WO2005071039A1 - 波長変換器、発光装置、波長変換器の製造方法および発光装置の製造方法 - Google Patents

波長変換器、発光装置、波長変換器の製造方法および発光装置の製造方法 Download PDF

Info

Publication number
WO2005071039A1
WO2005071039A1 PCT/JP2005/000972 JP2005000972W WO2005071039A1 WO 2005071039 A1 WO2005071039 A1 WO 2005071039A1 JP 2005000972 W JP2005000972 W JP 2005000972W WO 2005071039 A1 WO2005071039 A1 WO 2005071039A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
wavelength
light emitting
wavelength converter
emitting device
Prior art date
Application number
PCT/JP2005/000972
Other languages
English (en)
French (fr)
Inventor
Masato Fukudome
Toshiaki Shigeoka
Fujito Nakagawaji
Tetsuaki Ozaki
Original Assignee
Kyocera Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corporation filed Critical Kyocera Corporation
Priority to US10/597,470 priority Critical patent/US20080231170A1/en
Priority to JP2005517312A priority patent/JP4653662B2/ja
Publication of WO2005071039A1 publication Critical patent/WO2005071039A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/58Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing copper, silver or gold
    • C09K11/582Chalcogenides
    • C09K11/584Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/56Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
    • C09K11/562Chalcogenides
    • C09K11/565Chalcogenides with zinc cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/59Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing silicon
    • C09K11/592Chalcogenides
    • C09K11/595Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/64Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium
    • C09K11/641Chalcogenides
    • C09K11/642Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/64Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium
    • C09K11/641Chalcogenides
    • C09K11/643Chalcogenides with alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/70Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus
    • C09K11/701Chalcogenides
    • C09K11/703Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7734Aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7737Phosphates
    • C09K11/7738Phosphates with alkaline earth metals
    • C09K11/7739Phosphates with alkaline earth metals with halogens
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7767Chalcogenides
    • C09K11/7769Oxides
    • C09K11/7771Oxysulfides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7777Phosphates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7784Chalcogenides
    • C09K11/7787Oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7784Chalcogenides
    • C09K11/7787Oxides
    • C09K11/7789Oxysulfides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7794Vanadates; Chromates; Molybdates; Tungstates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7797Borates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials

