WO2004105200A1 - Laser transmitter - Google Patents

Laser transmitter Download PDF

Info

Publication number
WO2004105200A1
WO2004105200A1 PCT/JP2003/006289 JP0306289W WO2004105200A1 WO 2004105200 A1 WO2004105200 A1 WO 2004105200A1 JP 0306289 W JP0306289 W JP 0306289W WO 2004105200 A1 WO2004105200 A1 WO 2004105200A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
vacuum vessel
gantry
laser beam
legs
Prior art date
Application number
PCT/JP2003/006289
Other languages
French (fr)
Japanese (ja)
Inventor
Miki Kurosawa
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to PCT/JP2003/006289 priority Critical patent/WO2004105200A1/en
Priority to TW092114659A priority patent/TWI221687B/en
Publication of WO2004105200A1 publication Critical patent/WO2004105200A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/025Constructional details of solid state lasers, e.g. housings or mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0071Beam steering, e.g. whereby a mirror outside the cavity is present to change the beam direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/025Constructional details of solid state lasers, e.g. housings or mountings
    • H01S3/027Constructional details of solid state lasers, e.g. housings or mountings comprising a special atmosphere inside the housing

Definitions

  • the present invention relates to a laser oscillator, and more particularly, to improvement of optical axis stability (pointing stability) of laser light emitted from the laser oscillator.
  • a laser oscillator that normally generates laser light and a laser processing machine that transmits laser light to a workpiece to perform processing are used.
  • the laser light inlet provided on the laser beam machine side must be spatially aligned with the optical axis of the laser beam emitted from the laser oscillator. There is a need. For this reason, the position of the optical axis of the laser light emitted from the laser oscillator is designed according to the laser processing machine.
  • a plurality of folding mirrors are provided adjacent to the outside of the laser oscillator.
  • a mirror made of is provided and the height of the optical axis is adjusted.
  • a folding mirror provided for the purpose of adjusting the position and height of the optical axis adjacent to the outside of the laser oscillator is included in the inside of the laser oscillator.
  • the folding mirror is provided inside the laser oscillator, it is not necessary to separately provide a structure for holding the mirror outside the laser oscillator, and the optical path on the laser processing machine side can be simplified.
  • the installation space of the equipment can be reduced, the number of parts can be reduced, the cost can be reduced, and the time required for installing the equipment can be reduced. There is an advantage that it can be reduced.
  • a laser processing machine for processing a metal material as disclosed in Japanese Patent Publication No.
  • laser light is converted into circularly polarized light or reflected light from the material is reflected on a laser oscillator side.
  • a polarizing element and a polarizing mirror are required to prevent the return to the above.
  • Such an optical component such as a polarizing element or a polarizing mirror needs to be arranged at a predetermined angle with respect to the polarization plane of the laser beam in order to exert its function. Since the plane of polarization of this laser beam is determined by the optical resonator that is the light source of the laser beam built into the laser oscillator, these optical components must be adjacent to the optical resonator in order to accurately arrange the plane of polarization with respect to the plane of polarization. It is desirable to arrange. That is, it is more convenient to include the above-mentioned optical components inside the laser oscillator, similarly to the folding mirror.
  • pointing stability which indicates that the direction of emitted laser light is always constant.
  • the pointing stability is achieved when the attitude of the optical resonator as the light source is always stable.
  • a design has been made in consideration of the stable maintenance of the optical resonator as disclosed in Japanese Patent Application Laid-Open No. 11-238585. .
  • a laser gas which is a laser medium filled in a vacuum vessel
  • a laser gas which is a laser medium filled in a vacuum vessel
  • the temperature of the laser gas in the vacuum vessel rises due to the energy of the discharge. Due to this temperature rise, the temperature of the vacuum vessel itself that confines the gas also rises, so that the vacuum vessel is slightly deformed by the linear expansion of the constituent materials.
  • the optical resonator is held in a vacuum vessel that causes such thermal deformation.
  • a holding structure is disclosed in Japanese Patent Application Laid-Open No. 2001-32640. Optical resonance in which thermal deformation of the vacuum vessel is held It secures the pointing stability by not transmitting it to the container.
  • FIG. 10 illustrates a structure in which an optical resonator and a folding mirror are provided inside a gas laser oscillator.
  • an optical resonator 1 and a folding mirror 8 are installed on a base 3 serving as a base of a laser oscillator 20.
  • the optical resonator 1 is held in a strongly made vacuum vessel 2 for sealing gas.
  • the vacuum vessel 2 is fixed to the gantry 3 via each leg 4. That is, the optical resonator 1 is fixed to the gantry 3 via the legs 4 provided on the vacuum vessel 2.
  • Two folding mirrors 8 are used to change the height of the laser beam 1.0 extracted from the laser oscillator 20.One is installed on the gantry 3 and the other is held on the optical resonator 1. Shall be done.
  • the gantry 3 of the laser oscillator 20 is mounted on an immovable installation surface 21 such as the ground.
  • the above-described thermal deformation of the vacuum vessel 2 causes the gantry 3 to move through the legs 4.
  • the base 3 itself is deformed.
  • the folding mirror 8 installed on the gantry 3 tilts, so that the pointing stability of the laser oscillator 20 as a whole is reduced. There is a problem of damage.
  • the heat generated during laser oscillation causes the entire vacuum vessel 2 to have a temperature of about 10 ° C. Rises.
  • the vacuum vessel 2 is made of a structure in which steel sheets are welded to withstand vacuum pressure, and is made firmly.
  • a linear expansion coefficient specific to steel is generated.
  • the linear expansion coefficient increases the distance between the legs 4. For example, assuming that the interval between the legs 4 is 100 mm, the interval between the legs 4 is slightly increased by 0.1 mm due to the linear expansion coefficient inherent in steel due to a temperature rise of 10 ° C.
  • leg 4 is 6 O mm square, 3.2 mm thick, and 10 O mm long.
  • a 0.12 nim elongation between each leg 4 produces a bending moment M of 1 1620 kg-cm at the joint.
  • the gantry 3 is made of a steel pipe having a width of 125 mm and a wall thickness of 6 m, the gantry 3 ′ is bent due to the bending moment M, and the position of the leg portion 4 with respect to the installation surface 21.
  • a gradient of ⁇ 2 15 ⁇ ad occurs. Since the bending of the gantry 3 occurs symmetrically with respect to the center of the interval between the legs 4, even if the gantry 3 is bent, the posture of the vacuum vessel 2 itself does not tilt with respect to the installation surface 21. Due to the configuration of the laser oscillator 20, it is installed near the end of the gantry 3 due to the structure of the laser oscillator 20. The posture is tilted by the angle ⁇ .
  • the present invention has been made in view of the above-described problems, and provides a laser oscillator in which an optical resonator that generates laser light is supported on a mount together with a vacuum vessel.
  • the optical axis stability of laser light (pointing stability)
  • An object of the present invention is to provide a laser oscillator having excellent performance.
  • a folding mirror is provided to change the position and height of the optical axis of the laser beam emitted from the optical resonator
  • a laser oscillator with excellent optical axis stability is provided. The purpose is to provide. Disclosure of the invention
  • an optical resonator that generates a laser beam
  • a vacuum vessel that holds the optical resonator
  • a gantry that supports the vacuum vessel
  • a laser beam of the optical resonator It is characterized in that it comprises a support means for connecting the vacuum vessel to the gantry with a degree of freedom to move the laser beam only in a parallel direction when the vacuum vessel is thermally deformed due to the generation.
  • the laser light generated by the optical resonator is moved only in the parallel direction by the support means, so that the laser light emitted from the optical resonator is folded.
  • the angle of the laser beam reaching the turning mirror becomes constant.
  • the thermal deformation of the vacuum vessel is absorbed by the supporting means and does not affect the gantry, even when the fold mirror is provided on the gantry, it is possible to maintain the optical axis stability of the laser beam by suppressing the inclination of the attitude of the fold mirror. it can.
  • FIG. 1 is a perspective view showing a laser oscillator according to the present invention
  • FIGS. 2 (a) to (c) show Embodiment 1 having a flexible structure having a degree of freedom only in a desired direction with respect to a leg
  • 3 (a) and 3 (b) are side views showing Embodiment 2 in which the legs have a degree of freedom only in a desired direction
  • FIG. 4 is another side view of the legs.
  • FIG. 5 (a) is a plan view showing the operation of the legs and the deviation of the optical axis in the first and second embodiments
  • FIG. ) Is a plan view showing the operation of the leg in the third embodiment.
  • FIG. 6 is a side view showing the arrangement of the folding mirror in the fourth embodiment, and FIGS.
  • FIG. 7 (a) and 7 (b) ) Is a side view showing the operation in Embodiment 4,
  • FIG. 8 is a perspective view showing Embodiment 5 showing the arrangement of the folding mirror, and
  • FIG. 9 is a folding mirror.
  • FIG. 10 is a side view showing a conventional laser oscillator
  • FIG. 11 is a side view showing a state where a gantry is deformed in the conventional laser oscillator. .
  • FIG. 1 shows a laser oscillator according to the present invention. As shown in Figure 1
  • the laser oscillator 20 mainly includes an optical resonator 1, a vacuum vessel 2, a gantry 3, legs 4 as supporting means, and folding mirrors 8 and 9.
  • the optical resonators 1 are paired so as to hold the rear mirror 5 and the front mirror 6, respectively.
  • the optical resonator 1 is connected by three support rods 7 made of a low thermal expansion material.
  • the mirrors 5 and 6 are held at regular intervals.
  • the optical resonator 1 is configured to obtain laser light 10 by reciprocating light between the mirrors 5 and 6 in the front-rear direction.
  • the vacuum vessel 2 confines the laser gas, which is a laser medium, inside, and excites the laser gas with discharge energy to promote stimulated emission of light.
  • the vacuum vessel 2 is made of a steel material such as a thick steel plate or a stainless steel plate so as to withstand a vacuum pressure.
  • the vacuum container 2 is a portion indicated by a broken line in FIG. 1 and is formed in a rectangular shape.
  • the optical resonator 1 is held in a vacuum vessel 2 via a support rod 7. Note that a discharge electrode, a heat exchanger, a blower, and the like are built in the vacuum vessel 2, but are omitted here for simplicity.
  • the laser oscillator 20 requires a power supply for generating discharge energy. This power source is usually placed on the vacuum vessel 2 or separately in order to prevent the heat generation from adversely affecting the pointing performance of the laser oscillator 20.
  • the gantry 3 forms the base of the laser oscillator 20 and has a structure in which the steel pipes 3a and 3b are welded.
  • the gantry 3 supports the vacuum vessel 2 horizontally and has a function of holding the folding mirror 9.
  • the gantry 3 has a pair of steel pipes 3a so as to be substantially parallel in the front-rear direction, and connects the steel pipes 3a by a pair of steel pipes 3b that are substantially parallel in the horizontal direction.
  • a plurality of legs 4 as support means are provided on the lower surface of the vacuum vessel 2 and are interposed between the vacuum vessel 2 and the gantry 3 to connect the vacuum vessel 2 to the gantry 3. Thereby, the vacuum container 2 is supported by the gantry.
