WO2005035699A1 - 潤滑油基油及び潤滑油組成物 - Google Patents

潤滑油基油及び潤滑油組成物 Download PDF

Info

Publication number
WO2005035699A1
WO2005035699A1 PCT/JP2004/014735 JP2004014735W WO2005035699A1 WO 2005035699 A1 WO2005035699 A1 WO 2005035699A1 JP 2004014735 W JP2004014735 W JP 2004014735W WO 2005035699 A1 WO2005035699 A1 WO 2005035699A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
hydrocarbon compound
integer
carbon atoms
general formula
Prior art date
Application number
PCT/JP2004/014735
Other languages
English (en)
French (fr)
Inventor
Yukio Yoshida
Toshiyuki Tsubouchi
Hiroki Sekiguchi
Hidetoshi Koga
Original Assignee
Idemitsu Kosan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co., Ltd. filed Critical Idemitsu Kosan Co., Ltd.
Priority to CA002541703A priority Critical patent/CA2541703A1/en
Priority to EP04792091.3A priority patent/EP1672050B1/en
Priority to KR1020067006665A priority patent/KR101148645B1/ko
Priority to US10/574,491 priority patent/US7964540B2/en
Priority to JP2005514580A priority patent/JP4675779B2/ja
Priority to KR1020117031538A priority patent/KR101280106B1/ko
Publication of WO2005035699A1 publication Critical patent/WO2005035699A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • C10M171/002Traction fluids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/28Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/32Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
    • C07C13/54Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with three condensed rings
    • C07C13/605Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with three condensed rings with a bridged ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/28Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/32Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
    • C07C13/54Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with three condensed rings
    • C07C13/605Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with three condensed rings with a bridged ring system
    • C07C13/61Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with three condensed rings with a bridged ring system with a bridged indene ring, e.g. dicyclopentadiene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/28Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/32Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
    • C07C13/62Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with more than three condensed rings
    • C07C13/64Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with more than three condensed rings with a bridged ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/28Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/32Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
    • C07C13/72Spiro hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/02Well-defined hydrocarbons
    • C10M105/04Well-defined hydrocarbons aliphatic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/56Ring systems containing bridged rings
    • C07C2603/58Ring systems containing bridged rings containing three rings
    • C07C2603/60Ring systems containing bridged rings containing three rings containing at least one ring with less than six members
    • C07C2603/66Ring systems containing bridged rings containing three rings containing at least one ring with less than six members containing five-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/56Ring systems containing bridged rings
    • C07C2603/58Ring systems containing bridged rings containing three rings
    • C07C2603/60Ring systems containing bridged rings containing three rings containing at least one ring with less than six members
    • C07C2603/66Ring systems containing bridged rings containing three rings containing at least one ring with less than six members containing five-membered rings
    • C07C2603/68Dicyclopentadienes; Hydrogenated dicyclopentadienes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/56Ring systems containing bridged rings
    • C07C2603/58Ring systems containing bridged rings containing three rings
    • C07C2603/70Ring systems containing bridged rings containing three rings containing only six-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/56Ring systems containing bridged rings
    • C07C2603/58Ring systems containing bridged rings containing three rings
    • C07C2603/76Ring systems containing bridged rings containing three rings containing at least one ring with more than six ring members
    • C07C2603/78Ring systems containing bridged rings containing three rings containing at least one ring with more than six ring members containing seven-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/56Ring systems containing bridged rings
    • C07C2603/86Ring systems containing bridged rings containing four rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/56Ring systems containing bridged rings
    • C07C2603/90Ring systems containing bridged rings containing more than four rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/93Spiro compounds
    • C07C2603/95Spiro compounds containing "not free" spiro atoms
    • C07C2603/98Spiro compounds containing "not free" spiro atoms containing at least one ring with more than six ring members
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/04Well-defined cycloaliphatic compounds
    • C10M2203/045Well-defined cycloaliphatic compounds used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/02Viscosity; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/08Resistance to extreme temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • C10N2040/046Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for traction drives

