WO2005064661A1 - Iii族窒化物結晶の製造方法およびそれにより得られるiii族窒化物結晶ならびにそれを用いたiii族窒化物基板 - Google Patents

Iii族窒化物結晶の製造方法およびそれにより得られるiii族窒化物結晶ならびにそれを用いたiii族窒化物基板 Download PDF

Info

Publication number
WO2005064661A1
WO2005064661A1 PCT/JP2004/019249 JP2004019249W WO2005064661A1 WO 2005064661 A1 WO2005064661 A1 WO 2005064661A1 JP 2004019249 W JP2004019249 W JP 2004019249W WO 2005064661 A1 WO2005064661 A1 WO 2005064661A1
Authority
WO
WIPO (PCT)
Prior art keywords
group iii
iii nitride
crystal
flux
substrate
Prior art date
Application number
PCT/JP2004/019249
Other languages
English (en)
French (fr)
Inventor
Yusuke Mori
Yasuo Kitaoka
Hisashi Minemoto
Isao Kidoguchi
Takatomo Sasaki
Fumio Kawamura
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2005516613A priority Critical patent/JP4757029B2/ja
Priority to US10/584,725 priority patent/US20070196942A1/en
Publication of WO2005064661A1 publication Critical patent/WO2005064661A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B9/00Single-crystal growth from melt solutions using molten solvents
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B9/00Single-crystal growth from melt solutions using molten solvents
    • C30B9/04Single-crystal growth from melt solutions using molten solvents by cooling of the solution
    • C30B9/08Single-crystal growth from melt solutions using molten solvents by cooling of the solution using other solvents
    • C30B9/10Metal solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02389Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02392Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02625Liquid deposition using melted materials

