WO2005001560A1 - 光増幅装置 - Google Patents

光増幅装置 Download PDF

Info

Publication number
WO2005001560A1
WO2005001560A1 PCT/JP2003/008063 JP0308063W WO2005001560A1 WO 2005001560 A1 WO2005001560 A1 WO 2005001560A1 JP 0308063 W JP0308063 W JP 0308063W WO 2005001560 A1 WO2005001560 A1 WO 2005001560A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
light
input
reflection
receiving element
Prior art date
Application number
PCT/JP2003/008063
Other languages
English (en)
French (fr)
Inventor
Norifumi Shukunami
Norihisa Naganuma
Yuichi Suzuki
Takashi Ishiwada
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP2003/008063 priority Critical patent/WO2005001560A1/ja
Priority to JP2005503212A priority patent/JP4393456B2/ja
Publication of WO2005001560A1 publication Critical patent/WO2005001560A1/ja
Priority to US11/185,874 priority patent/US7209284B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/293Signal power control
    • H04B10/2931Signal power control using AGC
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0121Operation of devices; Circuit arrangements, not otherwise provided for in this subclass
    • G02F1/0123Circuits for the control or stabilisation of the bias voltage, e.g. automatic bias control [ABC] feedback loops
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/293Signal power control
    • H04B10/294Signal power control in a multiwavelength system, e.g. gain equalisation
    • H04B10/2941Signal power control in a multiwavelength system, e.g. gain equalisation using an equalising unit, e.g. a filter
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • G02F1/093Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect used as non-reciprocal devices, e.g. optical isolators, circulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0064Anti-reflection devices, e.g. optical isolaters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • H01S3/06758Tandem amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • H01S3/094015Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre with pump light recycling, i.e. with reinjection of the unused pump light back into the fiber, e.g. by reflectors or circulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10007Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers
    • H01S3/10015Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers by monitoring or controlling, e.g. attenuating, the input signal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10007Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers
    • H01S3/10023Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers by functional association of additional optical elements, e.g. filters, gratings, reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/1305Feedback control systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1608Solid materials characterised by an active (lasing) ion rare earth erbium