Definitions

  • Wavelength converter light emitting device, method of manufacturing wavelength converter, and method of manufacturing light emitting device
  • the present invention relates to a wavelength converter, a light emitting device, a method of manufacturing a wavelength converter, and a method of manufacturing a light emitting device used for a light emitting device that converts light emitted from a light emitting element into a wavelength and extracts the light to the outside.
  • the present invention relates to a wavelength converter, a light emitting device, a method for manufacturing a wavelength converter, and a method for manufacturing a light emitting device, which are preferably used for a backlight power supply for an electronic display, a fluorescent lamp, and the like.
  • LED chips Light-emitting elements made of a semiconductor material (hereinafter, also referred to as LED chips) are small in size, have high power efficiency, and emit vivid colors. In addition, LED chips have excellent features such as long product life and low on power consumption as they are strong in repeated on-off lighting, making them suitable for backlight sources such as liquid crystals and lighting sources such as fluorescent lamps. The application of is expected.
  • the application of the LED chip to a light emitting device is such that part of the light of the LED chip is wavelength-converted by a phosphor, and the wavelength-converted light is mixed with the wavelength-converted light, and the LED light is mixed and emitted. By doing so, it has already been manufactured as a light-emitting device that emits a color different from the LED light.
  • a light emitting device has been proposed in which a wavelength conversion layer containing a phosphor is provided on the LED chip surface to emit white light.
  • the light emitting device is composed of a substrate 22 on which an electrode 21 is formed, an LED light emitting element 23 having a semiconductor material emitting light having a center wavelength of 470 nm on the substrate 22, and a light emitting element 23 on the substrate 22. And a wavelength conversion layer 24 provided so as to cover 23, wherein the wavelength conversion layer 24 contains a phosphor 25. .
  • a reflector 26 for reflecting light may be provided on the side surface of the light emitting element 23 and the wavelength conversion layer 24, and the light escaping to the side surface may be focused forward to increase the intensity of the output light.
  • the phosphor when the light emitted from the light emitting element 23 is applied to the phosphor, the phosphor is excited to emit visible light, and this visible light is used as an output.
  • a purple LED chip having a peak of 40 Onm or less is used as the LED light emitting element 23 in FIG. 6, and three kinds of phosphors 25 are formed on the wavelength conversion layer 24 by a polymer resin. It has been proposed to adopt a structure mixed therein and convert violet light into red, green and blue wavelengths to emit white light (for example, see Patent Document 2).
  • the light emitting device described in Patent Document 2 has an advantage that the color rendering properties are greatly improved because it covers a wide range of emission wavelengths. Self-quenching occurs due to the interaction between the phosphors, such as the red phosphor absorbing the light converted by the blue phosphor because the 25 types of phosphors 25 are mixed and present. Since the phosphor absorbs the light again, the luminous efficiency as a whole decreases. As a result, the light-emitting device with insufficient light-emission intensity becomes darker, and it is necessary to increase power consumption to compensate for this.
  • Patent Document 3 has a problem that the luminous efficiency (fluorescence quantum yield) of the phosphor is low, and particularly the luminous efficiency of red in the 600 to 750 nm region is low.
  • Non-Patent Document 1 it has been studied to use semiconductor ultrafine particles having an average particle diameter of lOnm or less as a phosphor for obtaining high luminous efficiency at each wavelength.
  • the semiconductor ultrafine particles when the average particle size of the semiconductor ultrafine particles is set to an appropriate value of about lOnm, the semiconductor ultrafine particles rapidly repeat light absorption and light emission, so that a high fluorescence yield can be obtained. Also, since the energy level becomes discrete and the band gap energy of the semiconductor ultrafine particles changes according to the particle size of the phosphor, changing the particle size of the semiconductor ultrafine particles changes the red (long wavelength) to blue ( It shows various light emission up to short wavelength).
  • cadmium selenide which emits fluorescence at a wavelength of 700 to 800 nm, has a particle size of 2 nm to lOnm By changing within the range, light with high fluorescence yield, red (long wavelength) to blue (short wavelength) is emitted. Therefore, it is expected that an efficient light-emitting device with high color rendering can be produced by using this method.
  • the first problem is that when the particle size of the semiconductor particles is reduced to about 20 nm, the ratio of the surface area to the volume is high, and the particle surface reacts with water to cause deterioration of the fluorescence characteristics. . For this reason, in order to obtain a stable light emitting device for a long period of time, it is necessary to devise a method that does not expose the phosphor particles to moisture.
  • As a method of solving this problem there is a method of mounting a phosphor in a light emitting device as a composite in which a phosphor is dispersed in a resin matrix having low moisture permeability.
  • the phosphor reacts with moisture in the process of mixing the phosphor with the resin and hardening, thereby deteriorating the characteristics of the phosphor.
  • the second problem is that semiconductor ultrafine particles are aggregated.
  • the diameter of the semiconductor particles exceeds 20 nm, even if the semiconductor particles form an aggregate, the color of the light generated by the aggregate is the same as the color of the light generated by the single particle, so that the aggregation is not so large. You don't need to worry.
  • Non-Patent Document 2 As a method for solving the second problem, there has been reported a method of dispersing and fixing semiconductor ultrafine particles as single particles in a polymethacrylate matrix (see Non-Patent Document 2). Also, ultrafine semiconductor particles are dispersed in ethanol, There has been reported a method of obtaining a film in which semiconductor ultrafine particles are dispersed by mixing and applying the mixture to a tylene oxide paint (see Patent Document 5).
  • Another characteristic required of the resin of the wavelength conversion section in which semiconductor ultrafine particles are dispersed in the resin is transparency. Therefore, it is possible to stably disperse semiconductor ultrafine particles as single particles in a resin that satisfies all three characteristics of light stability, heat resistance, and transparency. This is important in manufacturing a light-emitting device that emits white light.
  • the semiconductor ultrafine particles have an energy higher than the band gap, the emission life is 100,000 times shorter than that of rare earths, where the excitation wavelength is not limited. It has the advantage of much less degradation than organic dyes. Therefore, it is expected that a highly efficient and long-life light emitting device can be realized.
  • Non-Patent Document 2 reports a method of fixing cadmium selenium nanoparticles coated with trioctylphosphine in a polymethacrylate matrix.
  • the hydrocarbon-based polymer resin used as the matrix is inferior in light resistance, heat resistance, etc., and because water and oxygen permeate little by little, the immobilized semiconductor ultrafine particles gradually deteriorate. there were.
  • Patent Document 1 JP-A-11-261114
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2002-314142
  • Patent Document 3 JP 2003-160336 A
  • Patent Document 4 JP 2003-225900A
  • Patent Document 5 JP 2002-121548 A Non-patent document 1: RN Bhargava, Phys. Rev. Lett., 72, 416 (1994)
  • Non-patent document 2 Jinwook Lee et al, Adv. Mater., 12, No. 15, 1102 (2000) Disclosure of the invention
  • a main object of the present invention is to provide a wavelength converter that reduces self-quenching between phosphors and is useful for a light emitting device having high luminous efficiency, and a light emitting device using the same.
  • Another object of the present invention is to use semiconductor ultrafine particles having an average particle diameter of 20 nm or less, suppress the deterioration of the fluorescence characteristics due to moisture, and disperse the semiconductor ultrafine particles in a resin as single particles without aggregation.
  • An object of the present invention is to provide a wavelength converter and a light emitting device using the same.
  • a wavelength converter according to the present invention for solving the above problems has the following configuration.
  • At least one kind of semiconductor ultrafine particles having an average particle diameter of 20 nm or less and at least one kind of fluorescent substance having an average particle diameter of 0.1 ⁇ or more are each a resin matrix.
  • a wavelength converter comprising a plurality of wavelength conversion layers contained therein.
  • the semiconductor composition wherein the semiconductor ultrafine particles are composed of at least two or more elements belonging to Groups IB, II, III, IV, V and VI of the periodic table.
  • the wavelength converter according to (1) wherein
  • the surface modifying molecule is selected from an amino group, a mercapto group, a carboxy group, an amide group, an estereno group, a carbonyl group, a phosphoxide group, a sulfoxide group, a phosphone group, an imine group, a butyl group, a hydroxy group, and an ether group.
  • the wavelength converter according to (6) comprising at least one selected functional group.
  • the side chain is methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butynole group, n-pentynole group, iso-pentynole group, n-xynole group, iso- Hexinole, cyclohexyl, methoxy, ethoxy, n-propoxy, iso-propoxy, n-butoxy, iso-butbutoxy, n-pentoxy, iso-pentoxy, n-xyloxy, iso —Hexyloxy group and cyclohexyloxy group power
  • the wavelength conversion layer according to (13) which is at least one selected from the group consisting of:
  • the light emitting device of the present invention has the following configuration.
  • a light-emitting device comprising: a light-emitting element that is provided on a substrate and emits excitation light; and a wavelength converter that is located in front of the light-emitting element and converts the excitation light into visible light, and uses the visible light as output light.
  • the wavelength converter comprises, as a phosphor, at least one kind of semiconductor ultrafine particles having an average particle diameter of 20 nm or less, and at least one kind of fluorescent substance having an average particle diameter of 0.1 / m or more.
  • a light emitting device comprising a plurality of wavelength conversion layers each containing a compound in a resin matrix.
  • the plurality of wavelength conversion layers are arranged so that the peak wavelength of the converted light converted by each wavelength conversion layer becomes shorter in order from the light emitting element side to the outer side.
  • each of the plurality of wavelength conversion layers contains a phosphor.
  • the wavelength converter includes at least three wavelength conversion layers, and the three wavelength conversion layers
  • a wavelength conversion layer containing the semiconductor ultrafine particles is provided on the light emitting element side, and a peak wavelength of output light from the semiconductor ultrafine particles is longer than a peak wavelength of output light from the fluorescent substance.
  • a light-emitting device comprising: a light-emitting element provided on a substrate for emitting excitation light; and a wavelength converter located in front of the light-emitting element and converting the excitation light into visible light, and using the visible light as output light.
  • the wavelength converter as a phosphor has an average particle size of 20 nm or less.
  • the method for manufacturing a wavelength converter of the present invention comprises:
  • ultrafine semiconductor particles are synthesized in a liquid phase, and an amino group is formed mainly by a bond between silicon and oxygen in the liquid phase.
  • a step of coordinating a silicone compound having a functional group selected from a carboxyl group, a mercapto group and a hydroxy group is also known as a silicone compound having a functional group selected from a carboxyl group, a mercapto group and a hydroxy group.
  • the method for manufacturing a light emitting device of the present invention includes a step of mounting a light emitting element on a substrate and a step of disposing the wavelength converter according to (1) so as to cover the light emitting element.
  • a phosphor having an average particle diameter of 0.1 ⁇ m or more and an average particle having a diameter of 20 nm or less smaller than the Balta exciton Bohr radius are used. Since semiconductor ultrafine particles having a diameter are used, highly efficient light emission is possible, and the amount of particles dispersed in the matrix resin can be reduced.
  • the semiconductor ultrafine particles are made of a specific semiconductor composition and have a specific band gap energy, they emit fluorescence in the range of 400 to 900 nm. Can be expressed.
  • the emission wavelength can be controlled over a wide range by the semiconductor ultrafine particles, the color rendering properties can be greatly improved, and a light emitting device having excellent color rendering properties can be realized.
  • the resin matrix of the wavelength converter is a single resin layer having substantially no boundaries, attenuation of light at the boundaries is suppressed. Efficiency can be improved.
  • the semiconductor ultrafine particles are stabilized.
  • the amount of the compound covering the semiconductor ultrafine particles becomes a sufficient amount.
  • the effect of protecting the ultrafine conductor particles from moisture can be sufficiently obtained. Therefore, the deterioration of the fluorescence characteristics of the ultrafine particle structure is small.
  • the relative amount of the compound coordinated to the semiconductor ultrafine particles with respect to the semiconductor ultrafine particles is sufficient, so that the ultrafine particle composition can maintain a stable dispersed state in the resin (for example, silicone resin) for a long time.
  • the number of silicon-oxygen repeating units of the compound is 500 or less, the viscosity of the compound can be reduced, so that the compound can be efficiently coordinated with the semiconductor ultrafine particles.
  • the semiconductor ultrafine particles are stabilized, so that the semiconductor particles are dissolved and the particle diameter becomes small. Problems such as In addition, since the average particle size is 20 nm or less, the effect of improving the fluorescence yield by the semiconductor ultrafine particles rapidly repeating light absorption and light emission is sufficient. As a result, an ultrafine particle structure having a high fluorescence yield can be produced.
  • the semiconductor ultrafine particles have a core-shell structure, it is possible to prevent a decrease in fluorescence quantum efficiency due to a crystal lattice defect on the crystal surface of the core.
  • the compound since the compound has two or more side chains having the functional group, the compound is bonded to the semiconductor fine particles at each functional group. It is possible to form a stable nanoparticle structure by binding more strongly than when only one functional group is used.
  • the specific group used as the side chain preferably the side chain other than the side chain to which the functional group is attached, does not absorb visible light and ultraviolet light, and thus is light-fast. It is possible to obtain an ultrafine particle structure having high properties.
  • the wavelength converter of the above since the semiconductor ultrafine particles have a photoluminescence function, the nanoparticle structure and the LED that converts electric power into light using the photoluminescence function are used. By combining the above, a small light emitting device can be obtained.
  • the wavelength converter of the above (16) since the uncured resin matrix is in a liquid state, the wavelength converter can follow the unevenness even when the wavelength converter is installed on a structure having unevenness. it can.
  • the wavelength converter of the above (17) since the refractive index of the resin matrix is 1.7 or more, the light whose wavelength has been converted is efficiently emitted out of the wavelength converter, and the resin matrix and the air The proportion of light reflected at the interface between and can be reduced.
  • the resin matrix is cured by thermal energy, so that a light emitting device can be manufactured with inexpensive equipment such as a dryer.
  • the resin matrix is cured by light energy, a liquid uncured resin matrix is applied on the light emitting element and cured by photocuring.
  • a light emitting device can be manufactured without adversely affecting a light emitting element by heat.
  • the resin matrix contains a polymer resin mainly composed of silicon-oxygen bonds, light resistance, heat resistance, and transparency can be improved.
  • the wavelength converter of the above (21) emits fluorescence having at least two or more intensity peaks in the visible light wavelength range, so that high color rendition can be easily achieved.
  • the light-emitting device according to (22) or (23) is similar to (1) or (2) above, in that the semiconductor ultrafine particles having an average particle diameter of 20 nm or less smaller than the Balta exciton Bohr radius are used as the phosphor. As a result, highly efficient light emission can be realized.
  • the self-quenching is based on the finding that short-wavelength light emitted from a phosphor is absorbed by another phosphor and long-wavelength light is not absorbed.
  • the plurality of wavelength conversion layers are arranged such that emission wavelengths (that is, peak wavelengths of converted light converted by the respective wavelength conversion layers) become shorter in order from the light emitting element side to the outside. are doing. Therefore, self-quenching between phosphors in the wavelength conversion layer can be reduced, and high luminous efficiency can be realized.
  • the plurality of wavelength conversion layers each contain a phosphor, it is possible to cover the emission wavelength in a wide range, so that the color rendering properties are significantly improved. improves.
  • the band gap energy of at least a part of the semiconductor ultrafine particles is made smaller than the energy emitted by the light emitting element, so that the energy emitted by the light emitting element can be efficiently reduced.
  • the luminous efficiency is improved because it can be well absorbed by semiconductor ultrafine particles.
  • the wavelength converter includes at least three wavelength conversion layers, and the converted lights respectively converted by the three wavelength conversion layers are red and green, respectively. Since the wavelength corresponds to blue and blue, it is possible to cover the emission wavelength in a wide range, and the color rendering properties are greatly improved.
  • the wavelength conversion layer is formed of the polymer resin thin film containing the phosphor, deterioration of the wavelength conversion layer due to light emitted from the light emitting element is suppressed. And durability can be improved.
  • the phosphor contained in the wavelength conversion layer is an average particle Because they are ultrafine semiconductor particles with a diameter of 10 nm or less, they can enhance the luminous efficiency and improve the lifetime.
  • a wavelength conversion layer containing semiconductor ultrafine particles is provided on the light emitting element side, and a peak wavelength of output light from the semiconductor ultrafine particles. Is larger than the peak wavelength of the output light from the fluorescent substance, so that self-quenching between the fluorescent substances in the wavelength conversion layer can be reduced, and high luminous efficiency can be realized.
  • the central wavelength of the excitation light is 450 nm or less
  • the external quantum efficiency of the light emitting element is high
  • the phosphor in the wavelength converter is the primary light from the light emitting element. Is highly efficiently absorbed and wavelength converted, so that a high optical output can be realized.
  • the light emitting device of (34) above has a peak wavelength of the output light of 400 to 900 nm, so that a light emitting device with excellent color rendering properties can be realized.
  • the wavelength conversion layer is made of a polymer resin thin film or a sol-gel glass thin film containing a phosphor, deterioration of the wavelength conversion layer is suppressed by light emitted from the light emitting element. And the durability can be improved.
  • FIG. 1 is a schematic sectional view showing an embodiment of the light emitting device of the present invention.
  • the light emitting device of the present invention includes a substrate 2 on which an electrode 1 is formed, a light emitting element 3 including a semiconductor material that emits light having a center wavelength of 450 nm or less on the substrate 2, A wavelength converter formed on the substrate so as to cover the light emitting element;
  • the wavelength converter 4 includes a plurality of wavelength conversion layers 4a, 4b, and 4c.
  • the wavelength conversion layers 4a, 4b, and 4c include phosphors 5a, 5b, and 5c, respectively, and the phosphors 5a and 5b. 5c are directly excited by the light emitted from the light emitting element 3, respectively, and generate visible light as converted light.
  • the plurality of converted lights are combined and extracted as output light.
  • a reflector 6 that reflects light is provided on the side surface of the light emitting element 3 and the wavelength converter 4, and the light escaping to the side surface is reflected forward to increase the intensity of output light. it can.
  • the plurality of wavelength conversion layers 4a, 4b, 4c having different emission wavelengths are arranged such that the peak wavelength of the converted light becomes shorter in order from the light emitting element 3 side to the outside.
  • the wavelength converter 4 includes three wavelength conversion layers 4a, 4b, and 4c, and the wavelength conversion layer in which the peak wavelength of the converted light by the wavelength conversion layer 4b is shorter than the peak wavelength of the converted light by the wavelength conversion layer 4a.
  • the wavelength conversion layers 4a, 4b, 4c are arranged so that the peak wavelength of the converted light by 4c is shorter than the peak wavelength of the converted light by the wavelength conversion layer 4b.
  • the excitation light emitted from the light emitting element 3 is converted by the phosphors 5a, 5b, and 5c into converted lights A, B, and C.
  • the converted light A has a longer wavelength than the converted lights B and C. Therefore, the converted light A does not have enough energy to excite the phosphors 5b and 5c to generate visible light.
  • self-quenching between phosphors in the wavelength converter 4 can be reduced, and high conversion efficiency can be achieved without increasing the phosphor concentration in the wavelength conversion layers 4a, 4b, and 4c. I can do it.
  • the converted light B since the converted light B has a longer wavelength than the converted light C, the converted light B does not excite the phosphor 5c, and self-quenching due to absorption of the converted light B in the wavelength conversion layer 4c is performed. It can be reduced.
  • a plurality of wavelength conversion layers are provided, and the emission wavelength of the wavelength conversion layer is reduced in order from the one closer to the light-emitting element, in other words, the longer wavelength is closer to the light-emitting element and shorter than the light-emitting element.
  • Wavelength the phenomenon that the phosphor absorbs the short-wavelength converted light can be suppressed, and high conversion efficiency can be obtained without increasing the concentration of the phosphor 5 in the wavelength conversion layer to increase the content. Can be. As a result, high light output can be expected with low power consumption.
  • the substrate 1 a substrate having excellent thermal conductivity and a large total reflectance is used.
  • a polymer resin in which metal oxide fine particles are dispersed is preferably used in addition to ceramic materials such as alumina and aluminum aluminum.
  • the light emitting element 3 preferably emits light having a center wavelength of 450 nm or less, particularly 380 420 nm.
  • the phosphor can be efficiently excited, the output light intensity can be increased, and a light emitting device with higher emission intensity can be obtained. It becomes possible.
  • the light-emitting element 3 is not particularly limited as long as it emits the above-mentioned center wavelength.
  • the light-emitting element 3 has a structure (not shown) including a light-emitting layer made of a semiconductor material on the surface of the light-emitting element substrate. Is preferred in that it has high external quantum efficiency.
  • Examples of such a semiconductor material include various semiconductors such as ZnSe and a nitride semiconductor (such as GaN), but the kind of the semiconductor material is not particularly limited as long as the emission wavelength is within the above-mentioned wavelength range.
  • These semiconductor materials may be formed into a stacked structure having a light-emitting layer of a semiconductor material on a light-emitting element substrate by a crystal growth method such as metal organic chemical vapor deposition (MOCVD) or molecular beam epitaxy. .
  • MOCVD metal organic chemical vapor deposition
  • molecular beam epitaxy molecular beam epitaxy
  • the material of the light emitting element substrate 2 can be selected in consideration of the combination with the light emitting layer.
  • a light emitting layer made of a nitride semiconductor is formed on the surface, sapphire, spinel, SiC, Si, Zn Si, ZrB , GaN, and quartz are preferably used.
  • Phosphors 5a, 5b, and 5c contained in wavelength conversion layers 4a, 4b, and 4c, respectively, are directly excited by light emitted from light emitting element 3, the wavelengths of these lights are synthesized, and the emission wavelengths in a wide range. Covers the length and can greatly improve color rendering.
  • the peak wavelength of visible light thus obtained is preferably 400 to 900 nm, particularly 450 to 850 nm, particularly preferably 500 to 800 nm.
  • the wavelength converter 4 desirably emits fluorescence having two or more intensity peaks in the visible light wavelength range.
  • a plurality of wavelength conversion layers 4a, 4b, and 4c having different conversion wavelengths are desired. It is preferable that the wavelength of the light be converted to a wavelength corresponding to red, green, and blue. Thereby, the emission wavelength can be covered in a wide range, and the color rendering can be further improved.
  • the light emitting device shown in FIG. 1 has a three-layer structure having three wavelength conversion layers. The wavelength conversion layers 4a, 4b, and 4c having different conversion wavelengths are formed.
  • the conversion wavelength peak of the first wavelength conversion layer 4a is 640 nm ⁇ 10 nm
  • the conversion wavelength peak of the second wavelength conversion layer 4b is 520 nm
  • the conversion wavelength peak of the wavelength conversion layer 4c is 470 nm ⁇ 10 nm.
  • the wavelength conversion layers 4a, 4b, and 4c are the same as the above-described phosphors 5a, 5b, and 5c, respectively.
  • it is formed by dispersing in a gel glass thin film. It is desirable that the polymer resin film or the sol-gel glass thin film has high transparency and durability that does not easily change its color by heating or light.
  • the polymer resin film has an advantage that it is easy to uniformly disperse and carry the phosphor, and it is possible to suppress light degradation of the phosphor.
  • the materials are not particularly limited.Examples include epoxy resins, silicone resins, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polystyrene, polycarbonate, polyetherenolephone, cellulose acetate, and polyarylate. Is used. In particular, it is preferable to have a light transmittance of 95% or more in a wavelength region of 350 nm or more. From the viewpoint of heat resistance in addition to such transparency, epoxy resins and silicone resins are more preferably used.
  • sol-gel glass examples include silica, titania, zirconia, and a composite system thereof.
  • the phosphor may be dispersed alone in the zonole gel glass, or a metal atom such as Si, Ti, or Zr may be bonded to the phosphor with an organic molecule.
  • the durability against light, particularly ultraviolet light, and the durability against heat are high, so that the product life can be extended.
  • sol-gel glass can improve stability, a highly reliable light-emitting device can be realized.
  • the wavelength converter 4 of the present invention can be formed by a coating method since the wavelength converter 4 is formed of a polymer resin film or a sol-gel glass film.
  • the coating method is not limited as long as it is a general coating method, but coating with a dispenser is preferable.
  • the phosphor 5 included in the wavelength converter 4 is not particularly limited as long as it is excited by light having a wavelength of 450 nm or less and emits light in a range of 400 to 900 nm.
  • a commonly used phosphor can be used.
  • A1, YA10 Tb, Y3 (A1, Ga) ⁇ : Tb, YSi ⁇ : Tb, ZnSi ⁇ : Mn, ZnS: Cu
  • semiconductor ultrafine particles can also be used, and it is particularly preferable to use semiconductor ultrafine particles having an average particle diameter of 20 nm or less.
  • semiconductor ultrafine particles with a particle diameter of 20 nm or less can emit various colors from red (long wavelength) to blue (short wavelength), and if the energy is higher than the band gap, the excitation wavelength is limited. Ganare.
  • the light-emitting life cycle is 100,000 times shorter than that of rare earths, and the cycle of light emission is repeated quickly, so that extremely high luminance can be realized, and the deterioration is less than that of organic dyes. Is about 100,000 times the number of dyes). Therefore, when semiconductor ultrafine particles are used, excellent luminous efficiency can be realized, and a long-life light emitting device can be realized.
  • the semiconductor ultrafine particles are not particularly limited as long as they are excited by light having a wavelength of 450 nm or less and emit light having a wavelength in the range of 400 to 900 nm. That is, a simple substance of a group 14 element of the periodic table such as C, Si, Ge, and Sn, a simple substance of a group 15 element of the periodic table such as P (black phosphorus), a simple substance of a group 16 element of the periodic table such as Se or Te, Plural group 14 elements of the periodic table such as SiC, etc., SnO, Sn (ll) Sn (lV) S, SnS, SnS, SnSe, SnTe, PbS, PbS
  • Periodic Table Group 14 and the Periodic Table Group 16 elements BN, BP, BAs, A1N, A1P, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb and other compounds of group 13 elements of the periodic table and elements of group 15 of the periodic table (or III-V compound semiconductors), AlS3, AlSe, GaS, GaSe, GaTe, In ⁇ , InS , In Se, In Te, etc.
  • Periodic Table 13 Group elements and Periodic Table Compounds with group 17 elements such as compounds with group 17 elements, Zn ⁇ , ZnS, ZnSe, ZnTe, CdO, CdS, CdSe, CdTe, HgS, HgSe, HgTe II-VI compound semiconductors), Cu ⁇ , Cu Se, etc.
  • Compounds of Group 11 elements and Group 16 elements such as CuCl, CuBr, Cul, AgCl, AgBr, etc.
  • Examples include compounds of Group 11 elements of the periodic table and Group 17 elements of the periodic table. It is preferable to use ZnS, ZnSe, CdS, CdSe, and CdTe forces that exhibit excellent light emission characteristics.
  • the ratio of the semiconductor ultrafine particles to the fluorescent substance is such that the weight ratio of the fluorescent substance to the semiconductor ultrafine particles is in the range of 1: 0.25. Since a decrease in efficiency due to mutual absorption between the fine particles and the fluorescent substance can be suppressed, a highly efficient light emitting device can be realized.
  • the ultrafine semiconductor particles according to the present invention may have a so-called core-shell structure including an inner core (core) and an outer shell (shell).
  • the core-shell type semiconductor ultrafine particles may be suitable for applications utilizing the exciton absorption / emission band.
  • it is generally effective to use a material having a band gap (forbidden band width) larger than that of the core as the composition of the semiconductor particles of the shell to form an energy barrier. This is presumed to be due to a mechanism for suppressing the influence of undesirable surface states and the like due to the influence of the outside world and crystal lattice defects on the crystal surface.
  • the composition of the semiconductor material suitably used for the shell includes a material having a band gap in a Balta state of 2 ⁇ OeV or more at a temperature of 300 K, for example, BN, BAs, GaN, or the like.
  • Group V compound semiconductors such as GaP, etc .
  • II VI compound semiconductors such as Zn ⁇ , ZnS, ZnSe, ZnTe, Cd ⁇ , and CdS
  • Periodic Table Group 2 and Group 16 elements such as MgS and MgSe. Compounds and the like are preferably used.
  • the ultrafine semiconductor particles according to the present invention may be covered with a surface modifying molecule comprising an organic ligand.
  • a surface modifying molecule comprising an organic ligand.
  • Surface modifying molecules include n-propyl, isopropyl, n-butyl, isobutyl, n-pentyl, cyclopentyl, n-xyl, cyclohexyl, octyl, decyl, dodecyl, and hexyl.
  • Examples thereof include a hydrocarbon group containing an aromatic hydrocarbon group such as an alkyl group having about 3 to 20 carbon atoms such as a sadecyl group and an octadecyl group, a phenyl group, a benzyl group, a naphthyl group, and a naphthylmethyl group.
  • a sulfur atom-containing functional group such as a mercapto group, a disulfide group, a thiophene ring, an amino group, a pyridine group Ring, amide bond, nitrogen atom-containing functional group such as nitrile group, carboxyl group, sulfonic acid group, phosphonic acid group, acidic functional group such as phosphinic acid group, and phosphorus atom-containing functional group such as phosphine group and phosphinoxide group Preferred are a group or a hydroxyl group, a carbonyl group, an ester bond, an ether bond, and a functional group containing an oxygen atom such as a polyethylene glycol chain.
  • the semiconductor ultrafine particles have a silicone compound having a functional group selected from an amino group, a carboxy group, a mercapto group and a hydroxy group, which is mainly composed of silicon-oxygen bonds, coordinated on the particle surface.