Definitions

  • the present invention relates to a method for producing an in-group nitride crystal, an in-group nitride crystal obtained by the method, and a group-III nitride substrate using the same.
  • Group III nitride compound semiconductors such as gallium nitride (GaN) (hereinafter sometimes referred to as group III nitride semiconductors or GaN-based semiconductors) are used as materials for semiconductor elements that emit blue or ultraviolet light. Attention has been paid. Blue laser diodes (LDs) are applied to high-density optical disks and displays, and blue light-emitting diodes (LEDs) are applied to displays and lighting. Ultraviolet LD is expected to be applied to biotechnology and the like, and ultraviolet LED is expected as an ultraviolet light source for fluorescent lamps.
  • LDs blue laser diodes
  • LEDs blue light-emitting diodes
  • a group III nitride semiconductor (for example, GaN) substrate for LD or LED is usually formed by heteroepitaxial growth of a group III nitride crystal on a sapphire substrate using a vapor phase epitaxial growth method. It is formed by doing.
  • the vapor phase growth methods include metal organic chemical vapor deposition (MOCVD), hydride vapor phase epitaxy (HVPE), and molecular beam epitaxy (MBE).
  • GaN-based electronic devices are promising as high-frequency power devices.
  • a GaN semiconductor layer and an AlGaN semiconductor layer are formed on a sapphire substrate by MOCVD.
  • a source electrode, a gate electrode, and a drain electrode are formed on the AlGaN semiconductor layer.
  • the gate voltage By controlling the gate voltage, the two-dimensional electron gas concentration between the GaN semiconductor layer and the AlGaN semiconductor layer can be controlled, and a high-speed transistor can be realized.
  • sapphire substrates are used, but in the future, GaN substrates capable of homoepitaxial growth will be required.
  • group III nitrides are grown using vapor phase epitaxial growth methods such as metal organic chemical vapor deposition (MOCVD) and hydride vapor deposition (HVPE) on sapphire substrates.
  • MOCVD metal organic chemical vapor deposition
  • HVPE hydride vapor deposition
  • a crystal is grown by heteroepitaxy, there is a problem in controlling the carrier of the substrate.
  • nitrogen defects tend to occur and the N-type tends to appear immediately, and the There was a problem with the characteristics.
  • Patent Document 1 JP-A-2002-293696
  • an object of the present invention is to provide a method for producing a group 111 nitride crystal and a method for producing the same, which do not cause a problem in the application of electric devices because they exhibit P-type or semi-insulating electric characteristics.
  • a production method of the present invention comprises, under an atmosphere containing nitrogen, at least one group III element selected from Ga, A1, and In, the group force of which is also selected from an alkali metal-containing flux.
  • the flux further contains Mg, wherein the flux further contains Mg.
  • the group III nitride crystal of the present invention is a group III nitride crystal produced by the production method of the present invention. Crystal.
  • the group III nitride substrate of the present invention is a group III nitride substrate including the group III nitride crystal of the present invention.
  • the alkali metals-containing flux in the production of group III nitride crystal, in the manufacturing method of the present invention, the alkali metals-containing flux, further characterized by containing M g.
  • M g are the P-type doping material m Zoku ⁇ product crystals, crystal even Mg is mixed as an impurity, the crystal represents a P-type or semi-insulating electrical properties, in an electronic device applications No problem.
  • the flux contains Mg, the amount of dissolved nitrogen in the flux is increased, and it becomes possible to grow crystals at a high growth rate, and to grow the crystals. Reproducibility also improves.
  • the flatter contains at least one of an alkaline earth metal (except Mg) and Zn as a doping component in addition to or instead of Mg, Mg
  • the alkaline earth Doping at least one of metal (excluding Mg) and Zn in liquid phase growth facilitates carrier control and suppresses the generation of nitrogen defects, thereby improving insulation.
  • FIG. 1 is a schematic diagram showing one example of a manufacturing apparatus used for manufacturing a group III nitride substrate of the present invention.
  • FIG. 2 is a schematic view showing another example of the manufacturing apparatus used for manufacturing the group III nitride substrate of the present invention.
  • FIG. 3 is a graph showing the amount of impurities in an example of the group III nitride substrate of the present invention.
  • (A) is a graph showing a background level
  • (b) is a graph showing a measurement result of the substrate.
  • FIG. 4 is a graph showing the amount of impurities in another example of the group III nitride substrate of the present invention.
  • (A) is a graph showing a background level
  • (b) is a graph showing a measurement result of the substrate.
  • FIG. 5 shows an example of a field-effect transistor using the group III nitride substrate of the present invention. It is a cross section schematic diagram.
  • FIG. 6 is a graph showing the results of powder X-ray diffraction evaluation of an example of the m-group nitride crystal of the present invention.
  • FIG. 7 is a graph showing the relationship between the amount of Mg added and the amount of precipitation in an example of the group III nitride crystal of the present invention.
  • FIG. 8 is a photograph showing an example of the group III nitride crystal of the present invention.
  • FIG. 9 is a graph showing a photoluminescence evaluation result of an example of the group III nitride crystal of the present invention.
  • FIG. 10 is a graph showing an example of an X-ray diffraction evaluation result of an example of the group III nitride crystal of the present invention.
  • Mg in the flux functions as at least one of a flux component and a doping component.
  • the flux may contain at least one of an alkaline earth metal (except Mg) and Zn as a doping component instead of Mg.
  • the nitrogen is supplied as a nitrogen-containing gas.
  • examples of the alkaline earth metal include Ca, Be, Sr, and Ba. Among them, Ca is preferable.
  • the flux is preferably a mixed flux of Na and Mg.
  • the Na and Mg entire mixed flux to the proportion of pre-Symbol Mg is preferably in the range of 0.5 001 10 mole 0/0.
  • the Mg in the mixed flux of Na and Mg may function as a doping component.
  • the ratio of the Mg is more preferably in the range of 0.5 01 3 mol 0/0.
  • the group III element is Ga and the group III nitride force is GaN.
  • the amount of the dopant of Mg is preferably more than 0 and 1 ⁇ 10 2 ° cm 3 or less. Further, when the group III nitride crystal of the present invention is a P-type, the amount of the Mg dopant is preferably in the range of 1 ⁇ 10 18 -IX 10 2 ° cm 3 .
  • Mg, total dopant amount of the (excluding Mg) alkaline earth metal and Zn is greater than 0, it is 1 X 10 17 cm 3 or less Preferred over preferred Specifically, it is in the range of 1 ⁇ 10 16 — 1 X 10 17 cm— 3 .
  • the total dopant amount of Mg, the alkaline earth metal (excluding Mg) and Zn means the total of the respective dopant amounts of Mg, the alkaline earth metal (excluding Mg) and Zn.
  • the oxygen concentration in the group III nitride crystal of the present invention is most preferably Ocm 3 , for example, in the range of 0-1 X 10 17 cm- 3 , preferably 0-1 X 10 16 cm—in the range of 3 .
  • the resistivity (resistivity) of the group III nitride crystal of the present invention is preferably 1 ⁇ 10 3 ⁇ ′cm or more, more preferably 1 ⁇ 10 5 ⁇ ′cm or more.
  • the group III nitride substrate of the present invention is preferably P-type or semi-insulating.
  • a group III nitride substrate is manufactured by growing a group III nitride crystal on a seed layer (seed crystal) of the seed crystal substrate.
  • the apparatus for crystal growth includes a growth furnace. It is preferable that at least the inner surface of the growth furnace also has a material strength not containing Si.
  • the growth furnace can be formed of, for example, stainless steel.
  • a crucible is placed inside the growth furnace.
  • the crucible is also preferably made of a material not containing Si, for example, boron nitride (BN), alumina (Al 2 O 3), magnesia (MgO) or
  • a pipe for supplying the raw material gas is connected to the growth furnace.
  • the pipe also preferably does not contain Si, for example, can be formed of metal or the like. Examples of the metal include a stainless steel (SUS) material and copper.
  • a group III element and an alkali metal are charged into a crucible, and the crucible is melted by heating under pressure to form a molten liquid (flux).
  • the group III element to be introduced is selected depending on the semiconductor to be crystal-grown, and is Ga, Al or In. These may be used alone or in combination of two or more. When forming a GaN crystal, only Ga is used. Na, Li or K is used as the alkali metal. These may be used alone or in combination of two or more. These usually function as fluxes (the same applies to the following embodiments). Of these, Na is preferred. When Na is used, it is preferable to use purified Na having a purity of 99.99%. In the glove box substituted for He (which may be N, Ar, Ne, Xe, etc.), N
  • Na may be purified by a zone refining method.
  • zone refining method impurities are precipitated by repeating melting and solidification of Na in a tube, and the purity of Na can be increased by removing the impurities.
  • the melt (flux) contains Mg as described above.
  • a group III nitride crystal is grown on the seed crystal of the substrate.
  • the substrate for example, a substrate in which a nitride-based seed crystal is formed on at least one side of a substrate serving as a base, or a substrate in which only a nitride-based crystal is strong can be used.
  • the base substrate can be a sapphire substrate, GaAs substrate, Si substrate, SiC substrate, A1N substrate, or the like. It is also possible to use a substrate having a structure such as the ELOG structure! ⁇ (The same applies to the following embodiments!).
  • a group III nitride crystal can be used as the seed crystal.
  • the seed group III nitride crystal is prepared, for example, by metal organic chemical vapor deposition (MOCVD), molecular beam epitaxy (Molecular beam epitaxy: MBE), or hydride vapor phase. It can be formed by a growth method (HVPE) or the like.
  • MOCVD metal organic chemical vapor deposition
  • MBE molecular beam epitaxy
  • HVPE growth method
  • a group III nitride crystal (for example, a GaN crystal) represented by
  • the group III nitride crystal is, for example, after one main surface (the surface on which the seed crystal is present) of the substrate is brought into contact with the above-mentioned molten liquid (flux), and then becomes supersaturated to form a group III nitride semiconductor crystal.
  • Growing is performed by adjusting the temperature of the molten liquid (flux) and the pressure in the growing furnace so that the solution grows.
  • Mg in the melt (flux) functions as at least one of a flux component and a doping component.
  • the flux is preferably a mixed flux of Na and Mg. In this case, the ratio of the Mg to the entire mixed flux of the Na and Mg is as described above.
  • the inside of the growth furnace is preferably under a pressurized atmosphere of more than 1 atm and not more than 50 atm.
  • the conditions for melting and crystal growth of the material are as follows: flux, component of atmosphere gas, and force that changes depending on the pressure.
  • the temperature is 700 to 1100 ° C. and the pressure is about 110 atm.
  • a P-type or semi-insulating Group III nitride crystal can be obtained.
  • a portion other than the group III nitride crystal is removed by polishing or the like, whereby a substrate having only the group III nitride crystal can be obtained.
  • the concentration of oxygen is also controlled. This is because, when oxygen is doped, the substrate exhibits a substrate force type, so that it is necessary to reduce the oxygen concentration.
  • the preferred range and range of the oxygen concentration are as described above.
  • a P-type or semi-insulated Group III nitride crystal can be easily manufactured as compared with a conventional method such as a vapor phase growth method. Therefore, according to the above-described manufacturing method, a p-type or semi-insulating m-nitride substrate having high characteristics can be manufactured at low cost.
  • the flux contains at least one of alkaline earth metals such as Ca, Be, Sr, and Ba and Zn as doping components in addition to or instead of Mg.
  • alkaline earth metals such as Ca, Be, Sr, and Ba and Zn as doping components in addition to or instead of Mg.
  • Mg alkaline earth metal
