WO2005022961A1 - 有機電界発光素子用材料およびそれを用いた有機電界発光素子 - Google Patents

有機電界発光素子用材料およびそれを用いた有機電界発光素子 Download PDF

Info

Publication number
WO2005022961A1
WO2005022961A1 PCT/JP2004/010836 JP2004010836W WO2005022961A1 WO 2005022961 A1 WO2005022961 A1 WO 2005022961A1 JP 2004010836 W JP2004010836 W JP 2004010836W WO 2005022961 A1 WO2005022961 A1 WO 2005022961A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
general formula
substituted
organic electroluminescent
copolymer
Prior art date
Application number
PCT/JP2004/010836
Other languages
English (en)
French (fr)
Inventor
Harunori Narihiro
Michiko Tamano
Nozomi Tsushima
Original Assignee
Toyo Ink Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink Manufacturing Co., Ltd. filed Critical Toyo Ink Manufacturing Co., Ltd.
Priority to JP2005513409A priority Critical patent/JP4635873B2/ja
Priority to US10/566,950 priority patent/US20080145705A1/en
Publication of WO2005022961A1 publication Critical patent/WO2005022961A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/141Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1408Carbocyclic compounds
    • C09K2211/1416Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1408Carbocyclic compounds
    • C09K2211/1425Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1408Carbocyclic compounds
    • C09K2211/1433Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1441Heterocyclic
    • C09K2211/1458Heterocyclic containing sulfur as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1441Heterocyclic
    • C09K2211/1466Heterocyclic containing nitrogen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1441Heterocyclic
    • C09K2211/1475Heterocyclic containing nitrogen and oxygen as heteroatoms
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/141Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE
    • H10K85/146Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE poly N-vinylcarbazol; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • H10K85/6565Oxadiazole compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole

Definitions

  • the present invention relates to a material for an organic electroluminescent device and an organic electroluminescent (EL) device having high luminous efficiency using the same.
  • an electroluminescent element using an organic substance is expected to be used as an inexpensive, large-area, full-color display element of a solid-state light emitting type, and many developments have been made.
  • an organic electroluminescent device includes a light emitting layer and a pair of opposed electrodes sandwiching the light emitting layer. In light emission, when an electric field is applied between the two electrodes, electrons are injected from the cathode side, holes are injected from the anode side, the electrons recombine with holes in the light emitting layer, and the energy level changes from the conduction band. It is a phenomenon that emits energy as light when returning to the valence band.
  • a conventional organic electroluminescent device has a higher driving voltage than an inorganic electroluminescent (EL) device, and has a lower luminous luminance and luminous efficiency. In addition, the characteristics have been remarkably degraded and have not been put to practical use.
  • an organic electroluminescent device in which a thin film containing an organic compound having high fluorescence quantum efficiency that emits light at a low voltage of 10 V or less has been reported and has attracted attention (for example, see Non-Patent Document 1 below) .
  • This method uses a metal chelate complex for the light-emitting layer and an amine-based compound for the hole injection layer to obtain high-luminance green light emission.
  • an organic electroluminescent element used for producing a coating type organic electroluminescent element that is advantageous in productivity
  • a conjugated polymer light emitting material for example, a polyphenylenevinylene-based polymer
  • polyphenylenevinylene-based polymer for example, see Non-Patent Documents 2 and 3 below.
  • polyolefin vinylene-based polymers have a light-emitting portion in the polymer main chain, there are problems such as difficulty in controlling the concentration of the light-emitting material and difficulty in finely controlling the light emission intensity.
  • An organic electroluminescent device using the same coating method includes a device using a dye-dispersed polymer.
  • This A typical device using the above-mentioned dye-dispersed polymer is a device in which a low molecular weight dye or the like is dispersed in polyvinyl carbazole (for example, see Patent Document 1 below).
  • materials having various functions such as electron transporting property, electron injecting property, hole transporting property, hole injecting property, and light emitting property can be mixed with the light emitting element.
  • Polybulol rubazole has a relatively high durability due to a high glass transition point, and has a practical problem that the luminous efficiency is low because the hole mobility where the driving voltage is high and the film-forming property are not enough. .
  • various rubazole derivative polymers and copolymers have been proposed.
  • a copolymer of a carbazono derivative and a diamine derivative see, for example, Patent Documents 2 and 3 below
  • a copolymer of a rubazole derivative and an oxaziazole derivative see, for example, Patent Documents 4 to 17
  • It is a polymer having a rubazole unit (for example, see Patent Documents 8 to 10 below), but all have low luminous brightness and luminous efficiency and a short life.
  • Patent Document 1 JP-A-4-212286
  • Patent Document 2 JP-A-2002-124390
  • Patent Document 3 JP 2002-37817 A
  • Patent Document 4 JP-A-11-60660
  • Patent Document 5 JP-A-11-307253
  • Patent Document 6 JP-A-2000-159846
  • Patent Document 7 JP 2001-126875 A
  • Patent Document 8 JP-A-2002-105445
  • Patent Document 9 Japanese Patent Application Laid-Open No. 2002-363227
  • Patent Document 10 JP 2002-302516 A
  • Non-Patent Document 1 Applied Physics Lett., Vol. 51, pp. 913-915, 1987
  • Non-Patent Document 2 Polymer Bulletin, 38, 167-176, 1997
  • Non-Patent Document 3 Macromolecules, Vol. 32, pp. 1476-1481, 1999
  • the driving voltage of the dye-dispersed element using the polyvinyl carbazole or its derivative polymer is higher than that of an organic electroluminescent element using a conjugated polymer light-emitting material, for example, a polyphenylenevinylene derivative. This is considered to be because the mobility of the carrier of the non-conjugated polymer material used in the dye-dispersed element is lower than that of the polymer light-emitting material of the polyphenylenevinylene derivative.
  • Driving voltage is one of the characteristics that attracts attention because it leads to low power consumption in display devices.
  • Driving voltage is also high in the dye-dispersed element using polybutylcarbazole or its derivative polymer used in the dye-dispersed element. There is a demand for a reduction in voltage.
  • the present invention has been made in view of the above situation, and has as its object to provide an organic electroluminescent device having a low driving voltage and a high luminous efficiency, and an organic electroluminescent device used in the device. To provide materials for use.
  • Another object of the present invention is to provide, in addition to the above, an organic electroluminescent device which can form a film having excellent film-forming properties and excellent durability when the organic electroluminescent device is formed by coating or printing.
  • An object of the present invention is to provide a high quality organic electroluminescent device having excellent durability and durability.
  • the object of the present invention is to use a copolymer containing a unit represented by the following general formula [1] and a unit having an amino group as a polymer used for a material for an organic electroluminescent device. That was achieved by:
  • the present invention relates to an organic electroluminescent device material according to the following 1 to 6 and the following
  • a material for an organic electroluminescent device comprising a copolymer having a unit represented by the following general formula [1] and a unit having an amino group.
  • A represents an unconjugated trivalent organic residue
  • B is selected from the group consisting of a substituted or unsubstituted arylene group and a substituted or unsubstituted heteroarylene group
  • C represents a monovalent organic residue represented by the following general formula [2].
  • R 1 R 7 represents a bonding site, a hydrogen atom or a substituent
  • X represents a direct bond, —0—, —S—, —Se—, —NH—, —NR 8 —
  • R 8 represents an alkyl group or an aryl group.
  • — S ( 0) —, — C ⁇ —, — CO ⁇ —, — OCO—, —CH—, and R 1 — R 7 are bonded to each other do it
  • the aryl ring may be formed, or the aryl ring may have a substituent.
  • R 11 to R 19 represent a bonding site, a hydrogen atom or a substituent.
  • J represents a non-conjugated trivalent organic residue
  • K is selected from the group consisting of a direct bond, a substituted or unsubstituted arylene group, and a substituted or unsubstituted heteroarylene group.
  • an organic electroluminescent device in which a light-emitting layer or a plurality of organic compound thin films including a light-emitting layer is formed between a pair of electrodes, at least one of the layers is any one of the above-mentioned items.
  • An organic electroluminescent device comprising the material for an organic electroluminescent device according to any one of claims 1 to 3.
  • a copolymer comprising a unit represented by the general formula [1] and a unit having an amino group, and a copolymer containing a unit derived from N-Butyl rubazole or a derivative thereof as a copolymer unit, It has excellent light-emitting properties and hole-transport properties. Further, a copolymer further containing a unit represented by the general formula [7] as a copolymer unit of each of the above copolymers has excellent electron transport properties in addition to light emitting properties and hole transport properties. Further, these copolymers may be made to contain units derived from styrene and its derivatives, (meth) acrylic acid and its derivatives, maleic acid and its derivatives, organic acid butyl esters, etc.
  • the copolymer of the present invention is an excellent material as a light emitting material, a hole transporting material, an electron transporting material, etc. of an organic electroluminescent device. By using it as a material, it is possible to form an electroluminescent device having a low driving voltage and a high luminous efficiency.
  • the material for an organic electroluminescent device of the present invention is characterized by containing a copolymer having a unit represented by the above general formula [1] and a unit having an amino group, and the organic electroluminescent device of the present invention.
  • the device is characterized in that a material for an organic electroluminescent device containing the copolymer is used as a material constituting a layer of the device.
  • the group A is an arbitrary trivalent having a group B and a group C in a side chain and capable of forming a non-conjugated main chain skeleton.
  • Examples of the trivalent group capable of forming the non-conjugated main chain skeleton of the group A include a group represented by the following general formula [8].
  • R 31 represents a hydrogen atom, a methyl group or a CN, and a direct bond, -CH—, -C
  • Examples of the trivalent organic residue represented by the general formula [8] include the following E-], the force S indicated by E_12, and the group A is not limited thereto.
  • the group B of the general formula [1] is formed by conjugating two or more groups selected from the group consisting of a substituted or unsubstituted arylene group and a substituted or unsubstituted heteroarylene group. Represents a divalent organic residue.
  • the unsubstituted arylene group which can constitute a part of the group B is preferably a monocyclic or condensed-ring arylene group having 6 to 60 carbon atoms, more preferably 6 to 40 carbon atoms, still more preferably It is an arylene group of the number 6-30.
  • Ingredient Examples include phenylene, naphthalenediyl, anthracenediyl, phenylenediphenol, phenylenediyl, triphenylenediyl, benzodiphenyldiene, benzophenylenediyl, perylenediyl, pentaphenylenediyl, pentasendiyl, and the like. Those having a substituent in the group are mentioned.
  • the unsubstituted heteroarylene group is preferably a monocyclic or condensed aromatic heterocyclic group having 4 to 60 carbon atoms, more preferably a nitrogen atom, an oxygen atom or a sulfur atom.
  • aromatic heterocyclic group examples include pyrroldyl, furanzyl, cerenylene, pyridinedyl, pyridazinedil, pyrimidinedinole, pyrazinedil, quinolinedile, isoquinolinedile, cinnolinedile, quinazolinedil, quinoxalinedil, phthalazine, phthalazine
  • the substituted heteroarylene group includes those having a substituent in these heteroarylene groups.
  • Examples of the substituent of the arylene group and the heteroarylene group include a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom and an iodine atom), a substituted or unsubstituted alkynole group, and a substituted or unsubstituted alkoxy group.
  • a halogen atom for example, a fluorine atom, a chlorine atom, a bromine atom and an iodine atom
  • a substituted or unsubstituted alkynole group for example, a substituted or unsubstituted alkynole group, and a substituted or unsubstituted alkoxy group.
  • the substituents may form a substituted or unsubstituted ring with adjacent substituents.
  • Such a ring formed by adjacent substituents may be, for example, an aliphatic, carbocyclic aromatic, or heterocyclic group which may contain a 5- to 7-membered ring containing an oxygen atom, a nitrogen atom, a sulfur atom, and the like. Examples include a cyclic aromatic ring and a complex ring. These rings may further have a substituent at any position.
  • the substituted or unsubstituted alkyl group includes a methyl group, an ethyl group, a propyl group, a butyl group, a see-butyl group, a tert-butyl group, a pentyl group, a hexyl group, and a 2_ Ethylhexyl group, heptyl group, octyl group, isooctyl group, stearinole group, trichloromethyl group, trifluoromethinole group, cyclopropyl group, cyclohexyl group, 1,3-cyclohexyl Examples include an oral hexenyl group, a 2-cyclopentene-1-yl group, and a 2,4-cyclopentadiene-1-ylidenyl group.
  • Examples of the substituted or unsubstituted alkoxy group include a methoxy group, an ethoxy group, a propoxy group, an n-butoxy group, a sec-butoxy group, a tert-butoxy group, a pentyloxy group, a hexoxy group, and a 2-ethylhexyloxy group.
  • the substituted or unsubstituted thioalkoxy groups include methylthio, ethylthio, propylthio, butylthio, sec-butylthio, tert-butylthio, pentylthio, hexylthio, heptylthio, octylthio There are groups.
  • Examples of the mono- or di-substituted amino group include a methinoleamino group, a dimethinoleamino group, an ethylamino group, a getylamino group, a dipropylamino group, a dibutylamino group, a diphenylamino group, a bis (acetoxymethyl) amino group, Examples include a bis (acetoxoxyethyl) amino group, a bis (acetooxypropyl) amino group, a bis (acetooxybutyl) amino group, and a dibenzylamino group.
  • Examples of the substituted or unsubstituted aryloxy group include a phenoxy group, a p-tert-butylphenyl group, and a 3_fluorophenoxy group.
  • Examples of the substituted or unsubstituted arylthio group include a phenylthio group and a 3_fluorophenylthio group.
  • substituted or unsubstituted aryl group examples include, for example, a phenyl group, a biphenylenyl group, a triphenylenyl group, a tetraphenylenyl group, a 3-nitrophenyl group, a 4-methylthiophenyl group, 5-dicyanophenyl, o-, m- and p-tolyl, xylinole, o-, m- and p_tamenyl, mesityl, pentalenyl, indul, naphthinole, anthracenyl, azulenyl, heptalenyl Group, acenaphthylenyl group, phenalenyl group, fluorenyl group, anthryl group, anthraquinonyl group, 3-methylanthryl group, phenanthrinole group, pyrenyl group, chrysenyl group
  • substituted or unsubstituted heteroaryl group include, for example, a thionyl group, a furyl group, a pyrrolyl group, an imidazolyl group, a pyrazolyl group, a pyridyl group, a virazinyl group, a pyrimidinyl group, a pyridazinyl group, and an indolyl group.
  • Quinolyl group isoquinolyl group, phthalazinyl group, quinoxalinyl group, quinazolinyl group, carbazolyl group, ataridinyl group, fenazinyl group, furfuryl group, isothiazolyl group, isoxazolyl group, furazanyl group, pentoxazinyl group, benzothiazolyl group, benzoxazolyl group And a benzimidazolyl group, a 2-methynolepyridyl group, and a 3_cyanopyridyl group.
  • Preferred substituents on the arylene group and the heteroarylene group include an alkyl group or an alkoxy group having 1200 carbon atoms, a phenyl group, a cyano group, and the like.
  • the group B is a group in which two or more groups selected from the group consisting of the above-mentioned substituted or unsubstituted arylene groups and substituted or unsubstituted heteroarylene groups are directly or conjugated via, for example, an etylene group. Any of divalent organic residues formed by linking may be used. That is, the group B of the general formula [1] of the present invention is a divalent group in which two or more groups selected from a substituted or unsubstituted arylene group and a substituted or unsubstituted heteroarylene group are directly bonded.
  • the substituents may be united to form a new ring.
  • two or more groups selected from the group consisting of a substituted or unsubstituted arylene group and a substituted or unsubstituted heteroarylene group 1S are formed directly or, if necessary, connected via an ethenylene group.
  • group B of the present invention is not limited to those exemplified below or groups in which the following basic skeleton is substituted by a substituent.
  • an eturene group an eturene group, a 1-methylethurene group, a 1-ethylethylene group and the like can be mentioned.
  • the group C in the general formula [1] is a group represented by the general formula [2], and is preferably a group represented by the general formula [2].
  • R 41 to R 51 are a hydrogen atom or a substituent, and the substituent represents the same group as R 1 to R 7 and R 11 to R 19 .
  • the substituent for R 41 to R 51 an alkyl group such as a methyl group and an ethyl group, an alkoxy group such as a methoxy group and an ethoxy group, a substituted amino group such as a dimethylamino group, and an aryl group such as a phenyl group are preferable.
  • the amino group is present in the main chain or side chain of the copolymer.
  • the unit having an amino group preferably has a structure represented by the following general formula [4] in the unit.
  • E and F each independently represent a divalent organic residue selected from the group consisting of a substituted or unsubstituted arylene group and a substituted or unsubstituted heteroarylene group Or two or more groups selected from the group consisting of a substituted or unsubstituted arylene group, a substituted or unsubstituted heteroarylene group, and a substituted or unsubstituted ethenylene group.
  • the unit has a structure represented by the following general formula [5] in the unit.
  • General formula [5] is a structure represented by the following general formula [5] in the unit.
  • D, E, and F each independently represent a divalent organic residue selected from the group consisting of a substituted or unsubstituted arylene group and a substituted or unsubstituted heteroarylene group. Or a group formed by combining two or more groups selected from the group consisting of a substituted or unsubstituted arylene group, a substituted or unsubstituted heteroarylene group, and a substituted or unsubstituted eturene group. Represents a divalent organic residue, provided that when a substituted or unsubstituted eturene group is selected, the eturene group is a group between an arylene group and / or a heteroarylene group.
  • the unit having an amino group is more preferably a unit represented by the following general formula [6].
  • D represents the group defined above, and L and M are monovalent groups selected from the group consisting of a substituted or unsubstituted aryl group and a substituted or unsubstituted heteroaryl group.
  • G represents an unconjugated trivalent organic residue.
  • Examples of the group G in the general formula [6] include those similar to the group A in the general formula [1] described above.
  • substituted or unsubstituted aryl groups D, E and F in the general formulas [4]-[6] examples include the same substituted or unsubstituted arylene group as the substituted or unsubstituted arylene group of the group B in the general formula [1].
  • the substituted or unsubstituted aryl group and the substituted or unsubstituted heteroaryl group in the groups L and M in the general formula [6] include the substituted or unsubstituted aryl group in the general formula [1].
  • a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, or an aryl or heteroaryl substituted alkyl group may be selected.
  • the eturene group in the groups D, E, and F in the general formulas [4] to [6] include an eturene group, a 1-methylethenylene group, and a 1-ethylethylenulene group.
  • the unit represented by the general formula [1] and the unit having an amino group are essential as units constituting the copolymer, and the unit represented by the general formula [1] And the copolymerization ratio of the unit having an amino group is preferably from 0.1: 99.9 to 99.9: 0.1, preferably from 5:95 to 95: 5 in molar ratio.
  • the copolymer having these units may further include, as a copolymer unit, a unit represented by the general formula [7], a unit derived from N-vinylcarbazole or an N-vinylcarbazole derivative, or a unit derived from styrene or a styrene derivative.
  • the proportion of units of the general formula [7] is usually copolymer 90 mol 0/0 or less, for example, a 5-70 mol% or so.
  • a unit derived from styrene or a styrene derivative, a unit derived from (meth) acrylic acid or a derivative thereof, and a maleic acid resin are a copolymer of a unit derived from the derivative and a unit derived from an organic acid bulester.
  • the copolymerization ratio in a coalescence according at an appropriate value within a range that can achieve the object of the present invention but, typically, is 50 mol% or less, for example 1 one 40 mole 0/0 approximately.
  • Examples of the unit derived from N-Bullermulazole or a derivative thereof include a unit represented by the following general formula [9].
  • R 6 ° represents one or more substituents, and when there are a plurality of substituents, a hydrogen atom which may be the same or different, a substituted or unsubstituted alkyl group, Represents an alkoxy group, an amino group, an aryl group or a heteroaryl group.
  • N-vinyl carbazole or its derivatives examples include N-vinyl carbazole, N-butyl-1,6-dimethylcarbazole, N-vinylinoleic 3,6-diethylcarbazole, N-vinyl-3,6-diphenylcarbazole, —Vinylinole 3-methylcarbazole, N-bininole 3-ethylcarbazole, N-bininole 3-phenylcarbazole and the like are preferred.
  • the unit derived from styrene or a derivative thereof includes, for example, a unit represented by the following general formula [10].
  • R ei represents a hydrogen atom or a methyl group
  • R represents one or more substituents, and when there are a plurality of substituents, they may be substituted or unsubstituted, which may be the same or different.
  • styrene and derivatives thereof include styrene, ⁇ -methylstyrene, and alkyl-substituted styrene such as methyl, ethyl, ⁇ -butyl, and tert-butyl.
  • Examples of the unit derived from (meth) acrylic acid or a derivative thereof include a unit represented by the following general formula [11].
  • R 63 represents a hydrogen atom or a methyl group
  • R 64 represents —OR 65 or —NR 66 R 67
  • R 65 , R 66 and R 67 represent a hydrogen atom
  • Or represents an unsubstituted alkyl group or an aryl group, and R 66 and R 67 may be the same or different.
  • (meth) acrylic acid or derivatives thereof include acrylic acid, methacrylic acid, methyl acrylate, ethyl acrylate, butyl acrylate, methyl methacrylate, methyl methacrylate, butyl methacrylate, Preferred are N-alkyl- or aryl-substituted or N, N-alkyl- or aryl-substituted products of noreamide, methacrylamide, atalinoleamide, and methacrylamide.
  • the unit derived from maleic acid or a derivative thereof includes, for example, the following general formula [ 12].
  • R 68 and R 69 represent a hydrogen atom, which may be the same or different, and represent a substituted or unsubstituted alkyl group or aryl group.
  • maleic acid and its derivatives include maleic acid, monomethyl maleate, dimethyl maleate, getyl maleate, diphenyl maleate and the like.
  • Examples of the unit derived from the organic acid butyl ester include a unit represented by the following general formula [13].
  • R 7 ° represents a substituted or unsubstituted alkyl group or aryl group.
  • organic acid butyl ester for example, butyl acetate is preferred.
  • the substituted or unsubstituted alkyl or aryl group of R 62 , R 64 —R 7 ° in the general formula [9]-[12] may be an arylene group represented by the group B in the general formula [1]. Examples include the same groups as the groups or the groups described as substituents of the heteroarylene group.
  • 3 ⁇ 4 represents an arbitrary trivalent organic residue having a group K and an oxazolyl group in a side chain and capable of forming a nonconjugated main chain skeleton.
  • the trivalent organic residue include groups similar to the group A in the general formula [1] and the group G in the general formula [6].
  • the group A in the general formula [1], the group G in the general formula [6], and 3 ⁇ 4! In the general formula [7] may be the same or different. It may be no longer.
  • the group K in the general formula [7] is a direct bond, a substituted or unsubstituted arylene group, a substituted or unsubstituted heteroarylene group, or a divalent organic compound obtained by combining these groups and an ethenylene group. Represents a residue.
  • the substituted or unsubstituted arylene group and the substituted or unsubstituted heteroarylene group constituting the group K are represented by the general formula
  • Examples include the same as the substituted or unsubstituted arylene group and the substituted or unsubstituted heteroarylene group of the group B in [1]. Further, the ethenylene group also includes the same groups as those described in the general formula [4]-[6].
  • the substituent of R 21 in the general formula [7] includes the same groups as those described for the substituent of the substituted or unsubstituted arylene group and the substituted or unsubstituted heteroarylene group in the general formula [1]. Is mentioned.
  • each of the above-mentioned copolymers used in the material for an organic electroluminescent device of the present invention is obtained by polymerization of a monomer corresponding to a corresponding unit.
  • the polymerization mode of the non-conjugated main chain skeleton monomer in forming the copolymer may be determined by an appropriate method, for example, radical polymerization, cationic polymerization, anion polymerization, and other polymerization, condensation polymerization, ring-opening polymerization, and various polymerization reactions.
  • the copolymerization can be carried out by a polymerization method, and the polymerization method is not particularly limited. However, in the present invention, the formation of the copolymer by vinyl polymerization is particularly preferred.