Definitions

  • Lubricating base oil and lubricating oil composition
  • the present invention relates to a lubricating base oil and a lubricating oil composition, and more particularly, to a high-temperature traction coefficient, which is useful as a traction drive fluid and is practically important for an automotive CVT (continuously variable transmission).
  • the present invention relates to a well-balanced lubricating base oil and a lubricating oil composition having a low viscosity at a low temperature, which is important for quick startability at a low temperature, and a high viscosity index.
  • the traction coefficient of the traction oil used must be the lowest in the operating temperature range, that is, the traction coefficient at high temperatures (120 ° C) must be sufficiently higher than the CVT design value in terms of power transmission. It is.
  • traction oil also plays a role as a normal lubricating oil in the CVT, so that it has a viscosity and high enough to maintain a sufficient oil film even at a high temperature to prevent frictional wear.
  • low viscosity is required even at low temperatures (low temperature fluidity). That is, it is necessary that the temperature change of the viscosity is small, that is, the viscosity index is high.
  • Patent Document 1 an unprecedented base oil compound of a high-performance traction oil having a high high-temperature traction coefficient, a high viscosity index, and excellent low-temperature fluidity
  • the high-temperature traction coefficient, the low-temperature fluidity, and the viscosity index be high and satisfied in a dimension.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2000-17280
  • the present invention has been made under the above circumstances, and has a high high-temperature traction coefficient, low-temperature fluidity, and a high viscosity index! (4) It is intended to provide a lubricating base oil and a lubricating oil composition that are satisfactory in dimensions.
  • a specific hydrocarbon compound having a bicyclo [2.2.1] heptane ring can be suitable for the purpose of the present invention. It was completed.
  • the gist of the present invention is as follows.
  • a lubricating base oil characterized in that:
  • the lubricating base oil according to 1 above which has a viscosity at 40 ° C of 35 Pa's or less.
  • hydrocarbon compound according to 1 or 2 above, wherein the hydrocarbon compound having a structure represented by the general formula (I) as a basic skeleton is a hydrocarbon compound having 12 to 24 carbon atoms represented by the following general formula (a).
  • Lubricating base oil [0008]
  • R 1 and R 2 each represent an alkyl having 1-4 carbon atoms.
  • hydrocarbon compound according to the above 1 or 2 wherein the hydrocarbon compound having a structure represented by the general formula (II) as a basic skeleton is a hydrocarbon compound having 12 to 24 carbon atoms represented by the following general formula (b): Lubricating base oil.
  • R 1 and R 2 each represent an alkyl having 1-4 carbon atoms.
  • hydrocarbon compound according to the above 1 or 2 wherein the hydrocarbon compound having a structure represented by the general formula (III) as a basic skeleton is a hydrocarbon compound having 12 to 24 carbon atoms represented by the following general formula (c): Lubricating oil Base oil.
  • R 1 And R 2 each represent an alkyl group having 14 to 14 carbon atoms, a cycloalkyl group having 5 to 12 carbon atoms, or an alkylene having 17 to 7 carbon atoms bonded to each other.
  • hydrocarbon compound according to 1 or 2 above, wherein the hydrocarbon compound having the structure represented by the general formula (IV) as a basic skeleton is a hydrocarbon compound having 12 to 24 carbon atoms represented by the following general formula (d): Lubricating oil Base oil.
  • R 1 and R 2 each represent an alkyl having 1-4 carbon atoms.
  • hydrocarbon compound according to the above 1 or 2 wherein the hydrocarbon compound having a structure represented by the general formula (V) as a basic skeleton is a hydrocarbon compound having 12 to 24 carbon atoms represented by the following general formula (e): Lubricating oil Base oil.
  • R 1 and R 2 each represent an alkyl having 1-4 carbon atoms.
  • hydrocarbon compound according to the above 1 or 2 wherein the hydrocarbon compound having a structure represented by the general formula (VI) as a basic skeleton is a hydrocarbon compound having 12 to 24 carbon atoms represented by the following general formula (f): Lubricating oil Base oil. [0018] [Formula 7]
  • k, m and n each represent an integer of 0-6, k + m represents an integer of 0-6, and R 1 and R 2 each represent an alkyl having 1-4 carbon atoms.
  • hydrocarbon compounds of the above general formulas (a) to (f) and other compounds including synthetic traction base oil having an alicyclic structure, and at ⁇ 40 ° C.
  • a lubricating oil composition having a viscosity of 40 Pa's or less and a viscosity index of 80 or more.
  • a lubricating oil composition comprising at least one additive selected from the group consisting of an antiwear agent, an antifoaming agent and an extreme pressure agent.
  • a traction drive fluid which also has a lubricating base oil or lubricating oil composition power according to any one of the above items 113.
  • the lubricating base oil and lubricating oil composition of the present invention contain at least one hydrocarbon compound having a structure represented by the following general formula (I)-(VI) as a basic skeleton, and
  • the viscosity at C is 40 Pa's or less and the viscosity index is 80 or more. If the viscosity at 40 ° C exceeds 4 OPa's, the low-temperature startability deteriorates, which is not preferable.
  • the preferred viscosity at 40 ° C is 35 Pa's or less, particularly preferably 30 Pa's or less. There is no particular lower limit, but it is usually 100 mPa's or more.
  • the viscosity index is less than 80, the viscosity at a high temperature is low and a sufficient oil film cannot be maintained, which is not preferable.
  • the viscosity index is 90 or more.
  • the traction coefficient at 120 ° C. is preferably 0.06 or more, more preferably 0.07 or more.
  • p represents an integer of 1 to 10, and is preferably 2 to 8. However, in the general formulas (I) and (II), p is not 1. Further, the general formula (I)-(VI) also includes a structure in which the 2-position and the 6-position or the 3-position and the 6-position of bicyclo [2.2.1] heptane are bonded.
  • Preferred hydrocarbon compounds having the structure represented by the general formula (I) as a basic skeleton are represented by the following general formula (a).
  • k, m and n each represent an integer of 0-6, k + m represents an integer of 0-6, and R 1 and R 2 each represent an alkyl group having 1-4 carbon atoms. Or a cycloalkyl group having 5 to 12 carbon atoms or an alkylene having 17 to 7 carbon atoms bonded thereto.
  • the alkyl group having 1 to 4 carbon atoms may be linear or branched, for example, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group. , Sec butyl and tert butyl.
  • the cycloalkyl group having 5 to 12 carbon atoms is, for example, a cyclopentyl group, a cyclohexyl group, a cyclooctyl group, a cyclodecyl group, a cyclododecyl group, an adamantyl group, and the like.
  • An alkyl group may be introduced in the range of 12.
  • the alkylene having 17 carbon atoms is, for example, methylene, ethylene, trimethylene, propylene, and the like, and these may have a cross-linked structure having a total carbon number of 117 on alkylene.
  • Preferred hydrocarbon compounds having the structure represented by the general formula (II) as a basic skeleton are represented by the following general formula (b).
  • k, m and n, k + m, R 1 and R 2 are the same as described above. Specific examples thereof include spiro [bicyclo [2.2.1] heptane 7, 1'-cyclopentane] and spiro [bicyclo Mouth [2.2.1] heptane 7, 1'-cyclohexane] and their alkyl group-substituted products.
  • Preferred hydrocarbon compounds having the structure represented by the general formula (III) as a basic skeleton are represented by the following general formula (c).
  • k, m and n, k + m, R 1 and R 2 are the same as described above.
  • specific compounds thereof include octahydro-1,5 methanopentalene, octahydro-1,4 methanoindene, and alkyl group-substituted products thereof.
  • Preferred hydrocarbon compounds having the structure represented by the general formula (IV) as a basic skeleton are represented by the following general formula (d).
  • k, m and n, k + m, R 1 and R 2 are the same as described above.
  • specific compounds thereof include hexahydro-1,3a-ethano-pentalene, octahydro-1,3a ethanoindene, and alkyl-substituted products thereof.
  • Preferred hydrocarbon compounds having the structure represented by the general formula (V) as a basic skeleton are represented by the following general formula (e). [0033] [Formula 14]
  • k, m and n, k + m, R 1 and R 2 are the same as described above. Specific examples thereof include octahydro-1,4-methanoindene, decahydro-1,4-methanoazulene, and alkyl group-substituted products thereof.
  • Preferred hydrocarbon compounds having the structure represented by the general formula (VI) as a basic skeleton are represented by the following general formula (f).
  • k, m and n, k + m, R 1 and R 2 are the same as described above. Specific examples thereof include octahydro-1a, 6 methanoindene, octahydro-1,4a-methanonaphthalene, and alkyl group-substituted products thereof.
  • any one or more hydrocarbon compounds of the above general formulas (a) to (f) are other compounds, and can be mixed with a synthetic traction base oil having an alicyclic structure.
  • Bicyclo [2.2.1] heptane ring, bicyclo [3.2.1] octane ring, bicyclo [3.3.0] octane ring are preferable conjugates of the synthetic traction base oil having the alicyclic structure.
  • the hydrocarbon compound having two bridged rings is bicyclo [2.2.1] heptane Ring compound, bicyclo [3.2.1] octane ring compound, bicyclo [3. 3.0] octane ring compound, bicyclo [2.2.2] octane ring compound It can be preferably selected from dimer hydrides of the dagger. Above all, dimer hydride of bicyclo [2.2.1] heptane ring compound, that is, general formula (g)
  • R 3 and R 4 are each independently an alkyl group having 13 to 13 carbon atoms, and R 5 is a methyl group or an ethyl group substituted on the side chain; And s and t are each an integer of 0-3, and u is 0 or 1.
  • the compound represented by is more preferred.
  • the following olefins which may be substituted with an alkyl group, may be treated in the order of dimerization, hydrogenation, and distillation. You only need to do it.
  • the olefins which may be substituted by the alkyl group of the above-mentioned raw materials include bicyclo [2.2.1] heptoh-2-ene; butyl-substituted or isopropyl-substituted bicyclo [2.2.1] heptone.
  • alkyl-substituted bicyclo [2.2.1] hept-2-ene such as 2-ene; alkylidene substitution such as methylene-substituted, ethylidene-substituted or isopropylidene-substituted bicyclo [2.2.1] -hept-2-ene Bicyclo [2.2.1] hept-2-ene; to alkenyl-substituted bicyclo [2.2.1] such as bur-substituted or isopro- ber-substituted bicyclo [2.2.1] heptane Butane; alkylidene-substituted bicyclo [2.2.1] heptane such as methylene-substituted, ethylidene-substituted or isopropylidene-substituted bicyclo [2.2.1] heptane; bicyclo [3.2.1] octane; Alkyl-sub
  • a dimer hydride of the bicyclo [2.2.1] heptane ring compound of the above general formulas (g) and (h) is preferable, and the corresponding raw material olefin is, for example, bicyclo [2.2.
  • the above-mentioned dimerization means not only dimerization of the same type of olefin but also dimerization of a plurality of different types of olefins.
  • the above-mentioned dimerization of olefins is usually carried out in the presence of a catalyst, if necessary, with the addition of a solvent.
  • a catalyst As the catalyst used for the dimerization, an acidic catalyst is usually used.
  • the use amount of these catalysts is not particularly limited, but is usually 0.
  • a solvent is not necessarily required V, but the handling of the starting material olefin and the catalyst during the reaction is important. The / can also be used to regulate the progress of the reaction.
  • solvents include various pentanes, various hexanes, various Saturated hydrocarbons such as octane, various nonanes, and various decane; alicyclic hydrocarbons such as cyclopentane, cyclohexane, methylcyclosan and decalin; ether conjugates such as getyl ether and tetrahydrofuran; methylene chloride; Examples thereof include halogen-containing conjugates such as dichloroethane and the like, and nitro compounds such as nitromethane and nitrobenzene.
  • the dimerization reaction is carried out in the presence of these catalysts and the like, and the reaction temperature is generally in the range of 70 to 200 ° C.
  • the force at which appropriate conditions are set depending on the type of catalyst, additives, etc. within that temperature range The reaction pressure is usually normal pressure, and the reaction time is usually 0.5 to 10 hours.
  • the dimer of the raw material olefin obtained in this manner is hydrogenated to obtain a desired hydride of the dimer.
  • the hydrogenation may be carried out by appropriately mixing the dimers obtained by using different starting materials, i.e., dimer and dimer.
  • This hydrogenation reaction is also usually carried out in the presence of a catalyst, and examples of the catalyst include hydrogenation catalysts such as nickel, ruthenium, palladium, platinum, rhodium and iridium.
  • the amount of the catalyst used is usually in the range of 0.1 to 100% by mass based on the dimerization product.
  • This hydrogenation reaction proceeds in the absence of a solvent as in the case of the dimerization reaction, but a solvent can also be used.
  • various solvents such as various pentanes, various hexanes, and various octanes can be used.
  • various hydrocarbons such as nonane and various decane, and alicyclic hydrocarbons such as cyclopentane, cyclohexane, methylcyclosan and decalin.