Definitions

  • the present invention relates to an optical amplifier, and more particularly to an optical amplifier that amplifies an optical signal.
  • DWDM Dense Wavelength Division Multiplexing
  • EDFA Erbium-Doped Fiber Amplifier
  • An EDFA is an optical amplifier that uses erbium-doped fiber (EDF) doped with erbium (Er3 + ) as a medium for amplification. Stimulated emission amplifies the level of the optical signal. Since the EDFA has a wide gain band, it can amplify a plurality of optical signals within a wavelength band at a time, and is a main device of a WDM repeater.
  • EDF erbium-doped fiber
  • Er3 + erbium
  • FIG. 12 is a diagram showing a configuration of a conventional EDFA.
  • the optical amplifier (EDFA) 100 consists of a multiplexer C1, a pump LD (laser diode) 101, an EDF 102, an optical isolator 103, 107, a gain equalizer 104, a BS (beam splitter) 105, and a variable antenna. It consists of 106 overnight, PD (photodiode) 108, and control unit 109.
  • EDFA optical amplifier
  • the input optical signal and the pumping light emitted from the pumping LD 101 enter the EDF 102 via the multiplexer C1, and the optical signal is amplified.
  • the amplified optical signal passes through an optical isolator 103 and is subjected to gain equalization in a gain equalizer 104 (to flatten the gain wavelength characteristic of the EDF 102).
  • the optical signal that has passed through the gain equalizer 104 is split by the BS 105.
  • variable Athens 106 controls the level of one of the branched optical signals, and the optical signal after the level control is output through the optical isolator 107.
  • the PD 108 converts the other split optical signal into an electrical signal.
  • the control unit 109 monitors this electric signal and controls the power of the pump light emitted from the pump LD 101 based on the monitoring result.
  • the optical isolator is a device that transmits required light only in the direction of the arrow in the figure and does not transmit light in the opposite direction. Therefore, by providing the optical isolator 107 at the position shown in the figure, it is possible to block the return light of the optical signal from the reflection point on the optical fiber transmission line.
  • Optical isolators have the property of absorbing incident light of 1 micron or less. This is because YIG (yttrium / iron / garnet) crystals, which are mainly used for internal magneto-optical crystals, absorb light with a wavelength of 1 micron or less.
  • YIG yttrium / iron / garnet
  • the optical isolator 103 at the position shown in the figure, it is possible to absorb 0.98 micron excitation light. As a result, only the optical signal excluding the pumping light is input to each device after the EDF 102. For example, when the optical signal including the pumping light enters the PD 108, As a result, no monitor level error occurs.
  • an optical isolator was installed between two collimating lenses, and an optical isolator module with the same function as having two optical isolators in one optical isolator was applied.
  • Optical amplifiers have been proposed (for example, see Patent Document 1).
  • Patent Document 1
  • an optical amplifier is composed of various devices.
  • an optical isolator is an important optical device for improving the quality of optical amplification control.
  • optical isolators are one of the most expensive components for optical passive devices, and have caused an increase in cost.
  • An expensive optical isolator 103 is installed to cut off the light). Further, it also hinders downsizing of the device scale.
  • the optical amplifier 100 it is necessary to monitor the optical signal after the output of the EDF 102 via the PD 108 in order to perform feedback control of the pump light power.
  • the BS 105 is installed to split the optical signal, but the BS 105 on the transmission line through which the optical signal (main optical signal) flows becomes a loss medium and causes optical loss.
  • the number of optical components serving as a loss medium installed on the transmission line on the transmission line where the optical main signal flows is as small as possible. Disclosure
  • the present invention has been made in view of such a point, and has reduced the number of optical devices mounted on a transmission line through which an optical main signal flows, thereby achieving miniaturization, cost reduction, and improvement in optical transmission quality. It is an object to provide an optical amplifier.
  • optical amplification is performed by injecting excitation light into an amplification medium doped with an active material for optical amplification.
  • the reflected light is generated by an optical amplifier 1 ⁇ ⁇ that outputs an amplified optical signal and the reflected mirror 122 generates a reflected beam, and the magneto-optical crystal is placed at a position where the input beam and the reflected beam pass.
  • An optical amplifying device 1 comprising: an attenuator 20;
  • the optical amplifying unit 11 performs optical amplification by inputting the excitation light into an amplification medium doped with an active material for optical amplification, and outputs an amplified optical signal.
  • the reflection-type variable optical attenuator 20 reflects the input beam by the reflection mirror 22 to generate a reflected beam, and a magneto-optical crystal is provided at a position where the input beam and the reflected beam pass.
  • the Faraday rotation angle By applying the Faraday rotation angle, the attenuation of the amplified optical signal is changed, and the light partially transmitted through the reflection mirror 122 is converted into an electric signal as input monitor light.
  • FIG. 1 is a diagram illustrating the principle of the optical amplifying device of the present invention.
  • FIG. 2 is a diagram showing a configuration of a reflection type variable optical attenuator.
  • FIG. 3 is a diagram for explaining the operation of the variable Athens overnight.
  • FIG. 4 is a diagram showing the installation position of the PD.
  • FIG. 5 is a diagram showing a configuration of an optical amplifier provided with an AGCZAL C function.
  • FIG. 6 is a diagram showing a configuration of an optical amplifier provided with an AGC / ALC function.
  • FIG. 7 is a diagram showing a state transition of the AGCZALCZ shirt down.
  • FIG. 8 is a diagram showing a configuration of an optical amplifier provided with an AGCZAL C function.
  • FIG. 9 is a diagram showing a configuration of an optical amplifier provided with an AGCZAL C function.
  • FIG. 10 is a diagram illustrating a configuration of an optical amplifier.
  • FIG. 11 is a diagram illustrating a configuration of a reflection-type variable optical attenuator.
  • FIG. 12 is a diagram showing the configuration of a conventional EDF A. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a diagram illustrating the principle of the optical amplifier of the present invention.
  • the optical amplifying device 1 includes an optical amplifying unit 11, a gain equalizer 12, an optical isolator 13, a control unit 14, and a reflective optical variable attenuator 20.
  • the optical amplifying unit 11 includes an excitation light source 11a, EDF 1 lb, and a power bra CI.
  • the reflection-type variable optical attenuator 20 includes a variable antenna 21, a reflection mirror 22, and a light receiving element (PD) 23.
  • the excitation light source 11a injects the excitation light into the amplification medium (hereinafter referred to as EDF) doped with an active material for optical amplification through the power braider C1 with respect to the optical amplification unit 11 (the excitation light
  • the wavelength band is less than 1 micron (eg, 0.98 microns).
  • the reflection-type variable optical attenuator 20 performs level control (attenuation control) of the amplified optical signal gain-equalized by the gain equalizer 12 through the input fiber Fin, and outputs the optical signal after the level control from the output fiber Fout. Output. And after level control The optical signal is output to the optical fiber transmission line through the optical isolator 13.
  • the reflection type variable optical attenuator 20 reflects the input beam by the reflection mirror 22 to generate a reflected beam, and the magneto-optical crystal (included in the variable athens 21) receives the input beam. And a reflection beam are provided at the position where the Faraday rotation angle is given by the applied magnetic field to change the attenuation of the amplified optical signal.
  • the PD 23 converts the light partially transmitted through the reflection mirror 22 as an input monitor light into an electric signal.
  • the control unit 14 monitors this electric signal and controls the power of the pump light emitted from the pump light source 11a based on the monitoring result.
  • the detailed configuration and operation of the reflective variable optical attenuator 20 will be described later.
  • the reflection type variable optical attenuator 20 is one device having a variable optical attenuation control function and a monitor function.
  • the conventional optical amplifier 103 and beam splitter 105 are provided.
  • Optical devices can be eliminated from the transmission path through which the optical main signal flows. This not only reduces the size and cost of the device, but also eliminates optical loss corresponding to noise during optical signal transmission, thereby improving optical transmission quality (OSNR).
  • OSNR optical transmission quality
  • FIG. 2 is a diagram showing a configuration of the reflection-type variable optical attenuator 20.
  • the figure shows a plan view of the reflection type variable optical attenuator 20.
  • Reflective variable optical attenuator 20 has two core ferrule 21 a, lens 21 b, lens holder 21 f, polarizer 21 c, magneto-optical crystal 21 d, and magnetic field applied.
  • e consisting of reflective mirror 22 and PD 23
  • the 2-core ferrule 21 a, lens 21 b, lens holder 21 f, polarizer 21 c, magneto-optic crystal 21 d, and magnetic field applying part 21 e correspond to the variable antenna 21. .
  • the 2 lb lens is fixed by the lens holder 21 f and converts (collimates) a light beam that spreads in the propagation direction into a parallel beam with a uniform direction.
  • the polarizer 21c passes linearly polarized light of the supplied light beam.
  • the polarizer 21c has A wedge-type birefringent crystal (hereinafter referred to as a wedge plate) is used.
  • the reflection mirror (half mirror) 22 reflects the input beam into a reflected beam. It is to be noted that the transmitted light intensity and the reflected light intensity are not completely equal, but are mirrors that partially reflect and partially transmit.
  • Magneto-optical crystal (variable Faraday rotator) 2 Id is provided at the position where the input beam and reflected beam pass, and changes the amount of attenuation of the amplified optical signal by the Faraday rotation angle changed by the magnetic field (polarization of transmitted light) The surface is rotated by a magnetic field to control the substantial light transmittance).
  • a YIG crystal is mainly used for the magneto-optical crystal 21d. Since the YIG crystal becomes opaque when the wavelength is 1 micron or less, transmission of light having a wavelength of 1 micron or less (that is, excitation light) is blocked.
  • the magnetic field applying unit 21e applies a magnetic field to the magneto-optical crystal 21d.
  • the PD 23 converts light partially transmitted through the reflection mirror 22 into an electric signal as input monitor light.
  • the reflectivity of the reflection mirror 22 is set, for example, so that 99% of the optical main signal is reflected and 1% is transmitted.
  • FIG. 3 is a diagram for explaining the operation of the variable attenuator 21.
  • the operation of the variable athens 21 in FIG. 2 becomes a configuration folded back with respect to the reflection surface RP of the reflection mirror 22 as shown in FIG. 3 ( It is a folded figure when viewed from the direction A in Fig. 2.
  • the illustration of the magnetic field applying unit 21e and the PD 23 is omitted). The operation will be described based on this block diagram.
  • the light emitted from the input fiber Fin is collimated by the lens 21b-1 into a parallel light beam (input beam).
  • the input beam is separated into ordinary light O and extraordinary light E by the wedge plate 2 1 c-1.
  • the polarization plane of the ordinary light ⁇ and the polarization plane of the extraordinary light E are orthogonal to each other.
  • the ordinary light ⁇ and the extraordinary light E are rotated by the same angle toward the propagation direction in the plane of polarization, respectively, by the magneto-optical crystals 2 Id-1 and 21 d-2.
  • the ordinary light O whose polarization plane has been rotated is further separated into ordinary light OO and extraordinary light OE by the wedge plate 2 1 c-2, and the extraordinary light E whose polarization plane has been rotated has the wedge plate 2 1 c- By 2, more ordinary light Separated into EO and extraordinary light EE.
  • the extraordinary light OE is refracted as ordinary light by the wedge plate 21c-l, and is refracted by the wedge plate 21c-12 as extraordinary light.
  • the ordinary light 0 ° is being refracted as ordinary light by the wedge plates 21c-1 and 21c-2, respectively.
  • the ordinary light EO is refracted as extraordinary light by the wedge plate 21c-1 and refracted as ordinary light by the wedge plate 21c-2.
  • the extraordinary light EE is being refracted as extraordinary light by the wedge plates 21c-1, 21c-2.
  • the wedge plates 21c-1 and 21c-2 have the same shape, the extraordinary light OE and the ordinary light EO are parallel to each other. Therefore, the extraordinary light OE and ordinary light EO can be condensed by the lens 2 lb-2, coupled to the core of the output fiber Fout, and made incident. At this time, since the ordinary light ⁇ 0 and the extraordinary light EE are not parallel and spread, it is difficult for the ordinary light ⁇ 0 and the extraordinary light EE to be coupled to the core of the output fiber Fout even through the lens 21b-2.