  • the folding mirror 8 is provided on the optical resonator 1 that holds the front mirror 6.
  • the folding mirror 9 is provided on the steel pipe 3 b on the front side of the gantry 3.
  • the folding mirrors 8 and 9 reflect the laser beam 10 emitted from the front mirror 6 on the folding mirror 8 and the folding mirror 9. As a result, the laser beam 10 is adjusted to a laser beam machine whose position of the optical axis is not shown, and is taken out of the laser oscillator 20.
  • the inside of the vacuum vessel 2 is filled with a laser gas of about 1 Z 10 atm.
  • a part of the discharge energy injected to excite the laser gas is converted into laser light energy and extracted from the front mirror 6, but most is consumed for heating the laser gas. .
  • a part of the laser gas whose temperature has risen due to this heating is cooled by the heat exchanger, but the inside of the vacuum vessel 2 during laser oscillation equilibrates at about 10 ° C higher than when laser oscillation is not performed. State.
  • the legs 4 are provided at four locations near the corners of the vacuum vessel 2 between the vacuum vessel 2 and the gantry 3, and are arranged so as to form a quadrilateral shape.
  • the legs 4 a, 4 b, 4 c, 4 1 one leg 4 a is firmly fixedly connected to the gantry 3.
  • the legs 4b, 4c, and 4d as shown by the arrow in FIG. In the rear direction, the legs 4c are connected to the gantry 3 by adopting a flexible structure that has a degree of freedom in the horizontal direction and the legs 4d in the lateral direction.
  • the front-back direction is a direction along the laser light 10 generated by the optical resonator 1
  • the horizontal direction is a direction orthogonal to the laser light 10 on a horizontal plane
  • the horizontal direction is the front-rear direction.
  • the horizontal direction is the front-rear direction.
  • the leg 4b located at a position along the laser beam 10 with respect to the leg 4a has a degree of freedom in the direction along the laser beam 10.
  • the leg 4c which is diagonally oblique to the laser beam 10 with respect to the leg 4a, has a degree of freedom in a direction along the laser beam 10 and in a direction orthogonal to the laser beam 10.
  • the leg 4d which is perpendicular to the laser beam 10 with respect to the leg 4a, has a degree of freedom in the direction perpendicular to the laser beam 10 on the horizontal plane.
  • the legs 4a, 4b, 4c, 4d due to the thermal deformation of the vacuum vessel 2
  • the change in the spacing is canceled out by the flexible legs 4b and 4c4d, and the bending moment acting on the gantry 3 can be avoided.
  • One leg 4a was fixed, and the other three legs 4b, 4c, and 4d had their degrees of freedom limited. This is because the movement of the resonator 1 in the horizontal plane is restricted only in the parallel direction. In other words, regarding the pointing stability, the positional deviation due to the angle component increases in proportion to the propagation distance, and must be suppressed as much as possible. Originally, the amount of deformation of the vacuum vessel 2 is very small, so that even the angle component should not be generated.
  • the direction of the side connecting the legs 4b located in the front-rear direction along the laser beam with the fixed legs 4a as the reference, or orthogonal to the laser beam with the fixed legs 4a as the reference Foot 4d What is necessary is just to regulate so that the direction of the connecting side does not move with respect to the gantry 3.
  • the degree of freedom for each of the legs 4b, 4c, 4d is limited only in the direction of the arrow shown in FIG. It should be noted that by providing such a restriction on the degree of freedom, the vibration of the vacuum vessel 2 with respect to the gantry 3 can also be suppressed, and the optical axis stability of the laser beam with respect to the vibration is not impaired.
  • the fixed leg may be any one of 4a, 4b, 4c and 4d.
  • FIGS. 2 (a) to 2 (c) show a first embodiment in which the legs 4b, 4c and 4d have a flexible structure having a degree of freedom only in a desired direction.
  • the legs 4c are sufficiently small in rigidity as compared with the steel pipes constituting the gantry 3, and have such strength that they do not buckle under the load of the vacuum vessel 2. 3 is formed.
  • the legs 4b and 4d extend in the direction orthogonal to the above-described desired degree of freedom with respect to the thin steel pipe 13 and the gantry 3 It has a structure with ribs 14 connected to it. The lower end of the thin steel pipe 13 is welded to the gantry 3.
  • the ribs 14 have a substantially triangular plate shape, and are welded at sides of the thin steel pipes 13 and the pedestal 3. As a result, the strength of the ribs 14 in the direction parallel to the plate surface is increased, and the strength is not given in the direction perpendicular thereto, so that the freedom of deformation of the legs 4b and 4d is required. It regulates only in the direction.
  • the bending rigidity of the thin steel tube 13 is smaller than that of the base 3 in order to minimize the deformation of the gantry 3.
  • the second moment of area which is a value corresponding to the bending stiffness determined by the cross-sectional shape, be as small as about 100 in the thin steel pipe 13 with respect to the gantry 3.
  • the gantry 3 is a JIS standard product.
  • the thin steel pipe 13 used for the legs 4 b, 4 c, and 4 d is a JIS standard product
  • the secondary moment of area of the thin steel tube 13 will be 1Z107 of the gantry 3. That is, the bending generated in the gantry 3 can be reduced as compared with the case where a steel pipe having a poor flexibility of 60 mm square and a wall thickness of 3.2 mm like the leg 4 described in the background art is used.
  • the inclination of the reflecting mirror 9 disposed on the pedestal 3 can be reduced to 36 ⁇ ⁇ ad 1/6 of 215 ⁇ ad.
  • the laser beam displacement of 4.3 mm can be reduced to 0.7 mm, and the quality of the laser It is possible to obtain an acceptable range of pointing stability.
  • the pointing stability of the oscillator can be improved relatively inexpensively without providing a special mechanism. Can be.
  • FIGS. 3 (a) and 3 (b) show a second embodiment in which the legs 4b, 4c and 4d have a degree of freedom only in desired directions.
  • a linear slide mechanism 12 having a degree of freedom in one direction is used.
  • the direction of the linear motion slide mechanism 12 matches the direction in which the degree of freedom is desired to be given.
  • two linear slide mechanisms 12 are overlapped on the leg 4c so that the degrees of freedom are orthogonal.
  • the legs 4 b, 4 c, and 4 d can be given a degree of freedom in desired directions as in the first embodiment, and deformation of the gantry 3 can be avoided.
  • the present invention can be applied to the case where the number of the legs 4 is three.
  • one leg 4 e is disposed on the front side of the vacuum vessel 2 immediately below the optical axis of the laser beam 10 generated by the optical resonator 1, and is located between the vacuum vessel 2 and the mount 3.
  • the connection is firmly fixed without giving any degree of freedom.
  • the remaining legs 4 f and 4 g are arranged so as to form an isosceles triangle having a center line in the direction along the laser beam 10 and having the leg 4 e as the apex, and each of The vacuum vessel 2 and the gantry 3 are connected with a degree of freedom in the horizontal direction, which is the horizontal direction. Even with such a configuration, it is possible to avoid transmitting the deformation of the vacuum vessel 2 to the gantry 3.
  • FIG. 6 shows Embodiment 4 showing the arrangement of the folded mirror.
  • the fourth embodiment is another structure for securing pointing stability in the laser oscillator 20.
  • the flexible structure of the leg 4 described in the first, second, and third embodiments is sufficiently functional. This is an embodiment in which the deformation of the gantry 3 is unavoidable and the pointing stability is ensured even if the positions of the folding mirrors 8 and 9 change.
  • the folding mirror 8 placed immediately after the front mirror 6 is integrated with the folding mirror 9 by the structure 15.
  • Each of the folding mirrors 8 and 9 is supported by the gantry 3 via the structure 15 to form a folding mirror unit.
  • the structure 15 has a sufficiently strong structure, and has a function that the relative angle between the two folding mirrors 8 and 9 fixed thereto is always constant.
  • the folding mirror 8 is deformed by the deformation of the gantry 3 due to the thermal deformation of the vacuum vessel 2. Even if the posture of 9 changes, both mirrors 8 and 9 will be tilted by exactly the same angle.
  • the incident angle with respect to the folding mirror 8 is 0 °
  • the reflection angle with respect to the folding mirror 9 is ⁇ 2
  • the laser beam incident on the folding mirror 8 and the laser reflected from the folding mirror 9 The angle between the light and the light is ⁇ .
  • 2 ( ⁇ 2 ⁇ ⁇ ).
  • FIG. 7 (b) when the folding-back mirror 8, 9 fixed to the structure 15 is inclined an angle [delta], the angle of incidence on the folding mirror 8 9 t one [delta], about folding mirror 9
  • the reflection angle is ⁇ 2 — ⁇ .
  • the two folding mirrors 8, 9 forming a folding mirror unit by the structure 15 are integrated so that the relative angle between them is always constant, and the folding mirror 3 is deformed by the deformation of the gantry 3 holding them. Even if the postures 8 and 9 are inclined, it is possible to prevent the pointing stability from being adversely affected. ⁇
  • the folding mirrors 8 and 9 are provided inside the laser oscillator 20 in accordance with the laser processing machine.
  • the pair of folding mirror units are fixed on the base 3 serving as the base of the laser oscillator 20 so that the relative angles of the mirrors 8 and 9 do not move.
  • the base 3 is deformed and the posture of the two folding mirrors 8 and 9 is inclined, the inclination is offset between the two folding mirrors 8 and 9, and the laser emitted from the laser oscillator 20 is removed. Ponte of Light 10 Stability can be ensured.
  • the laser beam 10 emitted from the front mirror 6 is folded so as to be folded at an angle of 45 ° in the horizontal direction with respect to the vertical direction.
  • the folding mirrors 8 and 9 are placed on the rooster.
  • a sturdy structure 15 having a through hole for passing the laser beam 10 through the block material is used.
  • the folding mirrors 8 and 9 are fixed to both ends of the structure 15, the mirrors can be fixed as a pair so that their relative angles are constant. If this structure 15 is fixed to the gantry 3, the inclination between the two folding mirrors 8 and 9 can be canceled even if the folding mirrors 8 and 9 are inclined not only vertically but also horizontally.
  • the pumping stability of the laser beam 10 emitted from the laser oscillator 20 can be ensured.
  • a shutter for blocking the laser beam 10 between the turning mirrors 8 and 9 of the structure 15 is provided.
  • a mechanism 18 can be provided. With such a configuration, it is not necessary to secure a space for newly providing the shutter mechanism 18, so that the size of the laser oscillator 10 can be reduced.
  • the laser oscillator of the present invention when a frame as a base is provided inside the laser oscillator, and the optical resonator is installed on the frame via a vacuum vessel, thermal deformation occurs in the vacuum vessel. Even if it occurs, the optical axis stability (pointing stability) of the laser light generated by the optical resonator can be improved. In particular, to improve the optical axis stability of the laser beam usefully in a laser oscillator equipped with a folding mirror to change the position and height of the optical axis of the laser beam emitted from the optical resonator with respect to the mount be able to.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

A laser transmitter, wherein an optical resonator (1) generating laser beam (10) is held by a vacuum container (2) supportedly connected to a frame (3) through leg parts (4) as support means, and the leg parts (4) connect the vacuum container (2) to the frame (3) with such a freedom degree as to move the laser beam (10) only in a parallel direction, whereby even if the vacuum container (2) is thermally deformed due to the occurrence of the laser beam (10) from the optical resonator (1), the deformation of the frame (3) can be avoided by supporting the vacuum container (2) so that the laser beam (10) can be moved only in the parallel direction by the freedom degree of the leg parts (4).