  • an azo compound such as azobisisobutyronitrile (AIBN) or benzoyl peroxide may be used as a polymerization catalyst.
  • Known radical polymerization initiators such as peroxides such as (BPO) and dithiocarbamate derivatives such as tetraethylthiuram disulphide are used.
  • a living system using a catalyst system in which a N-oxy radical such as 2,2,6,6-tetramethyl-1-piperidine N oxide (TE MPO) is combined with the above radical polymerization initiator is used.
  • Living radical polymerization methods such as radical polymerization and atom transfer polymerization can also be used.
  • the ratio of the radical polymerization catalyst used is 110.0001% per mole of the monomer.
  • the polymerization solvent in the radical polymerization method include amide solvents such as dimethinolephonoremamide, dimethylacetamide, and N_methylpyrrolidone, and hydrocarbon solvents such as benzene, toluene, xylene, hexane, and cyclohexane.
  • Ester solvents such as, ⁇ -butyrolataton and ethyl lactate; ketone solvents such as cyclohexylbenzophenone, cyclohexanone, 2-ethylpentanone, and ethyl isoamyl ketone; Ether solvents such as cyclic ethers such as lahydrofuran and aliphatic ethers such as diethylene glycol dimethyl ether can be used.
  • the reaction temperature is, for example, 0.5 to 200 ° C.
  • the reaction time is, for example, 0.5 to 72 hours.
  • an olefin catalyst such as naphthyl sodium, an alkyl lithium such as methyl lithium, ethyl lithium, butyl lithium, an aryl lithium such as phenyl lithium, and an alkyl zinc such as getyl zinc.
  • Organic metal compounds such as alkali metals and alkaline earth metals such as art complexes such as lithium alkyl magnesium and lithium alkyl barium are used.
  • the polymerization may be carried out using butyllithium or the like as a catalyst.
  • the proportion of the anion polymerization catalyst used is usually 0.1-0.00001 monoles per mole of monomer.
  • the polymerization solvent benzene, toluene, hexane
  • reaction temperature is, for example, 150-100 ° C
  • reaction time is, for example, 5 minutes and 24 hours.
  • a Lewis acid such as trifluoroborate and tin tetrachloride
  • an inorganic acid such as sulfuric acid and hydrochloric acid
  • a cation exchange resin and the like may be used as a polymerization catalyst.
  • the ratio of the cationic polymerization catalyst used is 0.01 to 0.00001 mol per 1 mol of the monomer.
  • a cationic polymerization method as a polymerization solvent, halogenated hydrocarbons represented by methylene chloride, chlorobenzene, etc., cyclic ethers such as dibutynole ether, diphenyl ether, dioxane, tetrahydrofuran, etc., acetonitrile, nitrobenzene And the like can be used.
  • the reaction temperature is, for example, 150 ° C. to 150 ° C.
  • the reaction time is, for example, 0.0112 hours.
  • a monovalent organic residue consisting of groups B and C of the general formula [1] an organic residue containing an amino group when the amino group of the unit having an amino group is in the side chain, a general formula
  • the monovalent organic residue consisting of the group K and the oxadiazole group [7] is introduced after the non-conjugated main-chain skeleton is formed, even if it is not introduced at the stage of the non-conjugated main-chain skeleton monomer. It may be denatured.
  • the copolymer of the unit represented by the general formula [1] and the unit having an amino group of the present invention may be a random, block or graft copolymer, or an intermediate between them.
  • It may be a polymer having a suitable structure, for example, a random copolymer having a block property.
  • a unit represented by the general formula [7] which may be introduced into the copolymer as a copolymer unit, N-Butyl force rubazole or a derivative thereof, styrene and a derivative thereof, Copolymers containing units derived from acrylic acid and its derivatives, maleic acid and its derivatives, organic acid butyl esters, etc. may also be random, block or graft copolymers, and their intermediate structures May be a random copolymer having a block property.
  • the copolymer used as the material for the organic electroluminescent device of the present invention has a weight average in terms of positive styrene by gel permeation chromatography (GPC) measurement method.
  • the molecular weight is preferably from 1,000 to 1,000,000, particularly preferably from 3,000 to 500,000.
  • the weight average molecular weight of the copolymer used as the material for an organic electroluminescent device of the present invention is not limited to the above examples.
  • copolymer of the present invention comprising the unit of the general formula [1] and the unit having an amino group is
  • Units derived from styrene and its derivatives, acrylic acid and its derivatives, maleic acid and its derivatives, organic acid butyl esters, etc. used as copolymer units are used to improve the physical properties of the copolymers, for example, film formation.
  • N_Bull force rubazole or a derivative thereof is further introduced into the copolymer for the purpose of adjusting and improving the hole transport property.
  • the copolymer containing the unit of the general formula [7] also has an electron transporting property. Therefore, a copolymer containing a unit represented by the general formula [7] can be used as any of a light-emitting material, a hole transport material, and an electron transport material of an organic electroluminescent device.
  • the copolymer of the present invention can be used alone as a material for an organic electroluminescent device, or can be used as a material for an organic electroluminescent device in combination with other organic or inorganic materials. it can.
  • the organic material used in combination with the copolymer of the present invention may be a low molecular weight organic material or a high molecular weight organic material. Further, it is also possible to use it by laminating and coating with other high molecular organic materials. Furthermore, it can be used by mixing with a low molecular weight compound or by laminating. In this case, the low molecular compound may be mixed with a polymer binder and applied, or may be laminated by a method such as vacuum deposition or sputtering.
  • the organic electroluminescent device is a device in which a single or multilayer organic thin film is formed between an anode and a cathode.
  • a light emitting layer is provided between the anode and the cathode.
  • the light emitting layer may contain a light emitting material, and may further contain a hole transporting material or an electron transporting material for transporting holes injected from an anode or electrons injected from a cathode to the light emitting material.
  • the multilayer type [Anode / Hole Injection Zone / Emission Layer / Cathode], [Anode / Emission Layer / Electron Injection Zone / Cathode], [Anode / Hole Injection Zone / Emission Layer / Electron Injection Zone / Cathode]
  • an organic electroluminescent device stacked in a multilayer configuration. Furthermore, it is known that an auxiliary layer is formed between these layers in order to improve the pressure resistance of the light emitting element, the adhesion between the layers, and the like.
  • the organic electroluminescent device of the present invention may have any of such conventionally known layer configurations.
  • the organic electroluminescent device having these layers is usually formed as follows.
  • an anode layer is provided on a transparent substrate, a hole injection zone is provided as necessary on the anode layer, and a light emitting layer is provided on the hole zone. Further, on this light emitting layer, an electron injection zone is provided if necessary, and further a cathode layer is provided. Then, the anode layer and the cathode layer are connected to a DC power supply.
  • the layers were formed by first forming the anode layer on the substrate.
  • a cathode layer may be formed on a substrate. Further, each of the hole injection zone, the light emitting layer, and the electron injection zone may be formed in a layer structure of two or more layers.
  • a layer for injecting holes from the electrode is a hole injection layer
  • a layer for receiving holes from the hole injection layer and transporting holes to the light emitting layer is a hole transport layer.
  • a layer that injects electrons from the electrode is called an electron injection layer
  • a layer that receives electrons from the electron injection layer and transports electrons to the light emitting layer is called an electron transport layer.
  • the transparent substrate a glass substrate, a transparent resin substrate, a quartz glass substrate, or the like can be used.
  • the conductive material used for the anode of the organic electroluminescent element those having a work function of more than 4 eV are preferable, and carbon, aluminum, vanadium, iron, cobalt, nickel, tungsten, silver, gold, platinum, Examples include palladium and the like and alloys thereof, metal oxides such as tin oxide and indium oxide used in ITO substrates and NESA substrates, and organic conductive resins such as polythiophene and polypyrrole.
  • the conductive material used for the cathode those having a work function smaller than 4.
  • OeV are preferable, and magnesium, barium, calcium, cesium, anoremium, tin, lead, titanium, yttrium, lithium,
  • the conductive material used for the anode and the cathode is not limited to these.
  • the anode and the cathode may be formed of two or more layers if necessary.
  • the copolymer constituting the material for an organic electroluminescent device of the present invention is excellent in luminescent property and hole transport property.
  • it has the unit of the general formula [7]
  • it has excellent electron transportability. Therefore, it can be used as a light emitting material, a hole transporting material, and an electron transporting material, and can be used as a material constituting a light emitting layer, a hole injection zone, and an electron injection zone, but is particularly preferably used as a material for a light emitting layer. be able to.
  • the copolymer of the present invention may be used alone, or may be used in the same layer as a mixture with another luminescent material, hole or electron transporting compound.
  • Such light-emitting materials include those that emit light from singlet excitons, those that emit light from triplet excitons, and those that emit light from both of them. Any of the above luminescent materials can be used.
  • Examples of the luminescent material or dopant material that can be used in the luminescent layer together with the copolymer of the present invention include polyalkylfluorene derivatives, polyphenylene derivatives, polyphenylenevinylene derivatives, polythiophene derivatives, and other luminescent polymers.
  • a light emitting material capable of emitting light from a triplet exciton is particularly preferable.
  • a light emitting material capable of emitting light from a triplet exciton there is a metal complex having a triplet light emission, and an iridium complex Ir (ppy) (Tris—Ortho—Metalated Complex of Iridium (III) with 2_P)
  • the quantum yield has been achieved, surpassing the external quantum yield of 5%, which was conventionally considered to be the limit of organic electroluminescent devices (Applied Physics Letters 75, 4 (1999)).
  • the Ir complex compound and the metal-coordinated porphyrin conjugate can be used together with the copolymer of the present invention.
  • a hole transporting material or an electron transporting material can be further used if necessary.
  • the organic electroluminescent element has a multi-layer structure, so that it is possible to prevent a reduction in luminance and life due to quenching. If necessary, a combination of a luminescent material, a dopant material, a hole transport material, and an electron transport material can be used. In addition, the use of a dopant material can improve emission luminance and emission efficiency and obtain red and blue light emission.
  • a hole transporting material used together with the copolymer of the present invention or used in forming the hole transporting layer has a capability of transporting holes and is capable of transporting holes from the anode. It has a hole injection effect, an excellent hole injection effect for the light emitting layer or the light emitting material, prevents the exciton generated in the light emitting layer from moving to the electron injection band or the electron transport material, and has a thin film forming ability. Any compound may be used as long as it is an excellent compound.
  • PED ⁇ T (trade name: complex of poly (3,4-ethylenedioxy) -1,2,5-thiophene and polystyrene sulfonic acid manufactured by Bayer AG), phthalocyanine derivative, naphthalocyanine derivative, ponolefineline derivative, oxazole Oxaziazole, triazonole, imidazole, imidazolone, imidazolethione, pyrazoline, pyrazolone, tetrahydroimidazole, hydrazone, acyl hydrazone, polyarylalkane, stilbene, butadiene, benzidine triphenylenamine, styrylamine triphenylamine And a derivative thereof, and a polymer material such as polybutylcarbazole, polysilane, or a conductive polymer.
  • the hole transport material used in the organic electroluminescent device of the present invention is not limited to these.
  • the electron transporting material used together with the copolymer of the present invention or used when forming the electron transporting layer has an ability to transport electrons, and has an effect of injecting holes from the cathode. Any compound that has an excellent electron injection effect on the light emitting layer or light emitting material, prevents excitons generated in the light emitting layer from moving to the hole injection zone, and has excellent thin film forming ability Anything is good.
  • the electron transporting material used in the organic electroluminescent device of the present invention is not limited to these. In addition, it is possible to give a sense of excellence by adding an electron accepting substance to the hole transporting material and adding an electron donating substance to the electron transporting material.
  • the copolymer of the present invention has a high glass transition point and a high melting point, it has a resistance (heat resistance) to Joule heat generated in an organic layer, an organic layer, or between an organic layer and a metal electrode during electroluminescence.
  • a resistance heat resistance
  • When used as an organic electroluminescent device material it exhibits high luminous brightness and is advantageous when emitting light for a long time.
  • the method for forming the material for an organic electroluminescent device of the present invention is not particularly limited. Vacuum evaporation method from powder state, coating method after dissolving in solvent (for example, ink jet method, spray method, printing method, spin coating method, casting method, dating method, vacuum coating method, roll coating method, etc.) Can be used. However, a coating method is preferable from the viewpoint of simplification of the element manufacturing process, workability, and increase in area.
  • Solvents used for film formation by a coating method include organic halogen solvents such as dichloroethane, dichloromethane, and chloroform, ether solvents such as tetrahydrofuran and 1,4-dioxane, and aromatic hydrocarbon solvents such as toluene and xylene. Solvents, amide solvents such as dimethylformamide and dimethylacetamide, ester solvents such as ethyl acetate and butyl acetate, and mixed solvents thereof may be used. Depending on the structure and molecular weight of the polymer, it is usually formed using a solution in which 0.01 to 10% by weight, preferably 0.1 to 5% by weight of a solvent is dissolved. There is no particular limitation on each film thickness in the electron injection zone, but usually
  • the organic electroluminescent device using the material for an organic electroluminescent device of the present invention includes a flat panel display such as a wall-mounted TV, a light source such as a copying machine or a printer as a flat illuminant, a liquid crystal display or an instrument. It can be applied to light sources, display boards, marker lights, etc., and its industrial value is very large.
  • the copolymer P-1 was synthesized according to the following reaction route.
  • the structure of the compound (1) was determined by elemental analysis, mass spectrometry, infrared absorption spectrum, NMR spectrum, and the like.
  • FIG. 1 shows an infrared absorption spectrum
  • FIG. 2 shows a ' ⁇ - ⁇ R spectrum of compound (1).
  • This compound (2) was determined by elemental analysis, mass spectrometry, infrared absorption spectrum, NMR spectrum and the like.
  • FIG. 3 shows the infrared absorption spectrum of compound (2)
  • FIG. 4 shows the 'H-NMR spectrum.
  • This compound (3) was determined by elemental analysis, mass spectrometry, infrared absorption spectrum, NMR spectrum, and the like.
  • FIG. 5 shows the infrared absorption spectrum of compound (3)
  • FIG. 6 shows the 'H-NMR spectrum.
  • the obtained white powder was subjected to elemental analysis, infrared absorption spectrum, NMR spectrum, and the like, and as a result, was found to be a copolymer P-1 having the above structure (copolymerization ratio: 80:20).
  • the weight average molecular weight (Mw) of the copolymer P_l was 50,000.
  • FIG. 7 shows an infrared absorption spectrum of the copolymer P-1.
  • the copolymer P-10 was synthesized according to the following reaction formula.
  • the obtained white powder was subjected to elemental analysis, infrared absorption spectrum, NMR spectrum, and the like, and as a result, was found to be a copolymer P-10 having the above structure (copolymerization ratio: 45:45:10).
  • the weight average molecular weight (Mw) of the copolymer P-10 was 43,000.
  • FIG. 8 shows an infrared absorption spectrum of the copolymer P-10.
  • the copolymer P-12 was synthesized according to the following reaction formula. [0108]
  • the obtained white powder was subjected to elemental analysis, infrared absorption spectrum, NMR spectrum and the like, and as a result, was found to be a copolymer P-12 (copolymerization ratio: 80:20) having the above structure.
  • the weight average molecular weight (Mw) of the copolymer P-12 was 35,000.
  • FIG. 9 shows the infrared absorption spectrum of the compound (5)
  • FIG. 10 shows the 1 H_NMR spectrum thereof
  • FIG. 11 shows the infrared absorption spectrum of the copolymer P-12.
  • the copolymer P-15 was synthesized according to the following reaction formula.
  • the obtained white powder was subjected to elemental analysis, infrared absorption spectrum, NMR spectrum, and the like, and as a result, was found to be a copolymer P-15 having the above structure (copolymerization ratio: 45:45:10).
  • the weight average molecular weight (Mw) of the copolymer P-15 was 83,000.
  • FIG. 12 shows the infrared absorption spectrum of the copolymer P-15.
  • the copolymer P-17 was synthesized according to the following reaction formula.
  • the obtained white powder was subjected to elemental analysis, infrared absorption spectrum, NMR spectrum, and the like, and as a result, was found to be a copolymer P-17 having the above structure (copolymerization ratio: 48:12:40).
  • the weight average molecular weight (Mw) of the copolymer P-17 was 123,000.
  • FIG. 13 shows the infrared absorption spectrum of the compound (7)
  • FIG. 14 shows the 1 H-NMR spectrum thereof
  • FIG. 15 shows the infrared absorption spectrum of the copolymer P-17.
  • the obtained white powder was subjected to elemental analysis, infrared absorption spectrum, NMR spectrum and the like, and as a result, was found to be a copolymer P-20 having the above structure (copolymerization ratio 27: 27: 6: 40).
  • the weight average molecular weight (Mw) of the copolymer P_20 was 153,000.
  • FIG. 16 shows the infrared absorption spectrum of the compound (8)
  • FIG. 17 shows the ⁇ H-NMR spectrum
  • FIG. 18 shows the infrared absorption spectrum of the copolymer P-20.
  • PEDOT / PSS poly (3,4_ethylenedioxy) -2,5-thiophene / polystyrenesulfonic acid
  • PEDOT / PSS poly (3,4_ethylenedioxy) -2,5-thiophene / polystyrenesulfonic acid
  • the copolymer P-1 and Ir (ppy) (3%) obtained in 1 were dissolved and dispersed in dichloroethane at a concentration of 1.0 wt%, and a light-emitting layer having a thickness of 80 nm was formed by spin coating.
  • This coating substrate is electrodeposited to a thickness of 20 nm for Ca and 200 nm for A1 by vacuum evaporation.
  • the pole was formed, and an organic EL device 1 was produced.
  • PEDOT / PSS poly (3,4_ethylenedioxy) -2,5-thiophene / polystyrenesulfonic acid
  • ITO electrodes by spin coating to a film thickness of 40 nm.
  • Copolymer P-1 obtained in 1, Ir (ppy) (3%) and electron transport material (
  • the following compound (9)) (35%) was dissolved and dispersed in dichloroethane at a concentration of 1. Owt%, and a light-emitting layer having a thickness of 80 nm was formed by spin coating. An electrode was formed on this coated substrate with a thickness of 20 nm for Ca and 200 nm for A1 by a vacuum evaporation method, and an organic EL device 2 was produced.
  • PEDOT / PSS poly (3,4_ethylenedioxy) -2,5-thiophene / polystyrenesulfonic acid
  • ITO electrodes by spin coating to a film thickness of 40 nm.
  • the material (the following compound (10)) (35./.) was dissolved and dispersed in toluene at a concentration of 1. Owt%, and a light emitting layer having a thickness of 80 nm was formed by a spin coating method. An electrode was formed on the coated substrate with a thickness of 20 nm for Ca and 200 nm for A1 by a vacuum evaporation method, and an organic EL device 3 was produced.
  • Example 4 PEDOT / PSS (poly (3,4_ethylenedioxy) -2,5-thiophene / polystyrenesulfonic acid) is formed on a washed glass plate with ITO electrodes by spin coating to a film thickness of 40 nm. Copolymer P-17 and Ir (ppy) (3%) obtained in 5 were concentrated in 1
  • the solution was dispersed and dissolved in dichloroethane at a low temperature, and a light-emitting layer having a thickness of 80 nm was formed by spin coating.
  • An electrode was formed on this coated substrate with a thickness of 20 nm for Ca and 200 nm for A1 by a vacuum evaporation method, and an organic EL device 4 was produced.
  • PEDOT / PSS poly (3,4_ethylenedioxy) -2,5-thiophene / polystyrenesulfonic acid
  • ITO electrodes by spin coating to a film thickness of 40 nm.
  • Copolymer P-12 obtained in 3 and Ir (Me-ppy) (6%) were converted to 1.Owt%
  • PEDOT / PSS poly (3,4_ethylenedioxy) -2,5-thiophene / polystyrenesulfonic acid
  • PEDOT / PSS poly (3,4-ethylenedioxy) -2,5-thiophene / polystyrenesulfonic acid
  • PEDOT / PSS poly (3,4-ethylenedioxy) -2,5-thiophene / polystyrenesulfonic acid
  • Electrodes were formed on this coated substrate to a thickness of 20 nm for Ca and 200 nm for A1 by a vacuum evaporation method, and an organic EL device 7 was produced.
  • Example 8 PEDOT / PSS (poly (3,4_ethylenedioxy) -2,5-thiophene / polystyrenesulfonic acid) was spin-coated to a thickness of 40 nm on the cleaned glass plate with ITO electrodes.
  • the copolymer P-19 and Ir (ppy) (3%) described above were diluted to a concentration of 1.Owt%.
  • Electrodes were formed on this coated substrate to a thickness of 20 nm for Ca and 200 nm for A1 by a vacuum evaporation method, and an organic EL device 8 was produced.
  • PEDOT / PSS poly (3,4_ethylenedioxy) -2,5-thiophene / polystyrenesulfonic acid
  • ITO electrodes by spin coating to a film thickness of 40 nm.
  • Copolymer P-20 and Ir (ppy) (6%) obtained in 6 were concentrated at 1.Owt%
  • the resultant was dissolved and dispersed in dichloroethane at a low temperature, and a light-emitting layer having a thickness of 70 nm was formed by spin coating. Electrodes were formed on the coated substrate to a thickness of 20 nm for Ca and 200 nm for A1 by a vacuum evaporation method, and an organic EL device 9 was produced.
  • Table 2 shows the EL characteristics of the organic EL devices obtained in Example 119 and Comparative Example 114.
  • the luminance and efficiency were measured and calculated according to the following ⁇ measurement of luminance> and calculation of efficiency.
  • the measurement was performed using a color luminance meter (CS-100A) manufactured by Minolta.
  • the efficiency was calculated by using a power supply (R6243) manufactured by Advantech Co., Ltd. to measure the voltage and the current value at the time of light emission of the EL element, and to obtain the calculated value by the following known formula.
  • the electroluminescent elements (elements 2 and 3) using the material for an organic electroluminescent element of the present invention were found to have a conventionally known copolymer (11) or a homopolymer (element). It can be seen that the driving voltage is lower and the light emission is high efficiency compared to the electroluminescent element using element 12) (element 10, element 11, element 12, element 13).
  • the organic electroluminescent device of the present invention achieves lower driving voltage, improved luminous efficiency, and improved luminous brightness.
  • the above-described examples show the luminescent materials and luminescent auxiliary materials used in the present invention. It does not limit the hole transporting material, the electron transporting material, the sensitizer, the resin, the electrode material and the like, and the method for producing the element.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

