WO2005053363A1 - El fiber and photocatalyst reaction vessel - Google Patents

El fiber and photocatalyst reaction vessel Download PDF

Info

Publication number
WO2005053363A1
WO2005053363A1 PCT/JP2004/017677 JP2004017677W WO2005053363A1 WO 2005053363 A1 WO2005053363 A1 WO 2005053363A1 JP 2004017677 W JP2004017677 W JP 2004017677W WO 2005053363 A1 WO2005053363 A1 WO 2005053363A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
fiber
layer
fiber according
photocatalytic
Prior art date
Application number
PCT/JP2004/017677
Other languages
French (fr)
Japanese (ja)
Inventor
Chihiro Kawai
Original Assignee
Sumitomo Electric Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries, Ltd. filed Critical Sumitomo Electric Industries, Ltd.
Priority to US10/580,204 priority Critical patent/US20070126341A1/en
Priority to DE112004002320T priority patent/DE112004002320T5/en
Publication of WO2005053363A1 publication Critical patent/WO2005053363A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/61Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing fluorine, chlorine, bromine, iodine or unspecified halogen elements
    • C09K11/611Chalcogenides
    • C09K11/612Chalcogenides with zinc or cadmium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/18Radiation
    • A61L9/20Ultra-violet radiation
    • A61L9/205Ultra-violet radiation using a photocatalyst or photosensitiser
    • B01J35/39
    • B01J35/58
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/61Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing fluorine, chlorine, bromine, iodine or unspecified halogen elements
    • C09K11/611Chalcogenides
    • C09K11/613Chalcogenides with alkali or alkakine earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/64Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium
    • C09K11/641Chalcogenides
    • C09K11/642Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7704Halogenides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7767Chalcogenides
    • C09K11/7769Oxides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details

Definitions

  • the present invention relates to an EL fiber having a function of decomposing and sterilizing organic substances and bacteria, and a photocatalytic reaction vessel using the EL fiber.
  • Photocatalytic materials that decompose and sterilize harmful substances, bacteria, and viruses have attracted attention.
  • Representative photocatalytic is T io 2, because this generally is a material wavelength exerts a photocatalytic function by 4 0 0 nm UV light below, most catalytic effect in sunlight contains less ultraviolet rays Can not be demonstrated.
  • Photocatalytic materials that work even with visible light having a wavelength exceeding 400 nm have been developed.
  • This crystal system anatase T i 0 2 to N, S, M n, F e, C o, which was doped with Z n, C u like, which has a higher absorption of visible light f Izumi some, but most of the material, although the photocatalytic function in the visible light is to act, as compared to a combination of ultraviolet ray and anatase T io 2, the performance would beat low up to about l Z l 0 0. It is reported that only exceptionally doping with y-element does not show any significant performance degradation. (Refer to the 2003 Denki-Danigaku Fall Conference, Abstracts of Lectures, The Institute of Electrical Chemistry, p. 322)
  • FIG. 1 shows the conceptual structure. 1 is an internal electrode, 2 is an internal insulating layer, 3 is a light emitting layer, 4 is an external insulator, 5 is an external electrode, and 6 is a protective layer.
  • the external insulator of 4 may not be necessary.
  • To apply AC voltage between both electrodes As a result, electrons with a high energy state called hot electrons move through the insulator layer through the insulator layer, and this emits light by exciting semiconductor particles in the light emitting layer or specific ions added to the semiconductor particles. Occurs. It is called an EL fiber because it emits light by electronoluminescence.
  • the present invention has been found to improve the above-described EL fiber based on an original idea, solve the above-mentioned problems, and provide a function of decomposing and sterilizing organic substances and bacteria.
  • the first aspect of the present invention is an EL fiber mainly having an ultraviolet light emitting function, and has an ultraviolet or visible light emitting function having a wavelength of 400 nm or less, wherein the cross-sectional structure of the fiber is located at the center in the radial direction.
  • An EL fiber that consists of an internal electrode, an internal insulating layer, a light-emitting layer, an external electrode, and a protective layer formed on the outermost surface formed around the electrode, and emits light when an AC electric field is applied between the electrodes. This is composed of phosphor particles that constitute the light emitting layer emit ultraviolet light. Bacteria and viruses can be directly decomposed and sterilized by ultraviolet light.
  • UV light is widely used as a germicidal lamp because it directly destroys the DNA of bacteria and viruses, so an EL fiber that emits ultraviolet light at 254 nm is an alternative to a direct germicidal lamp.
  • a second aspect of the present invention is an EL fiber having an ultraviolet or visible light emitting function, and an EL fiber having an ultraviolet or visible light emitting function having a wavelength of 550 nm or less, wherein the fiber has a cross-sectional structure of: It is composed of an inner electrode located at the center in the radial direction, an inner insulating layer, a light emitting layer, an outer electrode, a protective layer formed around the inner electrode, and a particle layer or thin film having a photocatalytic function formed on the outermost surface,
  • This is an EL fiber that emits light when the AC electric field is applied between the electrodes. That is, the EL fiber and the photocatalyst are integrated.
  • This method irradiates a photocatalyst with visible light or ultraviolet light that emits light, and decomposes and sterilizes organic substances, bacteria, viruses, and the like by photocatalysis, and has a wider application than the first invention that emits only ultraviolet light.
  • the present invention also provides a photocatalytic reaction vessel using the above EL fiber, and a photocatalytic reaction vessel having a structure in which EL fibers and photocatalytic fibers are alternately combined.
  • FIG. 1 shows an EL fiber to which the present invention is applied.
  • the internal electrode 1 may be made of ordinary metal, and a copper wire is used.
  • the inner insulating layer 2 is for uniformly applying an AC electric field to the light emitting layer 3 and usually uses a dielectric resin alone such as cyanoresin, or a combination of the dielectric resin and B a Ti 0 3 A mixture of ceramic powders having a high dielectric constant such as is used. The thickness is several tens / im.
  • a transparent conductive film such as an indium tin oxide (ITO) is used, or a NiCr alloy or the like is used. Are reduced to 0.1 ⁇ or less.
  • Reference numeral 6 denotes a protective layer, which protects the light emitting layer 3 and the external electrode 5 from external environmental factors such as moisture, and must also transmit light emitted from the inside. If the light is visible light, ordinary transparent resin can be used, but if it is ultraviolet light, it is necessary to use a resin that is excellent in transmission of ultraviolet light. For example, there is an acrylic made by Mitsubishi Rayon. Further, the protective layer 6 itself may be a material having a photocatalytic function. For example, such coating can be considered a dense T i 0 2 by sputtering.
  • the light emitting layer 3 is composed of phosphor particles dispersed in a dielectric resin in a normal EL fiber, and has a thickness of several tens / im.
  • those emitting visible light having a wavelength exceeding 400 nm may be the same as ordinary EL fibers.
  • the use of dielectric ceramics may cause degradation of the resin when used for a long period of time. Therefore, it is preferable to use dielectric ceramics instead of resin.
  • the dielectric ceramics high B aT i 0 3 dielectric constant, S r T i 0 3, P b T i 0 3 , etc.
  • Various materials are contemplated. In other words, it becomes a kind of shell structure in which phosphor particles are dispersed in dielectric ceramics. Most important is the phosphor.
  • ZnS-based materials are well known as phosphor materials that emit light with high efficiency by electroluminescence in combination with a dielectric resin as in the present invention, and are also used as phosphors for general EL fibers. Used. (See P lastics, R ub D erand C omp osites P rogessingand Ap plications 1 998. V o 1.27, No. 3, 160-165)
  • ZnS is doped with C1 or A1 as a second additive element. These additional elements form a donor level below the conduction band of ZnS.
  • Cu or Ag is doped as the first additive element.
  • acceptor level on the valence band of ZnS.
  • energy such as an electron beam or ultraviolet light
  • electrons in the valence band are once excited in the conduction band and then trapped in the donor level.
  • holes newly generated in the valence band are captured by the acceptor level. Light emission occurs when electrons at the donor level recombine with holes at the acceptor level.