  • the reaction temperature is usually 20 to 300 ° C, and the reaction pressure can be in the range of normal pressure to 20 MPa.
  • the reaction time is usually 110 hours.
  • the generated hydride may be mixed with a hydride generated from another raw material olefin in another step.
  • a hydrocarbon compound having a structure represented by the general formula (I)-(VI) as a basic skeleton is used by mixing with a synthetic traction base oil having an alicyclic structure.
  • the ratio of is not determined in a general manner, but is determined by the balance between the above-mentioned hydrocarbon compound and the synthetic traction base oil at a high temperature traction coefficient, a low temperature viscosity and a viscosity index.
  • the mixing ratio of the above hydrocarbon compound is generally 1 to 60% by mass. Within this range, the effect of improving the hydrocarbon compound is exhibited, and the decrease in the high-temperature traction coefficient is small. Preferably it is 2-50 mass%. In any case, it is indispensable to mix so that the viscosity at 40 ° C is 0 Pa's or less and the viscosity index is 80 or more.
  • the lubricating base oil and the lubricating oil composition of the present invention can be used as a lubricating oil composition by blending various additives depending on the application, including the use of the fluid for traction drive. can do. That is, the lubricating base oil and the lubricating oil composition of the present invention can be used as a lubricating oil by themselves. It is preferable to use it as a lubricating oil suitable for.
  • additives such as known ones can be used as the additives.
  • amine compounds such as alkylated diphenylamine and phenyl ⁇ -naphthylamine
  • Phenolic compounds such as di-t-butylphenol and 4,4'-methylenebis (2,6-di-t-butylphenol); as viscosity index improvers, polymethyl methacrylate, polyisobutylene, ethylene-propylene copolymer, Styrene isoprene copolymer, styrene butadiene hydrogenated copolymer
  • metal detergents such as alkaline earth metal sulfonate, alkaline earth metal phenate, alkaline earth metal salicylate, and alkaline earth metal phosphonate
  • alkenyl succinimides, benzylamines, alkylpolyamines, Ashless dispersants such as succinic acid esters; as friction reducing agents, aliphatic alcohols,
  • Examples of applications of the lubricating base oil of the present invention include traction drive fluids, hydraulic fluids, automatic transmission oils, manual transmission oils, shock absorber oils, gear oils, fluid bearing oils, and rolling oils.
  • the reaction mixture was hydrogenated (hydrogen pressure: 2.94 MPa, reaction temperature: 200 g) in a 1 L autoclave with 6 g of nickel diatomaceous earth catalyst for hydrogenation (manufactured by JGC Idanisha Co., Ltd., 113). ° C, reaction time 3 hours). After completion of the reaction, the catalyst was removed by filtration, and distillation under reduced pressure was performed to obtain a 99% pure ⁇ -methylstyrene linear dimer hydride, that is, 2,4-dicyclohexyl 2-methylpentane 125 g (fluid A) Got. Table 1 shows the measurement results of the properties and the truncation coefficient of the dimer hydride.
  • Table 1 shows the measurement results of the properties and the traction coefficient.
  • Fluid A of Comparative Example 1 was mixed with Fluid 1 of Example 1 so that the content was 50% by mass of the total mass.
  • Table 1 shows the measurement results of the properties and the traction coefficient.
  • Fluid 1 of Example 1 was mixed with Fluid B of Comparative Example 2 so that the content was 20% by mass of the total mass.
  • Table 1 shows the measurement results of the properties and the traction coefficient.
  • Example 4 In a 5 L four-necked flask, 1,000 g of Longiforen (manufactured by Yasuhara Chemical Co., Ltd.) and 500 mL of acetic acid were added. The reaction was performed. The reaction mixture was washed with ice water, saturated aqueous sodium hydrogen carbonate solution and saturated saline, purified by distillation, and then added to a 2 L autoclave together with 18 g of hydrogen peroxide catalyst for hydrogenation, followed by hydrogenation (hydrogen pressure 3 MPa). , Reaction temperature 100 ° C, reaction time 3 hours). After completion of the reaction, the catalyst was removed by filtration and precision distillation was performed to obtain 600 g of the desired isomerized hydride of longifolene (fluid 2). Its chemical structural formula is as follows.
  • Table 1 shows the measurement results of the properties and the traction coefficient.
  • Fluid 2 of Example 4 was mixed with Fluid A of Comparative Example 1 so that the content was 50% by mass of the total mass.
  • Table 1 shows the measurement results of the properties and the traction coefficient.
  • Fluid 2 of Example 4 was mixed with Fluid B of Comparative Example 2 so that the content was 20% by mass of the total mass.
  • Table 1 shows the measurement results of the properties and the traction coefficient.
  • This codimer and 19 g of nickel Z diatomaceous earth catalyst for hydrogenation were added to a 2 L autoclave, and hydrogenation was carried out (hydrogen pressure 2.94 MPa, reaction temperature). 250 ° C, reaction time 5 hours). After completion of the reaction, the catalyst was removed by filtration to obtain 620 g (fluid C) of the target hydride of the co-dimer.
  • Table 1 shows the measurement results of the properties and the traction coefficient. As can be seen from Table 1, the traction coefficient is low.
  • Fluid C of Comparative Example 3 was mixed with Fluid A of Comparative Example 1 so that the content was 50% by mass of the total mass.
  • Table 1 shows the measurement results of the properties and the traction coefficient. As apparent from comparison with Examples 2 or 6, the low temperature viscosity (140 ° C) is the same, but the high temperature viscosity (100 ° C) is low, that is, the viscosity index is low and the traction coefficient is low.
  • Fluid D of Comparative Example 5 was mixed with Fluid A of Comparative Example 1 so that the content was 50% by mass of the total mass.
  • Table 1 shows the measurement results of the properties and the traction coefficient. As apparent from comparison with Example 3 in Table 1, the low temperature viscosity (140 ° C) is equivalent, but the high temperature viscosity (100 ° C) is low, that is, the viscosity index is low and the traction coefficient is low. Low.
  • the measurement of the traction coefficient at 120 ° C. in the above Examples and Comparative Examples was performed using a two-cylinder friction tester.
  • one of the cylinders of the same size 52 mm in diameter, 6 mm in thickness, a tyco type with a radius of curvature of 10 mm on the driven side, and a flat type with no crowning on the driven side
  • a 98.ON load was applied to the contact portion between the two cylinders with a weight, and the tangential force generated between the two cylinders, ie, the traction force, was measured to determine the traction coefficient.
  • This cylinder was made of SUJ-2 mirror-finished bearing steel, with an average peripheral speed of 6.8 mZs and a maximum Hertzian contact pressure of 1.23 GPa. Also, Fluid temperature (oil temperature) To measure the traction coefficient at 120 ° C, the oil tank was heated with a heater to raise the oil temperature from 40 ° C to 140, and the traction coefficient at a slip rate of 5% was measured. I asked.
  • Fluid 3 of Example 7 was mixed with Fluid B of Comparative Example 2 so that the content was 20% by mass of the total weight.
  • Table 1 shows the measurement results of the properties and the traction coefficient.
  • Fluid 4 of Example 9 was mixed with Fluid B of Comparative Example 2 so that the content was 20% by mass of the total weight.
  • Table 1 shows the measurement results of the properties and the traction coefficient.
  • Tricyclo Example 9 [2.2.2 1.0 2 '6] Ka ⁇ E with water ⁇ palladium one carbon catalyst 9g heptane derivative (fluid 4) 300 g in 1L autoclave, was subjected to hydrogenation (hydrogen Pressure 6M Pa, reaction temperature 200 ° C, reaction time 4 hours). After completion of the reaction, the catalyst was removed by filtration, and the filtrate was distilled under reduced pressure to obtain 290 g (fluid 5) of the desired 1,5,5,8a-tetramethyl-decahydro-1,4-methanoazulene. . Table 1 shows the measurement results of the properties and the traction coefficient.
  • Fluid 5 of Example 11 was mixed with Fluid B of Comparative Example 2 so that the content was 20% by mass of the total weight.
  • Table 1 shows the measurement results of the properties and the traction coefficient.
  • Fluid 6 of Example 13 was mixed with Fluid B of Comparative Example 2 so that the content was 50% by mass of the total weight.
  • Table 1 shows the measurement results of the properties and the traction coefficient.
  • Example 16 Fluid 7 of Example 15 was mixed with Fluid B of Comparative Example 2 so that the content was 20% by mass of the total weight.
  • Table 1 shows the measurement results of the properties and the traction coefficient.
  • reaction time After the completion of the reaction, the resultant was washed with a saturated aqueous solution of ammonium chloride and water.
  • the reaction product was added to a 1-liter autoclave together with 3 Og of nickel Z diatomaceous earth catalyst for hydrogenation (N-113, manufactured by JGC Idani Co., Ltd.), and dehydration was carried out (hydrogen pressure 6 MPa, reaction temperature 250 ° C). , Reaction time
  • Fluid 8 of Example 16 was mixed with Fluid B of Comparative Example 2 so that the content was 20% by mass of the total weight.
  • Table 1 shows the measurement results of the properties and the traction coefficient.
  • reaction product was poured into a 10% aqueous sulfuric acid solution, extracted with ethyl acetate, and the organic layer was dried, concentrated, distilled under reduced pressure, and spiro [1,7,7 trimethyl-bicyclo [2.2.1] heptane 2-one- 3,1′-Cyclopentane] 326 g was obtained.
  • the reaction product was poured into a 10% aqueous sulfuric acid solution, extracted with ethyl acetate, and the organic layer was dried and concentrated.
  • the residue was placed in a 2 L eggplant flask equipped with a reflux condenser and a Dean-Stark trap, and 1 L of toluene and 1.8 g of p-toluenesulfonic acid were added.
  • the mixture was heated and refluxed for 2 hours while removing generated water.
  • Fluid 9 of Example 19 was mixed with Fluid B of Comparative Example 2 so that the content was 20% by mass of the total weight.
  • Table 1 shows the measurement results of the properties and the traction coefficient.
  • Example 19 the procedure of Example 19 was repeated except that 1,5 dibromopentane 69 Og was used instead of 1,4 dibromobutane 628 g. —Tetramethyl-bicyclo [2.2.1] heptane 2-one 3,1′-cyclohexane] 80 g (fluid 10) was obtained. Table 1 shows the measurement results of the properties and the traction coefficient.
  • the fluid B of Comparative Example 2 was prepared so that the content of the fluid 10 of Example 21 was 30% by mass of the total weight. Mixed.
  • Table 1 shows the measurement results of the properties and the traction coefficient.
  • Fluid 11 of Example 23 was mixed with Fluid B of Comparative Example 2 so that the content was 30% by mass of the total weight.
  • Table 1 shows the measurement results of the properties and the traction coefficient.
  • Example 23 nonane (fluid 11) and ⁇ the 1 200 g in hexane to 200 mL, water ⁇ 10 % Palladium-carbon catalyst 9. Og and hydrogen were placed in a 1 L autoclave and hydrogenated (hydrogen pressure 6 MPa, reaction temperature 200 ° C., reaction time 10 hours).
  • Example 25 The fluid 12 of Example 25 was mixed with the fluid B of Comparative Example 2 so that the content was 50% by mass of the total weight.
  • Table 1 shows the measurement results of the properties and the traction coefficient.
  • Example 27 In a 2 L four-necked flask equipped with a reflux condenser, a stirrer, and a thermometer, 13. lg of cobalt iodide dihydrate was heated under reduced pressure to remove water, and suspended in 520 mL of dichloroethane. 13.2 g of 1,2-bis (diphenylphosphino) ethane, 276 g of 2,5-norbornadiene and 24.6 g of dumbbell were added, and the mixture was heated under reflux for 6 hours. The reaction mixture was filtered, concentrated, distilled under reduced pressure to Kisashi Black [9. 2. 1.
  • Fluid 13 of Example 27 was mixed with Fluid B of Comparative Example 2 so that the content was 30% by mass of the total weight.
  • Table 1 shows the measurement results of the properties and the traction coefficient.
  • Example 27 to the Kisashikuro [9.2.2 1.0 2 '10.0 3' 8.0 4-6.0 5 '9] tetradecane and 600ml diluted with hexane f (fluid 13) 13 Og, 10% Palladium-carbon catalyst 18. The mixture was placed in a 2 L autoclave together with Og and hydrogenated (hydrogen pressure 4 MPa, reaction temperature 200 ° C, reaction time 1 hour).
  • Fluid 14 of Example 29 was mixed with Fluid B of Comparative Example 2 so that the content was 30% by mass of the total weight.
  • Table 1 shows the measurement results of the properties and the traction coefficient.
  • Example 31 The fluid 15 of Example 31 was mixed with the fluid B of Comparative Example 2 so that the content was 50% by mass of the total weight.
  • Table 1 shows the measurement results of the properties and the traction coefficient.
  • Example 25 Example 26
  • Example 27 Example 28
  • Example 30 Example 31
  • Example 32 Fluid 12 Fluid 12 + Fluid B Fluid 13 + Fluid B Fluid 14 Fluid 14 + Fluid B Fluid 15 Fluid 15 + Fluid B Kinematic viscosity @ 40 ° C Alt '* act 9. »14./4 1U.OU I .7U 3.15.44 mm, s
  • Viscosity index 84 80 112 88 113 88 122 101 Pour point ° c -50> -50>-25-45 -25 -45 -25 -45 Low temperature viscosity @-40 ° C
  • the lubricating base oil and lubricating oil composition of the present invention can satisfy the high-temperature traction coefficient, the low-temperature fluidity and the viscosity index in a high dimension, and can be used for a traction drive of a CVT (continuously variable transmission) for automobiles. It can be suitably used as a fluid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Lubricants (AREA)