明 細 書
有機電界発光素子用材料およびそれを用いた有機電界発光素子 技術分野
[0001] 本発明は、有機電界発光素子用材料およびそれを用いた高発光効率の有機電界 発光(EL)素子に関するものである。
背景技術
[0002] 有機物質を使用した電界発光素子は、固体発光型の安価な大面積フルカラー表 示素子としての用途が有望視され、多くの開発が行われている。一般に有機電界発 光素子は、発光層および該層を挟んだ一対の対向電極から構成されている。発光は 、両電極間に電界が印加されると、陰極側から電子が注入され、陽極側から正孔が 注入され、電子が発光層において正孔と再結合し、エネルギー準位が伝導帯から価 電子帯に戻る際にエネルギーを光として放出する現象である。
[0003] 従来の有機電界発光素子は、無機電界発光 (EL)素子に比べて駆動電圧が高ぐ 発光輝度や発光効率も低かった。また、特性劣化も著しく実用化には至っていなか つた。近年、 10V以下の低電圧で発光する高い蛍光量子効率を持った有機化合物 を含有した薄膜を積層した有機電界発光素子が報告され、関心を集めている (例え ば、下記非特許文献 1参照)。この方法は、金属キレート錯体を発光層、アミン系ィ匕 合物を正孔注入層に使用して、高輝度の緑色発光を得ており、 6 7Vの直流電圧 で、輝度は数 1000cd/m2に達している。し力 ながら、有機化合物の蒸着操作を 伴う有機電界発光素子作成は、生産性に問題が有り、製造工程の簡略化、大面積 化の観点から、塗布方式の素子作成が望ましい。
[0004] 生産性に有利な塗布方式の有機電界発光素子作成で使用される有機電界発光素 子の発光材料としては、共役系のポリマー発光材料、例えばポリフエ二レンビニレン 系ポリマーが知られている(例えば、下記非特許文献 2および 3参照)。しかし、ポリフ 工ニレンビニレン系ポリマーは、発光部をポリマー主鎖に持っため、発光材料の濃度 制御が難しぐ色調、発光強度の微妙な制御が難しい等の問題がある。同じぐ塗布 方式を用いる有機電界発光素子として、色素分散系ポリマーを用いるものがある。こ の色素分散系ポリマーを用いる素子の代表的なものは、ポリビニルカルバゾール中 に、低分子量色素等を分散する素子 (例えば、下記特許文献 1参照)である。これら 色素分散系ポリマーを用いる素子においては、電子輸送性、電子注入性、正孔輸送 性、正孔注入性、発光性など種々の機能を有する材料を発光素子に混合して使用 できる。
[0005] ポリビュル力ルバゾールは、ガラス転移点が高いため比較的高い耐久性を有する 、駆動電圧が高ぐホール移動度、製膜性も十分ではないため、発光効率が低ぐ 実用上問題がある。このようなポリビュル力ルバゾールの問題点を改善するため、様 々な力ルバゾール誘導体ポリマー、コポリマーが提案されてきた。例えばカルバゾー ノレ誘導体とジァミン誘導体の共重合ポリマー(例えば、下記特許文献 2および 3参照) 、力ルバゾール誘導体とォキサジァゾール誘導体の共重合ポリマー(例えば、下記特 許文献 4一 7参照)、その他特殊な力ルバゾールユニットを有するポリマー(例えば、 下記特許文献 8— 10参照)であるが、いずれも発光輝度、発光効率が低ぐ寿命も 短い。
[0006] 特許文献 1 :特開平 4 - 212286号公報
特許文献 2 :特開 2002— 124390号公報
特許文献 3 :特開 2002— 37817号公報
特許文献 4:特開平 11 - 60660号公報
特許文献 5:特開平 11 - 307253号公報
特許文献 6 :特開 2000— 159846号公報
特許文献 7:特開 2001 - 126875号公報
特許文献 8:特開 2002 - 105445号公報
特許文献 9:特開 2002 - 363227号公報
特許文献 10 :特開 2002 - 302516号公報
非特許文献 1 :アプライド フイジタス レターズ (Appl. Phys. Lett. )、 51卷、 913— 915ページ、 1987年
非特許文献 2 :ポリマー ブレツン(Polymer Bulletin)、 38卷、 167—176ページ、 1997年 非特許文献 3 :マクロモレキュールズ(Macromolecules)、 32卷、 1476—1481ぺー ジ、 1999年
[0007] 上記ポリビニルカルバゾールあるいはその誘導体ポリマーを用いた色素分散型素 子の駆動電圧は、共役系のポリマー発光材料、たとえばポリフヱニレンビニレン誘導 体を用いた有機電界発光素子にくらべて高い。これは、ポリフエ二レンビニレン誘導 体のポリマー発光材料に比べて、色素分散型素子に用いられる非共役ポリマー材料 のキャリアの移動度が低い為であると考えられる。表示デバイスにおいて小消費電力 につながるため、駆動電圧は注目される特性の一つであり、色素分散型素子に用い られる前記ポリビュルカルバゾール、あるいはその誘導体ポリマーを用いた色素分散 型素子においても、駆動電圧の低下が要望されている。
[0008] 本発明は、上記のような状況に鑑みなされたものであって、その目的は、駆動電圧 が低ぐ発光効率が高い有機電界発光素子およびこの素子において使用される有 機電界発光素子用材料を提供することである。
また、本発明の目的は、上記に加え、有機電界発光素子を塗布あるいは印刷によ り形成する際、製膜性に優れ、また耐久性に優れた被膜を形成することのできる有機 電界発光素子用材料、並びに耐久性に優れ、高品質の有機電界発光素子を提供 することである。
[0009] 本発明の上記目的は、有機電界発光素子用材料に用いられるポリマーとして、下 記一般式 [1]で表されるユニットおよびアミノ基を有するユニットを含む共重合体を用 レ、ることによって達成された。
すなわち、本発明は、下記 1から 6に記載の有機電界発光素子用材料および下記
7に記載の有機電界発光素子に関する。
[0010] 1.下記一般式 [1]で表されるユニットおよびアミノ基を有するユニットを有する共重 合体を含んでなることを特徴とする有機電界発光素子用材料。
[0011] 一般式 [1] :
Figure imgf000005_0001
C
[0012] (式中、 Aは、非共役の 3価の有機残基を表し、 Bは、置換もしくは未置換のァリーレ ン基および置換もしくは未置換のへテロアリーレン基からなる群より選ばれた二以上 の基が共役的に結合されて形成されてなる 2価の有機残基を表し、 Cは下記一般式 [ 2]で表される一価の有機残基を表す。 )
[0013] 一般式 [2] :
Figure imgf000005_0002
[0014] (式中、 R1 R7は、結合部位、水素原子もしくは置換基を表し、 Xは、直接結合、 -0 ―、— S―、— Se―、— NH―、— NR8— (R8はアルキル基またはァリール基を表す。)、— S ( = 0) ―、― C〇—、― CO〇—、― OCO—、 -CH—を表し、 R1— R7は互いに結合して
2 2
ァリール環を形成しても良ぐさらにそのァリール環に置換基を有しても良い。 )
[0015] 2.上記 1記載の有機電界発光素子用材料において、一般式 [2]で表される一価の 有機残基が、下記一般式 [3]で表される一価の有機残基である有機電界発光素子 用材料。
[0016] 一般式 [3] :
Figure imgf000005_0003
(式中、 R11— R19は、結合部位、水素原子もしくは置換基を表す。 )
[0017] 3.上記 1または 2に記載の有機電界発光素子用材料において、前記共重合体が、さ らに下記一般式 [7]で表されるユニットを有することを特徴とする有機電界発光素子 用材料。
[0018] 一般式 [7] :
K
N \へ
N:
21
R'
[0019] (式中、 Jは非共役の 3価の有機残基を表し、 Kは、直接結合、置換もしくは未置換の ァリーレン基と置換もしくは未置換のへテロアリーレン基とからなる群より選ばれてな る 2価の有機残基、または、置換もしくは未置換のァリーレン基と置換もしくは未置換 のへテロァリーレン基と置換もしくは未置換のエテュレン基とからなる群より選ばれた 二以上の基が結合して形成されてなる 2価の有機残基を表す。ただし、置換もしくは 未置換のエテュレン基が選ばれる場合は、該エテュレン基は、ァリーレン基および/ またはへテロアリーレン基の間の基とされる。また、 R21は、水素原子もしくは置換基を 表す。)
[0020] 4.上記 1一 3のいずれかに記載の有機電界発光素子用材料において、前記共重合 体力 さらに、 N—ビニルカルバゾールもしくは N—ビニルカルバゾール誘導体に由来 するユニット、スチレンあるいはスチレン誘導体に由来するユニット、 (メタ)アクリル酸 あるいは(メタ)アクリル酸誘導体に由来するユニット、マレイン酸あるいはマレイン酸 誘導体に由来するユニットおよび有機酸ビュルエステルに由来するユニットから選ば れた少なくとも一つのユニットを有することを特徴とする有機電界発光素子用材料。
[0021] 5.上記 1一 4のいずれかに記載の有機電界発光素子用材料において、さらに三重 項励起子からの発光が可能な発光材料が含まれることを特徴とする有機電界発光素 子用材料。 [0022] 6.上記 1一 5のいずれかに記載の有機電界発光素子用材料において、さらに電子 輸送材料が含まれることを特徴とする有機電界発光素子用材料。
[0023] 7.一対の電極間に、発光層または発光層を含む複数層の有機化合物薄膜を形成 してなる有機電界発光素子において、前記層の少なくとも一層が、上記 1一 6のいず れかに記載の有機電界発光素子用材料を含むことを特徴とする有機電界発光素子
[0024] 発明の効果
一般式 [1]のユニットおよびアミノ基を有するユニットからなる共重合体およびこの 共重合体に、共重合ユニットとして、さらに N—ビュル力ルバゾールあるいその誘導体 に由来するユニットを含む共重合体は、発光性、正孔輸送性に優れている。また、前 記各共重合体の共重合ユニットとして、一般式 [7]のユニットがさらに含まれるものは 、発光性、正孔輸送性に加え、電子輸送性にも優れている。さらに、これら共重合体 に、共重合ユニットとして、スチレンおよびその誘導体、(メタ)アクリル酸およびその 誘導体、マレイン酸およびその誘導体、有機酸ビュルエステルなどに由来するュニッ トを含ませることにより、共重合体の物性の調整が可能となり、例えば、製膜性に優れ た、すなわち平滑性に優れた塗膜を容易に形成することができる。また、これら共重 合体は、耐熱性、薄膜状態の安定性にも優れている。このため、本発明の共重合体 は有機電界発光素子の発光材料、正孔輸送材料、電子輸送材料などとして優れた 材料であり、これを単独でまたは他の材料とともに本発明の有機電界発光素子用材 料として用いることにより、駆動電圧が低ぐ発光効率が高い電界発光素子を形成す ること力 Sできる。
発明の実施の形態
[0025] 本発明の有機電界発光素子用材料は、上記一般式 [1]で表されるユニットおよび アミノ基を有するユニットを有する共重合体を含むことを特徴とし、また本発明の有機 電界発光素子は、この共重合体を含む有機電界発光素子用材料を素子の層構成 材料として用いることを特徴とするものである。
[0026] 前記共重合体を構成するユニットである一般式 [1]において、基 Aは、基 B、基 Cを 側鎖に有する、非共役主鎖骨格を形成することのできる任意の 3価の有機残基を表 す。基 Aの非共役主鎖骨格を形成することのできる 3価の基としては、例えば次の- 般式 [8]で表される基が挙げられる。
[0027] 一般式 [8] :
Figure imgf000008_0001
32,
[0028] (式中、 R31は水素原子、メチル基または一 CNを表し、 ま直接結合、 -CH—、 -C
H〇_、—〇_、— CO〇_または— CONH—を表し、 nは 0又は 1を表す。)
[0029] 一般式 [8]で示される 3価の有機残基の例を下記 E -] 、E_12に示す力 S、これによ り基 Aが限定されるものではない。
[0030]
E— 1 E— 2 E— 3 E— 4
CH3 CN
H H
-C— CH2— — C—— CH2- — C— CH2— — C— CH2
COO— COO— COO—
E— 5 E— 6 E— 7 E— 8
H H H
C― CH2― ― C— CH2— O—— — C— CH2— O- ― C一 CH2
CH2 O
CH20—
E— 9 E— 1 0 E— 1 1 E— 1 2
CH3 CN
H
— C— CH2- — C一 CH2— — C— -CH2— — C一 CH2— O—
CONH— CONH― CONH— CONH—
[0031] 一般式 [1]の基 Bは、置換もしくは未置換のァリーレン基および置換もしくは未置換 のへテロァリーレン基からなる群より選ばれた二以上の基が共役的に結合されて形 成されてなる 2価の有機残基を表す。基 Bの一部を構成することのできる前記未置換 ァリーレン基は、好ましくは炭素数 6— 60の単環または縮合環のァリーレン基であり、 より好ましくは炭素数 6— 40、更に好ましくは炭素数 6— 30のァリーレン基である。具 体例としては、フエ二レン、ナフタレンジィル、アントラセンジィル、フエナント口リンジィ ノレ、ピレンジィル、トリフエ二レンジィル、ベンゾフヱナント口リンジィル、ペリレンジィル 、ペンタフェニレンジィル、ペンタセンジィルなどが挙げられ、置換ァリーレン基として は、これらァリーレン基に置換基を有するものが挙げられる。
[0032] また、前記未置換へテロアリーレン基は、好ましくは炭素数 4ないし 60の単環または 縮合環の芳香族へテロ環基であり、より好ましくは窒素原子、酸素原子または硫黄原 子の少なくとも一つを含有する炭素数 4ないし 60の単環または縮合環の芳香族へテ 口環基であり、更に好ましくは炭素数 4ないし 30の 5員または 6員の芳香族へテロ環 基である。芳香族へテロ環基の具体例としてはピロールジィル、フランジィル、チェ二 レン、ピリジンジィル、ピリダジンジィル、ピリミジンジィノレ、ピラジンジィル、キノリンジィ ノレ、イソキノリンジィル、シンノリンジィル、キナゾリンジィル、キノキサリンジィル、フタラ ジンジィル、プテリジンジィル、アタリジンジィル、フエナジンジィル、フエナント口リンジ ィルなどが挙げられ、置換へテロアリーレン基としては、これらへテロアリーレン基に 置換基を有するものが挙げられる。
[0033] 前記ァリーレン基およびへテロアリーレン基の置換基としては、ハロゲン原子(例え ばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、置換もしくは未置換のアルキノレ 基、置換もしくは未置換のアルコキシ基、置換もしくは未置換のチォアルコキシ基、シ ァノ基、アミノ基、モノもしくはジ置換アミノ基、水酸基、メルカプト基、置換もしくは未 置換のァリールォキシ基、置換もしくは未置換のァリールチオ基、置換もしくは未置 換のァリール基、置換もしくは未置換のへテロアリール基が挙げられる。また置換基 は、隣接した置換基同士で置換もしくは未置換の環を形成しても良い。このような、隣 接した置換基同士で形成される環としては、例えば 5ないし 7員環の酸素原子、窒素 原子、硫黄原子等が含まれてもよい脂肪族、炭素環式芳香族、複素環式芳香族、複 素環が挙げられる。これらの環は、任意の位置にさらに置換基を有してもよい。
[0034] 前記置換基のうち、置換もしくは未置換のアルキル基としては、メチル基、ェチル基 、プロピル基、ブチル基、 see—ブチル基、 tert—ブチル基、ペンチル基、へキシル基 、 2_ェチルへキシル基、ヘプチル基、ォクチル基、イソォクチル基、ステアリノレ基、ト リクロロメチル基、トリフロロメチノレ基、シクロプロピル基、シクロへキシル基、 1, 3—シク 口へキサジェニル基、 2—シクロペンテン _1ーィル基、 2, 4—シクロペンタジェンー 1ーィ リデニル基などが挙げられる。
[0035] 置換もしくは未置換のアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基 、 n—ブトキシ基、 sec—ブトキシ基、 tert—ブトキシ基、ペンチルォキシ基、へキシルォ キシ基、 2_ェチルへキシルォキシ基、ステアリルォキシ基、トリフロロメトキシ基等があ る。
[0036] 置換もしくは未置換のチォアルコキシ基としては、メチルチオ基、ェチルチオ基、プ ロピルチオ基、ブチルチオ基、 sec—ブチルチオ基、 tert—ブチルチオ基、ペンチル チォ基、へキシルチオ基、へプチルチオ基、ォクチルチオ基等がある。
[0037] また、モノまたはジ置換アミノ基としては、メチノレアミノ基、ジメチノレアミノ基、ェチル アミノ基、ジェチルァミノ基、ジプロピルアミノ基、ジブチルァミノ基、ジフエ二ルァミノ 基、ビス(ァセトォキシメチル)アミノ基、ビス(ァセトォキシェチル)アミノ基、ビス(ァセ トォキシプロピル)アミノ基、ビス(ァセトォキシブチル)アミノ基、ジベンジルァミノ基等 が挙げられる。
[0038] 置換もしくは未置換のァリールォキシ基としては、フエノキシ基、 p— tert—ブチルフ ェニキシ基、 3_フルオロフェニキシ基等がある。
[0039] 置換もしくは未置換のァリールチオ基としては、フエ二ルチオ基、 3_フルオロフェニ ルチオ基等がある。
[0040] 置換もしくは未置換のァリール基を具体的に例示すると、例えば、フエニル基、ビフ ェニレニル基、トリフエ二レニル基、テトラフエ二レニル基、 3—二トロフエニル基、 4ーメ チルチオフエニル基、 3, 5—ジシァノフエニル基、 o—, m—および p—トリル基、キシリノレ 基、 o—, m—および p_タメニル基、メシチル基、ペンタレニル基、インデュル基、ナフ チノレ基、アントラセニル基、ァズレニル基、ヘプタレニル基、ァセナフチレニル基、フ ェナレニル基、フルォレニル基、アントリル基、アントラキノニル基、 3—メチルアントリ ル基、フエナントリノレ基、ピレニル基、クリセ二ル基、 2—ェチルー 1—クリセニル基、ピセ 二ノレ基、ペリレニル基、 6_クロ口ペリレニル基、ペンタフヱニル基、ペンタセニル基、 テトラフヱ二レニル基、へキサフヱニル基、へキサセニル基、ルビセニル基、コロネ二 ル基、トリナフチレ二ノレ基、ヘプタフヱニル基、ヘプタセニル基、ピラントレニル基、ォ バレニル基等が挙げられる。