  • the matrix is preferably made of a silicone resin having a silicon-oxygen bond as a main component, and the semiconductor ultrafine particles and the fluorescent substance are preferably dispersed in the silicone resin.
  • the ultrafine semiconductor particles according to the present invention are manufactured by a general manufacturing method.
  • Plasma process ⁇ Electric heating process ⁇ Gas phase chemical reaction method such as laser process, physical cooling method, sol-gel method 'Alkoxide method' 'Coprecipitation method' 'Hot soap method' 'Hydrothermal synthesis method' Spray pyrolysis method etc. Liquid phase method, mechanochemical bonding method, etc. are used
  • the phosphors 5a, 5b, 5c contained in the wavelength conversion layers 4a, 4b, 4c, respectively, are combinations of ultrafine semiconductor particles having different conversion wavelengths, which may be combinations of fluorescent substances having different conversion wavelengths. Alternatively, a combination of a fluorescent substance and semiconductor ultrafine particles may be used.
  • a desired emission wavelength can be obtained only by controlling the particle diameter. Since the light-emitting device can be formed from a substance, a low-cost light-emitting device can be provided by simplifying a process.
  • the semiconductor ultrafine particles of the present invention can change the emission wavelength in the range of 400 to 900 nm by changing the average particle diameter, the same materials having different average particle diameters are provided in different wavelength conversion layers. Can be used.
  • the thickness of the wavelength converter 4 of the present invention is preferably 0.1 to 5. Omm from the viewpoint of conversion efficiency. Phosphors having a particle size of several zm preferably have a thickness range of 0.3-1. Omm. In the case of ultrafine semiconductor particles having a particle diameter of 20 nm or less, the thickness is preferably 0.1 to 1 mm, particularly preferably 0.1 to 0.5 mm. Within this range, the light emitted from the light emitting element can be converted into visible light with high efficiency. The converted visible light can be transmitted to the outside with high efficiency.
  • the layer configuration of the wavelength converter 4 is not particularly limited as long as it has a two-layer structure or more, but the three-layer structure shown in FIG. 1 is more preferable in terms of improving color rendering properties. This is expected to further improve color rendering.
  • FIG. 2 shows an example of a four-layer structure.
  • a light emitting element 13 including a semiconductor material that emits light having a center wavelength of 450 nm or less is provided on a substrate 12 on which an electrode 11 is formed, and a wavelength converter 14 is formed so as to cover the light emitting element 13.
  • the wavelength converter 14 includes four types of wavelength conversion layers 14a, 14b, 14c, and 14d, and the wavelength conversion layer 14a close to the light emitting element 13 includes a phosphor 15a that emits a long-wavelength emission peak.
  • the wavelength conversion layers 14b, 14c, and 14d are formed so as to contain the phosphors 15b, 15c, and 15d, respectively, each having a shorter wavelength emission peak as the distance increases.
  • a phosphor that generates 590 nm ⁇ 10 nm converted light may be used.
  • the color rendering properties can be further improved.
  • a reflector 16 for reflecting light may be provided on the side surface of the light emitting element 13 and the wavelength converter 14, and the light escaping to the side surface may be reflected forward to increase the intensity of the output light. it can.
  • the wavelength converter is formed, for example, by laminating and bonding a wavelength conversion layer composed of a polymer resin thin film containing a phosphor or a zolgel glass thin film as described above.
  • a wavelength conversion layer composed of a polymer resin thin film containing a phosphor or a zolgel glass thin film as described above.
  • the wavelength converter obtained in this way has substantially no boundary. Since it is a single resin layer having no eyes, it is possible to prevent the luminous efficiency from being reduced due to the voids formed at the boundaries.
  • the obtained wavelength converter has a two-layer structure, it may be used as it is in a light emitting device, or may be used by laminating and bonding with another wavelength converter.
  • the semiconductor ultrafine particles 33 of the present invention have a structure in which the surface is covered with a compound 35 having a structure in which two or more silicon-oxygen bonds are repeated. Is preferred. In particular, as shown in FIG. 3 (b), it is desirable that the compound 35 is coordinated with the semiconductor ultrafine particles 33.
  • the semiconductor ultrafine particles 3 As described above, by covering the surface of the semiconductor ultrafine particles 3 with the compound 5 having a structure in which two or more silicon-oxygen bonds are repeated and having a high hydrophobicity, the characteristics of the semiconductor ultrafine particles 3 are deteriorated by water. Can be prevented.
  • the compound 35 since the compound 35 has a very high affinity for the silicone resin, the semiconductor ultrafine particles 33 can be easily dispersed in the silicone resin, and the bonding strength between the semiconductor ultrafine particles 33 and the silicone resin can be improved. Can be enhanced.
  • the silicon-oxygen bond be further formed in the compound 35 in an amount of 5 or more, particularly 7 or more, from the viewpoint of improving the hydrophobicity of the compound 35.
  • the number of silicon-oxygen bonds is desirably 300 or less, particularly 100 or less.
  • the compound 35 is composed of a main chain 35a that repeats two or more silicon-oxygen bonds and a side chain 35b bonded to the main chain 35a.
  • the side chain 35b having no functional group and the side chain 35c having a functional group are distinguished from each other.
  • the side chain 35b has an amino group, a mercapto group, and a carboxy group as shown in the following formula (a) in order to facilitate the bonding between the semiconductor ultrafine particles 33 and the compound 35 and improve the bonding strength between the two.
  • a functional group X selected from an amide group, an ester group, a carbonyl group, a phosphoxide group, a sulfoxide group, a phosphon group, an imine group, a butyl group, a hydroxy group and an ether group.
  • These functional groups X act as nucleophiles because they have an unshared electron pair or a ⁇ electron, and are strongly coordinated with the semiconductor ultrafine particles 33, or are electrically superposed by the electric action of electric charge by polarization. Coordinates strongly with microparticle 33. Therefore, in the ultrafine particle structure in which the compound 35 having these functional groups is coordinated with the semiconductor ultrafine particles 33, the coordination bond can be stably maintained for a long time.
  • an amino group, a mercapto group, and a carboxyl group have a strong coordination bonding force with the semiconductor ultrafine particles 33, so that a superfine particle structure 31 that is stable for a long period of time can be produced.
  • the hydroxy group has a strong coordination bond with the oxide semiconductor. This is because oxygen atoms on the surface of the oxide semiconductor and hydrogen of a hydroxy group attract each other.
  • These functional groups may be directly bonded to silicon atoms in the main chain 35a, or may be bonded to silicon atoms via a methylene group-ethylene group in the side chain 35b.
  • an amino group, a mercapto group, a carboxy group, an amide group, an ester group, a carbonyl group, a phosphoxide group, a sulfoxide group, a phosphoxide group is any of a von group, an imine group, a vinyl group, a hydroxy group, and an ether group, is a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, and an n-butyl group.
  • the compound 35 has two or more side chains 35c having a functional group. In this way, the compound 35 is strongly coordinated to the semiconductor ultrafine particles 33 at a plurality of bonding points. It becomes possible.
  • the compound 35 can be firmly bonded to the semiconductor ultrafine particles 33, and the compound 35 has excellent water resistance, heat resistance, and light resistance.
  • An ultrafine particle structure 31 is obtained.
  • the average particle diameter of the semiconductor ultra-fine particles 33 used in the ultra-fine particle structure 31 is preferably 0.520 nm because the wavelength of fluorescence can be adjusted by the particle diameter.
  • a light-emitting device having high color rendering properties can be manufactured by adjusting the particle size of the semiconductor ultrafine particles.
  • the average particle diameter of the semiconductor ultra-fine particles 33 exceeds 20 nm, the wavelength of fluorescence hardly changes even if the particle diameter is changed, so the color rendering properties are adjusted by changing the particle diameter of the semiconductor ultra-fine particles 33. It is not possible.
  • the average particle diameter of the semiconductor ultrafine particles 33 exceeds 20 nm, a high fluorescence yield cannot be obtained due to rapid repetition of light absorption and emission of the semiconductor ultrafine particles 33.
  • the average particle diameter of the semiconductor ultrafine particles 33 be 1 nm or more, particularly 2 nm or more from the viewpoint of preventing aggregation.
  • the average particle size of the semiconductor ultrafine particles 33 is preferably not more than lOnm, particularly preferably not more than 5 nm in order to obtain a high fluorescence yield.
  • a reverse micelle is formed with trioctylphosphinoxide, and a metal element and a chalcogen element are formed in the micelle.
  • a reaction is made at a temperature of about 300 ° C.
  • the semiconductor ultrafine particles 33 have a photoluminescence function from the viewpoint that a light emitting device having a small size and high color rendering properties can be manufactured.
  • the semiconductor ultra-fine particles 33 are preferably made of a II-IV group compound semiconductor or a III-V group compound semiconductor because of their excellent fluorescent properties.
  • ZnS, ZnSe, CdS, CdSe, and CdTe have high fluorescence quantum efficiencies, so that ultrafine particle structures with high fluorescence quantum efficiency can be produced.
  • the semiconductor ultra-fine particles 33 have the above-mentioned core-shell structure from the viewpoint that the ultra-fine particle structure 31 having high fluorescence quantum efficiency can be obtained.
  • the ultrafine particle structure 31 described above in the resin matrix 37 as shown in Fig. 5 By dispersing the ultrafine particle structure 31 described above in the resin matrix 37 as shown in Fig. 5, the effect of blocking the ultrafine particle structure 31 with water force is further enhanced, and therefore, the effect is further improved. The characteristic deterioration of the semiconductor ultrafine particles 33 due to moisture can be prevented. Only In addition, since the ultrafine particle structure 31 can be handled in a liquid state or a solid state from a powder state, the handleability and the storage stability are significantly improved.
  • FIG. 5 shows only the ultrafine particle structure 31, the ultrafine particle structure 31 forms a wavelength converter 39 in combination with a fluorescent substance having an average particle size of 0.1 zm or more.
  • the resin matrix 37 constituting the wavelength converter 39 is formed, for example, by mixing a resin matrix containing a photocurable resin or a thermosetting resin with the ultrafine particle structure 31 in a liquid state. Is obtained.
  • the resin matrix 37 is desirably cured to an arbitrary shape by heat or light as necessary in terms of handling.
  • the wavelength converter 39 can be cured with inexpensive equipment such as a dryer, a heater and a heater block.
  • the resin matrix 37 is preferably cured by light energy from the viewpoint that a light emitting device having high adhesion between the wavelength converter 39 and the light emitting element can be obtained. If the resin matrix 37 is of a type that is cured by light energy, the liquid uncured wavelength converter 39 disposed on the light emitting element can be cured by light. According to this method, unlike the case where the thermosetting type wavelength converter 39 is used, the wavelength converter 39 can be cured without destruction of the light emitting element due to heat for curing. Accordingly, since the light emitting element and the liquid uncured wavelength converter 39 can be brought into direct contact, a light emitting device having high adhesion between the wavelength converter 39 and the light emitting element can be obtained.
  • the wavelength converter 39 is excellent in light transmittance, heat resistance, light resistance, and especially water resistance.
  • the silicone resin has a main chain composed of a main chain repeating silicon-oxygen bonds and a side chain bonded to the silicon atom, and a plurality of these are crosslinked.
  • the side chain is a group that absorbs ultraviolet light such as a phenyl group or a vinyl group, light is absorbed by the silicone resin.
  • the silicone resin used for the wavelength converter 39 has a side chain composed of a linear, branched, or cyclic saturated hydrocarbon group.
  • the saturated hydrocarbon group has more than 7 carbon atoms, its heat resistance will be reduced, so the side chains will be methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl.
  • the side chain 35b of the compound 35 has a methyl group, an ethyl group, an n-propyl group, an iso_propyl group, an n-butyl group, an iso_butyl group, an n-pentyl group, an iso_ Pentyl group, n-hexyl group, iso-hexyl group, cyclohexyl group, methoxy group, ethoxy group, n-propoxy group, iso-propoxy group, n-butoxy group, iso-butbutoxy group, n-pentoxy
  • the group consists of a group, is o_pentoxy, n-hexyloxy, iso-hexyloxy, cyclohexyloxy, or a combination thereof.
  • the wavelength converter 39 having high color rendering properties can be obtained by preparing the ultrafine particle structure 31 with several types of compositions having a particle size that is easy to produce on a manufacturing apparatus.
  • the refractive index of the wavelength converter 39 is preferably 1.7 or more from the viewpoint that the light whose wavelength has been converted inside the wavelength converter 39 can be efficiently emitted to the atmosphere.
  • Light emitted by the light emitting element is guided to a wavelength converter 39 in which the ultrafine particle structure 31 and the silicone resin 13 are mixed, where the wavelength of the light is converted, and then emitted into the atmosphere.
  • the refractive index of the wavelength converter 39 is smaller than 1.7, light is reflected at the interface between the wavelength conversion layer 39 and the atmosphere, and is hardly emitted to the atmosphere.
  • the refractive index is measured by molding a wavelength converter into a lmm-thick film and using a refractive index measuring machine 2010 Prism Brass made by Ipros.
  • the wavelength converter 39 may emit fluorescence having at least two or more intensity peaks in the visible light wavelength range in that a white light-emitting device having high color rendering properties can be obtained.
  • the light emitting device of the present invention has the structure shown in FIGS.
  • the light emitting element 3 emits ultraviolet light, and this light is supplied to the inside of the wavelength converter 39.
  • Ultraviolet light is converted into visible light by the ultrafine particle structure 31 inside the wavelength converter 39, and the converted light is emitted from the wavelength converter 39 to the outside of the light emitting device.
  • the wavelength converter 39 contains ultrafine particle structures having a plurality of average particle diameters so that the output light emits light having a broad spectrum of 400 to 900 nm. .
  • the band gap energy of at least a part of the semiconductor ultrafine particles 33 be smaller than the energy generated by the light-emitting element 3. If the bandgap energy of all of the semiconductor ultrafine particles 33 is higher than the energy generated by the light emitting element 3, the semiconductor ultrafine particles 33 cannot absorb the light energy generated by the light emitting element 3 and the efficiency of the light emitting device is reduced. It decreases significantly.
  • the ultrafine particle structure 31 shown in FIG. 3 is manufactured by mixing the semiconductor ultrafine particles 33 with a compound 35 that repeats two or more silicon-oxygen bonds capable of coordinating bonds, and stirring while heating. be able to.
  • the semiconductor ultrafine particles 33 can be produced by a hot soap method, a microreactor method, or the like using a compound mainly composed of an alkyl group and having a functional group as a solvent.
  • a compound mainly containing an alkyl group for example, trioctylphosphinoxide or dodecylamine can be used.
  • the compound which repeats two or more silicon-oxygen bonds capable of forming a coordinate bond those described above can be used.
  • the semiconductor ultrafine particles 33 and the compound 35 are mixed and stirred while heating, whereby the trioctylphosphinoxide dodecylamine coordinated on the surface of the semiconductor ultrafine particles 33 is exchanged with the compound 35, and the semiconductor ultrafine particles 33 are mixed.
  • Compound 35 can be coordinated to the surface of 33 to obtain ultrafine particle structure 1. At this time, heating may be performed as needed, and if the compound 35 can be coordinate-bonded to the surface of the semiconductor ultrafine particles 33 at room temperature, the heating need not be performed.
  • the liquid uncured wavelength converter 39 can be manufactured by mixing the ultrafine particle structure 31 with an uncured resin or a resin plasticized with a solvent.
  • a silicone resin or an epoxy resin can be used as the uncured resin. These resins are 2 It may be of the type that mixes and cures liquids, or it may be of the type that cures with one liquid.In the case of the type that mixes and cures two liquids, the ultrafine particle structure 31 is added to both liquids. The ultrafine particle structure 31 may be kneaded or may be kneaded in either one of the liquids.
  • an acrylic resin for example, can be used as the resin having plasticity with a solvent.
  • the cured wavelength converter 39 can be obtained by molding the uncured wavelength converter 39 into a film, for example, by applying it, or by casting it into a predetermined mold and solidifying it.
  • a method of curing the resin there is a method using heat energy or light energy, and a method of volatilizing a solvent.
  • the light emitting device of the present invention can be obtained by disposing the wavelength converter 39 on the light emitting element 3 mounted on the wiring board 2.
  • Wavelength converter 39 As a method of installing the composite 39 on the light emitting element 3, it is possible to install the cured composite 39 on the light emitting element 3, or to place the liquid uncured composite 39 on the light emitting element 3. After installation, it is also possible to cure and install.
  • the light emitting device of the present invention is used, for example, by arranging a plurality of light emitting devices on a substrate.
  • a plurality of electrodes are formed on the substrate in advance, and it is possible to obtain the power by connecting the light emitting devices with a metal brazing material.
  • a metal brazing material for example, solder can be used. This makes it possible to produce a long-life white light-emitting device assembly with high power efficiency and high color rendering.
  • the light emitting device of FIG. 1 was produced. First, a light emitting device made of a nitride semiconductor was formed on a light emitting device substrate made of sapphire by metal organic chemical vapor deposition.
  • the structure of the light emitting element is as follows: an n-type GaN layer as an undoped nitride semiconductor, a GaN layer as an n-type contact layer with an n-type Si-doped electrode formed on a light emitting element substrate, and an undoped nitride semiconductor
  • the n-type GaN layer, the GaN layer that constitutes the light-emitting layer, the InGaN layer that constitutes the well layer, and the GaN layer that constitutes the phosphor layer form a set of I sandwiched between GaN layers.
  • a multi-quantum well structure in which five nGaN layers are stacked is adopted.
  • the light-emitting element was mounted in a package forming an insulating base on which a wiring pattern for arranging near-ultraviolet LEDs was formed, and a frame-shaped reflective member surrounding the near-ultraviolet LEDs.
  • a light emitting element was mounted on a wiring pattern in the package via an Ag paste.
  • the package was filled with a silicone resin to cover the light emitting element, and the resin was cured by heating to form an internal layer.
  • the silicone resin was filled by a coating method using a dispenser.
  • Ultrafine semiconductor particles consisting of aluminum and gallium nitride are dispersed and mixed under the conditions shown in Table 1, respectively.
  • the obtained phosphor-containing resin paste was applied and formed on a smooth substrate by a dispenser, and heated on a hot plate at 150 ° C for 5 minutes to prepare a temporary cured film. Subsequently, this was placed in a dryer at 150 ° C for 5 hours to produce a phosphor-containing film (wavelength conversion layer) shown in Table 1. This film was attached to the upper surface of the inner layer to obtain a light emitting device.
  • the multilayer wavelength converter was formed by interposing a plurality of wavelength conversion layers produced by the above method with the same silicone resin and the same material resin as the inner layer as an adhesive.
  • the luminous efficiency of the light emitting device comprising each wavelength converter was measured using a light emission characteristic evaluation device manufactured by Otsuka Electronics Co., Ltd. The results are shown in Table 1.
  • semiconductor ultrafine particles composed of cadmium selenide and gallium nitride were prepared by the following method.
  • the solution prepared by the above method was stirred at 160 ° C.-300 ° C. for 5 minutes to synthesize cadmium selenium semiconductor ultrafine particles.
  • the average particle diameter of the semiconductor ultrafine particles was controlled by changing the reaction temperature.
  • the solution was cooled to room temperature.
  • 200 g of toluene was further added, and the mixture was uniformly mixed.
  • ethanol was further purified, and cadmium selenide particles were precipitated by applying an acceleration of 1500 G for 10 minutes by a centrifuge.
  • the selenium cadmium particles obtained by the above method were added to a mixed solution of 1.lg of zinc acetate, 9.9 mL of oleic acid and 300 mL of octadecene, and the mixture was heated and stirred at 170 ° C. for 2 hours under argon flow conditions. did.
  • To this solution was added 1.5 g of sulfur 12 gZ trioctylphosphine (TOP), and the mixture was stirred at 300 ° C.
  • TOP trioctylphosphine
  • reaction mixture was cooled to room temperature, 200 g of toluene was added thereto, and the mixture was mixed homogeneously.Additionally, ethanol was added, and the surface was coated with zinc sulfide at a speed of 1500 G for 10 minutes using a centrifugal separator. Cadmium chloride particles were precipitated.
  • Cadmium selenide having an average particle size of 2 nm, 2.9 nm, 4.7 nm, and 120 nm was obtained. Further, it was confirmed that the comparative gallium nitride particles produced by the same method had an average particle diameter of 5 nm. The average particle diameter of the obtained ultrafine semiconductor particles was confirmed by TEM.
  • This operation was repeated three times to remove excess modified silicone, thereby obtaining semiconductor ultrafine particles coated with amino-substituted modified silicone.
  • the state of coating with the modified silicone was confirmed by Fourier transform infrared spectroscopy and further by X-ray photoelectron spectroscopy.
  • Fluorescent substance synthesized by the above method, wavelength converter made using semiconductor ultrafine particles Table 1 shows the configuration and the evaluation results of the luminous efficiency.
  • Sample No. 9 which is a comparative example, has a wavelength converter manufactured using only semiconductor ultrafine particles, so that the quantum efficiency in the blue region is low, and the light emitting device Has a low luminous efficiency of 9 lm / W.
  • the sample No. 10 which is a comparative example, uses a phosphor material of at least 0.1 ⁇ , the luminous efficiency in the red region is low, and the luminous efficiency of the light emitting device is as low as S81mZW.
  • the average particle diameter of the semiconductor ultrafine particles was as large as 12 Onm, which is outside the range of the present invention.
  • the quantum efficiency of the semiconductor ultrafine particles did not improve due to the quantum confinement effect, and the luminous efficiency was 61 m / W. And got very low.
  • the quantum efficiency of the fluorescent substance was reduced due to the occurrence of surface defects, and the luminous efficiency of the light emitting device was 31 mZW, which was not as high as 31 mZW. It turned out to be always smaller.
  • the light emitting device including Sample No. 1 No. 8 provided with the wavelength converter according to the present invention exhibited luminous efficiency of 10 OlmZW or more.
  • Sample No. 2, Sample No. 3, and Sample No. 4 showed high luminous efficiency of 481 m / W or more.
  • the peak wavelength of the output light of the light emitting device using the wavelength converter of the present invention was in the range of 400-90 Onm.
  • a light emitting device was manufactured by the following method. First, a light emitting device made of a nitride semiconductor was formed on a light emitting device substrate made of sapphire by metal organic chemical vapor deposition.
  • the structure of the light-emitting device is as follows: an n-type GaN layer, which is an undoped nitride semiconductor, a GaN layer, which forms an n-type contact layer by forming an Si-doped n-type electrode, and an undoped nitride semiconductor, n.
  • Type GaN layer then a GaN layer that constitutes a light emitting layer, a GaN layer that constitutes a well layer, and a GaN layer that constitutes a noria layer. A multiple quantum well structure was obtained.
  • the light emitting element was mounted in a package forming an insulating base on which a wiring pattern for arranging near-ultraviolet LEDs was formed, and a frame-shaped reflective member surrounding the near-ultraviolet LEDs.
  • a light emitting element was mounted on a wiring pattern in the package via an Ag paste.
  • the package was filled with a silicone resin to cover the light-emitting element, and the resin was cured by heating to form an internal layer. Fill the silicone resin Ispenser was used.
  • the semiconductor ultrafine particles and the fluorescent substance were mixed with a silicone resin, and formed into a sheet by a die coater method. After the sheet was formed, it was left at room temperature for 72 hours, and then dried at 150 ° C. for 3 hours to produce a wavelength converter of the present invention. By leaving at room temperature for 72 hours, the particles of the fluorescent substance are settled by spontaneous sedimentation. Thus, a wavelength converter with a separate structure was obtained. The obtained wavelength converter was mounted on the upper surface of the inner layer to obtain a light emitting device of the present invention.
  • the semiconductor ultrafine particles were synthesized by the following method. First, semiconductor ultrafine particles of CdSe are synthesized. First, 39.5 g (0.5 M) of Se powder is dissolved in 1.25 kg of trioctylphosphine (TOP). This is called solution 1. Next, 26.6 g (0.1 M) of cadmium acetate and 0.5 kg of stearic acid are mixed and dissolved at 130 ° C. After cooling to 100 ° C or lower, solution 1 was added, and 0.75 kg of TOP was further added to make a precursor solution. This precursor solution was heated in an oil bath. The heating was performed by passing a precursor solution through a reaction tube partially immersed in an oil bath. The heating temperature was 220 ° C.
  • TOP trioctylphosphine
  • the reaction time was varied from 0.5 to 15 minutes to control the average particle size of the semiconductor ultrafine particles.
  • the precursor solution came out of the oil bath, it was cooled by rapidly exposing it to room temperature.
  • semiconductor ultrafine particles having an average particle size of 2 to 132 nm were obtained.
  • LiEuW ⁇ can be specified at
  • Table 2 shows the manufacturing conditions of the wavelength converter manufactured by the above method, and the luminous efficiency of the light emitting device including the wavelength converter.
  • the luminous efficiency of the light-emitting device was evaluated using a light-emitting characteristic evaluation device manufactured by Otsuka Electronics Co., Ltd.
  • the light-emitting devices composed of Sample No. 13 Nol6 provided with the wavelength converter according to the present invention all showed a luminous efficiency of 101 m / W or more.
  • Sample No. 13 which was manufactured using semiconductor ultrafine particles having an average particle diameter of 4 nm, showed a very high luminous efficiency of 541 mZW.
  • trioctyl phosphinoxide is 40 Og calories 300. Heated to C and dissolved.
  • the solution 1 was added to this solution and reacted at 300 ° C. After completion of the reaction, the reaction solution was cooled to room temperature, 200 g of toluene was further added to the cooled solution, and the mixture was uniformly mixed.Additionally, ethanol was further added, and a cadmium selenide was applied by a centrifuge at 1500 G for 10 minutes. The particles were allowed to settle. Next, 3.7 g (0.02 M) of zinc acetate and 100 g of stearic acid were mixed with the cadmium selenide particles and dissolved at 130 ° C. To this solution was added 400 g of trioctylphosphinoxide (TOPO).
  • TOPO trioctylphosphinoxide
  • the ultrafine particles of selenium cadmium semiconductor obtained by collecting the precipitate were confirmed by TEM to have an average particle diameter of 4 nm.
  • this cadmium selenide semiconductor ultrafine The fluorescent color when the line was applied was yellow.
  • the center wavelength of the fluorescence peak was 580 nm.
  • the selenium cadmium semiconductor ultrafine particles 3 obtained as described above were weighed in three portions of 2 mg each, and the amine group, the mercapto group, and the carboxyl group represented by the chemical formula (a) were added thereto.
  • 2 g each of a silicone compound having a silicon-oxygen bond in the main chain having a functional group, an amide group, or a butyl group in the main chain, and having a methyl-free side chain as a functional group was obtained.
  • the number of repeating units of silicon-oxygen bonds of this silicone compound was 250, and the number n of side chains having a functional group was 5.
  • this nanoparticle structure After vacuum drying this nanoparticle structure, it was mixed with a two-part thermosetting silicone resin to obtain a liquid, uncured, uncured product. This was poured into a fluorescence measuring cell having a thickness of 10 mm, and was heated and cured at 80 ° C. for 2 hours to obtain a cured wavelength conversion layer. Each of these wavelength conversion layers emitted a yellow color when exposed to ultraviolet light.
  • cadmium selenide particles having a core-shell structure before treatment with the above-mentioned silicone compound was weighed out, and 20 g of tonoleene was added thereto.
  • the surface of the cadmium selenide particles is coordinated with TOPO, which is used as a solvent in the process of producing semiconductor ultrafine particles.
  • the following compound having only one silicon-oxygen bond was added to a mixed solution of semiconductor fine particles dispersed in a mixed solution of ethanol and water, dried, and compared with the surface of the semiconductor fine particles.
  • semiconductor ultrafine particles of Comparative Examples were prepared. The ultrafine semiconductor particles of this comparative example were weighed out in an amount of 0.1 Olg, and 20 g of Tonolen was added thereto.
  • Samples Nos. 36 and 37 in Table 4 are comparative examples outside the scope of the present invention.
  • the fluorescence intensity immediately after preparation of the toluene solution was 0.9.
  • the fluorescence intensity was 0.7 in Sample No. 37, and was 0.7 after 14 days.
  • Sample No. 38 was prepared by weighing out 0.1 Olg of the ultrafine particle structure 1 produced in the same manner as in Sample No. 31, and adding 20 g of toluene thereto.
  • the fluorescence intensity was 0.9 immediately after the preparation of the toluene solution and 14 days after the preparation of the toluene solution, and no decrease in the fluorescence intensity was observed.
  • the measurement of the wavelength and the intensity of the fluorescence was performed using PF-5300PC manufactured by Shimadzu Corporation.
  • Sample No. 39 is the same sample as sample No. 31 in Table 3.
  • the side chain without a functional group of sample No. 40 was an ethyl group and the side chain without a functional group of sample No. 41 was n- All of the propyl groups had a fluorescence intensity of 0.9.
  • a light-emitting element having a central emission wavelength of 395 nm was mounted on an alumina substrate by a flip-chip mounting method.
  • An ultrafine particle structure in which a compound whose functional group is an amine group and the side chain of which has no functional group is a methyl group is coordinated with cadmium selenide semiconductor ultrafine particles, and an average particle size (Sr, Ca, Ba, Mg) 10 (P ⁇ 4) 6C12: Eu and BaMgAU0 ⁇ 17: Eu with an average particle size of 3 zm are dispersed in silicone resin to produce a plurality of wavelength conversion layers.
  • a light emitting device was obtained by covering and bonding the light emitting element so as to cover it. The luminous efficiency of this light emitting device was 501 mZW.
  • a light-emitting device was produced by using a mixture of ultra-fine particles of selenium-cadmium semiconductor in a silicone resin without using a silicone-bonded product and forming a film having a thickness of 1 mm. This had a luminous efficiency of 30 Lm / W.
  • FIG. 1 is a schematic sectional view showing one embodiment of a light emitting device of the present invention.
  • FIG. 2 is a schematic sectional view showing another embodiment according to the light emitting device of the present invention.
  • FIG. 3 (a) is a schematic cross-sectional view schematically showing one example of a nanoparticle structure according to the present invention
  • FIG. 3 (b) is a partially enlarged schematic view thereof.
  • FIG. 4 is an explanatory diagram showing a molecular structure of a compound used for a nanoparticle structure of the present invention.
  • FIG. 5 is a cross-sectional view schematically showing a composite according to the present invention.
  • FIG. 6 is a schematic sectional view showing an example of the structure of a conventional light emitting device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Led Device Packages (AREA)
  • Luminescent Compositions (AREA)