  • Zn in the melt (flux) is incorporated as a doping component into the Group III nitride crystal.
  • the input amount is 0.5 001 5 mole 0/0, preferably from it preferably instrument is the range of in the range of 0.1 01-0. 1 mol%.
  • Mg force flux component Mg, total input amount of said (excluding Mg) alkaline earth metal and Zn, 0.1 001-0. 1 in the range of mole 0/0
  • a semi-insulating Group III nitride crystal doped with at least one of Mg, the alkaline earth metal (excluding Mg) and Zn is obtained. Also in this case, after growing the group III nitride crystal, by removing a portion other than the group III nitride crystal (sapphire substrate) by polishing or the like, a substrate having only a group III nitride crystal can be obtained. can get. According to this, a group III nitride substrate doped with at least one of Mg, the alkaline earth metal (excluding Mg) and Zn is obtained. The total dopant amount of Mg, the alkaline earth metal (excluding Mg) and Zn is as described above.
  • the mechanism by which at least one of Mg, the alkaline earth metal (excluding Mg) and Zn is doped to improve the insulating property will be described.
  • the doping of at least one of Mg, the alkaline earth metals (except Mg) and Zn may be to 1) suppress generation of Ga defects and 2) compensate for carrier generation due to nitrogen defects. Therefore, a group III nitride substrate grown by a normal method acts as an N-type substrate, but a substrate doped with at least one of Mg, the alkaline earth metal (except Mg), and Zn has a high cost. Shows insulating properties. Note that the acceptor level of Zn tends to be deeper than that of Mg and the alkaline earth metal (excluding Mg), and higher insulation can be obtained by using Zn.
  • a group III nitride crystal with controlled insulation can be easily produced as compared with a conventional method such as a vapor phase growth method. Therefore, according to this, a semi-insulating group III nitride substrate having high characteristics can be manufactured at low cost.
  • FIG. 1 shows an example of an apparatus used in the production method of the present invention.
  • the growing apparatus includes a source gas tank 11 for supplying nitrogen gas as a source gas, a pressure regulator 12 for adjusting a pressure of a growing atmosphere, and a A stainless steel container 13 and an electric furnace 14 are provided.
  • a crucible 15 made of, for example, alumina (Al 2 O 3) is set inside the stainless steel container 13.
  • the temperature inside the electric furnace 14 is 600-1000 ° C
  • the atmospheric pressure can be controlled by the pressure regulator 12 within a range of 100 atm or less.
  • FIG. 2 shows another example of the apparatus used in the production method of the present invention.
  • This equipment is used to produce large group III nitride crystals.
  • the growing apparatus includes a growing furnace 201 made of stainless steel and can withstand 50 atm.
  • a heater 202 and a thermocouple 203 for heating are arranged in the growth furnace 201.
  • the crucible fixing table 204 is disposed in the growth furnace 201, and a mechanism that rotates around a rotating shaft 205 is attached to the crucible fixing table 204.
  • a crucible made of alumina (Al 2 O 3)
  • the pot 206 is fixed.
  • a melt (flux) 207 and a seed substrate 208 are arranged.
  • the rotation of the crucible fixing table 204 causes the melt (flux) 207 in the crucible 206 to move left and right, thereby stirring the melt (flux) 207.
  • the ambient pressure is adjusted by the flow controller 209.
  • Nitrogen gas which is a raw material gas, or a mixed gas of ammonia gas (NH gas) and nitrogen gas, is stored in a raw material gas tank.
  • the flux may contain at least one of an alkaline earth metal (excluding Mg) and Zn as a doping component instead of Mg or Mg.
  • the growth furnace 201 is closed with a lid, and vacuuming and nitrogen replacement are performed a plurality of times in order to remove oxygen and moisture in the atmosphere.
  • the material is filled with nitrogen, and the raw materials in the crucible 206 are melted by heating under pressure.
  • the seed substrate 208 should not be present in the melt (flux) 207.
  • the crucible 206 is swung to such an extent that the melt (flux) 207 does not adhere to the seed substrate 208.
  • the crucible 206 is rocked at a speed of one cycle per minute in order to stir the melt (flux) 207.
  • the seed substrate 208 is present in the molten liquid (flat) 207. Hold the temperature and pressure of the crucible 206 and grow LPE for a certain period of time.
  • the crucible 206 is rotated as shown, the substrate is taken out of the melt (flux) 207, and the temperature of the melt (flux) is lowered.
  • FIG. 5 schematically shows an example of the structure of a field-effect transistor.
  • a GaN layer 52 and an AlGaN layer 53 are formed by MOCVD on a group III nitride substrate 51 of the present invention obtained by liquid phase growth.
  • a source electrode 54, a Schottky gate electrode 55, and a A rain electrode 56 is formed.
  • the concentration of the two-dimensional electron gas formed at the interface between the GaN layer 52 and the AlGaN layer 53 is controlled, and the transistor operates.
  • the group III nitride substrate of the present invention exhibits, for example, P-type or semi-insulating properties. Therefore, a field-effect transistor manufactured using this has excellent high-frequency characteristics.
  • the group III nitride substrate of the present invention doped with at least one of Mg, the alkaline earth metal (excluding Mg) and Zn described above has high resistance, few defects, and low dislocation density. . Therefore, in a field-effect transistor manufactured using such a transistor, which has a high insulating property, a leakage current during a transistor operation can be reduced.
  • crystal growth was performed in a mixed flux of Na and Mg.
  • Ga 99.9999% (six nine) purity was used, and for Na, purified Na having a purity of 99.99% was used.
  • Ga2g and Na2.2g were weighed, and the ratio of the Mg to the whole mixed flux of the Na and Mg was changed to evaluate the obtained crystals.
  • the crucible 15 was inserted into the stainless steel container 13, hermetically sealed, set in the electric furnace 14, and connected to a pipe.
  • the atmospheric pressure and the growth temperature were adjusted by the pressure regulator 12 and the electric furnace 14.
  • the growth temperature was 850 ° C. and the nitrogen atmosphere pressure was 25 atm.
  • the temperature was raised from room temperature to the growth temperature in one hour, maintained at the growth temperature for 96 hours, and lowered to room temperature in one hour.
  • the mass (g) of the precipitated GaN crystal when the ratio of Mg was changed was evaluated. The results are shown in the graph of FIG. As shown in the figure, when the Mg content was 0.1 mol%, 0.15 g of GaN crystal was precipitated. When the ratio of Mg is increased, GaN The amount of crystals also increased. As a result, it was found that the addition of Mg increased the amount of nitrogen dissolved in the flux and promoted the growth of GaN crystals.
  • the seed substrate used was a 10 ⁇ m-thick GaN crystal formed on a sapphire substrate by MOCVD.
  • the GaN crystal obtained when the Mg content was 0.5 mol% is shown in the photograph of FIG.
  • a transparent GaN crystal was obtained.
  • the photoluminescence of the obtained GaN crystal was evaluated.
  • a 325 nm HeCd laser was used as the light source. The results are shown in the graph of FIG. As shown in the figure, band edge emission was observed at 363 nm, and its half-value width was 6.7 nm.
  • the obtained GaN crystal was evaluated by X-ray diffraction.
  • An X-ray rocking curve was determined by the two-crystal method. In other words, the X-rays incident from the X-ray source are made highly monochromatic by the first crystal, irradiated to the sample that is the second crystal, and the FWHM (Full width at FWHM) centered on the X-ray peak diffracted from the sample. half maximum). The results are shown in the graph of FIG. FIG.
  • the X-ray source is not particularly limited, for example, a CuKa ray can be used, and the first crystal is not particularly limited, and for example, an InP crystal, a Ge crystal, or the like can be used.
  • a GaN substrate doped with Ca was manufactured.
  • Na and Ga those having the same purity as in Example 1 were used.
  • Galg and NaO. 88 g (molar ratio (GaZ (Ga + Na)) 0.27) were weighed.
  • a doping component CaO. Weigh 001G (0. 065 mole 0/0 for Na), it was inserted into the ⁇ 15.
  • the crucible 15 was inserted into the stainless steel container 13, hermetically sealed, set in the electric furnace 14, and connected to a pipe.
  • the atmospheric pressure and the growth temperature were adjusted by the pressure regulator 12 and the electric furnace 14.
  • the growth temperature was 850 ° C.
  • the nitrogen atmosphere pressure was 30 atm.
  • the temperature was raised from room temperature to the growth temperature in 1 hour, maintained at the growth temperature for 48 hours, and lowered to room temperature in 1 hour.
  • the electrical characteristics of the obtained Ca-doped GaN substrate were evaluated. When the resistance of the substrate was measured with a tester, it showed high insulation of 100 ⁇ or more. When measured in detail using a four-terminal method or the like, the resistivity (specific resistance) was 5 ⁇ 10 4 ⁇ ′cm.
  • FIG. 3 (a) shows the knock ground level.
  • the vertical axis is the number of atoms counted.
  • the horizontal axis is the time of digging, and indicates the depth from the substrate surface.
  • Oxygen was used as the accelerating electrons.
  • Figures 3 (a) and 3 (b) show that Na and K are not present on the GaN substrate, since they are almost equal to the knock ground level. From Fig. 3 (a), it was found that the background level of Ca was about 0.1 Olppm, and from Fig. 3 (b), the amount of Ca dopant was estimated. I knew it was there.
  • the lppm of the SIMS result is equivalent to about 1 ⁇ 10 17 cm 3 as the dopant amount, and the Ca dopant amount is a value on the order of 10 15 .
  • a GaN substrate doped with Mg was produced.
  • a 10 m thick, 20 mm square GaN crystal formed on a sapphire substrate by MOCVD was used as a seed substrate.
  • Na5g the Ga5g and MgO. 003g of (0.06 mole 0/0 for Na) was weighed into a crucible.
  • Na and Ga those having the same purity as in Example 1 were used.
  • LPE growth was performed at 870 ° C and 50 atm for 50 hours, crystal growth started from the GaN film on the seed substrate, and a GaN crystal having a thickness of 500 / ⁇ and a 20 mm square was obtained.
  • the sapphire substrate in the seed substrate was removed to obtain a GaN free-standing substrate.
  • FIG. 4A shows the knock ground level.
  • the vertical axis is the number of atoms counted.
  • the horizontal axis indicates the time of excavation, and indicates the depth from the substrate surface.
  • Oxygen was used as the accelerating electrons.
  • the background level of Mg is about 0.1 Olppm, and when the amount of Mg dopant is estimated from Fig. 4 (b), it is clear that about 0.1 ppm of Mg is doped. all right.
  • the lppm of the SIMS result corresponds to a dopant amount of about 1 ⁇ 10 17 cm 3 , and the Mg dopant amount is a value on the order of 10 16 .
  • the resistivity (resistivity) of the GaN substrate doped with Mg was 5 ⁇ 10 3 ⁇ ⁇ cm, but the dopant amount of Mg was 0.5 ppm (5 ⁇ 10 16 cm 3). ) Showed a high resistance of 5 ⁇ 10 5 ⁇ -cm.
  • Example 2 in the melting solution of Na and Ga (flux), by the incorporation of 0.1 mole 0/0 following the alkaline earth metal relative to Na, 0. 1- It is clear that about lppm alkaline earth metal can be doped into the crystal. As a result, the insulating properties of the GaN crystal could be improved.
  • Example 2-4 in the liquid phase growth of a nitride using an alkali metal such as Na as a flux, the resistivity (specific resistance) tends to decrease due to the influence of nitrogen defects and the like. As a result, it is possible to dope a GaN substrate formed by liquid phase growth with Mg, Ca, or Zn, thereby realizing a semi-insulating substrate with a large resistivity (specific resistance). It became clear.
  • Example 2-4 the doping force of Ca, Mg, and Zn and other doping components can be similarly doped.
  • a similar effect can be expected with a group III nitride substrate represented by 0 ⁇ v ⁇ 1, u + v ⁇ 1).
  • a group III nitride substrate represented by 0 ⁇ v ⁇ 1, u + v ⁇ 1).
  • Li can be used as a flux to dissolve nitrogen in a melt (flux) of A1 and Li to grow A1N crystals.
  • a semi-insulating A1N substrate can be manufactured by doping at least one of Mg, alkaline earth metal (excluding Mg) and Zn.
  • the P-type or semi-insulating Group III nitride substrate of the present invention can be used, for example, as an electronic device such as a field-effect transistor, particularly as a substrate for a high-frequency power device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