[0041] 置換もしくは未置換のへテロアリール基を具体的に例示すると、例えば、チォニル 基、フリル基、ピロリル基、イミダゾリル基、ピラゾリル基、ピリジル基、ビラジニル基、ピ リミジニル基、ピリダジニル基、インドリル基、キノリル基、イソキノリル基、フタラジニノレ 基、キノキサリニル基、キナゾリニル基、カルバゾリル基、アタリジニル基、フエナジ二 ル基、フルフリル基、イソチアゾリル基、イソキサゾリル基、フラザニル基、フヱノキサジ ニル基、ベンゾチアゾリル基、ベンゾォキサゾリル基、ベンズイミダゾリル基、 2—メチノレ ピリジル基、 3_シァノピリジル基等が挙げられる。
[0042] ァリーレン基およびへテロアリーレン基の好ましい置換基は、炭素数が 1一 20のァ ルキル基もしくはアルコキシ基、フエニル基、シァノ基などである。
[0043] 基 Bは、上記置換もしくは未置換のァリーレン基および置換もしくは未置換のへテロ ァリーレン基からなる群より選ばれた二以上の基が、直接あるいは例えばエテュレン 基などを介して共役的に連結されて形成された 2価の有機残基であればいずれのも のでもよい。すなわち、本発明の一般式 [1]の基 Bは、置換もしくは未置換のァリーレ ン基および置換もしくは未置換のへテロアリーレン基から選ばれた二以上の基が直 接結合された 2価の基、あるいは前記ァリーレン基あるいはヘテロァリーレン基が必 要に応じエテュレン基などを介して互いに結合した 2価の基である。前記ァリーレン 基もしくはヘテロァリーレン基が置換基を有する場合、置換基同士が一体となって新 たな環を形成することがあってもよい。以下に、置換もしくは未置換のァリーレン基お よび置換もしくは未置換のへテロアリーレン基からなる群より選ばれた 2種以上の基 1S 直接あるいは必要であればェテニレン基を介して連結されて形成された 2価の有 機残基の基本骨格のいくつかを例示する。勿論、本発明の基 Bは、下記例示のもの あるいは下記基本骨格が置換基により置換された基に限定されるものではなレ、。な お、エテュレン基としては、エテュレン基、 1一メチルエテュレン基、 1一ェチルエテュ レン基などが挙げられる。 [0044]
Figure imgf000012_0001
Figure imgf000012_0002
Figure imgf000012_0003
[0045] 一般式 [1]の基 Cは、前記一般式 [2]で表される基であり、好ましくは、前記一般式
[3]で表される基である。一般式 [2]および一般式 [3]における、 R1— R7および R11 一 R19の置換基としては、前記ァリーレン基あるいはヘテロァリーレン基の置換基と同 様の基が挙げられる。一般式 [2]または一般式 [3]で表される好ましい基の具体例を 以下に示すが、一般式 [2]または一般式 [3]で表される基が下記例示のものに限定 されるものではない。
[0046]
Figure imgf000012_0004
Figure imgf000013_0001
Figure imgf000013_0002
[0047] 上記式中、 R41— R51は、水素原子または置換基であり、置換基は、 R1— R7および R11— R19と同様の基を表す。 R41— R51の置換基としては、メチル基、ェチル基などの アルキル基、メトキシ基、エトキシ基などのアルコキシ基、ジメチルァミノ基などの置換 アミノ基、フエニル基などのァリール基が好ましい。
[0048] 一方、本発明の共重合体を構成するアミノ基を有するユニットにおいては、アミノ基 は共重合体の主鎖または側鎖に存在する。このアミノ基を有するユニットは、下記一 般式 [4]で表される構造をユニット内に有するものが好ましい。
[0049] 一般式 [4] :
E' F、
[0050] (式中、 Eおよび Fは、それぞれ独立に、置換もしくは未置換のァリーレン基と置換も しくは未置換のへテロアリーレン基とからなる群より選ばれてなる 2価の有機残基、ま たは、置換もしくは未置換のァリーレン基と置換もしくは未置換のへテロアリーレン基 と置換もしくは未置換のェテニレン基とからなる群より選ばれた二以上の基が結合し て形成されてなる 2価の有機残基を表す。ただし、置換もしくは未置換のエテュレン 基が選ばれる場合は、該ェテ二レン基は、ァリーレン基および/またはヘテロァリー レン基の間の基とされる。 )
[0051] また、より好ましくは下記一般式 [5]で表される構造をユニット内に有するものである 一般式 [5]
Figure imgf000014_0001
[0052] (式中 D、 E、 Fは、それぞれ独立に、置換もしくは未置換のァリーレン基と置換もしく は未置換のへテロアリーレン基とからなる群より選ばれてなる 2価の有機残基、または 、置換もしくは未置換のァリーレン基と置換もしくは未置換のへテロアリーレン基と置 換もしくは未置換のエテュレン基とからなる群より選ばれた二以上の基が結合して形 成されてなる 2価の有機残基を表す。ただし、置換もしくは未置換のエテュレン基が 選ばれる場合は、該エテュレン基は、ァリーレン基および/またはヘテロァリーレン 基の間の基とされる。 )
[0053] アミノ基を有するユニットは、さらに好ましくは下記一般式 [6]で表されるユニットで める。
一般式 [6] :
Figure imgf000014_0002
[0054] (式中、 Dは、上記で定義した基を表し、 Lおよび Mは、置換もしくは未置換のァリー ル基または置換もしくは未置換のへテロアリール基からなる群より選ばれてなる 1価の 有機残基を表し、 Gは非共役の 3価の有機残基を表す。 )
[0055] 上記一般式 [6]の基 Gとしては、前述の一般式 [1]の基 Aと同様のものが例示でき る。また、一般式 [4]一 [6]における基 D、 E、 Fにおける、置換もしくは未置換のァリ 一レン基、置換もしくは未置換のへテロアリーレン基としては、一般式 [1]の基 Bの置 換もしくは未置換のァリーレン基、置換もしくは未置換のへテロアリーレン基と同様の 基が例示される。また、一般式 [6]の基 L、 Mにおける置換もしくは未置換のァリール 基、置換もしくは未置換のへテロアリール基としては、一般式 [1]の基 Bの置換もしく は未置換のァリール基、置換もしくは未置換のへテロアリール基と同様の基が挙げら れる。なお、基 Lおよび Mのァリール基もしくはヘテロァリール基の置換基としては、 置換もしくは未置換のァリール基、置換もしくは未置換のへテロアリール基、これらァ リールあるいはヘテロァリール置換アルキル基などが選択されても良い。また、一般 式 [4]一 [6]の基 D、 E、 Fにおけるエテュレン基としては、エテュレン基、 1—メチルェ テニレン基、 1_ェチルエテュレン基などが挙げられる。
一般式 [6]で表されるユニットとしては、以下の表 1の H—1から H—12に示すものが 好ましいものとして挙げられる。しかし、一般式 [6]で表されるユニットが、下記記載の ものに限定されるものではない。
[0057]
H - H— 3 H— 4
†"C一 CH2
Figure imgf000016_0001
H- 5 H— 6 H— 7 H— 8
Figure imgf000016_0002
[0058] 本発明の共重合体においては、一般式 [1]で表されるユニットおよびアミノ基を有 するユニットは、共重合体を構成するユニットとして必須であり、一般式 [1]のユニット と、アミノ基を有するユニットの共重合比は、好ましくは、モル比で 0. 1 : 99. 9一 99. 9 : 0. 1、好ましくは 5 : 95— 95 : 5である。これらユニットを有する共重合体は、さらに 共重合ユニットとして、前記一般式 [7]で表されるユニット、 N—ビニルカルバゾールあ るいは N—ビニルカルバゾール誘導体に由来するユニット、スチレンあるいはスチレン 誘導体に由来するユニット、 (メタ)アクリル酸あるレ、はその誘導体に由来するユニット 、マレイン酸あるいはその誘導体に由来するユニットおよび/または有機酸ビュルェ ステルに由来するユニットなどを有していても良レ、。一般式 [7]のユニットの割合は、 通常、共重合体中 90モル0 /0以下、例えば 5— 70モル%程度とされる。また、 N—ビニ ルカルバゾールあるいは N—ビニルカルバゾール誘導体に由来するユニットは、共重 合体中、 90モル0 /0以下、好ましくは 70モル0 /0以下、例えば 5— 60モル0 /0程度とされ る。さらに、スチレンあるいはスチレン誘導体に由来するユニット、 (メタ)アクリル酸あ るいはその誘導体に由来するユニット、マレイン酸あるレヽはその誘導体に由来するュ ニットおよび有機酸ビュルエステルに由来するユニットの共重合体中での共重合比 は、本発明の目的を達成しうる範囲内で適宜の値で良レ、が、通常、 50モル%以下、 例えば 1一 40モル0 /0程度とされる。
[0059] N—ビュル力ルバゾールあるいはその誘導体に由来するユニットとしては、例えば次 の次の一般式 [9]で表されるユニットが挙げられる。
一般式 [9] :
Figure imgf000017_0001
[0060] (式中、 R6°は、 1以上の置換基を表し、置換基が複数存在する場合は、同一でも異 なっていてもよぐ水素原子、置換または未置換の、アルキル基、アルコキシ基、アミ ノ基、ァリール基またはへテロアリール基を表す。)
N—ビニルカルバゾールあるいはその誘導体としては、 N—ビニルカルバゾール、 N —ビュル一 3, 6—ジメチルカルバゾール、 N—ビニノレー 3, 6—ジェチルカルバゾール、 N —ビニルー 3, 6—ジフエ二ルカルバゾール、 N—ビニノレー 3—メチルカルバゾール、 N—ビ ニノレー 3—ェチルカルバゾール、 N—ビニノレー 3—フエ二ルカルバゾールなどが好ましレヽ ものとして挙げられる。
[0061] スチレンあるいはその誘導体に由来するユニットとしては、例えば、次の一般式 [10 ]で表されるユニットが挙げられる。
一般式 [10] : 61
CH2— C
62
R'
[0062] (式中、 Reiは、水素原子またはメチル基を表し、 R は、 1以上の置換基を表し、置換 基が複数存在する場合は、同一でも異なっていてもよぐ置換または未置換の、アル キル基、アルコキシ基またはァリール基を表す。)
スチレンあるいはその誘導体としては、スチレン、 α—メチルスチレンおよびスチレン のアルキル置換体、例えばメチル、ェチル、 η—ブチル、 tert—ブチル置換体などが好 ましいものとして挙げられる。
[0063] (メタ)アクリル酸あるいはその誘導体に由来するユニットとしては、例えば、次の一 般式 [11]で表されるユニットが挙げられる。
一般式 [11] :
Figure imgf000018_0001
[0064] (式中、 R63は、水素原子またはメチル基を表し、 R64は、— OR65または- NR66R67を表 し、 R65、 R66および R67は、水素原子、置換または未置換の、アルキル基またはァリー ル基を表し、 R66および R67は同一でも異なっていてもよい。 )
(メタ)アクリル酸あるいはその誘導体としては、例えば、アクリル酸、メタクリル酸、ァ クリル酸メチルエステル、アクリル酸ェチルエステル、アクリル酸ブチルエステル、メタ クリル酸メチルエステル、メタクリル酸ェチルエステル、メタクリル酸ブチルエステル、 アタリノレアミド、メタクリルアミド、アタリノレアミド、メタクリルアミドの N—アルキルあるいは ァリール置換体あるいは N, N—アルキルあるいはァリール置換体などが好ましいもの として挙げられる。
[0065] マレイン酸あるいはその誘導体に由来するユニットとしては、例えば、次の一般式 [ 12]で表されるユニットが挙げられる。
一般式 [12] :
Figure imgf000019_0001
[0066] (式中、 R68および R69は、同一でも異なっていてもよぐ水素原子、置換または未置換 の、アルキル基またはァリール基を表す。)
マレイン酸あるいはその誘導体としては、例えば、マレイン酸、マレイン酸モノメチル エステル、マレイン酸ジメチルエステル、マレイン酸ジェチルエステル、マレイン酸ジ フエニルエステルなどが好ましいものとして挙げられる。
[0067] 有機酸ビュルエステルに由来するユニットとしては、例えば、次の一般式 [13]で表 されるユニットが挙げられる。
一般式 [13] :
Figure imgf000019_0002
[0068] (式中、 R7°は、置換または未置換の、アルキル基またはァリール基を表す。)
有機酸ビュルエステルとしては、例えば、酢酸ビュルが好ましいものとして挙げられ る。
なお、上記一般式 [9]一 [12]の R62、 R64— R7°の置換または未置換の、アルキル 基またはァリール基の置換基としては、一般式 [1]の基 Bでァリーレン基またはへテロ ァリーレン基の置換基として記載された基と同様の基が挙げられる。
[0069] 一般式 [7]において、 ¾ [は、基 Kおよびォキサゾリル基を側鎖に有する、非共役主 鎖骨格を形成することのできる任意の 3価の有機残基を表すが、 ¾!の 3価の有機残 基の例としては、前記一般式 [1]の基 A、一般式 [6]の基 Gと同様な基が挙げられる 。また、一般式 [1]の基 A、一般式 [6]の基 Gおよび一般式 [7]の ¾!は、同一でも異 なったものであってもよい。一般式 [7]の基 Kは、直接結合、置換もしくは未置換のァ リーレン基、置換もしくは未置換のへテロアリーレン基、または、これらの基およびェ テニレン基が組み合わされてなる 2価の有機残基を表す。基 Kを構成する置換もしく は未置換のァリーレン基、置換もしくは未置換のへテロアリーレン基としては、一般式
[1]の基 Bの置換もしくは未置換のァリーレン基、置換もしくは未置換のへテロアリー レン基と同様なものが挙げられる。さらに、ェテニレン基についても、一般式 [4]一 [6 ]で説明したものと同様なものを挙げることができる。また、一般式 [7]の R21の置換基 としては、一般式 [1]の置換もしくは未置換のァリーレン基、置換もしくは未置換のへ テロアリーレン基の置換基で説明した基と同様の基が挙げられる。
[0070] 本発明の有機電界発光素子用材料において用いられる上記各共重合体は、該当 するユニットに相当するモノマーの重合により得られる。共重合体を形成する際の非 共役主鎖骨格モノマーの重合様式は、適宜の方法、例えば、ラジカル重合、カチォ ン重合、ァニオン重合などのビュル重合、縮重合、開環重合、種々の重合反応によ る共重合体形成を行うことができ、重合方法は特に限定しないが、本発明では特にビ ニル重合による共重合体形成が好ましい。
[0071] ビュル重合により、共重合体が通常のラジカル重合法により形成される場合、重合 触媒としては、ァゾビスイソブチロニトリル (AIBN)などのァゾ化合物、過酸化べンゾ ィル(BPO)などの過酸化物、テトラェチルチウラムジスルフイドなどのジチォカルバメ ート誘導体などの公知のラジカル重合開始剤が用いられる。さらに、リビングラジカノレ 重合法による場合には、 2, 2, 6, 6—テトラメチルー 1ーピペリジン N オキサイド (TE MPO)などの N ォキシラジカルと、上記のラジカル重合開始剤とを組み合わせた触 媒系によるリビングラジカル重合法、アトムトランスファー重合などによるリビングラジカ ル重合法を利用することもできる。ラジカル重合触媒の使用割合は、モノマー 1モル に対して 1一 0. 00001モノレである。ラジカル重合法における重合溶媒としては、ジメ チノレホノレムアミド、ジメチルァセトアミド、 N_メチルピロリドンなどのアミド系溶媒、ベン ゼン、トルエン、キシレン、へキサン、シクロへキサンなどの炭化水素系溶媒、 γ—ブ チロラタトン、乳酸ェチルなどのエステル系溶媒、シクロへキシルベンゾフエノン、シク 口へキサノン、 2—ェチルペンタノン、ェチルイソアミルケトンなどのケトン系溶媒、テト ラヒドロフランなどの環状エーテルやジエチレングリコールジメチルエーテルなどの脂 肪族エーテル類などのエーテル系溶媒を用いることができる。反応温度は、例えば 0 一 200°Cであり、反応時間は、例えば 0. 5— 72時間である。
[0072] 通常のァニオン重合法による場合には、重合触媒として、ナフチルナトリウムなどの アルフィン触媒、メチルリチウム、ェチルリチウム、ブチルリチウムなどのアルキルリチ ゥム、フヱニルリチウムなどのァリールリチウム、ジェチル亜鉛などのアルキル亜鉛、リ チウムアルキルマグネシウム、リチウムアルキルバリウムなどのアート錯体などのアル カリ金属、アルカリ土類金属などの金属による有機金属化合物などが用レ、られる。ま た、リビングァニオン重合法による場合には、触媒としてブチルリチウムなどを用いて 重合を行えば良い。ァニオン重合触媒の使用割合は、通常、モノマー 1モルに対して 0. 1—0. 00001モノレである。また重合溶媒としては、ベンゼン、トルエン、へキサン
、ヘプタン、シクロへキサンなどの炭化水素、テトラヒドロフラン、ジォキサンなどのェ 一テル化合物などを用いることができる。反応温度は、例えば一 50— 100°Cであり、 その反応時間は、例えば 5分一 24時間である。
