JP2007144328A - Photocatalyst fiber and liquid cleaning apparatus using the same - Google Patents

Photocatalyst fiber and liquid cleaning apparatus using the same Download PDF

Info

Publication number
JP2007144328A
JP2007144328A JP2005343652A JP2005343652A JP2007144328A JP 2007144328 A JP2007144328 A JP 2007144328A JP 2005343652 A JP2005343652 A JP 2005343652A JP 2005343652 A JP2005343652 A JP 2005343652A JP 2007144328 A JP2007144328 A JP 2007144328A
Authority
JP
Japan
Prior art keywords
photocatalyst
titanium oxide
photocatalytic
layer
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005343652A
Other languages
Japanese (ja)
Inventor
Hisanao Usami
久尚 宇佐美
Eiji Suzuki
栄二 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinshu University NUC
Original Assignee
Shinshu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinshu University NUC filed Critical Shinshu University NUC
Priority to JP2005343652A priority Critical patent/JP2007144328A/en
Publication of JP2007144328A publication Critical patent/JP2007144328A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Light Guides In General And Applications Therefor (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photocatalyst fiber capable of fully performing its photocatalytic function in a place where light cannot reach under a normal condition and an apparatus capable of efficiently cleaning a liquid utilizing the photocatalyst fiber. <P>SOLUTION: The photocatalyst fiber 1 is constituted of a core 10, a first clad 11 comprised of a transparent electroconductive layer disposed on the circumference of the core 10, and a second clad 12 comprised of a photocatalyst layer disposed on the circumference of the first clad 11. The photocatalyst fiber is capable of fully performing its photocatalytic function in a place where light cannot reach under a normal condition. The photocatalyst fiber has an excellent catalyst activity in view of its electrochemical characteristics as well as its optical characteristics. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、光触媒機能を備えた漏光型光ファイバー、およびその光触媒ファイバーを用いて、暗部にある液体中の不純物を効率的に浄化できる液体浄化装置に関するものである。 The present invention relates to a light leakage type optical fiber having a photocatalytic function and a liquid purifying apparatus capable of efficiently purifying impurities in a liquid in a dark portion using the photocatalytic fiber.

光触媒は、光照射によって触媒的に化学反応を促進する物質である。光触媒反応は触媒がバンドギャップ以上のエネルギーを持つ光を吸収することによって価電子帯の電子が伝導帯へ励起し、価電子帯側で酸化反応、伝導帯側で還元反応が起こる。特に価電子帯が深い準位にある物質は高い酸化力を持ち、光触媒として優れた効果を示す。   A photocatalyst is a substance that promotes a chemical reaction catalytically by light irradiation. In the photocatalytic reaction, when the catalyst absorbs light having energy greater than the band gap, electrons in the valence band are excited to the conduction band, and an oxidation reaction occurs on the valence band side and a reduction reaction occurs on the conduction band side. In particular, a substance having a deep valence band has a high oxidizing power and exhibits an excellent effect as a photocatalyst.

光触媒のなかでも酸化チタンは、本多・藤嶋効果として発表されて以来、光エネルギーを化学反応に直接利用する方法として多方面に渡り研究され、防汚、殺菌、脱臭作用を持つ種々の製品が実用化されている。   Among the photocatalysts, since titanium oxide was announced as the Honda-Fujishima effect, it has been studied in many ways as a method of directly using light energy for chemical reactions, and various products with antifouling, sterilizing, and deodorizing effects have been developed. It has been put into practical use.

光触媒を効率的に働かせるために、光ファイバーの外周に酸化チタンを設けた構成が特許文献1に開示されている。さらに詳しくは、光ファイバーのクラッドをコアよりも高屈折率にし、それよりもさらに高屈折率の酸化チタンを外周に設けている。いわゆる漏光ファイバーであり、光ファイバーに入射した光を外周の酸化チタンへ向けて漏光させ、酸化チタンの光触媒機能を向上させている。   In order to make a photocatalyst work efficiently, a configuration in which titanium oxide is provided on the outer periphery of an optical fiber is disclosed in Patent Document 1. More specifically, the optical fiber cladding has a higher refractive index than the core, and a titanium oxide having a higher refractive index than that of the core is provided on the outer periphery. This is a so-called leaking optical fiber, in which light incident on the optical fiber is leaked toward the outer titanium oxide, thereby improving the photocatalytic function of the titanium oxide.

また、このような光触媒を備えた光ファイバーを利用した光触媒反応装置が特許文献2に記載されている。   Further, Patent Document 2 describes a photocatalytic reaction apparatus using an optical fiber provided with such a photocatalyst.

しかし、これらの粉体および薄膜コーティング型光触媒は逆電子移動によるホールと電子の再結合が起こりやすく、光エネルギーの利用効率の観点から十分な触媒性能が発揮されているとはいえない。   However, these powders and thin film coating type photocatalysts tend to cause recombination of holes and electrons due to reverse electron transfer, and it cannot be said that sufficient catalytic performance is exhibited from the viewpoint of light energy utilization efficiency.

特開2004−202459号公報Japanese Patent Laid-Open No. 2004-20259 特開2001−47041号公報JP 2001-47041 A

特許文献1、および特許文献2に記載された漏光ファイバーは、光触媒層である酸化チタンにより多くの光を取り込むという光学的な面からみると合理的なものであるが、電気化学的な面からみると、光触媒の特性を十分生かしきれているとはいえない。   The leaky optical fibers described in Patent Document 1 and Patent Document 2 are reasonable from the optical aspect of taking in a large amount of light with titanium oxide that is a photocatalytic layer, but from an electrochemical aspect. Looking at it, it cannot be said that the characteristics of the photocatalyst are fully utilized.