  • the light emission wavelength is basically It is determined by the energy difference between the donor level and the acceptor level, and the larger the energy level, the shorter the wavelength of the light emission.
  • E g the bandgap energy of ⁇ ⁇ S
  • E D the bound energy of the donor.
  • EA the binding energy of the acceptor
  • e the elementary charge
  • ⁇ n the vacuum dielectric Rate
  • epsilon r the ratio electrostatic permittivity
  • r is the distance of the donor and Akuseputa.
  • the wavelength is
  • these phosphors may be used in order to emit visible light of about 450 to 550 nm.
  • Equation (1) shows that the emission wavelength is mainly determined by the band gap of the semiconductor material, the donor, and the acceptor level. That is, Meniwa that the emission wavelength to the short wavelength, a large (1) E g, (2 ) E small D, (3) While the child small E A required, these, E D does not change significantly depending on the element doped at about 0.1 eV. Also, E A, so is 0. 7 eV in Ag doping, in order to shorten the wavelength of the emission wavelength is substantially it is most important to increase the E g.
  • Additive elements that form the acceptor level include Cu, Ag, Au, Li, Na, N, As, P, and Sb. Additive elements that form the donor level include C1, A1, I, F, and Br.
  • E g bandgap energy
  • the base material semiconductor Z n S (E g 3 . 7 e V) mixed crystal of semiconductor and Z n S of the large second component of Bandogiyappu than.
  • Ba S and Be S are also candidates, but Mg S is most preferable.
  • Another way to increase the bandgap is to reduce the size of the ZnS particles to nanosize.
  • the quantum size effect appears due to the decrease in particle size, and the band gap increases.
  • the particle diameter of the mixed crystal may be reduced.
  • the particle size may be larger than using ZnS alone.
  • the particle size at which the quantum size effect appears depends on E g and E A.
  • the emission wavelength is below 400nm regardless of the particle size. If the amount of Mg S is large, the particle size tends to be unlimited. As the amount increases, the luminous efficiency may decrease. This is the same for other second component semiconductors. In that sense, the particle size should be less than 1 Onm.
  • Y 2 0 3 G d
  • S i -YON G d
  • Z n F 2 such as G d
  • Ya material doped with Gd ions GaN, ZnO, etc. are also candidates.
  • the photocatalyst material if the wavelength use the following ultraviolet or visible light 400 nm is may anatase commonly used, rutile or in Burokkai preparative of T i 0 2,. In the visible light of greater than 400 nm, 1 ⁇ Ding 1_Rei 2, S, Mn, F e , C o, Zn, by doping at least one element of Cu, be used as the visible light-sensitive photocatalyst it can. Most preferred is S-doped, which has the highest photocatalytic activity.
  • the above-mentioned invention is a compact light source that directly emits ultraviolet light or can exhibit a photocatalytic function, it can be used to process fluids in narrow areas that cannot be reached by an external light source or liquids with high turbidity. By installing it in the target object, an efficient disintegration / sterilization device can be made.
  • FIG. 1 shows a conceptual diagram of an EL fiber to which the present invention can be applied.
  • FIG. 2 is an explanatory diagram of the light emission mechanism of the ZnS-based phosphor.
  • FIG. 3 is an explanatory diagram of the photocatalytic reaction test.
  • FIG. 4 is an explanatory diagram of an example in which commercially available LEDs that emit ultraviolet light are arranged at intervals of 60 °.
  • FIG. 5 is an explanatory diagram of an example in which mercury lamps are arranged at intervals of 60 °.
  • ⁇ Fig. 6 shows a plan view 6A and a cross-sectional view 6B of the woven fabric produced with the EL fiber of Example 1.
  • FIG. 7 is an explanatory diagram of the third embodiment.
  • FIG. 8 is an explanatory diagram of a comparative example with the third embodiment.
  • FIG. 9 is an explanatory diagram of another comparative example of the third embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
  • a Cu wire having a diameter of 0.1 mm and a length of lm was used as a core electrode.
  • ZnS Ag, C1 powder average particle size 3 to 15 nm
  • T i 0 2 S-average particle size 0. 05 mu m
  • Thiourea (CH 4 N 2 S) powder and Ti (OC 3 H 7 ) 4 were mixed in ethanol, and concentrated under reduced pressure until a white slurry was obtained. Then, it was calcined in the atmosphere at 2111 at 600 to obtain a powder. The doping amount of S was set to 2 at% with respect to oxygen.
  • the resin was dispersed and dissolved in cyclohexanone at 30 V 0 1%. This solution was dispersed B a T i 0 3 powder those (30 V o 1%) was applied to the Cu wire, is controlled to a thickness of 30 Myupaiiota with rotating rollers, by 1 hr dried at 120 ° C An insulating layer was formed.
  • Resin dispersed and dissolved in cyclohexanone to 30 V o 1% was prepared.
  • a phosphor powder dispersed in Ar gas (30 vo 1%) was applied to this solution, applied to the surface of the insulating layer (a), and controlled to a thickness of 40 ⁇ with a rotating roller to obtain 1 ⁇ m.
  • the layer was dried at 20 ° C. for 10 hours to form a light emitting layer.
  • the photocatalyst particles to prepare a liquid dispersed in an alcohol, after immersing the EL Fuaiba was coated with T i 0 2 particles EL fiber surface by pulling.
  • An AC electric field of 150 V, 400 Hz was applied between the core electrode of the EL fiber and the ITO electrode before coating the photocatalytic layer.
  • the luminous brightness was measured with a luminance meter or an ultraviolet illuminometer, and the luminous efficiency was calculated from the input power.
  • GaN LED 360 40 Anatase '100 ⁇ Low-pressure mercury lamp 254 80 Anatase' 100
  • a Cu wire with a diameter of 0.1 mm and a length of lm was used as the core electrode.
  • a predetermined amount of MgS powder (average particle diameter 0.5 ⁇ ) is mixed with commercially available ZnS: Ag, CI powder (average particle diameter 0.5 ⁇ m), and a planetary ball mill (ball diameter 40 ⁇ ). ) was obtained by pulverizing for various times in Ar at an acceleration of 144 G.
  • An AC electric field of 200 V, 300 Hz was applied between the core electrode and the ITO electrode of the EL fiber before coating the photocatalytic layer.
  • the luminous brightness was measured with a luminance meter or an ultraviolet illuminometer, and the luminous efficiency was calculated from the input power.
  • the phosphor By making the phosphor a ZnS-MgS mixed crystal system, the emission wavelength became shorter and the decomposition rate improved. By be Rukoto the dielectric insulating layer or a light-emitting layer to B a T i 0 3 having a high dielectric constant, high luminous efficiency is obtained.
  • the EL fiber of Example 1 was two-dimensional satin-woven at a pitch of 3 mm to produce a woven fabric having a size of 500 mm ⁇ 50 Omm.
  • FIG. 6A is a plan view
  • FIG. 6B is a cross-sectional view.
  • a woven fabric made of photocatalytic fiber (made by Ube Industries) was cut into 500 mm x 50 Omm.
  • GaN-based LED 360 40 Anatase 'None 18 Low-pressure mercury lamp 254 80 Anatase' None 11
  • the decomposition time of this product was shorter than that of the external light source method.
  • the difference was large when high turbidity liquids were treated. This is considered to be because the emitted light is absorbed by the pollution source in the external light source method. Even when the turbidity was low, the time required for the product of the present invention to decompose was short. This is probably because when the photocatalyst woven fabric is laminated, light does not uniformly reach the inner woven fabric using the external power supply method.
  • the product of the present invention it is considered that all the photocatalyst fabrics work uniformly regardless of the number of layers because the light source is present near the photocatalyst fabric.
  • the product of the present invention is a fiber that can emit ultraviolet light when an AC voltage is applied.
  • a photocatalytic reaction can be efficiently caused without using an external ultraviolet light source such as an ultraviolet lamp or an ultraviolet LED.
  • a photocatalytic reaction can be efficiently generated even in the case of a polluted fluid that absorbs ultraviolet rays that cannot be processed by an external light source.
  • the photocatalytic reaction vessel using the product of the present invention can decompose organic substances and sterilize bacteria, N ⁇ x, SOx, CO gas, diesel particulates, pollen, dust Decomposition and removal of ticks, removal of organic compounds contained in sewage, germicidal light source for common bacteria and viruses, decomposition of harmful gases generated in chemical plants, decomposition of odorous components, ultrapure water production equipment It can be applied to various fields such as a germicidal light source.
  • a ceramic filter a photocatalyst sheet, a photocatalyst woven fabric, or the like.
  • a ceramic honeycomb filter pre-loaded with a photocatalyst
  • both the function of separating the ceramic filter and the function of the photocatalyst can be provided.