明 細 書
m族窒化物結晶の製造方法およびそれにより得られる m族窒化物結晶な らびにそれを用いた m族窒化物基板
技術分野
[0001] 本発明は、 in族窒化物結晶の製造方法およびそれにより得られる in族窒化物結晶 ならびにそれを用いた III族窒化物基板に関する。
背景技術
[0002] 窒化ガリウム (GaN)などの III族窒化物化合物半導体 (以下、 III族窒化物半導体ま たは GaN系半導体という場合がある)は、青色や紫外光を発光する半導体素子の材 料として注目されている。青色レーザダイオード (LD)は、高密度光ディスクやディスプ レイに応用され、また青色発光ダイオード (LED)は、ディスプレイや照明などに応用 される。また、紫外線 LDは、バイオテクノロジなどへの応用が期待され、紫外線 LED は、蛍光灯の紫外線源として期待されている。
[0003] LDや LED用の III族窒化物半導体 (例えば、 GaN)の基板は、通常、サファイア基 板上に、気相ェピタキシャル成長法を用いて、 III族窒化物結晶をへテロェピタキシャ ル成長させることによって形成されている。気相成長方法としては、有機金属化学気 相成長法 (MOCVD法)、水素化物気相成長法 (HVPE法)、分子線エピタキシー法 (MBE法)などがある。
[0004] 一方、気相ェピタキシャル成長ではなぐ液相で結晶成長を行う方法も検討されて きた。 GaNや A1Nなどの III族窒化物結晶の融点における窒素の平衡蒸気圧は 1万 気圧以上であるため、従来、 GaNを液相で成長させるためには 1200°Cで 8000気 圧の条件が必要とされてきた。これに対し、近年、 Naなどのアルカリ金属をフラックス として用いることで、 750°C、 50気圧という比較的低温低圧で GaNを合成できること が明らかにされた。
[0005] 最近では、アンモニアを含む窒素ガス雰囲気下において Gaと Naとの混合物を 800 °C、 50気圧で溶融させ、この融解液 (フラックス)を用いて 96時間の育成時間で、最 大結晶サイズが 1. 2mm程度の結晶が得られている(例えば、特許文献 1参照)。 [0006] また、サファイア基板上に有機金属気相成長(MOCVD: Metal Organic Che mical Vapor Deposition)法によって GaN結晶層を成膜したのち、液相成長(LP E : Liquid Phase Epitaxy)法によって結晶を成長させる方法も報告されている。
[0007] GaN系電子デバイスは、高周波パワーデバイスとして有望視されている。サフアイ ァ基板上に、 MOCVD法によって GaN半導体層と AlGaN半導体層とを形成する。 次に、 AlGaN半導体層上に、ソース電極、ゲート電極およびドレイン電極を形成する 。ゲート電圧を制御することによって、 GaN半導体層と AlGaN半導体層との間の二 次元電子ガス濃度を制御でき、高速のトランジスタを実現できる。現状では、サフアイ ァ基板が用いられて 、るが、将来的にはホモェピタキシャル成長が可能な GaN基板 が要求されている。従来例に示すように、サファイア基板上の有機金属化学気相成 長法 (MOCVD法)や水素化物気相成長法 (HVPE法)などの気相ェピタキシャル 成長法を用いて、 III族窒化物結晶をへテロェピタキシャル成長させる場合、基板のキ ャリア制御に問題があった。また、アルカリ金属をフラックスとして、 III族元素と窒素を 反応させて液相成長で III族窒化物結晶を作製する方法では、窒素欠陥が発生しや すぐ N型を示す傾向にあり、基板の電気特性に問題があった。
特許文献 1:特開 2002-293696号公報
発明の開示
発明が解決しょうとする課題
[0008] そこで、本発明の目的は、 P型若しくは半絶縁性の電気特性を示すため、電気デバ イス応用にお 、て問題を生じな 、111族窒化物結晶の製造方法およびそれにより得ら れる III族窒化物結晶ならびにそれを用いた III族窒化物基板を提供することである。 課題を解決するための手段
[0009] 上記目的を達成するために、本発明の製造方法は、窒素を含む雰囲気下におい て、 Ga、 A1および Inからなる群力も選択される少なくとも一つの III族元素を、アルカリ 金属含有フラックス中で、前記窒素と反応させて結晶成長させる III族窒化物結晶の 製造方法であって、前記フラックスが、さらに、 Mgを含有することを特徴とする製造方 法である。
[0010] また、本発明の III族窒化物結晶は、本発明の製造方法により製造された III族窒化 物結晶である。
[0011] そして、本発明の III族窒化物基板は、本発明の III族窒化物結晶を含む III族窒化物 基板である。
発明の効果
[0012] このように、 III族窒化物結晶の製造において、本発明の製造方法では、アルカリ金 属含有フラックスが、さらに、 Mgを含有することを特徴とする。ここで、 Mgは、 m族窒 化物結晶の P型ドーピング材料であるため、結晶に不純物として Mgが混入しても、 結晶は P型若しくは半絶縁性の電気特性を示し、電子デバイス応用において問題と なることがない。また、本発明の製造方法によれば、前記フラックスが Mgを含有する ことで、前記フラックス中への窒素の溶解量が増大し、速い成長レートで結晶成長さ せることが可能となり、結晶成長の再現性も向上する。なお、後述のように、前記フラ ッタスが、 Mgに加え若しくは代えて、ドーピング成分として、アルカリ土類金属(Mgを 除く)および Znの少なくとも一つを含む場合には、 Mg、前記アルカリ土類金属(Mg を除く)および Znの少なくとも一つが液相成長においてドーピングされることにより、 キャリア制御が容易となり、また、窒素欠陥の発生が抑制されるため、絶縁性を高め ることがでさる。
図面の簡単な説明
[0013] [図 1]図 1は、本発明の III族窒化物基板の製造に用いられる製造装置の一例を示す 模式図である。
[図 2]図 2は、本発明の III族窒化物基板の製造に用いられる製造装置のその他の例 を示す模式図である。
[図 3]図 3は、本発明の III族窒化物基板の一例における不純物量を示すグラフである 。 (a)は、バックグランドレベルを示すグラフであり、(b)は、前記基板の測定結果を示 すグラフである。
[図 4]図 4は、本発明の III族窒化物基板のその他の例における不純物量を示すダラ フである。(a)は、バックグランドレベルを示すグラフであり、(b)は、前記基板の測定 結果を示すグラフである。
[図 5]図 5は、本発明の III族窒化物基板を用いた電界効果トランジスタの一例を示す 断面模式図である。
[図 6]図 6は、本発明の m族窒化物結晶の一例における粉末 X線回折評価結果を示 すグラフである。
[図 7]図 7は、本発明の III族窒化物結晶の一例における Mg添加量とその析出量の関 係を示すグラフである。
[図 8]図 8は、本発明の III族窒化物結晶の一例を示す写真である。
[図 9]図 9は、本発明の III族窒化物結晶の一例におけるフォトルミネッセンス評価結果 を示すグラフである。
[図 10]図 10は、本発明の III族窒化物結晶の一例における X線回折評価結果の一例 を示すグラフである。
符号の説明
11 原料ガスタンク
12 圧力調整器
13 ステンレス容器
14 電 5¾炉
15 坩堝
51 GaN基板
52 GaN層
53 AlGaN層
54 ソース電極
55 ゲート電極
56 ドレイン電極
201 育成炉
202 ヒータ
203 熱電対
204 坩堝固定台
205 回転軸 207 融解液 (フラックス)
208 シード基板
209 流量調整器
発明を実施するための最良の形態
[0015] 本発明の製造方法において、前記フラックス中の Mgは、フラックス成分およびドー ビング成分の少なくとも一方として機能することが好ましい。
[0016] 本発明の製造方法において、前記フラックスは、 Mgにカ卩ぇ若しくは代えて、ドーピ ング成分として、アルカリ土類金属(Mgを除く)および Znの少なくとも一つを含んでも よい。
[0017] 本発明の製造方法において、前記窒素は、窒素含有ガスとして供給されることが好 ましい。
[0018] 本発明の製造方法において、前記アルカリ土類金属としては、 Ca、 Be、 Srおよび B aが挙げられる。この中でも好ましいのは、 Caである。
[0019] 本発明の製造方法において、前記フラックスは、 Naおよび Mgの混合フラックスで あることが好ましい。
[0020] 本発明の製造方法において、前記 Naおよび Mgの混合フラックス全体に対し、前 記 Mgの割合は、 0. 001— 10モル0 /0の範囲であることが好ましい。前記範囲とするこ とで、良好な結晶を得ることができる。前記 Naおよび Mgの混合フラックス中の前記 Mgは、ドーピング成分として機能してもよい。なお、前記 Mgの割合は、より好ましく は、 0. 01— 3モル0 /0の範囲である。
[0021] 本発明の製造方法において、前記 III族元素が、 Gaであり、前記 III族窒化物力 Ga Nであることが好ましい。
[0022] 本発明の III族窒化物結晶において、 Mgをドーピング成分として使用する場合には 、 Mgのドーパント量は、 0を超え、 1 X 102°cm 3以下であることが好ましい。また、本 発明の III族窒化物結晶が P型である場合には、前記 Mgのドーパント量は、 1 X 1018 -I X 102°cm 3の範囲であることが好ましい。
[0023] 本発明の III族窒化物結晶において、 Mg、前記アルカリ土類金属(Mgを除く)およ び Znの総ドーパント量は、 0を超え、 1 X 1017cm 3以下であることが好ましぐより好ま しくは、 1 X 1016— 1 X 1017cm— 3の範囲である。なお、前記 Mg、前記アルカリ土類金 属(Mgを除く)および Znの総ドーパント量とは、 Mg、前記アルカリ土類金属(Mgを 除く)および Znの各ドーパント量の合計を意味する。
[0024] 本発明の III族窒化物結晶中の酸素の濃度は、 Ocm 3であることが最も好ましいが、 例えば、 0-1 X 1017cm— 3の範囲であり、好ましくは、 0-1 X 1016cm— 3の範囲である。
[0025] 本発明の III族窒化物結晶の抵抗率 (比抵抗)は、 1 X 103 Ω 'cm以上であることが 好ましぐより好ましくは、 1 X 105 Ω 'cm以上である。
[0026] 本発明の III族窒化物基板は、 P型若しくは半絶縁性であることが好ましい。
[0027] 次に、本発明の製造方法の一例について説明する。この方法は、種結晶基板のシ ード層 (種結晶)上に III族窒化物結晶を成長させることによって III族窒化物基板を製 造する方法である。
[0028] 結晶成長用の装置は、育成炉を備える。育成炉の少なくとも内面は、 Siを含まない 材料力もなることが好ましい。育成炉は、例えば、ステンレスなどで形成できる。育成 炉の内部には、坩堝が配置されている。坩堝も Siを含まない材料で形成されることが 好ましぐ例えば、ボロンナイトライド (BN)、アルミナ (Al O )、マグネシア(MgO)や
2 3
力ルシア (CaO)などで形成される。育成炉には、原料ガスを供給するための配管が 接続される。配管も Siを含まないことが好ましぐ例えば、金属などで形成できる。前 記金属としては、例えば、ステンレス系(SUS系)の材料や、銅などが挙げられる。