  • the Faraday rotation angle is 90 degrees
  • the ordinary light ⁇ ⁇ emitted from the magneto-optical crystal 21 d is all abnormal from the wedge plate 21 c-2.
  • Light is emitted as OE.
  • the extraordinary light E emitted from the magneto-optical crystal 21d is emitted from the wedge plate 21c-12 as ordinary light E ⁇ , and in this case, all the input light is coupled to the core of the output fiber Fout.
  • the loss is ideally zero.
  • the Faraday rotation angle approaches 0 degree, and the ordinary light O emitted from the magneto-optical crystal 21 d is 0 ° ordinary light from the wedge plate 21 c-12. Is emitted. Further, the extraordinary light E emitted from the magneto-optical crystal 21d is emitted from the wedge plate 21c-2 as the extraordinary light EE. In this case, the input light is not easily coupled to the core of the output fiber Fout. The loss is the largest. If the Faraday rotation angle is between 0.0 and 90 degrees, the loss will be an intermediate value.
  • FIG. 4 shows the installation position of PD23.
  • the PD 23 is an element provided in the reflection-type variable optical attenuator 20 for detecting a light level.
  • the PD 23 converts light partially transmitted through the reflection mirror 22 into an electric signal and transmits the electric signal to the control unit 14.
  • the PD 23 When the PD 23 is reflected behind the mirror 22, if the light is returned from the reflection point after the reflective optical variable attenuator 20 output from the output fiber Fout, the light intensity should not be detected. It is necessary to install in. This is because the return light becomes noise in monitoring the intensity of the input light to the reflective optical variable attenuator 20, and if the return light is detected by the PD 23, the detection accuracy decreases. Therefore, it is necessary to deviate PD23 from the optical axis of the returning light.
  • an optical isolator 13 for blocking return light is provided. In this case, it is not necessary to consider the installation position of the PD 23. In order to make the present invention applicable to other devices that do not use the reflection type optical variable attenuator 20, the PD 23 is deviated from the optical axis of the return light.
  • the angle between the return light and the input monitor light is 0 (deg)
  • the size of the light receiving surface of the PD 23 is ⁇ (mm)
  • the lens 2 When the focal length of lb is f (mm), the wavelength of light is ⁇ (urn), and the mode field diameter of the beam in the fiber is w (urn), the installation distance L from behind the reflecting mirror 22 of the PD 23 is L (mm) is in the range of L> ⁇ ((4 ⁇ f / w) + ⁇ ) c ⁇ s ( ⁇ / 2) ⁇ / 4 t an ( ⁇ / 2), so that the input of the return light to PD23 is It becomes possible to suppress.
  • FIG. 5 is a diagram showing a configuration of an optical amplifier provided with an AGC ALC function.
  • the optical amplifier 3 includes a beam splitter 31, an optical amplifier 32 (including components having the same functions as the optical amplifier 11 shown in FIG. 1), a PD33 (input side light receiving element), a controller 34, and a reflection unit.
  • the variable optical attenuator 20 is of a feed-forward type when the control of the variable optical attenuator 20 is a feed-forward evening. The illustration of the gain equalizer and the optical isolator for blocking return light is omitted.
  • the optical signal branched from the beam splitter 31 is converted into an electric signal by the PD 33. Then, the PD 33 outputs the monitor value p1.
  • the PD 23 in the reflection-type variable optical attenuator 20 outputs a monitor value p 2 of the amplified optical signal.
  • the control unit 34 performs AGC on the optical amplification unit 32, and performs ALC via the variable antenna 21 in the reflection type optical variable attenuator 20.
  • the control unit 34 performs AGC, the gain of the input / output gain is detected from the monitor values pl and p2, and the control signal c ont 1 is set so that the ratio of the monitor values pl and p2 is constant.
  • the level is controlled by adjusting the magnetic field strength of the magnetic field application unit 21e in the variable athens 21 based on the change in the monitor value p2.
  • the AGC operates and the output to the optical amplifier 32 is controlled to keep the input / output magnification constant. Also increase by +1 dB. Then, the ALC works so that the output level becomes a constant value, and the variable attenuator 21 is attenuated by -1 dB.
  • FIG. 6 is a diagram showing a configuration of an optical amplifier provided with an AGC / ALC function.
  • the optical amplifier 3a includes beam splitters 31 and 35, an optical amplifier 32 (including components having the same functions as the optical amplifier 11 shown in FIG. 1), a PD33 (input side light receiving element), and a PD 36 (output Side light receiving element), a control section (AGC section) 34, a thread section 37, and a reflective variable optical attenuator 20.
  • the control of the reflective variable optical attenuator 20 is in the case of a feed-pack evening.
  • the illustration of the gain equalizer and the optical isolator for blocking return light is omitted.
  • control unit 34 controls the AGCZAL C based on the monitored value p 1 by the PD 33 and the monitored value p 2 by the reflective optical variable attenuator.
  • AGC which is a constant gain control for the optical amplification unit 32, is performed.
  • the unit 37 Based on the monitor value p3 of the PD 36, the unit 37 controls the optical output for the attenuation control by the reflective optical variable attenuator 20. Perform ALC to keep the level constant.
  • FIG. 7 is a diagram showing a state transition of the AGCZALCZ shutdown.
  • CS 2 a Failure in monitoring signals (eg, ⁇ SC (Optical Supervisory Channel) signal and SV (supervisory) signal) including wavelength number information and wavelength operation information such as which wavelength is operating during ALC operation (If information cannot be detected due to loss of synchronization, etc.), transition to AGC.
  • monitoring signals eg, ⁇ SC (Optical Supervisory Channel) signal and SV (supervisory) signal
  • wavelength number information e.g., Optical Supervisory Channel
  • wavelength operation information such as which wavelength is operating during ALC operation (If information cannot be detected due to loss of synchronization, etc.), transition to AGC.
  • FIG. 8 is a diagram showing a configuration of an optical amplifier provided with an AG CZALC function.
  • the optical amplifier 4 includes beam splitters 41 and 42, optical amplifiers 43 and 44 (including components having the same functions as the optical amplifier 11 shown in FIG. 1), PD45 (input side light receiving element), PD46 ( The output-side light-receiving element), the control unit 47, and the reflection-type variable optical attenuator 20 are controlled by the feed-forward type. Illustration of a gain equalizer and an optical isolator for blocking return light is omitted.
  • the optical signal split from the beam splitter 41 is converted into an electric signal by the PD 45, and the PD 45 outputs the monitor value p1.
  • the PD 23 in the reflection-type variable optical attenuator 20 outputs a monitor value p 2 of the amplified optical signal. Further, the optical signal branched from the beam splitter 42 is converted into an electric signal by the PD 46, and the PD 46 outputs the monitor value P3.
  • the control unit 47 performs AGC on the optical amplifying unit 43, and performs ALC via the variable attenuator 21 in the reflective optical variable attenuator 20.
  • the control unit 47 performs AGC
  • the gain of the input / output is recognized from the monitor values pl and p2
  • the control signal c ont 1 is set so that the ratio of the monitor values pl and p2 is constant.
  • the magnetic field strength of the magnetic field application unit 21 e in the variable antenna 21 is adjusted based on the change of the monitor value p 2.
  • the control unit 47 performs AGC on the optical amplification unit 44.
  • the gain of the input Z output is recognized based on the monitor values p2 and p3, and the optical signal is amplified by the control signal cont3 so that the ratio of the monitor values P2 and p3 is constant. Adjust the excitation light power of the excitation light source in section 44.
  • FIG. 9 is a diagram showing a configuration of an optical amplifier provided with an AGCZAL C function.
  • the optical amplifier 4a includes beam splitters 41, 42, and 48, optical amplifiers 43 and 44 (including components having the same functions as the optical amplifier 11 shown in FIG.
  • PD45 input side light receiving element
  • It is composed of PD46 (output side light receiving element), PD49 (light receiving element), control unit 47, and reflective variable optical attenuator 20, and the control of reflective variable optical attenuator 20 is a case of feedback type.
  • the illustration of the gain equalizer and the optical isolator for blocking return light is omitted.
  • the control unit 47 controls the AGCZAL C based on the monitor value p 1 by the PD 45 and the monitor value p 2 by the reflective optical variable attenuator 20.
  • AGC which is a constant gain control for the optical amplifier 43, is performed, and the sum of the gain for the optical amplifier 43 and the gain for the optical amplifier 44 is calculated based on the monitored value p3 by PD49 and the monitored value p4 by PD46.
  • AGC is performed so that is constant control, and based on at least one of the monitor values p1 to ⁇ 4, the light output level is made constant with respect to the attenuation control by the reflective optical variable attenuator 20.
  • the controller 47 calculates the gain for the optical amplifier 43 AGC is performed so that the sum of gains for the amplifier 44 is constant, and the optical output level is constant based on at least one of the monitor values pl to p4 with respect to the attenuation control by the reflective optical variable attenuator.
  • the optical amplifier 4 in FIG. In order to monitor the level and the input level, two beam splitters and two PDs must be further provided between the optical amplifiers 43 and 44.
  • the output level of the optical amplifier 43 and the input level of the optical amplifier 44 are monitored by one PD 23 in the reflection-type variable optical attenuator 20. Therefore, they can be shared, and the number of components can be reduced (no beam splitter between the optical amplifiers 43 and 44 is required).
  • FIG. 10 is a diagram showing the configuration of the optical amplifier.
  • the optical amplifying device 5 includes an optical amplifying unit 51, a control unit 52, and a reflective variable optical attenuator 60 (illustration of a gain equalizer and an optical isolator for blocking return light is omitted).
  • the optical amplifier 51 includes an excitation light source 51a, an optical isolator 51b, an EDF 51c, and a power bra CI.
  • the reflective optical variable attenuator 60 includes a variable athens 61, a reflective mirror 62, and a PD 63.
  • the excitation light source 51a enters the excitation light L1 into the EDF 51c via the optical isolator 51b via the force blur C1 with respect to the optical amplification unit 51.
  • the excitation light L1 passes through the EDF 51 c, it is reflected by the reflection-type variable optical attenuator 60, and is again incident on the EDF 51 c as reflected excitation light L2.
  • Optical amplification is performed from the pumping light L1 in the optical signal traveling direction and the reflected pumping light L2 in the reverse direction of the optical signal, and an amplified optical signal is output from the EDF51c. Since the optical isolator 51b is provided at the position shown in the figure, the reflected excitation light L2 is cut off by the optical isolator 51b and does not enter the excitation light source 51a.
  • the reflective variable optical attenuator 60 is basically the same as the configuration of the reflective variable optical attenuator 20 described above with reference to FIGS. The difference is that a film for reflecting the pumping light L1 to generate the reflected pumping light L2 is coated on the optical signal passing surface of the component of the reflective variable optical attenuator 60.
  • FIG. 11 is a diagram showing a configuration of the reflection-type variable optical attenuator 60.
  • the reflective variable optical attenuator 60 has a two-core ferrule 61 a, a lens 61 b, a lens holder 61 f, a polarizer 61 c, a magneto-optical crystal 61 d, a magnetic field applying part 61 e, It consists of a reflection mirror 62 and PD 63. Also, for the two-core ferrule 61a, the optical main signal is non-reflective, and the film 6-1 that reflects the excitation light L1 to generate the reflected excitation light L2 is connected to the optical signal passing surface Ml shown in the figure. Coating The film 6-1 is set so that, for example, the reflectance for light having a wavelength of 1 micron or less is 1% or more.
  • the excitation light can be converted into the magneto-optical crystal 6 1 Since it does not reach d, the magneto-optical crystal 61 d does not absorb the excitation light. This makes it possible to reduce heat generation and characteristic deterioration due to absorption of excitation light of 1 ⁇ m or less of the magneto-optical crystal 61 d.
  • the optical amplifying device of the present invention includes a light amplifying unit and a reflection mirror that reflect an input beam to generate a reflected beam, and a magneto-optical device is provided at a position where the input beam and the reflected beam pass.
  • a variable attenuator is provided.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Lasers (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