Description

レーザ発振器 Laser oscillator
技術分野 Technical field
この発明は、 レーザ発振器に関するものであり、 詳細には、 レーザ発振器から 出射されるレーザ光の光軸安定性明(ボインティング安定性) の向上に関するもの である。  The present invention relates to a laser oscillator, and more particularly, to improvement of optical axis stability (pointing stability) of laser light emitted from the laser oscillator.
田 背景技術  Field background technology
産業におけるレーザの適用においては、 通常レーザ光を発生するレーザ発振器 と、 レーザ光を加工物まで伝送し加工を行うためのレーザ加工機とが使用される 。 レーザ発振器から出射されたレーザ光をレーザ加工機に導入するには、 レーザ 加工機側に設けられたレーザ光の導入口と、 レーザ発振器から出たレーザ光の光 軸とを空間的に一致させる必要がある。 このことから、 レーザ発振器から出るレ 一ザ光の光軸位置は、 レーザ加工機に合わせて設計されている。  In the application of lasers in industry, a laser oscillator that normally generates laser light and a laser processing machine that transmits laser light to a workpiece to perform processing are used. In order to introduce the laser light emitted from the laser oscillator into the laser beam machine, the laser light inlet provided on the laser beam machine side must be spatially aligned with the optical axis of the laser beam emitted from the laser oscillator. There is a need. For this reason, the position of the optical axis of the laser light emitted from the laser oscillator is designed according to the laser processing machine.
例えば特開 2 0 0 2 - 3 1 6 2 9 1号公報では、 レーザ発振器から出たレーザ 光をレーザ加工機側にとって都合良く伝送するために、 レーザ発振器の外部に隣 接して複数の折返しミラーで構成されたミラーュ-ットを設け、 光軸の高さを調 整する一例が開示されている。  For example, in Japanese Patent Application Laid-Open No. 2002-3161691, in order to transmit laser light emitted from a laser oscillator to the laser processing machine side conveniently, a plurality of folding mirrors are provided adjacent to the outside of the laser oscillator. There is disclosed an example in which a mirror made of is provided and the height of the optical axis is adjusted.
レーザ発振器の外部に隣接して光軸の位置や高さを調整する目的で設けられた 折返しミラーは、 レーザ発振器の内部に包含することが好ましい。 折返しミラー をレーザ発振器内部に備えた方が、 ミラーを保持する構造をレーザ発振器の外部 に別途設ける必要がなくなると同時に、 レーザ加工機側の光路が簡素化できる。 この結果、 レーザ発振器とレーザ加工機を組み合わせたシステム全体を考慮した 場合に、 装置の設置スペースを小さくできたり、 部品点数が省け低コスト化が図 れたり、 さらには装置を据え付ける際の手間が軽減できるといった利点がある。 また、 一般に金属材料を加工するレーザ加工機では、 特公平 8— 1 8 1 5 3号 公報に開示されているように、 レーザ光を円偏光にしたり材料からの反射光をレ 一ザ発振器側に戻らないようにするための偏光素子や偏光ミラーが必要とされる 。 このような偏光素子や偏光ミラーといった光学部品は、 その機能を発揮させる ために、 レーザ光の偏光面に対して決められた角度で配置する必要がある。 この レーザ光の偏光面は、 レーザ発振器に内蔵されるレーザ光の光源である光共振器 により定まるため、 偏光面に対して精度良く配置するにはこれらの光学部品は光 共振器に隣接して配置することが望ましい。 すなわち、 上記光学部品も前記折返 しミラーと同様にレーザ発振器の内部に包含した方が都合がよレ、。 It is preferable that a folding mirror provided for the purpose of adjusting the position and height of the optical axis adjacent to the outside of the laser oscillator is included in the inside of the laser oscillator. When the folding mirror is provided inside the laser oscillator, it is not necessary to separately provide a structure for holding the mirror outside the laser oscillator, and the optical path on the laser processing machine side can be simplified. As a result, when considering the entire system combining a laser oscillator and a laser processing machine, the installation space of the equipment can be reduced, the number of parts can be reduced, the cost can be reduced, and the time required for installing the equipment can be reduced. There is an advantage that it can be reduced. In general, in a laser processing machine for processing a metal material, as disclosed in Japanese Patent Publication No. 8-18153, laser light is converted into circularly polarized light or reflected light from the material is reflected on a laser oscillator side. A polarizing element and a polarizing mirror are required to prevent the return to the above. Such an optical component such as a polarizing element or a polarizing mirror needs to be arranged at a predetermined angle with respect to the polarization plane of the laser beam in order to exert its function. Since the plane of polarization of this laser beam is determined by the optical resonator that is the light source of the laser beam built into the laser oscillator, these optical components must be adjacent to the optical resonator in order to accurately arrange the plane of polarization with respect to the plane of polarization. It is desirable to arrange. That is, it is more convenient to include the above-mentioned optical components inside the laser oscillator, similarly to the folding mirror.
以上のように従来、 レーザ発振器の外部に配置されていた折返しミラーや光学 部品は、 レーザ光の光源である光共振器に隣接できるようにレーザ発振器の内部 に設ける構成とした方が望ましい場合がある。  As described above, in some cases, it is desirable to provide a folding mirror or optical component that has been placed outside the laser oscillator inside the laser oscillator so that it can be adjacent to the optical resonator that is the light source of the laser light. is there.
一方、 レーザ発振器に要求される重要な性能のひとつとして、 出射されるレー ザ光の向きが常に一定していることを表わすポインティング安定性がある。 ボイ ンティング安定性は、 光源である光共振器の姿勢が常に安定していることにより 達成される。 すなわち、 レーザ発振器を設計する場合は、 特開平 1 1— 2 3 3 8 5 5号公報に開示されるように光共振器の安定保持を熟慮した設計がなされてい る。 .  On the other hand, one of the important performances required for a laser oscillator is pointing stability, which indicates that the direction of emitted laser light is always constant. The pointing stability is achieved when the attitude of the optical resonator as the light source is always stable. In other words, when designing a laser oscillator, a design has been made in consideration of the stable maintenance of the optical resonator as disclosed in Japanese Patent Application Laid-Open No. 11-238585. .
また、 レーザ媒質が気体からなるガスレーザ発振器では、 真空容器内に充填さ れたレーザ媒質であるレーザガスを放電により励起して光の誘導放出を促すこと でレーザ光を発生させる。 この際、 真空容器内のレーザガスは、 放電のエネルギ により温度が上昇する。 この温度上昇によりガスを閉じ込めている真空容器自身 の温度も上昇するため真空容器はその構成材料のもつ線膨張によりわずかに変形 が生じる。 光共振器は、 このような熱変形を生じる真空容器に保持されているが 、 公知のガスレーザ発振器では、 特開 2 0 0 1— 3 2 6 4 0 3号公報に開示され るように保持構造を工夫することで真空容器の熱変形がそこに保持される光共振 器に伝わらないようにしてボインティング安定性を確保している。 Further, in a gas laser oscillator in which a laser medium is a gas, a laser gas, which is a laser medium filled in a vacuum vessel, is excited by electric discharge to stimulate stimulated emission of light to generate laser light. At this time, the temperature of the laser gas in the vacuum vessel rises due to the energy of the discharge. Due to this temperature rise, the temperature of the vacuum vessel itself that confines the gas also rises, so that the vacuum vessel is slightly deformed by the linear expansion of the constituent materials. The optical resonator is held in a vacuum vessel that causes such thermal deformation. However, in a known gas laser oscillator, a holding structure is disclosed in Japanese Patent Application Laid-Open No. 2001-32640. Optical resonance in which thermal deformation of the vacuum vessel is held It secures the pointing stability by not transmitting it to the container.
ここで、 第 1 0図はガスレーザ発振器の内部に光共振器と折返しミラーを備え る構造を例示している。 第 1 0図では、 レーザ発振器 2 0の基部となる架台 3に 光共振器 1および折返しミラー 8を設置してある。 光共振器 1は、 ガスを密封す るための強固に作られた真空容器 2に保持されている。 真空容器 2は、 各脚部 4 を介して架台 3に固定されている。 すなわち、 光共振器 1は、 真空容器 2に設け た各脚部 4を介して架台 3に固定されている。 なお、 折返しミラー 8は、 レーザ 発振器 2 0から取り出されるレーザ光 1 .0の高さを変更するため 2個使用され、 1個は架台 3に設置し残りの 1個は光共振器 1に保持したものとする。 上記のよ うな構成をもってレーザ発振器 2 0は、 例えば地面のような不動の設置面 2 1に 架台 3が載置される。  Here, FIG. 10 illustrates a structure in which an optical resonator and a folding mirror are provided inside a gas laser oscillator. In FIG. 10, an optical resonator 1 and a folding mirror 8 are installed on a base 3 serving as a base of a laser oscillator 20. The optical resonator 1 is held in a strongly made vacuum vessel 2 for sealing gas. The vacuum vessel 2 is fixed to the gantry 3 via each leg 4. That is, the optical resonator 1 is fixed to the gantry 3 via the legs 4 provided on the vacuum vessel 2. Two folding mirrors 8 are used to change the height of the laser beam 1.0 extracted from the laser oscillator 20.One is installed on the gantry 3 and the other is held on the optical resonator 1. Shall be done. With the configuration as described above, the gantry 3 of the laser oscillator 20 is mounted on an immovable installation surface 21 such as the ground.
し力 しながら、 第 1 0図に例示したように、 真空容器 2の脚部 4を介して架台 3に固定すると、 先に述べた真空容器 2の熱変形が脚部 4を介して架台 3に伝わ り架台 3自体に変形が生じてしまう。 特に第 1 1図に示すように、 架台 3に曲げ の変形が生じる場合は、 架台 3に設置されている折返しミラー 8の姿勢が傾くた め、 レーザ発振器 2 0全体としてのボインティング安定性を損ねてしまう問題が 生じる。  As illustrated in FIG. 10, while being fixed to the gantry 3 via the legs 4 of the vacuum vessel 2, the above-described thermal deformation of the vacuum vessel 2 causes the gantry 3 to move through the legs 4. The base 3 itself is deformed. In particular, as shown in Fig. 11, when bending deformation occurs in the gantry 3, the folding mirror 8 installed on the gantry 3 tilts, so that the pointing stability of the laser oscillator 20 as a whole is reduced. There is a problem of damage.