[0029] まず、 III族元素とアルカリ金属とを坩堝に投入し、この坩堝を加圧下で加熱すること によって溶融させ、これらの融解液 (フラックス)を形成する。投入される III族元素は、 結晶成長させる半導体に応じて選択され、 Ga、 Al若しくは Inである。これらは、単独 で使用してもよぐ若しくは二種類以上を併用してもよい。 GaNの結晶を形成する場 合には、 Gaのみが用いられる。アルカリ金属には、 Na、 Li若しくは Kが用いられる。こ れらも、単独で使用してもよぐ若しくは二種類以上を併用してもよい。また、これらは 通常、フラックスとして機能する(以下の実施形態でも同様である)。これらの中でも、 Naが好ましい。 Naを用いる場合には、精製した純度 99. 99%の Naを用いることが 好ましい。また、 He (N、 Ar、 Ne、 Xeなどでもよい)置換したグローブボックス内で N
2
aを加熱して融解し、表面層に現れる酸ィ匕物などを除去することによって Naの精製を 行ってもよい。ゾーンリファイユング法によって Naを精製してもよい。ゾーンリファイ- ング法では、チューブ内で Naの融解と固化とを繰り返すことによって、不純物を析出 させ、それを除去することによって Naの純度を上げることができる。本発明では、前 記融解液 (フラックス)は、前述のとおり、 Mgを含有する。
[0030] その後、基板の種結晶上に III族窒化物結晶を成長させる。基板には、例えば、土 台となる基板の少なくとも片面に窒化物系の種結晶が形成された基板や、窒化物系 結晶のみ力もなる基板を用いることができる。土台となる基板には、サファイア基板や GaAs基板、 Si基板、 SiC基板、 A1N基板などを用いることができる。なお、 ELOG構 造などの構造を有する基板を用いてもよ!ヽ(以下の実施形態にお!、ても同様である) 。種結晶には、 III族窒化物結晶を用いることができる。
[0031] 種結晶である III族窒化物結晶は、例えば、有機金属気相成長法 (Metal Organ! c Chemical Vapor Deposition : MOCVD)や分子線エピタキシー法(Molecul ar Beam Epitaxy: MBE)、ハイドライド気相成長法(HVPE)などで形成できる。
[0032] 次に、 III族元素と窒素とを反応させ、種結晶上に III族窒化物結晶を成長させる。こ の結晶成長によって、組成式 Al Ga In N (ただし、 0≤x≤l, 0≤y≤l, x+y≤l x y 1— x - y
である)で表される III族窒化物結晶(例えば、 GaN結晶)を形成することができる。
[0033] III族窒化物結晶は、例えば、基板の一主面 (種結晶が存在する面)を上記融解液( フラックス)と接触させたのち、過飽和となって III族窒化物半導体の結晶が成長する ように、前記融解液 (フラックス)の温度および育成炉内の圧力を調節することによつ て育成する。このとき、前述のとおり、前記融解液(フラックス)中の Mgが、フラックス 成分およびドーピング成分の少なくとも一方として機能することが好ましい。また、前 述のとおり、前記フラックスは、 Naおよび Mgの混合フラックスであることが好ましい。 この場合における前記 Naおよび Mgの混合フラックス全体に対する前記 Mgの割合 は、前述のとおりである。
[0034] 結晶成長時において、育成炉内は、 1気圧より大きく 50気圧以下の加圧雰囲気下 とすることが好ましい。材料の溶融および結晶成長の条件は、フラックスの成分ゃ雰 囲気ガス成分およびその圧力によって変化する力 例えば、温度が 700— 1100°C、 圧力が 1一 100気圧程度で行われる。好ましくは、 700— 900°Cの低温で育成が行 われる。
[0035] 前述の製造方法により、 P型若しくは半絶縁性の III族窒化物結晶が得られる。なお 、 III族窒化物結晶を成長させたのちに、 III族窒化物結晶以外の部分 (サファイア基 板)を研磨などによって除去することによって、 III族窒化物結晶のみ力もなる基板が 得られる。
[0036] また、前述の製造方法では、酸素の濃度も制御して 、ることが好ま 、。酸素をドー ビングすると基板力 型を示すため、酸素濃度を低減させる必要があるからである。 酸素の濃度の好ま U、範囲にっ 、ては、前述のとおりである。
[0037] 前述の製造方法では、気相成長法などの従来の方法に比べて、 P型若しくは半絶 縁性の III族窒化物結晶を容易に製造することができる。したがって、前述の製造方 法によれば、特性が高い p型若しくは半絶縁性の m族窒化物基板を、低コストで製造 できる。
[0038] なお、本発明の製造方法では、前述のとおり、前記フラックスが、 Mgに加え若しく は代えて、ドーピング成分として、 Ca、 Be、 Sr、 Baなどのアルカリ土類金属および Zn の少なくとも一つを含んでもよい。これらは、単独で使用してもよぐ若しくは二種類以 上を併用してもよい。この場合、前記融解液 (フラックス)中の Mg、前記アルカリ土類 金属(Mgを除く)および Znの少なくとも一つ力 III族窒化物結晶中にドーピング成分 として取り込まれる。特に、 Caを用いる場合、その投入量は、 0. 001— 5モル0 /0の範 囲であることが好ましぐより好ましくは、 0. 01-0. 1モル%の範囲である。また、 Mg 力フラックス成分としても機能する場合を除き、 Mg、前記アルカリ土類金属 (Mgを除 く)および Znの合計の投入量は、 0. 001—0. 1モル0 /0の範囲であることが好ましい。
[0039] 前記の場合には、 Mg、前記アルカリ土類金属(Mgを除く)および Znの少なくとも一 つがドーピングされた半絶縁性 III族窒化物結晶が得られる。なお、この場合にも、 III 族窒化物結晶を成長させたのちに、 III族窒化物結晶以外の部分 (サファイア基板)を 研磨などによって除去することによって、 III族窒化物結晶のみ力もなる基板が得られ る。これによれば、 Mg、前記アルカリ土類金属(Mgを除く)および Znの少なくとも一 つをドーピングした III族窒化物基板が得られる。 Mg、前記アルカリ土類金属(Mgを 除く)および Znの総ドーパント量については、前述のとおりである。 [0040] Mg、前記アルカリ土類金属(Mgを除く)および Znの少なくとも一つをドーピングす ることにより、絶縁性が高められるメカニズムについて説明する。 Mg、前記アルカリ土 類金属(Mgを除く)および Znの少なくとも一つのドーピングの作用として、 1) Ga欠陥 の生成を抑制する、 2)窒素欠陥によるキャリア発生を補償する、ことが考えられる。そ のため、通常の方法で育成した III族窒化物基板は、 N型基板として作用するが、 Mg 、前記アルカリ土類金属(Mgを除く)および Znの少なくとも一つをドーピングした基板 は、高い絶縁性を示す。なお、 Znのァクセプタ準位は、 Mgおよび前記アルカリ土類 金属(Mgを除く)よりも深い傾向にあり、 Znを用いることにより、より高い絶縁性を得る ことができる。
[0041] 前記の場合には、気相成長法などの従来の方法に比べて、絶縁性を制御した III族 窒化物結晶を容易に製造することができる。したがって、これによれば、特性が高い 半絶縁性 III族窒化物基板を、低コストで製造できる。
[0042] 図 1に、本発明の製造方法に用いられる装置の一例を示す。図示のように、この育 成装置は、原料ガスである窒素ガスを供給するための原料ガスタンク 11と、育成雰囲 気の圧力を調整するための圧力調整器 12と、結晶育成を行うためのステンレス容器 13と、電気炉 14とを備える。ステンレス容器 13の内部には、例えば、アルミナ (Al O )からなる坩堝 15がセットされている。電気炉 14内の温度は、 600— 1000°C
2 3
に制御できる。雰囲気圧力は、圧力調整器 12によって 100気圧以下の範囲内で制 御できる。
[0043] 図 2に、本発明の製造方法に用いられる装置のその他の例を示す。この装置は、大 型の III族窒化物結晶を製造するために用いられる。図示のように、この育成装置は、 ステンレス製の育成炉 201を備え、 50気圧に耐えられるようになつている。育成炉 20 1には、加熱用のヒータ 202および熱電対 203が配置されている。坩堝固定台 204は 、育成炉 201内に配置されており、これには、回転軸 205を中心に回転する機構が 取り付けられている。坩堝固定台 204内には、例えば、アルミナ (Al O )からなる坩
2 3
堝 206が固定されている。坩堝 206内には、融解液 (フラックス) 207およびシード基 板 208が配置される。坩堝固定台 204が回転することにより、坩堝 206内の融解液( フラックス) 207が左右に移動し、これにより、融解液 (フラックス) 207を攪拌すること ができる。雰囲気圧力は、流量調整器 209によって調整される。原料ガスである窒素 ガス、またはアンモニアガス(NHガス)と窒素ガスとの混合ガスは、原料ガスタンク 11
3
から供給され、流量調整器 209の手前に設けられたガス精製部によって不純物が除 去されたのちに育成炉 201内に送られる。以下に、この育成装置を用いた、結晶成 長の一例について説明する。
(1)まず、 III族元素とフラックスであるアルカリ金属および Mgを、所定の量だけ秤量 し、坩堝 206内にセットする。同時に、シード基板 208を固定する。なお、前述のとお り、前記フラックスが、 Mgにカ卩ぇ若しくは代えて、ドーピング成分として、アルカリ土類 金属(Mgを除く)および Znの少なくとも一つを含んでもよい。
(2)次に、育成炉 201に蓋をして密閉し、雰囲気中の酸素や水分を除去するため、 真空引きと窒素置換を複数回行う。窒素を充填し、坩堝 206内の原材料を加圧下で 加熱することによって溶融させる。この段階では、図示のように、シード基板 208は融 解液 (フラックス) 207中には存在させな ヽ。融解液 (フラックス) 207をカゝき混ぜるた め、シード基板 208上に融解液 (フラックス) 207が付着しない程度に、坩堝 206を揺 動させる。
(3)次に、回転軸 205を中心に坩堝 206を回転させ、シード基板 208を融解液 (フラ ックス)207中に入れ、結晶育成を開始する。
(4)結晶育成中は、融解液 (フラックス) 207を攪拌させるため、 1分間に 1周期のスピ ードで坩堝 206を揺動させる。ただし、育成中は、シード基板 208は、融解液 (フラッ タス) 207中に存在させる。坩堝 206の温度、圧力を保持し、一定時間 LPE成長を行
(5)育成終了後は、図示のように坩堝 206を回転させ、融解液 (フラックス) 207中か ら基板を取り出し、融解液 (フラックス)温度を降下させる。
[0044] 次に、本発明の III族窒化物基板を用いて、電子デバイスを作製する方法について 、電界効果トランジスタを例に説明する。
[0045] 電界効果トランジスタの構造の一例を図 5に模式的に示す。液相成長によって得ら れた本発明の III族窒化物基板 51上に、 MOCVD法によって GaN層 52と AlGaN層 53とを形成する。さらに、この上にソース電極 54、ショットキーゲート電極 55およびド レイン電極 56を形成する。ゲート電極 55へ電圧を印加することによって、 GaN層 52 と AlGaN層 53との界面に形成される二次元電子ガス濃度を制御し、トランジスタとし ての動作を行わせる。