本発明は、常態では光が届かないような場所であっても、光触媒機能を十分に発揮できる光触媒ファイバーを提供するもので、光学的な面からだけではなく、電気化学的な面からみても、触媒活性が優れたものとなる。さらにこの光触媒ファイバーを利用し、効率の良い液体浄化ができる装置を提供することを目的とする。   The present invention provides a photocatalyst fiber that can sufficiently exert a photocatalytic function even in a place where light does not reach under normal conditions, not only from an optical aspect but also from an electrochemical aspect. The catalytic activity is excellent. It is another object of the present invention to provide an apparatus capable of performing efficient liquid purification using this photocatalytic fiber.

前記の目的を達成するためになされた、特許請求の範囲の請求項1に係る発明は、コアの外周に、透明導電体層からなる第1クラッド、その外周に光触媒層からなる第2クラッドを有することを特徴とする光触媒ファイバーである。   The invention according to claim 1, which has been made to achieve the above object, includes a first clad made of a transparent conductor layer on the outer periphery of the core, and a second clad made of a photocatalyst layer on the outer periphery. It is a photocatalyst fiber characterized by having.

この光触媒ファイバーを、例えば有機物質中におき、ファイバー端面から光を入射させると、その光は、第1クラッドである透明導電体層を抜け、第2クラッドである光触媒層にあたる。光触媒層は、光によりバンドギャップ以上のエネルギーを得ると、電子と正孔を生じる。光触媒層上の正孔は、周囲の有機物質から電子を奪い有機物質を酸化する。一方、光触媒層上の電子は、透明導電体層を移動してゆく。すなわち、この光触媒ファイバーでは、光触媒層に生じた電子の逃げ場としての透明導電体層があるため、光触媒層に生じた正孔の働きが活発になって周囲の物質を酸化しやすく、光触媒機能が向上する。このように、酸化錫の伝導帯を解して、酸化チタンの光励起で生じた電子と正孔を効果的に分離することにより、これらの再結合を抑制し、正孔による有害物質の酸化分解が促進される。   When this photocatalytic fiber is placed in, for example, an organic material and light is incident from the end face of the fiber, the light passes through the transparent conductor layer that is the first cladding and strikes the photocatalytic layer that is the second cladding. The photocatalyst layer generates electrons and holes when it obtains energy greater than the band gap by light. The holes on the photocatalyst layer take electrons from the surrounding organic material and oxidize the organic material. On the other hand, the electrons on the photocatalyst layer move through the transparent conductor layer. That is, in this photocatalyst fiber, since there is a transparent conductor layer as a refuge for electrons generated in the photocatalyst layer, the action of holes generated in the photocatalyst layer becomes active and the surrounding substances are easily oxidized, and the photocatalytic function is improved. improves. In this way, by dissociating the conduction band of tin oxide and effectively separating the electrons and holes generated by photoexcitation of titanium oxide, these recombination is suppressed, and the oxidative decomposition of harmful substances by holes Is promoted.

また、請求項2に係る発明は、請求項1に記載の光触媒ファイバーであって、前記透明導電体層が接地されていることを特徴とする。   The invention according to claim 2 is the photocatalyst fiber according to claim 1, characterized in that the transparent conductor layer is grounded.

このように、光触媒ファイバーの透明導電体層が接地されていることによって、光触媒層に生じた電子は接地に逃がされるため、半導体の光励起で生じた伝導帯電子と価電子帯の正孔の分離が一層促進され、逆電子移動による電子と正孔の再結合は完全に抑制される。正孔と電子が近接して存在すると、直接的な再結合に加えて、正孔で酸化された有害物質と伝導帯に滞留した電子が反応して正味の酸化反応効率を著しく低下させる。従って、透明導電帯を介した電子と正孔の完全分離は酸化反応と還元反応のサイトの完全分離という観点からも触媒活性の向上に寄与する。これらの結果により、正孔の働きは一層活発になり、周囲物質を強力に酸化することになる。接地配線の間に電池または定電位電源を接続すると、電子の補足効率がさらに向上する。   Thus, since the transparent conductor layer of the photocatalyst fiber is grounded, electrons generated in the photocatalyst layer are released to the ground, so that the conduction band electrons generated by photoexcitation of the semiconductor and the valence band holes are separated. Is further promoted, and recombination of electrons and holes due to reverse electron transfer is completely suppressed. When holes and electrons are present close to each other, in addition to direct recombination, harmful substances oxidized by holes react with electrons staying in the conduction band to significantly lower the net oxidation reaction efficiency. Therefore, complete separation of electrons and holes through the transparent conductive band contributes to improvement of catalytic activity from the viewpoint of complete separation of sites of oxidation reaction and reduction reaction. Due to these results, the action of holes becomes more active and the surrounding material is strongly oxidized. When a battery or a constant potential power source is connected between the ground wirings, the electron capture efficiency is further improved.

請求項3に係る発明は、請求項1に記載の光触媒ファイバーであって、前記透明導電体層の光屈折率、および前記光触媒層の光屈折率が、前記コアの光屈折率よりも高屈折率であることを特徴とする。   The invention according to claim 3 is the photocatalyst fiber according to claim 1, wherein the photorefractive index of the transparent conductor layer and the photorefractive index of the photocatalyst layer are higher than the photorefractive index of the core. It is characterized by rate.

光触媒ファイバーの透明導電体層および光触媒層が、コアよりも高屈折率であると、コアに入射した光は光触媒層側へ誘導されるため、光触媒層に与えられる光エネルギーが強くなり、光触媒機能が向上する。   If the transparent conductor layer and the photocatalyst layer of the photocatalyst fiber have a higher refractive index than the core, the light incident on the core is guided to the photocatalyst layer side, so the light energy given to the photocatalyst layer becomes stronger and the photocatalytic function Will improve.

請求項4に係る発明は、請求項1に記載の光触媒ファイバーであって、前記光触媒層の光屈折率が、前記透明導電体層の光屈折率よりも高屈折率であり、かつ前記透明導電体層の光屈折率が、前記コアの光屈折率よりも高屈折率であることを特徴とする。   The invention according to claim 4 is the photocatalyst fiber according to claim 1, wherein the photocatalytic layer has a higher refractive index than that of the transparent conductor layer, and the transparent conductive layer. The optical refractive index of the body layer is higher than the optical refractive index of the core.