Abstract

 基板2上に励起光を発する発光素子3を設けるとともに、前記励起光を可視光に変換する波長変換器4を備え、前記可視光を出力光とする発光装置であって、前記波長変換器4が、蛍光体として、平均粒径が20nm以下である少なくとも1種の半導体超微粒子と、平均粒径0.1μm以上である少なくとも1種の蛍光物質とをそれぞれ樹脂マトリックス中に含有する複数の波長変換層4a、4b、4cからなり、これによって蛍光体同士の自己消光を低減させ、高い発光効率を有する。

Description

明 細 書
波長変換器、発光装置、波長変換器の製造方法および発光装置の製造 方法
技術分野
[0001] 本発明は、発光素子から発せられる光を波長変換して外部に取り出す発光装置な どに使用される波長変換器、発光装置、波長変換器の製造方法および発光装置の 製造方法に関し、特に、電子ディスプレイ用のバックライト電源、蛍光ランプ等に好適 に用いられる波長変換器、発光装置、波長変換器の製造方法および発光装置の製 造方法に関する。
背景技術
[0002] 半導体材料からなる発光素子(以後、 LEDチップとも言う)は、小型で電力効率が 良く鮮やかに発色する。また、 LEDチップは、製品寿命が長い、オン'オフ点灯の繰 り返しに強ぐ消費電力も低い、という優れた特徴を有するため、液晶等のバックライト 光源や蛍光ランプ等の照明用光源への応用が期待されている。
[0003] LEDチップの発光装置への応用は、 LEDチップの光の一部を蛍光体で波長変換 し、当該波長変換された光と波長変換されなレ、 LEDの光とを混合して放出すること により、 LEDの光とは異なる色を発光する発光装置として既に製造されている。
具体的には、白色光を発するために、 LEDチップ表面に蛍光体を含む波長変換 層を設けた発光装置が提案されている。例えば、 nGaN系材料を使った青色 LEDチ ップ上に (Y, Gd) (Al, Ga) O の組成式で表される YAG系蛍光体を含む波長変
3 5 12
換層を形成した発光装置では、 LEDチップから青色光が放出され、波長変換層で青 色光の一部が黄色光に変化するため、青色と黄色の光が混色して白色を呈する発 光装置が提案されてレ、る (例えば、特許文献 1参照)。
[0004] このような構成の発光装置の一例を図 6に示した。図 6によれば、発光装置は、電 極 21が形成された基板 22と、基板 22上に中心波長が 470nmの光を発する半導体 材料を具備する LED発光素子 23と、基板 22上に発光素子 23を覆うように設けられ た、波長変換層 24とを具備し、波長変換層 24が蛍光体 25を含有してなるものである 。なお、所望により、発光素子 23と波長変換層 24の側面には、光を反射する反射体 26を設け、側面に逃げる光を前方に焦光し、出力光の強度を高めることもできる。 この発光装置では、発光素子 23から発する光が蛍光体に照射されると、蛍光体は 励起されて可視光を発し、この可視光が出力として利用される。
[0005] ところ力 LED発光素子 23の明るさを変えると、青色と黄色との光量比が変化する ため、白色の色調が変化し、演色性に劣るといった問題があった。
そこで、このような課題を解決するために、図 6における LED発光素子 23として 40 Onm以下のピークを有する紫色 LEDチップを用いるとともに、波長変換層 24には 3 種類の蛍光体 25を高分子樹脂中に混ぜ込んだ構造を採用し、紫色光を赤色、緑色 、青色の各波長に変換して白色を発光することが提案されている(例えば、特許文献 2参照)。
[0006] し力、しながら、特許文献 2記載の発光装置は、幅広い範囲で発光波長をカバーす るため、演色性が大幅に向上するという利点があるものの、波長変換層 23の中に 3 種類の蛍光体 25が混合されて存在しているため、青色蛍光体により変換された光を 赤色蛍光体が吸収する等の蛍光体間の相互作用により、 自己消光が発生し、一度 変換された光を、蛍光体が再度吸収するため、全体としての発光効率が低下すると レ、う問題があった。その結果、発光強度が十分でなぐ発光装置が暗くなり、これを補 うためには消費電力を高める必要があった。
また、特許文献 3に記載のような方式では、蛍光体の発光効率 (蛍光量子収率)が 低ぐ特に 600— 750nm領域の赤色の発光効率が低いという問題があった。
[0007] そこで、各波長で高い発光効率を得るための蛍光体として、平均粒子径が lOnm 以下での半導体超微粒子を蛍光体として使用することが検討されている (非特許文 献 1参照)。この方法によると、半導体超微粒子の平均粒径を lOnm程度の適切な値 に設定すれば、半導体超微粒子が光の吸収、発光を素早く繰り返すため、高い蛍光 収率を得ることができる。また、エネルギー準位が離散的となり、半導体超微粒子の バンドギャップエネルギーが蛍光体の粒径に合わせて変化するため、半導体超微粒 子の粒径を変えることで、赤 (長波長)から青 (短波長)まで様々な発光を示す。例え ば波長 700から 800nmの蛍光を発するセレン化カドミウムは粒径を 2nmから lOnm の範囲で変化させることにより蛍光収率の高レ、赤 (長波長)から青(短波長)の光を発 する。従ってこの手法を用いると演色性が高ぐ効率のよい発光装置を作ることができ ると期待されている。
[0008] このような半導体超微粒子を製造する方法としては、例えば、ホットソープ法(特許 文献 3参照)や、マイクロリアクター法(特許文献 4参照)が報告されている。これらの 方法を用いると、粒径 20nm以下の半導体超微粒子を得ることができる。
しかし、半導体粒子の粒径が小さくなると次のような二つの問題がある。一つ目の問 題は、半導体粒子をその粒径が 20nm程度まで小さくすると、その体積に対する表 面積の比率が高いため、粒子表面が水と反応して蛍光特性の劣化が起こることであ る。このため、長期に安定した発光装置を得るためには蛍光体粒子を水分に触れさ せない工夫が必要である。この課題を解決する手法として、蛍光体を水分透過性の 低い樹脂マトリックス中に分散させたコンポジットとして発光装置に搭載する方法があ る。しかし、蛍光体を樹脂に混合し、硬化させるまでの工程で蛍光体が水分と反応し て蛍光体の特性が劣化するという問題がある。
[0009] 二つ目の問題は、半導体超微粒子の凝集が生じることである。一般に半導体粒子 は、その粒径が小さくなると凝集がしゃすくなるため、樹脂マトリックス中に単独粒子 の状態で分散させることが難しくなる。半導体粒子の直径が 20nmを超える場合には 半導体粒子が凝集体を形成しても、その凝集体が発生する光の色は単独粒子が発 生する光の色と同じであるため、さほど凝集を気にする必要はなレ、。しかし 20nm以 下の半導体超微粒子が凝集した場合、その凝集体は粒子単独で存在する場合より も長い波長の蛍光を発するため、凝集体の数が多い場合、安定して一定波長の光を 発生する発光装置を製造することができない。したがって、樹脂内部に粒径 20nm以 下の半導体超微粒子を含有するコンポジットを波長変換器として備えた発光装置を 製造する場合、樹脂マトリックス中に半導体超微粒子を単独粒子で分散させる技術 が求められている。
[0010] 二つ目の問題を解決する手法として、ポリメタタリレートマトリックス中に半導体超微 粒子を単独粒子として分散させて固定する方法が報告されてレ、る (非特許文献 2参 照)。また、半導体超微粒子をエタノールに分散させ、アルコールを溶剤とするポリェ チレンォキシド塗料に混合して塗布することで半導体超微粒子を分散した膜を得る 方法が報告されてレ、る(特許文献 5参照)。
[0011] しかし、ポリメタタリレートやポリエチレンォキシドなどの従来使用されている樹脂は 光や熱に対する安定性が低い。このため、発光装置を長時間使用した場合、または 高出力の発光装置に使用した場合、樹脂が変色を起こし、次第に発光装置の効率 が低下するという問題がある。
[0012] また、樹脂に半導体超微粒子を分散させた波長変換部の樹脂に求められる他の特 性として透明性がある。したがって、光に対する安定性、耐熱性、透明性の 3つの特 性を全て満足する樹脂に半導体超微粒子を安定して単独粒子として分散させること 、長時間、高出力で使用可能な演色性の高い白色を呈する発光装置を製造する 上で重要である。
[0013] また、半導体超微粒子は、バンドギャップより高エネルギーであれば、励起波長に 制限がなぐ発光寿命が希土類より 10万倍短ぐ吸収、発光のサイクルを素早く繰り 返すので、発光効率が高い、有機色素よりもずっと劣化が少ない、といった利点を有 している。このため、高効率かつ長寿命の発光装置を実現できると期待されている。
[0014] このような半導体超微粒子が凝集して発光効率が低下しないように、半導体超微粒 子を分散剤により安定化させて、樹脂マトリックス中に担持し固定化する方法が幾つ 力、試みられている。例えば、非特許文献 2では、トリオクチルホスフィンで被覆された カドミウムセレンナノ粒子をポリメタタリレートマトリックス中に固定する方法が報告され ている。
しかしながら、マトリックスとして用いる炭化水素系高分子樹脂は、耐光性、耐熱性な どに劣り、しかも水や酸素を少しずつ透過させるので、固定化された半導体超微粒子 が徐々に劣化するという問題点があった。
特許文献 1:特開平 11-261114号公報
特許文献 2:特開 2002 - 314142号公報
特許文献 3:特開 2003 - 160336号公報
特許文献 4 :特開 2003— 225900号公報
特許文献 5 :特開 2002 - 121548号公報 非特許文献 1 : R. N. Bhargava, Phys. Rev. Lett. , 72, 416 (1994) 非特許文献 2 : Jinwook Lee et al, Adv. Mater. , 12, No. 15, 1 102 (2000) 発明の開示
発明が解決しょうとする課題
[0015] 本発明の主たる課題は、蛍光体同士の自己消光を低減させ、高い発光効率を有 する発光装置に有用な波長変換器、およびこれを用いた発光装置を提供することで ある。
本発明の他の課題は、平均粒径 20nm以下の半導体超微粒子を用いて、水分に よる蛍光特性の劣化を抑え、かつ半導体超微粒子を樹脂中に凝集のない単独粒子 の状態で分散させた波長変換器、およびこれを用いた発光装置を提供することであ る。
本発明のさらに他の課題は、前記半導体超微粒子の発光機能を低下させず、長期 わたって高性能かつ安定な波長変換器、およびこれを用いた発光装置を提供するこ とである。
課題を解決するための手段
[0016] 上記課題を解決するための本発明の波長変換器は、以下の構成を有する。
[0017] (1)蛍光体として、平均粒径が 20nm以下である少なくとも 1種の半導体超微粒子と 、平均粒径 0. 1 μ ΐη以上である少なくとも 1種の蛍光物質とをそれぞれ樹脂マトリック ス中に含有する複数の波長変換層からなることを特徴とする波長変換器。
(2)前記半導体超微粒子と前記蛍光物質とが樹脂マトリックス中に分散し、かつそ れぞれ層状に偏在して複数の波長変換層を形成していることを特徴とする(1)に記 載の波長変換器。
(3)前記半導体超微粒子が、周期表第 I - b族、第 II族、第 III族、第 IV族、第 V族お よび第 VI族に属する少なくとも 2種類以上の元素からなる半導体組成物であることを 特徴とする(1)に記載の波長変換器。
(4)前記半導体超微粒子のバンドギャップエネルギー力 1. 5-2. 5eVであること を特徴とする(1)に記載の波長変換器。
(5)前記マトリックスが、実質的に単一の樹脂層であることを特徴とする (2)に記載の 波長変換器。
(6)前記半導体超微粒子の表面を表面修飾分子が被覆してレ、ることを特徴とする( 1)に記載の波長変換器。
(7)前記表面修飾分子が、珪素—酸素の結合を 2つ以上繰り返していることを特徴と する(6)に記載の波長変換器。
(8)前記表面修飾分子が、前記半導体超微粒子表面に配位結合していることを特 徴とする (6)に記載の波長変換器。
(9)前記表面修飾分子の珪素—酸素の繰り返し単位数が 5 500であることを特徴 とする (7)に記載の波長変換器。
(10)前記半導体超微粒子が、平均粒径 0. 5— 20nmであることを特徴とする(1)に 記載の波長変換器。
(11)前記半導体超微粒子がコアシェル構造よりなることを特徴とする(1)に記載の 波長変換器。
(12)前記表面修飾分子が、アミノ基、メルカプト基、カルボシキル基、アミド基、エス テノレ基、カルボニル基、フォスフォキシド基、スルフォキシド基、フォスフォン基、ィミン 基、ビュル基、ヒドロキシ基およびエーテル基から選ばれる少なくとも 1つの官能基を 具備することを特徴とする (6)に記載の波長変換器。
(13)前記表面修飾分子が、前記官能基を有する側鎖を 2つ以上具備することを特 徴とする(12)に記載の波長変換層。
(14)側鎖が、メチル基、ェチル基、 n—プロピル基、 iso—プロピル基、 n—ブチル基、 i so—フチノレ基、 n—ペンチノレ基、 iso—ペンチノレ基、 n キシノレ基、 iso—へキシノレ基、 シクロへキシル基、メトキシ基、エトキシ基、 n—プロポキシ基、 iso—プロポキシ基、 n— ブトキシ基、 iso—ブブトキシ基、 n—ペントキシ基、 iso—ペントキシ基、 n キシロキシ 基、 iso—へキシロキシ基およびシクロへキシロキシ基力 選ばれる少なくとも 1つであ ることを特徴とする(13)に記載の波長変換層。
(15)前記半導体超微粒子が、光ルミネッセンス機能を有することを特徴とする(1) に記載の波長変換器。
(16)前記樹脂マトリックスが、前記半導体超微粒子および蛍光物質を混合した液 状未硬化物を硬化させたものであることを特徴とする(2)に記載の波長変換装器。
(17)屈折率が 1. 7以上であることを特徴とする(1)に記載の波長変換器。
(18)前記樹脂マトリックス力 熱エネルギーにより硬化するものであることを特徴とす る(1)に記載の波長変換器。
(19)前記樹脂マトリックスが、光エネルギーにより硬化するものであることを特徴とす る(1)に記載の波長変換器。
(20)前記樹脂マトリックスが、主鎖に珪素一酸素結合を含む高分子樹脂を含有する ことを特徴とする(1)に記載の波長変換器。
(21)可視光の波長の範囲で少なくとも 2つ以上の強度ピークを持つ蛍光を発するこ とを特徴とする(1)に記載の波長変換器。
本発明の発光装置は、以下の構成を有する。
(22)基板上に設けられ励起光を発する発光素子と、この発光素子の前面に位置し 前記励起光を可視光に変換する波長変換器とを備え、前記可視光を出力光とする 発光装置であって、前記波長変換器が、蛍光体として、平均粒径が 20nm以下であ る少なくとも 1種の半導体超微粒子と、平均粒径 0. 1 / m以上である少なくとも 1種の 蛍光物質とをそれぞれ樹脂マトリックス中に含有する複数の波長変換層力 なる発光 装置。
(23)前記半導体超微粒子と前記蛍光物質とが樹脂マトリックス中に分散し、かつそ れぞれ層状に偏在して複数の波長変換層を形成していることを特徴とする(22)に記 載の発光装置。
(24)各波長変換層で変換された変換光のピーク波長が、前記発光素子側から外 側に向かって順に短波長となるように、前記複数の波長変換層を配置してなることを 特徴とする (22)に記載の発光装置。
(25)前記複数の波長変換層がそれぞれ蛍光体を含有することを特徴とする (22)に 記載の発光装置。
(26)前記蛍光体の少なくとも一部のバンドギャップエネルギー力 発光素子が発す るエネルギーよりも小さレ、ことを特徴とする(22)に記載の発光装置。
(27)前記波長変換器が、少なくとも 3層の波長変換層からなり、該 3層の波長変換 層でそれぞれ変換された変換光がそれぞれ、赤、緑、青に対応する波長となることを 特徴とする (22)に記載の発光装置。
(28)前記波長変換層が、前記蛍光体を含有する高分子樹脂薄膜からなることを特 徴とする (22)に記載の発光装置。
(29)前記波長変換器に含まれる蛍光体が、平均粒子径が 10nm以下の半導体超 微粒子であることを特徴とする(22)に記載の発光装置。
(30)前記半導体超微粒子を含有する波長変換層が前記発光素子側に配設されて おり、かつ前記半導体超微粒子からの出力光のピーク波長が前記蛍光物質からの 出力光のピーク波長よりも大きレ、ことを特徴とする(22)に記載の発光装置。
(31)前記半導体超微粒子からの出力光のピーク波長力 500 900nmであること を特徴とする(22)に記載の発光装置。
(32)前記蛍光物質からの出力光のピーク波長力 400 700nmであることを特徴 とする(22)に記載の発光装置。
(33)前記励起光の中心波長が 450nm以下であることを特徴とする(22)に記載の 発光装置。
(34)前記出力光のピーク波長が 400— 900nmであることを特徴とする(22)に記載 の発光装置。
(35)前記樹脂マトリックスが、実質的に単一の樹脂層であることを特徴とする (22) に記載の発光装置。
(36)前記波長変換層の厚みが、 0. 05— 50 μ ΐηであることを特徴とする(22)に記 載の発光装置。
(37)前記波長変換器の厚みが 0. 1 5. Ommであることを特徴とする(22)に記載 の発光装置。
(38)前記複数の波長変換層に含まれる蛍光体が略同一材料からなり、それぞれ平 均粒子径が異なる半導体超微粒子であることを特徴とする(22)に記載の発光装置。
(39)基板上に設けられ励起光を発する発光素子と、この発光素子の前面に位置し 前記励起光を可視光に変換する波長変換器とを備え、前記可視光を出力光とする 発光装置であって、前記波長変換器が、蛍光体として、平均粒径が 20nm以下であ る少なくとも 1種の半導体超微粒子と、平均粒径 0. 1 / m以上である少なくとも 1種の 蛍光物質とをそれぞれ高分子樹脂薄膜又はゾルゲルガラス薄膜中に含有する複数 の波長変換層からなる発光装置。
[0019] 本発明の波長変換器の製造方法は、
(a)平均粒径 20nm以下である少なくとも 1種の半導体超微粒子と、平均粒径 0. 1 μ m以上である少なくとも 1種の蛍光物質とを樹脂の未硬化物に分散する工程と、
(b)前記半導体超微粒子と蛍光物質が分散された樹脂をシート状に成形し、前記半 導体超微粒子を成形物の一方の主面側に多く分散させ、前記蛍光物質を他方の主 面側に多く分散させる工程と、
(c)前記半導体超微粒子と蛍光物質の粒子が分散した後のシートを硬化する工程を 含む。
[0020] 本発明の波長変換器の他の製造方法は、前記 (a)工程の前に、半導体超微粒子 を液相中で合成し、液相中の珪素一酸素の結合を主体としァミノ基、カルボキシル基 、メルカプト基およびヒドロキシ基から選ばれる官能基を有するシリコーン系化合物が 配位する工程を含んでレ、る。
[0021] 本発明の発光装置の製造方法は、基板上に発光素子を搭載する工程と、前記発 光素子を覆うようにして、前記(1)に記載の波長変換器を配置する工程を含んでいる 発明の効果
[0022] 上記(1)、 (2)の波長変換器によれば、蛍光体として、平均粒径 0. 1 μ m以上の蛍 光物質と、バルタ励起子ボーァ半径より小さい 20nm以下の平均粒径を有する半導 体超微粒子とを使用しているために、高効率発光が可能となり、マトリックス樹脂中の 粒子分散量を減らすことができる。
それゆえ、自己消光による発光効率の低減を防止できる。このため、通常の酸化物 蛍光体は長波長紫外線および短波長可視光線(350nm力 420nm)に対する発光 効率が低いのに対して、半導体超微粒子はこれらの領域での高効率発光が実現で きる。また、半導体超微粒子は、 450nm前後の青色発光領域の量子効率が高くな いため、この青色発光領域で量子効率が高い平均粒径 0. 1 / m以上の蛍光物質と 、青色発光領域以外で高効率発光が可能な半導体超微粒子を用いることで、広範 囲の波長領域において優れた発光効率を実現できる。
[0023] 上記 (3)、(4)の波長変換器によれば、半導体超微粒子が特定の半導体組成物か らなり、特定のバンドギャップエネルギーを有することにより、 400— 900nmの範囲の 蛍光を発現できる。その結果、半導体超微粒子によって幅広い範囲で発光波長を力 バーすることが可能となり、演色性が大幅に向上することができ、演色性に優れた発 光装置を実現できる。
[0024] 上記 (5)の波長変換器によれば、前記波長変換器の樹脂マトリックスが、実質的に 境目のない単一の樹脂層であるので、境目での光の減衰が抑制されるため、高効率 化できる。
[0025] 上記 (6)、 (7)の波長変換器によれば、半導体超微粒子の表面が表面修飾分子で 被覆されているので、該表面修飾分子の立体障害により、粒子同士が接近すること を阻止すること力 Sできる。
[0026] 上記 (8)の波長変換器によれば、表面修飾分子が、前記半導体超微粒子表面に 配位結合してレ、るので、半導体超微粒子が安定化する。
[0027] 上記 (9)の波長変換器によれば、前記化合物の珪素 -酸素の繰り返し単位数が 5 一 500であるので、半導体超微粒子を覆う化合物の量が十分な量になるため、半導 体超微粒子を水分から保護する効果を十分に得ることができる。従って、超微粒子 構造体の蛍光特性の劣化が少ない。また、この場合、半導体超微粒子に配位結合 する化合物の半導体超微粒子に対する相対量が十分であるため、超微粒子組成物 が樹脂 (例えばシリコーン樹脂)中で長期にわたり安定した分散状態を維持できる。ま た、前記化合物の珪素—酸素の繰り返し単位数は 500以下であるので、化合物の粘 度を低くできるため、効率よく化合物を半導体超微粒子に配位結合させることができ る。
[0028] 上記(10)の波長変換器によれば、半導体超微粒子の平均粒径が 0. 5nm以上で あるので、半導体超微粒子が安定するため、半導体粒子が溶解して粒径が小さくな るなどの問題を回避できる。また、前記平均粒径は 20nm以下であるので、半導体超 微粒子が光の吸収、発光を素早く繰り返すことによる蛍光収率向上の効果が十分に 得られるため蛍光収率の高い超微粒子構造体を作ることができる。
[0029] 上記(11)の波長変換器によれば、半導体超微粒子がコアシェル構造よりなるので 、コア部の結晶表面の結晶格子欠陥よる蛍光量子効率が低下するのを防止できる。
[0030] 上記(12)の波長変換器によれば、前記化合物が特定の官能基を有しているので、 前記半導体超微粒子と強固に配位結合するため安定したナノ粒子構造体を得ること ができる。
[0031] 上記(13)の波長変換器によれば、前記化合物が、前記官能基を有する側鎖を 2つ 以上具備しているので、化合物は半導体微粒子と各々の官能基で結合するため、官 能基が一つの場合に比べてより強く結合し、安定したナノ粒子構造体を作ることがで きる。
[0032] 上記(14)の波長変換器によれば、前記側鎖、好ましくは前記官能基が付く側鎖以 外の側鎖として用いる特定の基は、可視光線および紫外線を吸収しないため、耐光 性の高い超微粒子構造体を得ることができる。
[0033] 上記(15)の波長変換器によれば、前記半導体超微粒子が光ルミネッセンス機能を 有するので、この光ルミネッセンス機能を利用して、このナノ粒子構造体と、電力を光 に変換する LEDとを組み合わせることにより小型発光装置を得ることができる。
[0034] 上記(16)の波長変換器は、未硬化の樹脂マトリックスが液状であるので、凹凸のあ る構造体に波長変換器を設置する場合でも、波長変換器を凹凸に追従させることが できる。
[0035] 上記(17)の波長変換器によれば、樹脂マトリックスの屈折率が 1. 7以上であるので 、波長が変換された光は効率よく波長変換器外へ放出され、樹脂マトリックスと大気と の界面で反射される光の割合を減らせる。
[0036] 上記(18)の波長変換器によれば、前記樹脂マトリックスは熱エネルギーにより硬化 されるので、乾燥機などの安価な設備で発光装置を作ることができる。
[0037] 上記(19)の波長変換器によれば、前記樹脂マトリックスは光エネルギーにより硬化 されるので、発光素子上に液状の未硬化の樹脂マトリックスを被着して、光硬化させ ることにより、発光素子に熱による悪影響を与えることなく発光装置を作ることができる [0038] 上記 (20)の波長変換器は、樹脂マトリックスが、珪素-酸素結合を主体とする高分 子樹脂を含有するので、耐光性、耐熱性、透明性を高めることができる。
[0039] 上記(21)の波長変換器は、可視光の波長の範囲で少なくとも 2つ以上の強度ピー クを持つ蛍光を発するので、高レ、演色性を容易に実現することができる。
[0040] 上記 (22)、 (23)の発光装置は、上記(1)、(2)と同様に、蛍光体として、バルタ励起 子ボーァ半径より小さい 20nm以下の平均粒径を有する半導体超微粒子を使用して いるために、高効率発光が実現できる。
[0041] 上記(24)の発光装置は、自己消光は蛍光体から発せられた短波長の光が他の蛍 光体に吸収され、長波長の光は吸収されないとの知見に基づき、波長変換器を、発 光波長(すなわち各波長変換層で変換された変換光のピーク波長)が、前記発光素 子側から外側に向かって順に短波長となるように、前記複数の波長変換層を配置し ている。それゆえ、波長変換層内の蛍光体同士の自己消光を低減させ、高い発光効 率を実現することができる。
[0042] 上記(25)の発光装置によれば、前記複数の波長変換層がそれぞれ蛍光体を含有 するので、幅広い範囲で発光波長をカバーすることが可能となるため、演色性が大 幅に向上する。
[0043] 上記(26)の発光装置によれば、前記半導体超微粒子の少なくとも一部のバンドギ ヤップエネルギーを、発光素子が発するエネルギーよりも小さくしておくことにより、発 光素子が発するエネルギーを効率よく半導体超微粒子に吸収できるため、発光効率 が向上する。
[0044] 上記(27)の発光装置によれば、前記波長変換器が、少なくとも 3層の波長変換層 からなり、該 3層の波長変換層でそれぞれ変換された変換光がそれぞれ、赤、緑、青 に対応する波長となるので、幅広い範囲で発光波長をカバーすることが可能となり、 演色性が大幅に向上する。
[0045] 上記 (28)の発光装置によれば、前記波長変換層が、前記蛍光体を含有する高分 子樹脂薄膜からなるので、発光素子から発せられた光により波長変換層の劣化を抑 制することができ、耐久性を向上できる。
[0046] 上記(29)の発光装置によれば、前記波長変換層に含まれる蛍光体が、平均粒子 径が 10nm以下の半導体超微粒子であるので、発光効率をさらに高め、寿命を改善 すること力 Sできる。
[0047] 上記 (30)— (32)の発光装置は、半導体超微粒子を含有する波長変換層が前記発 光素子側に配設されており、かつ前記半導体超微粒子からの出力光のピーク波長 が前記蛍光物質からの出力光のピーク波長よりも大きいので、波長変換層内の蛍光 体同士の自己消光を低減させ、高い発光効率を実現することができる。
[0048] 上記(33)の発光装置は、前記励起光の中心波長が 450nm以下であるので、発光 素子の外部量子効率が高ぐかつ波長変換器内の蛍光体が発光素子からの 1次光 を高い効率で吸収し波長変換するため、高い光出力を実現できる。
[0049] 上記(34)の発光装置は、出力光のピーク波長が 400 900nmであるので、演色 性に優れた発光装置を実現できる。
[0050] 上記 (39)の発光装置は、波長変換層が、蛍光体を含有する高分子樹脂薄膜又は ゾルゲルガラス薄膜からなるので、発光素子から発せられた光により波長変換層の劣 化を抑制することができ、耐久性を向上できる。
発明を実施するための最良の形態
[0051] 以下、本発明の実施形態を図面を用いて説明する。図 1は本発明の発光装置の一 実施様態を示す概略断面図である。
[0052] 図 1によれば、本発明の発光装置は、電極 1が形成された基板 2と、基板 2上に中 心波長が 450nm以下の光を発する半導体材料を具備する発光素子 3と、基板 2上 に発光素子 3を覆うように形成された波長変換器 4とを具備する。波長変換器 4は複 数の波長変換層 4a、 4b、 4c力らなり、これらの波長変換層 4a、 4b、 4cはそれぞれ蛍 光体 5a、 5b、 5cを含有して、蛍光体 5a、 5b、 5cが発光素子 3から発せられる光でそ れぞれ直接励起され、変換光として可視光を発生する。そして、これらの複数の変換 光は合成されて出力光として取り出すものである。