Abstract

Photocatalyst reaction is a reaction occurring only on the surface of a particle. Therefore ultraviolet radiation needs to be uniformly applied to the surface of a particle. However, a special device is required, and the collection of the photocatalyst particles is costly when replaced. The photocatalyst reaction is difficult to apply to large reaction vessels, particularly to external light source type. These problems have been solved. An EL fiber having a function of emitting ultraviolet light of a wavelength shorter than 400 nm or visible light is characterized in that the cross-section structure of the EL fiber comprises an inner electrode disposed at the radial center, an inside insulating layer formed around the inner electrode, a light-emitting layer, an outer electrode, and a protective layer formed on the outermost surface, and light is emitted when an alternating electric field is applied between the electrodes.

Description

明細書  Specification
E Lフアイバー及び光触媒反応容器 技術分野  EL fiber and photocatalytic reaction vessel
本発明は、 有機物や細菌等の分解や殺菌機能を有する E Lファイバー及ぴかか る E Lファイバーを用いた光触媒反応容器に関する。 背景技術  The present invention relates to an EL fiber having a function of decomposing and sterilizing organic substances and bacteria, and a photocatalytic reaction vessel using the EL fiber. Background art
近年の環境問題から、 有害物質や細菌 · ウィルスなどを分解、 殺菌する光触媒 材料が注目されている。 代表的な光触媒は T i o 2 であるが、 これは一般には波 長が 4 0 0 n m以下の紫外線により光触媒機能を発揮する材料であるため、 紫外 線の含有量が少ない太陽光線ではほとんど触媒効果を発揮することができない。 波長が 4 0 0 n mを超える可視光線でも作用する光触媒材料も開発されてい る。 これは、 結晶系がアナターゼ型の T i 0 2 に N、 S、 M n、 F e、 C o、 Z n、 C u等をドーピングしたもので、 可視光 f泉の吸収を高くしたものであるが、 ほとんどの材料は、 可視光線でも光触媒機能が作用するようになるものの、 紫外 線とアナターゼ型 T i o 2の組み合わせに比べて、 性能は l Z l 0 0程度まで低 下してしまう。 例外的にィォゥ元素をドーピングしたもののみ、 大きな性能低下 がないと報告されている。 (2 0 0 3年電気ィ匕学秋季大会、 講演要旨集、 電気化 学会、 3 2 2頁参照) Due to recent environmental problems, photocatalytic materials that decompose and sterilize harmful substances, bacteria, and viruses have attracted attention. Representative photocatalytic is T io 2, because this generally is a material wavelength exerts a photocatalytic function by 4 0 0 nm UV light below, most catalytic effect in sunlight contains less ultraviolet rays Can not be demonstrated. Photocatalytic materials that work even with visible light having a wavelength exceeding 400 nm have been developed. This crystal system anatase T i 0 2 to N, S, M n, F e, C o, which was doped with Z n, C u like, which has a higher absorption of visible light f Izumi some, but most of the material, although the photocatalytic function in the visible light is to act, as compared to a combination of ultraviolet ray and anatase T io 2, the performance would beat low up to about l Z l 0 0. It is reported that only exceptionally doping with y-element does not show any significant performance degradation. (Refer to the 2003 Denki-Danigaku Fall Conference, Abstracts of Lectures, The Institute of Electrical Chemistry, p. 322)
しかしながら、 いずれにしてもこれらの光触媒を作用させるには、 別途水銀ラ ンプなどの外部光源を使用する必要があり、 反応容器のコンパクト化を阻害し、 かつ有害物質である水銀を使う必要があった。 最近では、 水銀ランプの代わり に、 紫外線を発光する発光ダイォード ( L E D ) を光源にする場合も出てきてい る。  However, in any case, in order for these photocatalysts to work, it is necessary to use an external light source such as a mercury lamp, which hinders downsizing of the reaction vessel and uses mercury, which is a harmful substance. Was. Recently, instead of a mercury lamp, a light emitting diode (LED) that emits ultraviolet light has been used as a light source.
一方、 エレク ト口ルミネッセンスによつて発光する E Lフアイバーと呼ばれる 発光ファイバーが知られている。 図 1にその概念構造を示す。 1は内部電極、 2 は内部絶縁層、 3は発光層、 4は外部絶縁体、 5は外部電極、 6は保護層であ る。 4の外部絶縁体は不要の場合もある。 両電極間に交流電圧を印加することに より、 絶縁体層を通して発光層中をホットエレク トロンと呼ばれるエネルギー状 態の高い電子が移動し、 これが発光層中の半導体粒子または半導体粒子中に添加 された特定のイオンを励起することにより発光が生じる。 エレクトロノレミネッセ ンスによって発光するファイバーであることから E Lファイバーと呼ばれる。 一 般に市販されている ELフアイパーは緑や青色の可視光発光ファィバーのみであ り、 各種イルミネーション等に使用されている。 (P l a s t i c s, Ru b b e r a n d C omp o s i t e s P r o g e s s i n g a n d A p p l i c a t i o n s 1 998. Vo l . 27, No. 3, 160〜 1.65頁参 照) 発明の開示 On the other hand, a light-emitting fiber called an EL fiber that emits light by means of electoran luminescence is known. Figure 1 shows the conceptual structure. 1 is an internal electrode, 2 is an internal insulating layer, 3 is a light emitting layer, 4 is an external insulator, 5 is an external electrode, and 6 is a protective layer. The external insulator of 4 may not be necessary. To apply AC voltage between both electrodes As a result, electrons with a high energy state called hot electrons move through the insulator layer through the insulator layer, and this emits light by exciting semiconductor particles in the light emitting layer or specific ions added to the semiconductor particles. Occurs. It is called an EL fiber because it emits light by electronoluminescence. The only commercially available EL fibers are green and blue visible light emitting fibers, which are used for various illuminations. (See Plastics, Rubberand Compossites Propessing and Applications 1 998. Vol. 27, No. 3, pages 160-1.65) Disclosure of the Invention
光触媒反応は、 粒子の表面でのみ生じる反応であるため、 粒子表面に均一に紫 外線を照射する必要がある。 しかし、  Since the photocatalytic reaction occurs only on the surface of the particles, it is necessary to uniformly irradiate the surface of the particles with ultraviolet light. But,
(1) 対象物が気体の場合、 光触媒である T i o2粒子を反応容器内に浮遊させ る必要があるので特別な装置が必要になる。 液体の場合、 液体内に分散させる必 要があるが、 この場合、 光触媒粒子の交換時に回収することにコストがかかる。 (1) when the object is a gas, because the T io 2 particles as the photocatalyst is required to Ru suspended in the reaction vessel special equipment is required. In the case of a liquid, it is necessary to disperse it in the liquid, but in this case, it is costly to recover the photocatalyst particles when replacing them.
(2) 紫外線は大気中で吸収されやすいため、 光源を近づける必要があり、 大き な反応容器には適用しにくレ、。 特に、 対象物が濁った液体の場合は紫外線の減衰 が激しく、 外部光源方式は適用できない、 などの問題がある。  (2) Since ultraviolet light is easily absorbed in the atmosphere, it is necessary to bring the light source closer, making it difficult to apply to a large reaction vessel. In particular, when the object is a turbid liquid, there is a problem that ultraviolet light is greatly attenuated and the external light source method cannot be applied.
本発明は、 前述の ELファイバーを独自の発想により改良し、 上記の問題を解 決して、 有機物や細菌等の分解や殺菌機能を付与できることを見出したものであ る。  The present invention has been found to improve the above-described EL fiber based on an original idea, solve the above-mentioned problems, and provide a function of decomposing and sterilizing organic substances and bacteria.
本発明の第一は、 主として紫外線発光機能を持つ ELファイバーであり、 波長 が 400 nm以下の紫外線または可視光線発光機能を持つ ELファイバーであつ て、 ファイバーの断面構造が、 半径方向の中心に位置する内部電極と、 その周囲 に形成された内部絶縁層、 発光層、 外部電極、 及ぴ最表面に形成された保護層か らなり、 電極間への交流電界印加により発光する E Lファイバーである。 これ は、 発光層を構成する蛍光体粒子が紫外線を発光するものから構成される。 細菌 やウィルスなどは紫外線で直接分解や殺菌できる場合がある。 特に、 254 nm の紫外線は細菌やウィルスの D N Aを直接破壊するため広く殺菌ランプとして用 いられているため、 2 5 4 n mの紫外線を発光する E Lファイバ一は直接殺菌ラ ンプの代替となる。 The first aspect of the present invention is an EL fiber mainly having an ultraviolet light emitting function, and has an ultraviolet or visible light emitting function having a wavelength of 400 nm or less, wherein the cross-sectional structure of the fiber is located at the center in the radial direction. An EL fiber that consists of an internal electrode, an internal insulating layer, a light-emitting layer, an external electrode, and a protective layer formed on the outermost surface formed around the electrode, and emits light when an AC electric field is applied between the electrodes. This is composed of phosphor particles that constitute the light emitting layer emit ultraviolet light. Bacteria and viruses can be directly decomposed and sterilized by ultraviolet light. In particular, 254 nm Ultraviolet light is widely used as a germicidal lamp because it directly destroys the DNA of bacteria and viruses, so an EL fiber that emits ultraviolet light at 254 nm is an alternative to a direct germicidal lamp.
本発明の第二は、 紫外線または可視光線発光機能を持つ E Lファイバーであ り、 波長が 5 5 0 n m以下の紫外線または可視光線発光機能を持つ E Lファイバ 一であって、 ファイバーの断面構造が、 半径方向の中心に位置する内部電極と、 その周囲に形成された内部絶縁層、 発光層、 外部電極、 保護層、 およぴ最表面に 形成された光触媒機能を持つ粒子層または薄膜からなり、 電極間への交流電界印 カロにより発光する E Lファイバーである。 すなわち、 E Lファイバーと光触媒が 一体化したものである。  A second aspect of the present invention is an EL fiber having an ultraviolet or visible light emitting function, and an EL fiber having an ultraviolet or visible light emitting function having a wavelength of 550 nm or less, wherein the fiber has a cross-sectional structure of: It is composed of an inner electrode located at the center in the radial direction, an inner insulating layer, a light emitting layer, an outer electrode, a protective layer formed around the inner electrode, and a particle layer or thin film having a photocatalytic function formed on the outermost surface, This is an EL fiber that emits light when the AC electric field is applied between the electrodes. That is, the EL fiber and the photocatalyst are integrated.