光触媒ファイバーの屈折率の順番が、コア、第1クラッドである透明導電体層、第2クラッドである光触媒層の順に高くなっていると、コアに入射した光は、透明導電体層を通って光触媒層に入るため、光触媒層に与えられる光エネルギーが一層強くなる。   When the order of the refractive index of the photocatalytic fiber is higher in the order of the core, the transparent conductor layer as the first cladding, and the photocatalytic layer as the second cladding, the light incident on the core passes through the transparent conductor layer. Since it enters the photocatalyst layer, the light energy given to the photocatalyst layer becomes stronger.

請求項5に係る発明は、請求項1に記載の光触媒ファイバーであって、前記光触媒層が、酸化チタンであることを特徴とする。   The invention according to claim 5 is the photocatalyst fiber according to claim 1, wherein the photocatalyst layer is titanium oxide.

酸化チタンは、光触媒のなかで最も高機能なものとして多用されている。しかも屈折率が光ファイバーのコアとして通常使用されている石英ガラスよりも高く、さらにこの光触媒ファイバーがプラスチック光ファイバーである場合でもコアとして通常使用されているアクリル樹脂よりも屈折率が高いため、光触媒層に光が誘導されやすく、この光触媒ファイバーの光触媒層として適切である。また酸化チタンは、波長300〜420nmの紫外光で特に効率良く活性するので、紫外線透過のよい石英ガラスをコアとする場合は、特に高性能を得られる。   Titanium oxide is frequently used as the most highly functional photocatalyst. Moreover, the refractive index is higher than that of quartz glass normally used as the core of the optical fiber, and even if the photocatalytic fiber is a plastic optical fiber, the refractive index is higher than that of the acrylic resin normally used as the core. Light is easily induced and is suitable as a photocatalyst layer of this photocatalyst fiber. Titanium oxide is particularly efficiently activated by ultraviolet light having a wavelength of 300 to 420 nm. Therefore, when quartz glass having good ultraviolet transmission is used as a core, particularly high performance can be obtained.

請求項6に係る発明は、請求項1に記載の光触媒ファイバーであって、前記光触媒層が、窒素ドープ酸化チタン、硫黄ドープ酸化チタン、炭素ドープ酸化チタン、タングステンドープ酸化チタン、鉄ドープ酸化チタン、銅ドープ酸化チタン、酸化亜鉛、遷移金属ドープ酸化チタン、チタン酸、チタン酸塩類、タンタルオキシナイトライド、バナジン酸塩類、モリブデン酸塩類、タングステン酸塩類から選ばれる少なくとも一種類の光触媒であることを特徴とする。   The invention according to claim 6 is the photocatalyst fiber according to claim 1, wherein the photocatalyst layer is nitrogen-doped titanium oxide, sulfur-doped titanium oxide, carbon-doped titanium oxide, tungsten-doped titanium oxide, iron-doped titanium oxide, It is at least one photocatalyst selected from copper-doped titanium oxide, zinc oxide, transition metal-doped titanium oxide, titanic acid, titanates, tantalum oxynitride, vanadates, molybdates, tungstates And

前記のように酸化チタンは、光触媒として紫外光で活性するが、窒素ドープ酸化チタンを光触媒とする場合は波長520nm以下で活性し、硫黄ドープ酸化チタンは波長550nm以下、炭素ドープ酸化チタンは波長540nm以下、タンタルオキシナイトライドは波長〜450nmで活性にすることができる。   As described above, titanium oxide is activated by ultraviolet light as a photocatalyst. However, when nitrogen-doped titanium oxide is used as a photocatalyst, it is activated at a wavelength of 520 nm or less, sulfur-doped titanium oxide is at a wavelength of 550 nm or less, and carbon-doped titanium oxide is at a wavelength of 540 nm. Hereinafter, tantalum oxynitride can be activated at a wavelength of ~ 450 nm.

請求項7に係る発明は、請求項1に記載の光触媒ファイバーであって、前記透明導電体層が、酸化錫、酸化インジウム、フッ素ドープ酸化錫、アンチモンドープ酸化錫、または/及び錫ドープ酸化インジウムであることを特徴とする。   The invention according to claim 7 is the photocatalytic fiber according to claim 1, wherein the transparent conductor layer is tin oxide, indium oxide, fluorine-doped tin oxide, antimony-doped tin oxide, and / or tin-doped indium oxide. It is characterized by being.

酸化錫、酸化インジウムは、透明導電体として多用されているが、光ファイバーのコアとして通常使用されている石英ガラスやアクリル樹脂よりも屈折率が高く、光触媒層として使用される酸化チタンよりも屈折率が低いため、この光触媒ファイバーの透明導電体層として適切である。   Tin oxide and indium oxide are widely used as transparent conductors, but they have a higher refractive index than quartz glass or acrylic resin normally used as the core of optical fibers, and a refractive index higher than that of titanium oxide used as a photocatalytic layer. Is suitable as a transparent conductor layer of this photocatalytic fiber.

また、前記の目的を達成するためになされた、特許請求の範囲の請求項8に係る発明は、請求項1〜7のいずれかに記載した光触媒ファイバーの少なくとも一端面が光源に対向しつつ、該光触媒ファイバーが液体容器内に導入され、該液体容器に汚濁液導入口と、浄化液排出口が設けられていることを特徴とする液体浄化装置である。   Further, the invention according to claim 8 of the claim made to achieve the above object is that at least one end surface of the photocatalyst fiber according to any one of claims 1 to 7 faces the light source, The liquid purification apparatus is characterized in that the photocatalytic fiber is introduced into a liquid container, and the liquid container is provided with a contaminant introduction port and a purification solution discharge port.