この問題の具体的な一例を記すと、 産業用に広く使われる k Wクラスの高出力 ガスレーザ発振器 2 0では、 レーザ発振中に発生する熱により真空容器 2は全体 的に 1 0 °C程度温度が上昇する。 通常真空容器 2は、 真空圧に耐えられるように 鋼板を溶接した構造で強固に作られており、 1 o°cの温度上昇により鋼材固有の 線膨張率を生じる。 この線膨張率により各脚部 4の間隔が伸びることになる。 例 えば各脚部 4の間隔が 1 0 0 0 mmとすると、 1 0 °Cの温度上昇により鋼材固有 の線膨張率により脚部 4の間隔がわずかであるが 0 . 1 mm伸びる。 この伸びに より脚部 4と架台 3の接合部には架台 3全体を曲げようとする曲げモーメント M が作用する。 例えば脚部 4が 6 O mm四方、 肉厚 3 . 2 mm、 長さ 1 0 O mmの 鋼管で構成された場合、 各脚部 4間での 0 . l nimの伸びにより、 接合部には 1 1 6 2 0 k g - c mの曲げモーメント Mが生じる。 そして、 例えば架台 3が 1 2 5 mm四方、 肉厚 6 mの鋼管で構成されているとすると、 上記曲げモーメント M により架台 3 'に曲がりが生じ脚部 4の位置で設置面 2 1に対して α= 2 1 5 μ τ a dの傾きが生じる。 この架台 3の曲がりは脚部 4の間隔の中心に対して対称に 生じるため、 架台 3に曲がりが生じても真空容器 2自体の姿勢は設置面 2 1に対 して傾かない。 し力 しながら、 レーザ発振器 2 0の構成上、 架台 3の端の方に設. 置される折返しミラー 8は、 架台 3の曲がりにより生じる傾きが直接作用し、 設 置面 2 1に対して角度 αだけ姿勢が傾いてしまう。 角度 α傾いた折返しミラー.8 で反射されたレーザ光 1. 0の光軸は、 原理的に 2 αで傾くため、 具体的に 2 x 2 1 5 = 4 3 Ο μ τ a dの傾きをもってレーザ発振器 2 0から出射されることにな りボインティング安定性が損なわれてしまう。 例えば、 この 4 3 0 μ r a dの傾 きをもったレーザ光 1 0をレーザ加工機に導入し、 加工へッドの先端まで 1 0 m 伝送したとすると、 そこでは 4 . 3 mm位置ずれが生じることになりレーザカロェ 機の加工精度や加工品質に悪影響を及ぼすことになる。 To give a concrete example of this problem, in a kW-class high-output gas laser oscillator 20 widely used for industrial purposes, the heat generated during laser oscillation causes the entire vacuum vessel 2 to have a temperature of about 10 ° C. Rises. Normally, the vacuum vessel 2 is made of a structure in which steel sheets are welded to withstand vacuum pressure, and is made firmly. When the temperature rises by 1 ° C., a linear expansion coefficient specific to steel is generated. The linear expansion coefficient increases the distance between the legs 4. For example, assuming that the interval between the legs 4 is 100 mm, the interval between the legs 4 is slightly increased by 0.1 mm due to the linear expansion coefficient inherent in steel due to a temperature rise of 10 ° C. Due to this elongation, a bending moment M acts on the joint between the leg 4 and the gantry 3 to bend the gantry 3 as a whole. For example, leg 4 is 6 O mm square, 3.2 mm thick, and 10 O mm long. When constructed from steel pipe, a 0.12 nim elongation between each leg 4 produces a bending moment M of 1 1620 kg-cm at the joint. For example, assuming that the gantry 3 is made of a steel pipe having a width of 125 mm and a wall thickness of 6 m, the gantry 3 ′ is bent due to the bending moment M, and the position of the leg portion 4 with respect to the installation surface 21. Thus, a gradient of α = 2 15 μτ ad occurs. Since the bending of the gantry 3 occurs symmetrically with respect to the center of the interval between the legs 4, even if the gantry 3 is bent, the posture of the vacuum vessel 2 itself does not tilt with respect to the installation surface 21. Due to the configuration of the laser oscillator 20, it is installed near the end of the gantry 3 due to the structure of the laser oscillator 20. The posture is tilted by the angle α. Folded mirror tilted by angle α.Laser light reflected by 8 The optical axis of 1.0 is tilted at 2α in principle, so the laser has a specific tilt of 2 x 2 15 = 4 3 Ο μ τ ad Since the light is emitted from the oscillator 20, the pointing stability is impaired. For example, if this laser beam 10 with an inclination of 43 μrad is introduced into a laser beam machine and transmitted 10 m to the tip of the machining head, there will be a 4.3 mm misalignment there. This will adversely affect the processing accuracy and processing quality of the laser calorie machine.
以上のように、 光共振器 1を保持した真空容器 2と、 折返しミラー 8とを架台 3の上に設置した構成では、 真空容器 2のわずかな変形が架台 3に伝わり曲げモ 一メント Mとして作用して折返しミラー 8の姿勢が変化してしまうため、 たとえ 光共振器 1が安定保持されるように考慮していてもボインティング安定性に性能 上無視できない変動が生じてしまう。  As described above, in the configuration in which the vacuum vessel 2 holding the optical resonator 1 and the folding mirror 8 are installed on the gantry 3, slight deformation of the vacuum vessel 2 is transmitted to the gantry 3 and the bending moment M is formed. This causes the attitude of the turning mirror 8 to change, so that even if consideration is given so that the optical resonator 1 is stably maintained, fluctuations in pointing stability that cannot be ignored in performance occur.
本発明は、 上記のような問題に鑑みなされたもので、 レーザ光を発生する光共 振器を真空容器とともに架台で支持したレーザ発振器において、 レーザ光の光軸 安定性 (ボインティング安定性) に優れたレーザ発振器を提供することを目的と する。 特に、 光共振器から出たレーザ光の光軸の位置や高さを変更するための折 返しミラーを備えた場合にレーザ光の光軸安定性 (ポインティング安定性) に優 れたレーザ発振器を提供することを目的とする。 発明の開示 SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems, and provides a laser oscillator in which an optical resonator that generates laser light is supported on a mount together with a vacuum vessel. The optical axis stability of laser light (pointing stability) An object of the present invention is to provide a laser oscillator having excellent performance. In particular, when a folding mirror is provided to change the position and height of the optical axis of the laser beam emitted from the optical resonator, a laser oscillator with excellent optical axis stability (pointing stability) is provided. The purpose is to provide. Disclosure of the invention
本癸明にかかるレーザ発振器にあっては、 レーザ光を発生する光共振器と、 前 記光共振器を保持する真空容器と、 前記真空容器を支える架台と、 前記光共振器 のレーザ光の発生に伴う前記真空容器の熱変形に際して前記レーザ光を平行方向 にのみに移動する自由度をもって前記真空容器を前記架台に対して接続する支持 手段とを備えたことを特 ί敷とする。  In the laser oscillator according to the present invention, an optical resonator that generates a laser beam, a vacuum vessel that holds the optical resonator, a gantry that supports the vacuum vessel, and a laser beam of the optical resonator. It is characterized in that it comprises a support means for connecting the vacuum vessel to the gantry with a degree of freedom to move the laser beam only in a parallel direction when the vacuum vessel is thermally deformed due to the generation.
この発明によれば、 真空容器に熱変形が生じたときに支持手段によつて光共振 器が発生するレーザ光を平行方向にのみ移動させるので、 光共振器から出たレー ザ光を折り返すための折返しミラーに至るレーザ光の角度が一定になる。 特に、 真空容器の熱変形が支持手段で吸収されて架台に関与しないので、 折返しミラー を架台に備えた場合でも折返しミラーの姿勢の傾きを押さえてレーザ光の光軸安 定性を確保することができる。 図面の簡単な説明  According to this invention, when thermal deformation occurs in the vacuum vessel, the laser light generated by the optical resonator is moved only in the parallel direction by the support means, so that the laser light emitted from the optical resonator is folded. The angle of the laser beam reaching the turning mirror becomes constant. In particular, since the thermal deformation of the vacuum vessel is absorbed by the supporting means and does not affect the gantry, even when the fold mirror is provided on the gantry, it is possible to maintain the optical axis stability of the laser beam by suppressing the inclination of the attitude of the fold mirror. it can. BRIEF DESCRIPTION OF THE FIGURES
第 1図は本努明に係るレーザ発振器を示す斜視図であり、 第 2図 (a ) 〜 (c ) は脚部に関して所望の方向のみに自由度をもつ柔構造とする実施の形態 1を示 す斜視図であり、 第 3図 (a ) , ( b ) は脚部に関して所望の方向のみに自由度 をもたせる実施の形態 2を示す側面図であり、 第 4図は脚部の別の配置である実 施の形態 3を示す斜視図であり、 第 5図 (a ) は実施の形態 1 , 2における脚部 の作用および光軸のずれを示す平面図であり、 第 5図 (b ) は実施の形態 3にお ける脚部の作用を示す平面図であり、 第 6図は折返しミラーの配置を示す実施の 形態 4を示す側面図であり、 第 7図 (a ) , ( b ) は実施の形態 4における作用 を示す側面図であり、 第 8図は折返しミラーの配置を示す実施の形態 5を示す斜 視図であり、 第 9図は折返しミラーの間にシャッター機構を設けた側面図であり 、 第 1 0図は従来のレーザ発振器を示す側面図であり、 第 1 1図は従来のレーザ 発振器において架台が変形した状態を示す側面図である。 発明を実施するための最良の形態 FIG. 1 is a perspective view showing a laser oscillator according to the present invention, and FIGS. 2 (a) to (c) show Embodiment 1 having a flexible structure having a degree of freedom only in a desired direction with respect to a leg. 3 (a) and 3 (b) are side views showing Embodiment 2 in which the legs have a degree of freedom only in a desired direction, and FIG. 4 is another side view of the legs. FIG. 5 (a) is a plan view showing the operation of the legs and the deviation of the optical axis in the first and second embodiments, and FIG. ) Is a plan view showing the operation of the leg in the third embodiment. FIG. 6 is a side view showing the arrangement of the folding mirror in the fourth embodiment, and FIGS. 7 (a) and 7 (b) ) Is a side view showing the operation in Embodiment 4, FIG. 8 is a perspective view showing Embodiment 5 showing the arrangement of the folding mirror, and FIG. 9 is a folding mirror. FIG. 10 is a side view showing a conventional laser oscillator, and FIG. 11 is a side view showing a state where a gantry is deformed in the conventional laser oscillator. . BEST MODE FOR CARRYING OUT THE INVENTION
本発明をより詳細に説術するために、 添付の図面に従ってこれを説明する。 第 1図は本発明に係るレーザ発振器を示したものである。 第 1図に示すように In order to explain the present invention in more detail, this will be described with reference to the accompanying drawings. FIG. 1 shows a laser oscillator according to the present invention. As shown in Figure 1
、 レーザ発振器 2 0は、 光共振器 1と、 真空容器 2と、 架台 3と、 支持手段とし ての脚部 4と、 折返しミラー 8 , 9とを主に備えている。 The laser oscillator 20 mainly includes an optical resonator 1, a vacuum vessel 2, a gantry 3, legs 4 as supporting means, and folding mirrors 8 and 9.
光共振器 1は、 リアミラー 5とフロントミラー 6とをそれぞれ保持する態様で 対をなしている。 光共振器 1は、 低熱膨張材からなる 3本の支持棒 7で連結され The optical resonators 1 are paired so as to hold the rear mirror 5 and the front mirror 6, respectively. The optical resonator 1 is connected by three support rods 7 made of a low thermal expansion material.