[0073] 通常のカチオン重合法による場合においては、重合触媒としてトリフルォロボレート 、四塩化錫などのルイス酸、硫酸、塩酸などの無機酸、カチオン交換樹脂などを用い ればよい。また、リビングカチオン重合法による場合には、触媒として ΗΙ、 ΗΙ-ΖηΙな
2 どを用いればよい。カチオン重合触媒の使用割合は、モノマー 1モルに対して 0. 01 一 0. 00001モルである。このようなカチオン重合法において、重合溶媒としては、メ チレンクロライド、クロ口ベンゼンなどに代表されるハロゲンィ匕炭化水素類、ジブチノレ エーテル、ジフエニルエーテル、ジォキサン、テトラヒドロフランなどの環状エーテル 類、ァセトニトリル、ニトロベンゼンなどの高極性溶媒などを用いることができる。また、 反応温度は、例えば一 150— 150°Cであり、その反応時間は、例えば 0. 01 12時 間である。
[0074] また、一般式 [1]の基 B、 Cからなる一価の有機残基、アミノ基を有するユニットのァ ミノ基が側鎖にある場合のアミノ基を含む有機残基、一般式 [7]の基 Kおよびォキサ ジァゾール基からなる一価の有機残基などは、非共役主鎖骨格モノマーの段階で導 入されていなくとも、非共役主鎖骨格が形成されたあと、導入 *変性されてもよい。 [0075] なお、本発明の一般式 [1]で表されるユニットとアミノ基を有するユニットとの共重合 体は、ランダム、ブロック、またはグラフト共重合体であってもよぐそれらの中間的な 構造を有する高分子たとえばブロック性をもつランダム共重合体であってもよい。ある いはこれらユニットとともに、共重合ユニットとして共重合体中に導入されても良い、一 般式 [7]で表されるユニット、 N—ビュル力ルバゾールあるいその誘導体、スチレンお よびその誘導体、アクリル酸およびその誘導体、マレイン酸およびその誘導体、有機 酸ビュルエステルなどに由来するユニットを含む共重合体も、ランダム、ブロック、ま たはグラフト共重合体であってよぐそれらの中間的な構造を有する高分子たとえば ブロック性をもつランダム共重合体であってもよい。
[0076] 本発明の有機電界発光素子用材料として用いられる共重合体は、材料の耐熱性、 薄膜状態の安定性を考えると、ゲルパーミエイシヨンクロマトグラフィー (GPC)測定法 によるポジスチレン換算重量平均分子量で 1, 000— 1 , 000, 000、特に 3, 000— 5 00, 000であることが好ましい。しかし、これにより、本発明の有機電界発光素子用材 料として用いられる共重合体の重量平均分子量が、前記例示のものに限定されるも のではない。
[0077] 共重合体を構成するユニットおよびこれらユニットによる共重合体の構造例を、表 1 に具体的に示すが、本発明の有機電界発光素子用材料に用いられる共重合体が、 以下の具体例により限定されるものではない。表 1は、各ユニットモノマーの構造を示 すのみで、その重合形態を示したものではなレ、。また、表中の%は、重量%を表す。
00
Figure imgf000023_0001
Figure imgf000024_0001
[6Z00]
9£80請 OOZdf/ェ:) d
Figure imgf000025_0001
[0081]
P-19
Figure imgf000026_0001
P-20
Figure imgf000026_0002
[0082] 本発明の一般式 [1]のユニットおよびアミノ基を有するユニットからなる共重合体は
、発光性、正孔輸送性に優れている。またこの共重合体に、さらに共重合ユニットとし て、 N—ビニルカルバゾールあるいその誘導体、スチレンおよびその誘導体、アタリノレ 酸およびその誘導体、マレイン酸およびその誘導体、有機酸ビュルエステルなどに 由来するユニットを含む共重合体も同様の特性を有する。したがって、これら共重合 体は、有機電界発光素子の正孔輸送性発光材料として有効に使用することができる 。勿論有機電界発光素子の正孔輸送材料としても有効に使用することができる。な お、共重合ユニットとして用いられるスチレンおよびその誘導体、アクリル酸およびそ の誘導体、マレイン酸およびその誘導体、有機酸ビュルエステルなどに由来するュ ニットは、共重合体の物性の改善、例えば製膜性などを改善するために、さらに N_ ビュル力ルバゾールあるいその誘導体は、これに加えて、正孔輸送性の調整、向上 などをも目的として共重合体中に導入されるものである。また、共重合ユニットとして、 一般式 [7]のユニットを含む共重合体は、電子輸送性も付与される。したがって、一 般式 [7]のユニットを含む共重合体は、有機電界発光素子の発光材料、正孔輸送材 料、電子輸送材料のいずれとしても使用できる。
[0083] 本発明の共重合体は、単独で有機電界発光素子用材料として使用することができ るし、他の有機材料や無機材料と併用して有機電界発光素子用材料として使用する こともできる。本発明の共重合体と併用する有機材料は低分子有機材料であっても 高分子有機材料であってもよい。また、他の高分子有機材料と積層塗布して使用す ることも可能である。更には、低分子化合物と混合したり、積層したりして使用すること も可能である。この場合、低分子化合物はポリマーバインダーと混合して塗布しても、 真空蒸着、スパッタリング等の方法で積層してもよい。
[0084] 以下、本発明の有機電界発光素子用材料およびこれを用いた本発明の有機電界 発光素子について具体的に説明するが、これにより本発明の有機電界発光素子用 材料および有機電界発光素子が限定されるものではない。
[0085] 有機電界発光素子は、陽極と陰極間に一層もしくは多層の有機薄膜を形成した素 子である。一層型の場合、陽極と陰極との間に発光層が設けられる。発光層は、発光 材料を含有し、それに加えて陽極から注入した正孔、もしくは陰極から注入した電子 を発光材料まで輸送させるために、正孔輸送材料もしくは電子輸送材料を含有して も良い。多層型としては、 [陽極/正孔注入帯域/発光層/陰極]、 [陽極/発光層 /電子注入帯域/陰極]、 [陽極/正孔注入帯域/発光層/電子注入帯域/陰極 ]の多層構成で積層した有機電界発光素子がある。さらには、発光素子の耐圧性、 層間の密着性などを改善するため、これら層間に補助的な層を形成することも知られ ている。本発明の有機電界発光素子は、このような従来知られたいずれの層構成を 有するものであってよレ、。そして、これら各層を有する有機電界発光素子は、通常、 次のようにして形成される。すなわち、まず透明基板上に、陽極層が設けられ、この 陽極層上に、必要に応じ正孔注入帯域が設けられ、この正孔帯域上には、発光層が 設けられる。さらに、この発光層上には、必要に応じ電子注入帯域が設けられ、さら に陰極層が設けられる。そして、陽極層および陰極層は直流電源に接続される。な お、上記例においては、基板上にまず陽極層を形成することから層の形成を行った 1S まず陰極層を基板上に形成するようにしても良い。また、正孔注入帯域、発光層 、電子注入帯域は、それぞれ二層以上の層構成により形成されても良い。その際に は、正孔注入帯域の場合、電極から正孔を注入する層を正孔注入層、正孔注入層 から正孔を受け取り発光層まで正孔を輸送する層を正孔輸送層と呼ぶ。同様に、電 子注入帯域の場合、電極から電子を注入する層を電子注入層、電子注入層から電 子を受け取り発光層まで電子を輸送する層を電子輸送層と呼ぶ。これらの各層は、 材料のエネルギー準位、耐熱性、有機層もしくは金属電極との密着性等の各要因に より選択されて使用される。
[0086] 透明基板としては、ガラス基板、透明樹脂基板、石英ガラス基板などを用いることが できる。有機電界発光素子の陽極に使用される導電性物質としては、 4eVより大きな 仕事関数を持つものが好適であり、炭素、アルミニウム、バナジウム、鉄、コバルト、二 ッケル、タングステン、銀、金、白金、パラジウム等およびそれらの合金、 ITO基板、 N ESA基板において用いられている酸化スズ、酸化インジウム等の酸化金属、さらに はポリチォフェンやポリピロール等の有機導電性樹脂が挙げられる。また、陰極に使 用される導電性物質としては、 4. OeVより小さな仕事関数を持つものが好適であり、 マグネシウム、バリウム、カルシウム、セシウム、ァノレミニゥム、錫、鉛、チタニウム、イツ トリウム、リチウム、ルテニウム、マンガン等およびそれらの合金が用いられる力 陽極 および陰極に使用される導電性物質がこれらに限定されるものではない。陽極およ び陰極は、必要があれば二層以上の層構成により形成されていても良い。
[0087] 本発明の有機電界発光素子用材料を構成する共重合体は、上記のとおり、発光性 、正孔輸送性に優れている。また、一般式 [7]のユニットを有する場合、電子輸送性 にも優れている。このため、発光材料、正孔輸送材料、電子輸送材料として用いるこ とができ、発光層、正孔注入帯域、電子注入帯域を構成する材料として使用できるが 、特に発光層の材料として好ましく使用することができる。
[0088] 本発明の共重合体は、単独で用いられても、同一層中で他の発光材料、正孔もしく は電子輸送性化合物と混合して使用しても差し支えない。このような発光材料として は、一重項励起子から発光するもの、三重項励起子から発光するもの、並びにその 両者から発光するものがあり、本発明の有機電界発光素子用材料においてはそれら のいずれの発光材料も使用可能である。本発明の共重合体と共に発光層に使用で きる発光材料またはドーパント材料としては、ポリアルキルフルオレン誘導体、および ポリフエ二レン誘導体、ポリフエ二レンビニレン誘導体、ポリチォフェン誘導体、その他 発光性高分子が挙げられる。また、この他に、アントラセン、ナフタレン、フエナントレ ン、ピレン、テトラセン、コロネン、タリセン、フルォレセイン、ペリレン、フタ口ペリレン、 ナフタ口ペリレン、ペリノン、フタ口ペリノン、ナフタ口ペリノン、ジフエニルブタジエン、 テトラフェニルブタジエン、クマリン、ォキサジァゾール、アルダジン、ビスベンゾキサ ゾリン、ビススチリル、ピラジン、シクロペンタジェン、キノリン金属錯体、ァミノキノリン 金属錯体、ベンゾキノリン金属錯体、ィミン、ジフエニルエチレン、ビュルアントラセン 、ジァミノカルバゾール、ピラン、チォピラン、ポリメチン、メロシアニン、イミダゾールキ レートィ匕ォキシノイド化合物、キナクリドン、ルブレンおよび色素レーザー用や増感用 の蛍光色素等があるが、発光材料がこれらに限定されるものではない。
[0089] 本発明の共重合体と共に発光層に使用できる発光材料またはドーパント材料として は、特に三重項励起子からの発光が可能な発光材料が好ましい。三重項励起子か らの発光が可能な発光材料としては、三重項発光性の金属錯体があり、イリジウム錯 体 Ir (ppy) (Tris— Ortho— Metalated Complex of Iridium (III) with 2_P
3
henylpyridine)等が知られている。 Ir (ppy) を用いた緑色発光素子は、 8%の外部
3
量子収率を達成しており、従来有機電界発光素子の限界といわれていた外部量子 収率 5%を凌駕した(Applied Physics Letters 75, 4 (1999) )。その他、 Ir錯 体化合物、金属配位ポリフィリンィ匕合物が本発明の共重合体と共に使用可能である 力 Sこれらに限定されるものではない。
[0090] 発光層には、必要があればさらに正孔輸送材料や電子輸送材料を使用することも できる。有機電界発光素子は、多層構造にすることにより、クェンチングによる輝度や 寿命の低下を防ぐことができる。必要があれば、発光材料、ドーパント材料、正孔輸 送材料や電子輸送材料を組み合わせて使用することができる。また、ドーパント材料 により、発光輝度や発光効率の向上、赤色や青色の発光を得ることもできる。
[0091] 発光層において、本発明の共重合体と共に用いられる、あるいは正孔輸送層を形 成する際に用いられる正孔輸送材料は、正孔を輸送する能力を持ち、陽極からの正 孔注入効果、発光層または発光材料に対して優れた正孔注入効果を有し、発光層 で生成した励起子の電子注入帯域または電子輸送材料への移動を防止し、かつ薄 膜形成能力の優れた化合物であれば何れのものでも良い。具体的には、 PED〇T ( 商品名:バイエル社製 ポリ(3, 4—エチレンジォキシ)一 2, 5—チォフェンとポリスチレ ンスルホン酸との錯体)、フタロシアニン誘導体、ナフタロシアニン誘導体、ポノレフイリ ン誘導体、ォキサゾール、ォキサジァゾール、トリァゾーノレ、イミダゾール、イミダゾロ ン、イミダゾールチオン、ピラゾリン、ピラゾロン、テトラヒドロイミダゾール、ヒドラゾン、 ァシルヒドラゾン、ポリアリールアルカン、スチルベン、ブタジエン、ベンジジン型トリフ ェニノレアミン、スチリルァミン型トリフエニルァミン、ジァミン型トリフエニルァミン等と、そ れらの誘導体、およびポリビュルカルバゾール、ポリシラン、導電性高分子等の高分 子材料等が挙げられる。しかし、本発明の有機電界発光素子で用いられる正孔輸送 材料が、これらに限定されるものではない。
[0092] また、発光層において、本発明の共重合体と共に用いられる、あるいは電子輸送層 を形成する際に用いられる電子輸送材料は、電子を輸送する能力を持ち、陰極から の正孔注入効果、発光層または発光材料に対して優れた電子注入効果を有し、発 光層で生成した励起子の正孔注入帯域への移動を防止し、かつ薄膜形成能力の優 れた化合物であればいずれのものでも良レ、。具体的には、例えば、フルォレノン、ァ ントラキノジメタン、ジフエノキノン、チォピランジオキシド、ォキサゾーノレ、ォキサジァ ゾール、トリァゾーノレ、イミダゾール、ペリレンテトラカルボン酸、フレオレニリデンメタン 、アントラキノジメタン、アントロン等とそれらの誘導体などが挙げられる力 本発明の 有機電界発光素子で用いられる電子輸送材料が、これらに限定されるものではない 。また、正孔輸送材料に電子受容物質を、電子輸送材料に電子供与性物質を添カロ することにより曽感させることもできる。
[0093] 本発明の共重合体は、ガラス転移点や融点が高い為、電界発光時における有機 層中、有機層間もしくは、有機層と金属電極間で発生するジュール熱に対する耐性( 耐熱性)が向上するので、有機電界発光素子材料として使用した場合、高い発光輝 度を示し、長時間発光させる際にも有利である。
[0094] 本発明の有機電界発光素子用材料の成膜方法としては、特に限定はなぐ例えば 粉末状態からの真空蒸着法、溶媒に溶解した後、塗布する方法 (例えばインクジエツ ト法、スプレイ法、印刷法、スピンコーテング法、キャスティング法、デイツビング法、バ 一コート法、ロールコート法など)などを用いることができる。しかし、素子製造工程の 簡略化、加工性、大面積化の観点から、塗布方式が好ましい。塗布方式で製膜する 場合に用いる溶媒としては、ジクロロエタン、ジクロロメタン、クロ口ホルムなどの有機 ハロゲン系溶媒、テトラヒドロフラン、 1 , 4ージォキサンなどのエーテル系溶媒、トルェ ン、キシレンなどの芳香族炭化水素系溶媒、ジメチルホルムアミド、ジメチルァセトアミ ドなどのアミド系溶媒、酢酸ェチル、酢酸ブチルなどのエステル系溶媒、またはこれら の混合溶媒であっても良い。高分子の構造、分子量によっても異なるが、通常溶媒 の 0. 01から 10重量%、好ましくは 0. 1から 5重量%溶解した溶液を用いて製膜する なお、正孔注入帯域、発光層、電子注入帯域の各膜厚に特に制限はないが、通常
、各々、 1一 lOOOnmの範囲で選択される。
[0095] 本発明の有機電界発光素子用材料を用いた有機電界発光素子は、壁掛けテレビ 等のフラットパネルディスプレイや、平面発光体として、複写機やプリンタ一等の光源 、液晶ディスプレイや計器類等の光源、表示板、標識灯等へ応用が考えられ、その 工業的価値は非常に大きい。
図面の簡単な説明
[0096] 図 1]化合物 1の赤外線吸収スペクトル図
図 2]化合物 1の1 H—NMRスペクトル図
図 3]化合物 2の赤外線吸収スペクトル図
図 4]化合物 2の1 H—NMRスペクトル図
図 5]化合物 3の赤外線吸収スペクトル図
図 6]化合物 3の1 H—NMRスペクトル図
図 7]共重合体 P— 1の赤外線吸収スペクトル図
図 8]共重合体 P— 10の赤外線吸収スペクトル図
図 9]化合物 5の赤外線吸収スペクトル図
図 10]化合物 5の1 H— NMRスペクトル図
図 11 ]共重合体 P— 12の赤外線吸収スペクトル図 [図 12]共重合体 P-l 5の赤外線吸収スペクトル図
[図 13]化合物 7の赤外線吸収スペクトル図
[図 14]化合物 7の1 H— NMRスペクトル図
[図 15]共重合体 P— 17の赤外線吸収スペクトル図
[図 16]化合物 8の赤外線吸収スペクトル図
[図 17]化合物 8の1 H—NMRスペクトル図
[図 18]共重合体 P— 20の赤外線吸収スペクトル図
発明を実施するための最良の形態
[0097] 以下、本発明の有機電界発光素子用材料およびそれを用いた有機電界発光素子 を、製造例、実施例などに基づき具体的に説明するが、本発明はこれにより限定され るものではない。
なお、以下の製造例、実施例、比較例の説明中、部は重量部、%は重量%を表す 。また、以下の製造例においては、赤外線吸収スペクトル (IR)は、パーキンエルマ一 社製 Spectrum One Ver. A フーリエ変換赤外線分光分析装置を用いて測定 した。また、 NMRスペクトルは、 日本電子社製 GSX270 FT— NMR分析装置を 用いて測定した。さらに、 GPC分析は、東ソ一社製 GPC_8020 (カラム: TSKgel Multipore— Hを用いて測定した。
[0098] 製造例 1:共重合体 P— 1の合成方法
共重合体 P— 1の合成を、以下の反応経路にしたがって実施した。
Figure imgf000033_0001
化合物 (1 )
Figure imgf000033_0002
化合物 (2)