[0053] 発光素子 3と波長変換器 4の側面には、必要に応じて、光を反射する反射体 6を設 け、側面に逃げる光を前方に反射し、出力光の強度を高めることもできる。
[0054] 発光波長が異なる複数の波長変換層 4a、 4b、 4cは、変換光のピーク波長が、発光 素子 3側から外側に向かって順に短波長になるように配置する。例えば、図 1の場合 には波長変換器 4が 3層の波長変換層 4a、 4b、 4cからなり、波長変換層 4bによる変 換光のピーク波長が波長変換層 4aによる変換光のピーク波長よりも短ぐ波長変換 層 4cによる変換光のピーク波長が、波長変換層 4bによる変換光のピーク波長よりも 短くなるように波長変換層 4a、 4b、 4cを配置する。
[0055] 発光素子 3から発せられた励起光は、蛍光体 5a、 5b、 5cによって変換されて変換 光 A、 B、 Cになるが、変換光 Aは、変換光 B、 Cよりも長波長であるため、変換光 Aは 蛍光体 5b、 5cを励起して可視光を発生させるのに十分なエネルギーを持たなレ、。そ の結果、波長変換器 4内の蛍光体同士の自己消光を低減させることができ、波長変 換層 4a、 4b、 4c内の蛍光体濃度を上げなくても、高い変換効率を実現することがで きる。
[0056] また、同様に、変換光 Bは変換光 Cよりも長波長であるため、変換光 Bは蛍光体 5c を励起せず、波長変換層 4c内で変換光 Bの吸収による自己消光を低減させることが できる。
[0057] これに対し、従来の発光装置のように、発光波長の異なる 3種類の蛍光体を同一の 波長変換層に含有している場合には、蛍光体から発せられた光を別の蛍光体が吸 収してしまい、発光装置全体としての発光効率が充分に高くならない。
[0058] 本発明では、波長変換層を複数設け、かつ波長変換層の発光波長を発光素子に 近い方から順に小さくなるように、換言すれば発光素子に近い方を長波長、遠い方を 短波長とする。これにより、短波長の変換光を蛍光体が吸収する現象を抑制すること ができ、波長変換層内の蛍光体 5の濃度を上げて含有量を増やさなくても、高い変 換効率を得ることができる。その結果、低消費電力で高光出力を得ることが期待でき る。
[0059] 基板 1は、熱伝導性に優れ、かつ全反射率の大きな基板が用いられる。基板 1とし ては、例えばアルミナ、窒素アルミニウム等のセラミック材料の他に、金属酸化物微粒 子を分散させた高分子樹脂が好適に用いられる。
[0060] 発光素子 3は、中心波長が 450nm以下、特に 380 420nmの光を発すること力 S 好ましい。この範囲の波長域の励起光を用いることにより、蛍光体の励起を効率的に 行なうことができ、出力光の強度を高め、より発光強度の高い発光装置を得ることが 可能となる。
[0061] 発光素子 3は、上記中心波長を発するものであれば特に制限されるものではない 、発光素子基板表面に、半導体材料力 なる発光層を備える構造 (不図示)を有し ていることが、高い外部量子効率を有する点で好ましい。このような半導体材料として 、 ZnSeや窒化物半導体 (GaN等)等種々の半導体を挙げることができるが、発光波 長が上記波長範囲であれば、特に半導体材料の種類は限定されない。これらの半 導体材料を有機金属気相成長法 (MOCVD法)や分子線ェピタシャル成長法等の 結晶成長法により、発光素子基板上に半導体材料力 なる発光層を有する積層構 造を形成すれば良い。
[0062] 発光素子基板 2は、発光層との組み合わせを考慮して材料選定ができ、例えば窒 化物半導体からなる発光層を表面に形成する場合、サファイア、スピネル、 SiC、 Si、 Zn〇、 ZrB、 GaNおよび石英等の材料が好適に用いられる。結晶性の良い窒化物
2
半導体を量産性よく形成させるためにはサファイア基板を用いることが好ましい。
[0063] 波長変換層 4a、 4b、 4cがそれぞれ含有する蛍光体 5a、 5b、 5cは、発光素子 3から 発せられる光で直接励起され、これらの光の波長が合成され、幅広い範囲で発光波 長をカバーし、演色性を大幅に向上させることができる。このようにして得られる可視 光のピーク波長は 400— 900nm、特に 450— 850nm、とりわけ 500— 800nmであ ることが好ましい。
[0064] 波長変換器 4は、可視光の波長範囲で、 2つ以上の強度ピークを持つ蛍光を発す ることが望ましぐさらに例えば、変換波長の異なる複数の波長変換層 4a、 4b、 4cか らなり、かつその変換波長が赤、緑、青に対応する波長からなることが好ましい。これ により、幅広い範囲で発光波長をカバーし、演色性をより向上することができる。例え ば図 1に示した発光装置は 3層の波長変換層を有する 3層構造である。それぞれ変 換波長の異なる波長変換層 4a、 4b、 4cから形成される。このような 3層構造では、演 色性を考慮する時、第一の波長変換層 4aの変換波長ピークが 640nm± 10nm、第 二の波長変換層 4bの変換波長ピークが 520nm土 10nm、第三の波長変換層 4cの 変換波長ピークが 470nm± 10nmであることが最も好ましい。
[0065] 波長変換層 4a、 4b、 4cは、先に示した蛍光体 5a、 5b、 5cを高分子樹脂膜ゃゾル ゲルガラス薄膜に分散して形成することが好ましレ、。高分子樹脂膜やゾルゲルガラス 薄膜としては、透明性が高ぐかつ加熱や光によって容易に変色しない耐久性を有 するものが望ましい。
[0066] 高分子樹脂膜は、蛍光体を均一に分散、担持することが容易で、蛍光体の光劣化 を抑制することができるという利点がある。材料は特に限定されるものではなぐ例え ば、エポキシ樹脂、シリコーン樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタ レート、ポリエチレンナフタレート、ポリスチレン、ポリカーボネート、ポリエーテノレスノレ ホン、酢酸セルロース、ポリアリレート、さらにこれら材料の誘導体が用いられる。特に 、 350nm以上の波長域において 95%以上の光透過性を有していることが好ましい。 このような透明性に加え、耐熱性の観点から、エポキシ樹脂、シリコーン樹脂がより好 適に用いられる。
[0067] ゾルゲルガラスは、シリカ、チタニア、ジルコユア、さらにそれらのコンポジット系を例 示できる。ゾノレゲルガラス中に蛍光体を単独で分散させても良ぐさらに Si、 Ti、 Zr等 の金属原子と蛍光体を有機分子で結合した状態でも良い。高分子樹脂膜と比較して 、光、特に紫外光に対する耐久性が高ぐさらに熱に対する耐久性が高いことから、 製品の長寿命化を実現できる。また、ゾルゲルガラスは、安定性を向上させることが できることから、信頼性に優れた発光装置を実現できる。
[0068] 本発明の波長変換器 4は、高分子樹脂膜またはゾルゲルガラス膜力 なるため、塗 布法により形成することができる。一般的な塗布法であれば限定されないが、デイス ペンサーによる塗布が好ましい。
[0069] 波長変換器 4に含まれる蛍光体 5は、 450nm以下の光により励起され、 400— 900 nmの範囲の光を発する材料であれば特に限定されない。蛍光体 5としては、一般的 に用いられる蛍光物質を採用でき、例えば ZnS :Ag、 ZnS :Ag, Al、 ZnS :Ag, Cu, Ga, Cl、 ZnS :Al + In〇、 ZnS : Zn + In O、(Ba, Eu) MgAl 〇 、 (Sr, Ca, Ba,
2 3 2 3 10 17
Mg) (PO ) CI : Eu、 Sr (PO ) CI : Eu、(Ba, Sr, Eu) (Mg, Mn) Al O 、 10
10 4 6 17 10 4 6 12 10 17
(Sr, Ca, Ba, Eu) · 6PO · CI、 BaMg Al O : Eu、 ZnS: CI, Al、(Zn, Cd) S: Cu
4 2 2 16 25
, A1、Y A1 0 : Tb、 Y3 (A1, Ga)〇 : Tb、 Y Si〇:Tb、 Zn Si〇: Mn、 ZnS : Cu
3 5 12 5 12 2 5 2 4
+ Zn SiO: Mn、 Gd O S :Tb、(Zn, Cd) S :Ag、 Y O S :Tb、 ZnS: Cu, Al + In O 、 (Zn, Cd)S:Ag + In〇、(Zn, Mn) SiO、 BaAl O : Mn、(Ba, Sr, Mg)0-a
3 2 3 2 4 12 19
Al〇 : Mn、 LaPO: Ce, Tb、 3(Ba, Mg, Eu, Μη)0·8Α1 O、 La O ·0· 2Si〇 ·
2 3 4 2 3 2 3 2
0.9P〇 : Ce, Tb、 CeMgAl O : Tb、 Y O S:Eu、 Y〇 : Eu、 Zn (P〇 ) : Mn、 (
2 5 11 19 2 2 2 3 3 4 2
Zn, Cd) S : Ag + In O、(Y, Gd、 Eu) B〇、 ( Y, Gd、 Eu) O、 YVO: Eu, La O
2 3 3 2 3 4 2 2
S:Eu, Sm、 YAG:Ce等が用いられる。
[0070] また、蛍光体 5として、上記記載の一般的な蛍光物質以外に、半導体超微粒子を 用いることもでき、特に平均粒子径が 20nm以下の半導体超微粒子を用いることが好 ましい。粒子径 20nm以下の半導体超微粒子は、ナノ粒子のサイズを変えることで、 赤 (長波長)から青(短波長)まで様々な発光を示し、バンドギャップより高エネルギー であれば、励起波長に制限がなレ、。また、発光寿命が希土類より 10万倍短ぐ吸収、 発光のサイクルを素早く繰り返すので、非常に高い輝度を実現でき、有機色素よりも 劣化が少なレ、(劣化するまでに蛍光として出てくる光子の数は、色素の 10万倍程度 とされている)という特徴を有している。このため、半導体超微粒子を用いると、優れた 発光効率を実現でき、かつ長寿命の発光装置を実現できる。
[0071] 半導体超微粒子は、 450nm以下の光により励起され、 400— 900nmの範囲の光 を発する材料であれば特に限定されず、例えば、下記の材料を例示できる。即ち、 C 、 Si、 Ge、 Sn等の周期表第 14族元素の単体、 P (黒リン)等の周期表第 15族元素の 単体、 Seや Te等の周期表第 16族元素の単体、 SiC等の複数の周期表第 14族元素 力らなるィ匕合物、 SnO、 Sn(ll)Sn(lV)S、 SnS、 SnS、 SnSe、 SnTe、 PbS、 PbS
2 3 3
e、 PbTe等の周期表第 14族元素と周期表第 16族元素との化合物、 BN、 BP、 BAs 、 A1N、 A1P、 AlAs、 AlSb、 GaN、 GaP、 GaAs、 GaSb、 InN、 InP、 InAs、 InSb等 の周期表第 13族元素と周期表第 15族元素との化合物(あるいは III一 V族化合物半 導体)、 Al S3、 Al Se、 Ga S、 Ga Se、 Ga Te、 In〇、 In S、 In Se、 In Te等
2 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 の周期表第 13族元素と周期表第 16族元素との化合物、 T1C1、 TIB T1I等の周期 表第 13族元素と周期表第 17族元素との化合物、 Zn〇、 ZnS、 ZnSe、 ZnTe、 CdO 、 CdS、 CdSe、 CdTe、 HgS、 HgSe、 HgTe等の周期表第 12族元素と周期表第 16 族元素との化合物(あるいは II-VI族化合物半導体)、 Cu〇、 Cu Se等の周期表第
11族元素と周期表第 16族元素との化合物、 CuCl、 CuBr、 Cul、 AgCl、 AgBr等の 周期表第 11族元素と周期表第 17族元素との化合物等である。優れた発光特性を示 すこと力ら、 ZnS、 ZnSe、 CdS、 CdSe、 CdTe力 S好適に用レヽられる。
また、半導体超微粒子と蛍光物質の割合は、蛍光物質:半導体超微粒子の重量比 が 1 : 0. 2 5で範囲であるのがよぐこれにより半導体超微粒子間、蛍光物質間、半 導体超微粒子と蛍光物質間の相互吸収による効率低下を抑制できるため、高効率 な発光装置を実現できる。
[0072] また、本発明における半導体超微粒子は、内核(コア)と外殻 (シェル)からなるいわ ゆるコアシェル構造であってもよい。コアシェル型半導体超微粒子では、エキシトン吸 発光帯を利用する用途に好適な場合がある。この場合、シェルの半導体粒子の組成 として、バンドギャップ (禁制帯幅)がコアよりも大きなものを起用することによりェネル ギー的な障壁を形成させることが一般に有効である。これは、外界の影響や結晶表 面での結晶格子欠陥等の理由による望ましくない表面準位等の影響を抑制する機 構によるものと推測される。
[0073] シェルに好適に用いられる半導体材料の組成としては、コア半導体結晶のバンドギ ヤップにもよる力 バルタ状態のバンドギャップが温度 300Kにおいて 2· OeV以上で あるもの、例えば BN、 BAs、 GaNや GaP等の III V族化合物半導体、 Zn〇、 ZnS、 ZnSe、 ZnTe、 Cd〇、 CdS等の II VI族化合物半導体、 MgSや MgSe等の周期表 第 2族元素と周期表第 16族元素との化合物等が好適に用いられる。
[0074] また、本発明における半導体超微粒子は、有機配位子からなる表面修飾分子で覆 われていても良い。表面修飾分子で覆うことにより、半導体超微粒子の凝集を抑制し 、半導体超微粒子の機能を最大限に発現することができる。表面修飾分子は、 n—プ 口ピル基、イソプロピル基、 n ブチル基、イソブチル基、 n ペンチル基、シクロペンチ ル基、 n キシル基、シクロへキシル基、ォクチル基、デシル基、ドデシル基、へキ サデシル基、ォクタデシル基等の炭素数 3— 20程度のアルキル基、フヱニル基、ベ ンジノレ基、ナフチル基、ナフチルメチル基等の芳香族炭化水素基を含有する炭化水 素基等が例示され、中でも n -へキシル基、ォクチル基、デシル基、ドデシル基、へキ サデシル基等の炭素数 6— 16程度の直鎖状アルキル基が更に好ましい。また、メル カプト基、ジスルフイド基、チオフヱン環等の硫黄原子含有官能基、アミノ基、ピリジン 環、アミド結合、二トリル基等の窒素原子含有官能基、カルボキシル基、スルホン酸 基、ホスホン酸基、ホスフィン酸基等の酸性官能基、ホスフィン基やホスフィンォキシ ド基等のリン原子含有官能基、あるいはヒドロキシ基、カルボニル基、エステル結合、 エーテル結合、ポリエチレングリコール鎖等の酸素原子含有官能基等が好ましレ、。 好ましくは、半導体超微粒子は、珪素—酸素の結合を主体としァミノ基、カルボキシ ル基、メルカプト基およびヒドロキシ基から選ばれる官能基を有するシリコーン系化合 物が粒子表面に配位されており、前記マトリックスは、珪素—酸素の結合を主体とする シリコーン樹脂からなり、前記半導体超微粒子および前記蛍光物質が前記シリコー ン樹脂に分散しているのがよい。
[0075] また、本発明における半導体超微粒子は、一般的な製造方法によって製造させる。
火炎プロセス ·プラズマプロセス ·電気加熱プロセス ·レーザープロセス等の気相化学 反応法、物理冷却法、ゾルゲル法 'アルコキシド法 '共沈法 'ホットソープ法'水熱合 成法'噴霧熱分解法等の液相法、さらにメカノケミカルボンディング法等が用いられる
[0076] 波長変換層 4a、 4b、 4cがそれぞれ含有する蛍光体 5a、 5b、 5cは、変換波長の異 なる蛍光物質の組合せであってもよぐ変換波長の異なる半導体超微粒子の組合せ であってもよぐあるいは蛍光物質と半導体超微粒子の組合せであってもよい。
[0077] 特に本発明における半導体超微粒子を用いることにより、粒径を制御するだけで、 目的とする発光波長を得ることができることから、本発明の複数の波長変換層に含ま れる蛍光体を同一物質から形成することができるため、プロセスの簡略化により、低 価格な発光装置を提供できる。
[0078] また、本発明における半導体超微粒子は、平均粒子径を変化することにより、 400 一 900nmの範囲で発光波長を変化させることができることから、異なる波長変換層 に平均粒子径の異なる同一材料を使用することができる。
[0079] 本発明の波長変換器 4の厚みは、変換効率の観点から、 0. 1一 5. Ommが好まし レ、。粒径が数 z mである蛍光体は、 0. 3- 1. Ommの厚み範囲が好ましレ、。また、粒 子径 20nm以下の半導体超微粒子の場合、 0. 1一 lmm、特に 0. 1— 0. 5mmの厚 みが好ましい。この範囲であれば、発光素子から発せられる光を可視光に高効率で 変換することができ、さらに変換された可視光を外部に高効率で透過させることがで きる。
[0080] 波長変換器 4の層構成は、 2層構造以上であれば、特に制限されなレ、が、図 1に示 した 3層構造が演色性向上の点で好ましぐ更に 4層構造によってさらなる演色性の 向上が見込まれる。
[0081] 例えば、 4層構造の場合の例を図 2に示した。図 2によれば、電極 11が形成された 基板 12上に中心波長が 450nm以下の光を発する半導体材料を具備する発光素子 13を設け、発光素子 13を覆うように波長変換器 14を形成している。波長変換器 14 は、 4種類の波長変換層 14a、 14b, 14c、 14dからなり、発光素子 13に近い波長変 換層 14aが長波長の発光ピークを発する蛍光体 15aを備え、発光素子 13から遠ざか るにしたがって短波長の発光ピークを有する蛍光体 15b、 15c, 15dをそれぞれ含有 するように波長変換層 14b、 14c、 14dを形成する。
[0082] 4層構造の場合、 3層構造で使用した赤、緑、青の上記波長に対応するピーク波長 を有する変換光に加えて、 590nm± 10nmの変換光を発生させる蛍光体を用いるこ とによって、さらに演色性を高めることができる。
[0083] なお、必要に応じて、発光素子 13と波長変換器 14の側面に、光を反射する反射体 16を設け、側面に逃げる光を前方に反射し、出力光の強度を高めることもできる。
[0084] (波長変換器の作製)
波長変換器は、例えば、前記したように蛍光体を含有する高分子樹脂薄膜又はゾ ルゲルガラス薄膜力 構成される波長変換層を積層接着することにより形成される。 また、使用する複数の蛍光体に比重差がある場合は、樹脂マトリックス中にこれら複 数の蛍光体を混合し、ついで平均粒子径によりこれらの蛍光体が層状に分離したの ち、該樹脂マトリックスを硬化させることにより、波長変換器を得ることができる。
[0085] 例えば、平均粒径が 20nm以下の半導体超微粒子と、平均粒径 0. 1 μ m以上の蛍 光物質とを樹脂マトリックス中に分散させると、時間の経過に伴って両者は樹脂マトリ ックス中でほぼ 2層に分離するようになるので、この状態で樹脂マトリックスを硬化させ ることにより、前記半導体超微粒子と前記蛍光物質とがそれぞれ層状に偏在した波 長変換器を得ることができる。このようにして得られた波長変換器には、実質的に境 目のない単一の樹脂層であるので、境目にできた空隙によって発光効率が低下する のを防止することができる。
[0086] この実施形態で使用される半導体超微粒子および蛍光物質は前記と同じである。
得られる波長変換器は 2層構造であるので、そのまま発光装置に使用してもよぐ他 の波長変換器と積層接着するなどして使用してもよい。
[0087] (表面修飾分子が配位結合した半導体超微粒子)
図 3 (a)、 (b)に示すように、本発明における半導体超微粒子 33は、その表面が、 珪素 -酸素の結合を 2つ以上繰り返す構造を持つ化合物 35で被覆された構造を有 しているのが好ましい。特に、図 3 (b)に示すように、化合物 35が、半導体超微粒子 3 3に配位結合していることが望ましい。
[0088] このように、半導体超微粒子 3の表面を、珪素一酸素の結合を 2つ以上繰り返す構 造を持ち、疎水性に富む化合物 5により覆うことにより、水による半導体超微粒子 3の 特性劣化を防止することができる。また、この化合物 35は、シリコーン樹脂との親和 性が非常に高いため、半導体超微粒子 33をシリコーン樹脂中に容易に分散させるこ とができ、しかも、半導体超微粒子 33とシリコーン樹脂との結合力も高めることができ る。
[0089] この珪素一酸素の結合は、化合物 35中に、さらに 5以上、特に 7以上形成されること 、化合物 35の疎水性を向上させるという観点から望ましい。また、一方で、珪素- 酸素の結合数を 500以下とすることで、化合物 35が不必要に大きくなることを抑制す ること力 Sでき、化合物 35を効率よぐ半導体超微粒子 3の表面に配位させることがで きる。特に、半導体超微粒子 33の表面に、より多くの化合物 35を配位させるという観 点からは、珪素一酸素の繰り返し単位数は、 300以下、特に 100以下とすることが望 ましレ、。これに対して、珪素一酸素の結合数が 500を超えると、化合物 35の粘性が非 常に大きくなるため、半導体超微粒子表面を被覆処理する反応段階において、反応 性が低下し、均一に被覆できないとレ、う問題がある。
[0090] また、図 4に示すように、化合物 35は、珪素一酸素の結合を 2つ以上繰り返す主鎖 3 5aと、この主鎖 35aに結合した側鎖 35bとからなる。図 4においては、官能基のない 側鎖 35bと官能基を有する側鎖 35cとを、区別して記載している。 [0091] 側鎖 35bには、半導体超微粒子 33と化合物 35との結合を容易にし、両者の結合 力を向上させるため、下記式 (a)に示すように、アミノ基、メルカプト基、カルボシキノレ 基、アミド基、エステル基、カルボニル基、フォスフォキシド基、スルフォキシド基、フォ スフオン基、イミン基、ビュル基、ヒドロキシ基およびエーテル基から選ばれる官能基 Xを具備することが望ましい。
[0092] [化 1]
Figure imgf000024_0001
CHつ
CHつ
Figure imgf000024_0002
n
X = NH SH、 COOH 等
[0093] これらの官能基 Xは、非共有電子対あるいは π電子を持っため求核剤として働き、 半導体超微粒子 33と強く配位結合するか、分極による電荷の電気的な作用により半 導体超微粒子 33と強く配位結合する。従って、これらの官能基を具備する化合物 35 が半導体超微粒子 33と配位結合した超微粒子構造体は、配位結合を長期間、安定 して維持することができる。特に、アミノ基、メルカプト基、カルボキシル基は、半導体 超微粒子 33との配位結合力が強いため、より長期にわたって安定した超微粒子構 造物 31をつくることができる。また、ヒドロキシ基は酸化物半導体に対して強い配位 結合を持つ。これは酸化物半導体表面の酸素原子とヒドロキシ基の水素が引き合う ためである。
[0094] これらの官能基は、主鎖 35aの珪素原子に直接結合していても、側鎖 35bのメチレ ン基ゃエチレン基などを介して珪素原子と結合していても良い。 [0095] また、下記式 (b)に示すように、化合物 35の側鎖の内、アミノ基、メルカプト基、カル ボシキル基、アミド基、エステル基、カルボニル基、フォスフォキシド基、スルフォキシ ド基、フォスフォン基、イミン基、ビニル基、ヒドロキシ基、エーテル基のいずれかであ る官能基が付かない側鎖 35bが、メチル基、ェチル基、 n—プロピル基、 iso—プロピル 基、 n—ブチル基、 iso—ブチル基、 n—ペンチル基、 iso—ペンチル基、 n キシル基 iso—へキシル基、シクロへキシル基、メトキシ基、エトキシ基、 n—プロポキシ基、 iso —プロポキシ基、 n—ブトキシ基、 iso—ブブトキシ基、 n—ペントキシ基、 iso—ペントキシ 基、 n キシロキシ基、 iso—へキシロキシ基、シクロへキシロキシ基のいずれカ ま たはこの組み合わせを主体とすることが超微粒子構造体 31の耐光性、耐熱性を向 上できる点で好ましい。
[0096] [化 2]
Figure imgf000025_0001
Y Y
Y Y
Figure imgf000025_0002
n
X = NH2等 Y = CH3、 C2H5 C3H7
[0097] これは、側鎖 35bに、フエ二ル基ゃビニル基等の紫外光を吸収する官能基がある場 合にはこの部分が光エネルギーを吸収するため、効率が低下するばかりか、このェ ネルギ一により、この化合物がダメージを受けるためである。また、側鎖 35bが炭化水 素基からなり、この炭化水素基が長鎖の場合には短鎖の場合に比べて化合物 35の 耐熱性が低下する。
[0098] また、化合物 35が官能基を持つ側鎖 35cを 2つ以上具備することが好ましい。こう することで化合物 35は半導体超微粒子 33に複数の結合点で強固に配位結合する ことが可能となる。
[0099] 以上説明したように、化合物 35の構造を制御することにより、半導体超微粒子 33に 対して、化合物 35を強固に結合させることができるとともに、耐水性、耐熱性、耐光 性に優れた超微粒子構造体 31が得られる。
[0100] なお、超微粒子構造体 31に用いられる半導体超微粒子 33の平均粒径は、蛍光の 波長を粒径により調整することができる点で 0. 5 20nmであることが好ましレ、。これ により半導体超微粒子の粒径を調整することで演色性の高い発光装置を作ることが できる。これに対して半導体超微粒子 33の平均粒径が 20nmを超える場合には粒径 を変えたとしても蛍光の波長がほとんど変化しないため、半導体超微粒子 33の粒径 を変えて演色性を調整することはできない。また、半導体超微粒子 33の平均粒径が 20nmを超えると半導体超微粒子 33の光の吸収、発光を素早く繰り返すことによる高 い蛍光収率は得ることができない。
[0101] さらに、半導体超微粒子 33の平均粒径は lnm以上、特に 2nm以上とすることが、 凝集を防止する観点から望ましい。また、半導体超微粒子 33の平均粒径は lOnm以 下、特に 5nm以下とすることが、高い蛍光収率を得るうえで望ましい。
[0102] この平均粒径 0. 5— 20nmの半導体超微粒子 33を得る方法としては、例えば、トリ ォクチルフォスフィンォキシドで逆ミセルを形成し、このミセル中で金属元素とカルコ ゲン元素を 300°C程度の温度で反応させて作る方法が挙げられる。
[0103] また、小型で演色性の高い発光装置を作ることが可能となる点で半導体超微粒子 3 3は光ルミネッセンス機能を有することが好ましい。また、蛍光特性が優れているとレ、 う点で、半導体超微粒子 33は II - IV族化合物半導体または III - V族化合物半導体か らカもなることが好ましレ、。特に ZnS、 ZnSe、 CdS、 CdSe、 CdTeは蛍光量子効率が 高いことから蛍光量子効率の高い超微粒子構造体を作ることができる。
[0104] また、蛍光量子効率の高い超微粒子構造体 31が得られるという点で、半導体超微 粒子 33は前記したコアシェル構造よりなることが好ましい。
[0105] 以上説明した超微粒子構造体 31を、図 5に示すように、樹脂マトリックス 37に分散 させることで、水分力も超微粒子構造体 31を遮断する効果がさらに高まるため、さら に効果的に半導体超微粒子 33の水分による特性劣化を防止することができる。しか も、粉末の状態から、液体又は固体の状態で超微粒子構造体 31を取り扱うことがで きるため、取り扱い性、保存性が格段に向上する。
なお、図 5は超微粒子構造体 31のみを示しているが、超微粒子構造体 31は、 0. 1 z m以上の平均粒径の蛍光物質と組み合わされて波長変換器 39を構成している。
[0106] この波長変換器 39を構成する樹脂マトリックス 37は、例えば、光硬化性樹脂や、熱 硬化性樹脂を含有させた樹脂マトリックスと超微粒子構造体 31とを液体の状態で混 合することで得られる。そして、樹脂マトリックス 37は、必要に応じて、熱や光により任 意の形状に硬化させることが、取り扱レ、の点で望ましレ、。
[0107] 樹脂マトリックス 37が熱エネルギーにより硬化するものを用いた場合には、たとえば
、乾燥機、ヒーターブロックなどの安価な設備で波長変換器 39を硬化することができ る。