[0046] 本発明の III族窒化物基板は、例えば、 P型若しくは半絶縁性を示す。そのため、こ れを用いて作製した電界効果トランジスタは、高周波特性に優れる。また、前述の M g、前記アルカリ土類金属(Mgを除く)および Znの少なくとも一つをドーピングした本 発明の III族窒化物基板は、高抵抗であり、欠陥が少なぐまた転位密度が小さい。そ のため、絶縁性も高ぐこれを用いて作製した電界効果トランジスタにおいては、トラ ンジスタ動作時のリーク電流を低減することができる。
実施例 1
[0047] 図 1の育成装置を用いて、 Naおよび Mgの混合フラックス中で結晶成長を行った。
Arで置換されたグローブボックス内で、フラックスである Naと Mg、原料である Gaを、 所定の量だけ秤量し、坩堝 15内にセットした。坩堝 15には、イットリア (Y O )坩堝を
2 3 用いた。 Gaには、純度が 99. 9999% (シックスナイン)のものを、 Naには、精製した 純度 99. 99%の Naを用いた。本実施例では、 Ga2gと Na2. 2gを秤量し、前記 Na および Mgの混合フラックス全体に対する前記 Mgの割合を変化させて、得られた結 晶を評価した。
[0048] 坩堝 15を、ステンレス容器 13内に挿入し、密閉して、電気炉 14内にセットし、配管 を接続した。雰囲気圧力と育成温度を、圧力調整器 12と電気炉 14により調整した。 本実施例では、育成温度を 850°C、窒素雰囲気圧力を 25気圧とした。室温から育成 温度まで 1時間で温度上昇し、 96時間育成温度で保持し、 1時間で室温まで温度降 下させた。
[0049] 上記方法で結晶成長させたところ、坩堝 15の側壁に結晶が析出した。析出した結 晶を、粉末 X線回折で評価した。その結果を図 6のグラフに示す。図示のとおり、析出 した結晶は、 GaN結晶であることがわかった。
[0050] また、前記 Mgの割合を変化させたときの析出する GaN結晶の質量 (g)を評価した 。その結果を図 7のグラフに示す。図示のとおり、前記 Mgの割合が、 0. 1モル%では 、 0. 15gの GaN結晶が析出した。前記 Mgの割合を増大させると、析出する GaN結 晶の量も増大した。この結果、 Mgを添加することにより、フラックス中への窒素溶解 量が増大し、 GaN結晶の結晶成長を促進することがわ力つた。
[0051] 次に、坩堝 15内にシード基板を挿入し、液相成長実験を行った。シード基板には、 サファイア基板上に MOCVD法により形成された厚み 10 μ mの GaN結晶を用いた 。前記 Mgの割合を 0. 5モル%としたときに得られた GaN結晶を図 8の写真に示す。 図示のとおり、透明な GaN結晶が得られた。得られた GaN結晶のフォトルミネッセン スを評価した。光源として 325nmの HeCdレーザを用いた。その結果を図 9のグラフ に示す。図示のとおり、バンド端発光が 363nmに見られ、その半値幅は 6. 7nmであ つた。また、不純物などによるブルーバンドやイェローバンドの発光も小さく高品質な 結晶が得られた。さらに、得られた GaN結晶を、 X線回折で評価した。 2結晶法による X線ロッキングカーブを求めた。すなわち、 X線源カゝら入射した X線を第 1結晶により 高度に単色化し、第 2結晶であるサンプルに照射し、サンプルから回折される X線の ピークを中心とする FWHM (Full width at half maximum)を求めた。その結 果を図 10のグラフに示す。図 10は、 ωΖ2 0スキャン (結晶と検出器の回転)の結果 であり、 GaN結晶の C軸方向のみのピークが検出でき、厚い結晶が形成できたことを 示している。また、図示しないが、 ωスキャン (結晶のみ回転)による評価では、ロッキ ングカーブの半値幅が 100秒であり、結晶性も良好であることがわ力つた。なお、前 記 X線源は、特に制限されず、例えば、 CuK a線などが使用でき、前記第 1結晶も、 特に制限されず、例えば、 InP結晶、 Ge結晶などが使用できる。
実施例 2
[0052] 図 1の育成装置を用いて、 Caをドーピングした GaN基板を製造した。窒素置換され たグローブボックス内で、フラックスである Naと原料である Gaを、所定の量だけ秤量 し、坩堝 15内にセットした。 Naおよび Gaは、実施例 1と同様の純度のものを用いた。 本実施例では、 Galgと NaO. 88g (モル比(GaZ (Ga + Na) ) =0. 27)を秤量した。 さらに、ドーピング成分である CaO. 001g (Naに対して 0. 065モル0 /0)を秤量し、坩 堝 15内に挿入した。
[0053] 坩堝 15を、ステンレス容器 13内に挿入し、密閉して、電気炉 14内にセットし、配管 を接続した。雰囲気圧力と育成温度を、圧力調整器 12と電気炉 14により調整した。 本実施例では、育成温度を 850°C、窒素雰囲気圧力を 30気圧とした。室温から育成 温度まで 1時間で温度上昇し、 48時間育成温度で保持し、 1時間で室温まで温度降 下させた。
[0054] 得られた Caをドーピングした GaN基板の電気特性を評価した。テスタで、基板の抵 抗を測定したところ、 100Μ Ω以上の高い絶縁性を示した。 4端子法などを用いて詳 細に測定したところ、抵抗率 (比抵抗)は、 5 X 104 Ω 'cmであった。
[0055] 次に、 GaN基板の不純物量を SIMS (Secondary ion mass spectroscope) で評価した。その結果を図 3のグラフに示す。図 3 (a)は、ノ ックグランドレベルを示し ている。縦軸は、原子のカウント数である。横軸は、掘り込む時間であり、基板表面か らの深さを示している。加速電子としては酸素を用いた。図 3 (a)および (b)より、 Na および Kは、ノックグランドレベルと同程度であることから、 GaN基板に存在していな いことがわかる。また、図 3 (a)より Caのバックグランドレベルが 0. Olppm程度である こと力 、図 3 (b)より Caのドーパント量を見積もったところ、 0. 05ppm程度の Caがド 一ビングされていることがわかった。なお、 SIMS結果の lppmは、ドーパント量として は約 l X 1017cm 3に相当しており、前記 Caのドーパント量は、 1015台の値である。 実施例 3
[0056] 図 2の育成炉を用いて、 Mgをドーピングした GaN基板を作製した。シード基板には 、サファイア基板上に MOCVD法により形成された厚み 10 m、 20mm角の GaN結 晶を用いた。 Na5gと Ga5gと MgO. 003g (Naに対して 0. 06モル0 /0)を坩堝に秤量 した。 Naおよび Gaは、実施例 1と同様の純度のものを用いた。 870°C、 50気圧に保 持し、 50時間 LPE成長を行ったところ、シード基板の GaN膜から結晶成長が開始さ れ、厚み 500 /ζ πι、 20mm角の GaN結晶が得られた。得られた GaN結晶において、 シード基板中のサファイア基板を除去し、 GaN自立基板を得た。
[0057] 得られた Mgをドーピングした GaN自立基板の電気特性を評価した。テスタで、基 板の抵抗を測定したところ、 100Μ Ω以上の高い絶縁性を示した。 4端子法などを用 いて詳細に測定したところ、抵抗率 (比抵抗)は、 5 X 103 Ω 'cmであった。一方、 Ca や Mgを混入せず、 Naと Gaのみカゝらなる融解液 (フラックス)から育成した結晶の電気 特性を評価したところ、 100k Ω以下の抵抗を示した。 [0058] 次に、 GaN自立基板の不純物量を SIMS (Secondary ion mass spectrosco pe)で評価した。その結果を図 4のグラフに示す。図 4 (a)は、ノ ックグランドレベルを 示している。縦軸は、原子のカウント数である。横軸は、掘り込む時間であり、基板表 面からの深さを示している。加速電子としては酸素を用いた。図 4 (a)より Mgのバック グランドレベルが 0. Olppm程度であることから、図 4 (b)より Mgのドーパント量を見 積もったところ、 0. lppm程度の Mgがドーピングされていることがわかった。なお、 SI MS結果の lppmは、ドーパント量としては約 1 X 1017cm 3に相当しており、前記 Mg のドーパント量は、 1016台の値である。
[0059] なお、 GaNを結晶成長させたシード基板の深さ方向の不純物評価を行ったところ、 シード基板表面が一度メルトバックし、その上に高転位で、フラックスなどの不純物も 多く取り込まれた高欠陥層が成長し、さらにその上に低転位でアルカリ土類金属が力 チオンサイトにドーピングされた高品質で高抵抗な基板が形成されていることがわか つた o
[0060] 本実施例では、 Mgをドーピングした GaN基板で抵抗率 (比抵抗)が 5 X 103 Ω · cm を示したが、 Mgのドーパント量を 0. 5ppm (5 X 1016cm"3)に増やすと、 5 Χ 105 Ω - c mの高抵抗を示した。
[0061] 前記実施例 2、 3より、 Naと Gaの融解液(フラックス)中に、 Naに対して 0. 1モル0 /0 以下のアルカリ土類金属を混入することで、 0. 1— lppm程度のアルカリ土類金属を 結晶中にドーピングできることがわ力 た。これにより、 GaN結晶の絶縁性を高めるこ とができた。
実施例 4
[0062] ドーピング成分として ZnO. 005g (Naに対して 0. 035モル0 /0)を用いた以外は実 施例 3と同様にして、 Znをドーピングした GaN基板を作製した。得られた基板の抵抗 率 (比抵抗)を測定したところ、 5 X 105 Ω · cmであった。
[0063] 前記実施例 2— 4より、 Naなどのアルカリ金属をフラックスとして用いた窒化物の液 相成長では、窒素欠陥の影響などで抵抗率 (比抵抗)が小さくなる傾向にあるのに対 して、液相成長で形成された GaN基板に、 Mg、 Caや Znをドーピングさせることが可 能であり、これにより抵抗率 (比抵抗)の大きな半絶縁性基板を実現できることがはじ めて明らかになった。
[0064] 前記実施例 2— 4では、 Ca、 Mg、 Znをドーピングした力 その他のドーピング成分 も同様にしてドーピングできる。
[0065] なお、前記実施例 2— 4にお 、ては半絶縁性 III族窒化物基板として、 GaN基板に っ 、て説明したが、 A1Nや AlGaNなどの組成式 Al Ga In N (ただし、 0≤u≤ 1、
u v 1— u~v
0≤v≤ 1、 u+v≤ 1である)で表される III族窒化物基板であれば同様の効果が期待 できる。例えば、 A1Nでは、 Liをフラックスとして A1と Liの融解液 (フラックス)に窒素を 溶解させ、 A1N結晶を育成することができる。この場合も、 Mg、アルカリ土類金属(M gを除く)および Znの少なくとも一つをドーピングさせることにより、半絶縁性 A1N基板 を作製することができる。
産業上の利用可能性
[0066] 本発明の P型若しくは半絶縁性の III族窒化物基板は、例えば、電界効果トランジス タなどの電子デバイス、特に、高周波パワーデバイスの基板として利用可能である。