Abstract

 本発明は、一般式(I)~(VI)で表される構造を基本骨格とする炭化水素化合物を少なくとも一種含み、かつ−40°Cにおける粘度が40Pa・s以下であり、粘度指数が80以上である潤滑油基油であって、 【化1】 (式中、pは1~10の整数を示す。ただし、一般式(I)、(II)において、pは1ではない。) 高温トラクション係数、低温流動性及び粘度指数が高い次元で満足する潤滑油基油及び潤滑油組成物を提供する。                                                                                 

Description

明 細 書
潤滑油基油及び潤滑油組成物
技術分野
[0001] 本発明は、潤滑油基油及び潤滑油組成物に関し、より詳しくは、トラクシヨンドライブ 用流体として有用な、自動車用 CVT (無段変速機)の実用上重要な高温トラクシヨン 係数が高ぐかつ低温始動性において重要な低温における粘度が低ぐさらに粘度 指数が高い、バランスのとれた潤滑油基油及び潤滑油組成物に関する。
背景技術
[0002] 自動車用トラクシヨン式 CVTはトルク伝達容量が大きぐまた使用条件も過酷なため
、使用するトラクシヨンオイルのトラクシヨン係数は、使用温度範囲での最低値、すな わち高温(120°C)でのトラクシヨン係数が CVTの設計値より十分に高いことが動力伝 達面で必須である。
[0003] またトラクシヨンオイルは、 CVT内で通常の潤滑油としての役割も担っているので、 摩擦摩耗防止のために高温でも十分な油膜を保持できるだけの高 、粘度を有するこ と、一方では、北米 ·北欧等の寒冷地での低温始動性のために低温でも低い粘度を 有すること (低温流動性)が要求される。すなわち、粘度の温度変化が小さいこと、つ まり粘度指数の高 、ことが必要である。
このような背景を踏まえ、本発明者らは、従来にない、高温トラクシヨン係数、粘度指 数が高ぐ低温流動性にも優れた高性能トラクシヨンオイルの基油化合物を開発した (特許文献 1参照)。
しかし、 CVTの設計によっては、さらに高温トラクシヨン係数、低温流動性及び粘度 指数が高 、次元で満足することが要求される。
[0004] 特許文献 1:特開 2000-17280号公報
発明の開示
[0005] 本発明は、上記状況下でなされたもので、高温トラクシヨン係数、低温流動性及び 粘度指数が高!ヽ次元で満足する潤滑油基油及び潤滑油組成物を提供することを目 的とするものである。 本発明者らは鋭意研究を重ねた結果、ビシクロ [2. 2. 1]ヘプタン環を有する特定 の炭化水素化合物が本発明の目的に適合しうることを見出し、この知見に基づいて 本発明を完成するに到った。
すなわち、本発明の要旨は下記の通りである。
1.一般式 (I)一 (VI)で表される構造を基本骨格とする炭化水素化合物を少なくとも 一種含み、かつ 40°Cにおける粘度が 40Pa' s以下であり、粘度指数が 80以上であ ることを特徴とする潤滑油基油。
[0006] [化 1]
Figure imgf000004_0001
(IV) (V) (VI)
[0007] (式中、 pは 1一 10の整数を示す。ただし、一般式 (1)、 (II)において、 pは 1ではない o )
2. 40°Cにおける粘度が 35Pa' s以下である上記 1記載の潤滑油基油。
3.一般式 (I)で表される構造を基本骨格とする炭化水素化合物が、下記一般式 (a) で表される炭素数 12— 24の炭化水素化合物である上記 1又は 2に記載の潤滑油基 油。 [0008] [化 2]
Figure imgf000005_0001
[0009] (式中、 k、 m及び nは、それぞれ 0— 6の整数を示し、 k+mは 0— 6の整数を示し、 R1 及び R2は、それぞれ炭素数 1一 4のアルキル基又は炭素数 5— 12のシクロアルキル 基あるいはそれぞれ結合する炭素数 1一 7のアルキレンを示す。)
4.一般式 (II)で表される構造を基本骨格とする炭化水素化合物が、下記一般式 (b) で表される炭素数 12— 24の炭化水素化合物である上記 1又は 2に記載の潤滑油基 油。
[0010] [化 3]
Figure imgf000005_0002
[0011] (式中、 k、 m及び nは、それぞれ 0— 6の整数を示し、 k+mは 0— 6の整数を示し、 R1 及び R2は、それぞれ炭素数 1一 4のアルキル基又は炭素数 5— 12のシクロアルキル 基あるいはそれぞれ結合する炭素数 1一 7のアルキレンを示す。)
5.一般式 (III)で表される構造を基本骨格とする炭化水素化合物が、下記一般式 (c )で表される炭素数 12— 24の炭化水素化合物である上記 1又は 2に記載の潤滑油 基油。
[0012] [化 4]
Figure imgf000005_0003
[0013] (式中、 k、 m及び nは、それぞれ 0— 6の整数を示し、 k+mは 0— 6の整数を示し、 R1 及び R2は、それぞれ炭素数 1一 4のアルキル基又は炭素数 5— 12のシクロアルキル 基あるいはそれぞれ結合する炭素数 1一 7のアルキレンを示す。)
6.一般式 (IV)で表される構造を基本骨格とする炭化水素化合物が、下記一般式 (d )で表される炭素数 12— 24の炭化水素化合物である上記 1又は 2に記載の潤滑油 基油。
[0014] [化 5]
(R1
Figure imgf000006_0001
[0015] (式中、 k、 m及び nは、それぞれ 0— 6の整数を示し、 k+mは 0— 6の整数を示し、 R1 及び R2は、それぞれ炭素数 1一 4のアルキル基又は炭素数 5— 12のシクロアルキル 基あるいはそれぞれ結合する炭素数 1一 7のアルキレンを示す。)
7.一般式 (V)で表される構造を基本骨格とする炭化水素化合物が、下記一般式 (e )で表される炭素数 12— 24の炭化水素化合物である上記 1又は 2に記載の潤滑油 基油。
[0016] [化 6]
Figure imgf000006_0002
[0017] (式中、 k、 m及び nは、それぞれ 0— 6の整数を示し、 k+mは 0— 6の整数を示し、 R1 及び R2は、それぞれ炭素数 1一 4のアルキル基又は炭素数 5— 12のシクロアルキル 基あるいはそれぞれ結合する炭素数 1一 7のアルキレンを示す。)
8.一般式 (VI)で表される構造を基本骨格とする炭化水素化合物が、下記一般式 (f )で表される炭素数 12— 24の炭化水素化合物である上記 1又は 2に記載の潤滑油 基油。 [0018] [化 7]
Figure imgf000007_0001
[0019] (式中、 k、 m及び nは、それぞれ 0— 6の整数を示し、 k+mは 0— 6の整数を示し、 R1 及び R2は、それぞれ炭素数 1一 4のアルキル基又は炭素数 5— 12のシクロアルキル 基あるいはそれぞれ結合する炭素数 1一 7のアルキレンを示す。)
9.上記一般式 (a)—(f)のいずれか一種以上の炭化水素化合物と、それら以外の 化合物であって、脂環構造を有する合成トラクシヨン基油を含み、かつ - 40°Cにおけ る粘度が 40Pa' s以下であり、粘度指数が 80以上であることを特徴とする潤滑油組成 物。
10.脂環構造を有する合成トラクシヨン基油が、下記一般式 (h)で表される炭素数 16 一 20の炭化水素である上記 9記載の潤滑油組成物。
[0020] [化 8]
Figure imgf000007_0002
[0021] (式中、 qは 1又は 2の整数を示し、 rは 2又は 3の整数を示す。)
11.脂環構造を有する合成トラクシヨン基油が、 2, 4ージシクロへキシルー 2—メチル ンタンである上記 9記載の潤滑油組成物。
12.脂環構造を有する合成トラクシヨン基油が、 2, 3—ジシクロへキシルー 2, 3—ジメ チルブタンである上記 9記載の潤滑油組成物。
13.上記 1一 12のいずれかに記載の潤滑油基油又は潤滑油組成物に、酸化防止 剤、粘度指数向上剤、清浄分散剤、摩擦低減剤、金属不活性化剤、流動点降下剤 、耐摩耗剤、消泡剤及び極圧剤の中から選ばれる少なくとも一種の添加剤を配合し た潤滑油組成物。 14.上記 1一 13のいずれかに記載の潤滑油基油又は潤滑油組成物力もなるトラクシ ヨンドライブ用流体。
発明を実施するための最良の形態
[0022] 本発明の潤滑油基油及び潤滑油組成物は、下記一般式 (I)一 (VI)で表される構 造を基本骨格とする炭化水素化合物を少なくとも一種含み、かつ - 40°Cにおける粘 度が 40Pa' s以下であり、粘度指数が 80以上のものである。 40°Cにおける粘度が 4 OPa' sを超えると、低温始動性が悪くなり好ましくない。 40°Cにおける好ましい粘度 は 35Pa' s以下であり、特に 30Pa' s以下が好ましい。下限については特に制限はな いが、通常 lOOmPa' s以上である。また、粘度指数が 80未満であると、高温での粘 度が低く十分な油膜を保てなくなり好ましくな、。好まし 、粘度指数は 90以上である 。さらに、 120°Cにおけるトラクシヨン係数は 0. 06以上であることが好ましぐより好ま しくは 0. 07以上である。
[0023] [化 9]
Figure imgf000008_0001
(IV) (V) (VI)
[0024] ここで、 pは 1一 10の整数を示し、好ましくは 2— 8である。ただし、一般式 (I)、(II) において、 pは 1ではない。また、一般式(I)一(VI)においてビシクロ〔2. 2. 1〕ヘプタ ンの 2位と 6位また、は 3位と 6位が結合した構造も含まれる。
前記一般式 (I)で表される構造を基本骨格とする炭化水素化合物の好ま 、ものは 、下記一般式 (a)で表される。 [0025] [化 10]
Figure imgf000009_0001
[0026] 式中、 k、 m及び nは、それぞれ 0— 6の整数を示し、 k+mは 0— 6の整数を示し、 R1 及び R2は、それぞれ炭素数 1一 4のアルキル基又は炭素数 5— 12のシクロアルキル 基あるいはそれぞれ結合する炭素数 1一 7のアルキレンを示す。ここで、炭素数 1一 4 のアルキル基は、直鎖状、分岐鎖状のいずれであってもよぐ例えば、メチル基、ェ チル基、 n プロピル基、イソプロピル基、 n ブチル基、イソブチル基、 sec ブチル基 、 tert ブチル基である。また、炭素数 5— 12のシクロアルキル基は、例えば、シクロ ペンチル基、シクロへキシル基、シクロォクチル基、シクロデシル基、シクロドデシル 基、ァダマンチル基などであり、これらは環上に全炭素数が 5— 12の範囲でアルキル 基が導入されていてもよい。また、炭素数 1一 7のアルキレンは例えば、メチレン、ェ チレン、トリメチレン、プロピレン、などであり、これらはアルキレン上に全炭素数が 1一 7の範囲で架橋構造を有するものでもよい。また、その具体的化合物として、スピロ〔 ビシクロ [2. 2. 1]ヘプタン 2, 1'—シクロペンタン〕、スピロ〔ビシクロ [2. 2. 1]ヘプタ ン—2, 1'—シクロへキサン〕及びそれらのアルキル基、アルキレン置換体などを挙げる ことができる。
前記一般式 (II)で表される構造を基本骨格とする炭化水素化合物の好ま 、もの は、下記一般式 (b)で表される。
[0027] [化 11]
Figure imgf000009_0002
[0028] ここで、 k、 m及び n、 k+m、 R1及び R2は、前記に同じである。また、その具体的化 合物として、スピロ〔ビシクロ [2. 2. 1]ヘプタン 7, 1'—シクロペンタン〕、スピロ〔ビシク 口 [2. 2. 1]ヘプタン 7, 1'—シクロへキサン〕及びそれらのアルキル基置換体などを 挙げることができる。
前記一般式 (III)で表される構造を基本骨格とする炭化水素化合物の好ま 、もの は、下記一般式 (c)で表される。
[0029] [化 12]
Figure imgf000010_0001
[0030] ここで、 k、 m及び n、 k+m、 R1及び R2は、前記に同じである。また、その具体的化 合物として、ォクタヒドロ一 1, 5 メタノーペンタレン、ォクタヒドロ一 2, 4 メタノーインデン 及びそれらのアルキル基置換体などを挙げることができる。
前記一般式 (IV)で表される構造を基本骨格とする炭化水素化合物の好ま 、もの は、下記一般式 (d)で表される。
[0031] [化 13]
(
Figure imgf000010_0002
[0032] ここで、 k、 m及び n、 k+m、 R1及び R2は、前記に同じである。また、その具体的化 合物として、へキサヒドロ一 1, 3a—ェタノ一ペンタレン、ォクタヒドロ一 1, 3a エタノーィ ンデン及びそれらのアルキル基置換体などを挙げることができる。
前記一般式 (V)で表される構造を基本骨格とする炭化水素化合物の好ま 、もの は、下記一般式 (e)で表される。 [0033] [化 14]
Figure imgf000011_0001
[0034] ここで、 k、 m及び n、 k+m、 R1及び R2は、前記に同じである。また、その具体的化 合物として、ォクタヒドロ一 1, 4 メタノーインデン、デカヒドロ一 1, 4 メタノーアズレン及 びそれらのアルキル基置換体などを挙げることができる。
前記一般式 (VI)で表される構造を基本骨格とする炭化水素化合物の好ま 、もの は、下記一般式 (f)で表される。
[0035] [化 15]
Figure imgf000011_0002
[0036] ここで、 k、 m及び n、 k+m、 R1及び R2は、前記に同じである。また、その具体的化 合物として、ォクタヒドロ一 3a, 6 メタノーインデン、ォクタヒドロ一 2, 4a メタノーナフタ レン及びそれらのアルキル基置換体などを挙げることができる。
