473A (en) * 2007-04-16 2013-08-08 Lg Chem Ltd Optical film and liquid crystal display including the same
JP2010525390A (en) * 2007-04-16 2010-07-22 エルジー・ケム・リミテッド Optical film and liquid crystal display device including the same
WO2008133113A1 (en) * 2007-04-18 2008-11-06 Toppan Printing Co., Ltd. True/false judging method, discriminator and polarizer
JP5375603B2 (en) * 2007-04-18 2013-12-25 凸版印刷株式会社 Authenticity determination method and discriminator
US8512847B2 (en) 2007-10-26 2013-08-20 Teijin Limited Transparent conductive laminate and touch panel
EP2211356A1 (en) * 2007-10-26 2010-07-28 Teijin Limited Transparent conductive laminate and transparent touch panel
WO2009054464A1 (en) 2007-10-26 2009-04-30 Teijin Limited Transparent conductive laminate and transparent touch panel
JP2009120817A (en) * 2007-10-26 2009-06-04 Nippon Bee Chemical Co Ltd Weatherproof anti-glare coating composition, weatherproof anti-glare film, and method for manufacturing the same
CN101874275B (en) * 2007-10-26 2015-09-09 帝人株式会社 Transparent conductive laminate and touch panel
EP2211356A4 (en) * 2007-10-26 2010-10-06 Teijin Ltd Transparent conductive laminate and transparent touch panel
JP2009123685A (en) * 2007-10-26 2009-06-04 Teijin Ltd Transparent conductive laminated body and touch panel
US8623498B2 (en) 2007-10-26 2014-01-07 Teijin Limited Transparent electroconductive laminate and transparent touch panel
KR101521317B1 (en) * 2007-10-26 2015-05-18 데이진 가부시키가이샤 Transparent conductive laminate and touch panel
WO2009054227A1 (en) 2007-10-26 2009-04-30 Teijin Limited Transparent conductive laminate and touch panel
JP2009137290A (en) * 2007-11-15 2009-06-25 Jsr Corp Norbornene resin film having hard coat layer and manufacturing process of norbornene resin film having hard coat layer
JP2010170986A (en) * 2008-12-26 2010-08-05 Teijin Ltd Transparent conductive laminate and transparent touch panel
US10061461B2 (en) 2008-12-26 2018-08-28 Teijin Limited Transparent electroconductive laminate and transparent touch panel using the same
CN102265355A (en) * 2008-12-26 2011-11-30 帝人株式会社 Transparent electroconductive laminate and transparent touch panel
WO2010073781A1 (en) 2008-12-26 2010-07-01 帝人株式会社 Transparent conductive laminate and transparent touch panel comprising same
EP2639798A1 (en) 2008-12-26 2013-09-18 Teijin Limited Transparent electroconductive laminate and transparent touch panel
KR101611648B1 (en) * 2008-12-26 2016-04-11 데이진 가부시키가이샤 Transparent electroconductive laminate and transparent touch panel
US9652059B2 (en) 2008-12-26 2017-05-16 Teijin Limited Transparent electroconductive laminate and transparent touch panel
WO2010073797A1 (en) 2008-12-26 2010-07-01 帝人株式会社 Transparent electroconductive laminate and transparent touch panel
JP2012022189A (en) * 2010-07-15 2012-02-02 Dainippon Printing Co Ltd Optical laminate, polarizing plate, and image display device
CN102676064A (en) * 2012-04-28 2012-09-19 烟台德邦科技有限公司 Matte adhesive and preparation method thereof
JP2014028506A (en) * 2012-06-27 2014-02-13 General Co Ltd Board sheet and white board using the same
JP2017515153A (en) * 2014-04-25 2017-06-08 スリーエム イノベイティブ プロパティズ カンパニー Textured coating for optical products
JP2016049748A (en) * 2014-09-02 2016-04-11 日油株式会社 Antiglare film for insert molding and resin molded article prepared therewith
JP2017177480A (en) * 2016-03-29 2017-10-05 日油株式会社 Anti-glare anti-reflection film for insert molding and resin molded product produced using the same

Also Published As

Publication number Publication date
KR20060129331A (en) 2006-12-15
TW200537127A (en) 2005-11-16
KR101154807B1 (en) 2012-06-18
CN1914523A (en) 2007-02-14
JPWO2005073763A1 (en) 2007-09-13
JP3998697B2 (en) 2007-10-31
TWI350387B (en) 2011-10-11

Similar Documents

Publication Publication Date Title
WO2005073763A1 (en) Antidazzle coating composition, antidazzle film and process for producing the same
US20110003093A1 (en) Anti-glare film and process for producing the same
JP2008197320A (en) Antiglare coating composition, antiglare film, and method for manufacturing the same
KR101720333B1 (en) Anti-glare coating composition, anti-glare film and method of producing the same
WO2011065531A1 (en) Optical film and touch panel
JP2008058723A (en) Anti-glare film and liquid crystal display apparatus
CN103080778A (en) Optical laminate, polarizing plate and image display device
JP2018533067A (en) Antireflection film and display device
JP4914858B2 (en) Light scattering film, polarizing plate and liquid crystal display device
KR101069569B1 (en) Composition for forming hard-coat layer, hard-coat film, optical element, and image display
CN111433640A (en) Anti-glare film, and method for producing same and use thereof
TW201930082A (en) Anti-glare film, method for producing same, and use thereof
JP2007148383A (en) Antireflection film and image display apparatus
JP5490487B2 (en) Optical laminate
JP5753285B2 (en) Optical laminate
JP5449760B2 (en) Coating composition, laminate and method for producing laminate
JP5453169B2 (en) Anti-glare gas barrier film and method for producing the same
JP2008310119A (en) Antireflection film
JP2007246714A (en) Coating composition which forms finely uneven surfaces and application thereof
JP4524150B2 (en) Antireflection film, polarizing plate, image display device, and production method of antireflection film
JP5426329B2 (en) Optical laminate
JP2011098445A (en) Optical laminate and method for manufacturing the same, and polarizing plate and display device using the same
JP7343273B2 (en) Anti-glare film, method for producing anti-glare film, optical member and image display device
JP2000194503A (en) Reflection-reducing touch panel and manufacture
JP2008197414A (en) Anti-reflection film and image display apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005517515

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020067015219

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580003742.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 1020067015219

Country of ref document: KR

122 Ep: pct application non-entry in european phase