Figure imgf000033_0003
化合物 (3)
Figure imgf000033_0004
Mw = 50000
化合物 (2) 化合物 (3) P - 1
[0100] <化合物(1)の合成 >
乾燥窒素気流下、 p—ブロモヨードベンゼン 15. 4g (54. 4mmol)、力ルバゾール 1 0. 0g (59. 8mmol)、 Cu粉末 0. 3g、 K CO 7. 9g (57. Ommol)と、溶媒として 1,
2 3
3—ジメチル一 2—イミダゾリジノン(1, 3-dimethyl-2-imidazolidinone)を 100ml 加え、 190°Cにて 18時間撹拌した。反応液を水 700mlに注ぎ、析出物をろ過後、 70 °cで乾燥して、クルード生成物を得た。このクルード生成物を、シリカゲルカラムクロ マトグラフィ一にて単離精製し、化合物(1)を得た。収率 55%。
この化合物(1)の構造決定は、元素分析、質量分析、赤外線吸収スペクトル、 NM Rスぺクトノレ等により行った。化合物(1)の、赤外線吸収スペクトルを図 1に、 'Η-ΝΜ Rスペクトルを図 2に示す。
[0101] <化合物 2の合成 >
四つ口フラスコに冷却管をつけ、化合物(1) 2. 5g (7. 8mmol)、 4—ビュルフエ二 ルボロニックアシッド 1. 72g (l l . 6mmol)に、テトラヒドロフラン(THF) 30mlを加え て撹拌した。ここに 2M K CO aq 30mlを加えた。テトラキストリフエニルホスフィン
2 3
パラジウム(0) (Pd (PPh ) ) 200mg (174mol)および THFlOmlを加え、 80°Cで 24
3
時間還流した。カラムクロマトグラフィーおよびメタノール再沈殿により精製し、化合物
(2)を得た。収率は 62%であった。
この化合物(2)の構造決定は、元素分析、質量分析、赤外線吸収スペクトル、 NM Rスペクトル等により行った。化合物(2)の赤外線吸収スペクトルを図 3に、 'H-NMR スペクトルを図 4に示す。
[0102] <化合物 3の合成 >
四つ口フラスコに冷却管をつけ、 4—ブロモ—N, N—ジトリルァミン 6. 79g (19. 27m mol)、 4—ビニルフエ二ルボロニックアシッド 3· 0g (20. 27mmol)に THF50mlをカロ えて撹拌した。ここに 2M K CO aq 50mlを力 0えた。テトラキストリフエニルホスフィ
2 3
ンパラジウム(0) (Pd (PPh ) ) 351mg (304 μ ΐηοΐ)および THFlOmlを加え、 80。C
3
で 24時間還流した。カラムクロマトグラフィーおよびメタノール再沈殿により精製し、 化合物(3)を得た。収率は 65%であった。
この化合物(3)の構造決定は、元素分析、質量分析、赤外線吸収スペクトル、 NM Rスぺクトノレ等により行った。化合物(3)の赤外線吸収スペクトルを図 5に、 'H-NMR スペクトルを図 6に示す。
[0103] <共重合体 P— 1の合成>
シュレンク型フラスコに化合物(2)および化合物(3)をそれぞれ 0. 8g、 0. 2g入れ て真空脱気を数回繰り返した。ここにァゾビスイソブチロニトリル 0. 02g、 THF 2. 7m 1を加え、 70°Cで 9時間撹拌した。反応液は粘度を帯びてきた。メタノール再沈殿によ り精製を行った。収率は 90%であった。
得られた白色粉末の元素分析、赤外線吸収スペクトル、 NMRスペクトル等を行つ た結果、上記構造を有する共重合体 P— 1 (共重合比 80: 20)であると判明した。 G PC分析の結果、共重合体 P_lの重量平均分子量(Mw)は、 50, 000であった。共 重合体 P— 1の赤外線吸収スペクトルを、図 7に示す。
[0104] 製造例 2 :共重合体 P— 10の合成
共重合体 P— 10の合成を、以下の反応式にしたがって行った。
[0105]
Figure imgf000035_0001
Mw =43000
化合物 (4) 化合物 (2) 化合物 (3) P - 1 0
[0106] シュレンク型フラスコに、化合物 (4)、化合物(2)および化合物(3)をそれぞれ 0. 3 4g、 0. 45g、 0. lg入れて、真空脱気を数回繰り返した。ここにァゾビスイソブチロニ トリル (0. 02g)、THF2. 7mlを加え、 70°Cで 9時間撹拌した。反応液は粘度を帯び てきた。メタノール再沈殿により精製を行った。収率は 90%であった。
得られた白色粉末の元素分析、赤外線吸収スペクトル、 NMRスペクトル等を行つ た結果、上記構造を有する共重合体 P— 10 (共重合比 45 : 45 : 10)であると判明し た。 GPC分析の結果、共重合体 P— 10の重量平均分子量(Mw)は 43, 000であつ た。共重合体 P-10の赤外線吸収スペクトルを、図 8に示す。
[0107] 製造例 3 :共重合体 P— 12の合成
共重合体 P— 12の合成を、以下の反応式にしたがって行った。 [0108]
Figure imgf000036_0001
Mw = 35000
化合物 (5) 化合物 (3) P - 1 2
[0109] シュレンク型フラスコに、化合物(5)および化合物(3)をそれぞれ 0· 80g 0. 20g 入れて、真空脱気を数回繰り返した。ここにァゾビスイソブチロニトリル 0. 02gおよび THF2. 7mlを加え、 70°Cで 9時間撹拌した。反応液は粘度を帯びてきた。メタノー ル再沈殿により精製を行った。収率は 90%であった。
得られた白色粉末の元素分析、赤外線吸収スペクトル、 NMRスペクトル等を行つ た結果、上記構造を有する共重合体 P— 12 (共重合比 80 : 20)であると判明した。 G PC分析の結果、共重合体 P—12の重量平均分子量(Mw)は 35, 000であった。ィ匕 合物(5)の赤外線吸収スペクトルを図 9に、 1H_NMRスペクトルを図 10に、また共重 合体 P— 12の赤外線吸収スペクトルを図 11に示す。
[0110] 製造例 4 :共重合体 P— 15の合成
共重合体 P— 15の合成を、以下の反応式にしたがって行った。
[0111]
Figure imgf000036_0002
Mw =83000
化合物 (4) 化合物 (6) 化合物 (3) P - 1 5
[0112] シュレンク型フラスコに、化合物 (4)、化合物(6)および化合物(3)をそれぞれ 0· 4 5g 0. 45g 0. lg入れて、真空脱気を数回繰り返した。ここにァゾビスイソブチロニ トリノレ 0. 02gおよび THF2. 7mlを加え、 70°Cで 9時間撹拌した。反応液は粘度を帯 びてきた。メタノール再沈殿により精製を行った。収率は 90%であった。 得られた白色粉末の元素分析、赤外線吸収スペクトル、 NMRスペクトル等を行つ た結果、上記構造を有する共重合体 P— 15 (共重合比 45 : 45 : 10)であると判明し た。 GPC分析の結果、共重合体 P— 15の重量平均分子量(Mw)は 83, 000であつ た。共重合体 P—15の赤外線吸収スぺクトノレを、図 12に示す。
[0113] 製造例 5 :共重合体 P— 17の合成
共重合体 P— 17の合成を、以下の反応式にしたがって実施した。
Figure imgf000037_0001
Mw = 123000
化合物 (2) 化合物 (3) 化合物 (7) P - 1 7
[0115] シュレンク型フラスコに化合物(2)、化合物(3)および化合物(7)をそれぞれ 0. 48 g、 0. 12g、 0. 40g入れて、真空脱気を数回繰り返した。ここにァゾビスイソブチロニ トリル 0. 02gおよび THF2. 7mlを加え、 70°Cで 9時間撹拌した。反応液は粘度を帯 びてきた。メタノール再沈殿により精製を行った。収率は 90。/oであった。
得られた白色粉末の元素分析、赤外線吸収スペクトル、 NMRスペクトル等を行つ た結果、上記構造を有する共重合体 P— 17 (共重合比 48 : 12 : 40)であると判明し た。 GPC分析の結果、共重合体 P— 17の重量平均分子量(Mw)は 123, 000であつ た。化合物(7)の赤外線吸収スペクトルを図 13に、 H—NMRスペクトルを図 14に、 また共重合体 P— 17の赤外線吸収スペクトルを図 15に示す。
[0116] 製造例 6 :共重合体 P - 20の合成
共重合体 P— 20の合成を、以下の反応式にしたがって実施した。 [0117]
Figure imgf000038_0001
化合物 (4) 化合物 (2) 化合物 (3) 化合物 (8)
Figure imgf000038_0002
Mw = 153000
Ρ - 2 0
[0118] シュレンク型フラスコに化合物 (4)、化合物(2)、化合物(3)および化合物(8)をそ れぞれ 0. 27g、 0. 27g、 0. 06g、 0. 4g入れて、真空脱気を数回繰り返した。ここに ァゾビスイソブチロニトリル 0. 02gおよび THF2. 7mlを加え、 70°Cで 9時間撹拌した 。反応液は粘度を帯びてきた。メタノール再沈殿により精製を行った。収率は 95%で あった。
得られた白色粉末の元素分析、赤外線吸収スペクトル、 NMRスペクトル等を行つ た結果、上記構造を有する共重合体 P - 20 (共重合比 27 : 27 : 6 : 40)であると判明 した。 GPC分析の結果、共重合体 P_20の重量平均分子量(Mw)は 153, 000であ つた。化合物(8)の赤外線吸収スペクトルを図 16に、 ^H—NMRスペクトルを図 17に 、また共重合体 P—20の赤外線吸収スペクトルを図 18に示す。
[0119] 実施例 1
洗浄した ITO電極付きガラス板上に、 PEDOT/PSS (ポリ(3, 4_エチレンジォキ シ)— 2, 5—チォフェン/ポリスチレンスルホン酸)をスピンコート法で 40nmの膜厚に 製膜し、製造例 1で得られた共重合体 P-1および Ir (ppy) (3%)を 1. 0wt%の濃度 でジクロロェタンに溶解分散させ、スピンコーティング法により 80nmの膜厚の発光層 を形成した。この塗布基板に真空蒸着法により Caを 20nm、 A1を 200nmの膜厚で電 極を形成させ、有機 EL素子 1を作製した。
[0120] 実施例 2
洗浄した ITO電極付きガラス板上に、 PEDOT/PSS (ポリ(3, 4_エチレンジォキ シ)— 2, 5—チォフェン/ポリスチレンスルホン酸)をスピンコート法で 40nmの膜厚に 製膜し、製造例 1で得られた共重合体 P - 1、 Ir (ppy) (3%)および電子輸送材料(
3
下記化合物(9) ) (35%)を、 1. Owt%の濃度でジクロロェタンに溶解分散させ、スピ ンコーティング法により 80nmの膜厚の発光層を形成した。この塗布基板に真空蒸着 法により Caを 20nm、 A1を 200nmの膜厚で電極を形成させ、有機 EL素子 2を作製 した。
[0121] 化合物(9) :
Figure imgf000039_0001
[0122] 実施例 3
洗浄した ITO電極付きガラス板上に、 PEDOT/PSS (ポリ(3, 4_エチレンジォキ シ)— 2, 5—チォフェン/ポリスチレンスルホン酸)をスピンコート法で 40nmの膜厚に 製膜し、製造例 2で得られた共重合体 P-10および Ir (ppy) (3%)および電子輸送
3
材料(下記化合物(10) ) (35。/。)を、 1. Owt%の濃度でトルエンに溶解分散させ、ス ピンコーティング法により 80nmの膜厚の発光層を形成した。この塗布基板に真空蒸 着法により Caを 20nm、 A1を 200nmの膜厚で電極を形成させ、有機 EL素子 3を作 製した。
[0123] 化合物(10) :
Figure imgf000039_0002
[0124] 実施例 4 洗浄した ITO電極付きガラス板上に、 PEDOT/PSS (ポリ(3, 4_エチレンジォキ シ)— 2, 5—チォフェン/ポリスチレンスルホン酸)をスピンコート法で 40nmの膜厚に 製膜し、製造例 5で得られた共重合体 P— 17および Ir (ppy) (3%)を 1 · Owt%の濃
3
度でジクロロェタンに溶解分散させ、スピンコーティング法により 80nmの膜厚の発光 層を形成した。この塗布基板に真空蒸着法により Caを 20nm、 A1を 200nmの膜厚で 電極を形成させ、有機 EL素子 4を作製した。
[0125] 実施例 5
洗浄した ITO電極付きガラス板上に、 PEDOT/PSS (ポリ(3, 4_エチレンジォキ シ)— 2, 5—チォフェン/ポリスチレンスルホン酸)をスピンコート法で 40nmの膜厚に 製膜し、製造例 3で得られた共重合体 P - 12および Ir (Me - ppy) (6%)を 1. Owt%
3
の濃度でトルエンに溶解分散させ、スピンコーティング法により 80nmの膜厚の発光 層を形成した。この塗布基板に真空蒸着法により CsFを lnm、 A1を 200nmの膜厚 で電極を形成させ、有機 EL素子 5を作製した。
[0126] 実施例 6
洗浄した ITO電極付きガラス板上に、 PEDOT/PSS (ポリ(3, 4_エチレンジォキ シ)— 2, 5—チォフェン/ポリスチレンスルホン酸)をスピンコート法で 40nmの膜厚に 製膜し、製造例 4で得られた共重合体 P-15および Ir (t-Bu-ppy) (6%)を 1 · Owt
3
%の濃度でトルエンに溶解分散させ、スピンコーティング法により 80nmの膜厚の発 光層を形成した。この塗布基板に真空蒸着法により Caを 20nm、 A1を 200nmの膜 厚で電極を形成させ、有機 EL素子 6を作製した。
[0127] 実施例 7
洗浄した ITO電極付きガラス板上に、 PEDOT/PSS (ポリ(3, 4_エチレンジォキ シ)— 2, 5—チォフェン/ポリスチレンスルホン酸)をスピンコート法で 40nmの膜厚に 製膜し、表 1記載の共重合体 P—18および Ir (PPy) (3%)を 1. Owt%の濃度でジク
3
ロロェタンに溶解分散させ、スピンコーティング法により 80nmの膜厚の発光層を形 成した。この塗布基板に真空蒸着法により Caを 20nm、 A1を 200nmの膜厚で電極を 形成させ、有機 EL素子 7を作製した。
[0128] 実施例 8 洗浄した ITO電極付きガラス板上に、 PEDOT/PSS (ポリ(3, 4_エチレンジォキ シ)— 2, 5—チォフェン/ポリスチレンスルホン酸)をスピンコート法で 40nmの膜厚に 製膜し、表 1記載の共重合体 P-19および Ir (ppy) (3%)を 1. Owt%の濃度でジク
3
ロロェタンに溶解分散させ、スピンコーティング法により 80nmの膜厚の発光層を形 成した。この塗布基板に真空蒸着法により Caを 20nm、 A1を 200nmの膜厚で電極を 形成させ、有機 EL素子 8を作製した。
[0129] 実施例 9
洗浄した ITO電極付きガラス板上に、 PEDOT/PSS (ポリ(3, 4_エチレンジォキ シ)— 2, 5—チォフェン/ポリスチレンスルホン酸)をスピンコート法で 40nmの膜厚に 製膜し、製造例 6で得られた共重合体 P - 20および Ir (ppy) (6%)を 1. Owt%の濃
3
度でジクロロェタンに溶解分散させ、スピンコーティング法により 70nmの膜厚の発光 層を形成した。この塗布基板に真空蒸着法により Caを 20nm、 A1を 200nmの膜厚で 電極を形成させ、有機 EL素子 9を作製した。
[0130] 比較例 1一 4
実施例 2の共重合体 P - 1の代わりに、下記共重合体(11)、または下記単一重合体 (12)を発光層に使用したものを、素子 10、 11 (比較例 1および 2)とした。また、実施 例 3の共重合体 P— 10の代わりに、共重合体(11)または単一重合体(12)を発光層 に使用したものを、素子 12、 13 (比較例 3および 4)とした。なお、共重合体(11)およ び単一重合体(12)については、前記特許文献 3を参照されたい。
[0131] 共重合体(11) :
Figure imgf000041_0001
M = 300000 [0132] 単一重合体(12) :
Figure imgf000042_0001
[0133] 実施例 1一 9および比較例 1一 4で得られた有機 EL素子の EL特性を、表 2に示す。
なお、輝度および効率は、次の <輝度の測定 >およびく効率の算出 >にしたがって 測定、算出された。
[0134] <輝度の測定 >
ミノルタ社製の色彩輝度計(CS-100A)を用いて測定した。
[0135] <効率の算出 >
効率の算出は、アドヴアンテック社製電源 (R6243)を用いて、 EL素子発光時の電 圧、電流値を測定し、公知の下記計算式により求めた。
電流効率(cd/A) =輝度(cd/cm2) /電流密度 (mA/cm2) X 10
電力効率 (lm/W) = X輝度(cd/cm2) X発光面積 (m2) /電圧 (V) X電流密 度(mA/cm2) X 10
[0136]
表 2
Figure imgf000043_0001
[0137] 表 2の各特性の比較から、本発明の有機電界発光素子用材料を用いた電界発光 素子(素子 2、素子 3)は、従来公知の共重合体(11)あるいは単一重合体(12)を用 いた電界発光素子(素子 10、素子 11、素子 12、素子 13)に比べ、駆動電圧が低ぐ また高効率発光であることが分かる。
[0138] 本発明の有機電界発光素子は低駆動電圧化、発光効率、発光輝度の向上を達成 するものであり、併せて、上記実施例は本発明で使用される発光材料、発光補助材 料、正孔輸送材料、電子輸送材料、増感剤、樹脂、電極材料等および素子作製方 法を限定するものではない。