[0037] また、上記一般式 (a)— (f)のいずれか一種以上の炭化水素化合物は、それら以 外の化合物であって、脂環構造を有する合成トラクシヨン基油と混合することができる その脂環構造を有する合成トラクシヨン基油の好ましいィ匕合物として、ビシクロ [2. 2 . 1]ヘプタン環、ビシクロ [3. 2. 1]オクタン環、ビシクロ [3. 3. 0]オクタン環及びビ シクロ [2. 2. 2]オクタン環の中から選ばれた有橋環 2個を有する炭化水素化合物、 及び 2, 4—ジシクロへキシルー 2—メチルペンタン、 2, 3—ジシクロへキシルー 2, 3—ジメ チルブタンを挙げることができる。
[0038] 上記の有橋環 2個を有する炭化水素化合物としては、ビシクロ [2. 2. 1]ヘプタン 環化合物、ビシクロ [3. 2. 1]オクタン環化合物、ビシクロ [3. 3. 0]オクタン環化合物 、ビシクロ [2. 2. 2]オクタン環化合物の中から選ばれる少なくとも一種の脂環式ィ匕合 物の二量体の水素化物から好ましく選択することができる。なかでも、ビシクロ [2. 2. 1]ヘプタン環化合物の二量体の水素化物、すなわち一般式 (g)
[0039] [化 16]
Figure imgf000012_0001
[0040] (式中、 R3及び R4は、それぞれ独立に炭素数 1一 3のアルキル基、 R5は側鎖にメチル 基もしくはェチル基が置換して 、てもよ 、メチレン基、エチレン基又はトリメチレン基 を示し、 s及び tは、それぞれ 0— 3の整数、 uは 0又は 1を示す。)
で表される化合物がさらに好ましい。
また、一般式 (g)で表される化合物の中でも、下記一般式 (h)
[0041] [化 17]
Figure imgf000012_0002
[0042] (式中、 qは 1又は 2の整数を示し、 rは 2又 3の整数を示す。 )
で表される化合物が特に好まし 、。
[0043] 上記脂環式ィ匕合物の二量体の水素化物の好ましい製造方法としては、例えば、ァ ルキル基が置換してもよい下記ォレフィンを二量化、水素化、蒸留の順に処理を行え ばよい。上記の原料のアルキル基が置換してもよいォレフィンとしては、例えば、ビシ クロ [2. 2. 1]ヘプトー 2—ェン;ビュル置換あるいはイソプロべ-ル置換ビシクロ [2. 2 . 1]ヘプトー 2—ェン等のァルケ-ル置換ビシクロ [2. 2. 1]ヘプトー 2—ェン;メチレン 置換,ェチリデン置換あるいはイソプロピリデン置換ビシクロ [2. 2. 1]ヘプトー 2—ェ ン等のアルキリデン置換ビシクロ [2. 2. 1]ヘプトー 2—ェン;ビュル置換あるいはイソ プロべ-ル置換ビシクロ [2. 2. 1]ヘプタン等のァルケ-ル置換ビシクロ [2. 2. 1]へ プタン;メチレン置換,ェチリデン置換あるいはイソプロピリデン置換ビシクロ [2. 2. 1 ]ヘプタン等のアルキリデン置換ビシクロ [2. 2. 1]ヘプタン;ビシクロ [3. 2. 1]ォクテ ン;ビュル置換あるいはイソプロべ-ル置換ビシクロ [3. 2. 1]オタテン等のァルケ- ル置換ビシクロ [3. 2. 1]オタテン;メチレン置換,ェチリデン置換あるいはイソプロピ リデン置換ビシクロ [3. 2. 1]オタテン等のアルキリデン置換ビシクロ [3. 2. 1]ォクテ ン;ビュル置換あるいはイソプロべ-ル置換ビシクロ [3. 2. 1]オクタン等のァルケ- ル置換ビシクロ [3. 2. 1]オクタン;メチレン置換,ェチリデン置換あるいはイソプロピ リデン置換ビシクロ [3. 2. 1]オクタン等のアルキリデン置換ビシクロ [3. 2. 1]ォクタ ン;ビシクロ [3. 3. 0]オタテン;ビュル置換あるいはイソプロべ-ル置換ビシクロ [3. 3. 0]オタテン等のァルケ-ル置換ビシクロ [3. 3. 0]オタテン;メチレン置換,ェチリ デン置換あるいはイソプロピリデン置換ビシクロ [3. 3. 0]オタテン等のアルキリデン 置換ビシクロ [3. 3. 0]オタテン;ビュル置換あるいはイソプロべ-ル置換ビシクロ [3 . 3. 0]オクタン等のアルケ-ル置換ビシクロ [3. 3. 0]オクタン;メチレン置換,ェチリ デン置換あるいはイソプロピリデン置換ビシクロ [3. 3. 0]オクタン等のアルキリデン 置換ビシクロ [3. 3. 0]オクタン;ビシクロ [2. 2. 2]オタテン;ビュル置換あるいはイソ プロべ-ル置換ビシクロ [2. 2. 2]オタテン等のァルケ-ル置換ビシクロ [2. 2. 2]ォ クテン;メチレン置換,ェチリデン置換あるいはイソプロピリデン置換ビシクロ [2. 2. 2 ]オタテン等のアルキリデン置換ビシクロ [2. 2. 2]オタテン;ビュル置換あるいはイソ プロべ-ル置換ビシクロ [2. 2. 2]オクタン等のァルケ-ル置換ビシクロ [2. 2. 2]ォ クタン;メチレン置換,ェチリデン置換あるいはイソプロピリデン置換ビシクロ [2. 2. 2] オクタン等のアルキリデン置換ビシクロ [2. 2. 2]オクタンなどを挙げることができる。 なかでも、前記一般式 (g)と (h)のビシクロ [2. 2. 1]ヘプタン環化合物の二量体の 水素化物が好ましいので、対応する原料ォレフィンとしては、例えば、ビシクロ [2. 2. 1]ヘプト— 2—ェン; 2—メチレンビシクロ [2. 2. 1]ヘプタン; 2—メチルビシクロ [2. 2. 1]ヘプト— 2—ェン; 2—メチレン— 3—メチルビシクロ [2. 2. 1]ヘプタン; 3—メチレン 2 ーメチルビシクロ [2. 2. 1]ヘプタン; 2, 3 ジメチルビシクロ [2. 2. 1]ヘプト— 2—ェン ; 2—メチレン 7—メチルビシクロ [2. 2. 1]ヘプタン; 3—メチレン 7—メチルビシクロ [2 . 2. 1]ヘプタン; 2, 7 ジメチルビシクロ [2. 2. 1]ヘプト— 2 ェン; 2—メチレン 5—メ チルビシクロ [2. 2. 1]ヘプタン; 3—メチレン 5—メチルビシクロ [2. 2. 1]ヘプタン; 2 , 5 ジメチルビシクロ [2. 2. 1]ヘプト— 2—ェン; 2—メチレン 6—メチルビシクロ [2. 2 . 1]ヘプタン; 3—メチレン— 6—メチルビシクロ [2. 2. 1]ヘプタン; 2, 6—ジメチルビシ クロ [2. 2. 1]ヘプトー 2 ェン; 2—メチレン 1ーメチルビシクロ [2. 2. 1]ヘプタン; 3— メチレン 1ーメチルビシクロ [2. 2. 1]ヘプタン; 1, 2—ジメチルビシクロ [2. 2. 1]へ プト— 2—ェン; 2—メチレン 4ーメチルビシクロ [2. 2. 1]ヘプタン; 3—メチレン 4ーメチ ルビシクロ [2. 2. 1]ヘプタン; 2, 4—ジメチルビシクロ [2. 2. 1]ヘプト— 2 ェン; 2—メ チレン 3, 7—ジメチルビシクロ [2. 2. 1]ヘプタン; 3—メチレン 2, 7—ジメチルビシク 口 [2. 2. 1]ヘプタン; 2, 3, 7—トリメチルビシクロ [2. 2. 1]ヘプトー 2 ェン; 2—メチレ ン— 3, 6—ジメチルビシクロ [2. 2. 1]ヘプタン; 3—メチレン 2, 6—ジメチルビシクロ [ 2. 2. 1]ヘプタン; 2—メチレン 3, 3 ジメチルビシクロ [2. 2. 1]ヘプタン; 3—メチレ ン— 2, 2—ジメチルビシクロ [2. 2. 1]ヘプタン; 2, 3, 6—トリメチルビシクロ [2. 2. 1] ヘプト— 2 ェン; 2—メチレン— 3—ェチルビシクロ [2. 2. 1]ヘプタン; 3—メチレン 2— ェチルビシクロ [2. 2. 1]ヘプタン; 2—メチルー 3—ェチルビシクロ [2. 2. 1]ヘプトー 2 ーェンなどを挙げることができる。
[0045] なお、前記の二量化とは、同種のォレフィンの二量化のみならず、異種の複数のォ レフインの共二量ィ匕をも意味する。上述のォレフィンの二量ィ匕は、通常触媒の存在下 で必要に応じて溶媒を添加して行う。このニ量ィ匕に用いる触媒としては、通常、酸性 触媒が使用される。具体的には、活性白土,ゼォライト,モンモリナイト,イオン交換 榭脂等の固体酸、フッ化水素酸、ポリリン酸等の鉱酸類、トリフリック酸等の有機酸、 塩ィ匕アルミニウム,塩化第二鉄,塩化第二スズ,三フッ化ホウ素,三フッ化ホウ素錯体 ,三臭化ホウ素,臭化アルミニウム,塩ィ匕ガリウム,臭化ガリウム等のルイス酸、トリエ チルアルミニウム,塩化ジェチルアルミニウム,二塩化ェチルアルミニウム等の有機ァ ルミ-ゥム化合物などを挙げることができる。
[0046] これらの触媒の使用量は、特に制限されないが、通常は原料ォレフィンに対して 0.
1一 100質量%の範囲である。この二量化にあたっては、溶媒は必ずしも必要としな V、が、反応時の原料ォレフィンや触媒の取り扱 、上ある!/、は反応の進行を調節する 上で用いることもできる。このような溶媒としては、各種ペンタン,各種へキサン,各種 オクタン,各種ノナン,各種デカン等の飽和炭化水素、シクロペンタン,シクロへキサ ン,メチルシクロサン,デカリン等の脂環式炭化水素、ジェチルエーテル,テトラヒドロ フラン等のエーテルィ匕合物、塩化メチレン,ジクロルェタン等のハロゲン含有ィ匕合物 、ニトロメタン,ニトロベンゼン等の-トロ化合物などを挙げることができる。
[0047] これら触媒等の存在下で二量化反応を行うが、その反応温度としては、一般に 70 一 200°Cの範囲である。その温度範囲で触媒の種類や添加剤等により適当な条件 が設定される力 反応圧力は通常常圧であり、反応時間については、通常 0. 5— 10 時間である。
次に、このようにして得られた原料ォレフィンの二量体を水素化し、 目的とする二量体 の水素化物とする。なお、水素化は別々に別の原料ォレフィンを使用してニ量ィ匕した 二量体を適度に混合したものにっ 、て行ってもょ 、。
[0048] この水素化反応も、通常は触媒の存在下行うが、その触媒としては、ニッケル,ルテ ユウム,パラジウム, 白金,ロジウム,イリジウム等の水素化用触媒を挙げることができ る。この触媒の使用量は、通常上記二量化生成物に対して 0. 1— 100質量%の範 囲である。
また、この水素化反応は、前記二量ィ匕反応と同様に、無溶媒下でも進行するが、溶 媒を用いることもでき、その場合、溶媒としては、各種ペンタン,各種へキサン,各種 オクタン,各種ノナン,各種デカン等の飽和炭化水素ゃシクロペンタン,シクロへキサ ン,メチルシクロサン,デカリン等の脂環式炭化水素などを挙げることができる。
[0049] 反応温度としては、通常 20— 300°C、反応圧力につ 、ては、常圧から 20MPaの 範囲で行うことができる。反応時間は、通常 1一 10時間である。なお、生成した水素 化物は、別の工程で別の原料ォレフィンから生成した水素化物と混合してもよい。
[0050] 本発明にお 、て、一般式 (I)一 (VI)で表される構造を基本骨格とする炭化水素化 合物を脂環構造を有する合成トラクシヨン基油と混合して用いる場合の割合は一概に は決められず、上記炭化水素化合物と合成トラクシヨン基油の高温トラクシヨン係数、 低温粘度、粘度指数との兼ね合いで決まる。上記炭化水素化合物の混合割合は、 一般には、 1一 60質量%である。その範囲であると、上記炭化水素化合物の改善の 効果が現れ、高温トラクシヨン係数の低下が小さい。好ましくは 2— 50質量%である。 いずれにせよ、 40°Cにおける粘度力 0Pa' s以下であり、粘度指数が 80以上にな るように混合することが必須である。
[0051] また、本発明の潤滑油基油及び潤滑油組成物は、トラクシヨンドライブ用流体の用 途を始め、その用途に応じて、各種の添加剤を配合して潤滑油組成物として使用す ることができる。すなわち、本発明の潤滑油基油及び潤滑油組成物は、それ自体で も潤滑油として使用可能である力 目的に応じて下記の添加剤を配合して潤滑油組 成物とし、それぞれの用途に適合した潤滑油として使用すると好ましい。
[0052] 添加剤としては、公知のものなど各種のものが使用可能であり、例えば、酸化防止 剤として、アルキル化ジフエ-ルァミン,フエ-ルー α—ナフチルァミンなどのアミン系 化合物、 2, 6—ジー t ブチルフエノール, 4, 4'ーメチレンビス一(2, 6—ジー tーブチルフ ェノール)などのフエノール系化合物;粘度指数向上剤として、ポリメチルメタクリレー ト系,ポリイソブチレン系,エチレン プロピレン共重合体系,スチレン イソプレン共 重合体系,スチレン ブタジエン水添共重合体系;清浄分散剤として、アルカリ土類 金属スルホネート,アルカリ土類金属フエネート,アルカリ土類金属サリチレート,アル カリ土類金属ホスホネート等の金属系清浄剤、並びにアルケニルコハク酸イミド,ベン ジルァミン,アルキルポリアミン,ァルケ-ルコハク酸エステル等の無灰系分散剤;摩 擦低減剤としては、脂肪族アルコール,脂肪酸,脂肪酸エステル,脂肪族ァミン,脂 肪酸ァミン塩,脂肪酸アミド;金属不活性化剤として、ベンゾトリァゾール,チアジアゾ ール,ァルケ-ルコハク酸エステル;流動点降下剤として、ポリアルキルメタタリレート ,ポリアルキルスチレン;耐摩耗剤としては、 MoDTP, MoDTCなどの有機モリブデ ン化合物、 ZnDTPなどの有機亜鉛化合物、アルキルメルカプチルボレートなどの有 機ホウ素化合物、グラフアイト,二硫ィ匕モリブデン,硫ィ匕アンチモン,ホウ素化合物, ポリテトラフルォロエチレンなどの固体潤滑剤系耐摩耗剤;消泡剤として、ジメチルポ リシロキサン,ポリアタリレート;極圧剤として、硫化油脂,ジフエニルスルフイド,メチル トリクロロステアレート,塩素化ナフタレンなどを挙げることができる。
[0053] 本発明の潤滑油基油の用途としては、例えば、トラクシヨンドライブ用流体を始め、 油圧作動油、 自動変速機油、手動変速機油、緩衝器油、歯車油、流体軸受油、転が り軸受油、含油軸受油、摺動面油、冷凍機油などが挙げられる。 実施例