Claims

請求の範囲
[I] 窒素を含む雰囲気下において、 Ga、 A1および Inからなる群力も選択される少なくと も一つの III族元素を、アルカリ金属含有フラックス中で、前記窒素と反応させて結晶 成長させる III族窒化物結晶の製造方法であって、前記フラックスが、さらに、 Mgを含 有することを特徴とする製造方法。
[2] 前記フラックス中の Mgが、フラックス成分およびドーピング成分の少なくとも一方と して機能する請求項 1記載の製造方法。
[3] 前記フラックスが、 Mgにカ卩ぇ若しくは代えて、ドーピング成分として、アルカリ土類 金属(Mgを除く)および Znの少なくとも一つを含む請求項 1記載の製造方法。
[4] 前記窒素が、窒素含有ガスとして供給される請求項 1記載の製造方法。
[5] 前記アルカリ土類金属力 Ca、 Be、 Srおよび Baからなる群力 選択される少なくと も一つである請求項 3記載の製造方法。
[6] 前記フラックスが、 Naおよび Mgの混合フラックスである請求項 1記載の製造方法。
[7] 前記 Naおよび Mgの混合フラックス全体に対し、前記 Mgの割合が、 0. 001— 10 モル%の範囲である請求項 6記載の製造方法。
[8] 前記 III族元素が、 Gaであり、前記 III族窒化物が、 GaNである請求項 6記載の製造 方法。
[9] 請求項 1記載の製造方法により製造された III族窒化物結晶。
[10] Mgのドーパント量力 0を超え、 1 X 102Qcm 3以下である請求項 9記載の III族窒化 物結晶。
[II] Mg、前記アルカリ土類金属(Mgを除く)および Znの総ドーパント量力 0を超え、 1
X 1017cm 3以下である請求項 9記載の III族窒化物結晶。
[12] 前記結晶中の酸素の濃度力 0-1 X 1017cm 3の範囲である請求項 9記載の III族 窒化物結晶。
[13] 抵抗率 (比抵抗)が、 1 X 103 Ω · cm以上である請求項 9記載の III族窒化物結晶。
[14] 抵抗率 (比抵抗)が、 1 X 105 Ω · cm以上である請求項 9記載の III族窒化物結晶。
[15] 請求項 9記載の III族窒化物結晶を含む III族窒化物基板。
[16] P型若しくは半絶縁性である請求項 15記載の III族窒化物基板。 [17] 請求項 16記載の III族窒化物基板を用 V、た電界効果トランジスタ。
PCT/JP2004/019249 2003-12-26 2004-12-22 Iii族窒化物結晶の製造方法およびそれにより得られるiii族窒化物結晶ならびにそれを用いたiii族窒化物基板 WO2005064661A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005516613A JP4757029B2 (ja) 2003-12-26 2004-12-22 Iii族窒化物結晶の製造方法
US10/584,725 US20070196942A1 (en) 2003-12-26 2004-12-22 Method for producing group III nitride crystal, group III nitride crystal obtained by such method, and group III nitride substrate using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-435072 2003-12-26
JP2003435072 2003-12-26

Publications (1)

Publication Number Publication Date
WO2005064661A1 true WO2005064661A1 (ja) 2005-07-14

Family

ID=34736584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/019249 WO2005064661A1 (ja) 2003-12-26 2004-12-22 Iii族窒化物結晶の製造方法およびそれにより得られるiii族窒化物結晶ならびにそれを用いたiii族窒化物基板

Country Status (4)

Country Link
US (1) US20070196942A1 (ja)
JP (1) JP4757029B2 (ja)
CN (1) CN100466178C (ja)
WO (1) WO2005064661A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007284267A (ja) * 2006-04-13 2007-11-01 Sumitomo Electric Ind Ltd GaN結晶の製造方法
JP2008013391A (ja) * 2006-07-04 2008-01-24 Osaka Univ Iii族元素窒化物基板の製造方法
JP2008019127A (ja) * 2006-07-13 2008-01-31 Ricoh Co Ltd 結晶成長装置および製造方法
WO2008099720A1 (ja) * 2007-02-15 2008-08-21 Ngk Insulators, Ltd. 窒化ガリウム単結晶育成用融液組成物および窒化ガリウム単結晶を育成する方法
JP2008266067A (ja) * 2007-04-19 2008-11-06 Ngk Insulators Ltd 窒化アルミニウム単結晶の製造方法
WO2009011394A1 (ja) * 2007-07-17 2009-01-22 Sumitomo Electric Industries, Ltd. 電子デバイスを作製する方法、エピタキシャル基板を作製する方法、iii族窒化物半導体素子及び窒化ガリウムエピタキシャル基板
JP2011068548A (ja) * 2009-08-31 2011-04-07 Ngk Insulators Ltd Znがドープされた3B族窒化物結晶、その製法及び電子デバイス
JP2012038918A (ja) * 2010-08-06 2012-02-23 Toshiba Corp 半導体発光素子
CN101558187B (zh) * 2006-12-15 2012-10-17 丰田合成株式会社 制造ⅲ族氮化物基化合物半导体晶体的方法
JP2013030810A (ja) * 2012-11-02 2013-02-07 Toshiba Corp 半導体発光素子
JP2013116851A (ja) * 2013-03-04 2013-06-13 Freiberger Compound Materials Gmbh ドープiii−nバルク結晶及び自立型ドープiii−n基板
US8778078B2 (en) 2006-08-09 2014-07-15 Freiberger Compound Materials Gmbh Process for the manufacture of a doped III-N bulk crystal and a free-standing III-N substrate, and doped III-N bulk crystal and free-standing III-N substrate as such
JP2016000694A (ja) * 2015-09-16 2016-01-07 日本碍子株式会社 高抵抗材料及びその製法
JP2016060653A (ja) * 2014-09-16 2016-04-25 株式会社リコー 13族窒化物結晶の製造方法、および13族窒化物結晶
WO2019031501A1 (ja) * 2017-08-09 2019-02-14 東京エレクトロン株式会社 窒化ガリウム微結晶凝集体の製造方法及び窒化ガリウム微結晶凝集体の製造装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5015417B2 (ja) * 2004-06-09 2012-08-29 住友電気工業株式会社 GaN結晶の製造方法
US9803293B2 (en) 2008-02-25 2017-10-31 Sixpoint Materials, Inc. Method for producing group III-nitride wafers and group III-nitride wafers
JP4941448B2 (ja) * 2007-10-26 2012-05-30 豊田合成株式会社 Iii族窒化物半導体製造装置
JP2009114035A (ja) * 2007-11-08 2009-05-28 Toyoda Gosei Co Ltd Iii族窒化物半導体製造装置および製造方法
DE102009003296B4 (de) * 2008-05-22 2012-11-29 Ngk Insulators, Ltd. Herstellungsverfahren für einen N-leitenden Galliumnitrid-basierten Verbindungshalbleiter
WO2009149299A1 (en) 2008-06-04 2009-12-10 Sixpoint Materials Methods for producing improved crystallinty group iii-nitride crystals from initial group iii-nitride seed by ammonothermal growth
TWI460323B (zh) 2008-06-04 2014-11-11 Sixpoint Materials Inc 用於生長第iii族氮化物結晶之高壓容器及使用高壓容器生長第iii族氮化物結晶之方法及第iii族氮化物結晶
EP2330236B1 (en) * 2008-08-29 2014-04-09 Nippon Steel & Sumitomo Metal Corporation METHOD AND APPARATUS FOR MANUFACTURING SiC SINGLE CRYSTAL FILM
JP4305574B1 (ja) * 2009-01-14 2009-07-29 住友電気工業株式会社 Iii族窒化物基板、それを備える半導体デバイス、及び、表面処理されたiii族窒化物基板を製造する方法
WO2013010118A1 (en) * 2011-07-13 2013-01-17 The Regents Of The University Of California Growth of bulk group-iii nitride crystals
JP6015053B2 (ja) * 2012-03-26 2016-10-26 富士通株式会社 半導体装置の製造方法及び窒化物半導体結晶の製造方法
KR20160130396A (ko) 2014-03-03 2016-11-11 고꾸리쯔 다이가꾸 호우징 오사까 다이가꾸 Iii족 질화물 결정의 제조 방법 및 iii족 질화물 결정 제조 장치
JP7204625B2 (ja) * 2019-07-25 2023-01-16 信越化学工業株式会社 Iii族化合物基板の製造方法及びその製造方法により製造した基板
CN116926670B (zh) * 2023-07-12 2024-04-16 通威微电子有限公司 一种用液相法制备碳化硅的方法和制得的碳化硅