[0108] また、波長変換器 39と発光素子との密着性の高い発光装置を得ることができる点 で、樹脂マトリックス 37は光エネルギーにより硬化することが好ましい。樹脂マトリック ス 37に光エネルギーにより硬化するタイプのものを用いると、発光素子上に配置した 液状の未硬化の波長変換器 39を光で硬化させることができる。この手法によれば熱 硬化タイプの波長変換器 39を使用した場合と異なり、硬化のための熱による発光素 子の破壊を起こすことなく波長変換器 39を硬化させることができる。従って、発光素 子と液状の未硬化の波長変換器 39を直接接触させることができるため、波長変換器 39と発光素子との密着性の高い発光装置を得ることができる。
[0109] また、樹脂マトリックス 37として、シリコーン樹脂を用いた場合には、透光性に優れ、 また、耐熱性、耐光性、特に耐水性に優れた波長変換器 39となる。
[0110] このシリコーン樹脂は、その主な部分が珪素一酸素の結合を繰り返す主鎖と、その 珪素原子に結合する側鎖からなり、これが複数架橋したものがである。側鎖がフエ二 ル基ゃビニル基等の紫外光を吸収する基である場合、シリコーン樹脂で光の吸収が 起こる。このため波長変換器 39に使用するシリコーン樹脂は直鎖もしくは分岐した、 または環状の飽和炭化水素基からなる側鎖を有することが好ましい。飽和炭化水素 基が炭素数で 7を超える場合にはその耐熱性が低下するため、側鎖はメチル基、ェ チル基、 n—プロピル基、 iso_プロピル基、 n—ブチル基、 iso_ブチル基、 n—ペンチル 基、 iso—ペンチル基、 n—へキシル基、 iso—へキシル基またはシクロへキシル基など の炭素数 1一 6のアルキル基またはシクロアルキル基のいずれ力、またはこれらの 2 種以上の組み合わせからなることがより好ましレ、。
[0111] これと同様の理由で、化合物 35の側鎖 35bはメチル基、ェチル基、 n—プロピル基 、 iso_プロピル基、 n—ブチル基、 iso_ブチル基、 n—ペンチル基、 iso_ペンチル基、 n—へキシル基、 iso—へキシル基、シクロへキシル基、メトキシ基、エトキシ基、 n—プロ ポキシ基、 iso—プロポキシ基、 n—ブトキシ基、 iso—ブブトキシ基、 n—ペントキシ基、 is o_ペントキシ基、 n—へキシロキシ基、 iso—へキシロキシ基、シクロへキシロキシ基の レ、ずれか、またはこの組み合わせからなることが好ましレ、。
[0112] また、異なる組成を有する少なくとも 2種類の半導体超微粒子を用いることで、複数 の異なる波長の蛍光を組み合わせることが容易となり、演色性の高い発光装置を得 ること力 Sできる。例えばセレン化カドミウムと硫化亜鉛を組み合わせることにより、同じ 粒径で赤色と青色の光を波長変換器内で同時に発光させることが可能である。この ため、製造装置上作りやすい粒径で数種類の組成で超微粒子構造体 31を準備する ことで高い演色性の波長変換器 39を得ることができる。
[0113] 波長変換器 39内部で波長を変換した光が効率よく大気へ放出できるという点で、 波長変換器 39の屈折率は 1. 7以上であることが好ましい。発光素子で発光した光は 超微粒子構造体 31及びシリコーン樹脂 13を混合した波長変換器 39に導かれ、ここ で光の波長を変換した後、大気中へ放出される。波長変換器 39の屈折率が 1. 7より も小さい場合には、波長変換層 39と大気の界面で光が反射されて大気中へ放出さ れにくくなる。屈折率の測定は波長変換器を厚み lmmのフィルムに成型してィプロ ス製の屈折率測定機 2010プリズム力ブラで行なう。
[0114] 演色性の高い白色の発光装置が得られるという点で、前記したように、波長変換器 39は可視光の波長の範囲で少なくとも 2つ以上の強度ピークを持つ蛍光を発するこ とが好ましぐ特に、可視光の波長の範囲で 3つ以上の強度ピークを持つ蛍光を発す ることが好ましい。こうすることにより演色性の高い白色光を得ることができる。
[0115] 本発明の発光装置は図 1および図 2に示した構造を有する。電極 1に電力を供給 すると、発光素子 3は紫外線を発光し、この光は波長変換器 39の内部に供給される 。紫外線は波長変換器 39内部の超微粒子構造体 31により、可視光に変換され、変 換された光は波長変換器 39より発光装置外へ放出される。
[0116] また、演色性を高くするために出力光が 400— 900nmの幅広いスペクトルを有す る光を発するように、複数の平均粒径の超微粒子構造体を波長変換器39に含有さ せる。
[0117] 発光効率の良い発光装置を作るうえで、半導体超微粒子 33の少なくとも一部のバ ンドギャップエネルギーを発光素子 3が発するエネルギーよりも小さくしておくことが好 ましレ、。半導体超微粒子 33の全てのバンドギャップエネルギー力 発光素子 3が発 するエネルギーよりも高い場合には半導体超微粒子 33は発光素子 3が発する光ェ ネルギーを吸収することができず、発光装置の効率が著しく低下する。
[0118] 以下に、本発明の超微粒子構造体の製造方法について詳細に説明する。図 3に示 す超微粒子構造体 31は、半導体超微粒子 33と配位結合が可能な珪素 -酸素の結 合を 2つ以上繰り返す化合物 35とを混合し、加熱しながら攪拌することで製造するこ とができる。
[0119] 半導体超微粒子 33は、アルキル基を主体とし官能基を具備する化合物を溶媒とし て、ホットソープ法あるいはマイクロリアクター法などで作製することが可能である。ァ ルキル基を主体とする化合物には、例えばトリオクチルフォスフィンォキシドあるいは ドデシルァミン等を使用することができる。配位結合が可能な珪素一酸素の結合を 2 つ以上繰り返す化合物は前述のようなものを使用することができる。半導体超微粒子 33と化合物 35を混合し、加熱しながら攪拌することで半導体超微粒子 33の表面に 配位結合していたトリオクチルフォスフィンォキシドゃドデシルァミンを化合物 35と交 換し、半導体超微粒子 33の表面に化合物 35を配位結合させて超微粒子構造体 1を 得ること力 Sできる。このとき、加熱は必要に応じて行なえばよぐ室温で化合物 35を半 導体超微粒子 33の表面に配位結合させることが可能であれば加熱は行なわなくても 良い。
[0120] また、液状で未硬化の波長変換器 39は未硬化の樹脂もしくは溶剤で可塑性を持た せた樹脂に超微粒子構造体 31を混合することにより製造することができる。未硬化の 樹脂としては例えばシリコーン樹脂やエポキシ樹脂が使用できる。これらの樹脂は 2 液を混合して硬化させるタイプのものであっても 1液で硬化するタイプのものであって も良ぐ 2液を混合して硬化させるタイプの場合、両液にそれぞれ超微粒子構造体 31 を混練してもよぐあるいはどちらか一方の液に超微粒子構造物 31を混練しても構わ ない。また、溶剤で可塑性を持たせた樹脂としては例えばアクリル樹脂を使用するこ とができる。
[0121] 硬化した波長変換器 39は、未硬化の波長変換器 39を、例えば塗布するなどして、 フィルム状に成形したり、所定の型に流し込んで固めることで得られる。樹脂を硬化さ せる方法としては熱エネルギーや光エネルギーを使う方法がある他、溶剤を揮発さ せる方法がある。
[0122] 本発明の発光装置は波長変換器 39を配線基板 2に搭載した発光素子 3上に設置 することにより得られる。波長変換器 39コンポジット 39を発光素子 3上に設置する方 法としては硬化したコンポジット 39を発光素子 3上に設置することが可能であるほか、 液状の未硬化のコンポジット 39を発光素子 3上に設置した後、硬化させて設置するこ とも可能である。
[0123] 本発明の発光装置は、例えば、基板上に複数個をならベて配置して使用される。こ の場合、基板には予め複数の電極を形成しておき、発光装置を金属ろう材で接続し て得ること力 Sできる。基板としては例えばプリント基板力 また金属ろう剤としては、例 えば半田を使用することができる。これにより、電力効率が高ぐ長寿命の演色性が 高い白色発光装置集合体を作ることができる。
[0124] 以下、実施例を挙げて本発明を詳細に説明するが、本発明は以下の実施例のみ に限定されるものではない。
実施例 1
[0125] 図 1の発光装置を作製した。まず、サファイアからなる発光素子基板上に窒化物半 導体からなる発光素子を有機金属気相成長法にて形成した。
[0126] 発光素子の構造としては発光素子基板上に、アンドープの窒化物半導体である n 型 GaN層、 Siドープの n型電極が形成され n型コンタクト層となる GaN層、アンドープ の窒化物半導体である n型 GaN層、次に発光層を構成するバリア層となる GaN層、 井戸層を構成する InGaN層、ノくリア層となる GaN層を 1セットとし GaN層に挟まれた I nGaN層を 5層積層させた多重量子井戸構造とした。
[0127] この発光素子を近紫外 LEDを配置するための配線パターンが形成された絶縁性 基体と、近紫外 LEDを取り囲む枠状の反射部材とを形成するパッケージ内に実装し た。該パッケージ内の配線パターンに、 Agペーストを介して、発光素子を実装した。
[0128] 続いて、パッケージ内にシリコーン樹脂を充填して、発光素子を被覆し、さらに加熱 することによって該樹脂を硬化させ、内部層を形成した。シリコーン樹脂の充填は、デ イスペンサーを用いて塗布法にて形成した。
[0129] 次に、ジメチルシリコーン骨格からなるシリコーン樹脂に、(Sr, Ca, Ba, Mg) (P〇
10
) C : Eu, BaMgAl O : Eu, Mn、 LiEuW〇等の蛍光物質、及びセレン化カドミ
4 6 12 10 17 2 8
ゥム及びチッ化ガリウムからなる半導体超微粒子をそれぞれ表 1の条件で分散混合し
、蛍光体含有樹脂ペーストを作製した。
[0130] 得られた蛍光体含有樹脂ペーストを平滑な基板上にディスペンサーにて塗布形成 し、これをホットプレート上で 150°C5分間加熱して、仮硬化膜を作製した。続いて、こ れを 150°Cの乾燥機内に 5hr入れ、表 1に示す蛍光体含有フィルム(波長変換層)を 作製した。このフィルムを前記内部層の上面に取り付け、発光装置を得た。多層型波 長変換器は、上記方法にて作製した複数の波長変換層を内部層と同一のシリコーン 樹脂と同じ材料樹脂を接着剤として介在させて形成した。
それぞれの波長変換器からなる発光装置の発光効率は、大塚電子社製の発光特 性評価装置を使用して測定した。結果を表 1に示した。
[0131] なお、使用した平均粒径が 0· 1 μ ΐη以上の蛍光物質(Sr, Ca, Ba, Mg) (PO )
10 4 6
C : Eu、 BaMgAl O : Eu, Mn、 LiEuW Oは、入手時に指定したり、粉碎処理を
12 10 17 2 8
することで種々の粒径に調整した。
また、セレン化カドミウム及びチッ化ガリウムからなる半導体超微粒子は、以下に示 す方法にて作製した。
[0132] 関東化学社製の 7. 9g (0. 1M)の Se粉末をトリオクチルフォスフィン (TOP) 250g に溶解させた。これを溶液 1とする。次に、関東化学製の 7. 6g (0. 1M)の硫化ナトリ ゥムをトリオクチルフォスフィン (TOP) 250gに溶解させた。これを溶液 2とする。
次に、酢酸カドミウム 1. 6g及びォレイン酸 9. 9mL、ォクタデセン 300mLを混合し、 アルゴンフロー条件下 170°Cにて 2時間過熱攪拌する。この溶液にセレン金属 29. 6 g、トリオクチルフォスフィン (TOP) 1. 5gを加え、室温にて 24時間攪拌した。
[0133] 上記方法にて作製した溶液を 160°C— 300°C5分間攪拌して、カドミウムセレン半 導体超微粒子を合成した。なお、反応温度を変えることにより、半導体超微粒子の平 均粒径を制御した。反応終了後、この溶液を室温に冷却した。冷却した溶液に、さら に、トルエンを 200g加えて均一に混合した後、さらにエタノールをカ卩えて遠心分離機 で 10分間 1500Gの加速度をかけて、セレン化カドミウム粒子を沈殿させた。
[0134] 次に、上記方法で得られたセレンィ匕カドミウム粒子を酢酸亜鉛 1. lg及びォレイン 酸 9. 9mL、ォクタデセン 300mL混合溶液に添加し、アルゴンフロー条件下 170°C にて 2時間過熱攪拌した。この溶液に硫黄 12gZトリオクチルフォスフィン (TOP)を 1 . 5g加え、 300°Cで攪拌した。反応終了後、室温まで冷却し、これにトルエンを 200g 加えて均一に混合した後、さらにエタノールを加えて遠心分離機で 10分間 1500G の加速度をかけて硫化亜鉛で表面を被覆したコアシェル構造のセレン化カドミウム粒 子を沈殿させた。
平均粒径 2nm、 2. 9nm、 4. 7nm、 120nmのセレン化カドミウムが得られた。また 、同様の方法にて作製した比較用のガリウムナイトライド粒子は、平均粒径 5nmであ ることを確認した。なお、得られた半導体超微粒子の平均粒径は、 TEMにより確認し た。
[0135] 次に、得られた半導体超微粒子に、アミノ基を官能基に有し、かつ側鎖置換基がメ チル基である変性シリコーン 2gを加え、窒素雰囲気下 40°C、 8時間加熱攪拌した。 続いて、上記手法で得られた液体にトルエンを 2g加えて攪拌した後、これにメタノー ルを 10g加えた。 白濁したのを確認してから遠心分離機で 30分間 1500Gの加速度 をかけて半導体超微粒子を沈殿させた。その後、上澄み液のトノレエン及びメタノール 溶液をスポイドで除去した。この操作を 3回繰り返して過剰の変性シリコーンを除去し て、アミノ基置換変性シリコーンで被覆された半導体超微粒子を得た。なお、変性シ リコーンでの被覆の状態については、フーリエ変換赤外分光分析、さらに X線光電子 分光分析にて確認した。
上記方法で合成した蛍光物質、半導体超微粒子を用いて作製した波長変換器の 構成および発光効率の評価結果を表 1に示した。
[表 1]
Figure imgf000033_0001
[0136] 表 1におレ、て、比較例である試料 No. 9は、波長変換器を半導体超微粒子のみ使 用して作製しているため、青色領域の量子効率が低くなり、発光装置の発光効率が 9 lm/Wと低くなつた。また、比較例である試料 No. 10は、すべて 0· 1 μ ΐη以上の蛍 光物質を使用しているため、赤色領域の発光効率が低くなり、発光装置の発光効率 力 S81mZWと低くなつた。また、試料 No. 11は、半導体超微粒子の平均粒子径が 12 Onmと大きく本発明の範囲外であるため、量子閉じ込め効果による半導体超微粒子 の量子効率が向上せず、発光効率が 61m/Wと非常に低くなつた。また、試料 No. 1 2は、使用する蛍光物質の平均粒子径が 50nmと非常に小さいため、表面欠陥の発 生による蛍光物質の量子効率の低下が起こり、発光装置の発光効率が 31mZWと非 常に小さくなることが分かった。
[0137] 一方、本発明に係る波長変換器を具備する試料 No. 1 No8からなる発光装置は 、 lOlmZW以上の発光効率を示すことが確認できた。特に、試料 No. 2、試料 No. 3、試料 No. 4は、 481m/W以上の高い発光効率を示した。
なお、本発明の波長変換器を用いた発光装置の出力光のピーク波長は 400— 90 Onmの範囲内に入ることを確認した。
実施例 2
[0138] 発光装置を以下の方法にて作製した。まず、サファイアからなる発光素子基板上に 窒化物半導体からなる発光素子を有機金属気相成長法にて形成した。
発光素子の構造としては発光素子基板上に、アンドープの窒化物半導体である n 型 GaN層、 Siドープの n型電極が形成され n型コンタクト層となる GaN層、アンドープ の窒化物半導体である n型 GaN層、次に発光層を構成するバリア層となる GaN層、 井戸層を構成する InGaN層、ノ リア層となる GaN層を 1セットとし GaN層に挟まれた I nGaN層を 5層積層させた多重量子井戸構造とした。
[0139] この発光素子を近紫外 LEDを配置するための配線パターンが形成された絶縁性 基体と、近紫外 LEDを取り囲む枠状の反射部材とを形成するパッケージ内に実装し た。該パッケージ内の配線パターンに、 Agペーストを介して、発光素子を実装した。 続いて、パッケージ内にシリコーン樹脂を充填して、発光素子を被覆し、さらに加熱 することによって該樹脂を硬化させ、内部層を形成した。シリコーン樹脂の充填は、デ イスペンサーを使用した。
[0140] 次に、半導体超微粒子と蛍光物質をシリコーン樹脂に混合し、ダイコーター法によ つてシート状に成形した。シート成形後、室温にて 72時間放置した後、 150°Cで 3時 間乾燥させて、本発明の波長変換器を作製した。室温にて 72時間放置することによ り、自然沈降によって蛍光物質の粒子を沈降させ、シートの断面方向に、半導体超 微粒子の分散量が多レ、部分と蛍光物質の粒子の分散量が多レ、部分とが分かれた構 造の波長変換器を得た。得られた波長変換器を前記内部層の上面に取り付け、本 発明の発光装置を得た。
[0141] 上記半導体超微粒子は、以下の方法にて合成した。まず、 CdSeの半導体超微粒 子を合成する。最初に 39. 5g (0. 5M)の Se粉末をトリオクチルフォスフィン (TOP) 1 . 25kgに溶解させる。これを溶液 1とする。次に、酢酸カドミウム 26. 6g (0. 1M)及 びステアリン酸 0. 5kgを混合し、 130°Cにて溶解させる。 100°C以下に冷却したら溶 液 1を添加し、さらに TOPを 0. 75kg添加し、プリカーサ一液とした。このプリカーサ 一液をオイルバスにて加熱した。加熱の方法は、オイルバス中に一部を浸漬した反 応管にプリカーサ一液を通すことによって行った。加熱温度は 220°Cとした。反応時 間を 0.5— 15分に変化させ、半導体超微粒子の平均粒径を制御した。プリカーサ一 液がオイルバス内から出た段階で、急激に室温にさらすことで、冷却を行なった。こう して平均粒径 2— 132nmの半導体超微粒子を得た。
また、使用した平均粒径 0· 1 /i m以上の蛍光物質(Sr, Ca, Ba, Mg) (PO ) C
10 4 6 12
: Eu、 BaMgAl 〇 : Eu, Mn
10 17 、 LiEuW〇は、入手時に指定したり、粉砕処理をす
2 8
ることで種々の粒径に調整した。
[0142] 上記方法にて作製した波長変換器の作製条件、並びに波長変換器を具備した発 光装置の発光効率を表 2に示した。なお、発光装置の発光効率は、大塚電子社製の 発光特性評価装置用いて評価した。
[表 2]
Figure imgf000036_0001
表 2において、比較例である試料 No. 17は、半導体超微粒子の平均粒径が 132η mと大きく本発明の範囲外であるため、量子閉じ込め効果による半導体超微粒子の 量子効率が向上せず、発光効率が 41mZWと非常に低くなつた。比較例である試料 No. 18は、波長変換器を半導体超微粒子のみ使用して作製しているため、青色領 域の量子効率が低くなり、発光装置の発光効率が 31m/Wと低くなつた。また、比較 例である試料 No. 19は、すべて 0. 1 μ ΐη以上の蛍光物質を使用しているため、赤 色領域の発光効率が低くなり、発光装置の発光効率が 31m/Wと低くなつた。
[0144] 一方、本発明に係る波長変換器を具備する試料 No. 13 Nol6からなる発光装 置は、すべて 101m/W以上の発光効率を示した。特に、平均粒子径が 4nmの半導 体超微粒子を用いて作製した試料 No. 13が、 541mZWと非常に高い発光効率を 示した。
実施例 3
[0145] 実施例 2で用いた半導体超微粒子 CdSeに関して、表面修飾分子の種類を変え、 半導体超微粒子の発光特性を評価した。
まず、半導体超微粒子である CdSeの超微粒子を製造する方法について説明する 。 関東化学社製の 7. 9g (0. 1M)の Se粉末をトリオクチルフォスフィン (TOP) 250 gに溶解させ、これを溶液 1とした。次に、関東化学社製の 7. 6g (0. 1M)の硫化ナト リウムをトリオクチルフォスフィン (TOP) 250gに溶解させ、これを溶液 2とした。
[0146] 次に、関東化学製の酢酸カドミウム 5. 3g (0. 02M)及びステアリン酸 lOOgを混合 し、 130。Cにて溶解した。この溶液にトリオクチルフォスフィンォキシド (TOPO)を 40 Ogカロえ 300。Cにカロ熱し、溶解した。
[0147] この溶液に、前記の溶液 1を添加して 300°Cの条件で反応させた。反応終了後、室 温に冷却し、冷却した溶液に、さらにトルエンを 200g加えて均一に混合した後、さら にエタノールを加えて遠心分離機で 10分間 1500Gの加速度をかけて、セレン化カド ミゥム粒子を沈殿させた。次に、このセレン化カドミウム粒子に酢酸亜鉛 3. 7g (0. 02 M)及びステアリン酸 lOOgを混合し、 130°Cにて溶解した。この溶液にトリオクチルフ ォスフィンォキサド(TOPO)を 400g加え、 300°Cにカロ熱し、溶液 2を添加した後、室 温に冷却した。これに、トルエンを 200g加えて均一に混合した後、さらにエタノール をカ卩えて遠心分離機で 10分間 1500Gの加速度をかけて硫化亜鉛で表面を被覆し たコアシェル構造のセレン化カドミウム粒子を沈殿させた。
[0148] 沈殿物を回収して得られたセレンィ匕カドミウム半導体超微粒子は平均粒径 4nmで あることを TEMにより確認した。また、このセレン化カドミウム半導体超微粒子に紫外 線を当てたときの蛍光色は黄色であった。また、蛍光ピークの中心波長は 580nmで あった。
[0149] 次に、上記のようにして得られたセレンィヒカドミウム半導体超微粒子 3を 2mgずつ 3 つに分けて量り取り、これに前記化学式 (a)に示すアミン基、メルカプト基、カルボキ シル基、アミド基、ビュル基のいずれ力、を官能基に持つ珪素—酸素結合を主鎖に持 ち、官能基の付かない側鎖がメチル基であるシリコーン化合物をそれぞれ各 2gずつ カロえた。なお、このシリコーン化合物の珪素—酸素結合の繰り返し単位数は 250で、 官能基を有する側鎖の数 nは 5であった。
[0150] これを窒素雰囲気中で 90°Cに加熱した状態で 20時間攪拌した。攪拌が終了する と、アミノ基、メルカプト基、カルボキシノレ基のいずれかを官能基に持つシリコーン化 合物の溶液はいずれもオレンジ色の液体状態となった。また、アミド基またはビュル 基を官能基に持つシリコーン化合物の溶液はオレンジ色になったものの、一部のセ レンィ匕カドミウムは沈殿物として化合物が配位結合せずに残っていた。
[0151] 次に、セレン化カドミウム半導体超微粒子から、この半導体超微粒子と配位結合し ていない余分なシリコーン化合物の除去を行なった。先のオレンジ色の液体にクロ口 ホルムを 2g加えて攪拌した後、メタノールを 10g加えて攪拌した。この溶液が白濁し たのを確認してから遠心分離機で 30分間 1500Gの加速度をかけて半導体超微粒 子を沈殿させた。その後、上澄み液のクロ口ホルム及びメタノール溶液をスポイドで除 去した。この操作を 3回繰り返して、シリコーンィ匕合物を除去してナノ粒子構造体を得 た。
[0152] このナノ粒子構造体を真空乾燥した後、 2液熱硬化タイプのシリコーン樹脂と混合 して液状の未硬化未硬化物得た。これを厚み 10mmの蛍光測定用セルに流し込み 、 80°Cで 2時間加熱硬化させて硬化済みの波長変換層を得た。これらの波長変換層 はいずれも紫外線を当てたときの蛍光色は黄色を放った。
[0153] これらの波長変換層の蛍光強度を測定した。その結果を表 3に示す。蛍光強度は 島津製作所製 PF-5300PCで測定した。
[表 3] 試料 No. 官能基 蛍光強度
31 アミン基 0.92
32 メルカプト基 0.87
33 力ルポキシル基 0.88
34 アミド基 0.54
35 ビニル基 0.39
[0154] 表 3から明らかなように、官能基としてアミノ基 (一 NH )、メルカプト基 (一 SH)、カル ボキシル基 (-COOH)、アミド基(_C〇NH_)、ビュル基(_C = C_)を有する試料 は、いずれも蛍光強度が高い示した。
[0155] また、比較例として前述のシリコーン化合物で処理する前のコアシェル構造のセレ ン化カドミウム粒子 0. Olgを量り取り、これにトノレエン 20gをカロえた。このセレン化カド ミゥム粒子の表面には半導体超微粒子を作製する工程で溶媒として使用した TOPO が配位結合している。
[0156] また、珪素一酸素結合が 1つのみの、下記に示す化合物を、エタノールと水の混合 溶液に半導体微粒子を分散させた混合溶液に添加し乾燥して、半導体微粒子の表 面に比較例の化合物を結合させて、比較例の半導体超微粒子を作製した。この比較 例の半導体超微粒子を 0. Olg量り取り、これにトノレェン 20gを加えた。
[0157] [化 3] CH3
I
CH30-Si-C3H6NH2 OCH3
[0158] また、前述のアミノ基を官能基とするナノ粒子構造体 1を 0. Olg量り取り、これにト ルェン 20gを加えた。これらのトルエン溶液の蛍光強度をトルエン溶液調製直後とト ルェン溶液調製から 14日後に測定し、大気中の水分による蛍光強度の低下を調べ た。その結果を表 4に示す。 [表 4]
Figure imgf000040_0001
*は 発明の 囲外の! で る
[0159] 表 4の試料 No. 36、 37は本発明範囲外の比較例であり、トルエン溶液調製直後の 蛍光強度は 0. 9であったもの力 S、試料 No. 36では 14日後には 0. 7となり、また、試 料 No. 37では、 14日後には 0. 7となり、蛍光強度の低下が見られた。また、試料 No . 38は、試料 No. 31と同様にして作製した超微粒子構造体 1を 0. Olg量り取り、こ れにトルエン 20gを加えたものである。この試料では、トルエン溶液調製直後およびト ルェン溶液調製から 14日後の蛍光強度はいずれも 0. 9であり、蛍光強度の低下は 見られなかった。なお、蛍光の波長及び強度の測定は、島津製作所製 PF - 5300P Cで行った。
[0160] 次に、前記化学式 (b)記載の官能基 Xがァミノ基で官能基の付かない側鎖 Yがェ チル基および n—プロピル基である化合物で上記と同じ操作を行なった。
このときセレン化カドミウムと化合物を混合し、 90°Cに加熱した状態で 20時間攪拌 した後に、溶液はオレンジ色となった。これを上記と同じ方法でシリコーン樹脂と混合 し、セル中で硬化させた。これらの波長変換層の蛍光強度を測定した。その結果を表 5に示す。
[表 5]
Figure imgf000040_0002
[0161] 試料 No. 39は表 3の試料 No. 31と同一の試料である。また、試料 No. 40の官能 基の付かない側鎖がェチル基のものと、試料 No. 41の官能基の付かない側鎖が n— プロピル基のものはいずれも蛍光強度が 0· 9であった。
[0162] 次に、アルミナ基板上に中心発光波長 395nmの発光素子をフリップチップ実装法 にて実装した。これに、官能基がアミン基で官能基の付かない側鎖がメチル基である 化合物をセレン化カドミウム半導体超微粒子に配位結合させた超微粒子構造体と、 平均粒径 の(Sr, Ca, Ba, Mg) 10 (P〇4) 6C12: Euと、さらに平均粒径 3 zm の BaMgAU0〇17:Euとをシリコーン樹脂をそれぞれ分散させて複数の波長変換 層を作製し、これらの波長変換層で発光素子を覆うようにかぶせて接着し、発光装置 を得た。この発光装置の発光効率は 501mZWであった。
[0163] 一方、シリコーンィ匕合物を用いずにセレンィ匕カドミウム半導体超微粒子をシリコーン 樹脂に混合したものを厚み 1mmのフィルムにして発光装置を作製した。このものは 発光効率が 30Lm/Wであった。
図面の簡単な説明
[0164] [図 1]本発明の発光装置の一実施形態を示す概略断面図である。
[図 2]本発明の発光装置に係る他の実施形態を示す概略断面図である。
[図 3] (a)は本発明に係るナノ粒子構造物の一例を模式的に示す概略断面図、(b)は その部分拡大模式図である。
[図 4]本発明のナノ粒子構造物に用いる化合物の分子構造を示す説明図である。
[図 5]本発明に係るコンポジットを模式的に示す断面図である。
[図 6]従来の発光装置の構造の一例を示す概略断面図である。
符号の説明
[0165] 1、 11···電極
2、 12···基板
3、 13···発光素子
4、 14···波長変換器
4a、 4b、 4c、 14a、 14b、 14c、 14d- · ·波長変換層
5、 5a、 5b、 5c、 15a, 15b、 15c、 15d…蛍光体
6、 16···反射体