、 各ミラー 5 , 6を一定間隔となるよ'うに保持してある。 この光共振器 1は、 各 ミラー 5, 6の間で光を前後方向に往復させてレーザ光 1 0を得る態様で構成さ れている。 The mirrors 5 and 6 are held at regular intervals. The optical resonator 1 is configured to obtain laser light 10 by reciprocating light between the mirrors 5 and 6 in the front-rear direction.
真空容器 2は、 内部にレーザ媒質であるレーザガスを閉じ込め放電エネルギに よりレーザガスを励起することで光の誘導放出を促す。 真空容器 2は、 真空圧に 耐えられるように厚肉の鋼板あるいはステンレス板といつた鋼材で強固に作られ ている。 本実施の形態において真空容器 2は、 第 1図に破線で示す部分であり直 方形状に形成されている。 前記光共振器 1は、 支持棒 7を介して真空容器 2に保 持されている。 なお、 真空容器 2の内部には、 放電電極、 熱交換器、 送風機など が内蔵されるがここでは簡略のために省略する。 また、 図には明示しないが、 レ 一ザ発振器 2 0には、 放電エネルギを発生するための電源が必要となる。 この電 源は、 その発熱がレーザ発振器 2 0のポインティング性能に悪影響を及ぼさない ようにする配慮から、 通常、 真空容器 2の上に置いたり別置きにされる。  The vacuum vessel 2 confines the laser gas, which is a laser medium, inside, and excites the laser gas with discharge energy to promote stimulated emission of light. The vacuum vessel 2 is made of a steel material such as a thick steel plate or a stainless steel plate so as to withstand a vacuum pressure. In the present embodiment, the vacuum container 2 is a portion indicated by a broken line in FIG. 1 and is formed in a rectangular shape. The optical resonator 1 is held in a vacuum vessel 2 via a support rod 7. Note that a discharge electrode, a heat exchanger, a blower, and the like are built in the vacuum vessel 2, but are omitted here for simplicity. Although not explicitly shown in the figure, the laser oscillator 20 requires a power supply for generating discharge energy. This power source is usually placed on the vacuum vessel 2 or separately in order to prevent the heat generation from adversely affecting the pointing performance of the laser oscillator 20.
架台 3は、 レーザ発振器 2 0の基部をなし、 各鋼管 3 a, 3 bを溶接した構造 であって真空容器 2を水平にして支えるとともに折返しミラー 9を保持する機能 を有している。 本実施の形態において架台 3は、 前後方向に略平行となるように —対の鋼管 3 aを有し、 横方向に略平行となる一対の鋼管 3 bで前記各鋼管 3 a を連結してなる。 支持手段としての脚部 4は、 真空容器 2の下面に設けられて当該真空容器 2と 架台 3との間に複数介在され、 真空容器 2を架台 3に接続する。 これにより、 真 空容器 2が架台に支持される。 The gantry 3 forms the base of the laser oscillator 20 and has a structure in which the steel pipes 3a and 3b are welded. The gantry 3 supports the vacuum vessel 2 horizontally and has a function of holding the folding mirror 9. In the present embodiment, the gantry 3 has a pair of steel pipes 3a so as to be substantially parallel in the front-rear direction, and connects the steel pipes 3a by a pair of steel pipes 3b that are substantially parallel in the horizontal direction. Become. A plurality of legs 4 as support means are provided on the lower surface of the vacuum vessel 2 and are interposed between the vacuum vessel 2 and the gantry 3 to connect the vacuum vessel 2 to the gantry 3. Thereby, the vacuum container 2 is supported by the gantry.
折返しミラー 8は、 フロントミラー 6を保持する光共振器 1に設けられている 。 また、 折返しミラー 9は、 架台 3の前側の鋼管 3 bに設けられている。 これら 折返しミラー 8, 9は、 フロントミラー 6から出たレーザ光 1 0を折返しミラー 8と折返しミラー 9とで反射する。 これによりレーザ光 1 0は、 光軸の位置を図 示しないレーザ加工機に合わせて調整されてレーザ発振器 2 0の外部に取り出さ れる。  The folding mirror 8 is provided on the optical resonator 1 that holds the front mirror 6. The folding mirror 9 is provided on the steel pipe 3 b on the front side of the gantry 3. The folding mirrors 8 and 9 reflect the laser beam 10 emitted from the front mirror 6 on the folding mirror 8 and the folding mirror 9. As a result, the laser beam 10 is adjusted to a laser beam machine whose position of the optical axis is not shown, and is taken out of the laser oscillator 20.
真空容器 2の内部には、 1 Z 1 0気圧程度のレーザガスが充填されている。 そ して、 レーザガスを励起するために投入された放電エネ^^ギは、 その一部がレー ザ光のエネルギに変換され、 フロントミラー 6から取り出されるが大部分はレー ザガスの加熱に費やされる。 この加熱により温度上昇したレーザガスの一部は、 熱交換器で冷却されるが、 レーザ発振中の真空容器 2の内部はレーザ発振してい ない状態に比較して 1 0 °C程度高い状態で平衡状態となる。  The inside of the vacuum vessel 2 is filled with a laser gas of about 1 Z 10 atm. A part of the discharge energy injected to excite the laser gas is converted into laser light energy and extracted from the front mirror 6, but most is consumed for heating the laser gas. . A part of the laser gas whose temperature has risen due to this heating is cooled by the heat exchanger, but the inside of the vacuum vessel 2 during laser oscillation equilibrates at about 10 ° C higher than when laser oscillation is not performed. State.
このとき、 真空容器 2には、 前記温度上昇にともなう構成材料の熱膨張により わずかな熱変形が生じる。 レーザ発振器 2 0がレーザ加工機に接続されて使用さ れる場合は、 レーザの発振、 停止が繰り返されるため、 レーザ発振器 2 0の動作 中には真空容器 2は膨張、 収縮を繰り返す。 そして、 真空容器 2に生じた熱変形 は、 真空容器 2と架台 3との間に介在されている脚部 4に影響し、 各脚部 4の間 隔はわずかに変形することになる。  At this time, slight thermal deformation occurs in the vacuum vessel 2 due to the thermal expansion of the constituent materials accompanying the temperature rise. When the laser oscillator 20 is used by being connected to a laser processing machine, laser oscillation and stop are repeated, so that the vacuum vessel 2 repeats expansion and contraction while the laser oscillator 20 is operating. Then, the thermal deformation generated in the vacuum vessel 2 affects the legs 4 interposed between the vacuum vessel 2 and the gantry 3, and the space between the legs 4 is slightly deformed.
以下、 支持手段としての脚部 4の詳細について説明する。 第 1図に示すように 、 脚部 4は、 真空容器 2と架台 3との間で真空容器 2の角部近傍の 4箇所に設け られて 4辺形状をなすように配置されている。 4箇所の脚部 4 a , 4 b , 4 c , 4 άのうち、 1箇所の脚部 4 aは、 架台 3と強固に固定接続してある。 その他の 脚部 4 b, 4 c , 4 dについては、 第 1図中の矢印に示すように、 脚部 4 bは前 後方向、 脚部 4 cは水平方向、 脚部 4 dは横方向にそれぞれ自由度を持つような 柔構造を取り入れ架台 3に接続してある。 ここで、 前後方向は、 光共振器 1が生 じるレーザ光 1 0に沿う方向であり、 横方向は、 当該レーザ光 1 0に水平面上で 直交する方向であり、 水平方向は、 前後方向および横方向を複合した方向である 。 すなわち、 脚部 4 aに対してレーザ光 1 0に沿う位置にある脚部 4 bがレーザ 光 1 0に沿う方向に自由度を持つ。 また、 脚部 4 aに対してレーザ光 1 0に斜交 する対角の位置にある脚部 4 cがレーザ光 1 0に沿う方向およびレーザ光 1 0に 直交する方向に自由度を持つ。 さらに、.脚部 4 aに対してレーザ光 1 0に直交す る位置にある脚部 4 dがレーザ光 1 0に水平面上で直交する方向に自由度を持つ このように 1箇所の脚部 4 aを固定接続し、 残り 3箇所の脚部 4 b , 4 c , 4 dを柔構造にすると、 真空容器 2の熱変形による脚部 4 a , 4 b , 4 c , 4 dそ れぞれの間隔の変化は、 柔構造とした脚部 4 b, 4 c 4 dで打ち消され、 架台 3に曲げモーメントが作用すること避けることができる。 その結果、 真空容器 2 がレーザ発振の動作に伴って熱変形しても架台 3が変形することを回避すること ができ、 そこに保持される折返しミラー 9の姿勢の傾きが抑えられるので、 レー ザ発振器 2 0から出るレーザ光のポンティング安定性を確保することができる。 Hereinafter, the details of the legs 4 as the support means will be described. As shown in FIG. 1, the legs 4 are provided at four locations near the corners of the vacuum vessel 2 between the vacuum vessel 2 and the gantry 3, and are arranged so as to form a quadrilateral shape. Of the four legs 4 a, 4 b, 4 c, 4 1, one leg 4 a is firmly fixedly connected to the gantry 3. As for the other legs 4b, 4c, and 4d, as shown by the arrow in FIG. In the rear direction, the legs 4c are connected to the gantry 3 by adopting a flexible structure that has a degree of freedom in the horizontal direction and the legs 4d in the lateral direction. Here, the front-back direction is a direction along the laser light 10 generated by the optical resonator 1, the horizontal direction is a direction orthogonal to the laser light 10 on a horizontal plane, and the horizontal direction is the front-rear direction. And the horizontal direction. That is, the leg 4b located at a position along the laser beam 10 with respect to the leg 4a has a degree of freedom in the direction along the laser beam 10. The leg 4c, which is diagonally oblique to the laser beam 10 with respect to the leg 4a, has a degree of freedom in a direction along the laser beam 10 and in a direction orthogonal to the laser beam 10. Furthermore, the leg 4d, which is perpendicular to the laser beam 10 with respect to the leg 4a, has a degree of freedom in the direction perpendicular to the laser beam 10 on the horizontal plane. When 4a is fixedly connected and the remaining three legs 4b, 4c, 4d are made flexible, the legs 4a, 4b, 4c, 4d due to the thermal deformation of the vacuum vessel 2 The change in the spacing is canceled out by the flexible legs 4b and 4c4d, and the bending moment acting on the gantry 3 can be avoided. As a result, even if the vacuum vessel 2 is thermally deformed due to the laser oscillation operation, it is possible to prevent the gantry 3 from being deformed, and the inclination of the attitude of the folding mirror 9 held there is suppressed. The pumping stability of the laser light emitted from the oscillator 20 can be ensured.