これは、 発光する可視光線または紫外線を光触媒に照射し、 光触媒作用により 有機物や細菌、 ウィルスなどの分解 ·殺菌を行うものであり、 紫外線のみを発光 する第一の発明よりも用途が広い。  This method irradiates a photocatalyst with visible light or ultraviolet light that emits light, and decomposes and sterilizes organic substances, bacteria, viruses, and the like by photocatalysis, and has a wider application than the first invention that emits only ultraviolet light.
本発明は、 又、 上記 E Lファイバーを用いた光触媒反応容器、 さらには、 E L ファイバーと光触媒繊維を交互に組合せた構造を有する光触媒反応容器である。 図 1は本発明を適用する E Lファイバーであって、 1の内部電極は普通の金属 でよく、 銅線が用いられる。 内部絶縁層 2は、 発光層 3に均一に交流電界を印加 するためのものであり、 通常はシァノレジン等の誘電体樹脂単体を用いるか、 あ るいは、 誘電体樹脂と B a T i 0 3等の高誘電率のセラミックス粉末の混合物が 用いられる。 厚さは数十 /i mである。 外部電極 5は、 発光層 3から放射される紫 外線または可視光線が透過しなければならないので、 ィンジゥムースズ系の酸化 物 (I T O ) 等の透明導電膜が用いられるか、 あるいは N i C r合金などを 0 . 1 μ ηι以下に薄くしたものが候補となる。 The present invention also provides a photocatalytic reaction vessel using the above EL fiber, and a photocatalytic reaction vessel having a structure in which EL fibers and photocatalytic fibers are alternately combined. FIG. 1 shows an EL fiber to which the present invention is applied. The internal electrode 1 may be made of ordinary metal, and a copper wire is used. The inner insulating layer 2 is for uniformly applying an AC electric field to the light emitting layer 3 and usually uses a dielectric resin alone such as cyanoresin, or a combination of the dielectric resin and B a Ti 0 3 A mixture of ceramic powders having a high dielectric constant such as is used. The thickness is several tens / im. Since the external electrode 5 must transmit ultraviolet light or visible light emitted from the light emitting layer 3, a transparent conductive film such as an indium tin oxide (ITO) is used, or a NiCr alloy or the like is used. Are reduced to 0.1 μηι or less.
6は保護層であり、 発光層 3や外部電極 5を湿気等の外部環境因子から保護す るためのもので、 やはり内部から放射される光が透過しなければならない。 光が 可視光線の場合は通常の透明樹脂でかまわないが、 紫外線の場合、 紫外線の透過 に優れる榭脂を使う必要がある。 例えば、 三菱レイヨン製のァクリライ トがあ る。 また、 保護層 6自体が光触媒機能を持つ材料であっても構わない。 例えば、 緻密な T i 0 2 をスパッタリングでコーティングする等が考えられる。 発光層 3については、 通常の E Lファイバーでは蛍光体粒子が誘電体樹脂中に 分散されたものからなり、 厚さは数十/ imである。 本発明においても、 波長が 4 00 nmを超える可視光線を放射するものでは通常の ELファイバーと同じでか まわない。 し力 し、 それより短い波長に対しては、 誘電体樹脂を使うと長期間の 使用により樹脂が劣化する場合があるので、 樹脂の代わりに誘電体セラミックス を用いるほうが好ましい。 誘電体セラミックスとしては、 誘電率の高い B aT i 03、 S r T i 03、 P b T i 03 等様々な材料が考えられる。 すなわち、 誘電 体セラミックス中に蛍光体粒子が分散された一種のコ了シェル構造の層となる。 最も重要であるのは蛍光体である。 本発明品のように、 誘電体樹脂と組み合わ せてエレク トロルミネッセンスにより高効率で発光する蛍光体材料としては、 Z n S系材料がよく知られており、 一般の ELファイバー用蛍光体としても用いら れている。 (P l a s t i c s, R u b D e r a n d C omp o s i t e s P r o g e s s i n g a n d Ap p l i c a t i o n s 1 998. V o 1. 27, No. 3, 160〜 165頁参照) Reference numeral 6 denotes a protective layer, which protects the light emitting layer 3 and the external electrode 5 from external environmental factors such as moisture, and must also transmit light emitted from the inside. If the light is visible light, ordinary transparent resin can be used, but if it is ultraviolet light, it is necessary to use a resin that is excellent in transmission of ultraviolet light. For example, there is an acrylic made by Mitsubishi Rayon. Further, the protective layer 6 itself may be a material having a photocatalytic function. For example, such coating can be considered a dense T i 0 2 by sputtering. The light emitting layer 3 is composed of phosphor particles dispersed in a dielectric resin in a normal EL fiber, and has a thickness of several tens / im. Also in the present invention, those emitting visible light having a wavelength exceeding 400 nm may be the same as ordinary EL fibers. However, for wavelengths shorter than that, the use of dielectric ceramics may cause degradation of the resin when used for a long period of time. Therefore, it is preferable to use dielectric ceramics instead of resin. The dielectric ceramics, high B aT i 0 3 dielectric constant, S r T i 0 3, P b T i 0 3 , etc. Various materials are contemplated. In other words, it becomes a kind of shell structure in which phosphor particles are dispersed in dielectric ceramics. Most important is the phosphor. ZnS-based materials are well known as phosphor materials that emit light with high efficiency by electroluminescence in combination with a dielectric resin as in the present invention, and are also used as phosphors for general EL fibers. Used. (See P lastics, R ub D erand C omp osites P rogessingand Ap plications 1 998. V o 1.27, No. 3, 160-165)
図 2に示すように、 Z n Sには第二添加元素として C 1や A 1がドーピングさ れる。 これらの添加元素は、 Z n Sの導電帯下にドナー準位を形成する。 一方、 第一添加元素として C uや A g等がドーピングされる。 こららの元素は Z n Sの 荷電子帯上にァクセプタ準位を形成する。 Z n S中に電子線や紫外線などのエネ ルギ一が照射されると、 荷電子帯の電子が導電帯に一旦励起された後、 ドナー準 位に捕捉される。 一方、 荷電子帯に新たに生成した正孔はァクセプタ準位に捕捉 される。 発光は、 ドナー準位にある電子がァクセプタ準位にある正孔と再結合す ることにより生じる。 これは、 ドナ' "一ァクセプタ (DA) 発光と呼ばれるタイ プの発光であり、 極めて高い発光効率が得られる発光機構である。 (1) 式に示 すように、 発光波長は、 基本的にドナー準位とァクセプタ準位のエネルギー差に より決まり、 これが大きいほど短波長の発光となる。 すなわち、 発光のエネルギ 一 h Vは、  As shown in FIG. 2, ZnS is doped with C1 or A1 as a second additive element. These additional elements form a donor level below the conduction band of ZnS. On the other hand, Cu or Ag is doped as the first additive element. These elements form an acceptor level on the valence band of ZnS. When energy such as an electron beam or ultraviolet light is irradiated into ZnS, electrons in the valence band are once excited in the conduction band and then trapped in the donor level. On the other hand, holes newly generated in the valence band are captured by the acceptor level. Light emission occurs when electrons at the donor level recombine with holes at the acceptor level. This is a type of light emission called Donna's one-sceptor (DA) light emission, and is a light emission mechanism that can obtain extremely high light emission efficiency. As shown in equation (1), the light emission wavelength is basically It is determined by the energy difference between the donor level and the acceptor level, and the larger the energy level, the shorter the wavelength of the light emission.
h v=E g- (ED +EA ) -e2 / (4 π ε 0 ε Γ r) (1) ここで、 Eg は Ζ η Sのバンドギャップエネルギー、 EDはドナーの束縛エネ ルギ一、 E Aはァクセプタの束縛エネルギー、 eは素電荷量、 ε n は真空の誘電 率、 ε r は比静電誘電率、 rはドナーとァクセプタの距離である。 hv = E g- (E D + E A ) -e 2 / (4 π ε 0 ε Γ r) (1) where E g is the bandgap energy of η η S, and E D is the bound energy of the donor. 1, EA is the binding energy of the acceptor, e is the elementary charge, ε n is the vacuum dielectric Rate, epsilon r is the ratio electrostatic permittivity, r is the distance of the donor and Akuseputa.
このような発光機構を持つ Z n S系蛍光体に関しては、 Z n S : Ag、 C 1は 青色蛍光体、 Zn S : Cu、 A 1は緑色蛍光体として実用化されているので、 波 長が 450〜 550 nm程度の可視光線を発光させるためには、 これらの蛍光体 を用いればよい。  With regard to the ZnS-based phosphor having such a light emission mechanism, since ZnS: Ag and C1 are practically used as blue phosphors and ZnS: Cu and A1 are practically used as green phosphors, the wavelength is However, these phosphors may be used in order to emit visible light of about 450 to 550 nm.
(1) 式から、 発光波長は主として半導体材料のバンドギャップとドナー、 及 ぴァクセプタ準位で決まることが分かる。 すなわち、 発光波長を短波長にするた めには、 (1) Eg を大きく、 (2) ED を小さく、 (3) EA を小さくするこ とが必要となるが、 このうち、 EDは約 0. 1 e Vでドーピングする元素により 大きくは変化しない。 また、 EAは、 Ag ドーピングで 0. 7 eVであるので、 発光波長を短波長化するためには、 実質的には Eg を大きくすることが最も重要 である。 ァクセプタ準位を形成する添加元素としては、 Cu、 Ag、 Au、 L i、 Na、 N、 As、 P、 S b等がある。 ドナー準位を形成する添加元素として は C 1、 A 1、 I、 F、 B r等がある。 Equation (1) shows that the emission wavelength is mainly determined by the band gap of the semiconductor material, the donor, and the acceptor level. That is, Meniwa that the emission wavelength to the short wavelength, a large (1) E g, (2 ) E small D, (3) While the child small E A required, these, E D does not change significantly depending on the element doped at about 0.1 eV. Also, E A, so is 0. 7 eV in Ag doping, in order to shorten the wavelength of the emission wavelength is substantially it is most important to increase the E g. Additive elements that form the acceptor level include Cu, Ag, Au, Li, Na, N, As, P, and Sb. Additive elements that form the donor level include C1, A1, I, F, and Br.