 光主信号が流れる伝送路上の光デバイスの実装数を削減して、小型化、低コスト化及び光伝送品質の向上を図る。光増幅部(11)は、光増幅用の活性物質をドープした増幅媒体に励起光を入射して光増幅を行い増幅光信号を出力する。反射型光可変減衰器(20)は、反射ミラー(22)によって入力ビームを反射させて反射ビームを生成し、入力ビームと反射ビームが通過する位置に磁気光学結晶を設けて、印加された磁界によってファラデー回転角を与えることで増幅光信号の減衰量を変化させ、かつ反射ミラー(22)を一部透過した光を入力モニタ光として電気信号に変換する。

Description

光増幅装置 技術分野
本発明は光増幅装置に関し、 特に光信号を増幅する光増幅装置に関する。 背景技術 明
近年、 1本の光ファイバ中を数 H -〜数百波の波長チャンネルがそれぞれ 600 田
Mbp s〜10Gbp sの高速で、 総計 T bp sオーダの超大容量の伝送を可能 とする DWDM (Dense Wavelength Division Multiplexing:高密度波長多重 方式) が注目され開発されている。
DWDMを含めた WDMシステムの光増幅技術としては、 EDFA (Erbium- Doped Fiber Amplifier) が広く用いられている。 EDFAは、 エルビウム (E r 3+) 添加ファイバ (EDF: Erbium-Doped Fiber) を増幅用媒体とした光増 幅器であり、 励起光を EDFに照射して光信号を進行させ、 そのとき生じる誘導 放出によって、 光信号のレベルを増幅させる。 EDFAは、 利得帯域が広いため 、 波長帯域内の複数の光信号を一括増幅することができ、 WDM中継器の主要デ バイスとなっている。
図 12は従来の EDFAの構成を示す図である。 光増幅器 (EDFA) 100 は、 合波器 C l、 励起 LD (レ一ザダイオード) 101、 EDF 102、 光アイ ソレー夕 103、 107、 ゲインイコライザ 104、 BS (ビ一ムスプリッタ) 105、 可変アツテネ一夕 106、 PD (フォトダイオード) 108、 制御部 1 09から構成される。
入力光信号と励起 LD 101から発出された励起光とは、 合波器 C 1を介して EDF 102に入射し、 これにより光信号が増幅される。 増幅された光信号は、 光アイソレータ 103を通過して、 ゲインイコライザ 104において利得等化が 行われる (EDF 102の利得波長特性を平坦化する) 。
ゲインイコライザ 104を通過した光信号は、 BS 105で分岐される。 可変 アツテネ一夕 1 0 6は、 分岐された一方の光信号のレベルを制御し、 レベル制御 後の光信号は光アイソレータ 1 0 7を通じて出力される。 P D 1 0 8は、 分岐さ れた他方の光信号を電気信号に変換する。 制御部 1 0 9は、 この電気信号をモニ 夕し、 モニタ結果にもとづき、 励起 L D 1 0 1が発出する励起光パワーを制御す る。
ここで、 光アイソレータは、 図の矢印方向にのみ所要の光を通して、 逆方向に は光は通さないデバイスである。 したがって、 光アイソレ一夕 1 0 7を図の位置 に設けることで、 光ファイバ伝送路上の反射点からの光信号の戻り光を遮断する ことができる。
また、 光アイソレータは、 1ミクロン以下の入射光を吸収する性質を持つ。 こ れは、 内部の磁気光学結晶に主に使われる Y I G (イットリウム ·鉄 ·ガ一ネッ ト) 結晶が、 波長 1ミクロン以下の光を吸収するからである。
このため、 光アイソレー夕 1 0 3を図の位置に設けることで、 0 . 9 8ミクロ ンの励起光を吸収することができる。 これにより、 励起光を除いた光信号のみが、 E D F 1 0 2以降の各デバイスに対して入力されることになるので、 例えば、 励 起光を含む光信号が P D 1 0 8へ入射してしまい、 モニタレベル誤差が生じるよ うなことがない。
従来技術として、 2つのコリメ一トレンズの間に 1つの光アイソレ一タを設置 して、 1つの光アイソレー夕で 2つの光アイソレ一タを備えるのと同じ機能を持 つ光アイソレータモジュールを適用した光増幅器が提案されている (例えば、 特 許文献 1参照) 。
特許文献 1
特開平 9一 5 4 2 8 5号公報 (段落番号 〔0 0 1 5〕 〜 〔0 0 2 2〕 , 第
2図)
上記で説明したように、 光増幅器は様々なデバイスで構成されているが、 特に 光アイソレータは、 光増幅制御の品質を高める上で重要な光デバイスである。 と ころが、 光アイソレータは, 光受動デバイスとしては最も高価な部品の 1つであ り、 コストアップの原因となっていた (光増幅器 1 0 0のように、 0 . 9 8ミク ロンの励起光をカットするために高価な光アイソレータ 1 0 3を設置している) 。 さらに装置規模の小型化の妨げにもなつている。
一方、 光増幅器 1 0 0では励起光パワーのフィードバック制御を行うために、 E D F 1 0 2出力後の光信号を P D 1 0 8を介してモニタする必要がある。 この 場合、 B S 1 0 5を設置して光信号を分岐することになるが、 光信号 (光主信 号) が流れる伝送路上にある B S 1 0 5は、 損失媒体となるため光ロスを生じさ せ、 O S N R (光 を悪化させる原因となっていた。 光主信号が流れる伝 送路上において、 伝送路上に設置されている損失媒体となるような光学部品は、 できるだけ少ないことが望ましい。 発明の開示
本発明はこのような点に鑑みてなされたものであり、 光主信号が流れる伝送路 上の光デバイスの実装数を削減して、 小型化、 低コスト化及び光伝送品質の向上 を図った光増幅装置を提供することを目的とする。
本発明では上記課題を解決するために、 図 1に示すような、 光信号を増幅する 光増幅装置 1において、 光増幅用の活性物質をドープした増幅媒体に励起光を入 射して光増幅を行い増幅光信号を出力する光増幅部 1 Ίと、 反射ミラ一 2 2によ つて入力ビームを反射させて反射ビームを生成し、 入力ビームと反射ビームが通 過する位置に磁気光学結晶を設けて、 印加された磁界によってファラデー回転角 を与えることで増幅光信号の減衰量を変化させ、 かつ反射ミラー 2 2を一部透過 した光を入力モニタ光として電気信号に変換する反射型光可変減衰器 2 0と、 を 有することを特徴とする光増幅装置 1が提供される。
ここで、 光増幅部 1 1は、 光増幅用の活性物質をドープした増幅媒体に励起光 を入射して光増幅を行い増幅光信号を出力する。 反射型光可変減衰器 2 0は、 反 射ミラ一 2 2によって入力ビームを反射させて反射ビームを生成し、 入力ビーム と反射ビームが通過する位置に磁気光学結晶を設けて、 印加された磁界によって ファラデー回転角を与えることで増幅光信号の減衰量を変化させ、 かつ反射ミラ 一 2 2を一部透過した光を入力モニタ光として電気信号に変換する。
本発明の上記および他の目的、 特徴および利点は本発明の例として好ましい実 施の形態を表す添付の図面と関連した以下の説明により明らかになるであろう。 図面の簡単な説明
図 1は、 本発明の光増幅装置の原理図である。
図 2は、 反射型光可変減衰器の構成を示す図である。
図 3は、 可変アツテネ一夕の動作を説明するための図である。
図 4は、 PDの設置位置を示す図である。
図 5は、 AGCZAL C機能を設けた光増幅装置の構成を示す図である。 図 6は、 AGC/ALC機能を設けた光増幅装置の構成を示す図である。 図 7は、 AGCZALCZシャツトダウンの状態遷移を示す図である。
図 8は、 AGCZAL C機能を設けた光増幅装置の構成を示す図である。 図 9は、 AGCZAL C機能を設けた光増幅装置の構成を示す図である。 図 10は、 光増幅装置の構成を示す図である。
図 11は、 反射型光可変減衰器の構成を示す図である。
図 12は、 従来の EDF Aの構成を示す図である。 発明を実施するための最良の形態
以下、 本発明の実施の形態を図面を参照して説明する。 図 1は本発明の光増幅 装置の原理図である。 光増幅装置 1は、 光増幅部 11、 ゲインイコライザ 12、 光アイソレータ 13、 制御部 14、 反射型光可変減衰器 20から構成される。 光 増幅部 11は、 励起光源 11 a、 EDF 1 l b、 力ブラ C Iを含む。 反射型光可 変減衰器 20は、 可変アツテネ一夕 21、 反射ミラ一 22、 受光素子 (PD) 2 3を含む。
光増幅部 1 1に対し、 励起光源 11 aは、 光増幅用の活性物質をド一プした増 幅媒体 (以下、 EDF) に励起光を力ブラ C 1を介して入射する (励起光の波長 帯は、 1ミクロン以下である。 例えば、 0. 98ミクロン) 。 これにより、 光信 号は増幅されて、 EDF 11 bから増幅光信号が出力する。
反射型光可変減衰器 20は、 ゲインイコライザ 12によって利得等化された増 幅光信号を、 入力ファイバ Fin を通じてレベル制御 (減衰制御) を行い、 レべ ル制御後の光信号を出力ファイバ Foutから出力する。 そして、 レベル制御後の 光信号は、 光アイソレータ 1 3を通じて光ファイバ伝送路へ出力される。
また、 反射型光可変減衰器 2 0は、 反射ミラ一 2 2によって入力ビームを反射 させて反射ビームを生成し、 磁気光学結晶 (可変アツテネ一夕 2 1内に含まれ る) は、 入力ビームと反射ビームが通過する位置に設けられ、 印加された磁界に よってファラデー回転角を与えることで増幅光信号の減衰量を変化させる。
P D 2 3は、 反射ミラー 2 2を一部透過した光を入力モニタ光として電気信号 に変換する。 制御部 1 4は、 この電気信号をモニタし、 モニタ結果にもとづき、 励起光源 1 1 aが発出する励起光パワーを制御する。 なお、 反射型光可変減衰器 2 0の詳細な構成及び動作については後述する。
ここで、 反射型光可変減衰器 2 0は、 光可変減衰制御機能とモニタ機能を有す る 1つのデバイスである。 このデバイスを用いることで、 本発明の光増幅装置 1 では、 図 1 2で示した光増幅器 1 0 0と比べると、 従来設けられていた光ァイソ レー夕 1 0 3やビームスプリッタ 1 0 5といった光デバイスが、 光主信号が流れ る伝送路上から削減することができる。 これにより、 装置の小型化及び低コスト 化だけでなく、 光信号伝送時のノイズに該当する光ロスがなくなるので、 光伝送 品質 (O S N R) の向上を図ることが可能になる。