Claims

請求の範囲
[1] 下記一般式 [1]で表されるユニットおよびアミノ基を有するユニットを有する共重合 体を含んでなることを特徴とする有機電界発光素子用材料。
一般式 [1] :
Figure imgf000044_0001
(式中、 Aは、非共役の 3価の有機残基を表し、 Bは、置換もしくは未置換のァリーレ ン基および置換もしくは未置換のへテロアリーレン基からなる群より選ばれた二以上 の基が共役的に結合されて形成されてなる 2価の有機残基を表し、 Cは下記一般式 [ 2]で表される一価の有機残基を表す。 )
一般式 [2] :
Figure imgf000044_0002
(式中、 R1— R7は、結合部位、水素原子もしくは置換基を表し、 Xは、直接結合、 -0 -、— S -、— Se―、— NH―、— NR8— (R8はアルキル基またはァリール基を表す。)、— S ( = 0) -、― CO—、― COO—、― OCO—、 -CH—を示し、 R1— R7は互いに結合して
2 2
ァリール環を形成しても良ぐさらにそのァリール環に置換基を有しても良い。 )
[2] 請求の範囲第 1項に記載の有機電界発光素子用材料において、一般式 [2]で表さ れるー価の有機残基が、下記一般式 [3]で表される一価の有機残基である有機電 界発光素子用材料。
一般式 [3] :
Figure imgf000045_0001
(式中、 R11— R19は、結合部位、水素原子もしくは置換基を表す。 )
[3] 請求の範囲第 1項または第 2項に記載の有機電界発光素子用材料において、前記 共重合体が、さらに下記一般式 [7]で表されるユニットを有することを特徴とする有機 電界発光素子用材料。
一般式 [7] :
K
N人 0
\
N:
21
R'
(式中、 Jは非共役の 3価の有機残基を表し、 Kは、直接結合、置換もしくは未置換の ァリーレン基と置換もしくは未置換のへテロアリーレン基とからなる群より選ばれてな る 2価の有機残基、または、置換もしくは未置換のァリーレン基と置換もしくは未置換 のへテロァリーレン基と置換もしくは未置換のエテュレン基とからなる群より選ばれた 二以上の基が結合して形成されてなる 2価の有機残基を表す。ただし、置換もしくは 未置換のエテュレン基が選ばれる場合は、該エテュレン基は、ァリーレン基および/ またはへテロアリーレン基の間の基とされる。また、 R21は、水素原子もしくは置換基を 表す。)
[4] 請求の範囲第 1項一第 3項のいずれかに記載の有機電界発光素子用材料におい て、前記共重合体が、さらに、 N—ビニルカルバゾールもしくは N—ビニルカルバゾー ル誘導体に由来するユニット、スチレンあるいはスチレン誘導体に由来するユニット、 (メタ)アクリル酸あるいは (メタ)アクリル酸誘導体に由来するユニット、マレイン酸ある いはマレイン酸誘導体に由来するユニットおよび有機酸ビエルエステルに由来する ユニットから選ばれた少なくとも一つのユニットを有することを特徴とする有機電界発 光素子用材料。
[5] 請求の範囲第 1項一第 4項のいずれかに記載の有機電界発光素子用材料におい て、さらに三重項励起子からの発光が可能な発光材料が含まれることを特徴とする有 機電界発光素子用材料。
[6] 請求の範囲第 1項一第 5項のいずれかに記載の有機電界発光素子用材料におい て、さらに電子輸送材料が含まれることを特徴とする有機電界発光素子用材料。
[7] 一対の電極間に、発光層または発光層を含む複数層の有機化合物薄膜を形成し てなる有機電界発光素子において、前記層の少なくとも一層が、上記請求の範囲第 1項一第 6項のいずれかに記載の有機電界発光素子用材料を含むことを特徴とする 有機電界発光素子。
PCT/JP2004/010836 2003-08-05 2004-07-29 有機電界発光素子用材料およびそれを用いた有機電界発光素子 WO2005022961A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005513409A JP4635873B2 (ja) 2003-08-05 2004-07-29 有機電界発光素子用材料およびそれを用いた有機電界発光素子
US10/566,950 US20080145705A1 (en) 2003-08-05 2004-07-29 Material for Organic Electroluminescent Element and Organic Electroluminescent Element Employing the Same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003286948 2003-08-05
JP2003-286948 2003-08-05

Publications (1)

Publication Number Publication Date
WO2005022961A1 true WO2005022961A1 (ja) 2005-03-10

Family

ID=34269033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/010836 WO2005022961A1 (ja) 2003-08-05 2004-07-29 有機電界発光素子用材料およびそれを用いた有機電界発光素子

Country Status (6)

Country Link
US (1) US20080145705A1 (ja)
JP (1) JP4635873B2 (ja)
KR (1) KR20060113881A (ja)
CN (1) CN100488332C (ja)
TW (1) TW200508356A (ja)
WO (1) WO2005022961A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005054077A (ja) * 2003-08-05 2005-03-03 Toyo Ink Mfg Co Ltd 有機電界発光素子用材料およびそれを用いた有機電界発光素子
JP2005054075A (ja) * 2003-08-05 2005-03-03 Toyo Ink Mfg Co Ltd 有機電界発光素子用材料およびそれを用いた有機電界発光素子
JP2007302624A (ja) * 2006-05-12 2007-11-22 Mitsubishi Chemicals Corp 有機化合物、電荷輸送材料、有機電界発光素子用組成物および有機電界発光素子
KR100781921B1 (ko) 2006-12-22 2007-12-04 (재)대구경북과학기술연구원 카바졸 유도체 및 이를 이용한 유기 전계발광소자
JP2008260765A (ja) * 2007-03-20 2008-10-30 Semiconductor Energy Lab Co Ltd オキサジアゾール誘導体、およびオキサジアゾール誘導体を用いた発光素子、発光装置、並びに電子機器
JP2009057528A (ja) * 2007-09-04 2009-03-19 Nippon Shokubai Co Ltd 高分子量カルバゾール基含有ポリマー
WO2013175789A1 (ja) * 2012-05-24 2013-11-28 出光興産株式会社 有機エレクトロルミネッセンス素子用材料、及びそれを用いた有機エレクトロルミネッセンス素子
JP2014503983A (ja) * 2010-10-14 2014-02-13 メルク パテント ゲーエムベーハー 有機電子素子のための材料
WO2014057852A1 (ja) * 2012-10-09 2014-04-17 出光興産株式会社 共重合体、有機電子素子用材料、有機エレクトロルミネッセンス素子用材料及び有機エレクトロルミネッセンス素子
JP5611938B2 (ja) * 2009-03-09 2014-10-22 昭和電工株式会社 有機発光素子材料、ならびに有機発光素子およびその製造方法
US10040887B2 (en) 2015-12-28 2018-08-07 Samsung Electronics Co., Ltd. Copolymer, organic light-emitting device material including the same, and organic light-emitting device including the organic light-emitting device material

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100301310A1 (en) * 2005-10-07 2010-12-02 Sumitomo Chemical Company, Limited Polymer and polymeric luminescent element employing the same
CN105722947B (zh) 2013-09-30 2018-06-22 株式会社Lg化学 杂环化合物及使用其的有机发光元件
US9873815B2 (en) * 2015-04-30 2018-01-23 Samsung Sdi Co., Ltd. Polymer, organic layer composition, and method of forming patterns

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002105445A (ja) * 2000-09-29 2002-04-10 Fuji Photo Film Co Ltd 有機発光素子材料及びそれを用いた有機発光素子
JP2002302405A (ja) * 2001-03-30 2002-10-18 Sanyo Chem Ind Ltd 粉末状抗菌剤組成物
JP2002363227A (ja) * 2001-04-03 2002-12-18 Fuji Photo Film Co Ltd 新規ポリマーおよびそれを用いた発光素子
WO2003018653A1 (en) * 2001-08-31 2003-03-06 Nippon Hoso Kyokai Phosphor light-emitting compound, phosphor light-emitting composition, and organic light emitting element

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002302516A (ja) * 2001-04-03 2002-10-18 Fuji Photo Film Co Ltd 新規ポリマーおよびそれを用いた発光素子
TW200300154A (en) * 2001-11-09 2003-05-16 Jsr Corp Light emitting polymer composition, and organic electroluminescene device and production process thereof
JP2005054079A (ja) * 2003-08-05 2005-03-03 Toyo Ink Mfg Co Ltd 有機電界発光素子用材料およびそれを用いた有機電界発光素子
JP2005054075A (ja) * 2003-08-05 2005-03-03 Toyo Ink Mfg Co Ltd 有機電界発光素子用材料およびそれを用いた有機電界発光素子
JP2005054078A (ja) * 2003-08-05 2005-03-03 Toyo Ink Mfg Co Ltd 有機電界発光素子用材料およびそれを用いた有機電界発光素子
JP2005220145A (ja) * 2004-02-03 2005-08-18 Toyo Ink Mfg Co Ltd 有機電界発光素子用材料およびそれを用いた有機電界発光素子

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002105445A (ja) * 2000-09-29 2002-04-10 Fuji Photo Film Co Ltd 有機発光素子材料及びそれを用いた有機発光素子
JP2002302405A (ja) * 2001-03-30 2002-10-18 Sanyo Chem Ind Ltd 粉末状抗菌剤組成物
JP2002363227A (ja) * 2001-04-03 2002-12-18 Fuji Photo Film Co Ltd 新規ポリマーおよびそれを用いた発光素子
WO2003018653A1 (en) * 2001-08-31 2003-03-06 Nippon Hoso Kyokai Phosphor light-emitting compound, phosphor light-emitting composition, and organic light emitting element

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005054077A (ja) * 2003-08-05 2005-03-03 Toyo Ink Mfg Co Ltd 有機電界発光素子用材料およびそれを用いた有機電界発光素子
JP2005054075A (ja) * 2003-08-05 2005-03-03 Toyo Ink Mfg Co Ltd 有機電界発光素子用材料およびそれを用いた有機電界発光素子
JP4591652B2 (ja) * 2003-08-05 2010-12-01 東洋インキ製造株式会社 有機電界発光素子用材料およびそれを用いた有機電界発光素子
JP2007302624A (ja) * 2006-05-12 2007-11-22 Mitsubishi Chemicals Corp 有機化合物、電荷輸送材料、有機電界発光素子用組成物および有機電界発光素子
KR100781921B1 (ko) 2006-12-22 2007-12-04 (재)대구경북과학기술연구원 카바졸 유도체 및 이를 이용한 유기 전계발광소자
JP2008260765A (ja) * 2007-03-20 2008-10-30 Semiconductor Energy Lab Co Ltd オキサジアゾール誘導体、およびオキサジアゾール誘導体を用いた発光素子、発光装置、並びに電子機器
JP2009057528A (ja) * 2007-09-04 2009-03-19 Nippon Shokubai Co Ltd 高分子量カルバゾール基含有ポリマー
JP5611938B2 (ja) * 2009-03-09 2014-10-22 昭和電工株式会社 有機発光素子材料、ならびに有機発光素子およびその製造方法
JP2014503983A (ja) * 2010-10-14 2014-02-13 メルク パテント ゲーエムベーハー 有機電子素子のための材料
WO2013175789A1 (ja) * 2012-05-24 2013-11-28 出光興産株式会社 有機エレクトロルミネッセンス素子用材料、及びそれを用いた有機エレクトロルミネッセンス素子
JPWO2013175789A1 (ja) * 2012-05-24 2016-01-12 出光興産株式会社 有機エレクトロルミネッセンス素子用材料、及びそれを用いた有機エレクトロルミネッセンス素子
US9318709B2 (en) 2012-05-24 2016-04-19 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence device, and organic electroluminescence device using the same
WO2014057852A1 (ja) * 2012-10-09 2014-04-17 出光興産株式会社 共重合体、有機電子素子用材料、有機エレクトロルミネッセンス素子用材料及び有機エレクトロルミネッセンス素子
JPWO2014057852A1 (ja) * 2012-10-09 2016-09-05 出光興産株式会社 共重合体、有機電子素子用材料、有機エレクトロルミネッセンス素子用材料及び有機エレクトロルミネッセンス素子
JP2017066416A (ja) * 2012-10-09 2017-04-06 出光興産株式会社 共重合体、有機電子素子用材料、有機エレクトロルミネッセンス素子用材料及び有機エレクトロルミネッセンス素子
US9847490B2 (en) 2012-10-09 2017-12-19 Idemitsu Kosan Co., Ltd. Copolymer, material for organic electronic element, material for organic electroluminescent element, and organic electroluminescent element
US10040887B2 (en) 2015-12-28 2018-08-07 Samsung Electronics Co., Ltd. Copolymer, organic light-emitting device material including the same, and organic light-emitting device including the organic light-emitting device material

Also Published As

Publication number Publication date
JPWO2005022961A1 (ja) 2007-10-11
CN1830231A (zh) 2006-09-06
JP4635873B2 (ja) 2011-02-23
CN100488332C (zh) 2009-05-13
US20080145705A1 (en) 2008-06-19
KR20060113881A (ko) 2006-11-03
TW200508356A (en) 2005-03-01

Similar Documents

Publication Publication Date Title
TWI779018B (zh) 具有經取代之三芳胺骨架之高分子量化合物
JP6942724B2 (ja) 置換トリアリールアミン構造単位を含む高分子量化合物
JPH10324870A (ja) 高分子蛍光体および有機エレクトロルミネッセンス素子
KR102183737B1 (ko) 중합체, 이를 포함하는 코팅 조성물 및 이를 이용한 유기 발광 소자
JP4635873B2 (ja) 有機電界発光素子用材料およびそれを用いた有機電界発光素子
JP2021517923A (ja) 重合体、これを含むコーティング組成物およびこれを用いた有機発光素子
JP4093083B2 (ja) 有機エレクトロルミネッセンス素子材料およびそれを使用した有機エレクトロルミネッセンス素子
JP4591652B2 (ja) 有機電界発光素子用材料およびそれを用いた有機電界発光素子
JP6953059B2 (ja) 重合体、これを含むコーティング組成物およびこれを用いた有機発光素子
JP6953058B2 (ja) 重合体、これを含むコーティング組成物およびこれを用いた有機発光素子
JP2000034476A (ja) 有機蛍光材料および有機エレクトロルミネッセンス素子
JP2004269696A (ja) 有機発光素子材料およびそれを用いた電界発光素子
JP2004176024A (ja) 発光材料およびそれを使用した有機エレクトロルミネッセンス素子
JP4089472B2 (ja) 有機エレクトロルミネッセンス素子材料およびそれを使用した有機エレクトロルミネッセンス素子
JP2006269472A (ja) 有機電界発光素子
JP2004277568A (ja) 有機電界発光素子用ポリマー材料およびそれを用いた電界発光素子
JP2005054079A (ja) 有機電界発光素子用材料およびそれを用いた有機電界発光素子
JP2007201219A (ja) 有機電界発光素子
JP2006253251A (ja) 有機電界発光素子
JP2005225978A (ja) 有機電界発光素子用材料およびそれを用いた有機電界発光素子
JP2006249283A (ja) 有機電界発光素子用材料およびそれを用いた有機電界発光素子
JP2004115761A (ja) 有機エレクトロルミネッセンス素子の発光材料およびそれを使用した有機エレクトロルミネッセンス素子
JP2004185883A (ja) 有機エレクトロルミネッセンス素子
JP2005054076A (ja) 有機電界発光素子用材料およびそれを用いた有機電界発光素子
JP2020535297A (ja) 重合体、これを含むコーティング組成物およびこれを用いた有機発光素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480021673.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067000472

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2005513409

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10566950

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 1020067000472

Country of ref document: KR