バンドギャップエネルギー (Eg ) を大きくする方法としては、 主として 2つ の方法が考えられる。 一つは、 母材半導体を Z n S (Eg =3. 7 e V) よりも バンドギヤップの大きな第二成分の半導体と Z n Sとの混晶とすることである。 第二成分の半導体としては、 Z n Sと同じ I I一 V I族の化合物半導体があり、 Mg S e (Eg =4. O eV) や B e S e (Eg =4. 7 eV) 等のセレン化物 でも構わないが同じ硫化物を選択する方が製法上作製しやすい。 例えば、 Mg S は E g = 5. l eV、 C a S = 4. 4 e V、 S r S = 4. 3 eVであり好まし レヽ。 このほか、 B a Sや B e Sも候補であるが、 Mg Sが最も好ましい。 There are mainly two ways to increase the bandgap energy (E g ). One is to the base material semiconductor Z n S (E g = 3 . 7 e V) mixed crystal of semiconductor and Z n S of the large second component of Bandogiyappu than. As the semiconductor of the second component, there is a compound semiconductor of group II-VI which is the same as ZnS, such as Mg S e (E g = 4. O eV) and B e S e (E g = 4.7 eV). Although the selenide may be used, it is easier to produce the same sulfide by selecting the same sulfide. For example, Mg S has E g = 5. 1 eV, C a S = 4.4 eV, and S r S = 4.3 eV, which is preferred. In addition, Ba S and Be S are also candidates, but Mg S is most preferable.
パンドギャップを大きくするもう一つの方法は、 Z n S粒子の大きさをナノサ ィズまで小さくすることである。 粒径低下により量子サイズ効果が発現してバン ドギャップは大きくなる。 もちろん、 上記した混晶の粒径を低下させてもかまわ ない。 この場合は、 Zn S単体を用いるよりも粒径は大きくても構わないことに なる。 量子サイズ効果が発現する粒径は Egや EAにより変わる。 Another way to increase the bandgap is to reduce the size of the ZnS particles to nanosize. The quantum size effect appears due to the decrease in particle size, and the band gap increases. Of course, the particle diameter of the mixed crystal may be reduced. In this case, the particle size may be larger than using ZnS alone. The particle size at which the quantum size effect appears depends on E g and E A.
Z n S— 20 m o 1 %M g Sでは粒径に関わらず発光波長は 400 n m以下に なる。 このように Mg S量が多いと粒径の制限は無くなる傾向にあるが、 Mg S 量が多くなると発光効率は逆に低下する場合もある。 これは他の第二成分半導体 についても同様である。 その意味では、 粒径は 1 Onm以下が目安となる。 With ZnS—20mo1% MgS, the emission wavelength is below 400nm regardless of the particle size. If the amount of Mg S is large, the particle size tends to be unlimited. As the amount increases, the luminous efficiency may decrease. This is the same for other second component semiconductors. In that sense, the particle size should be less than 1 Onm.
これらの Zn S系蛍光体以外にも、 紫外線発光する材料としては、 Y2 03 : G d、 S i -Y-O-N : G d、 Z n F2 : G dなど、 Gdイオンをドーピング した材料や GaN、 ZnO等も候補である。 In addition to these Zn S based phosphor, as a material for ultraviolet light emitting, Y 2 0 3: G d , S i -YON: G d, Z n F 2: such as G d, Ya material doped with Gd ions GaN, ZnO, etc. are also candidates.
光触媒材料としては、 波長が 400 nm以下の紫外線または可視光線を使う場 合は、 通常用いられるアナターゼ、 ルチル、 あるいはブロッカイ ト型の T i 02 で構わない。 400 nmを超える可視光線では、 丁 1〇2 に1^、 S、 Mn、 F e、 C o、 Zn、 Cuの少なくとも一種の元素をドーピングすることにより、 可 視光感応型光触媒として用いることができる。 最も好ましいのは Sをドーピング したもので、 光触媒活性が最も高い。 The photocatalyst material, if the wavelength use the following ultraviolet or visible light 400 nm is may anatase commonly used, rutile or in Burokkai preparative of T i 0 2,. In the visible light of greater than 400 nm, 1 ^ Ding 1_Rei 2, S, Mn, F e , C o, Zn, by doping at least one element of Cu, be used as the visible light-sensitive photocatalyst it can. Most preferred is S-doped, which has the highest photocatalytic activity.
上記発明品は、 紫外線を直接放射するか、 あるいは光触媒機能を発揮すること ができるコンパクトな光源となるため、 外部光源が届かない狭隘部中の流体や、 濁度の高い液体を始めとする処理対象物中に設置することにより、 効率のよい分 解 ·殺菌装置ができる。 図面の簡単な説明  Since the above-mentioned invention is a compact light source that directly emits ultraviolet light or can exhibit a photocatalytic function, it can be used to process fluids in narrow areas that cannot be reached by an external light source or liquids with high turbidity. By installing it in the target object, an efficient disintegration / sterilization device can be made. Brief Description of Drawings
図 1は、 本発明を適用できる ELフアイバーの概念図を示す。  FIG. 1 shows a conceptual diagram of an EL fiber to which the present invention can be applied.
図 2は、 ZnS系蛍光体の発光機構の説明図である。  FIG. 2 is an explanatory diagram of the light emission mechanism of the ZnS-based phosphor.
図 3は、 光触媒反応試験の説明図である。  FIG. 3 is an explanatory diagram of the photocatalytic reaction test.
図 4は、 市販の紫外線発光する LEDを 60° 間隔で並べた例の説明図であ る。  FIG. 4 is an explanatory diagram of an example in which commercially available LEDs that emit ultraviolet light are arranged at intervals of 60 °.
図 5は、 水銀ランプを 60° 間隔で並べた例の説明図である。 · 図 6は、 実施例 1の E Lフアイバーで作製した織布の平面図 6 Aと断面図 6 B を示す。  FIG. 5 is an explanatory diagram of an example in which mercury lamps are arranged at intervals of 60 °. · Fig. 6 shows a plan view 6A and a cross-sectional view 6B of the woven fabric produced with the EL fiber of Example 1.
図 7は、 実施例 3の説明図である。  FIG. 7 is an explanatory diagram of the third embodiment.
図 8は、 実施例 3との比較例の説明図である。  FIG. 8 is an explanatory diagram of a comparative example with the third embodiment.
図 9は、 同じく実施例 3との他の比較例の説明図である。 発明を実施するための最良の形態 FIG. 9 is an explanatory diagram of another comparative example of the third embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
以下に実施例によって本発明を具体的に説明する。  Hereinafter, the present invention will be described specifically with reference to Examples.
実施例 1 Example 1
直径 0. lmm、 長さ lmの C u線を芯電極として用いた。  A Cu wire having a diameter of 0.1 mm and a length of lm was used as a core electrode.
下記粉末 用意した。  The following powder was prepared.
(絶縁層形成)  (Formation of insulating layer)
B a T i 03 :平均粒径 0. 5 μ m B a T i 0 3: average particle diameter 0. 5 mu m
樹脂:信越化学製 (商品名: シァノレジン) '  Resin: Shin-Etsu Chemical (trade name: Cyanoresin) ''
(蛍光体)  (Phosphor)
Z n S : C u、 C 1粉末 平均粒径 0. 5 μ m (市販)  ZnS: Cu, C1 powder average particle size 0.5 μm (commercially available)
Zn S : Ag、 C I粉末 平均粒径 0. 5 μπι (市販)  Zn S: Ag, C I powder Average particle size 0.5 μπι (commercially available)
Z n S : A g、 C I粉末 平均粒径 3〜 1 5 n m  ZnS: Ag, C1 powder average particle size 3 to 15 nm
市販の Z n S : A g、 C I粉末 (平均粒径 0. 5 μιη) を遊星ボールミル装置 (ポール径は 50 m) を用いて、 A r中、 加速度 1 50 Gで各種時間粉砕して 得た。  Commercially available ZnS: Ag and CI powder (average particle size 0.5 μιη) are obtained by grinding for various times in Ar at an acceleration of 150 G using a planetary ball mill (pole diameter: 50 m). Was.
(光触媒)  (photocatalyst)
アナターゼ型 T i 02 平均粒径 0. 05 111 (市販) Anatase type Ti 0 2 Average particle size 0.05 05 111 (commercially available)
T i 02 : S 平均粒径 0. 05 μ m T i 0 2: S-average particle size 0. 05 mu m
チォゥレア (CH4 N2 S) 粉末と T i (OC3 H7 ) 4 をエタノール中で混 合し、 白色のスラリー状になるまで減圧濃縮した。 その後、 600でで2111:大 気中で焼成して粉末を得た。 Sのドーピング量は、 酸素に対して 2 a t%とし た。 Thiourea (CH 4 N 2 S) powder and Ti (OC 3 H 7 ) 4 were mixed in ethanol, and concentrated under reduced pressure until a white slurry was obtained. Then, it was calcined in the atmosphere at 2111 at 600 to obtain a powder. The doping amount of S was set to 2 at% with respect to oxygen.
(a) 絶縁層の形成  (a) Formation of insulating layer
樹脂をシクロへキサノンに 30 V 0 1 %になるように分散して溶解させた。 こ の溶液に B a T i 03粉末を分散した (30 V o 1 %) ものを Cu線に塗布し、 回転ローラーで厚さ 30 μπιに制御して、 120°Cで 1 h r乾燥させて絶縁層を 形成した。 The resin was dispersed and dissolved in cyclohexanone at 30 V 0 1%. This solution was dispersed B a T i 0 3 powder those (30 V o 1%) was applied to the Cu wire, is controlled to a thickness of 30 Myupaiiota with rotating rollers, by 1 hr dried at 120 ° C An insulating layer was formed.
(b) 発光層の形成  (b) Formation of light emitting layer
樹脂をシクロへキサノンに 30 V o 1 %になるように分散して溶解させたもの を準備した。 この溶液に蛍光体粉末を A rガス中で分散処理した (3 0 v o 1 %) ものを (a ) の絶縁層表面に塗布し、 回転ローラーで厚さ 4 0 μ ηιに制御 して、 1 2 0°Cで 1 0 h r乾燥させて発光層を形成した。 'Resin dispersed and dissolved in cyclohexanone to 30 V o 1% Was prepared. A phosphor powder dispersed in Ar gas (30 vo 1%) was applied to this solution, applied to the surface of the insulating layer (a), and controlled to a thickness of 40 μηι with a rotating roller to obtain 1 μm. The layer was dried at 20 ° C. for 10 hours to form a light emitting layer. '
(c) 外部電極の形成 (c) External electrode formation
スパッタリング装置に設置し、 発光層表面に I TO電極を 1 3 0°Cで 0. 2 μ mコーティングした。 Was placed in a sputtering apparatus, and 0. 2 mu m coated with I TO electrodes 1 3 0 ° C to the light-emitting layer.
(d) 保護層の形成  (d) Formation of protective layer
紫外線透過樹脂であるアタリライトの溶融体を塗布し、 回転ローラーで厚さ 1 0 0 mコーティングした。  A melt of atarilite, which is an ultraviolet-transparent resin, was applied and coated with a rotating roller to a thickness of 100 m.
(e) 光触媒層の形成  (e) Photocatalyst layer formation
光触媒粒子をアルコールに分散させた液を用意し、 この E Lフアイバーを浸漬 後、 引き上げて E Lファイバー表面に T i 02粒子をコーティングした。 The photocatalyst particles to prepare a liquid dispersed in an alcohol, after immersing the EL Fuaiba was coated with T i 0 2 particles EL fiber surface by pulling.
( f ) 評価  (f) Evaluation
( 1 ) 発光効率  (1) Luminous efficiency