次に反射型光可変減衰器 2 0の構成及び動作について詳しく説明する。 図 2は 反射型光可変減衰器 2 0の構成を示す図である。 図は反射型光可変減衰器 2 0の 平面図を示している。 反射型光可変減衰器 2 0は、 2芯フェル一ル 2 1 a、 レン ズ 2 1 b、 レンズホルダ 2 1 f、 偏光子 2 1 c、 磁気光学結晶 2 1 d、 磁界印加 咅 |52 1 e、 反射ミラー 2 2、 P D 2 3から構成される。 なお、 2芯フエルール 2 1 a、 レンズ 2 1 b、 レンズホルダ 2 1 f、 偏光子 2 1 c、 磁気光学結晶 2 1 d、 磁界印加部 2 1 eまでが可変アツテネ一夕 2 1に該当する。
2芯フエルール 2 l aは、 2つの光ファイバ揷入孔に、 入力ファイバ Fin (増 幅光信号の入力) と出力ファイバ Fout (減衰制御後の光信号の出力) との 2本 の光ファイバを挿入して固定する。
レンズ 2 l bは、 レンズホルダ 2 1 f により固着され、 伝搬方向に広がりのあ る光線を方向のそろった平行ビームに変換する (コリメート) する。 偏光子 2 1 cは、 供給された光ビームの直線偏光を通過させる。 なお、 偏光子 2 1 cには、 くさび型複屈折結晶 (以下、 くさび板と呼ぶ) を用いる。
反射ミラ一 (ハーフミラ一) 2 2は、 入力ビームを反射させて反射ビームにす る。 なお、 透過光強度と反射光強度が完全に等しいミラ一ではなく、 一部を反射、 一部を透過するミラ一である。
磁気光学結晶 (可変ファラデー回転子) 2 I dは、 入力ビームと反射ビームが 通過する位置に設けられ、 磁界によって変化するファラデー回転角により、 増幅 光信号の減衰量を変化させる (透過光の偏光面を磁界によって回転させて、 実質 的な光透過率を制御する) 。
なお、 磁気光学結晶 2 1 dには、 主に Y I G結晶が使用される。 Y I G結晶は、 波長 1ミクロン以下の場合では不透明となるので、 波長 1ミクロン以下の光 (す なわち、 励起光) の透過は遮ることになる。
磁界印加部 2 1 eは、 磁気光学結晶 2 1 dへの磁界を印加する。 P D 2 3は、 反射ミラー 2 2を一部透過した光を入力モニタ光として電気信号に変換する。 反 射ミラ一 2 2の反射率としては例えば、 光主信号の 9 9 %を反射、 1 %を透過す るように設定しておく。
次に可変アツテネ一夕 2 1の動作について詳しく説明する。 図 3は可変アツテ ネ一タ 2 1の動作を説明するための図である。 反射ミラ一 2 2を用いることによ り、 図 2の可変アツテネ一夕 2 1の動作は、 図 3に示されるように、 反射ミラ一 2 2の反射面 R Pに関して折り返された構成となる (図 2の A方向から見て、 か つ折り返しの図としている。 なお、 磁界印加部 2 1 e、 P D 2 3の図示は省略) 。 この構成図にもとづき動作を説明する。
入力ファイバ Finから放射された光は、 レンズ 2 1 b— 1によりコリメート されて平行光ビーム (入力ビーム) になる。 入力ビームは、 くさび板 2 1 c— 1 によって常光 Oと、 異常光 Eとに分離される。 常光〇の偏波面と異常光 Eの偏波 面とは互いに直交している。
常光〇と異常光 Eは、 磁気光学結晶 2 I d— 1、 2 1 d— 2により偏波面をそ れぞれ伝搬方向に向かって同じ角度だけ回転される。 偏波面を回転させられた常 光 Oは、 くさび板 2 1 c— 2によって、 さらに常光 O Oと異常光 O Eに分離され、 偏波面を回転させられた異常光 Eは、 くさび板 2 1 c— 2によって、 さらに常光 E Oと異常光 E Eに分離される。
異常光 OEは、 くさび板 21 c— lで常光として屈折を受け、 くさび板 21 c 一 2で異常光として屈折を受けてきている。 常光 0〇は、 くさび板 21 c— 1、 21 c— 2でそれぞれ常光としての屈折を受けてきている。
また、 常光 EOは、 くさび板 21 c— lで異常光として屈折を受け、 くさび板 21 c— 2で常光として屈折を受けてきている。 異常光 EEは、 くさび板 21 c -1, 21 c— 2でそれぞれ異常光としての屈折を受けてきている。
くさび板 21 c— 1、 21 c— 2は同じ形状であるから、 異常光 OEと常光 E Oは互いに平行である。 したがって、 異常光 OEと常光 EOは、 レンズ 2 l b— 2によって集光して、 出力ファイバ Fout のコアに結合し、 入射させることがで きる。 このとき、 常光〇0と異常光 EEは、 平行にはならず広がるために、 レン ズ 21 b— 2を通っても、 出力ファイバ Foutのコアには結合されにくい。
ここで、 磁気光学結晶 21 dへの磁界強度が 0のとき、 ファラデー回転角は 9 0度であり、 磁気光学結晶 21 dから出射された常光〇は、 くさび板 21 c— 2 からはすべて異常光 OEとして出射される。 また、 磁気光学結晶 21 dから出射 された異常光 Eは、 くさび板 21 c一 2からはすべて常光 E〇として出射される ので、 この場合には入力光はすべて出力ファイバ Fout のコアに結合されて、 理 想的には損失が 0である。
一方、 磁気光学結晶 21 dへの磁界強度が十分に大きいとき、 ファラデー回転 角は 0度に近づき、 磁気光学結晶 21 dから出射された常光 Oは、 くさび板 21 c一 2からは常光 0〇として出射される。 また、 磁気光学結晶 21 dから出射さ れた異常光 Eは、 くさび板 21 c— 2からは異常光 EEとして出射されるので、 この場合には入力光は出力ファイバ Fout のコアに結合されにくく、 損失が最大 になる。 なお、 ファラデー回転角が.0度と 90度の中間の場合には損失は中間的 な値になる。
このようにして、 磁気光学結晶 21 dに印加する磁界の強度によって、 ファラ デ一回転角が 90度から 0度の範囲で変化し、 ファラデー回転角に応じて出カフ アイバ Font のコアに結合する光量が変化するために、 光可変減衰機能を実現す ることができる。 次に PD23の設置方法について説明する。 図 4は PD23の設置位置を示す 図である。 PD23は、 光レベルを検出するために反射型光可変減衰器 20内に 設けられる素子で、 反射ミラー 22を一部透過した光を、 電気信号に変換して制 御部 14へ送信する。
PD 23を反射.ミラ一 22の背後に設置する場合には、 出力ファイバ Fout よ り出射した反射型光可変減衰器 20以後の反射点からの戻り光の光強度を検出す ることがないように設置する必要がある。 なぜなら、 戻り光は、 反射型光可変減 衰器 20への入力光強度をモニタする上でノイズとなるので、 戻り光を PD 23 で検出してしまうと検出精度が低下するからである。 したがって、 PD23を戻 り光の光軸から逸らす必要がある。
なお、 図 1の装置構成例では、 戻り光阻止のための光アイソレータ 1 3が設け られているので、 この場合は、 必ずしも PD 23の設置位置を考慮する必要はな いが、 光アイソレータを設置しないその他の装置にも適用可能とするため、 本発 明の反射型光可変減衰器 20では、 PD23を戻り光の光軸から逸らしている。 ここで、 戻り光の漏れ込みを _ 5 dB以下に抑える場合、 戻り光と入力モニタ 光とのなす角度を 0 (d e g) 、 PD 23の受光面の大きさを φ (mm) 、 レン ズ 2 l bの焦点距離を f (mm) 、 光の波長を λ (urn) 、 ファイバ中のビーム のモードフィールド径を w (urn) とした場合に、 PD 23の反射ミラー 22の 背後からの設置距離 L (mm) は、 L> { ( (4λ f/ w) + φ) c ο s (θ /2) } /4 t an (Θ/2) の範囲とすることで、 PD23に対する戻り光の 入力を抑制することが可能になる。
次に AGCZALC機能を設けた光増幅装置について説明する。 図 5は AGC ALC機能を設けた光増幅装置の構成を示す図である。 光増幅装置 3は、 ビー ムスプリッタ 31、 光増幅部 32 (図 1で示した光増幅部 1 1と同じ機能の構成 要素が含まれる) 、 PD33 (入力側受光素子) 、 制御部 34、 反射型光可変減 衰器 20から構成され、 反射型光可変減衰器 20の制御がフィードフォワード夕 イブの場合である。 なお、 ゲインイコライザや戻り光阻止用の光アイソレータの 図示は省略する。
ビ一ムスプリッ夕 31から分岐された光信号は、 PD 33で電気信号に変換さ れ、 PD 33はモニタ値 p 1を出力する。 また、 反射型光可変減衰器 20内の P D23は、 増幅光信号のモニタ値 p 2を出力する。
制御部 34は、 光増幅部 32に対して AGCを行い、 反射型光可変減衰器 20 内の可変アツテネ一夕 21を介して ALCを行う。 制御部 34が AGCを行う場 合は、 モニタ値 p l、 p 2から入カ 出力の利得の倍率を検出し、 モニタ値 p l、 p 2の比が一定となるように、 制御信号 c on t 1を出力して光増幅部 32内の 励起光源の励起光パワーを調整する。 また、 ALCを行う場合は、 モニタ値 p 2 の変化にもとづき、 可変アツテネ一夕 21内の磁界印加部 21 eの磁界強度を調 整してレベルを制御する。
AGCZALCの制御としては、 例えば、 光増幅部 32への入力が + 1 dB上 昇した場合は、 AGCが働いて、 入出力の倍率を一定にするために、 光増幅部 3 2に対して出力も + 1 dB上昇させる。 そして、 出力レベルが一定値となるよう に、 ALCが働いて、 可変アツテネ一夕 21に対して— 1 dB減衰させることに なる。
図 6は AGC/ALC機能を設けた光増幅装置の構成を示す図である。 光増幅 装置 3 aは、 ビームスプリツ夕 31、 35、 光増幅部 32 (図 1で示した光増幅 部 11と同じ機能の構成要素が含まれる) 、 PD33 (入力側受光素子) 、 PD 36 (出力側受光素子) 、 制御部 (AGC部) 34、 じ部37、 反射型光可 変減衰器 20から構成され、 反射型光可変減衰器 20の制御がフィードパック夕 イブの場合である。 なお、 ゲインイコライザや戻り光阻止用の光アイソレータの 図示は省略する。
図 5の場合と動作の異なる点のみ説明すると、 AGCZAL Cの制御に対し、 PD33によるモニタ値 p 1と、 反射型光可変減衰器によるモニタ値 p 2とにも とづいて、 制御部 34は、 光増幅部 32に対するゲイン一定制御である AGCを 行い、 八 (:部37は、 PD 36のモニタ値 p 3にもとづいて、 反射型光可変減 衰器 20による減衰制御に対して、 光出力レベルを一定にするための ALCを行 ラ。
図 7は AGCZALCZシャットダウンの状態遷移を示す図である。
CS 1 a] ALC動作中に WDMで多重されている波長数が変化すると AGCへ 遷移する。
〔S 1 b〕 A GC動作中に波長数が安定すると ALCへ遷移する。
CS 2 a] ALC動作中に波長数情報やどの波長で運用しているかといった波長 運用情報等を含む監視信号 (例えば、 〇SC (Optical Supervisory Channel) 信号や SV (supervisory) 信号) に対して障害 (同期はずれ等で情報を検出で きない等) が発生した場合は AGCへ遷移する。
〔S 2 b〕 AGC動作中に監視信号が回復すると ALCへ遷移する。
〔S 3 a〕 ALC及び AGCの動作中、 光主信号及び監視信号の少なくとも一方 が受信できず入力断となった場合は、 シャットダウン (光増幅部 32内の励起光 源の出力を自動的に止め、 光増幅部 32の増幅機能を停止) へ遷移する。
CS 3 b〕 シャツ卜ダウン中に入力断が回復すると AGCへ遷移する。
図 8は AG CZALC機能を設けた光増幅装置の構成を示す図である。 光増幅 装置 4は、 ビームスプリッタ 41、 42、 光増幅部 43、 44 (図 1で示した光 増幅部 1 1と同じ機能の構成要素が含まれる) 、 PD45 (入力側受光素子) 、 PD46 (出力側受光素子) 、 制御部 47、 反射型光可変減衰器 20から構成さ れ、 反射型光可変減衰器 20の制御がフィードフォワードタイプの場合である。 なお、 ゲインィコライザや戻り光阻止用の光アイソレ一夕の図示は省略する。 ビームスプリッタ 41から分岐された光信号は、 PD45で電気信号に変換さ れ、 PD 45はモニタ値 p 1を出力する。 また、 反射型光可変減衰器 20内の P D23は、 増幅光信号のモニタ値 p 2を出力する。 さらに、 ビ一ムスプリッ夕 4 2から分岐された光信号は、 PD 46で電気信号に変換され、 PD46はモニタ 値 P 3を出力する。
制御部 47は、 光増幅部 43に対して AGCを行い、 反射型光可変減衰器 20 内の可変アツテネ一夕 21を介して ALCを行う。 制御部 47が AGCを行う場 合は、 モニタ値 p l、 p 2から入カノ出力の利得の倍率を認識し、 モニタ値 p l、 p 2の比が一定となるように、 制御信号 c on t 1により光増幅部 43内の励起 光源の励起光パワーを調整する。 また、 ALCを行う場合は、 モニタ値 p 2の変 化にもとづき、 可変アツテネ一夕 21内の磁界印加部 21 eの磁界強度を調整す る。 さらに、 制御部 47は、 光増幅部 44に対して AGCを行う。 この場合は、 モ 二夕値 p 2、 p 3から入力 Z出力の利得の倍率を認識し、 モニタ値 P 2、 p 3の 比が一定となるように、 制御信号 c on t 3により光増幅部 44内の励起光源の 励起光パワーを調整する。
ここで、 制御部 47は、 A G Cを行う場合、 光増幅部 43のゲイン G 1を一定、 光増幅部 44のゲイン G 2を一定というように個別に行ってもよいし、 ゲイン G 1 +ゲイン G 2=—定と合わせて行ってもよい。 なお、 光増幅装置 4に対する A GCZALCZシャツトダウンの状態遷移は図 7と同様なので説明は省略する。 図 9は AGCZAL C機能を設けた光増幅装置の構成を示す図である。 光増幅 装置 4 aは、 ビームスプリッタ 41、 42、 48、 光増幅部 43、 44 (図 1で 示した光増幅部 11と同じ機能の構成要素が含まれる) 、 PD45 (入力側受光 素子) 、 PD46 (出力側受光素子) 、 PD49 (受光素子) 、 制御部 47、 反 射型光可変減衰器 20から構成され、 反射型光可変減衰器 20の制御がフイード バックタイプの場合である。 なお、 ゲインイコライザや戻り光阻止用の光ァイソ レー夕の図示は省略する。
図 8の場合と動作の異なる点のみ説明すると、 制御部 47による AGCZAL Cの制御に対し、 PD45によるモニタ値 p 1と、 反射型光可変減衰器 20によ るモニタ値 p 2とにもとづいて、 光増幅部 43に対するゲイン一定制御である A GCを行い、 PD49によるモニタ値 p 3と PD46によるモニタ値 p 4にもと づいて、 光増幅部 43に対するゲインと光増幅部 44に対するゲインの和が一定 制御であるよう AGCを行い、 かつ少なくともモニタ値 p 1〜ρ4のいずれかに もとづいて、 反射型光可変減衰器 20による減衰制御に対して、 光出力レベルを 一定にする。
または、 制御部 47は、 PD45によるモニタ値 p 1と、 反射型光可変減衰器 20によるモニタ値 p 2と、 PD49によるモニタ値 p 3とにもとづいて、 光増 幅部 43に対するゲインと、 光増幅部 44に対するゲインの和が一定制御である よう AGCを行い、 かつ少なくともモニタ値 p l〜p 4のいずれかにもとづいて、 反射型光可変減衰器による減衰制御に対して、 光出力レベルを一定にする。
以上説明したように、 図 5〜図 9の光増幅装置では、 反射型光可変減衰器 20 を含み、 それぞれの制御部で A G CZA L Cを行う構成とした。 2つの光増幅部 いずれも A G Cを行うので、 ビ一ムスプリッ夕及び P Dをあらたに設ける必要が あるが、 この場合でも従来装置と比べると部品点数は少なくなる。
ここで、 反射型光可変減衰器 2 0を用いない従来装置で、 例えば、 図 8の光増 幅装置 4で実施している制御を行おうとすると、 光増幅部 4 3、 4 4の出カレべ ル及び入力レベルのモニタを行うために、 光増幅部 4 3、 4 4との間にビ一ムス プリツ夕と P Dをそれぞれ 2個ずつさらに設けなければならない。 本発明の光増 幅装置 4では、 反射型光可変減衰器 2 0内の 1つの P D 2 3により、 光増幅部 4 3の出力レベル及び光増幅部 4 4の入力レベルのモニタを行っているので共用化 することができ、 部品点数を削減することが可能になる (光増幅部 4 3、 4 4と の間のビ一ムスプリッタも不要である) 。
次に光増幅装置の他の実施の形態について説明する。 図 1 0は光増幅装置の構 成を示す図である。 光増幅装置 5は、 光増幅部 5 1、 制御部 5 2、 反射型光可変 減衰器 6 0から構成される (ゲインイコライザや戻り光阻止用の光アイソレータ の図示は省略) 。 光増幅部 5 1は、 励起光源 5 1 a、 光アイソレータ 5 1 b、 E D F 5 1 c、 力ブラ C Iを含む。 反射型光可変減衰器 6 0は、 可変アツテネ一夕 6 1、 反射ミラ一 6 2、 P D 6 3を含む。
光増幅部 5 1に対し、 励起光源 5 1 aは、 光アイソレータ 5 1 bを介して、 E D F 5 1 cに励起光 L 1を力ブラ C 1を介して入射する。 励起光 L 1は、 E D F 5 1 cを通過すると、 反射型光可変減衰器 6 0で反射され、 反射励起光 L 2とし て再び E D F 5 1 cに入射される。 光信号進行方向の励起光 L 1及び光信号逆方 向の反射励起光 L 2から、 光増幅が行われて E D F 5 1 cから増幅光信号が出力 される。 なお、 光アイソレータ 5 1 bを図の位置に設けているため、 反射励起光 L 2は光アイソレータ 5 l bで遮断され、 励起光源 5 1 aに入射するようなこと はない。
反射型光可変減衰器 6 0は、 図 2、 図 3で上述した反射型光可変減衰器 2 0の 構成 '動作と基本的には同じである。 異なる点は、 励起光 L 1を反射させて反射 励起光 L 2を生成するための膜を、 反射型光可変減衰器 6 0の構成素子の光信号 通過面にコーティングしてある点である。 図 1 1は反射型光可変減衰器 6 0の構成を示す図である。 反射型光可変減衰器 6 0は、 2芯フェル一ル 6 1 a、 レンズ 6 1 b、 レンズホルダ 6 1 f、 偏光子 6 1 c、 磁気光学結晶 6 1 d、 磁界印加部 6 1 e、 反射ミラー 6 2、 P D 6 3から 構成される。 また、 2芯フエルール 6 1 aに対し、 光主信号は無反射で、 励起光 L 1を反射させて反射励起光 L 2を生成する膜 6— 1を、 図に示す光信号通過面 M lにコ一ティングする。 膜 6— 1は、 例えば、 1ミクロン以下の波長の光に対 する反射率が 1 %以上になるよう設定する。
このような膜 6— 1をコ一ティングしておくことで、 励起光 L 1を反射させて、 E D F 5 1 cに再び入射させることができる。 これにより増幅効率を向上させる ことができ、 励起光源 5 1 aの励起パワーを低減させることが可能になる (なお、 レンズ 6 1 bの光信号通過面 M 2または M 3側に、 膜 6— 1をコ一ティングして おいてもよい) 。
また、 励起光の波長 1ミクロン以下の光に対しては高い反射率を持たせた膜 6 一 1を、 上記のような位置にコーティングしておくことにより、 励起光は磁気光 学結晶 6 1 dまで届かなくなるので、 磁気光学結晶 6 1 dが励起光を吸収するこ とはなくなる。 これにより、 磁気光学結晶 6 1 dの 1ミクロン以下の励起光の吸 収による発熱及び特性劣化等を軽減することが可能になる。
以上説明したように、 本発明の光増幅装置は、 光増幅部と、 反射ミラ一によつ て入力ビームを反射させて反射ビームを生成し、 入力ビームと反射ビームが通過 する位置に磁気光学結晶を設けて、 印加された磁界によってファラデー回転角を 与えることで増幅光信号の減衰量を変化させ、 力つ反射ミラーを一部透過した光 を入力モニタ光として電気信号に変換する反射型光可変減衰器とから構成した。 これにより、 光主信号が流れる伝送路上から、 光アイソレ一夕、 ビームスプリツ 夕といった光デバイスの実装数を削減することができるので、 光中継器や光増幅 装置の小型化及び低コスト化を実現し、 かつ光伝送品質の向上を図ることが可能 になる。
上記については単に本発明の原理を示すものである。 さらに、 多数の変形、 変 更が当業者にとって可能であり、 本発明は上記に示し、 説明した正確な構成およ び応用例に限定されるものではなく、 対応するすべての変形例および均等物は、 添付の請求項およびその均等物による本発明の範囲とみなされる。

Claims

請 求 の 範 囲
1. 光信号を増幅する光増幅装置において、
光増幅用の活性物質をドープした増幅媒体に励起光を入射して光増幅を行い増 幅光信号を出力する光増幅部と、
反射ミラ一によって入力ビームを反射させて反射ビームを生成し、 入力ビーム と反射ビームが通過する位置に磁気光学結晶を設けて、 印加された磁界によって ファラデー同,転角を与えることで前記増幅光信号の減衰量を変化させ、 かつ前記 反射ミラ一を一部透過した光を入力モニタ光として電気信号に変換する反射型光 可変減衰器と、
を有することを特徴とする光増幅装置。
2. 前記光増幅部の励起光の波長は 1 以下であることを特徴とする請求の 範囲第 1項記載の光増幅装置。
3. 前記反射型光可変減衰器は、 2つの光ファイバ挿入孔に、 前記増幅光信号 の入力と減衰制御後の光信号の出力とのための 2本の光フアイバを挿入した 2芯 フエルールと、 光を集光するレンズと、 光ビームの直線偏光を透過させる偏光子 と、 入力ビームを反射させて反射ビームにする反射ミラ一と、 入力ビームと反射 ビームが通過する位置に設けられ、 磁界によって変化するファラデー回転角によ り、 前記増幅光信号の減衰量を変化させる磁気光学結晶と、 前記磁界を印加する 磁界印加部と、 前記反射ミラーを一部透過した光を入力モニタ光として電気信号 に変換する受光素子と、 から構成されることを特徴とする請求の範囲第 1項記載 の光増幅装置。
4. 前記反射型光可変減衰器は、 戻り光と前記入力モニタ光とのなす角度を Θ (de g) 、 前記受光素子の受光面の大きさを Φ (mm) 、 前記レンズの焦点距 離を f (mm) 、 光の波長を λ ( rn) 、 ファイバ中のビームのモードフィール ド径を w ( m) とした場合に、 前記受光素子の前記反射ミラーの背後からの設 置距離 L (mm) は、 L> { ( (4λ Ϊ/KW) + φ) c o s (θ/2) } /4 t an {Θ/2) の範囲とすることで、 前記受光素子に対する前記戻り光の入力 を抑制することを特徴とする請求の範囲第 3項記載の光増幅装置。
5 . 光信号を増幅する光増幅装置において、
光増幅用の活性物質をドープした増幅媒体に励起光を入射して光増幅を行い増 幅光信号を出力する光増幅部と、
前記光増幅部の入力側に設けられた入力側受光素子と、
反射ミラ一によって入力ビームを反射させて反射ビームを生成し、 入力ビーム と反射ビームが通過する位置に磁気光学結晶を設けて、 印加された磁界によって ファラデー回転角を与えることで前記増幅光信号の減衰量を変化させ、 かつ前記 反射ミラーを一部透過した光を入力モニタ光として電気信号に変換する反射型光 可変減衰器と、
前記入力側受光素子による第 1のモニタ値と、 前記反射型光可変減衰器による 第 2のモニタ値とにもとづいて、 前記光増幅部に対するゲイン一定制御である A G Cを行い、 少なくとも前記第 1のモニタ値または前記第 2のモニタ値のいずれ かにもとづいて、 前記反射型光可変減衰器による減衰制御に対して、 光出カレべ ルを一定にするための A L Cを行う制御部と、
を有することを特徴とする光増幅装置。
6 . 光信号を増幅する光増幅装置において、
光増幅用の活性物質をド一プした増幅媒体に励起光を入射して光増幅を行い増 幅光信号を出力する光増幅部と、
前記光増幅部の入力側に設けられた入力側受光素子と、
反射ミラーによって入力ビームを反射させて反射ビームを生成し、 入力ビーム と反射ビームが通過する位置に磁気光学結晶を設けて、 印加された磁界によって ファラデー回転角を与えることで前記増幅光信号の減衰量を変化させ、 かつ前記 反射ミラーを一部透過した光を入力モニタ光として電気信号に変換する反射型光 可変減衰器と、
前記反射型光可変減衰器の出力側に設けられた出力側受光素子と、
前記入力側受光素子による第 1のモニタ値と、 前記反射型光可変減衰器による 第 2のモニタ値とにもとづいて、 前記光増幅部に対するゲイン一定制御である A G Cを行い、 前記出力側受光素子による第 3のモニタ値にもとづいて、 前記反射 型光可変減衰器による減衰制御に対して、 光出力レベルを一定にするための A L Cを行う制御部と、
を有することを特徴とする光増幅装置。
7 . 光信号を増幅する光増幅装置において、
光増幅用の活性物質をドープした増幅媒体に励起光を入射して光増幅を行う第 1の光増幅部と、
光増幅用の活性物質をドープした増幅媒体に励起光を入射して光増幅を行う第
2の光増幅部と、
前記第 1の光増幅部の入力側に設けられた入力側受光素子と、
前記第 2の光増幅部の出力側に設けられた出力側受光素子と、
反射ミラ一によって入力ビームを反射させて反射ビームを生成し、 入力ビーム と反射ビームが通過する位置に磁気光学結晶を設けて、 印加された磁界によって ファラデー回転角を与えることで、 前記第 1の光増幅部で増幅された光信号の減 衰量を変化させ、 かつ前記反射ミラーを一部透過した光を入力モニタ光として電 気信号に変換する反射型光可変減衰器と、
前記入力側受光素子による第 1のモニタ値と、 前記反射型光可変減衰器による 第 2のモニタ値とにもとづいて、 前記第 1の光増幅部に対するゲイン一定制御で ある A G Cを行い、 前記反射型光可変減衰器による第 2のモニタ値と前記出力側 受光素子による第 3のモニタ値にもとづいて、 前記第 2の光増幅部に対するゲイ ン一定制御である A G Cを行い、 かつ少なくとも第 1のモニタ値、 第 2のモニタ 値、 第 3のモニタ値のいずれかにもとづいて、 前記反射型光可変減衰器による減 衰制御に対して、 光出力レベルを一定にするための A L Cを行う制御部と、 を有することを特徴とする光増幅装置。
8 . 光信号を増幅する光増幅装置において、
光増幅用の活性物質をドープした増幅媒体に励起光を入射して光増幅を行う第 1の光増幅部と、
光増幅用の活性物質をドープした増幅媒体に励起光を入射して光増幅を行う第
2の光増幅部と、
前記第 1の光増幅部の入力側に設けられた入力側受光素子と、
前記第 2の光増幅部の出力側に設けられた出力側受光素子と、 反射ミラ一によって入力ビームを反射させて反射ビ一ムを生成し、 入力ビーム と反射ビームが通過する位置に磁気光学結晶を設けて、 印加された磁界によって ファラデー回転角を与えることで、 前記第 1の光増幅部で増幅された光信号の減 衰量を変化させ、 かつ前記反射ミラーを一部透過した光を入力モニタ光として電 気信号に変換する反射型光可変減衰器と、
前記入力側受光素子による第 1のモニタ値と、 前記反射型光可変減衰器による 第 2のモニタ値と、 前記出力側受光素子による第 3のモニタ値とにもとづいて、 前記第 1の光増幅部に対するゲインと、 前記第 2の光増幅部に対するゲインの和 が一定制御であるよう A G Cを行い、 かつ少なくとも第 1のモニタ値、 第 2のモ 二夕値、 第 3のモニタ値のいずれかにもとづいて、 前記反射型光可変減衰器によ る減衰制御に対して、 光出力レベルを一定にするための A L Cを行う制御部と、 を有することを特徴とする光増幅装置。
9 . 光信号を増幅する光増幅装置において、
光増幅用の活性物質をドープした増幅媒体に励起光を入射して光増幅を行う第 1の光増幅部と、
光増幅用の活性物質をド一プした増幅媒体に励起光を入射して光増幅を行う第 2の光増幅部と、
前記第 1の光増幅部の入力側に設けられた入力側受光素子と、
前記第 2の光増幅部の出力側に設けられた出力側受光素子と、
反射ミラーによって入力ビームを反射させて反射ビ一ムを生成し、 入力ビーム と反射ビームが通過する位置に磁気光学結晶を設けて、 印加された磁界によって ファラデー回転角を与えることで、 前記第 1の光増幅部で増幅された光信号の減 衰量を変化させ、 かつ前記反射ミラ一を一部透過した光を入力モニタ光として電 気信号に変換する反射型光可変減衰器と、
前記反射型光可変減衰器の出力側に設けられた受光素子と、
前記入力側受光素子による第 1のモニタ値と、 前記反射型光可変減衰器による 第 2のモニタ値とにもとづいて、 前記第 1の光増幅部に対するゲイン一定制御で ある A G Cを行い、 前記受光素子による第 3のモニタ値と前記出力側受光素子に よる第 4のモニタ値にもとづいて、 前記第 1の光増幅部に対するゲインと前記第 2の光増幅部に対するゲインの和が一定制御であるよう A G Cを行い、 かつ少な くとも第 1のモニタ値、 第 2のモニタ値、 第 3のモニタ値、 第 4のモニタ値のい ずれかにもとづいて、 前記反射型光可変減衰器による減衰制御に対して、 光出力 レベルを一定にするための A L Cを行う制御部と、
を有することを特徴とする光増幅装置。
1 0 . 光信号を増幅する光増幅装置において、
光増幅用の活性物質をドープした増幅媒体に励起光を入射して光増幅を行う第 1の光増幅部と、
光増幅用の活性物質をドープした増幅媒体に励起光を入射して光増幅を行う第 2の光増幅部と、
前記第 1の光増幅部の入力側に設けられた入力側受光素子と、
前記第 2の光増幅部の出力側に設けられた出力側受光素子と、
反射ミラ一によって入力ビームを反射させて反射ビームを生成し、 入力ビーム と反射ビームが通過する位置に磁気光学結晶を設けて、 印加された磁界によって ファラデー回転角を与えることで、 前記第 1の光増幅部で増幅された光信号の減 衰量を変化させ、 かつ前記反射ミラーを一部透過した光を入力モニタ光として電 気信号に変換する反射型光可変減衰器と、
前記反射型光可変減衰器の出力側に設けられた受光素子と、
前記入力側受光素子による第 1のモニタ値と、 前記反射型光可変減衰器による 第 2のモニタ値と、 前記受光素子による第 3のモニタ値とにもとづいて、 前記第 1の光増幅部に対するゲインと、 前記第 2の光増幅部に対するゲインの和が一定 制御であるよう A G Cを行い、 かつ少なくとも第 1のモニタ値、 第 2のモニタ値、 第 3のモニタ値、 第 4のモニタ値のいずれかにもとづいて、 前記反射型光可変減 衰器による減衰制御に対して、 光出力レベルを一定にするための A L Cを行う制 御部と、
を有することを特徴とする光増幅装置。
1 1 . 光信号を増幅する光増幅装置において、
光増幅用の活性物質をドープした増幅媒体と、 前記増幅媒体に励起光を入射す る励起光源と、 前記増幅媒体と前記励起光源の間に設置して、 前記励起光は通過 させ、 反射励起光は遮断する光アイソレータと、 から構成され、 光信号進行方向 の前記励起光及び光信号逆方向の前記反射励起光により光増幅を行って増幅光信 号を出力する光増幅部と、
光主信号は無反射で、 前記励起光は反射させて前記反射励起光を生成する膜を 構成素子の光信号通過面にコ一ティングし、 反射ミラーによって入力ビームを反 射させて反射ビームを生成し、 入力ビームと反射ビームが通過する位置に磁気光 学結晶を設けて、 印加された磁界によってファラデー回転角を与えることで前記 増幅光信号の減衰量を変化させ、 かつ前記反射ミラーを一部透過した光を入力モ 二夕光として電気信号に変換する反射型光可変減衰器と、
を有することを特徴とする光増幅装置。
12. 前記反射型光可変減衰器は、 2つの光ファイバ揷入孔に、 前記増幅光信 号の入力と減衰制御後の光信号の出力とのための 2本の光ファイバを揷入した 2 芯フエルールと、 光を集光するレンズと、 光ビームの直線偏光を透過させる偏光 子と、 入力ビームを反射させて反射ビームにする反射ミラーと、 入力ビームと反 射ビームが通過する位置に設けられ、 磁界によって変化するファラデー回転角に より、 前記増幅光信号の減衰量を変化させる磁気光学結晶と、 前記磁界を印加す る磁界印加部と、 前記反射ミラーを一部透過した光を入力モニタ光として電気信 号に変換する受光素子と、 から構成され、 前記 2芯フエルールまたは前記レンズ のいずれかの光信号通過面に前記膜をコーティングしたことを特徴とする請求の 範囲第 1 1項記載の光増幅装置。
1 3. 前記反射型光可変減衰器は、 戻り光と前記入力モニタ光とのなす角度を Θ (d e g) 、 前記受光素子の受光面の大きさを φ (mm) 、 前記レンズの焦点 距離を f (mm) 、 光の波長を λ (am) 、 ファイバ中のビームのモードフィー ルド径を w ( m) とした場合に、 前記受光素子の前記反射ミラーの背後からの 設置距離 L (mm) は、 L> { ( (4λ f /TTW) + ) c o s (θ/2) } / 4 t an (Θ/2) の範囲とすることで、 前記受光素子に対する前記戻り光の入 力を抑制することを特徴とする請求の範囲第 12項記載の光増幅装置。
14. 光信号の減衰制御を行う反射型光可変減衰器において、
2つの光ファイバ挿入孔に、 増幅光信号の入力と減衰制御後の光信号の出力と のための 2本の光ファイバを挿入した 2芯フエルールと、
光を集光するレンズと、
光ビームの直線偏光を透過させる偏光子と、
入力ビームを反射させて反射ビームにする反射ミラーと、
入力ビームと反射ビームが通過する位置に設けられ、 磁界によって変化するフ ァラデー回転角により、 入力光信号の減衰量を変化させる磁気光学結晶と、 前記磁界を印加する磁界印加部と、
前記反射ミラーを一部透過した光を入力モニタ光として電気信号に変換する受 光素子と、
を有することを特徴とする反射型光可変減衰器。
1 5. 前記 2芯フエルールまたは前記レンズのいずれかの光信号通過面に、 光 主信号は無反射で、 励起光は反射させる膜をコーティングしたことを特徴とする 請求の範囲第 14項記載の反射型光可変減衰器。
16. 戻り光と前記入力モニタ光とのなす角度を 0 (d e g) 、 俞記受光素子 の受光面の大きさを Φ (mm) 、 前記レンズの焦点距離を f (mm) 、 光の波長 をえ ( m) 、 ファイバ中のビームのモードフィールド径を w (urn) とした場 合に、 前記受光素子の前記反射ミラーの背後からの設置距離 L (mm) は、 L> { ( (4λ f /TTW) +Φ) c o s (θ/2) } /4 t a n (Θ/2) の範囲と することで、 前記受光素子に対する前記戻り光の入力を抑制することを特徴とす る請求の範囲第 14項記載の反射型光可変減衰器。
PCT/JP2003/008063 2003-06-25 2003-06-25 光増幅装置 WO2005001560A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2003/008063 WO2005001560A1 (ja) 2003-06-25 2003-06-25 光増幅装置
JP2005503212A JP4393456B2 (ja) 2003-06-25 2003-06-25 光増幅装置
US11/185,874 US7209284B2 (en) 2003-06-25 2005-07-21 Optical amplifier using reflection-type variable optical attenuator for feedback