Claims

請求の範囲
[I] 蛍光体として、平均粒径が 20nm以下である少なくとも 1種の半導体超微粒子と、平 均粒径 0. 1 z m以上である少なくとも 1種の蛍光物質とをそれぞれ樹脂マトリックス中 に含有する複数の波長変換層からなることを特徴とする波長変換器。
[2] 前記半導体超微粒子と前記蛍光物質とが樹脂マトリックス中に分散し、かつそれぞ れ層状に偏在して複数の波長変換層を形成していることを特徴とする請求項 1に記 載の波長変換器。
[3] 前記半導体超微粒子が、周期表第 I - b族、第 II族、第 III族、第 IV族、第 V族および 第 VI族に属する少なくとも 2種類以上の元素からなる半導体組成物であることを特徴 とする請求項 1に記載の波長変換器。
[4] 前記半導体超微粒子のバンドギャップエネルギー力 1. 5-2. 5eVであることを特 徴とする請求項 1に記載の波長変換器。
[5] 前記樹脂マトリックスが、実質的に単一の樹脂層であることを特徴とする請求項 2に 記載の波長変換器。
[6] 前記半導体超微粒子の表面を表面修飾分子が被覆してレ、ることを特徴とする請求 項 1に記載の波長変換器。
[7] 前記表面修飾分子が、珪素—酸素の結合を 2つ以上繰り返していることを特徴とす る請求項 6に記載の波長変換器。
[8] 前記表面修飾分子が、前記半導体超微粒子表面に配位結合していることを特徴と する請求項 6に記載の波長変換器。
[9] 前記表面修飾分子の珪素—酸素の繰り返し単位数が 5 500であることを特徴とす る請求項 7に記載の波長変換器。
[10] 前記半導体超微粒子が、平均粒径 0. 5— 20nmであることを特徴とする請求項 1に 記載の波長変換器。
[II] 前記半導体超微粒子がコアシェル構造よりなることを特徴とする請求項 1に記載の 波長変換器。
[12] 前記表面修飾分子が、アミノ基、メルカプト基、カルボシキル基、アミド基、エステル 基、カルボニル基、フォスフォキシド基、スルフォキシド基、フォスフォン基、イミン基、 ビュル基、ヒドロキシ基およびエーテル基から選ばれる少なくとも 1つの官能基を具備 することを特徴とする請求項 6に記載の波長変換器。
[13] 前記表面修飾分子が、前記官能基を有する側鎖を 2つ以上具備することを特徴と する請求項請求項 12に記載の波長変換層。
[14] 側鎖が、メチノレ基、ェチル基、 n プロピル基、 iso_プロピル基、 n ブチル基、 iso_ ブチル基、 n ペンチル基、 iso_ペンチル基、 n キシル基、 iso_ キシル基、シク 口へキシル基、メトキシ基、エトキシ基、 n プロポキシ基、 iso_プロポキシ基、 n ブト キシ基、 iso—ブブトキシ基、 n ペントキシ基、 iso_ペントキシ基、 n キシロキシ基、 iso_へキシロキシ基およびシクロへキシロキシ基力 選ばれる少なくとも 1つであるこ とを特徴とする請求項 13記載に記載の波長変換層。
[15] 前記半導体超微粒子が、光ルミネッセンス機能を有することを特徴とする請求項 1 に記載の波長変換器。
[16] 前記樹脂マトリックスが、前記半導体超微粒子および蛍光物質を混合した液状未 硬化物を硬化させたものであることを特徴とする請求項 2に記載の波長変換装器。
[17] 屈折率が 1. 7以上であることを特徴とする請求項 1に記載の波長変換器。
[18] 前記樹脂マトリックスが、熱エネルギーにより硬化するものであることを特徴とする請 求項 1に記載の波長変換器。
[19] 前記樹脂マトリックスが、光エネルギーにより硬化するものであることを特徴とする請 求項 1に記載の波長変換器。
[20] 前記樹脂マトリックスが、主鎖に珪素 酸素結合を含む高分子樹脂を含有すること を特徴とする請求項 1に記載の波長変換器。
[21] 可視光の波長の範囲で少なくとも 2つ以上の強度ピークを持つ蛍光を発することを 特徴とする請求項 1に記載の波長変換器。
[22] 基板上に設けられ励起光を発する発光素子と、この発光素子の前面に位置し前記 励起光を可視光に変換する波長変換器とを備え、前記可視光を出力光とする発光 装置であって、前記波長変換器が、蛍光体として、平均粒径が 20nm以下である少 なくとも 1種の半導体超微粒子と、平均粒径 0. l x m以上である少なくとも 1種の蛍光 物質とをそれぞれ樹脂マトリックス中に含有する複数の波長変換層からなる発光装置
[23] 前記半導体超微粒子と前記蛍光物質とが樹脂マトリックス中に分散し、かつそれぞ れ層状に偏在して複数の波長変換層を形成していることを特徴とする請求項 22に記 載の発光装置。
[24] 各波長変換層で変換された変換光のピーク波長が、前記発光素子側から外側に 向かって順に短波長となるように、前記複数の波長変換層を配置してなることを特徴 とする請求項 22記載の発光装置。
[25] 前記蛍光体の少なくとも一部のバンドギャップエネルギー力 発光素子が発するェ ネルギ一よりも小さいことを特徴とする請求項 22に記載の発光装置。
[26] 前記波長変換器が、少なくとも 3層の波長変換層からなり、該 3層の波長変換層で それぞれ変換された変換光がそれぞれ、赤、緑、青に対応する波長となることを特徴 とする請求項 22に記載の発光装置。
[27] 前記波長変換層が、前記蛍光体を含有する高分子樹脂薄膜からなることを特徴と する請求項 22に記載の発光装置。
[28] 前記波長変換器に含まれる蛍光体が、平均粒子径が 10nm以下の半導体超微粒 子であることを特徴とする請求項 22に記載の発光装置。
[29] 前記半導体超微粒子を含有する波長変換層が前記発光素子側に配設されており
、かつ前記半導体超微粒子からの出力光のピーク波長が前記蛍光物質からの出力 光のピーク波長よりも大きいことを特徴とする請求項 22に記載の発光装置。
[30] 前記半導体超微粒子からの出力光のピーク波長が、 500— 900nmであることを特 徴とする請求項 22に記載の発光装置。
[31] 前記蛍光物質からの出力光のピーク波長が、 400 700nmであることを特徴とす る請求項 22に記載の発光装置。
[32] 前記励起光の中心波長が 450nm以下であることを特徴とする請求項 22に記載の 発光装置。
[33] 前記出力光のピーク波長が 400 900nmであることを特徴とする請求項 22に記 載の発光装置。
[34] 前記樹脂マトリックスが、実質的に単一の樹脂層であることを特徴とする請求項 22 に記載の発光装置。
[35] 前記波長変換層の厚みが、 0. 05- 1. 0mmであることを特徴とする請求項 22に 記載の発光装置。
[36] 前記波長変換器の厚みが 0. 1 5. Ommであることを特徴とする請求項 22に記載 の発光装置。
[37] 前記複数の波長変換層に含まれる蛍光体が略同一材料からなり、それぞれ平均粒 子径が異なる半導体超微粒子であることを特徴とする請求項 22に記載の発光装置。
[38] 基板上に設けられ励起光を発する発光素子と、この発光素子の前面に位置し前記 励起光を可視光に変換する波長変換器とを備え、前記可視光を出力光とする発光 装置であって、前記波長変換器が、蛍光体として、平均粒径が 20nm以下である少 なくとも 1種の半導体超微粒子と、平均粒径 0. l x m以上である少なくとも 1種の蛍光 物質とをそれぞれ高分子樹脂薄膜又はゾルゲルガラス薄膜中に含有する複数の波 長変換層からなる発光装置。
[39] (a)平均粒径 20nm以下である少なくとも 1種の半導体超微粒子と、平均粒径 0. 1 μ m以上である少なくとも 1種の蛍光物質とを樹脂の未硬化物に分散する工程と、
(b)前記半導体超微粒子と蛍光物質が分散された樹脂をシート状に成形し、前記半 導体超微粒子を成形物の一方の主面側に多く分散させ、前記蛍光物質を他方の主 面側に多く分散させる工程と、
(c)前記半導体超微粒子と蛍光物質の粒子が分散した後のシートを硬化する工程を 含むことを特徴とする波長変換器の製造方法。
[40] 前記(a)工程の前に、半導体超微粒子を液相中で合成し、液相中の珪素一酸素の 結合を主体としァミノ基、カルボキシル基、メルカプト基およびヒドロキシ基から選ばれ る官能基を有するシリコーン系化合物が配位する工程を含むことを特徴とする請求 項 39に記載の波長変換器の製造方法。
[41] 基板上に発光素子を搭載する工程と、前記発光素子を覆うようにして、請求項 1に 記載の波長変換器を配置する工程を含むことを特徴とする発光装置の製造方法。
PCT/JP2005/000972 2004-01-26 2005-01-26 波長変換器、発光装置、波長変換器の製造方法および発光装置の製造方法 WO2005071039A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/597,470 US20080231170A1 (en) 2004-01-26 2005-01-26 Wavelength Converter, Light-Emitting Device, Method of Producing Wavelength Converter and Method of Producing Light-Emitting Device
JP2005517312A JP4653662B2 (ja) 2004-01-26 2005-01-26 波長変換器、発光装置、波長変換器の製造方法および発光装置の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004016699 2004-01-26
JP2004-016699 2004-01-26

Publications (1)

Publication Number Publication Date
WO2005071039A1 true WO2005071039A1 (ja) 2005-08-04

Family

ID=34805496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/000972 WO2005071039A1 (ja) 2004-01-26 2005-01-26 波長変換器、発光装置、波長変換器の製造方法および発光装置の製造方法

Country Status (4)

Country Link
US (1) US20080231170A1 (ja)
JP (1) JP4653662B2 (ja)
TW (1) TW200531315A (ja)
WO (1) WO2005071039A1 (ja)

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103512A (ja) * 2005-09-30 2007-04-19 Kyocera Corp 発光装置
JP2007103513A (ja) * 2005-09-30 2007-04-19 Kyocera Corp 発光装置
JP2007123390A (ja) * 2005-10-26 2007-05-17 Kyocera Corp 発光装置
JP2007149909A (ja) * 2005-11-28 2007-06-14 Nichia Chem Ind Ltd 発光装置
JP2007157798A (ja) * 2005-11-30 2007-06-21 Kyocera Corp 発光装置
JP2007173755A (ja) * 2005-11-28 2007-07-05 Kyocera Corp 蛍光体粒子および波長変換器ならびに発光装置
JP2007221044A (ja) * 2006-02-20 2007-08-30 Kyocera Corp 発光装置
JP2007220750A (ja) * 2006-02-14 2007-08-30 Fujitsu Ltd 露光光遮蔽膜形成用材料、多層配線及びその製造方法、並びに半導体装置
JP2007220326A (ja) * 2006-02-14 2007-08-30 Nichia Chem Ind Ltd 発光装置
JP2007266170A (ja) * 2006-03-28 2007-10-11 Kyocera Corp 蛍光体の製造方法および波長変換器ならびに発光装置
JP2007273498A (ja) * 2006-03-30 2007-10-18 Kyocera Corp 波長変換器および発光装置
US20070278935A1 (en) * 2006-06-02 2007-12-06 Sharp Kabushiki Kaisha Wavelength conversion member and light-emitting device
JP2008112864A (ja) * 2006-10-30 2008-05-15 Matsushita Electric Works Ltd 発光装置
JP2008115332A (ja) * 2006-11-07 2008-05-22 Mitsubishi Chemicals Corp 蛍光体含有組成物、発光装置、照明装置および画像表示装置
WO2008078285A2 (en) * 2006-12-22 2008-07-03 Philips Intellectual Property & Standards Gmbh Multi-grain luminescent ceramics for light emitting devices
WO2008123291A1 (ja) * 2007-03-29 2008-10-16 Konica Minolta Medical & Graphic, Inc. 蛍光体標識化合物
JP2009043903A (ja) * 2007-08-08 2009-02-26 Stanley Electric Co Ltd Led光源
JP2009094351A (ja) * 2007-10-10 2009-04-30 Nichia Corp 発光装置およびその製造方法
WO2009066099A1 (en) * 2007-11-19 2009-05-28 Wang Nang Wang Led chip thermal management and fabrication methods
US7560859B2 (en) 2004-09-14 2009-07-14 Shizuo Fujita Fluorescent material having two layer structure and light emitting apparatus employing the same
JP2009170825A (ja) * 2008-01-19 2009-07-30 Nichia Corp 発光装置及びその製造方法
JP2009206459A (ja) * 2008-02-29 2009-09-10 Sharp Corp 色変換部材およびそれを用いた発光装置
JP2009541750A (ja) * 2006-06-26 2009-11-26 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング 光導体を備える構成体
JP2009544805A (ja) * 2006-07-24 2009-12-17 ナノシス・インク. ナノ結晶でドープしたマトリックス
JP2010087465A (ja) * 2008-10-01 2010-04-15 Silitek Electronic (Guangzhou) Co Ltd 発光ダイオード装置及びその製作方法
JP2010153924A (ja) * 2010-04-02 2010-07-08 Dowa Electronics Materials Co Ltd 発光装置及びその製造方法
US7850359B2 (en) 2007-12-28 2010-12-14 Au Optronics Corp. Optical film of a display, method for producing the same and said display
US7887206B2 (en) 2006-08-22 2011-02-15 Lg Display Co., Ltd. Optical unit, backlight assembly with the optical unit, and display device with the backlight assembly
JP2011519173A (ja) * 2008-04-29 2011-06-30 ショット アクチエンゲゼルシャフト (w)led用光コンバータ・システム
JP2012036265A (ja) * 2010-08-05 2012-02-23 Sharp Corp 照明装置
JP2012204609A (ja) * 2011-03-25 2012-10-22 Sumitomo Metal Mining Co Ltd 量子ドット太陽光led用積層体
JP2012525717A (ja) * 2009-04-28 2012-10-22 キユーデイー・ビジヨン・インコーポレーテツド 光学材料、光学部品および方法
US8513872B2 (en) 2010-08-05 2013-08-20 Sharp Kabushiki Kaisha Light emitting apparatus and method for manufacturing thereof
US8749130B2 (en) 2004-01-15 2014-06-10 Samsung Electronics Co., Ltd. Nanocrystal doped matrixes
US8908740B2 (en) 2006-02-14 2014-12-09 Nichia Corporation Light emitting device
US8916064B2 (en) 2009-05-01 2014-12-23 Nanosys, Inc. Functionalized matrices for dispersion of nanostructures
JP2016505212A (ja) * 2012-10-25 2016-02-18 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. シリコーン内の量子ドット用pdms系リガンド
JP2016040842A (ja) * 2015-11-04 2016-03-24 Nsマテリアルズ株式会社 Led素子、その製造方法、及びled素子の色調補正方法
CN106661229A (zh) * 2014-07-16 2017-05-10 纳米***公司 用于量子点的有机硅配体
JP2017514299A (ja) * 2014-03-18 2017-06-01 ナノコ テクノロジーズ リミテッド 量子ドット組成物
JP2017515922A (ja) * 2014-03-10 2017-06-15 スリーエム イノベイティブ プロパティズ カンパニー チオール置換シリコーンを含む複合ナノ粒子
JP2017163151A (ja) * 2012-04-05 2017-09-14 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. フルスペクトル発光装置
JP2017198983A (ja) * 2016-04-22 2017-11-02 パナソニック株式会社 波長変換部材および投光器
JP2017533875A (ja) * 2014-08-11 2017-11-16 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェンHenkel AG & Co. KGaA 反応性コロイド状ナノ結晶及びナノ結晶複合体
KR20190038473A (ko) * 2016-08-05 2019-04-08 니폰 덴키 가라스 가부시키가이샤 파장 변환 부재 및 그 제조 방법
KR20190119434A (ko) * 2018-04-12 2019-10-22 삼성전자주식회사 발광 복합체, 발광 구조체, 광학 시트 및 전자 소자
JP2020068365A (ja) * 2018-10-26 2020-04-30 住友化学株式会社 組成物、フィルム、積層構造体、発光装置及びディスプレイ
CN111213075A (zh) * 2017-11-21 2020-05-29 日本电气硝子株式会社 波长变换部件和发光装置