[0054] 次に、本発明を実施例により具体的に説明するが、本発明はこれらの実施例にな んら制限されるものではな 、。
[0055] 比較例 1
還流冷却器、攪拌装置および温度計を備えた 500mLの四つ口フラスコに活性白 土(水澤化学工業社製、ガレオンアース NS) 4g、ジエチレングリコールモノェチルェ 一テル 10g及び α—メチルスチレン 200gを入れ、反応温度 105°Cに加熱し、 4時間 攪拌した。反応終了後、生成液をガスクロマトグラフィーで分析して、転化率 70%、 目的物 α -メチルスチレン線状二量体の選択率 95%、副生成物 α -メチルスチレン 環状二量体の選択率 1%、三量体等の高沸点物選択率 4%であることがわ力つた。こ の反応混合物を 1Lオートクレープに水添用ニッケル Ζケイソゥ土触媒(日揮ィ匕学社 製, Ν— 113) 6gをカ卩え、水素化を行った(水素圧 2. 94MPa、反応温度 200°C、 反応時間 3時間)。反応終了後、濾過により触媒を除き、減圧蒸留を行うことにより、 99%純度の α—メチルスチレン線状二量体水素化物すなわち 2, 4—ジシクロへキシ ルー 2—メチルペンタン 125g (流体 A)を得た。この二量体水素化物の性状およびトラ クシヨン係数を測定した結果を第 1表に示す。
[0056] 比較例 2
2Lのステンレス製オートクレーブに、クロトンアルデヒド 56 lg (8モル)及びジシクロ ペンタジェン 352g (2. 67モル)を入れ、 170°Cで 3時間反応させた。冷却後、ラネー ニッケル触媒(川研ファインケミカル社製、 M—300T) 18gを入れ,水素圧 0. 88MP a、反応温度 150°Cで 4時間水素化を行った。冷却後、触媒を濾別し、濾液を減圧蒸 留することにより、 105°C/2. 67kPa留分 565gを得た。マススペクトル及び核磁気 共鳴スペクトルでの分析により、この留分は, 2—ヒドロキシメチルー 3—メチルビシクロ [ 2. 2. 1]ヘプタンであると同定した。
次に,外径 20mm、長さ 500mmの石英ガラス製流通式常圧反応管に, γ—アルミ ナ(日揮化学社製、 N612) 20gを入れ、反応温度 285°C、重量空間速度 (WHSV) 1. Ihr— 1で脱水反応を行い, 2—メチレン 3—メチルビシクロ [2. 2. 1]ヘプタン,及び 2, 3 ジメチルビシクロ [2. 2. 1]ヘプト— 2—ェンを含有する 2—ヒドロキシメチルー 3— メチルビシクロ [2. 2. 1]ヘプタンの脱水反応生成物 490gを得た。
1L四つ口フラスコに三弗化硼素ジェチルエーテル錯体 10g、及び上記で得たォレ フィンィ匕合物 490gを入れ、 10°Cで攪拌しながら、 5時間二量ィ匕反応を行った。この 反応混合物を希 NaOH水溶液と飽和食塩水で洗浄した後、 1Lオートクレーブに水 添用ニッケル Zケイソゥ土触媒(日揮ィ匕学社製, N-113) 15gを加え、水素化を行つ た(水素圧 2. 94MPa、反応温度
250°C、反応時間 5時間)。反応終了後、濾過により触媒を除き、濾液を減圧で蒸 留することにより、目的とする二量体の水素化物 340g (流体 B)を得た。この二量体 水素化物の性状およびトラクシヨン係数を測定した結果を第 1表に示す。
[0057] 実施例 1
ロンギフォーレン(ヤスハラケミカル社製) 1, OOOgと水添用ニッケル Zケイソゥ土触 媒(日揮ィ匕学社製、 N— 113) 30gを 2Lオートクレープに入れ、水素圧 3MPa、反応 温度 250°Cで 4時間水素化を行った。反応終了後,濾過により触媒を除き、精密蒸 留する事により目的とするロンギフォーレンの水素化物 500g (流体 1)を得た。その化 学構造式は次のとおりである。
[0058] [化 18]
Figure imgf000018_0001
[0059] また、性状およびトラクシヨン係数を測定した結果を第 1表に示す。
[0060] 実施例 2
実施例 1の流体 1を含有量が全質量の 50質量%になるように比較例 1の流体 A 混合した。性状およびトラクシヨン係数を測定した結果を第 1表に示す。
[0061] 実施例 3
実施例 1の流体 1を含有量が全質量の 20質量%になるように比較例 2の流体 Bに 混合した。性状およびトラクシヨン係数を測定した結果を第 1表に示す。
[0062] 実施例 4 5L四つ口フラスコにロンギフォーレン(ヤスハラケミカル社製) 1, 000g、酢酸 500 mLを入れ、 20°Cで攪拌しながら三フッ化ホウ素ジェチルエーテル錯体 500mLを 4 時間で滴下して、異性ィ匕反応を行った。この反応混合物を氷水、飽和炭酸水素ナトリ ゥム水溶液、飽和食塩水で洗浄し、蒸留精製後、 2Lオートクレープに水添用パラジ ゥムーカ一ボン触媒 18gと共に加え,水素化を行った (水素圧 3MPa、反応温度 1 00°C、反応時間 3時間)。反応終了後、濾過により触媒を除き、精密蒸留することに より、目的とするロンギフォーレンの異性ィ匕水素化物 600g (流体 2)を得た。その化学 構造式は次のとおりである。
[0063] [化 19]
Figure imgf000019_0001
[0064] また、性状およびトラクシヨン係数を測定した結果を第 1表に示す。
[0065] 実施例 5
実施例 4の流体 2を含有量が全質量の 50質量%になるように比較例 1の流体 Aに 混合した。性状およびトラクシヨン係数を測定した結果を第 1表に示す。
[0066] 実施例 6
実施例 4の流体 2を含有量が全質量の 20質量%になるように比較例 2の流体 Bに 混合した。性状およびトラクシヨン係数を測定した結果を第 1表に示す。
[0067] 比較例 3
2Lのステンレス製オートクレーブに、クロトンアルデヒド 56 lg (8モル)及びジシクロ ペンタジェン 352g (2. 67モル)を入れ、 170°Cで 3時間反応させた。冷却後、ラネー ニッケル触媒(川研ファインケミカル社製、 M-300T) 18gを入れ、水素圧 0. 89MP a、反応温度 150°Cで 4時間水素化を行った。冷却後、触媒を濾別し、濾液を減圧蒸 留することにより、 105°C/2. 67kPa留分 565gを得た。マススペクトル、及び核磁気 共鳴スペクトルでの分析により、この留分は、 2—ヒドロキシメチルー 3—メチルビシクロ [ 2. 2. 1]ヘプタンであった。
次に、外径 20mm、長さ 500mmの石英ガラス製流通式常圧反応管に、 γ -アルミ ナ(日揮化学社製、 N612) 20gを入れ、反応温度 285°C、重量空間速度 (WHSV) 1. lhr— 1で脱水反応を行い、 2—メチレン 3—メチルビシクロ [2. 2. 1]ヘプタン、及び 2, 3 ジメチルビシクロ [2. 2. 1]ヘプト— 2—ェンを含有する 2—ヒドロキシメチルー 3— メチルビシクロ [2. 2. 1]ヘプタンの脱水反応生成物 490gを得た。
5L四つ口フラスコに n ヘプタン 400g、三弗化硼素ジェチルエーテル錯体 200gを 入れ、上記で得たォレフィン化合物 980gとジイソブチレン 900gの混合物を、 10°Cで 攪拌しながら、 6時間で滴下した。この反応混合物を希 NaOH水溶液と飽和食塩水 で洗浄した後、減圧蒸留を行って沸点 130— 133°CZl. 06kPa留分 630gを得た。 分析した結果,その留分は原料ォレフィンの共二量体であることがわ力 た。 2Lォー トクレーブに、この共二量体と水添用ニッケル Zケイソゥ土触媒(日揮ィ匕学社製, N— 113) 19gを加え,水素化を行った(水素圧 2. 94MPa、反応温度 250°C、反応時 間 5時間)。反応終了後、濾過により触媒を除き、目的とする共二量体の水素化物 6 20g (流体 C)を得た。性状およびトラクシヨン係数を測定した結果を第 1表に示す。第 1表からわ力るようにトラクシヨン係数が低 、。
[0068] 比較例 4
比較例 3の流体 Cを含有量が全質量の 50質量%になるように比較例 1の流体 Aに 混合した。性状およびトラクシヨン係数を測定した結果を第 1表に示す。実施例 2又は 6と比較するとわ力るように、低温粘度 (一 40°C)は同等であるが、高温粘度(100°C) が低ぐ即ち粘度指数が低ぐまたトラクシヨン係数も低い。
[0069] 比較例 5
3L四つ口フラスコにベンゼン 820g、濃硫酸 53gを入れ, 5°Cで攪拌しながら, 2—メ チレン 3—メチルビシクロ [2. 2. 1]ヘプタン、及び 2, 3—ジメチルビシクロ [2. 2. 1] ヘプトー 2 ェンを主成分とする 2—ヒドロキシメチルー 3—メチルビシクロ [2. 2. 1]ヘプ タンの脱水反応生成物 428gを 3時間かけて滴下しアルキルィ匕反応を行った。この反 応混合物を希 NaOH水溶液と飽和食塩水で洗浄した後、未反応トルエンを留去して 、 2Lオートクレープに水添用ニッケル Zケイソゥ土触媒(日揮ィ匕学社製, N-113 8 gと共にカ卩え、水素化を行った (水素圧 2MPa、反応温度 250°C、反応時間 8時 間)。反応終了後、濾過により触媒を除き、濾液を減圧で蒸留することにより、目的と するシクロへキシルージメチルビシクロ [2. 2. 1]ヘプタン 210g (流体 D)を得た。性状 およびトラクシヨン係数を測定した結果を第 1表に示す。第 1表からわ力るように粘度 指数が低い。
[0070] 比較例 6
比較例 5の流体 Dを含有量が全質量の 50質量%になるように比較例 1の流体 Aに 混合した。性状およびトラクシヨン係数を測定した結果を第 1表に示す。第 1表の実施 例 3と比較するとわ力るように、低温粘度 (一 40°C)は同等であるが、高温粘度(100 °C)が低ぐ即ち粘度指数が低ぐまたトラクシヨン係数も低い。
[0071] [表 1]
Figure imgf000021_0001
[0072] [表 2]
Figure imgf000022_0001
なお、上記の実施例及び比較例における 120°Cでのトラクシヨン係数の測定は、二 円筒摩擦試験機にて行った。すなわち、接している同じサイズの円筒(直径 52mm 厚さ 6mmで被駆動側は曲率半径 10mmのタイコ型、駆動側はクラウニングなしのフ ラット型)の一方を一定速度で、他方の回転速度を連続的に変化させ、両円筒の接 触部分に錘により 98. ONの荷重を与えて、両円筒間に発生する接線力、即ちトラク シヨン力を測定し、トラクシヨン係数を求めた。この円筒は軸受鋼 SUJ— 2鏡面仕上げ でできており、平均周速 6. 8mZs、最大へルツ接触圧は 1. 23GPaであった。また、 流体温度(油温) 120°Cでのトラクシヨン係数を測定するにあたっては、油タンクをヒー ターで加熱することにより、油温を 40°Cから 140まで昇温させ、すべり率 5%における トラクシヨン係数を求めた。
[0074] 実施例 7
2L四つ口フラスコにロンギフォーレン(ヤスハラケミカル社製) lOOOg,ブロム酢酸 1 00gを入れ、 170°Cで 18時間反応を行った。この反応混合物を飽和重曹水溶液、水 で洗浄し、蒸留精製後、 2Lオートクレープに水添用パラジウム一カーボン触媒 18gと 共に加え、水素化を行った (水素圧 6MPa、反応温度 100°C、反応時間 2時間) 。反応終了後、濾過により触媒を除き、精密蒸留することにより、目的とする 4 イソプ 口ピル 1, 7a—ジメチルーォクタヒドロ— 1, 4 メタノーインデン 200g (流体 3)を得た 。性状およびトラクシヨン係数を測定した結果を第 1表に示す。
[0075] 実施例 8
実施例 7の流体 3を含有量が全重量の 20質量%になるように比較例 2の流体 Bに 混合した。性状およびトラクシヨン係数を測定した結果を第 1表に示す。
[0076] 実施例 9
2L四つ口フラスコにロンギフォーレン(ヤスハラケミカル社製) lOOOg,ブロム酢酸 1 00gを入れ、 170°Cで 4時間反応を行った。この反応混合物を飽和重曹水溶液、水 で洗浄し、蒸留精製後、塩化メチレン 4Lと 0. 5N重曹水溶液 2Lに混合し、 10°C以 下で 3-クロ口過安息香酸(関東ィ匕学社製試薬、純度 65%) 900gをゆっくり加えた。 反応終了後、 1N水酸化ナトリウム水溶液と水で洗浄し、シリカゲルカラムクロマトダラ フィ一により精製する事で目的とするトリシクロ [2. 2. 1. 02'6]ヘプタン誘導体 160g ( 流体 4)を得た。性状およびトラクシヨン係数を測定した結果を第 1表に示す。
[0077] 実施例 10
実施例 9の流体 4を含有量が全重量の 20質量%になるように比較例 2の流体 Bに 混合した。性状およびトラクシヨン係数を測定した結果を第 1表に示す。
[0078] 実施例 11
実施例 9のトリシクロ [2. 2. 1. 02'6]ヘプタン誘導体(流体 4) 300gを 1Lオートクレー ブに水添用パラジウム一カーボン触媒 9gと共にカ卩え,水素化を行った (水素圧 6M Pa、反応温度 200°C、反応時間 4時間)。反応終了後,濾過により触媒を除き、濾 液を減圧で蒸留することにより、目的とする 1, 5, 5, 8a—テトラメチルーデカヒドロー 1 , 4 メタノーアズレン 290g (流体 5)を得た。性状およびトラクシヨン係数を測定した結 果を第 1表に示す。
[0079] 実施例 12
実施例 11の流体 5を含有量が全重量の 20質量%になるように比較例 2の流体 Bに 混合した。性状およびトラクシヨン係数を測定した結果を第 1表に示す。
[0080] 実施例 13