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/008063 WO2005001560A1 (ja) 2003-06-25 2003-06-25 光増幅装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/185,874 Continuation US7209284B2 (en) 2003-06-25 2005-07-21 Optical amplifier using reflection-type variable optical attenuator for feedback

Publications (1)

Publication Number Publication Date
WO2005001560A1 true WO2005001560A1 (ja) 2005-01-06

Family

ID=33549037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/008063 WO2005001560A1 (ja) 2003-06-25 2003-06-25 光増幅装置

Country Status (3)

Country Link
US (1) US7209284B2 (ja)
JP (1) JP4393456B2 (ja)
WO (1) WO2005001560A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022158311A (ja) * 2021-04-01 2022-10-17 アンリツ株式会社 光信号波形測定装置及び光信号波形測定方法
JP2022158309A (ja) * 2021-04-01 2022-10-17 アンリツ株式会社 光信号波形測定装置及び光信号波形測定方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4414800B2 (ja) * 2004-03-25 2010-02-10 株式会社日立コミュニケーションテクノロジー 光伝送装置およびその制御方法
JP4707542B2 (ja) * 2005-11-28 2011-06-22 富士通株式会社 伝送装置
JP5679618B2 (ja) * 2007-05-31 2015-03-04 株式会社トリマティス 光増幅器
US8107819B2 (en) * 2007-05-31 2012-01-31 Industrial Technology Research Institute Systems and methods for interference prediction
EP2474110B1 (en) * 2009-09-04 2013-05-15 Nokia Siemens Networks OY Optical fiber amplifier compromising an embedded filter and a control method with improved feedforward control performance
US8908264B2 (en) * 2010-08-31 2014-12-09 Jds Uniphase Corporation Reducing transients in an optical amplifier
JP2015200728A (ja) * 2014-04-07 2015-11-12 富士通株式会社 光分岐器、光増幅装置及び光増幅方法
CN104238107A (zh) * 2014-07-07 2014-12-24 中国科学院上海光学精密机械研究所 数字化可调光衰减器
JP2016161802A (ja) * 2015-03-03 2016-09-05 富士通株式会社 可変光減衰器及び光モジュール
CN112768859A (zh) * 2020-12-14 2021-05-07 北京无线电计量测试研究所 一种衰减器
CN114665964A (zh) * 2020-12-22 2022-06-24 中兴通讯股份有限公司 环路控制***及方法
CN114721097A (zh) * 2021-01-04 2022-07-08 苏州旭创科技有限公司 一种光接收组件及控制方法和光模块

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1094624A2 (en) * 1999-10-19 2001-04-25 Fujitsu Limited Optical amplifying apparatus, wide-band optical amplifying apparatus, and optical communication system
US6304697B1 (en) * 1998-05-29 2001-10-16 Nec Corporation Thermo-optic device with evanescent wave coupling
JP2003107420A (ja) * 2001-09-27 2003-04-09 Fdk Corp 可変光アッテネータ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5191467A (en) * 1991-07-24 1993-03-02 Kaptron, Inc. Fiber optic isolater and amplifier
US5471340A (en) * 1994-01-07 1995-11-28 Jds Fitel Inc. Reflective optical non-reciprocal devices
JPH0954285A (ja) 1995-08-17 1997-02-25 Fujitsu Ltd アイソレータモジュール及び稀土類元素添加型光増幅器
JP3739471B2 (ja) * 1996-03-01 2006-01-25 富士通株式会社 光可変減衰器
US6049412A (en) * 1998-09-22 2000-04-11 Lucent Technologies, Inc. Reflective Faraday-based optical devices including an optical monitoring tap
US6631238B2 (en) * 2001-03-16 2003-10-07 Primanex Corporation Variable optical attenuator
US6535330B1 (en) * 2001-03-31 2003-03-18 Corning Incorporated Dynamic controller for a multi-channel optical amplifier

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6304697B1 (en) * 1998-05-29 2001-10-16 Nec Corporation Thermo-optic device with evanescent wave coupling
EP1094624A2 (en) * 1999-10-19 2001-04-25 Fujitsu Limited Optical amplifying apparatus, wide-band optical amplifying apparatus, and optical communication system
JP2003107420A (ja) * 2001-09-27 2003-04-09 Fdk Corp 可変光アッテネータ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022158311A (ja) * 2021-04-01 2022-10-17 アンリツ株式会社 光信号波形測定装置及び光信号波形測定方法
JP2022158309A (ja) * 2021-04-01 2022-10-17 アンリツ株式会社 光信号波形測定装置及び光信号波形測定方法
JP7224386B2 (ja) 2021-04-01 2023-02-17 アンリツ株式会社 光信号波形測定装置及び光信号波形測定方法
JP7308873B2 (ja) 2021-04-01 2023-07-14 アンリツ株式会社 光信号波形測定装置及び光信号波形測定方法

Also Published As

Publication number Publication date
US7209284B2 (en) 2007-04-24
JP4393456B2 (ja) 2010-01-06
US20050270635A1 (en) 2005-12-08
JPWO2005001560A1 (ja) 2006-07-27

Similar Documents

Publication Publication Date Title
US7209284B2 (en) Optical amplifier using reflection-type variable optical attenuator for feedback
US6922281B2 (en) Erbium-doped fiber amplifier and integrated module components
JP3884857B2 (ja) 偏光合成装置および偏光分離装置
US10297972B2 (en) Optical amplifier
US10746933B2 (en) Fiber coupled laser source pump with wavelength division multiplexer, isolator, tap filter, and photodetector
JP3778641B2 (ja) 光増幅器
JP3737628B2 (ja) 利得等価器及び光増幅器
CN109390839B (zh) 光学模块及掺铒光纤放大器
JP2000091677A (ja) 光増幅器及び光増幅用ファイバモジュール
KR100207603B1 (ko) 광 증폭기 아이솔레이터 복합모듈 및 이를 사용한 광 증폭기
US6459528B1 (en) Optical passive components and bi-directional amplifier
US6876491B2 (en) Highly integrated hybrid component for high power optical amplifier application
JP3282246B2 (ja) 光増幅器用光モジュール
KR100261089B1 (ko) 광아이솔레이터 및 이를 채용한 광증폭기
JP2003188444A (ja) 光増幅器
US20240055820A1 (en) Folded hybrid assembly for doped fiber amplifier
JPH1012953A (ja) 光ファイバアンプ用複合モジュール
KR100255650B1 (ko) 광증폭기
JP4043740B2 (ja) 光増幅器
KR100252178B1 (ko) 광 아이솔레이터 복합모듈 및 이를 사용한 광 증폭기
KR100288441B1 (ko) 펌핑광차단수단을구비한광증폭기
JPH06260711A (ja) 集積型光ファイバ増幅器
KR100252077B1 (ko) 광증폭기
JP2004198560A (ja) 可変光減衰器
JPH07218755A (ja) 光回路装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

WWE Wipo information: entry into national phase

Ref document number: 2005503212

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11185874

Country of ref document: US