Families Citing this family (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7244965B2 (en) 2002-09-04 2007-07-17 Cree Inc, Power surface mount light emitting die package
US7775685B2 (en) * 2003-05-27 2010-08-17 Cree, Inc. Power surface mount light emitting die package
JP4618721B2 (ja) * 2004-09-30 2011-01-26 日東電工株式会社 光学素子及びこれを用いた偏光面光源並びにこれを用いた表示装置
US7980743B2 (en) * 2005-06-14 2011-07-19 Cree, Inc. LED backlighting for displays
KR101266130B1 (ko) * 2005-06-23 2013-05-27 렌슬러 폴리테크닉 인스티튜트 단파장 led들 및 다운-컨버젼 물질들로 백색광을생성하기 위한 패키지 설계
US20060292747A1 (en) * 2005-06-27 2006-12-28 Loh Ban P Top-surface-mount power light emitter with integral heat sink
DE102006020529A1 (de) * 2005-08-30 2007-03-01 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement
JP4931628B2 (ja) * 2006-03-09 2012-05-16 セイコーインスツル株式会社 照明装置及びこれを備える表示装置
JP5367218B2 (ja) 2006-11-24 2013-12-11 シャープ株式会社 蛍光体の製造方法および発光装置の製造方法
US7863635B2 (en) * 2007-08-07 2011-01-04 Cree, Inc. Semiconductor light emitting devices with applied wavelength conversion materials
JP2010541198A (ja) * 2007-09-20 2010-12-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ コリメータ
US20090108269A1 (en) * 2007-10-26 2009-04-30 Led Lighting Fixtures, Inc. Illumination device having one or more lumiphors, and methods of fabricating same
KR20100099254A (ko) * 2007-12-10 2010-09-10 쓰리엠 이노베이티브 프로퍼티즈 컴파니 반도체 발광 소자 및 이의 제조 방법
KR101429704B1 (ko) * 2008-01-31 2014-08-12 삼성디스플레이 주식회사 파장변환 부재, 이를 포함하는 광원 어셈블리 및 액정 표시장치
KR101442146B1 (ko) * 2008-02-25 2014-09-23 삼성디스플레이 주식회사 광원 유닛, 이를 포함하는 액정 표시 장치 및 이의 제조방법
WO2009151515A1 (en) 2008-05-06 2009-12-17 Qd Vision, Inc. Solid state lighting devices including quantum confined semiconductor nanoparticles
WO2009137053A1 (en) 2008-05-06 2009-11-12 Qd Vision, Inc. Optical components, systems including an optical component, and devices
US9207385B2 (en) 2008-05-06 2015-12-08 Qd Vision, Inc. Lighting systems and devices including same
US7868340B2 (en) * 2008-05-30 2011-01-11 Bridgelux, Inc. Method and apparatus for generating white light from solid state light emitting devices
US7955875B2 (en) * 2008-09-26 2011-06-07 Cree, Inc. Forming light emitting devices including custom wavelength conversion structures
WO2010055831A1 (ja) * 2008-11-13 2010-05-20 国立大学法人名古屋大学 半導体発光装置
US7804103B1 (en) * 2009-01-07 2010-09-28 Lednovation, Inc. White lighting device having short wavelength semiconductor die and trichromatic wavelength conversion layers
GB2467161A (en) * 2009-01-26 2010-07-28 Sharp Kk Nitride nanoparticles
GB2467162A (en) 2009-01-26 2010-07-28 Sharp Kk Fabrication of nitride nanoparticles
US8547009B2 (en) * 2009-07-10 2013-10-01 Cree, Inc. Lighting structures including diffuser particles comprising phosphor host materials
WO2011102272A1 (ja) * 2010-02-19 2011-08-25 東レ株式会社 蛍光体含有シリコーン硬化物、その製造方法、蛍光体含有シリコーン組成物、その組成物前駆体、シート状成型物、ledパッケージ、発光装置およびled実装基板の製造方法
JP4949525B2 (ja) * 2010-03-03 2012-06-13 シャープ株式会社 波長変換部材、発光装置および画像表示装置ならびに波長変換部材の製造方法
JP2011210891A (ja) * 2010-03-29 2011-10-20 Hitachi Chem Co Ltd 波長変換型太陽電池封止シート、及び太陽電池モジュール
US9062853B2 (en) * 2010-07-12 2015-06-23 National University Corporation Nagoya University Broadband infrared light emitting device
DE102010044985B4 (de) * 2010-09-10 2022-02-03 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Verfahren zum Aufbringen eines Konversionsmittels auf einen optoelektronischen Halbleiterchip und optoelektronisches Bauteil
WO2012044887A1 (en) * 2010-09-30 2012-04-05 Performance Indicator, Llc. Photolytically and environmentally stable multilayer structure for high efficiency electromagentic energy conversion and sustained secondary emission
US8664624B2 (en) 2010-09-30 2014-03-04 Performance Indicator Llc Illumination delivery system for generating sustained secondary emission
DE102010054279A1 (de) * 2010-12-13 2012-06-14 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung eines Strahlungskonversionselements, Strahlungskonversionselement und optoelektronisches Bauelement enthaltend ein Strahlungskonversionselement
WO2012081411A1 (ja) 2010-12-13 2012-06-21 東レ株式会社 蛍光体シート、これを用いたledおよび発光装置ならびにledの製造方法
CN103384794B (zh) 2010-12-23 2018-05-29 三星电子株式会社 包含量子点的光学元件
US8937332B2 (en) * 2011-02-04 2015-01-20 Osram Sylvania Inc. Wavelength converter for an LED and LED containing same
US8742654B2 (en) * 2011-02-25 2014-06-03 Cree, Inc. Solid state light emitting devices including nonhomogeneous luminophoric particle size layers
KR101241511B1 (ko) * 2011-03-22 2013-03-11 엘지이노텍 주식회사 광 변환 부재 및 이를 포함하는 표시장치
US8455898B2 (en) * 2011-03-28 2013-06-04 Osram Sylvania Inc. LED device utilizing quantum dots
US8780295B2 (en) * 2011-03-28 2014-07-15 Tsmc Solid State Lighting Ltd. Light cavity that improves light output uniformity
US8957438B2 (en) 2011-04-07 2015-02-17 Cree, Inc. Methods of fabricating light emitting devices including multiple sequenced luminophoric layers
DE102011100728A1 (de) * 2011-05-06 2012-11-08 Osram Opto Semiconductors Gmbh Optoelektronisches Halbleiterbauelement
CN102810618B (zh) * 2011-06-02 2015-04-29 展晶科技(深圳)有限公司 半导体封装结构
DE102011078402A1 (de) 2011-06-30 2013-01-03 Osram Ag Konversionselement und Leuchtdiode mit einem solchen Konversionselement
KR20130015847A (ko) * 2011-08-05 2013-02-14 삼성전자주식회사 발광장치, 백라이트 유닛과 디스플레이 장치 및 그 제조방법
TWI505515B (zh) * 2011-08-19 2015-10-21 Epistar Corp 發光裝置及其製造方法
KR20130046974A (ko) * 2011-10-28 2013-05-08 엘지이노텍 주식회사 광학 부재, 이를 포함하는 표시장치 및 이의 제조방법
JP5545601B2 (ja) * 2011-11-07 2014-07-09 信越化学工業株式会社 蛍光体高充填波長変換シート、それを用いた発光半導体装置の製造方法、及び該発光半導体装置
WO2013190962A1 (ja) * 2012-06-18 2013-12-27 シャープ株式会社 半導体発光装置
CN104508854B (zh) * 2012-07-31 2017-12-01 株式会社Lg化学 用于有机电子器件的基板
WO2014028019A1 (en) * 2012-08-16 2014-02-20 Empire Technology Development Llc Graded fluorescent material
JP6107001B2 (ja) * 2012-09-04 2017-04-05 ソニー株式会社 シンチレータ及び放射線検出装置
JP2014056896A (ja) * 2012-09-11 2014-03-27 Ns Materials Kk 半導体を利用した発光デバイス及びその製造方法
DE102012109217A1 (de) * 2012-09-28 2014-04-03 Osram Opto Semiconductors Gmbh Beleuchtungsvorrichtung zum Erzeugen einer Lichtemission und Verfahren zum Erzeugen einer Lichtemission
CN103811637B (zh) * 2012-11-05 2018-01-30 晶元光电股份有限公司 波长转换材料及其应用
US8754435B1 (en) 2013-02-19 2014-06-17 Cooledge Lighting Inc. Engineered-phosphor LED package and related methods
US8933478B2 (en) 2013-02-19 2015-01-13 Cooledge Lighting Inc. Engineered-phosphor LED packages and related methods
JP2014175362A (ja) * 2013-03-06 2014-09-22 Toshiba Corp 半導体発光素子及びその製造方法
BR112015030722A2 (pt) 2013-06-10 2017-07-25 Asahi Kasei E Mat Corporation aparelho emissor de luz semicondutor
WO2015020859A2 (en) * 2013-08-05 2015-02-12 Corning Incorporated Luminescent coatings and devices
US9797573B2 (en) 2013-08-09 2017-10-24 Performance Indicator, Llc Luminous systems
JP6237174B2 (ja) 2013-12-05 2017-11-29 日亜化学工業株式会社 発光装置
CN106164219B (zh) 2014-04-02 2019-03-01 3M创新有限公司 包含硫醚配体的复合纳米粒子
US9660151B2 (en) * 2014-05-21 2017-05-23 Nichia Corporation Method for manufacturing light emitting device
TWI690630B (zh) * 2014-08-11 2020-04-11 德商漢高股份有限及兩合公司 叢生奈米晶體網狀物與奈米晶體合成物
TWI690585B (zh) * 2014-08-11 2020-04-11 德商漢高股份有限及兩合公司 電激發光之經交聯奈米晶體薄膜
TWI622190B (zh) * 2014-11-18 2018-04-21 錼創科技股份有限公司 發光元件
JP6354626B2 (ja) * 2015-03-09 2018-07-11 豊田合成株式会社 発光装置の製造方法
TWI786500B (zh) * 2015-05-05 2022-12-11 新世紀光電股份有限公司 發光裝置及其製作方法
CA2991319A1 (en) 2015-07-08 2017-01-12 Performance Indicator, Llc Led panel lighting system
JP6644081B2 (ja) * 2015-11-04 2020-02-12 シャープ株式会社 発光装置、照明装置、および発光装置が備える発光体の製造方法
WO2017134994A1 (ja) 2016-02-02 2017-08-10 シチズン電子株式会社 発光装置およびその製造方法
JP6447557B2 (ja) * 2016-03-24 2019-01-09 日亜化学工業株式会社 発光装置の製造方法
JP6650951B2 (ja) * 2016-04-25 2020-02-19 日本特殊陶業株式会社 波長変換部材、その製造方法および発光装置
US10727050B1 (en) 2016-06-15 2020-07-28 Northrop Grumman Systems Corporation Wafer-scale catalytic deposition of black phosphorus
KR101905153B1 (ko) * 2017-03-22 2018-10-08 한국화학연구원 적외선 발광 광소자 및 이의 제조방법
JP7248379B2 (ja) * 2017-07-24 2023-03-29 日亜化学工業株式会社 発光装置及びその製造方法
DE102017121185A1 (de) * 2017-09-13 2019-03-14 Osram Gmbh Optoelektronisches Bauelement und Verfahren zur Herstellung eines optoelektronischen Bauelements
DE102019125411A1 (de) * 2019-09-20 2021-03-25 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelektronisches Halbleiterbauelement und Verfahren zur Herstellung eines optoelektronischen Halbleiterbauelements
KR20220036681A (ko) * 2020-09-16 2022-03-23 삼성전자주식회사 디스플레이 장치 및 그 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000324937A (ja) * 1999-05-21 2000-11-28 Mitsubishi Agricult Mach Co Ltd コンバインにおける可動扱室の支持構造
JP2002121548A (ja) * 2000-10-13 2002-04-26 Mitsubishi Chemicals Corp エタノール可溶性半導体超微粒子の製造方法
JP2002314142A (ja) * 2001-04-09 2002-10-25 Toyoda Gosei Co Ltd 発光装置
WO2003021691A1 (en) * 2001-09-03 2003-03-13 Matsushita Electric Industrial Co., Ltd. Semiconductor light emitting device, light emitting apparatus and production method for semiconductor light emitting device
JP2003243727A (ja) * 2001-12-14 2003-08-29 Nichia Chem Ind Ltd 発光装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5811924A (en) * 1995-09-19 1998-09-22 Kabushiki Kaisha Toshiba Fluorescent lamp
US6501091B1 (en) * 1998-04-01 2002-12-31 Massachusetts Institute Of Technology Quantum dot white and colored light emitting diodes
JP4126751B2 (ja) * 1998-05-26 2008-07-30 ソニー株式会社 表示装置および照明装置
JP3486345B2 (ja) * 1998-07-14 2004-01-13 東芝電子エンジニアリング株式会社 半導体発光装置
JP4404489B2 (ja) * 1998-09-18 2010-01-27 マサチューセッツ インスティテュート オブ テクノロジー 水溶性蛍光半導体ナノ結晶
JP3677538B2 (ja) * 2001-01-16 2005-08-03 独立行政法人産業技術総合研究所 超微粒子分散ガラス及びこれを用いた表示素子
MY131962A (en) * 2001-01-24 2007-09-28 Nichia Corp Light emitting diode, optical semiconductor device, epoxy resin composition suited for optical semiconductor device, and method for manufacturing the same
JP2003025299A (ja) * 2001-07-11 2003-01-29 Hitachi Software Eng Co Ltd 半導体ナノ粒子及びその製造方法
US7414009B2 (en) * 2001-12-21 2008-08-19 Showa Denko K.K. Highly active photocatalyst particles, method of production therefor, and use thereof
JP2003286292A (ja) * 2002-01-28 2003-10-10 Mitsubishi Chemicals Corp 半導体超微粒子及びそれを含有してなる薄膜状成形体
JP4005850B2 (ja) * 2002-06-10 2007-11-14 日立ソフトウエアエンジニアリング株式会社 半導体ナノ粒子製造方法
US7279832B2 (en) * 2003-04-01 2007-10-09 Innovalight, Inc. Phosphor materials and illumination devices made therefrom
KR100691143B1 (ko) * 2003-04-30 2007-03-09 삼성전기주식회사 다층 형광층을 가진 발광 다이오드 소자
US7265488B2 (en) * 2004-09-30 2007-09-04 Avago Technologies General Ip Pte. Ltd Light source with wavelength converting material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000324937A (ja) * 1999-05-21 2000-11-28 Mitsubishi Agricult Mach Co Ltd コンバインにおける可動扱室の支持構造
JP2002121548A (ja) * 2000-10-13 2002-04-26 Mitsubishi Chemicals Corp エタノール可溶性半導体超微粒子の製造方法
JP2002314142A (ja) * 2001-04-09 2002-10-25 Toyoda Gosei Co Ltd 発光装置
WO2003021691A1 (en) * 2001-09-03 2003-03-13 Matsushita Electric Industrial Co., Ltd. Semiconductor light emitting device, light emitting apparatus and production method for semiconductor light emitting device
JP2003243727A (ja) * 2001-12-14 2003-08-29 Nichia Chem Ind Ltd 発光装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LEE J. ET AL: "Full Color Emission from II-VI Semiconductor Quantum Dot-Polymer Composites.", ADV. MATER., vol. 12, no. 15, 2 August 2000 (2000-08-02), pages 1102 - 1105, XP000963569 *

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8425803B2 (en) 2004-01-15 2013-04-23 Samsung Electronics Co., Ltd. Nanocrystal doped matrixes
US8592037B2 (en) 2004-01-15 2013-11-26 Samsung Electronics Co., Ltd. Nanocrystal doped matrixes
US8749130B2 (en) 2004-01-15 2014-06-10 Samsung Electronics Co., Ltd. Nanocrystal doped matrixes
US7560859B2 (en) 2004-09-14 2009-07-14 Shizuo Fujita Fluorescent material having two layer structure and light emitting apparatus employing the same
JP2007103513A (ja) * 2005-09-30 2007-04-19 Kyocera Corp 発光装置
JP2007103512A (ja) * 2005-09-30 2007-04-19 Kyocera Corp 発光装置
JP2007123390A (ja) * 2005-10-26 2007-05-17 Kyocera Corp 発光装置
JP2007149909A (ja) * 2005-11-28 2007-06-14 Nichia Chem Ind Ltd 発光装置
JP2007173755A (ja) * 2005-11-28 2007-07-05 Kyocera Corp 蛍光体粒子および波長変換器ならびに発光装置
JP2007157798A (ja) * 2005-11-30 2007-06-21 Kyocera Corp 発光装置
JP4596267B2 (ja) * 2006-02-14 2010-12-08 日亜化学工業株式会社 発光装置
JP2007220326A (ja) * 2006-02-14 2007-08-30 Nichia Chem Ind Ltd 発光装置
US8908740B2 (en) 2006-02-14 2014-12-09 Nichia Corporation Light emitting device
JP2007220750A (ja) * 2006-02-14 2007-08-30 Fujitsu Ltd 露光光遮蔽膜形成用材料、多層配線及びその製造方法、並びに半導体装置
JP2007221044A (ja) * 2006-02-20 2007-08-30 Kyocera Corp 発光装置
JP2007266170A (ja) * 2006-03-28 2007-10-11 Kyocera Corp 蛍光体の製造方法および波長変換器ならびに発光装置
JP2007273498A (ja) * 2006-03-30 2007-10-18 Kyocera Corp 波長変換器および発光装置
US8138666B2 (en) * 2006-06-02 2012-03-20 Sharp Kabushiki Kaisha Wavelength conversion member and light-emitting device
US20070278935A1 (en) * 2006-06-02 2007-12-06 Sharp Kabushiki Kaisha Wavelength conversion member and light-emitting device
JP2009541750A (ja) * 2006-06-26 2009-11-26 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング 光導体を備える構成体
JP2009544805A (ja) * 2006-07-24 2009-12-17 ナノシス・インク. ナノ結晶でドープしたマトリックス
US7887206B2 (en) 2006-08-22 2011-02-15 Lg Display Co., Ltd. Optical unit, backlight assembly with the optical unit, and display device with the backlight assembly
JP2008112864A (ja) * 2006-10-30 2008-05-15 Matsushita Electric Works Ltd 発光装置
JP2008115332A (ja) * 2006-11-07 2008-05-22 Mitsubishi Chemicals Corp 蛍光体含有組成物、発光装置、照明装置および画像表示装置
US7902564B2 (en) 2006-12-22 2011-03-08 Koninklijke Philips Electronics N.V. Multi-grain luminescent ceramics for light emitting devices
WO2008078285A2 (en) * 2006-12-22 2008-07-03 Philips Intellectual Property & Standards Gmbh Multi-grain luminescent ceramics for light emitting devices
WO2008078285A3 (en) * 2006-12-22 2008-09-12 Philips Intellectual Property Multi-grain luminescent ceramics for light emitting devices
JP5136548B2 (ja) * 2007-03-29 2013-02-06 コニカミノルタエムジー株式会社 蛍光体標識化合物
WO2008123291A1 (ja) * 2007-03-29 2008-10-16 Konica Minolta Medical & Graphic, Inc. 蛍光体標識化合物
JP2009043903A (ja) * 2007-08-08 2009-02-26 Stanley Electric Co Ltd Led光源
JP2009094351A (ja) * 2007-10-10 2009-04-30 Nichia Corp 発光装置およびその製造方法
KR101521318B1 (ko) * 2007-11-19 2015-05-19 왕낭 왕 발광다이오드 칩 열 관리 및 제조 방법
WO2009066099A1 (en) * 2007-11-19 2009-05-28 Wang Nang Wang Led chip thermal management and fabrication methods
US7850359B2 (en) 2007-12-28 2010-12-14 Au Optronics Corp. Optical film of a display, method for producing the same and said display
JP2009170825A (ja) * 2008-01-19 2009-07-30 Nichia Corp 発光装置及びその製造方法
JP2009206459A (ja) * 2008-02-29 2009-09-10 Sharp Corp 色変換部材およびそれを用いた発光装置
JP2011519173A (ja) * 2008-04-29 2011-06-30 ショット アクチエンゲゼルシャフト (w)led用光コンバータ・システム
JP2010087465A (ja) * 2008-10-01 2010-04-15 Silitek Electronic (Guangzhou) Co Ltd 発光ダイオード装置及びその製作方法
JP2012525717A (ja) * 2009-04-28 2012-10-22 キユーデイー・ビジヨン・インコーポレーテツド 光学材料、光学部品および方法
US8916064B2 (en) 2009-05-01 2014-12-23 Nanosys, Inc. Functionalized matrices for dispersion of nanostructures
JP2010153924A (ja) * 2010-04-02 2010-07-08 Dowa Electronics Materials Co Ltd 発光装置及びその製造方法
US8513872B2 (en) 2010-08-05 2013-08-20 Sharp Kabushiki Kaisha Light emitting apparatus and method for manufacturing thereof
JP2012036265A (ja) * 2010-08-05 2012-02-23 Sharp Corp 照明装置
JP2012204609A (ja) * 2011-03-25 2012-10-22 Sumitomo Metal Mining Co Ltd 量子ドット太陽光led用積層体
JP2017163151A (ja) * 2012-04-05 2017-09-14 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. フルスペクトル発光装置
JP2016505212A (ja) * 2012-10-25 2016-02-18 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. シリコーン内の量子ドット用pdms系リガンド
JP2017515922A (ja) * 2014-03-10 2017-06-15 スリーエム イノベイティブ プロパティズ カンパニー チオール置換シリコーンを含む複合ナノ粒子
JP2017514299A (ja) * 2014-03-18 2017-06-01 ナノコ テクノロジーズ リミテッド 量子ドット組成物
CN106661229A (zh) * 2014-07-16 2017-05-10 纳米***公司 用于量子点的有机硅配体
CN106661229B (zh) * 2014-07-16 2021-02-09 纳米***公司 用于量子点的有机硅配体
JP2017533875A (ja) * 2014-08-11 2017-11-16 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェンHenkel AG & Co. KGaA 反応性コロイド状ナノ結晶及びナノ結晶複合体
JP2016040842A (ja) * 2015-11-04 2016-03-24 Nsマテリアルズ株式会社 Led素子、その製造方法、及びled素子の色調補正方法
JP2017198983A (ja) * 2016-04-22 2017-11-02 パナソニック株式会社 波長変換部材および投光器
KR20190038473A (ko) * 2016-08-05 2019-04-08 니폰 덴키 가라스 가부시키가이샤 파장 변환 부재 및 그 제조 방법
KR102315746B1 (ko) 2016-08-05 2021-10-20 니폰 덴키 가라스 가부시키가이샤 파장 변환 부재 및 그 제조 방법
CN111213075A (zh) * 2017-11-21 2020-05-29 日本电气硝子株式会社 波长变换部件和发光装置
KR20190119434A (ko) * 2018-04-12 2019-10-22 삼성전자주식회사 발광 복합체, 발광 구조체, 광학 시트 및 전자 소자
KR102586937B1 (ko) * 2018-04-12 2023-10-06 삼성전자주식회사 발광 복합체, 발광 구조체, 광학 시트 및 전자 소자
JP2020068365A (ja) * 2018-10-26 2020-04-30 住友化学株式会社 組成物、フィルム、積層構造体、発光装置及びディスプレイ
JP7179581B2 (ja) 2018-10-26 2022-11-29 住友化学株式会社 組成物、フィルム、積層構造体、発光装置及びディスプレイ

Also Published As

Publication number Publication date
TW200531315A (en) 2005-09-16
JPWO2005071039A1 (ja) 2007-09-06
US20080231170A1 (en) 2008-09-25
JP4653662B2 (ja) 2011-03-16

Similar Documents

Publication Publication Date Title
WO2005071039A1 (ja) 波長変換器、発光装置、波長変換器の製造方法および発光装置の製造方法
CN107017325B (zh) 量子点复合材料及其制造方法与应用
KR101519509B1 (ko) 형광체-나노입자 조합물
US8827759B2 (en) Method of manufacturing light emitting device
US8098005B2 (en) White light emitting device
US7518160B2 (en) Wavelength converter, lighting system, and lighting system assembly
KR102056786B1 (ko) 양자점 조성물
US9412905B2 (en) White light emitting device
US8941293B2 (en) Solid state lighting devices comprising quantum dots
US20070012928A1 (en) Light emitting diode comprising semiconductor nanocrystal complexes and powdered phosphors
US20080173886A1 (en) Solid state lighting devices comprising quantum dots
JP2007146154A (ja) 波長変換器、照明装置および照明装置集合体
CN105900251A (zh) 包含量子点荧光体的led盖
KR20170056677A (ko) 하이브리드 코팅을 갖는 인광체 및 제조 방법
JP2007157798A (ja) 発光装置
US10879433B2 (en) Stabilized quantum dot composite and method of making a stabilized quantum dot composite
Yoon et al. Highly luminescent and stable white light-emitting diodes created by direct incorporation of Cd-free quantum dots in silicone resins using the thiol group
JP2007103512A (ja) 発光装置
KR20070101046A (ko) 양자점을 이용한 다층 구조 백색 발광 다이오드 및 그의제조방법
JP5123475B2 (ja) 蛍光構造体、コンポジット、発光装置および発光装置集合体
JP2007221044A (ja) 発光装置
KR20210014792A (ko) 하이브리드 파장변환체, 이의 제조방법 및 이를 포함하는 발광장치
Zhang et al. Synthesis and enhanced photo/thermal stability of high-luminescent red-emitting CdTe@ CaCO3 composite for LED applications
KR20190105932A (ko) 작용기를 포함하는 고분자의 합성과 이를 이용한 고분자-양자점 복합체 형성 및 발광소자 응용

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10597470

Country of ref document: US

Ref document number: 2005517312

Country of ref document: JP

122 Ep: pct application non-entry in european phase