5L四つ口フラスコにロンギフォーレン(ヤスハラケミカル社製) 200g、 1. ONジェチ ル亜鉛 Zへキサン溶液 2. 5Lを入れ、室温でジョードメタン 350mLをゆっくり滴下し た。反応終了後、飽和塩化アンモ-ゥム水溶液、水で洗浄し、蒸留精製する事により 、 目的とするスピロ [4, 8, 8—トリメチルーデカヒドロー 1, 4 メタノーアズレン一 9, 1' シクロプロパン] 189g (流体 6)を得た。性状およびトラクシヨン係数を測定した結果を 第 1表に示す。
[0081] 実施例 14
実施例 13の流体 6を含有量が全重量の 50質量%になるように比較例 2の流体 Bに 混合した。性状およびトラクシヨン係数を測定した結果を第 1表に示す。
[0082] 実施例 15
3L四つ口フラスコにジェチルエーテル 680mL入れ、 0°Cで濃硫酸 360g、 β カリ オフィレン (東京化成工業社製試薬) 920gをゆっくり滴下した。 20時間後、水酸化ナ トリウム水溶液で洗浄し、水蒸気蒸留により反応混合物を取出し、シリカゲルカラムク 口マトグラフィ一による分離、更に精密蒸留を行い、 j8—力リオフィレン異性ィ匕物 lOOg を得た。これをへキサンで 300mLに希釈し、 1Lオートクレーブに水添用パラジウム 一カーボン触媒 9gと共にカ卩え,水素化を行った (水素圧 6MPa、反応温度 100°C 、反応時間 1時間)。反応終了後、濾過により触媒を除き、濾液を減圧で蒸留するこ とにより, 目的とする 4, 7a, 9, 9ーテトラメチルーォクタヒドロ一 1, 3a エタノーインデ ン 95g (流体 7)を得た。性状およびトラクシヨン係数を測定した結果を第 1表に示す。
[0083] 実施例 16 実施例 15の流体 7を含有量が全重量の 20質量%になるように比較例 2の流体 Bに 混合した。性状およびトラクシヨン係数を測定した結果を第 1表に示す。
[0084] 実施例 17
2L四つ口フラスコにロンギフォーレン(ヤスハラケミカル社製) 500g、酢酸 250mL を入れ、 20°Cで攪拌しながら、三フッ化ホウ素ジェチルエーテル錯体 250mLを 4時 間で滴下して、異性ィ匕反応を行った。この反応混合物を氷水、飽和重曹水溶液、飽 和食塩水で洗浄し、蒸留精製後、塩化メチレン 1800mLと 0. 5N重曹水溶液 900m Lに混合し、 10°C以下で 3-クロ口過安息香酸 400gをゆっくり加えた。反応終了後、 1 N水酸ィ匕ナトリウム水溶液、水で洗浄し、減圧濃縮により得られる粗生成物をトルエン 3Lに溶解させ、 5°C以下で三フッ化ホウ素ジェチルエーテル錯体 260mLをゆっくり 滴下した。反応終了後、水で洗浄し、蒸留精製することで、 1, 1, 5, 5—テトラメチル 一へキサヒドロー 2, 4a—メタノーナフタレン 8 オン 270gを得た。これを 2. 1Nメチ ルリチウム Zジェチルエーテル溶液 640mL中に 5°C以下で滴下してアルキル化を 行い、反応終了後、飽和塩化アンモニゥム水溶液、水で洗浄した。この反応生成物 を 1Lオートクレープに水添用ニッケル Zケイソゥ土触媒(日揮ィ匕学社製、 N-113) 3 Ogと共に加え、脱水水素化を行った (水素圧 6MPa、反応温度 250°C、反応時間
6時間)。
反応終了後、濾過により触媒を除き、濾液を減圧で蒸留することにより、目的とする 1, 1, 5, 5, 8 ペンタメチルーォクタヒドロ一 2, 4a—メタノーナフタレン 240g (流体 8) を得た。性状およびトラクシヨン係数を測定した結果を第 1表に示す。
[0085] 実施例 18
実施例 16の流体 8を含有量が全重量の 20質量%になるように比較例 2の流体 Bに 混合した。性状およびトラクシヨン係数を測定した結果を第 1表に示す。
[0086] 実施例 19
還流冷却器、攪拌装置、滴下漏斗及び温度計を備えた 2Lの四つ口フラスコに、へ キサン 600mL、ソヂゥムアミド 195gを入れ、懸濁液を加熱還流した。カンファー 304 g、 1, 4 ジブロモブタン 628gを 600mLのへキサンに溶かした溶液を 1時間かけて 滴下し、そのまま 13時間加熱還流した。 反応物を 10%硫酸水溶液に注ぎ込み、酢酸ェチルで抽出し、有機層を乾燥、濃 縮後、減圧蒸留し、スピロ [1, 7, 7 トリメチルービシクロ [2. 2. 1]ヘプタン 2 オン -3, 1'ーシクロペンタン] 326gを得た。
還流冷却器、攪拌装置、滴下漏斗及び温度計を備えた 2L四つ口フラスコに、スピ 口 [1, 7, 7—トリメチルービシクロ [2. 2. 1]ヘプタン 2 オン 3, 1'—シクロペンタン] 206g及びジェチルエーテル 600mLを入れ、室温で 2. 1Nメチルリチウム、ジェチル エーテル溶液 600mLを 1時間かけて滴下し、室温にて 6時間反応した。
反応物を 10%硫酸水溶液に注ぎ込み、酢酸ェチルで抽出し、有機層を乾燥、濃 縮した。残查を還流冷却管及びディーンスタークトラップを備えた 2Lナスフラスコに 入れ、トルエン 1L及び p トルエンスルホン酸 1. 8gを加え、生成する水を除きながら 、 2時間加熱還流した。
冷却後、飽和重曹水で洗い、有機層を乾燥、濃縮し、スピロ [1, 7, 7 トリメチルー 2—メチレンービシクロ [2. 2. 1]ヘプタン— 3, 1'—シクロペンタン] 204gを得た。それを へキサンに溶かし 600mLとし、水添用 10%パラジウム一カーボン触媒 18gをカロえ、 2Lオートクレーブで水素化した (水素圧 4MPa、反応温度 40°C、反応時間 6時 間)。反応物を濾過し、濃縮後、減圧蒸留し、スピロ [1, 2, 7, 7—テトラメチルービシ クロ [2. 2. 1]ヘプタン 3, 1'—シクロペンタン] 190g (流体 9)を得た。性状およびトラ クシヨン係数を測定した結果を第 1表に示す。
[0087] 実施例 20
実施例 19の流体 9を含有量が全重量の 20質量%になるように比較例 2の流体 Bに 混合した。性状およびトラクシヨン係数を測定した結果を第 1表に示す。
[0088] 実施例 21
実施例 19にお!/、て 1 ,4 ジブロモブタン 628gの代わりに 1 , 5 ジブロモペンタン 69 Ogを用いた以外は、実施例 19と同様に操作して、スピロ [1, 2, 7, 7—テトラメチルー ビシクロ [2. 2. 1]ヘプタン 2 オン 3, 1'—シクロへキサン] 80g (流体 10)を得た。 性状およびトラクシヨン係数を測定した結果を第 1表に示す。
[0089] 実施例 22
実施例 21の流体 10を含有量が全重量の 30質量%になるように比較例 2の流体 B に混合した。性状およびトラクシヨン係数を測定した結果を第 1表に示す。
[0090] 実施例 23
還流冷却器、攪拌装置及び温度計を備えた 2L四つ口フラスコに、よう化コバルト- 水和物 13. Ogを入れ、減圧下加熱し水を除き、ジクロロメタン 700mLに懸濁した。ト リフエ-ルホスフィン 9. 83g、 2, 5-ノルボルナジェン 138g、フエ-ルアセチレン 153 g及び亜鉛 24. 5gを加え 6時間室温にて反応させた。反応混合物を濾過し、濃縮後 、シリカゲルカラムクロマトグラフィーで精製した (展開溶媒へキサン)。それをへキサ ン 600mlに薄め、水添用 5%ルテニウム-カーボン触媒 18gと共に 1Lオートクレーブ に入れ、水素化を行った (水素圧 4MPa、反応温度 70°C、反応時間 2時間半)。 反応終了後触媒を濾過し、濾液を濃縮後、減圧蒸留し、 8 -シクロへキシル-テトラ シクロ [4. 3. 0. 02'4. 03'7]ノナン 230g (流体 11)を得た。性状およびトラクシヨン係数 を測定した結果を第 1表に示す。
[0091] 実施例 24
実施例 23の流体 11を含有量が全重量の 30質量%になるように比較例 2の流体 B に混合した。性状およびトラクシヨン係数を測定した結果を第 1表に示す。
[0092] 実施例 25
実施例 23の 8—シクロへキシルーテトラシクロ [4. 3. 0. 02'4. 03'7]ノナン(流体 11) 1 00gを 200mLのへキサンに溶力し、水添用 10%パラジウム一カーボン触媒 9. Ogと 共に、 1Lオートクレーブに入れ、水素化を行った(水素圧 6MPa、反応温度 200 °C、反応時間 10時間)。
反応終了後触媒を濾過し、濾液を濃縮後、減圧蒸留し、 2—シクロへキシルーォクタ ヒドロ一 1, 5 メタノーペンタレン、 2—シクロへキシル一才クタヒドロ一 1, 4ーメタノ一ペン タレン、 3—シクロへキシルーォクタヒドロ一 1, 4 メタノーペンタレンの 3種類の混合物 8 7g (流体 12)を得た。性状およびトラクシヨン係数を測定した結果を第 1表に示す。
[0093] 実施例 26
実施例 25の流体 12を含有量が全重量の 50質量%になるように比較例 2の流体 B に混合した。性状およびトラクシヨン係数を測定した結果を第 1表に示す。
[0094] 実施例 27 還流冷却器、攪拌装置及び温度計を備えた 2L四つ口フラスコに、よう化コバルト二 水和物 13. lgを減圧下加熱し、水を除き、ジクロロェタン 520mLに懸濁した。 1, 2- ビス(ジフエ-ルホスフイノ)ェタン 13. 2g、 2, 5-ノルボルナジェン 276g、亜鈴 24. 6 gを加え 6時間加熱還流した。反応混合物を濾過し、濃縮後、減圧蒸留し、へキサシ クロ [9. 2. 1. 02'10. O3'8. O4'6. 05'9]- 12-テトラデセン 128gを得た。それを 300mLの へキサンに溶解し、水添用 10%パラジウム-カーボン触媒 9. Ogと共に 1Lオートタレ ーブに入れ、水素化した (水素圧 3MPa、反応温度 室温、反応時間 30分)。 触媒を濾過し、濾液を濃縮後、減圧蒸留し、へキサシクロ [9. 2. 1. 02'10. O3'8. 04'6 . 05'9]テトラデカン 120g (流体 13)を得た。性状およびトラクシヨン係数を測定した結 果を第 1表に示す。
[0095] 実施例 28
実施例 27の流体 13を含有量が全重量の 30質量%になるように比較例 2の流体 B に混合した。性状およびトラクシヨン係数を測定した結果を第 1表に示す。
[0096] 実施例 29
実施例 27のへキサシクロ [9. 2. 1. 02'10. 03'8. 04·6. 05'9]テトラデカン (流体 13) 13 Ogをへキサンで薄め 600mlとし、 10%パラジウム一カーボン触媒 18. Ogと共に 2L オートクレープに入れ、水素化を行った (水素圧 4MPa、反応温度 200°C、反応 時間 1時間)。
触媒を濾過し、濾液を濃縮後、減圧蒸留し、ペンタシクロ [8. 2. 1. I5'8. O2'9. 03'7] テトラデカン及びへキサシクロ [9. 2. 1. 02'10. 03'8. 05'9]テトラデカンの混合物 105g (流体 14)を得た。性状およびトラクシヨン係数を測定した結果を第 1表に示す。
[0097] 実施例 30
実施例 29の流体 14を含有量が全重量の 30質量%になるように比較例 2の流体 B に混合した。性状およびトラクシヨン係数を測定した結果を第 1表に示す。
[0098] 実施例 31
還流冷却器、攪拌装置及び温度計を備えた 2L四つ口フラスコに、よう化コバルト- 水和物 8. 7gを減圧下加熱し、水を除き、ジクロロェタン 180mLに懸濁した。トリフエ -ルホスフィン 6. 55g、 2, 5-ノルボルナジェン 184g、亜鉛 16. 4gを加え 1時間カロ熱 還流した。反応混合物を濾過し、濃縮後、シリカゲルカラムクロマトグラフィーでへキ サン留分を集め、それを 600mLのへキサンに溶解し、水添用 10%パラジウム-カー ボン触媒 9. Ogと共に 2Lオートクレープに入れ、水素化した (水素圧 4MPa、反応 温度 200°C、反応時間 4時間半)。
触媒を濾過し、濾液を濃縮後減圧蒸留し、テトラヒドロ binor— Sの混合物 132g (流 体 15)を得た。性状およびトラクシヨン係数を測定した結果を第 1表に示す。
[0099] 実施例 32
実施例 31の流体 15を含有量が全重量の 50質量%になるように比較例 2の流体 B に混合した。性状およびトラクシヨン係数を測定した結果を第 1表に示す。
[0100] [表 3]
〕 01
Figure imgf000030_0001
Figure imgf000031_0001
Figure imgf000032_0001
第 1表一 6
実施例 25 実施例 26 実施例 27 実施例 28 実施例 29 実施例 30 実施例 31 実施例 32 流体 12 流体 12 +流体 B 流体 13 +流体 B 流体 14 流体 14 +流体 B 流体 15 流体 15 +流体 B 動粘度 @40°C Alt'* act 9.» 14. /4 1U.OU I .7U 3. 15.44 mm , s
動粘度 @100°C
2.503 2.977 2.716 3.306 2.722 3.302 3.378 3.481 mm2/s
粘度指数 84 80 112 88 113 88 122 101 流動点 °c -50 > -50 > - 25 - 45 -25 -45 -25 -45 低温粘度 @- 40°C
1> 2 15 15 14 Pa's
密度 gZcm3 0.9726 0.9634 1.0806 0.9891 1.0439 0.9796 1.0545 1.02 トラクシヨン係数 @120°C 0.072 0.079 0.061 0.079 0.070 0.081 0.080 0.083 備考 流体 12 ;50質量% 流体 13 :30質量% 流体 14 :30質量% 流体 15 :50質量%
産業上利用可能性
本発明の潤滑油基油及び潤滑油組成物は、高温トラクシヨン係数、低温流動性及 び粘度指数を高 、次元で満足することができ、自動車用 CVT (無段変速機)のトラク シヨンドライブ用流体として好適に使用することができる。