光触媒層をコーティング前の E Lファイバーの芯電極と I TO電極間に 1 5 0 V、 4 0 0 H zの交流電界を印加した。 発光の輝度を輝度計または紫外線照度計 で測定し、 投入電力から発光効率を計算した。  An AC electric field of 150 V, 400 Hz was applied between the core electrode of the EL fiber and the ITO electrode before coating the photocatalytic layer. The luminous brightness was measured with a luminance meter or an ultraviolet illuminometer, and the luminous efficiency was calculated from the input power.
(2) 光触媒反応実験  (2) Photocatalytic reaction experiment
T i 02 コーティングした長さ 1 mの E Lフアイパーを 5 0 0本束ねた後、 直 径 5 0 c m、 長さ l mの反応容器内に設置した。 図 3のように容器の片方から濃 度 1 0 0 p pmのトリクロロエチレンを含む水を導入し、 別の出口から排出しな がら循環させた。 水を意図的に着色するために、 予め墨汁液を水の 5%添加して 濁度の高い液体とした。 この時、 全ての芯電極と I TO電極間に 1 5 0 V、 4 0 0 H zの交流電界を印加した。 トリクロロエチレンが完全に分解するまでの時間 を測定した。 After bundling the EL Fuaipa of T i 0 2 coated length 1 m 5 0 0 present, diameter 5 0 cm, was placed in a reaction vessel of length lm. As shown in FIG. 3, water containing 100 ppm of trichloroethylene was introduced from one side of the container, and circulated while discharging from another outlet. In order to color the water intentionally, 5% of water was added in advance to ink liquid to obtain a highly turbid liquid. At this time, an AC electric field of 150 V, 400 Hz was applied between all the core electrodes and the ITO electrode. The time until the trichlorethylene was completely decomposed was measured.
比較として、 市販の紫外線発光する L ED (発光波長 3 6 0 nm、 出力 5 0 m W) を、 6 0。 間隔で並べたもの (図 4) 、 および、 水銀ランプ (発光波長 2 5 4 nm、 出力 l O O mW) を 6 0。 間隔で、 9 0 mmピッチで並べたもの (図 5) を作製し、 上記のアナターゼ型 T i 02粒子 1 0 0 gを反応容器中の液体に 分散させ、 容器の外から紫外線を照射して分解までの時間を測定した。 結果を表 1に示す。 For comparison, a commercially available LED that emits ultraviolet light (emission wavelength: 360 nm, output: 50 mW) was compared with 60. At 60 (Fig. 4) and a mercury lamp (emission wavelength: 254 nm, output: 100 mW). At intervals, 9 0 obtained by arranging in mm pitch was produced (FIG. 5), the anatase type T i 0 2 particles 1 0 0 g in the liquid in the reaction vessel It was dispersed and irradiated with ultraviolet light from outside the container, and the time until decomposition was measured. Table 1 shows the results.
表 1 table 1
第一半導 第二半導体 第二半導体. ト'ナ- ァクセフ°タ 粉砕時間 蛍光体粒径 発光波長 発光効率 分解まで 絶縁層 光触媒 1st semiconductor 2nd semiconductor 2nd semiconductor. Transaxer Pulverization time Phosphor particle diameter Emission wavelength Luminous efficiency Decomposition Insulation layer Photocatalyst
体材料 材料 材料量 (mol%) (hr) (nm) (lm/W) の時間 (hr) Body material Material Material amount (mol%) (hr) (nm) (lm / W) Time (hr)
ZnS なし 0 CI Cu 市販 シァノレシ 'ン +BaTi03 500 533 9.2 Ti02: S 20.1No ZnS 0 CI Cu Commercially available + BaTi0 3 500 533 9.2 Ti0 2 : S 20.1
ZnS なし 0 CI Ag 市販 シァノレシ'ン +BaTi03 500 439 9.1 Ti02: S 9ZnS None 0 CI Ag Commercial Cyanorecin + BaTi0 3 500 439 9.1 Ti0 2 : S 9
ZnS なし 0 CI Ag 2 シァノレシ"ン +BaTi03 20 437 9.7 Ti02: S 8.9No ZnS 0 CI Ag 2 cyano + BaTi0 3 20 437 9.7 Ti0 2 : S 8.9
ZnS なし 0 CI Ag 8 シァノレシ'ン +BaTi03 5 414 9.8 Ti02: S 8.6No ZnS 0 CI Ag 8 Cyanorecin + BaTi0 3 5 414 9.8 Ti0 2 : S 8.6
ZnS なし 0 CI Ag 12 シァノレシ-ン+ BaTi03 3.5 391 10.5 アナターセ' 5ZnS None 0 CI Ag 12 Cyanoresin + BaTi0 3 3.5 391 10.5 Anatase '5
ZnS なし 0 CI Ag . 12 シァノレシ"ン +BaTi03 3 377 10.4 アナタ-セ' 1.1No ZnS 0 CI Ag. 12 Cyanorecin + BaTi0 3 3 377 10.4
ZnS なし 0 CI Ag 12 シアル Vン +BaTi03 3.5 391 10.5 Ti02: S 5.3No ZnS 0 CI Ag 12 Sial V + BaTi0 3 3.5 391 10.5 Ti0 2 : S 5.3
ZnS なし 0 CI Ag 12 シァノレシ'ン +BaTi03 3 377 10.4 Ti02: S 1.2No ZnS 0 CI Ag 12 Cyanorecin + BaTi0 3 3 377 10.4 Ti0 2 : S 1.2
GaN系 LED 360 40 アナターセ' 100< 低圧水銀灯 254 80 アナターセ' 100く GaN LED 360 40 Anatase '100 <Low-pressure mercury lamp 254 80 Anatase' 100
外部光源方式では、 最大 100 h rまで行ったが、 トリクロロエチレンは完全 に分解できなかった。 これは、 液体の透明度が低く、 紫外線が容器内部まで十分 に侵入しないため、 光触媒が十分に作用しないためと考えられる。 With the external light source method, trichlorethylene could not be completely decomposed even though the operation was performed up to 100 hours. This is probably because the photocatalyst does not work sufficiently because the liquid has low transparency and the ultraviolet rays do not penetrate sufficiently into the container.
—方、 本発明品を用いると分解が起こった。 波長が 400 nmを超える可視光 線でも、 光触媒として T i〇2 : Sを用いると分解できる。 また、 紫外線を用 レ、、 さらに紫外線波長が短いほど分解能力は高かった。 これは、 短波長ほど光触 媒を十分に励起できるためと考えられる。 · —On the other hand, decomposition occurred when the product of the present invention was used. Also visible light rays having a wavelength greater than 400 nm, T I_〇 2 as the photocatalyst: it decomposes used S. In addition, ultraviolet light was used, and the shorter the ultraviolet wavelength, the higher the decomposition ability. This is probably because the shorter the wavelength, the more the photocatalyst can be excited. ·
実施例 2 Example 2
直径 0. lmm、 長さ lmの Cu線を芯電極として用いた。  A Cu wire with a diameter of 0.1 mm and a length of lm was used as the core electrode.
下記粉末を用意した。  The following powder was prepared.
(絶縁層形成)  (Formation of insulating layer)
B a (OCH3 ) 2 B a (OCH 3 ) 2
T i (OC2 H5 ) 4 T i (OC 2 H 5 ) 4
(蛍光体)  (Phosphor)
Z n S— Mg S : Ag、 C 1粉末 平均粒径 3〜 15 n m  ZnS—MgS: Ag, C1 powder average particle size 3-15 nm
市販の Z n S : A g、 C I粉末 (平均粒径 0. 5 μ m) に M g S粉末 (平均粒 径 0. 5 μπι) を所定量混合し、 遊星ボールミル装置 (ボール径は 40 μπι) を 用いて、 A r中、 加速度 144 Gで各種時間粉碎して得た。  A predetermined amount of MgS powder (average particle diameter 0.5 μπι) is mixed with commercially available ZnS: Ag, CI powder (average particle diameter 0.5 μm), and a planetary ball mill (ball diameter 40 μπι). ) Was obtained by pulverizing for various times in Ar at an acceleration of 144 G.
(a) 絶縁層の形成  (a) Formation of insulating layer
B a (OCH3 ) 2 と T i (OC2 H5 ) 4 のアルコール溶液をそれぞれ蒸発 させて CVD反応器に導入した。 一方、 別系統から酸素を導入し、 温度 9 0 0°C、 圧力 0. 04MP aで 2 h r反応させて、 C u芯電極表面に B a T i O 3 を厚さ 20; umコーティングした。 B a (OCH3) 2 and T i (OC 2 H 5) 4 alcohol solution was evaporated respectively were introduced into the CVD reactor. On the other hand, oxygen was introduced from another system and reacted at a temperature of 900 ° C. and a pressure of 0.04 MPa for 2 hours, thereby coating the surface of the Cu core electrode with BaTiO 3 to a thickness of 20 μm.
(b) 発光層の形成  (b) Formation of light emitting layer
A rガス中で、 B a (00113 ) 2 と丁 1 (O C 2 H 5 ) 4 の等モルに混合し たアルコール溶液 (濃度 2mo l/ l ) 中に蛍光体粉末を分散させた溶液中 に絶縁層形成後の試料を浸潰して引き上げ、 大気中 900°Cで 30分焼成した。 これを 30回繰り返し、 蛍光体粒子が B a T i〇3 中に分散した発光層を厚さ 2 0 μ m形成した。 (c) 外部電極の形成 In Ar gas, a solution in which phosphor powder is dispersed in an alcohol solution (concentration: 2 mol / l) mixed in equimolar proportions of Ba (0011 3 ) 2 and 1 (OC 2 H 5 ) 4 The sample after the formation of the insulating layer was immersed and pulled up, and baked in air at 900 ° C for 30 minutes. This was repeated 30 times, phosphor particles formed B a T I_〇 thickness of 2 0 the luminescent layer dispersed in 3 mu m. (c) External electrode formation
スパッタリング装置に設置し、 発光層表面に I TO電極を 5 3 0°Cで 0. 2 μ mコーティングした。  It was set in a sputtering apparatus, and an ITO electrode was coated on the surface of the light emitting layer at 0.25 μm at 530 ° C.
(d) 光触媒を兼ねる保護層の形成  (d) Formation of protective layer also serving as photocatalyst
スパッタリング法により、 600°Cでアナターゼ型 T i 02又は Sを酸素に対 して 2 a t%ドーピングした T i 02 : Sをそれぞれを厚さ 5 ni形成して保護 層とした。 By sputtering, anatase in 600 ° C T i 0 2 or against the oxygen S 2 at% doped T i 0 2: were respectively the thickness 5 ni formed by a protective layer of S.
(f ) 評価  (f) Evaluation
( 1 ) 発光効率  (1) Luminous efficiency
光触媒層をコーティング前の E Lファイバーの芯電極と I TO電極間に 20 0 V、 3 0 0H zの交流電界を印加した。 発光の輝度を輝度計または紫外線照度計 で測定し、 投入電力から発光効率を計算した。  An AC electric field of 200 V, 300 Hz was applied between the core electrode and the ITO electrode of the EL fiber before coating the photocatalytic layer. The luminous brightness was measured with a luminance meter or an ultraviolet illuminometer, and the luminous efficiency was calculated from the input power.
(2) 光触媒反応実験  (2) Photocatalytic reaction experiment
長さ 1 mの E Lファイバーを 5 0 0本束ねた後、 直径 5 0 c m, 長さ 1 mの反 応容器内に設置した。 図 2のように容器の片方から濃度 1 8 0 p pmのァセトァ ルデヒドを含む水を導入し、 別の出口から排出しながら循環させた。 水を意図的 に着色するために、 予め墨汁液を水の 1 0 %添加して濁度の高い液体とした。 こ の時、 全ての芯電極と I TO電極間に 2 0 0 V、 3 0 O H zの交流電界を印加し た。 ァセトアルデヒドが完全に分解するまでの時間を測定した。  After bundling 500 1 m long EL fibers, they were placed in a reaction vessel 50 cm in diameter and 1 m in length. As shown in FIG. 2, water containing acetoaldehyde at a concentration of 180 ppm was introduced from one side of the container, and circulated while discharging from another outlet. In order to color the water intentionally, 10% of water was added in advance to the ink to obtain a highly turbid liquid. At this time, an AC electric field of 200 V, 30 OHz was applied between all the core electrodes and the ITO electrode. The time until the acetoaldehyde was completely decomposed was measured.