1箇所の脚部 4 aを固定し、 残りの 3箇所の脚部 4 b , 4 c , 4 dそれぞれの 自由度に制限を与えた理由は、 レーザ発振器 2 0のベースとなる架台 3に対する 光共振器 1の水平面内での移動を平行方向のみに規制するためである。 すなわち ボインティング安定性に関しては角度成分による位置ずれは伝搬距離に比例し拡 大するため極力抑える必要があるが平行成分の位置ずれは伝搬距離に依存しない ので許容することができる。 本来、 真空容器 2の変形量はわずかであるため角度 成分さえ生じないようにすればよレ、。 そのためには、 固定した脚部 4 aを基準と してレーザ光に沿う前後方向の位置にある脚部 4 bを結ぶ辺の向き、 もしくは固 定した脚部 4 aを基準としてレーザ光に直交する横方向の位置にある脚部 4 dを 結ぶ辺の向きが架台 3に対して動かないように規制すればよい。 このような理由 からそれぞれの脚部 4 b, 4 c , 4 dについて第 1図に示す矢印の方向のみに自 由度が制限されている。 なお、 このような自由度の制限を与えることにより架台. 3に対する真空容器 2の振動も抑えることができ、 振動に対するレーザ光の光軸 安定性を損ねることはない。 なお、 固定する脚部は 4 a , 4 b , 4 c , 4 dのい ずれか 1箇所であればよい。 One leg 4a was fixed, and the other three legs 4b, 4c, and 4d had their degrees of freedom limited. This is because the movement of the resonator 1 in the horizontal plane is restricted only in the parallel direction. In other words, regarding the pointing stability, the positional deviation due to the angle component increases in proportion to the propagation distance, and must be suppressed as much as possible. Originally, the amount of deformation of the vacuum vessel 2 is very small, so that even the angle component should not be generated. To do so, the direction of the side connecting the legs 4b located in the front-rear direction along the laser beam with the fixed legs 4a as the reference, or orthogonal to the laser beam with the fixed legs 4a as the reference Foot 4d What is necessary is just to regulate so that the direction of the connecting side does not move with respect to the gantry 3. For this reason, the degree of freedom for each of the legs 4b, 4c, 4d is limited only in the direction of the arrow shown in FIG. It should be noted that by providing such a restriction on the degree of freedom, the vibration of the vacuum vessel 2 with respect to the gantry 3 can also be suppressed, and the optical axis stability of the laser beam with respect to the vibration is not impaired. The fixed leg may be any one of 4a, 4b, 4c and 4d.
第 2図 (a) 〜 (c) は脚部 4 b, 4 c , 4 dに関して所望の方向のみに自由 度をもつ柔構造とする実施の形態 1を示している。 第 2図 (a ) に示すように脚 部 4 cは、 架台 3を構成する鋼管よりも十分剛性が小さく、 かつ、 真空容器 2の 荷重に対し座屈が生じない強度を有した細鋼管 1 3により形成されている。 一方 、 第 2図 (b) , (c) に示すように脚部 4 b, 4 dは、 前記細鋼管 1 3に対し て上述した所望の自由度と直交する方向に延在して架台 3と接続するリブ 1 4を 取り付けた構造とされている。 細鋼管 1 3の下端部は、 架台 3に溶接されている 。 リブ 1 4は、 本実施の形態では略三角板状としてあり、 細鋼管 1 3および架台 3に接する辺の部分で溶接されている。 これにより、 リブ 1 4の板面と平行な方 向に対する強度を高め、 逆に直交する方向には強度を与えないよ.うにして脚部 4 b, 4 dの変形の自由度を必要な方向のみに規制している。  FIGS. 2 (a) to 2 (c) show a first embodiment in which the legs 4b, 4c and 4d have a flexible structure having a degree of freedom only in a desired direction. As shown in FIG. 2 (a), the legs 4c are sufficiently small in rigidity as compared with the steel pipes constituting the gantry 3, and have such strength that they do not buckle under the load of the vacuum vessel 2. 3 is formed. On the other hand, as shown in FIGS. 2 (b) and 2 (c), the legs 4b and 4d extend in the direction orthogonal to the above-described desired degree of freedom with respect to the thin steel pipe 13 and the gantry 3 It has a structure with ribs 14 connected to it. The lower end of the thin steel pipe 13 is welded to the gantry 3. In the present embodiment, the ribs 14 have a substantially triangular plate shape, and are welded at sides of the thin steel pipes 13 and the pedestal 3. As a result, the strength of the ribs 14 in the direction parallel to the plate surface is increased, and the strength is not given in the direction perpendicular thereto, so that the freedom of deformation of the legs 4b and 4d is required. It regulates only in the direction.
このような構造とすることで、 特別な機構を設けることなく、 比較的安価にそ れぞれの脚部 4 b , 4 c , 4 dについて自由度を与えたい方向の に柔軟性が与 えられる。 この結果、 真空容器 2の変形を架台 3に及ぼすことなく架台 3の変形 を回避することができる。  With such a structure, flexibility is provided in the direction in which freedom is desired for each of the legs 4 b, 4 c, and 4 d at relatively low cost without providing a special mechanism. Can be As a result, the deformation of the gantry 3 can be avoided without causing the deformation of the vacuum vessel 2 to the gantry 3.
上述した細鋼管 1 3とリブ 1 4とによりなる脚部 4 b, 4 c , 4 dでは、 架台 3の変形を極力抑えるため、 架台 3の曲げ剛性に対して細鋼管 1 3の曲げ剛性は 十分小さい必要がある。 このため、 断面形状から決まる曲げ剛性に対応する値で ある断面 2次モーメントを細鋼管 1 3では架台 3に対して 1ノ1 0 0程度に小さ くすることが望ましい。 より具体的には、 架台 3を J I S規格品である 1 2 5m m四方、 肉厚 6 mmの一般構造用角型鋼管で構成した場合は、 脚部 4 b, 4 c, 4 dに使用する細鋼管 13には J I S規格品である φ 42. 7 mm, 肉厚 2. 3 mmの一般構造用炭素鋼鋼管を使用すれば細鋼管 1 3の断面 2次モーメントは架 台 3の 1Z107となる。 すなわち、 背景技術にて述べた脚部 4のように柔軟性 の乏しい 60 mm四方、 肉厚 3. 2 mmの鋼管を用いた場合に比較して架台 3に 生じる曲がりを軽減できる。 具体的には、 架台 3に配置される折返しミラー 9の 傾きは、 215μτ a dの 1/6の 36μΓ a dに軽減することができる。 この 傾きがボインティングに与える影響を 10m先の加工へッド先端で考えると、 4 . 3 mm生じていたレーザ光の位置ずれが 0. 7 mmに軽減でき、 レーザカ卩ェ機 の品質上、 許容される範囲のポインティング安定性を得ることが可能となる。 こ のように、 脚部に対して使用する材料の特性を生かした柔構造を適用することに より、 特別な機構を設けることなく比較的安価に ーザ発振器のボインティング 安定性を向上することができる。 In the legs 4 b, 4 c, and 4 d formed by the thin steel tube 13 and the ribs 14 described above, the bending rigidity of the thin steel tube 13 is smaller than that of the base 3 in order to minimize the deformation of the gantry 3. Must be small enough. For this reason, it is desirable that the second moment of area, which is a value corresponding to the bending stiffness determined by the cross-sectional shape, be as small as about 100 in the thin steel pipe 13 with respect to the gantry 3. More specifically, the gantry 3 is a JIS standard product. If it is made of square steel pipe for general structural use with a width of 6 mm and a wall thickness of 6 mm, the thin steel pipe 13 used for the legs 4 b, 4 c, and 4 d is a JIS standard product, If a 2.3 mm thick carbon steel tube for general structural use is used, the secondary moment of area of the thin steel tube 13 will be 1Z107 of the gantry 3. That is, the bending generated in the gantry 3 can be reduced as compared with the case where a steel pipe having a poor flexibility of 60 mm square and a wall thickness of 3.2 mm like the leg 4 described in the background art is used. Specifically, the inclination of the reflecting mirror 9 disposed on the pedestal 3 can be reduced to 36μ Γ ad 1/6 of 215μτ ad. Considering the effect of this inclination on the pointing at the tip of the processing head 10 m away, the laser beam displacement of 4.3 mm can be reduced to 0.7 mm, and the quality of the laser It is possible to obtain an acceptable range of pointing stability. In this way, by applying a flexible structure that makes use of the characteristics of the material used for the legs, the pointing stability of the oscillator can be improved relatively inexpensively without providing a special mechanism. Can be.
第 3図 (a) , (b) は脚部 4 b, 4 c, 4 dに関して所望の方向のみに自由 度をもたせる実施の形態 2を示している。 ここでは、 一方向に自由度を有する直 動スライド機構 1 2を用いている。 第 3図 (a) に示すように脚部 4 b, 4 dに ついては、 それぞれ自由度を与えたい方向に直動スライド機構 12の方向を一致 させている。 また、 第 3図 (b) に示すように脚部 4 cについては 2個の直動ス ライド機構 12を自由度が直交するように重ねて使用している。 これにより、 そ れぞれの脚部 4 b, 4 c, 4 dについて、 実施の形態 1と同じく所望の方向に自 由度を与えることができ、 架台 3の変形を回避することができる。 このように、 脚部 4 b, 4 c, 4 dに対して直動スライド機構 12を用いると、 真空容器 2の 変形が架台 3に及ぼす力をほぼ完全にキャンセルすることができ、 より完全なポ インティング安定性を得ることができる。  FIGS. 3 (a) and 3 (b) show a second embodiment in which the legs 4b, 4c and 4d have a degree of freedom only in desired directions. Here, a linear slide mechanism 12 having a degree of freedom in one direction is used. As shown in FIG. 3 (a), for the legs 4b and 4d, the direction of the linear motion slide mechanism 12 matches the direction in which the degree of freedom is desired to be given. Further, as shown in FIG. 3 (b), two linear slide mechanisms 12 are overlapped on the leg 4c so that the degrees of freedom are orthogonal. As a result, the legs 4 b, 4 c, and 4 d can be given a degree of freedom in desired directions as in the first embodiment, and deformation of the gantry 3 can be avoided. As described above, when the linear motion slide mechanism 12 is used for the legs 4b, 4c, and 4d, the force exerted on the gantry 3 by the deformation of the vacuum vessel 2 can be almost completely canceled, and a more complete Pointing stability can be obtained.
なお、 第 2図で示す実施の形態 1および第 3図で示す実施の形態 2では、 4箇 所の脚部 4 a, 4 b, 4 c, 4 dがある場合について述べたが、 第 4図に示す実 W In the first embodiment shown in FIG. 2 and the second embodiment shown in FIG. 3, the case where there are four legs 4a, 4b, 4c, and 4d has been described. Actual shown in the figure W
11 11
施の形態 3のように、 脚部 4を 3箇所とした場合にも応用できる。 この場合、 1 箇所の脚部 4 eは、 光共振器 1が発生するレーザ光 1 0の光軸の直下である真空 容器 2の前側に配置されて、 真空容器 2と架台 3との間に自由度を与えないよう にして強固に固定接続している。 そして、 残りの脚部 4 f , 4 gは、 レーザ光 1 0に沿う方向の中心線を有して脚部 4 eを頂角とする二等辺三角形をなすように 配置されて、 それぞれ前後方向および横方向である水平方向に自由度を持たせて 、 真空容器 2と架台 3とを接続している。 このような構成でも真空容器 2の変形 を架台 3に伝えることを回避できる。  As in the third embodiment, the present invention can be applied to the case where the number of the legs 4 is three. In this case, one leg 4 e is disposed on the front side of the vacuum vessel 2 immediately below the optical axis of the laser beam 10 generated by the optical resonator 1, and is located between the vacuum vessel 2 and the mount 3. The connection is firmly fixed without giving any degree of freedom. The remaining legs 4 f and 4 g are arranged so as to form an isosceles triangle having a center line in the direction along the laser beam 10 and having the leg 4 e as the apex, and each of The vacuum vessel 2 and the gantry 3 are connected with a degree of freedom in the horizontal direction, which is the horizontal direction. Even with such a configuration, it is possible to avoid transmitting the deformation of the vacuum vessel 2 to the gantry 3.