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56160400A (en) * 1980-05-06 1981-12-10 Matsushita Electric Ind Co Ltd Growing method for gallium nitride
JPH09512385A (ja) * 1993-08-10 1997-12-09 ツェントルム バダニ ヴィソコチシニエニオヴィフポルスキエイ アカデミイ ナウク 多層結晶構造及びその製造方法
JPH11135831A (ja) * 1997-10-31 1999-05-21 Hitachi Cable Ltd 窒化ガリウム系化合物半導体ウェハ及び化合物半導体素子
JP2001102316A (ja) * 1999-09-29 2001-04-13 Ricoh Co Ltd 結晶成長方法および結晶成長装置およびiii族窒化物結晶および半導体デバイス

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6562124B1 (en) * 1999-06-02 2003-05-13 Technologies And Devices International, Inc. Method of manufacturing GaN ingots
US6592663B1 (en) * 1999-06-09 2003-07-15 Ricoh Company Ltd. Production of a GaN bulk crystal substrate and a semiconductor device formed on a GaN bulk crystal substrate
JP3428962B2 (ja) * 2000-12-19 2003-07-22 古河電気工業株式会社 GaN系高移動度トランジスタ
US7097707B2 (en) * 2001-12-31 2006-08-29 Cree, Inc. GaN boule grown from liquid melt using GaN seed wafers
US7507292B2 (en) * 2002-07-31 2009-03-24 Osaka Industrial Promotion Organization Method for producing group III element nitride single crystal and group III element nitride transparent single crystal prepared thereby
JP4451265B2 (ja) * 2003-10-20 2010-04-14 パナソニック株式会社 Iii族元素窒化物結晶基板およびiii族元素窒化物半導体デバイスの製造方法
US8754449B2 (en) * 2004-06-11 2014-06-17 Ammono Sp. Z O.O. High electron mobility transistor (HEMT) made of layers of Group XIII element nitrides and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56160400A (en) * 1980-05-06 1981-12-10 Matsushita Electric Ind Co Ltd Growing method for gallium nitride
JPH09512385A (ja) * 1993-08-10 1997-12-09 ツェントルム バダニ ヴィソコチシニエニオヴィフポルスキエイ アカデミイ ナウク 多層結晶構造及びその製造方法
JPH11135831A (ja) * 1997-10-31 1999-05-21 Hitachi Cable Ltd 窒化ガリウム系化合物半導体ウェハ及び化合物半導体素子
JP2001102316A (ja) * 1999-09-29 2001-04-13 Ricoh Co Ltd 結晶成長方法および結晶成長装置およびiii族窒化物結晶および半導体デバイス

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KAWAMURA F. ET AL: "Synthesis of Bulk GaN Single Crystals Using Na-Ca Flux.", JPN. J. PHYS., vol. 41, 15 December 2002 (2002-12-15), pages L1440 - L1442, XP001162419 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007284267A (ja) * 2006-04-13 2007-11-01 Sumitomo Electric Ind Ltd GaN結晶の製造方法
JP2008013391A (ja) * 2006-07-04 2008-01-24 Osaka Univ Iii族元素窒化物基板の製造方法
JP2008019127A (ja) * 2006-07-13 2008-01-31 Ricoh Co Ltd 結晶成長装置および製造方法
US9461121B2 (en) 2006-08-09 2016-10-04 Freiberger Compound Materials Gmbh Process for the manufacture of a doped III-N bulk crystal and a free-standing III-N substrate, and doped III-N bulk crystal and free-standing III-N substrate as such
US8778078B2 (en) 2006-08-09 2014-07-15 Freiberger Compound Materials Gmbh Process for the manufacture of a doped III-N bulk crystal and a free-standing III-N substrate, and doped III-N bulk crystal and free-standing III-N substrate as such
CN101558187B (zh) * 2006-12-15 2012-10-17 丰田合成株式会社 制造ⅲ族氮化物基化合物半导体晶体的方法
US8657955B2 (en) 2007-02-15 2014-02-25 Ngk Insulators, Ltd Melt composition for gallium nitride single crystal growth and method for growing gallium nitride single crystal
JP5289982B2 (ja) * 2007-02-15 2013-09-11 日本碍子株式会社 窒化ガリウム単結晶を育成する方法
WO2008099720A1 (ja) * 2007-02-15 2008-08-21 Ngk Insulators, Ltd. 窒化ガリウム単結晶育成用融液組成物および窒化ガリウム単結晶を育成する方法
JP2008266067A (ja) * 2007-04-19 2008-11-06 Ngk Insulators Ltd 窒化アルミニウム単結晶の製造方法
JPWO2009011394A1 (ja) * 2007-07-17 2010-09-24 住友電気工業株式会社 電子デバイスを作製する方法、エピタキシャル基板を作製する方法、iii族窒化物半導体素子及び窒化ガリウムエピタキシャル基板
WO2009011394A1 (ja) * 2007-07-17 2009-01-22 Sumitomo Electric Industries, Ltd. 電子デバイスを作製する方法、エピタキシャル基板を作製する方法、iii族窒化物半導体素子及び窒化ガリウムエピタキシャル基板
JP2012165020A (ja) * 2007-07-17 2012-08-30 Sumitomo Electric Ind Ltd Iii族窒化物半導体素子及び窒化ガリウムエピタキシャル基板
JP2011068548A (ja) * 2009-08-31 2011-04-07 Ngk Insulators Ltd Znがドープされた3B族窒化物結晶、その製法及び電子デバイス
US8526477B2 (en) 2010-08-06 2013-09-03 Kabushiki Kaisha Toshiba Semiconductor light emitting device
JP2012038918A (ja) * 2010-08-06 2012-02-23 Toshiba Corp 半導体発光素子
JP2013030810A (ja) * 2012-11-02 2013-02-07 Toshiba Corp 半導体発光素子
JP2013116851A (ja) * 2013-03-04 2013-06-13 Freiberger Compound Materials Gmbh ドープiii−nバルク結晶及び自立型ドープiii−n基板
JP2016060653A (ja) * 2014-09-16 2016-04-25 株式会社リコー 13族窒化物結晶の製造方法、および13族窒化物結晶
JP2016000694A (ja) * 2015-09-16 2016-01-07 日本碍子株式会社 高抵抗材料及びその製法
WO2019031501A1 (ja) * 2017-08-09 2019-02-14 東京エレクトロン株式会社 窒化ガリウム微結晶凝集体の製造方法及び窒化ガリウム微結晶凝集体の製造装置

Also Published As

Publication number Publication date
CN100466178C (zh) 2009-03-04
JPWO2005064661A1 (ja) 2007-12-20
US20070196942A1 (en) 2007-08-23
JP4757029B2 (ja) 2011-08-24
CN1898778A (zh) 2007-01-17

Similar Documents

Publication Publication Date Title
JP4757029B2 (ja) Iii族窒化物結晶の製造方法
KR101192061B1 (ko) GaN 결정의 제조 방법, GaN 결정, GaN 결정 기판, 반도체 장치 및 GaN 결정 제조 장치
US8507364B2 (en) N-type group III nitride-based compound semiconductor and production method therefor
JP4647525B2 (ja) Iii族窒化物結晶の製造方法
US5530267A (en) Article comprising heteroepitaxial III-V nitride semiconductor material on a substrate
US20090155580A1 (en) Production Methods of Semiconductor Crystal and Semiconductor Substrate
EP2019437B1 (en) Iii nitride compound semiconductor laminated structure
US10026612B2 (en) Method for producing group III nitride crystal, group III nitride crystal, semiconductor device and apparatus for producing group III nitride crystal
WO2004013385A1 (ja) Iii族元素窒化物単結晶の製造方法およびそれにより得られたiii族元素窒化物透明単結晶
EP2267197A1 (en) Method of obtaining bulk mono-crystalline gallium-containing nitride, bulk mono-crystalline gallium-containing nitride, substrates manufactured thereof and devices manufactured on such substrates
US20180195206A1 (en) Oxygen-doped group iii metal nitride and method of manufacture
US9090988B2 (en) Method of producing crystals of nitrides of group 13 elements and melt compositions
JP4597534B2 (ja) Iii族窒化物基板の製造方法
JP4920875B2 (ja) Iii族窒化物結晶の製造方法、およびiii族窒化物基板の製造方法
JP2004300024A (ja) Iii族元素窒化物結晶の製造方法、それにより得られたiii族元素窒化物結晶およびそれを用いた半導体装置
GB2410836A (en) 3-5 group compound semiconductor and method for preparation thereof
JP2003282434A (ja) ZnO系エピタキシャル成長基板、ZnO系エピタキシャル下地基板、及びZnO系膜の製造方法
Brüeckner et al. High quality GaN layers grown on slightly miscut sapphire wafers
JP2004193584A (ja) 3−5族化合物半導体およびその製造方法
JP2009057247A (ja) Iii族窒化物結晶の成長方法およびiii族窒化物結晶基板
KR20080093299A (ko) 용액 코팅 씨앗층 형성 공정에 의한 갈륨 질소 막 성장 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480038996.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2005516613

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10584725

Country of ref document: US

Ref document number: 2007196942

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10584725

Country of ref document: US