結果を表 2に示す。 Table 2 shows the results.
表 2 Table 2
第一半導 第二半導体 第二半導体 h*t- ァクセプタ 粉砕時間 蛍光体粒径 発光波長 発光効率 分解まで 層 光触媒 First semiconductor Second semiconductor Second semiconductor h * t-Acceptor Pulverization time Phosphor particle emission wavelength Emission efficiency Decomposition Layer Photocatalyst
体材料 材料 材科量 (mol%) 絶縁  Body material Material Material amount (mol%) Insulation
(hr) (nm) (nm) (Im/W) の時間 (hr) (hr) (nm) (nm) (Im / W) Time (hr)
ZnS MgS 20 Cl Ag 4 BaTi03 8.7 399 10.9 アナターセ' 13.9ZnS MgS 20 Cl Ag 4 BaTi0 3 8.7 399 10.9 Anatase '13.9
ZnS MgS 40 CI Ag 4 BaTi03 8.7 373 11.6 アナターセ' 2.2ZnS MgS 40 CI Ag 4 BaTi0 3 8.7 373 11.6 Anatase '2.2
ZnS MgS 50 CI Ag 4 BaTi03 8.7 360 12 アナターセ' 0.6ZnS MgS 50 CI Ag 4 BaTi0 3 8.7 360 12 Anatase '0.6
ZnS MgS 20 CI Ag 4 BaTi03 8.7 399 10.9 TiOz: S 6.8ZnS MgS 20 CI Ag 4 BaTi0 3 8.7 399 10.9 TiO z : S 6.8
ZnS MgS 40 CI Ag 4 BaTi03 8J 373 11.6 Ti02: S 1ZnS MgS 40 CI Ag 4 BaTi0 3 8J 373 11.6 Ti0 2 : S 1
ZnS MgS 50 CI Ag 4 BaTi03 8.7 360 12 Ti02: S 0.88 ZnS MgS 50 CI Ag 4 BaTi0 3 8.7 360 12 Ti0 2 : S 0.88
蛍光体を Z n S— M g S混晶系とすることにより、 発光波長はより短くなり、 分解速度も向上した。 絶縁層や発光層中の誘電体を高誘電率の B a T i 03 にす ることにより、 高い発光効率が得られた。 By making the phosphor a ZnS-MgS mixed crystal system, the emission wavelength became shorter and the decomposition rate improved. By be Rukoto the dielectric insulating layer or a light-emitting layer to B a T i 0 3 having a high dielectric constant, high luminous efficiency is obtained.
保護層として T i 02 を用いても光触媒機能が発揮できた。 Also photocatalytic function with T i 0 2 as a protective layer could be exerted.
実施例 3 Example 3
実施例 1の ELファイバーを、 3 mmピッチで二次元朱子織りにして、 500 mmX 50 Ommサイズの織布を作製した。 図 6 Aは平面図、 図 6 Bは断面図を 示す。  The EL fiber of Example 1 was two-dimensional satin-woven at a pitch of 3 mm to produce a woven fabric having a size of 500 mm × 50 Omm. FIG. 6A is a plan view, and FIG. 6B is a cross-sectional view.
光触媒繊維からなる織布 (宇部興産製) を 500mmX 50 Ommに裁断した ものを用意した。  A woven fabric made of photocatalytic fiber (made by Ube Industries) was cut into 500 mm x 50 Omm.
ELファイバー織布と光触媒織布を交互に重ねて各 50層積層して、 光触媒デ バイスを作製した。 .  EL fiber woven fabrics and photocatalyst woven fabrics were alternately stacked, and each 50 layers were stacked to produce a photocatalytic device. .
これを、 図 7の容器 (50 OmmX 50 Ommの断面積を持つ厚さ 7 Ommの 反応容器) 内に設置した。 ダイォキシンの一種である 2, 3' , 4, 4' , 5 - P c _CBを水に溶解させて、 濃度が 1 00 p g/1の溶液を 30 1調製した。 この時、 水を意図的に着色するために、 予め墨汁液を水の 10%添カ卩して濃度の 高い液体としたものを調製した。  This was placed in the vessel shown in Fig. 7 (a 7 Omm thick reaction vessel with a cross-sectional area of 50 Omm x 50 Omm). 2,3 ', 4,4', 5-Pc_CB, a type of dioxin, was dissolved in water to prepare a solution having a concentration of 100 pg / 1. At this time, in order to color the water intentionally, a liquid having a high concentration was prepared by adding the ink solution to kneaded with 10% water in advance.
これを流速 2. 5 1 /m i nで循環させながら、 電極間に 200 V、 500H zの交流電界を印加した。 ダイォキシンが完全に分解するまでの時間を最大で 1 0 O h rまで測定した。  While circulating this at a flow rate of 2.51 / min, an AC electric field of 200 V, 500 Hz was applied between the electrodes. The time until the dioxin was completely degraded was measured up to 10 Ohr.
比較として, 光触媒織布のみを 50層重ねたものを同じ容器内に設置し、 容器 の外に設置した市販の紫外線発光する LED (発光波長 360 η ηι、 出力 50m W) を 35mmピッチで並べたもの (図 9) 、 および、 水銀ランプ (発光波長 2 54 nm、 出力 1 00 mW) を 35 mmピッチで並べたもの (図 8) を作製し、 容器の外から照射して分解までの時間を測定した。  For comparison, 50 layers of photocatalyst woven fabric alone were placed in the same container, and commercially available LEDs (emission wavelength 360 ηηι, output 50 mW) installed outside the container were arranged at a pitch of 35 mm. (Fig. 9) and a mercury lamp (emission wavelength: 254 nm, output: 100 mW) arranged at a pitch of 35 mm (Fig. 8). It was measured.
結果を表 3に示す。 Table 3 shows the results.
第一半導 第二半導体 第二半導体 ドナ- ァクセプタ 粉碎時間 蛍光体粒径 発光波長 発光効率 墨汁液 分解まで 絶縁層 光触媒 First semiconductor Second semiconductor Second semiconductor Donor acceptor Crushing time Phosphor particle size Emission wavelength Luminous efficiency Ink solution Decomposition Insulation layer Photocatalyst
体材料 材料 材料量 (mol%) (hr) (nm (nm) (Im/W) 添加 の時間 (hr)Body material Material Material amount (mol%) (hr) (nm (nm) (Im / W) Addition time (hr)
ZnS なし 0 CI Ag 18 シアンレシ'ン十83丁 3 2.5 355 10.4 アナターセ * あり 34ZnS None 0 CI Ag 18 Cyan resin 10 83 3 2.5 355 10.4 Anatase * Available 34
ZnS なし 0 CI Ag 18 シァノレシ'ン +BaTiO 2.5 355 10.4 アナタ -セ' なし 8 ZnS None 0 CI Ag 18 Cyanorecin + BaTiO 2.5 355 10.4
GaN系 LED 360 40 アナターセ' あり 100< 低圧水銀灯 254 80 アナターセ' あり 100< GaN LED 360 40 Anatase 'Yes 100 <Low pressure mercury lamp 254 80 Anatase' Yes 100 <
GaN系 LED 360 40 アナターセ' なし 18 低圧水銀灯 254 80 アナターセ' なし 11 GaN-based LED 360 40 Anatase 'None 18 Low-pressure mercury lamp 254 80 Anatase' None 11
本発明品は,外部光源方式よりも分解時間が短かった。 特に高濁度の液を処理し た場合にその差が大きかった。 これは,外部光源方式では、 放射された光が汚濁源 によって吸収されてしまうためと考えられる。 濁度が低い場合も本発明品が分解 までの時間が短かった。 これは、 光触媒織布を積層した場合、 外部電源方式で は、 内部の織布まで均一に光が到達しないためと考えられる。 一方、 本発明品は, 光触媒織布の近傍に光源が存在するために、 積層数にかかわらず全ての光触媒織 布が均一に働くためと考えられる。 産業上の利用可能性 The decomposition time of this product was shorter than that of the external light source method. In particular, the difference was large when high turbidity liquids were treated. This is considered to be because the emitted light is absorbed by the pollution source in the external light source method. Even when the turbidity was low, the time required for the product of the present invention to decompose was short. This is probably because when the photocatalyst woven fabric is laminated, light does not uniformly reach the inner woven fabric using the external power supply method. On the other hand, in the product of the present invention, it is considered that all the photocatalyst fabrics work uniformly regardless of the number of layers because the light source is present near the photocatalyst fabric. Industrial applicability
本発明品は、 交流電圧印加等により紫外線を発光させることができるファイバ 一である。 本発明品を汚濁流体中に設置して作動させることにより、 紫外線ラン プゃ紫外線 L E Dなどの外部紫外線光源を用レ、なくても光触媒反応を効率よく起 こすことができる。 特に、 外部光源では処理できない紫外線の吸収が激しい汚濁 流体の場合でも効率よく光触媒反応を起こすことができるようになる。  The product of the present invention is a fiber that can emit ultraviolet light when an AC voltage is applied. By installing and operating the product of the present invention in a polluted fluid, a photocatalytic reaction can be efficiently caused without using an external ultraviolet light source such as an ultraviolet lamp or an ultraviolet LED. In particular, a photocatalytic reaction can be efficiently generated even in the case of a polluted fluid that absorbs ultraviolet rays that cannot be processed by an external light source.
本発明品を用いた光触媒反応容器は、 有機物の分解 ·細菌等の殺菌が可能なた め、 大気中の汚染物質となる N〇 x、 S O x、 C Oガス、 ディーゼルパティキュ レート、 花粉、 埃、 ダニ等の分解除去、 下水中に含まれる有機化合物の分解除 去、 一般の細菌、 ウィルス等の殺菌光源、 化学プラントで発生する有害ガスの分 解、 臭い成分の分解、 超純水製造装置における殺菌光源等、 様々な分野に応用で きる。  Since the photocatalytic reaction vessel using the product of the present invention can decompose organic substances and sterilize bacteria, N 、 x, SOx, CO gas, diesel particulates, pollen, dust Decomposition and removal of ticks, removal of organic compounds contained in sewage, germicidal light source for common bacteria and viruses, decomposition of harmful gases generated in chemical plants, decomposition of odorous components, ultrapure water production equipment It can be applied to various fields such as a germicidal light source.
また、 セラミックフィルタ、 光触媒シート、 光触媒織布などと組み合わせるこ ともできる。 例えば、 予め光触媒を担持させたセラミックスハニカ^フィルタの セル内に本発明品を設置することで、 セラミックフィルタの分離機能と光触媒機 能の両方の機能をもたせることもできる。 本発明品を光触媒織布中に編み込むよ うに設置するなどの方法もある。 これにより、 自動車排ガス処理用ハ-カム材、 空気清浄機用フィルター、 下水濾過フィルター、 各種浄水器、 温泉の殺菌、 防虫 剤にも応用可能である。  Further, it can be combined with a ceramic filter, a photocatalyst sheet, a photocatalyst woven fabric, or the like. For example, by installing the product of the present invention in a cell of a ceramic honeycomb filter pre-loaded with a photocatalyst, both the function of separating the ceramic filter and the function of the photocatalyst can be provided. There is also a method of installing the product of the present invention so as to be knitted in a photocatalyst woven fabric. As a result, it can be applied to automobile exhaust gas treatment honeycomb materials, air purifier filters, sewage filtration filters, various water purifiers, hot water sterilization, and insect repellents.