なお、 第 5図 (a ) に示すように脚部 4が 4箇所ある場合では、 真空容器 2の 熱変形によってレーザ光 1 0の光軸に僅かな平行ずれ成分が生じる。 これに比較 して、 第 5図 (b ) に示すように脚部 4が 3箇所の場合では、 固定した脚部 4 e をレーザ光 1 0の光軸の直下に置いているため、 第 5図 (a ) で生じるレーザ光 1 0の光軸の^ (直かな平行ずれ成分も抑えることができる。 脚部 4 f 、 4 gへの自 由度の与え方は、 第 2図に示す実施の形態 1、 あるいは第 3図に示す実施の形態 2におけるいずれの構造を適用してもよい。  In the case where there are four legs 4 as shown in FIG. 5 (a), a slight parallel shift component occurs in the optical axis of the laser beam 10 due to the thermal deformation of the vacuum vessel 2. In contrast, in the case of three legs 4 as shown in FIG. 5 (b), the fixed leg 4e is placed immediately below the optical axis of the laser beam 10, so that the fifth The ^ (direct parallel shift component) of the optical axis of the laser beam 10 generated in the figure (a) can also be suppressed. The method of giving the degrees of freedom to the legs 4 f and 4 g is shown in FIG. Either of Embodiment 1 or Embodiment 2 shown in FIG. 3 may be applied.
第 6図は折返.しミラーの配置を示す実施の形態 4を示す。 第 6図で示す実施の 形態 4では、 上述した各実施の形態と同様に、 レーザ発振器 2 0の内部において 、 光共振器 1と真空容器 2とのほかに光共振器 1から出たレーザ光 1 0の光軸の 位置や高さを変更するための折返しミラー 8 , 9を備えている。 この実施の形態 4は、 レーザ発振器 2 0においてボインティング安定性を確保するための他の構 造であり、 先の実施の形態 1, 2, 3で説明した脚部 4の柔構造が十分機能せず 架台 3の変形が避けられず、 折返しミラー 8 , 9の姿勢が変化してもポインティ ング安定性を確保するための実施の形態である。  FIG. 6 shows Embodiment 4 showing the arrangement of the folded mirror. In Embodiment 4 shown in FIG. 6, in the same manner as in each of the above-described embodiments, laser light emitted from optical resonator 1 in addition to optical resonator 1 and vacuum vessel 2 inside laser oscillator 20. It has folding mirrors 8 and 9 for changing the position and height of the 10 optical axis. The fourth embodiment is another structure for securing pointing stability in the laser oscillator 20. The flexible structure of the leg 4 described in the first, second, and third embodiments is sufficiently functional. This is an embodiment in which the deformation of the gantry 3 is unavoidable and the pointing stability is ensured even if the positions of the folding mirrors 8 and 9 change.
第 6図に示すように、 フロントミラー 6の直後に置かれた折返しミラー 8は、 構造体 1 5により折返しミラー 9と一体とされている。 各折返しミラー 8 , 9は 、 ともに構造体 1 5を介して架台 3に支持されて折返しミラーユニットをなして いる。 構造体 15は充分強固な構造とすることで、 そこに固定された 2枚の折返 しミラー 8 , 9相互の相対角度が常に一定となるような機能を有している。 As shown in FIG. 6, the folding mirror 8 placed immediately after the front mirror 6 is integrated with the folding mirror 9 by the structure 15. Each of the folding mirrors 8 and 9 is supported by the gantry 3 via the structure 15 to form a folding mirror unit. I have. The structure 15 has a sufficiently strong structure, and has a function that the relative angle between the two folding mirrors 8 and 9 fixed thereto is always constant.
このように、 折返しミラーユニットをなして 2枚の折返しミラー 8, 9相互の 相対角度が常に一定となるようにしておくと、 真空容器 2の熱変形に伴う架台 3 の変形によって折返しミラー 8, 9の姿勢に変化が生じても、 折返しミラー 8, 9は両方とも全く同じ角度だけ傾くことになる。  As described above, if the relative angles of the two folding mirrors 8 and 9 are always kept constant by forming a folding mirror unit, the folding mirror 8 is deformed by the deformation of the gantry 3 due to the thermal deformation of the vacuum vessel 2. Even if the posture of 9 changes, both mirrors 8 and 9 will be tilted by exactly the same angle.
ここで、 第 7図 (a) に示すように、 折返しミラー 8に対する入射角を 0ぃ 折返しミラー 9に関する反射角を θ2、 折返しミラー 8に入射するレーザ光と折 返しミラー 9から反射するレーザ光とのなす角を βとする。 この場合、 β=2 (Θ 2→ι) となる。 次に、 第 7図 (b) に示すように、 構造体 15に固定された折 返しミラー 8, 9が角度 δ傾いたとすると、 折返しミラー 8に対する入射角は 9t 一 δ、 折返しミラー 9に関する反射角は θ2—δとなる。 このとき、 折返しミラー 8に入射するレーザ光と折返しミラー 9から反射するレーザ光とのなす角 Βは、 6=2 { (θ2-δ) - (θ,-δ) } =2 (θ2χ) となり βは角度 δによらず不変 となる。 Here, as shown in FIG. 7 (a), the incident angle with respect to the folding mirror 8 is 0 °, the reflection angle with respect to the folding mirror 9 is θ 2 , the laser beam incident on the folding mirror 8 and the laser reflected from the folding mirror 9 The angle between the light and the light is β. In this case, β = 2 (Θ 2 → ι). Next, as shown in FIG. 7 (b), when the folding-back mirror 8, 9 fixed to the structure 15 is inclined an angle [delta], the angle of incidence on the folding mirror 8 9 t one [delta], about folding mirror 9 The reflection angle is θ 2 —δ. At this time, the angle Β between the laser beam incident on the folding mirror 8 and the laser beam reflected from the folding mirror 9 is 6 = 2 {(θ 2 −δ)-(θ, -δ)} = 2 (θ 2 - [theta] chi) becomes β is invariable regardless of the angle [delta].
すなわち、 構造体 15により折返しミラーュニットをなす 2枚の折返しミラー 8, 9相互の相対角度が常に一定となるように一体にしておくことにより、 それ らを保持する架台 3の変形によつて折返しミラー 8 , 9の姿勢が傾いてもボイン ティング安定性にはまつたく影響を及ぼさなくすることができる。 ·  That is, the two folding mirrors 8, 9 forming a folding mirror unit by the structure 15 are integrated so that the relative angle between them is always constant, and the folding mirror 3 is deformed by the deformation of the gantry 3 holding them. Even if the postures 8 and 9 are inclined, it is possible to prevent the pointing stability from being adversely affected. ·
以上のように、 レーザ発振器 20から出たレーザ光 10の位置や高さをレーザ 加工機に合わせて調整するため、 レーザ発振器 20の内部に折返しミラー 8, 9 を設ける場合において、 2枚の折返しミラー 8, 9を用い、 力、つ、 折返しミラー 8, 9相互の相対角度が動かないように一対の折返しミラーュニットとしてレー ザ発振器 20の基部となる架台 3上に固定する。 これにより、 架台 3に変形が生 じて前記 2枚の折返しミラー 8, 9の姿勢が傾いても 2枚の折返しミラー 8, 9 の間で傾きが相殺されるため、 レーザ発振器 20から出るレーザ光 10のポンテ ィング安定性を確保することができる。 As described above, in order to adjust the position and height of the laser beam 10 emitted from the laser oscillator 20 in accordance with the laser processing machine, when the folding mirrors 8 and 9 are provided inside the laser oscillator 20, two folded mirrors are used. Using the mirrors 8 and 9, the pair of folding mirror units are fixed on the base 3 serving as the base of the laser oscillator 20 so that the relative angles of the mirrors 8 and 9 do not move. As a result, even if the base 3 is deformed and the posture of the two folding mirrors 8 and 9 is inclined, the inclination is offset between the two folding mirrors 8 and 9, and the laser emitted from the laser oscillator 20 is removed. Ponte of Light 10 Stability can be ensured.
特に、 第 8図に示す実施の形態 5のように、 フロントミラー 6から出射された レーザ光 1 0を鉛直方向に対して左右横方向 4 5 °に傾けて折り返すように折返 しミラーユニットとしての折返しミラー 8, 9を酉己置する。 この場合、 例えばブ 口ック材にレーザ光 1 0を通すための貫通穴をあけたような頑丈な構造体 1 5と する。 そして、 当該構造体 1 5の両端に折返しミラー 8 , 9を固定すれば、 互い の相対角度が一定となるように一対に固定できる。 この構造体 1 5を架台 3に固 定すれば、 折返しミラー 8 , 9の姿勢が上下方向のみならず左右横方向に傾いて も 2枚の折返しミラー 8 , 9の間で傾きを相殺することができ、 レーザ発振器 2 0から出るレーザ光 1 0のポンティング安定性を確保することができる。  In particular, as in Embodiment 5 shown in FIG. 8, the laser beam 10 emitted from the front mirror 6 is folded so as to be folded at an angle of 45 ° in the horizontal direction with respect to the vertical direction. The folding mirrors 8 and 9 are placed on the rooster. In this case, for example, a sturdy structure 15 having a through hole for passing the laser beam 10 through the block material is used. Then, if the folding mirrors 8 and 9 are fixed to both ends of the structure 15, the mirrors can be fixed as a pair so that their relative angles are constant. If this structure 15 is fixed to the gantry 3, the inclination between the two folding mirrors 8 and 9 can be canceled even if the folding mirrors 8 and 9 are inclined not only vertically but also horizontally. Thus, the pumping stability of the laser beam 10 emitted from the laser oscillator 20 can be ensured.
さらに、 第 9図に示すように、 第 7図および第 8図に示す実施の形態において 、 .構造体 1 5の折返しミラー 8 , 9の間にレーザ光 1 0を遮断するためのシャッ タ一機構 1 8を設けることができる。 このような構成とすることにより新たにシ ャッター機構 1 8を設けるスペースを確保する必要がなくなるためレーザ発振器 1 0の小型化を図ることができる。 産業上の利用可能性  Further, as shown in FIG. 9, in the embodiment shown in FIGS. 7 and 8, a shutter for blocking the laser beam 10 between the turning mirrors 8 and 9 of the structure 15 is provided. A mechanism 18 can be provided. With such a configuration, it is not necessary to secure a space for newly providing the shutter mechanism 18, so that the size of the laser oscillator 10 can be reduced. Industrial applicability
以上のように、 本発明にかかるレーザ発振器によれば、 その内部に基部となる 架台を設け、 当該架台の上に真空容器を介して光共振器を設置した場合に、 真空 容器に熱変形が生じても光共振器が発生するレーザ光の光軸安定性 (ポインティ ング安定性) を向上することができる。 特に、 架台に対して光共振器から出たレ 一ザ光の光軸の位置や高さを変更するための折返しミラーを備えたレーザ発振器 において有用にレーザ光の光軸安定性の向上を図ることができる。  As described above, according to the laser oscillator of the present invention, when a frame as a base is provided inside the laser oscillator, and the optical resonator is installed on the frame via a vacuum vessel, thermal deformation occurs in the vacuum vessel. Even if it occurs, the optical axis stability (pointing stability) of the laser light generated by the optical resonator can be improved. In particular, to improve the optical axis stability of the laser beam usefully in a laser oscillator equipped with a folding mirror to change the position and height of the optical axis of the laser beam emitted from the optical resonator with respect to the mount be able to.