Claims

請求の範囲 [1] 一般式 (I)一 (VI)で表される構造を基本骨格とする炭化水素化合物を少なくとも一 種含み、かつ 40°Cにおける粘度が 40Pa' s以下であり、粘度指数が 80以上である ことを特徴とする潤滑油基油。
[化 1]
Figure imgf000035_0001
(IV) (V) (VI)
(式中、 pは 1一 10の整数を示す。ただし、一般式 (1)、 (II)において、 pは 1ではない 。)
[2] 40°Cにおける粘度が 35Pa' s以下である請求項 1記載の潤滑油基油。
[3] 一般式 (I)で表される構造を基本骨格とする炭化水素化合物が、下記一般式 (a)で 表される炭素数 12— 24の炭化水素化合物である請求項 1又は 2に記載の潤滑油基 油。
[化 2]
Figure imgf000035_0002
(式中、 k、 m及び nは、それぞれ 0— 6の整数を示し、 k+mは 0— 6の整数を示し、 R1 及び Rは、それぞれ炭素数 1一 4のアルキル基又は炭素数 5— 12のシクロアルキル 基を示す。 )
[4] 一般式 (II)で表される構造を基本骨格とする炭化水素化合物が、下記一般式 (b) で表される炭素数 12— 24の炭化水素化合物である請求項 1又は 2に記載の潤滑油 基油。
[化 3]
Figure imgf000036_0001
(式中、 k、 m及び nは、それぞれ 0— 6の整数を示し、 k+mは 0— 6の整数を示し、 R1 及び R2は、それぞれ炭素数 1一 4のアルキル基又は炭素数 5— 12のシクロアルキル 基を示す。 )
[5] 一般式 (III)で表される構造を基本骨格とする炭化水素化合物が、下記一般式 (c) で表される炭素数 12— 24の炭化水素化合物である請求項 1又は 2に記載の潤滑油 基油。
[化 4]
Figure imgf000036_0002
(式中、 k、 m及び nは、それぞれ 0— 6の整数を示し、 k+mは 0— 6の整数を示し、 R1 及び R2は、それぞれ炭素数 1一 4のアルキル基又は炭素数 5— 12のシクロアルキル 基を示す。 )
[6] 一般式 (IV)で表される構造を基本骨格とする炭化水素化合物が、下記一般式 (d) で表される炭素数 12— 24の炭化水素化合物である請求項 1又は 2に記載の潤滑油 基油。
[化 5] (R1)k-r (め
(式中、 k、 m及び nは、それぞれ 0— 6の整数を示し、 k+mは 0— 6の整数を示し、 R1 及び R2は、それぞれ炭素数 1一 4のアルキル基又は炭素数 5— 12のシクロアルキル 基を示す。 )
[7] 一般式 (V)で表される構造を基本骨格とする炭化水素化合物が、下記一般式 (e) で表される炭素数 12— 24の炭化水素化合物である請求項 1又は 2に記載の潤滑油 基油。
[化 6]
Figure imgf000037_0001
(式中、 k、 m及び nは、それぞれ 0— 6の整数を示し、 k+mは 0— 6の整数を示し、 R 及び R2は、それぞれ炭素数 1一 4のアルキル基又は炭素数 5— 12のシクロアルキル 基を示す。 )
[8] 一般式 (VI)で表される構造を基本骨格とする炭化水素化合物が、下記一般式 (f ) で表される炭素数 12— 24の炭化水素化合物である請求項 1又は 2に記載の潤滑油 基油。
[化 7]
Figure imgf000037_0002
(式中、 k、 m及び nは、それぞれ 0— 6の整数を示し、 k+mは 0— 6の整数を示し、 R1 及び R2は、それぞれ炭素数 1一 4のアルキル基又は炭素数 5— 12のシクロアルキル 基を示す。 )
[9] 上記一般式 (a)— (f)の 、ずれか一種以上の炭化水素化合物と、それら以外の化 合物であって、脂環構造を有する合成トラクシヨン基油を含み、かつ 40°Cにおける 粘度が 40Pa ' s以下であり、粘度指数が 80以上であることを特徴とする潤滑油組成 物。
[10] 脂環構造を有する合成トラクシヨン基油が、下記一般式 (h)で表される炭素数 16— 20の炭化水素である請求項 9記載の潤滑油組成物。
[化 8]
(h)
Figure imgf000038_0001
(式中、 qは 1又は 2の整数を示し、 rは 2又は 3の整数を示す。 )
[11] 脂環構造を有する合成トラクシヨン基油が、 2, 4ージシクロへキシルー 2—メチルペン タンである請求項 9記載の潤滑油組成物。
[12] 脂環構造を有する合成トラクシヨン基油が、 2, 3—ジシクロへキシルー 2, 3—ジメチル ブタンである請求項 9記載の潤滑油組成物。
[13] 請求項 1一 12のいずれかに記載の潤滑油基油又は潤滑油組成物に、酸化防止剤 、粘度指数向上剤、清浄分散剤、摩擦低減剤、金属不活性化剤、流動点降下剤、 耐摩耗剤、消泡剤及び極圧剤の中から選ばれる少なくとも一種の添加剤を配合した 潤滑油組成物。
[14] 請求項 1一 13のいずれかに記載の潤滑油基油又は潤滑油組成物力もなるトラクシ ヨンドライブ用流体。
PCT/JP2004/014735 2003-10-08 2004-10-06 潤滑油基油及び潤滑油組成物 WO2005035699A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA002541703A CA2541703A1 (en) 2003-10-08 2004-10-06 Lube base oil and lubricating oil composition
EP04792091.3A EP1672050B1 (en) 2003-10-08 2004-10-06 Lubricating oil composition
KR1020067006665A KR101148645B1 (ko) 2003-10-08 2004-10-06 윤활유 기유 및 윤활유 조성물
US10/574,491 US7964540B2 (en) 2003-10-08 2004-10-06 Lube base oil and lubricating oil composition
JP2005514580A JP4675779B2 (ja) 2003-10-08 2004-10-06 潤滑油基油及び潤滑油組成物
KR1020117031538A KR101280106B1 (ko) 2003-10-08 2004-10-06 윤활유 기유 및 윤활유 조성물

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-349816 2003-10-08
JP2003349816 2003-10-08

Publications (1)

Publication Number Publication Date
WO2005035699A1 true WO2005035699A1 (ja) 2005-04-21

Family

ID=34431019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/014735 WO2005035699A1 (ja) 2003-10-08 2004-10-06 潤滑油基油及び潤滑油組成物

Country Status (7)

Country Link
US (1) US7964540B2 (ja)
EP (1) EP1672050B1 (ja)
JP (1) JP4675779B2 (ja)
KR (2) KR101148645B1 (ja)
CN (1) CN100413948C (ja)
CA (1) CA2541703A1 (ja)
WO (1) WO2005035699A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009001821A1 (ja) 2007-06-25 2008-12-31 Idemitsu Kosan Co., Ltd. 無段変速機用潤滑油
WO2012011492A1 (ja) * 2010-07-20 2012-01-26 出光興産株式会社 潤滑油組成物および無段変速機用潤滑油組成物
JP2012025801A (ja) * 2010-07-20 2012-02-09 Idemitsu Kosan Co Ltd 潤滑油組成物
JP2012082398A (ja) * 2010-09-15 2012-04-26 Idemitsu Kosan Co Ltd 無段変速機用潤滑油組成物
JP2013231204A (ja) * 2013-08-21 2013-11-14 Idemitsu Kosan Co Ltd 無段変速機用潤滑油

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008056800A (ja) 2006-08-31 2008-03-13 Idemitsu Kosan Co Ltd トラクション機構を有する圧縮型冷凍機用潤滑油組成物
JP6929861B2 (ja) * 2015-10-15 2021-09-01 ジ オーストラリアン ナショナル ユニヴァーシティーThe Australian National University トラクション駆動流体
CN111601857B (zh) 2017-12-11 2022-03-04 胜牌许可和知识产权有限公司 氢化α苯乙烯二聚物的可规模化合成
JP7016733B2 (ja) * 2018-03-13 2022-02-07 出光興産株式会社 潤滑油組成物、潤滑油組成物の製造方法及び無段変速機
JP7242635B2 (ja) * 2018-03-27 2023-03-20 出光興産株式会社 潤滑油基油、該潤滑油基油を含有する潤滑油組成物、及び該潤滑油組成物を用いた無段変速機
CN113302266B (zh) * 2019-01-17 2023-02-24 路博润公司 牵引流体
US10894930B2 (en) 2019-03-13 2021-01-19 Valvoline Licensing And Intellectual Property Llc Traction fluid with improved low temperature properties

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2382038A (en) * 1943-02-20 1945-08-14 Resinous Prod & Chemical Co Trihalo-tetrahydronorpolycyclo-pentadienes
US2940984A (en) * 1957-06-19 1960-06-14 Du Pont Tricyclo (4. 2. 1. 0) non-7-enes and tetracyclo (3. 2. 1. 1. 0) nonanes
US3411369A (en) * 1966-10-13 1968-11-19 Monsanto Co Tractive fluids and method of use
FR2036999A1 (en) 1969-04-30 1970-12-31 Sun Oil Co Transmission and/or lubricant fluid composi- - tion
EP0082967A2 (de) 1981-12-30 1983-07-06 Optimol-Ölwerke GmbH Traktionsflüssigkeit
JPH0959660A (ja) * 1995-06-13 1997-03-04 Cosmo Sogo Kenkyusho:Kk トラクションドライブ用流体
JP2000017280A (ja) 1998-07-01 2000-01-18 Idemitsu Kosan Co Ltd トラクションドライブ用流体
EP0989177A1 (en) 1998-09-18 2000-03-29 Nippon Mitsubishi Oil Corporation Traction drive fluid
JP2001247492A (ja) * 1999-12-27 2001-09-11 Idemitsu Kosan Co Ltd ビシクロ[2.2.1]ヘプタン誘導体及びその製造方法並びにトラクションドライブ用流体

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3803037A (en) * 1970-04-07 1974-04-09 Monsanto Co Lubricants having improved load-bearing properties
US4170739A (en) * 1977-12-23 1979-10-09 Frusztajer Boruch B Apparatus and method for supplying direct current with superimposed alternating current
US5472625A (en) * 1994-03-11 1995-12-05 Maples; Paul D. Dry household lubricant
US7132582B2 (en) * 2003-05-30 2006-11-07 Council Of Scientific And Industrial Research Catalytic process for the preparation of isolongifolene
US6320088B1 (en) * 2000-03-21 2001-11-20 Nippon Mitsubishi Oil Corporation Traction drive fluid
WO2003014268A1 (fr) * 2001-08-08 2003-02-20 Idemitsu Kosan Co., Ltd. Fluides pour transmission par traction

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2382038A (en) * 1943-02-20 1945-08-14 Resinous Prod & Chemical Co Trihalo-tetrahydronorpolycyclo-pentadienes
US2940984A (en) * 1957-06-19 1960-06-14 Du Pont Tricyclo (4. 2. 1. 0) non-7-enes and tetracyclo (3. 2. 1. 1. 0) nonanes
US3411369A (en) * 1966-10-13 1968-11-19 Monsanto Co Tractive fluids and method of use
FR2036999A1 (en) 1969-04-30 1970-12-31 Sun Oil Co Transmission and/or lubricant fluid composi- - tion
EP0082967A2 (de) 1981-12-30 1983-07-06 Optimol-Ölwerke GmbH Traktionsflüssigkeit
JPS58154799A (ja) * 1981-12-30 1983-09-14 オプチモ−ル−エ−ルヴエルケ・ゲゼルシヤフト・ミット・ベシュレンクテル・ハフツング 摩擦力伝達液
JPH0959660A (ja) * 1995-06-13 1997-03-04 Cosmo Sogo Kenkyusho:Kk トラクションドライブ用流体
JP2000017280A (ja) 1998-07-01 2000-01-18 Idemitsu Kosan Co Ltd トラクションドライブ用流体
EP0989177A1 (en) 1998-09-18 2000-03-29 Nippon Mitsubishi Oil Corporation Traction drive fluid
JP2001247492A (ja) * 1999-12-27 2001-09-11 Idemitsu Kosan Co Ltd ビシクロ[2.2.1]ヘプタン誘導体及びその製造方法並びにトラクションドライブ用流体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1672050A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009001821A1 (ja) 2007-06-25 2008-12-31 Idemitsu Kosan Co., Ltd. 無段変速機用潤滑油
JP2009001756A (ja) * 2007-06-25 2009-01-08 Idemitsu Kosan Co Ltd 無段変速機用潤滑油
US8338653B2 (en) 2007-06-25 2012-12-25 Idemitsu Kosan Co., Ltd. Lubricating oil for non-stage transmission
WO2012011492A1 (ja) * 2010-07-20 2012-01-26 出光興産株式会社 潤滑油組成物および無段変速機用潤滑油組成物
JP2012025801A (ja) * 2010-07-20 2012-02-09 Idemitsu Kosan Co Ltd 潤滑油組成物
JP2012082398A (ja) * 2010-09-15 2012-04-26 Idemitsu Kosan Co Ltd 無段変速機用潤滑油組成物
JP2013231204A (ja) * 2013-08-21 2013-11-14 Idemitsu Kosan Co Ltd 無段変速機用潤滑油

Also Published As

Publication number Publication date
KR20060126948A (ko) 2006-12-11
EP1672050A1 (en) 2006-06-21
KR101148645B1 (ko) 2012-05-30
KR101280106B1 (ko) 2013-06-28
EP1672050B1 (en) 2015-12-09
CN100413948C (zh) 2008-08-27
JP4675779B2 (ja) 2011-04-27
CA2541703A1 (en) 2005-04-21
KR20120023144A (ko) 2012-03-12
US7964540B2 (en) 2011-06-21
EP1672050A4 (en) 2008-09-17
US20070042915A1 (en) 2007-02-22
CN1863894A (zh) 2006-11-15
EP1672050A8 (en) 2006-08-16
JPWO2005035699A1 (ja) 2007-11-22

Similar Documents

Publication Publication Date Title
JP2561758B2 (ja) トラクションドライブ用流体,その製造方法及びビシクロオクタン化合物
US8338653B2 (en) Lubricating oil for non-stage transmission
JPH07103387B2 (ja) トラクションドライブ用流体
JP2008260951A (ja) トラクションドライブ用流体
EP1002855B1 (en) Lubricating base oil composition and process for producing same
WO2005035699A1 (ja) 潤滑油基油及び潤滑油組成物
JP4891469B2 (ja) トラクションドライブ用流体
KR930010574B1 (ko) 트랙션 드라이브용 유체
JP4562906B2 (ja) ビシクロ[2.2.1]ヘプタン誘導体及びその製造方法並びにトラクションドライブ用流体
US7015178B2 (en) Lube base oil composition
JP4560157B2 (ja) 潤滑油基油組成物及びその製造方法
JPH01198693A (ja) トラクションドライブ用流体
JP4792171B2 (ja) 潤滑油基油組成物
WO2004026998A1 (ja) トラクションドライブ用流体組成物
JP2002363585A (ja) 潤滑油基油組成物
JP2008214643A (ja) トラクションドライブ用流体基油の製造方法
JPH0531913B2 (ja)
JPH0563519B2 (ja)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480029581.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005514580

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004792091

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007042915

Country of ref document: US

Ref document number: 10574491

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2541703

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020067006665

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004792091

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067006665

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10574491

Country of ref document: US