本発明の光触媒ファイバーは、常態では光が届かないような場所であっても、光触媒機能を十分に発揮できる。光学的な面からだけではなく、電気化学的な面からみても、触媒活性が優れたものとなる。すなわち、光励起した光触媒層から透明導電体層への電子移動過程を利用して電荷分離を促進できるため、光触媒層上の正孔を効率よく利用することを可能にする。この光触媒ファイバーは、近傍にある物質の電子を奪って酸化分解するとともに、近傍にある酸素を還元してスーパーオキシドイオンを生成し、溶液に溶解させることにより光触媒活性がさらに高められる。従来のいわゆる漏光型光触媒ファイバーがかかる電気化学的なメカニズムに配慮が無いのと比較して、本発明の光触媒ファイバーは光触媒活性を向上させている。   The photocatalytic fiber of the present invention can sufficiently exhibit the photocatalytic function even in a place where light does not reach under normal conditions. The catalytic activity is excellent not only from the optical aspect but also from the electrochemical aspect. That is, since charge separation can be promoted by utilizing an electron transfer process from the photoexcited photocatalyst layer to the transparent conductor layer, holes on the photocatalyst layer can be used efficiently. This photocatalytic fiber captures the electrons of the substance in the vicinity and oxidatively decomposes it, reduces oxygen in the vicinity to generate superoxide ions, and dissolves them in the solution to further enhance the photocatalytic activity. The photocatalytic fiber of the present invention has improved photocatalytic activity as compared with the conventional so-called light leakage type photocatalytic fiber which does not take into consideration the electrochemical mechanism.

このように光触媒活性が高い本発明の光触媒ファイバーを利用した液体浄化装置は、奥部まで光の届かないような着色した液体であっても、極めて潤沢にその着色物質を分解し、透明、清浄な液にすることができる。   As described above, the liquid purification device using the photocatalytic fiber of the present invention having high photocatalytic activity decomposes the coloring substance abundantly even if it is a colored liquid that does not reach the back, and is transparent and clean. Can be made into a liquid.

本発明の光触媒ファイバー1の好ましい形態は、図1(断面図)に示すように、石英ガラス(屈折率1.55)のコア10の外周に、透明導電体層を形成する第1クラッド11の酸化錫層(屈折率1.90)、さらに第1クラッド11の外周に光触媒層を形成する第2クラッド12の酸化チタン層(屈折率2.20)が着けられる。第1クラッド11は接地される。なお、この接地は、電気的配線によって接地されている場合に限らず、電解液に触れそれを経由して接地電位に通じている場合も含むものである。   As shown in FIG. 1 (cross-sectional view), the preferred form of the photocatalytic fiber 1 of the present invention is a first clad 11 that forms a transparent conductor layer on the outer periphery of a core 10 of quartz glass (refractive index 1.55). A tin oxide layer (refractive index 1.90) and a titanium oxide layer (refractive index 2.20) of the second cladding 12 forming a photocatalytic layer on the outer periphery of the first cladding 11 are applied. The first cladding 11 is grounded. This grounding is not limited to being grounded by electrical wiring, but also includes cases where the electrolyte solution is touched and connected to the ground potential.

この光触媒ファイバーは、図2の電子的メカニズムの模式図に示すように、近傍の汚染物質に対して働く。光触媒ファイバーに光が入射すると、光エネルギーが光触媒(第2クラッド12)を励起し、伝導帯CBに電子e−と、価電子帯VBに正孔h+を生じる。光触媒上の正孔h+は、近傍の汚染物質から電子eo−を奪い、その汚染物質を酸化する。光触媒上の電子e−は、透明導電体(第1クラッド11)を経て接地に流れる。汚染物質が、炭素、水素、酸素からなる有機物質であると、その有機物質は多くの場合、酸化分解により炭酸ガス、および水に分解される。   This photocatalytic fiber acts on nearby contaminants as shown in the schematic diagram of the electronic mechanism of FIG. When light enters the photocatalyst fiber, the light energy excites the photocatalyst (second cladding 12), generating an electron e− in the conduction band CB and a hole h + in the valence band VB. Holes h + on the photocatalyst take electrons eo− from nearby contaminants and oxidize the contaminants. Electrons e− on the photocatalyst flow to the ground through the transparent conductor (first cladding 11). When the pollutant is an organic substance composed of carbon, hydrogen, and oxygen, the organic substance is often decomposed into carbon dioxide and water by oxidative decomposition.

図3には、透明導電膜の酸化錫と光触媒層の酸化チタンがともに光励起した場合の電子移動過程の模式図が示してある。透明導電体はフッ素ドープ酸化錫あるいは錫ドープ酸化インジウムを使用しており、いずれもn型半導体であることが知られている。例えば、酸化錫はバンドギャップが3.4 eVであり、酸化チタンのバンドギャップ3.2 eVよりも少し大きいため、吸収する波長はλ2 > λ1となり、酸化錫層を透過した光でも酸化チタンを光励起することが出来る。例えば、λ1を紫外光とすると、λ2は可視光線とすることも出来る。酸化錫で吸収された光は酸化錫の直接光励起を促し、その伝導帯に電子を励起し荷電子帯に正孔をそれぞれ生成する。この電子がアース配線を経由して速やかに除去されるため、残されたホールは酸化チタンの荷電子帯へ注入される。従って、酸化錫が直接励起されても酸化チタンの酸化活性を高めることが可能である。 FIG. 3 shows a schematic diagram of the electron transfer process when both tin oxide of the transparent conductive film and titanium oxide of the photocatalyst layer are photoexcited. The transparent conductor uses fluorine-doped tin oxide or tin-doped indium oxide, and both are known to be n-type semiconductors. For example, tin oxide has a band gap of 3.4 eV, which is slightly larger than titanium oxide's band gap of 3.2 eV. Therefore, the wavelength to be absorbed is λ 2 > λ 1 , and even the light transmitted through the tin oxide layer photoexcites titanium oxide. I can do it. For example, the lambda 1 When ultraviolet light, lambda 2 can also be a visible light. The light absorbed by tin oxide promotes direct photoexcitation of tin oxide, excites electrons in its conduction band and generates holes in the valence band. Since these electrons are quickly removed via the ground wiring, the remaining holes are injected into the titanium oxide valence band. Therefore, the oxidation activity of titanium oxide can be enhanced even when tin oxide is directly excited.

さらに、酸化チタンに各種ドーピングすることにより可視光応答型酸化チタンとすることにより、光の有効利用が可能となる。一般に、紫外光源も可視光域の光が含まれるため可視光化は光利用効率の向上が見込まれる。   Furthermore, effective use of light becomes possible by making visible light responsive titanium oxide by variously doping titanium oxide. In general, since the ultraviolet light source includes light in the visible light range, the use of visible light is expected to improve the light utilization efficiency.

本発明の上記光触媒ファイバーを使用した本発明の液体浄化装置の好ましい形態は、図4に示されている。同図に示すように、透明な筒状の液体容器2に汚濁液導入口7と、浄化液排出口8が設けられている。液体容器2には、光触媒ファイバー1の束が整列されて詰められ、給排気口9が設けられている。筒状の液体容器2の汚濁液導入口7にはパイプが繋がれ吸引ポンプ6を介して汚濁液容器4に挿入される。浄化液排出口8にはパイプが繋がれ浄化液容器5に到っている。透明な液体容器2内の光触媒ファイバー1の束の一端面がキセノンランプ3に対向している。光触媒ファイバー1の第1クラッド11は接地される。   A preferred embodiment of the liquid purification apparatus of the present invention using the photocatalytic fiber of the present invention is shown in FIG. As shown in the figure, a transparent cylindrical liquid container 2 is provided with a contaminant introduction port 7 and a purification solution discharge port 8. The liquid container 2 is packed with a bundle of photocatalyst fibers 1 arranged and provided with an air supply / exhaust port 9. A pipe is connected to the pollutant inlet 7 of the cylindrical liquid container 2 and is inserted into the pollutant container 4 via the suction pump 6. A pipe is connected to the cleaning liquid discharge port 8 and reaches the cleaning liquid container 5. One end face of the bundle of photocatalyst fibers 1 in the transparent liquid container 2 faces the xenon lamp 3. The first cladding 11 of the photocatalytic fiber 1 is grounded.

汚濁液容器4に有機物質の水溶液を入れ、キセノンランプ3を点灯しながら、吸引ポンプ6を作動させると、有機物質の水溶液は汚濁液導入口7から液体容器2を通る間に光触媒ファイバー1の第2クラッド12である酸化チタン層の光触媒作用を受ける。このとき、第1クラッド11の酸化錫層は、接地されているので、酸化チタン層の光による触媒作用は一層強化される。   When an aqueous solution of an organic substance is put into the pollutant container 4 and the suction pump 6 is operated while the xenon lamp 3 is turned on, the organic substance aqueous solution passes through the liquid container 2 from the pollutant inlet 7 and passes through the liquid container 2. The photocatalytic action of the titanium oxide layer that is the second cladding 12 is received. At this time, since the tin oxide layer of the first cladding 11 is grounded, the catalytic action of the titanium oxide layer by light is further enhanced.

本発明光触媒ファイバーが、光触媒機能を十分に発揮し、触媒活性が優れたものとなることを実験により確かめた。   It was confirmed by experiments that the photocatalyst fiber of the present invention sufficiently exhibits the photocatalytic function and has excellent catalytic activity.

先ず実験のために、図5に示す試料片を作製した。25mm×50mm×1.8mmのソーダガラス板101に、塩化錫(SnCl2)とフッ化アンモニウムを界面活性剤で分散したアルコール水溶液を塗布し、400℃で1時間焼成した。ソーダガラス板101の片面に、厚さ100−500nmのフッ素ドープ酸化錫(FTO)層102が形成された。さらに、フッ素ドープ酸化錫層102の上に、ヒドラジン塩酸塩を触媒として含むチタンブトキシドのブタノール溶液を塗布し、チタンブトキシドのゾルゲル法により酸化チタン103を形成した。典型的な塗布液の作成法を下記に示す。 First, a sample piece shown in FIG. 5 was prepared for the experiment. An aqueous alcohol solution in which tin chloride (SnCl 2 ) and ammonium fluoride were dispersed in a surfactant was applied to a soda glass plate 101 of 25 mm × 50 mm × 1.8 mm, and baked at 400 ° C. for 1 hour. A fluorine-doped tin oxide (FTO) layer 102 having a thickness of 100 to 500 nm was formed on one side of the soda glass plate 101. Further, a butanol solution of titanium butoxide containing hydrazine hydrochloride as a catalyst was applied on the fluorine-doped tin oxide layer 102, and titanium oxide 103 was formed by a sol-gel method of titanium butoxide. A typical method for preparing a coating solution is shown below.

チタン−n−ブトキシド4.25gに1−ブタノール10.3mlを加え室温で24時間攪拌した。ここにヒドラジン−1−塩酸塩を0.085g加えた。別の容器に1−ブタノールを10ml入れ、ここにに水0.45gと1−ブタノールを加え、25℃で2h攪拌した。これらの溶液を攪拌しながらチタン−n−ブトキシドの1−ブタノール溶液に、触媒溶液をゆっくり加えて、25℃でこの混合溶液を2h攪拌すると、塗布液が得られた。   10.3 ml of 1-butanol was added to 4.25 g of titanium-n-butoxide and stirred at room temperature for 24 hours. 0.085g of hydrazine-1-hydrochloride was added here. In another container, 10 ml of 1-butanol was added, 0.45 g of water and 1-butanol were added thereto, and the mixture was stirred at 25 ° C. for 2 hours. While stirring these solutions, the catalyst solution was slowly added to the 1-butanol solution of titanium-n-butoxide, and the mixed solution was stirred at 25 ° C. for 2 hours to obtain a coating solution.

調製した酸化チタンゾル−ゲル溶液をガラス基板にスピンコータで塗布し、このガラス基板を450℃、1h焼成し、室温まで放冷した。   The prepared titanium oxide sol-gel solution was applied to a glass substrate with a spin coater, and this glass substrate was baked at 450 ° C. for 1 h and allowed to cool to room temperature.

このようにして作製した試料片について、フッ素ドープ酸化錫層102からポテンショスタットによりアースを取った。例えば、北斗電工製電気化学分析装置HSV−100を利用する場合には、作用極W1およびW2は合わせて試験片の透明導電膜102につなぎ、参照極Rと対極Cを合わせて信号用アースに接続した。これにより、アース基準で試料片の透明導電膜層の電位を制御した。   The sample piece thus prepared was grounded from the fluorine-doped tin oxide layer 102 with a potentiostat. For example, when using Hokuto Denko's electrochemical analyzer HSV-100, the working electrodes W1 and W2 are combined and connected to the transparent conductive film 102 of the test piece, and the reference electrode R and the counter electrode C are combined for signal grounding. Connected. Thereby, the electric potential of the transparent conductive film layer of the sample piece was controlled on the basis of the ground.

この試験片を、汚損物質として100μMol/Lに濃度調製してあるメチレンブルーの水溶液(試料液)に浸漬し、2cm離れた位置から100Wの水銀灯を2時間照射した。水銀灯を照射前と照射後の試料液の光透過率を測定することでメチレンブルーの分解を調べた。   This test piece was immersed in a methylene blue aqueous solution (sample solution) whose concentration was adjusted to 100 μMol / L as a fouling substance, and irradiated with a 100 W mercury lamp from a position 2 cm away for 2 hours. The decomposition of methylene blue was examined by measuring the light transmittance of the sample solution before and after irradiation with a mercury lamp.

また条件を変え、試験片を、試料液に浸漬し、バイアス電圧+1.0Vをかけながら100Wの水銀灯を2時間照射したもの、さらに試験片を、試料液に浸漬し、フッ素ドープ酸化錫層102を電気的に絶縁して水銀灯を照射したものも実験した。   In addition, the test piece was immersed in the sample solution while being irradiated with a 100 W mercury lamp for 2 hours while applying a bias voltage of +1.0 V, and the test piece was further immersed in the sample solution to change the fluorine-doped tin oxide layer 102. An experiment was also conducted in which the lamp was electrically insulated and irradiated with a mercury lamp.

比較のため、ソーダガラス板の片面に、直接酸化チタンを形成した比較試料片1を作製し、同様にメチレンブルーの分解を調べた。   For comparison, a comparative sample piece 1 in which titanium oxide was directly formed on one side of a soda glass plate was prepared, and the decomposition of methylene blue was similarly examined.

さらに比較のため、ソーダガラス板を比較試料片2として、同様にメチレンブルーの分解を調べた。   For further comparison, the soda glass plate was used as a comparative sample piece 2 and the decomposition of methylene blue was similarly examined.

その結果を図6〜図9に示す。この結果から図5に示す試料片を浸漬して水銀灯を照射した試料液が照射の前後において濃度差が大きく、汚濁物質であるメチレンブルーが大幅に分解されたことが分かる。   The results are shown in FIGS. From this result, it can be seen that the sample solution immersed in the sample piece shown in FIG. 5 and irradiated with the mercury lamp had a large concentration difference before and after the irradiation, and methylene blue, which is a pollutant, was greatly decomposed.

したがって、コアに、フッ素ドープ酸化錫層のクラッド、その外に酸化チタンのクラッドを有する光ファイバーは、コアに光を送ることで光ファイバー周辺にある有機質の汚濁物質を分解する機能が高まることが分かる。   Therefore, it can be seen that an optical fiber having a fluorine-doped tin oxide clad on the core and a titanium oxide clad on the core has a higher function of decomposing organic contaminants around the optical fiber by sending light to the core.

本発明を適用する光触媒ファイバーの断面図である。It is sectional drawing of the photocatalyst fiber to which this invention is applied.

本発明を適用する光触媒ファイバーの一実施例の電子的メカニズムを説明する図である。It is a figure explaining the electronic mechanism of one Example of the photocatalyst fiber to which this invention is applied.

本発明を適用する光触媒ファイバーの別な実施例の電子的メカニズムを説明する図である。It is a figure explaining the electronic mechanism of another Example of the photocatalyst fiber to which this invention is applied.

本発明を適用する液体浄化装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the liquid purification apparatus to which this invention is applied.

本発明を適用する光触媒ファイバーの効果を試すための試料片の構造を示す図である。It is a figure which shows the structure of the sample piece for trying the effect of the photocatalyst fiber to which this invention is applied.

試料片による汚濁物質の分解機能の測定結果を示す図である。It is a figure which shows the measurement result of the decomposition | disassembly function of the pollutant by a sample piece.

試料片による汚濁物質の分解機能の測定結果を示す図である。It is a figure which shows the measurement result of the decomposition | disassembly function of the pollutant by a sample piece.

試料片による汚濁物質の分解機能の測定結果を示す図である。It is a figure which shows the measurement result of the decomposition | disassembly function of the pollutant by a sample piece.

試料片による汚濁物質の分解機能の測定結果を示す図である。It is a figure which shows the measurement result of the decomposition | disassembly function of the pollutant by a sample piece.

符号の説明Explanation of symbols

1は光触媒ファイバー、2は液体容器、3はキセノンランプ、4は汚濁液容器、5は浄化液容器、6は吸引ポンプ、7は汚濁液導入口、8は浄化液排出口、9は給排気口、10はコア、11は第1クラッド、12は第2クラッド、101はソーダガラス板、102はフッ素ドープ酸化錫層、103は酸化チタン103である。   1 is a photocatalytic fiber, 2 is a liquid container, 3 is a xenon lamp, 4 is a contaminated liquid container, 5 is a purified liquid container, 6 is a suction pump, 7 is a contaminated liquid inlet, 8 is a purified liquid outlet, and 9 is a supply / exhaust gas Mouth, 10 is a core, 11 is a first clad, 12 is a second clad, 101 is a soda glass plate, 102 is a fluorine-doped tin oxide layer, and 103 is a titanium oxide 103.

Claims (8)

コアの外周に、透明導電体層からなる第1クラッド、その外周に光触媒層からなる第2クラッドを有することを特徴とする光触媒ファイバー。   A photocatalytic fiber comprising a first clad made of a transparent conductor layer on an outer periphery of a core and a second clad made of a photocatalyst layer on the outer circumference. 前記透明導電体層が接地されていることを特徴とする請求項1に記載の光触媒ファイバー。   The photocatalytic fiber according to claim 1, wherein the transparent conductor layer is grounded. 前記透明導電体層の光屈折率、および前記光触媒層の光屈折率が、前記コアの光屈折率よりも高屈折率であることを特徴とする請求項1に記載の光触媒ファイバー。   2. The photocatalytic fiber according to claim 1, wherein a photorefractive index of the transparent conductor layer and a photorefractive index of the photocatalyst layer are higher than a photorefractive index of the core. 前記光触媒層の光屈折率が、前記透明導電体層の光屈折率よりも高屈折率であり、かつ前記透明導電体層の光屈折率が、前記コアの光屈折率よりも高屈折率であることを特徴とする請求項1に記載の光触媒ファイバー。   The photorefractive index of the photocatalytic layer is higher than the refractive index of the transparent conductor layer, and the refractive index of the transparent conductor layer is higher than the refractive index of the core. The photocatalyst fiber according to claim 1, wherein the photocatalyst fiber is provided. 前記光触媒層が、酸化チタンであることを特徴とする請求項1に記載の光触媒ファイバー。   The photocatalyst fiber according to claim 1, wherein the photocatalyst layer is titanium oxide. 前記光触媒層が、窒素ドープ酸化チタン、硫黄ドープ酸化チタン、炭素ドープ酸化チタン、タングステンドープ酸化チタン、鉄ドープ酸化チタン、銅ドープ酸化チタン、酸化亜鉛、遷移金属ドープ酸化チタン、チタン酸、チタン酸塩類、タンタルオキシナイトライド、バナジン酸塩類、モリブデン酸塩類、タングステン酸塩類から選ばれる少なくとも一種類の光触媒であることを特徴とする請求項1に記載の光触媒ファイバー。   The photocatalytic layer is nitrogen-doped titanium oxide, sulfur-doped titanium oxide, carbon-doped titanium oxide, tungsten-doped titanium oxide, iron-doped titanium oxide, copper-doped titanium oxide, zinc oxide, transition metal-doped titanium oxide, titanic acid, titanates The photocatalytic fiber according to claim 1, wherein the photocatalytic fiber is at least one photocatalyst selected from tantalum oxynitride, vanadates, molybdates, and tungstates. 前記透明導電体層が、酸化錫、酸化インジウム、フッ素ドープ酸化錫、アンチモンドープ酸化錫、または/及び錫ドープ酸化インジウムであることを特徴とする請求項1に記載の光触媒ファイバー。   The photocatalytic fiber according to claim 1, wherein the transparent conductor layer is tin oxide, indium oxide, fluorine-doped tin oxide, antimony-doped tin oxide, and / or tin-doped indium oxide. 請求項1〜7のいずれかに記載した光触媒ファイバーの少なくとも一端面が光源に対向しつつ、該光触媒ファイバーが液体容器内に導入され、該液体容器に汚濁液導入口と、浄化液排出口が設けられていることを特徴とする液体浄化装置。   While at least one end surface of the photocatalyst fiber according to any one of claims 1 to 7 is opposed to the light source, the photocatalyst fiber is introduced into the liquid container, and a contaminant inlet and a purification liquid outlet are provided in the liquid container. A liquid purifier characterized by being provided.
JP2005343652A 2005-11-29 2005-11-29 Photocatalyst fiber and liquid cleaning apparatus using the same Pending JP2007144328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005343652A JP2007144328A (en) 2005-11-29 2005-11-29 Photocatalyst fiber and liquid cleaning apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005343652A JP2007144328A (en) 2005-11-29 2005-11-29 Photocatalyst fiber and liquid cleaning apparatus using the same

Publications (1)

Publication Number Publication Date
JP2007144328A true JP2007144328A (en) 2007-06-14

Family

ID=38206369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005343652A Pending JP2007144328A (en) 2005-11-29 2005-11-29 Photocatalyst fiber and liquid cleaning apparatus using the same

Country Status (1)

Country Link
JP (1) JP2007144328A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009219958A (en) * 2008-03-13 2009-10-01 Central Res Inst Of Electric Power Ind Oxidative decomposition method using photocatalyst and water purification apparatus
JP2013503036A (en) * 2009-08-25 2013-01-31 ファーズ ステージマイヤー エルエルシー Processes and uses to dissociate molecules
US20150144802A1 (en) * 2013-11-25 2015-05-28 Corning Incorporated Water purification and water supply system decontamination apparatus
US9073766B2 (en) 2009-08-25 2015-07-07 Fahs Stagemyer, Llc Methods for the treatment of ballast water
CN107469822A (en) * 2016-12-19 2017-12-15 浙江大学 Efficent electronic transfer Cu modifications C/TiO2The preparation method of photo catalytic reduction material
CN109759125A (en) * 2019-01-03 2019-05-17 江苏理工学院 A kind of Fe-N-TiO2The preparation method of/13X molecular sieve photochemical catalyst
CN109908886A (en) * 2019-04-03 2019-06-21 盐城工学院 The preparation method and product of a kind of doping stannic oxide hydrosol and its application in cotton fabric automatically cleaning
CN116354446A (en) * 2023-05-06 2023-06-30 广州渺钛新材料科技有限公司 Method and device for treating industrial sewage by efficient recyclable photocatalytic oxidation

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09225262A (en) * 1996-02-28 1997-09-02 Hoya Corp Photocatalytic filter, device therefor and treatment of liquid using the same
JPH1110006A (en) * 1997-06-20 1999-01-19 Ebara Corp Photocatalyst formed body
JPH1128364A (en) * 1997-07-11 1999-02-02 Toshiba Corp Photocatalyst composite body and water purification device
JPH11180733A (en) * 1997-12-18 1999-07-06 Central Glass Co Ltd Glass provided with photocatalyst membrane
JP2001047041A (en) * 1999-08-12 2001-02-20 Meidensha Corp Photocatalytic reactor
JP2004202459A (en) * 2002-12-26 2004-07-22 Fujikura Ltd Photocatalyst device
JP2005158551A (en) * 2003-11-27 2005-06-16 Sumitomo Electric Ind Ltd El fiber and photocatalysis reaction container

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09225262A (en) * 1996-02-28 1997-09-02 Hoya Corp Photocatalytic filter, device therefor and treatment of liquid using the same
JPH1110006A (en) * 1997-06-20 1999-01-19 Ebara Corp Photocatalyst formed body
JPH1128364A (en) * 1997-07-11 1999-02-02 Toshiba Corp Photocatalyst composite body and water purification device
JPH11180733A (en) * 1997-12-18 1999-07-06 Central Glass Co Ltd Glass provided with photocatalyst membrane
JP2001047041A (en) * 1999-08-12 2001-02-20 Meidensha Corp Photocatalytic reactor
JP2004202459A (en) * 2002-12-26 2004-07-22 Fujikura Ltd Photocatalyst device
JP2005158551A (en) * 2003-11-27 2005-06-16 Sumitomo Electric Ind Ltd El fiber and photocatalysis reaction container

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009219958A (en) * 2008-03-13 2009-10-01 Central Res Inst Of Electric Power Ind Oxidative decomposition method using photocatalyst and water purification apparatus
JP2013503036A (en) * 2009-08-25 2013-01-31 ファーズ ステージマイヤー エルエルシー Processes and uses to dissociate molecules
US9073766B2 (en) 2009-08-25 2015-07-07 Fahs Stagemyer, Llc Methods for the treatment of ballast water
US9334183B2 (en) 2009-08-25 2016-05-10 Fahs Stagemyer, Llc Methods for the treatment of ballast water
US20150144802A1 (en) * 2013-11-25 2015-05-28 Corning Incorporated Water purification and water supply system decontamination apparatus
CN107469822A (en) * 2016-12-19 2017-12-15 浙江大学 Efficent electronic transfer Cu modifications C/TiO2The preparation method of photo catalytic reduction material
CN109759125A (en) * 2019-01-03 2019-05-17 江苏理工学院 A kind of Fe-N-TiO2The preparation method of/13X molecular sieve photochemical catalyst
CN109908886A (en) * 2019-04-03 2019-06-21 盐城工学院 The preparation method and product of a kind of doping stannic oxide hydrosol and its application in cotton fabric automatically cleaning
CN116354446A (en) * 2023-05-06 2023-06-30 广州渺钛新材料科技有限公司 Method and device for treating industrial sewage by efficient recyclable photocatalytic oxidation

Similar Documents

Publication Publication Date Title
JP2007144328A (en) Photocatalyst fiber and liquid cleaning apparatus using the same
Kusmierek A CeO2 semiconductor as a photocatalytic and photoelectrocatalytic material for the remediation of pollutants in industrial wastewater: a review
Arai et al. Efficient complete oxidation of acetaldehyde into CO2 over CuBi2O4/WO3 composite photocatalyst under visible and UV light irradiation
Li et al. Highly active TiO2N photocatalysts prepared by treating TiO2 precursors in NH3/ethanol fluid under supercritical conditions
Wu et al. Electrosorption-promoted photodegradation of opaque wastewater on a novel TiO2/carbon aerogel electrode
Zhao et al. Photodegradation of sulforhodamine-B dye in platinized titania dispersions under visible light irradiation: influence of platinum as a functional co-catalyst
Kiriakidou et al. The effect of operational parameters and TiO2-doping on the photocatalytic degradation of azo-dyes
Liu et al. Promoted photo-oxidation reactivity of particulate BiVO4 photocatalyst prepared by a photoassisted sol-gel method
Momeni Study of synergistic effect among photo-, electro-, and sonoprocesses in photocatalyst degradation of phenol on tungsten-loaded titania nanotubes composite electrode
Tachikawa et al. Exploring the spatial distribution and transport behavior of charge carriers in a single titania nanowire
Pandey et al. Synthesis, characterization and application of naïve and nano-sized titanium dioxide as a photocatalyst for degradation of methylene blue
KR100927185B1 (en) Decomposition method of organic pollutant by using electric field of solar cells and Decomposition system of organic pollutant by using electric field of solar cells thereof
Ke et al. Low temperature kinetics and energetics of the electron and hole traps in irradiated TiO2 nanoparticles as revealed by EPR spectroscopy
KR101559200B1 (en) Apparatus and method for waste-water treatment using dielectric barrier discharge
EP1924525A1 (en) Photolytic generation of hydrogen peroxide
CN105236628B (en) Electrical enhanced photocatalysis degraded sewage device
Fujishima et al. Interfacial photochemistry: fundamental and applications
JP4406689B2 (en) Equipment for producing hydrogen and oxygen by water photolysis
JPH02501541A (en) Liquid washing method and device
Li et al. Ultrasonic-assisted synthesis of LaFeO3/CeO2 heterojunction for enhancing the photocatalytic degradation of organic pollutants
Zhou et al. Design of S-scheme heterojunction catalyst based on structural defects for photocatalytic oxidative desulfurization application
KR20160060191A (en) Photoelectrocatalytic Water Treatment Apparatus by Using Immobilized Nanotubular photosensized electrode
JPH10290017A (en) Optical catalyzer
Zhang et al. Establishing an efficient way via TiO2/MXene catalyst for photoelectro activating PMS degradation of BPA
Guo et al. Photoinduced Absorption Spectroscopy of Photoelectrocatalytic Methylene Blue Oxidation on Titania and Hematite: The Thermodynamic and Kinetic Impacts on Reaction Pathways

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120814