Claims

請求の範囲 The scope of the claims
1. 波長が 400 nm以下の紫外線または可視光線発光機能を持つ E Lファイバ 一であって、 フアイパーの断面構造が、 半径方向の中心に位置する内部電極と、 その周囲に形成された内部絶縁層、 発光層、 外部電極、 及ぴ最表面に形成された 保護層からなり、 電極間への交流電界印加により発光することを特徴とする EL ファイバー。 .1. An EL fiber having a function of emitting ultraviolet or visible light with a wavelength of 400 nm or less, wherein the cross-sectional structure of the firer has an inner electrode located at the center in the radial direction, an inner insulating layer formed around the inner electrode, An EL fiber comprising a light-emitting layer, an external electrode, and a protective layer formed on the outermost surface, and emits light when an AC electric field is applied between the electrodes. .
2. 発光層と外部電極間に外部絶縁層が形成された請求項 1記載の E Lファイバ2. The EL fiber according to claim 1, wherein an external insulating layer is formed between the light emitting layer and the external electrode.
3. 波長が 550 nm以下の紫外線または可視光線発光機能を持つ ELファイバ 一であって、 フアイパーの断面構造が、 半径方向の中心に位置する内部電極と、 その周囲に形成された内部絶縁層、 発光層、 外部電極、 保護層、 及ぴ最表面に形 成された光触媒機能を持つ材料の粒子層または薄膜からなり、 電極間への交流電 界印加により発光することを特徴とする ELファイバー。 3. An EL fiber having a function of emitting ultraviolet or visible light with a wavelength of 550 nm or less, wherein the cross-sectional structure of the firer includes an inner electrode located at the center in the radial direction, an inner insulating layer formed around the inner electrode, An EL fiber comprising a light-emitting layer, an external electrode, a protective layer, and a particle layer or a thin film of a material having a photocatalytic function formed on the outermost surface and emitting light when an AC electric field is applied between the electrodes.
4. 発光層と外部電極間に外部絶縁層が形成された請求項 3記載の ELファイバ  4. The EL fiber according to claim 3, wherein an external insulating layer is formed between the light emitting layer and the external electrode.
5. 保護層自体が光触媒機能を持つ材料である請求項 3又は 4記載の E Lフアイ ノ —。 5. The EL fin according to claim 3, wherein the protective layer itself is a material having a photocatalytic function.
6. 光触媒機能を持つ材料が、 T i 02及び Z又は T i 02 に N、 S、 Mn、 F e、 C o、 Zn、 C uの少なくとも一種の元素がドーピングされたものである請 求項 3〜 5のいずれか一項に記載の E Lフアイバー。 6. materials having photocatalytic function, in which T i 0 2 and Z or T i 0 2 to N, S, Mn, F e , C o, Zn, at least one element of C u doped請The EL fiber according to any one of claims 3 to 5.
7. 発光層が、 可視光線または紫外線発光機能を持つ蛍光体粒子を誘電体樹脂ま たは誘電体セラミックスの少なくとも一種を含むマトリックス中に分散した構造 を持つ請求項 1〜 4のいずれか一項に記載の E Lフアイパー。  7. The light-emitting layer according to any one of claims 1 to 4, wherein the light-emitting layer has a structure in which phosphor particles having a function of emitting visible light or ultraviolet light are dispersed in a matrix containing at least one of a dielectric resin and a dielectric ceramic. EL firer as described in.
8. 発光層を構成する蛍光体が、 Zn Sを第一の主成分とし、 第二成分として I I一 V I族化合物半導体を一部含む、 または含まない半導体中に、 ァクセプタ準 位を形成する第一 加元素と、 ドナー準位を形成する第二添加元素を含むことを 特徴とする請求項 1〜 4のレ、ずれか一項に記載の E Lファイバー。  8. The phosphor forming the luminescent layer is formed by forming a sceptor level in a semiconductor containing ZnS as a first main component and partially or not containing a Group II-VI compound semiconductor as a second component. The EL fiber according to any one of claims 1 to 4, further comprising an additional element and a second additional element forming a donor level.
9. 第一添加元素が Cu、 Ag、 Au、 L i、 Na、 N、 A s、 P、 S bの少な くとも一種であり、 第二添加元素が C l、 Al、 I、 F、 B rの少なくとも一種 である請求項 8記載の ELフアイパー。 ' 9. If the first additive element is Cu, Ag, Au, Li, Na, N, As, P, Sb 9. The EL firer according to claim 8, wherein the second additive element is at least one of Cl, Al, I, F, and Br. '
10. 第一添加元素が A gである請求項 8記載の ELファイバー。  10. The EL fiber according to claim 8, wherein the first additive element is Ag.
1 1. 第二成分の半導体が Mg S、 C a S、 S r S、 B e S、 B a Sの少なくと も一種を含む請求項 8記載の E Lファイバー。  1 1. The EL fiber according to claim 8, wherein the semiconductor of the second component contains at least one of MgS, CaS, SrS, BeS, and BaS.
12. 発光層を構成する蛍光体の平均粒径が 10 nm以下である請求項 1〜4の レ、ずれか一項に記載の E Lフアイバー。  12. The EL fiber according to any one of claims 1 to 4, wherein the average particle diameter of the phosphor constituting the light emitting layer is 10 nm or less.
13. 請求項 1〜4のいずれか一項に記載の ELファイバーを用いた光触媒反応  13. Photocatalytic reaction using the EL fiber according to any one of claims 1 to 4.
14. 請求項 1〜4のいずれか一項に記載の ELファイバーと、 光触媒繊維を交 互に組合せた構造を有する光触媒反応容器。 14. A photocatalytic reaction vessel having a structure in which the EL fiber according to any one of claims 1 to 4 and photocatalytic fibers are alternately combined.
PCT/JP2004/017677 2003-11-27 2004-11-22 El fiber and photocatalyst reaction vessel WO2005053363A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/580,204 US20070126341A1 (en) 2004-11-22 2004-11-22 El fiber and photocatalyst reaction vessel
DE112004002320T DE112004002320T5 (en) 2003-11-27 2004-11-22 EL fiber and photocatalytic reaction vessel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003396743A JP2005158551A (en) 2003-11-27 2003-11-27 El fiber and photocatalysis reaction container
JP2003-396743 2003-11-27

Publications (1)

Publication Number Publication Date
WO2005053363A1 true WO2005053363A1 (en) 2005-06-09

Family

ID=34631520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/017677 WO2005053363A1 (en) 2003-11-27 2004-11-22 El fiber and photocatalyst reaction vessel

Country Status (4)

Country Link
JP (1) JP2005158551A (en)
CN (1) CN1887032A (en)
DE (1) DE112004002320T5 (en)
WO (1) WO2005053363A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102424465A (en) * 2011-10-24 2012-04-25 哈尔滨工程大学 Method for synergistically degrading phenol wastewater through electrocatalytic oxidation and electric-Fenton technology
WO2021254795A1 (en) * 2020-06-19 2021-12-23 Admajora Sa Filter medium for air and water purification and disinfection

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007144328A (en) * 2005-11-29 2007-06-14 Shinshu Univ Photocatalyst fiber and liquid cleaning apparatus using the same
JP2008010408A (en) * 2006-06-02 2008-01-17 Semiconductor Energy Lab Co Ltd Light emitting element and light emitting device
CN104081553B (en) * 2012-01-30 2017-07-04 默克专利有限公司 Nanocrystal on fiber
IT201700017986A1 (en) * 2017-02-17 2018-08-17 Roberto Benedini SYSTEM FOR DISINFECTION AND SANITATION OF ENVIRONMENTS.
WO2018149980A1 (en) * 2017-02-17 2018-08-23 Roberto Benedini System for disinfecting and sanitizing environments
JP6963720B2 (en) 2018-08-30 2021-11-10 日亜化学工業株式会社 Light emitting device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07235376A (en) * 1994-02-22 1995-09-05 Yazaki Corp Wire form electroluminescent element and its manufacture
US5670839A (en) * 1994-06-14 1997-09-23 Sharp Kabushiki Kaisha Thin-film luminescence device utilizing Zn.sub.(1-x) Mgx S host material compound activated by gadolinium or a gadolinium compound
JPH10141044A (en) * 1996-11-01 1998-05-26 Hoya Corp Photocatalyst filter device and filtering method
JPH10262789A (en) * 1997-03-26 1998-10-06 Toto Ltd Mirror and transparent member with layer containing photocatalyst on the surface
JP2001259434A (en) * 2000-03-23 2001-09-25 Konica Corp Inorganic semiconductor having organic el device or led, and deodorizing, antibacterial, antimold and contamination preventing device
US20020006865A1 (en) * 2000-07-17 2002-01-17 Kabushiki Kaisha Toyota Chuo Kenkyusho Photocatalytic substance
JP2002085533A (en) * 2000-09-13 2002-03-26 Mitsubishi Paper Mills Ltd Composite filter
JP2002231151A (en) * 2001-01-30 2002-08-16 Hitachi Ltd Image display device
JP2002265937A (en) * 2000-12-18 2002-09-18 Osram Sylvania Inc Recovery of electroluminescence phosphorescent substance from capsule
JP2002542373A (en) * 1999-04-20 2002-12-10 ハネウェル・スペシャルティ・ケミカルズ・ゼールツェ・ゲーエムベーハー Ultrafine powder inorganic phosphor
JP2003249373A (en) * 2002-02-26 2003-09-05 Fuji Photo Film Co Ltd Electroluminescence element and its manufacturing method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07235376A (en) * 1994-02-22 1995-09-05 Yazaki Corp Wire form electroluminescent element and its manufacture
US5670839A (en) * 1994-06-14 1997-09-23 Sharp Kabushiki Kaisha Thin-film luminescence device utilizing Zn.sub.(1-x) Mgx S host material compound activated by gadolinium or a gadolinium compound
JPH10141044A (en) * 1996-11-01 1998-05-26 Hoya Corp Photocatalyst filter device and filtering method
JPH10262789A (en) * 1997-03-26 1998-10-06 Toto Ltd Mirror and transparent member with layer containing photocatalyst on the surface
JP2002542373A (en) * 1999-04-20 2002-12-10 ハネウェル・スペシャルティ・ケミカルズ・ゼールツェ・ゲーエムベーハー Ultrafine powder inorganic phosphor
JP2001259434A (en) * 2000-03-23 2001-09-25 Konica Corp Inorganic semiconductor having organic el device or led, and deodorizing, antibacterial, antimold and contamination preventing device
US20020006865A1 (en) * 2000-07-17 2002-01-17 Kabushiki Kaisha Toyota Chuo Kenkyusho Photocatalytic substance
JP2002085533A (en) * 2000-09-13 2002-03-26 Mitsubishi Paper Mills Ltd Composite filter
JP2002265937A (en) * 2000-12-18 2002-09-18 Osram Sylvania Inc Recovery of electroluminescence phosphorescent substance from capsule
JP2002231151A (en) * 2001-01-30 2002-08-16 Hitachi Ltd Image display device
JP2003249373A (en) * 2002-02-26 2003-09-05 Fuji Photo Film Co Ltd Electroluminescence element and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102424465A (en) * 2011-10-24 2012-04-25 哈尔滨工程大学 Method for synergistically degrading phenol wastewater through electrocatalytic oxidation and electric-Fenton technology
WO2021254795A1 (en) * 2020-06-19 2021-12-23 Admajora Sa Filter medium for air and water purification and disinfection

Also Published As

Publication number Publication date
JP2005158551A (en) 2005-06-16
DE112004002320T5 (en) 2006-09-28
CN1887032A (en) 2006-12-27

Similar Documents

Publication Publication Date Title
US7767158B2 (en) Surface light-emitting device, filtering device using same, and optically assisted ceramic filter
Samadi et al. Recent progress on doped ZnO nanostructures for visible-light photocatalysis
US20140076404A1 (en) Ir-activated photoelectric systems
Ho et al. Application of recycled lanthanum-doped TiO2 immobilized on commercial air filter for visible-light photocatalytic degradation of acetone and NO
JP3887499B2 (en) Method for forming photocatalyst
US20090252654A1 (en) Air cleaner
KR102129422B1 (en) Beads for air purification, method for preparing the same, and filter using the same
EP1843401A1 (en) Surface emitting device
EP2726572A1 (en) Luminescent material particles comprising a coating and lighting unit comprising such luminescent material
KR20170026966A (en) Photocatalyst beads, Filter having the photocatalyst beads, and method of fabricating the same
JP2007216223A (en) Photocatalytic material having semiconductor properties, and its manufacturing method and use
WO2005053363A1 (en) El fiber and photocatalyst reaction vessel
WO2005087371A1 (en) Photocatalyst based on composite oxide responsive to visible light and method for decomposition and removal of harmful chemical material using the same
Abu-Dief et al. Development of nanomaterials as photo catalysts for environmental applications
US20070126341A1 (en) El fiber and photocatalyst reaction vessel
Sharma et al. Carbon quantum dots embedded trimetallic oxide: Characterization and photocatalytic degradation of Ofloxacin
JP2005120117A (en) Phosphor, and porous body and filter obtained using the same
JP2003200043A (en) Apparatus for decomposing organic substance by using organic or inorganic el element
JP2008136914A (en) Apparatus for producing ultrapure water
JP2007063301A (en) Phosphor for el
JP2003053195A (en) Photocatalyst device consisting of sheet light emitting element as light source
US9821296B2 (en) Photocatalytic compositions and methods for their preparation and use
CN109529954B (en) Energy-storage photoelectrocatalysis type air purification composite film and preparation method thereof
CN209680108U (en) One kind having accumulation of energy photoelectrocatalysis type air cleaning laminated film
JP2005161267A (en) Porous luminescent material, filter and cleaning apparatus

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480035279.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007126341

Country of ref document: US

Ref document number: 10580204

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120040023203

Country of ref document: DE

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10580204

Country of ref document: US