Claims

' 請 求 の 範 囲 ' The scope of the claims
1 . レーザ光を発生する光共振器と、 前記光共振器を保持する真空容器と、 前記 真空容器を支える架台と、 前記光共振器のレーザ光の発生に伴う前記真空容器の 熱変形に際して前記レーザ光を平行方向にのみに移動する自由度をもつて前記真 空容器を前記架台に対して接続する支持手段とを備えたことを特徴とするレーザ 1. An optical resonator that generates laser light, a vacuum vessel that holds the optical resonator, a pedestal that supports the vacuum vessel, and a laser vessel that generates laser light from the optical resonator when the vacuum vessel is thermally deformed. A supporting means for connecting the vacuum container to the gantry with a degree of freedom to move the laser light only in a parallel direction.
2 . 前記支持手段は、 複数の脚部からなり、 1箇所の脚部を前記真空容器おょぴ 前記架台に強固に固定接続し、 その他の脚部を前記レーザ光に沿う方向と前記レ 一ザ光に水平面上で直交する方向とに自由度を有して前記真空容器および前記架 台に接続したことを特徴とする請求の範囲第 1項に記載のレーザ発振器。 2. The supporting means is composed of a plurality of legs, one of which is firmly fixedly connected to the vacuum vessel and the gantry, and the other of which is in the direction along the laser beam and the laser beam. 2. The laser oscillator according to claim 1, wherein the laser oscillator has a degree of freedom in a direction perpendicular to the light on a horizontal plane and is connected to the vacuum vessel and the mount.
3 . 前記支持手段は、 4辺形状をなして配置した 4箇所の脚部からなり、 1箇所 の脚部を前記真空容器および前記架台に強固に固定接続し、 その他の 3箇所の脚 部のうち前記 1箇所の脚部に対して前記レーザ光に沿う方向にある脚部を前記レ 一ザ光に沿う方向にのみ自由度を有して前記真空容器おょぴ前記架台に接続し、 その他の 3箇所の脚部のうち前記 1箇所の脚部に対して対角の位置にある脚部を 前記レーザ光に沿う方向と前記レーザ光に水平面上で直交する方向とに自由度を 有して前記真空容器および前記架台〖こ接続し、 その他の 3箇所の脚部のうち前記 1箇所の脚部に対して前記レーザ光に交わる方向にある残りの脚部を前記レ一ザ 光に水平面上で直交する方向のみに自由度を有して前記真空容器おょぴ前記架台 に接続したことを特徴とする請求の範囲第 1項に記載のレーザ発振器。 3. The support means is composed of four legs arranged in a quadrilateral shape, one leg is firmly connected to the vacuum vessel and the gantry, and the other three legs are connected. And connecting the leg in the direction along the laser beam to the one leg with a degree of freedom only in the direction along the laser beam, to the vacuum vessel and the mount; and Of the three leg portions, the leg portion that is diagonal to the one leg portion has a degree of freedom in a direction along the laser beam and in a direction orthogonal to the laser beam on a horizontal plane. The other of the three legs in the direction intersecting the laser light with respect to the one leg out of the other three legs, and That the vacuum vessel was connected to the gantry with a degree of freedom only in the direction orthogonal to The laser oscillator according to claim 1 to symptoms.
4 . 前記支持手段は、 3箇所の脚部からなり、 1箇所の脚部を前記レーザ光の直 下に配して前記真空容器および前記架台に強固に固定接続し、 その他の 2箇所の 脚部を前記レーザ光に沿う方向と前記レーザ光に水平面上で直交する方向とに自 由度を有して前記真空容器および前記架台に接続したことを特徴とする請求の範 囲第 1項に記載のレーザ発振器。 4. The support means is composed of three legs, one leg is disposed immediately below the laser beam, and is firmly fixedly connected to the vacuum vessel and the gantry. 2. The method according to claim 1, wherein the legs are connected to the vacuum vessel and the gantry with a degree of freedom in a direction along the laser beam and in a direction orthogonal to the laser beam on a horizontal plane. 3. The laser oscillator according to claim 1.
5. 前記光共振器側には、 前記光共振器から出たレーザ光の光軸を折り返す 1対 の折返しミラーの一方を設け、 前記架台側には、 前記光共振器から出たレーザ光 の光軸を折り返す折返しミラーの他方を設けたことを特徴とする請求の範囲第 1 項に記載のレーザ発振器。 5. On the optical resonator side, one of a pair of folding mirrors that folds the optical axis of the laser light emitted from the optical resonator is provided, and on the mount side, the laser light emitted from the optical resonator is provided. 2. The laser oscillator according to claim 1, wherein the other of the folding mirror that folds the optical axis is provided.
6 . 前記架台側には、 前記光共振器から出たレーザ光の光軸を折り返す 1対の折 " 返しミラーを一体にした折返しミラーュニットを設けたことを特徴とする請求の 範囲第 1項に記載のレーザ発振器。 6. A fold mirror unit in which a pair of fold mirrors that fold the optical axis of the laser light emitted from the optical resonator is provided on the mount side. A laser oscillator as described.
7 . 前記折返しミラ一ユニットを、 前記光共振器から出たレーザ光の光軸を傾け て折り返す態様で設けたことを特徴とする請求の範囲第 6項に記載のレーザ発振 7. The laser oscillation according to claim 6, wherein the folded mirror unit is provided so as to be folded in such a manner that the optical axis of the laser light emitted from the optical resonator is inclined.
PCT/JP2003/006289 2003-05-20 2003-05-20 Laser transmitter WO2004105200A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2003/006289 WO2004105200A1 (en) 2003-05-20 2003-05-20 Laser transmitter
TW092114659A TWI221687B (en) 2003-05-20 2003-05-30 Laser oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/006289 WO2004105200A1 (en) 2003-05-20 2003-05-20 Laser transmitter

Publications (1)

Publication Number Publication Date
WO2004105200A1 true WO2004105200A1 (en) 2004-12-02

Family

ID=33463133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/006289 WO2004105200A1 (en) 2003-05-20 2003-05-20 Laser transmitter

Country Status (2)

Country Link
TW (1) TWI221687B (en)
WO (1) WO2004105200A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007329260A (en) * 2006-06-07 2007-12-20 Mitsubishi Electric Corp Laser oscillation device
JP2012071351A (en) * 2011-11-04 2012-04-12 Mitsubishi Electric Corp Laser oscillator
CN113904204A (en) * 2020-07-06 2022-01-07 住友重机械工业株式会社 Laser device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5651885A (en) * 1979-10-05 1981-05-09 Hitachi Ltd Laser device
JPS5952887A (en) * 1982-09-20 1984-03-27 Hitachi Ltd Laser generator
JPS6350083A (en) * 1986-08-20 1988-03-02 Matsushita Electric Ind Co Ltd Gas laser device
JPH05235454A (en) * 1992-02-19 1993-09-10 Fanuc Ltd Laser oscillator
JPH07111352A (en) * 1993-10-12 1995-04-25 Toshiba Corp Laser oscillator
JP2002316291A (en) * 2001-04-18 2002-10-29 Amada Co Ltd Laser beam machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5651885A (en) * 1979-10-05 1981-05-09 Hitachi Ltd Laser device
JPS5952887A (en) * 1982-09-20 1984-03-27 Hitachi Ltd Laser generator
JPS6350083A (en) * 1986-08-20 1988-03-02 Matsushita Electric Ind Co Ltd Gas laser device
JPH05235454A (en) * 1992-02-19 1993-09-10 Fanuc Ltd Laser oscillator
JPH07111352A (en) * 1993-10-12 1995-04-25 Toshiba Corp Laser oscillator
JP2002316291A (en) * 2001-04-18 2002-10-29 Amada Co Ltd Laser beam machine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007329260A (en) * 2006-06-07 2007-12-20 Mitsubishi Electric Corp Laser oscillation device
JP2012071351A (en) * 2011-11-04 2012-04-12 Mitsubishi Electric Corp Laser oscillator
CN113904204A (en) * 2020-07-06 2022-01-07 住友重机械工业株式会社 Laser device
CN113904204B (en) * 2020-07-06 2024-05-28 住友重机械工业株式会社 Laser device
JP7499627B2 (en) 2020-07-06 2024-06-14 住友重機械工業株式会社 Laser Equipment

Also Published As

Publication number Publication date
TW200427160A (en) 2004-12-01
TWI221687B (en) 2004-10-01

Similar Documents

Publication Publication Date Title
US7446911B2 (en) Optical scanning apparatus and image forming apparatus
US8411343B2 (en) Optical scanning device
JPH07211972A (en) Laser oscillator
WO2004105200A1 (en) Laser transmitter
JP2862032B2 (en) Laser oscillation device
JP4001136B2 (en) Sonic levitation device
US4723256A (en) Optical resonator for laser oscillating apparatus
JP2010045336A (en) Gas laser resonator
JP4979277B2 (en) Laser oscillator
JPH07307506A (en) Laser oscillator
JP3768455B2 (en) Orthogonal excitation laser oscillator
US9263845B2 (en) Air-cooled gas lasers with heat transfer resonator optics and associated systems and methods
JPS6232634B2 (en)
JP4958973B2 (en) Laser oscillator
JP3835116B2 (en) Laser oscillator
JPS5952887A (en) Laser generator
JP2681319B2 (en) Laser oscillator
JP2003338647A (en) Laser oscillator
JP5400123B2 (en) Laser oscillator
JP3594938B2 (en) Gas laser oscillator
JP3731117B2 (en) Laser oscillator
JP2003332655A (en) Optical resonator in gas laser oscillator and gas laser oscillator
JPH0587034B2 (en)
JP2003046164A (en) Orthogonal excited laser oscillator
JPH02109383A (en) Gas laser oscillator

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP