WO2004100393A2 - Verfahren zur steuerung der sendeleistung einer sendenden station eines funkkommunikationssystems sowie sendende station, empfangende station und funkkommunikationssystem - Google Patents

Verfahren zur steuerung der sendeleistung einer sendenden station eines funkkommunikationssystems sowie sendende station, empfangende station und funkkommunikationssystem Download PDF

Info

Publication number
WO2004100393A2
WO2004100393A2 PCT/EP2004/002359 EP2004002359W WO2004100393A2 WO 2004100393 A2 WO2004100393 A2 WO 2004100393A2 EP 2004002359 W EP2004002359 W EP 2004002359W WO 2004100393 A2 WO2004100393 A2 WO 2004100393A2
Authority
WO
WIPO (PCT)
Prior art keywords
station
data packets
nodeb2
nodebl
receiving
Prior art date
Application number
PCT/EP2004/002359
Other languages
English (en)
French (fr)
Other versions
WO2004100393A3 (de
Inventor
Olivia Nemethova
Peter Slanina
Thomas Stadler
Burghard Unteregger
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to US10/556,533 priority Critical patent/US7489941B2/en
Priority to CN2004800128014A priority patent/CN101048954B/zh
Publication of WO2004100393A2 publication Critical patent/WO2004100393A2/de
Publication of WO2004100393A3 publication Critical patent/WO2004100393A3/de

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/48TPC being performed in particular situations during retransmission after error or non-acknowledgment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/12Outer and inner loops
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/20TPC being performed according to specific parameters using error rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/26TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service]

Definitions

  • the invention relates to a method for controlling the transmission power of a transmitting station of a radio communication system and to a corresponding transmitting station, a corresponding receiving station and a corresponding radio communication system.
  • a receiving station for example a base station
  • NACK Not ACKnowledgement
  • the subscriber station then sends the corresponding data packet again to the base station.
  • the base station signals correct (error-free) receipt of a data packet by means of an ACK signal (ACK: ACKnowledgement). If the subscriber station changes to another radio cell, it arrives in the transmission and reception area of at least one further base station.
  • the subscriber station In the case of a so-called soft handover, the subscriber station simultaneously sends data packets to the base station of the original cell and to very few other base stations of the new cell. All data packets received by the base stations are forwarded to a radio access controller (RNC) and evaluated there. In the radio access controller, the correctly received data packets are put together in the correct order and the same data packets are combined.
  • RNC radio access controller
  • the subscriber station receives ACK and NACK signals from the at least two base stations.
  • a sufficient criterion for sending a new data packet is that the subscriber station receives an ACK signal from one of the base stations, since it is sufficient for correct data transmission that a data packet is forwarded to the radio access controller once without errors.
  • an error rate (BER: Bit Error Rate or BLER: Block Error Rate) is determined in the radio access controller based on all received data packets and compared with a target value of the error rate.
  • a base value for a reception quality e.g. B. a signal-to-interference ratio (SIR).
  • SIR signal-to-interference ratio
  • the base stations each measure a reception quality for signals received by the subscriber station using known control signals (pilot symbols). the subscriber station and compare the respective measured value with the setpoint value of the reception quality specified by the radio access controller.
  • the subscriber station is either signaled to increase or decrease its transmission power.
  • TPC bits Transmit Power Control
  • the subscriber station receives at least one TPC bit from one of the base stations, which requests a reduction, it will reduce its transmission power in order to generate as little interference as possible at all receiving base stations.
  • the regulation of the setpoint value of the reception quality by the radio access controller is referred to as outer power control, while the comparatively fast regulation of the transmission power of the subscriber station by the control signals of the base stations is referred to as inner power control.
  • the target value of the error rate is usually very small (about 10 ⁇ 6 ), so that measuring the error rate requires such a long measuring time that even slow changes in the transmission conditions cannot be measured.
  • the setpoint of the reception quality must therefore be set so that the desired error rate in the radio access controller is achieved even with poor and rapidly changing transmission conditions.
  • the setting of the setpoint for the reception quality described above means that the radio access controller actually has a lower error rate than was specified by the setpoint for the error rate. This is due to the fact that the error rate in the radio access controller is determined by the data packets forwarded by all base stations and is therefore better than by a base station alone. The transmission power of the subscriber station is thus higher than would actually be required, and there is therefore more interference due to the data packets transmitted by the subscriber station than would be necessary with a data transmission corresponding to the actual requirements for the error rate.
  • the invention is therefore based on the object of specifying an improved method for controlling the transmission power of transmitting stations in a radio communication system.
  • a receiving station receives data packets from the transmitting station, the receiving station receives incorrectly received data packets again from the sending station and the transmission power of the sending station becomes dependent on a repetition rate Data packets received by the receiving station are controlled.
  • a transmission power control that takes into account the repetition rate of the newly received data packets has the advantage that even when the data packets are received by several receiving stations, the receiving stations all take into account the same size, namely the repetition rate, for the transmission power control.
  • the sending station sends your data packets to all receiving stations so that all receiving stations receive the same data packets again, ie take into account the same repetition rate.
  • the transmission power is thus controlled in such a way that an overall transmission quality can be taken into account by the repetition rate.
  • the transmission power of the sending station can therefore be set lower on average than at a transmission power control which, for example, takes into account a block error rate in the receiving stations instead of the repetition rate.
  • the transmission power of the transmitting station can be reduced if the repetition rate is lower than a corresponding setpoint, even if a regulation that takes into account a block error rate requests an increase.
  • Data packets received for the first time are advantageously provided with an identifier which identifies the data packets as received for the first time.
  • an identifier that the sending station uses to identify data packets sent by it for the first time is, of course, an identifier from the perspective of the receiving station that identifies the data packet as being received for the first time.
  • a control signal for controlling the transmission power of the transmitting station is generated in the receiving station, the control signal depending on the deviation of a reception quality of the data packets from a setpoint value of the reception quality, and the setpoint value of the reception quality is dependent on the repetition rate data packets received again by the receiving station are set.
  • the setpoint value of the reception quality can be set by taking the repetition rate into account so that, on average, more control signals request a transmission power reduction than would be possible with a known transmission power control that, for example, instead of depending on the Repetition rate depending on a block error rate.
  • a provisional control signal for controlling the transmission power of the transmitting station is generated in the receiving station, the provisional control signal depending on the deviation of a reception quality of the data packets from a target value of the reception quality and depending on the repetition rate of the renewed
  • a final control signal is generated from data packets received by the receiving station.
  • the provisional control signal corresponds to the control signals previously used for a known transmission power control with internal and external power control. Due to the final control signal, the transmission power of the transmitting station can on average be lower than if only the provisional control signal is taken into account, since if the repetition rate falls below its setpoint, the transmission power can be reduced by a corresponding final control signal, even if the provisional control signal would request the opposite.
  • the repetition rate is determined in the sending station.
  • the transmission power of the transmitting station may on average be lower than if only the received control signal is taken into account, since if the repetition rate falls below its setpoint, the transmission power can be reduced even if the control signal requests the opposite.
  • the repetition rate of the data packets again received by the receiving station is particularly advantageous either from the total number of data packets received within a predefinable time interval and the number of data packets received for the first time, or from the total number of data packets sent by the transmitting station within the predefinable time interval and the number of data packets sent for the first time.
  • the receiving station is a base station and the sending station is a mobile station.
  • the receiving station is a mobile station and the sending station is a base station.
  • At least one further receiving station receives data packets from the sending one
  • the transmission power of the sending station is controlled depending on a repetition rate of the data packets again received from the further receiving station and forwards the receiving stations to their received data packets Control station further.
  • the same data packets can be received by both receiving stations, so that the repetition rate is the same for both receiving stations.
  • the transmission power of the sending station can be controlled by the two receiving stations using the repetition rate in such a way that both receiving stations jointly achieve a certain repetition rate and thus an overall reception quality.
  • the control station for example, a Funkzugangskontrol- 1er further, so the data packets are in the inspection station with the overall reception quality (for. Example, a block error rate) 'before.
  • the lowest possible allocation of transmission resources can be achieved by the receiving stations only forwarding correctly received data packets to the control station.
  • FIG. 1 is a diagram of a radio communication system according to the invention with a subscriber station, two base stations and a control station,
  • FIG. 2 shows a schematic representation of data packets which the subscriber station according to FIG. 1 sends to the base stations
  • Fig. 3 is a schematic representation of a first
  • Fig. 4 is a schematic representation of a second
  • FIG. 5 shows a schematic illustration of a third transmission power control for the subscriber station according to FIG. 1.
  • a sending station is any station that can send signals.
  • a subscriber station is considered to be the sending station.
  • a subscriber station is, for example, a cell phone or a portable device for the transmission of image and / or sound data, for fax, short message service SMS and email transmission and for Internet access. It is therefore a general transmitter and / or receiver unit of a radio communication system.
  • a base station is considered as the receiving station, but is not limited to this.
  • a receiving station can also be a mobile station or any other station with a receiving device for receiving signals transmitted via a radio link.
  • the invention can advantageously be used in any radio communication system.
  • Radio communication systems are to be understood as any systems in which data is transmitted between stations via a radio interface. The data transmission can take place bidirectionally as well as unidirectionally.
  • Radio communication systems are in particular any mobile radio system, for example according to the GSM (Global System for Mobile Communication) or UMTS (Universal Mobile Telecommunication System) standard.
  • Ad hoc networks and future mobile radio systems, for example of the fourth generation, are also to be understood as radio communication systems.
  • the invention is described below using the example of a mobile radio system based on the UMTS standard, but without being restricted thereto.
  • FIG. 1 shows schematically a data transmission from a subscriber station UE to a first and a second base station NodeBl, NodeB2.
  • the subscriber station UE uses its transmitting and receiving unit SE3 to transmit first data packets D1, second data packets D2, third data packets D3 and fourth data packets D4 to the base stations NodeBl, NodeB2.
  • the base stations NodeBl, NodeB2 receive the data packets Dl, D2, D3, D4 each with a transmitting and receiving unit SEI, SE2 and try to decode the data packets Dl, D2, D3, D4. If the decoding is successful, the corresponding base station NodeBl, NodeB2 sends an acknowledgment signal ACK to the subscriber station UE.
  • the subscriber station UE recognizes from the confirmation signal ACK that the corresponding data packet was received correctly, ie without errors, and then sends the next data packet. If a data packet is If the base station is not correctly received (decoded), the base station NodeBl, NodeB2 sends a corresponding request signal NACK with which it requests the retransmission of the data packet received incorrectly and thus incorrectly.
  • data packets for example the first to fourth data packets D1, D2, D3, D4, can of course also be sent first before the base stations NodeBl, NodeB2 send a corresponding confirmation ACK or request signal NACK for each of the received data packets.
  • NodeB2 send a corresponding confirmation ACK or request signal NACK for each of the received data packets.
  • the base stations NodeBl, NodeB2 forward the error-free received data packets to a data processing unit DV of a control station RNC, for example a radio access controller. While the first base station NodeBl received the first, third and fourth data packets D1, D3, D4 without errors and forwards them to the control station RNC, the second base station NodeB2 received none of the first three data packets D1 without errors and therefore only routes the second, third and fourth data packet D2, D3, D4 to the data processing unit DV of the control station RNC.
  • the data packets D3, D4 received multiple times are combined in the data processing unit DV. All correctly received data packets D1, D2, D3, D4 are evaluated, brought into the correct order using a data packet number and forwarded to a receiver via a core network (not shown).
  • the subscriber station UE transmits the first data packet D1 a total of three times to the two base stations NodeBl, NodeB2 and receives a request signal NACK from the second base station NodeB2 each time. However, since the subscriber station UE receives an acknowledgment signal ACK from the first base station NodeBl after the third transmission of the first data packet D1, it transmits the second data packet D2 next, although the second base station NodeB2 has still not received the first data packet Dl without errors.
  • the error-free reception of the second data packet D2 is confirmed to the subscriber station UE by a corresponding confirmation signal ACK after the second transmission from the second base station NodeB2.
  • Base station NodeBl none of the second data packets D2 received correctly.
  • the third and fourth data packets D3, D4 are received by both base stations NodeBl, NodeB2 without errors during the first transmission.
  • the base stations NodeBl, NodeB2 are informed by the control station RNC of a setpoint BLERtarget for an error rate of the received data packets and a setpoint WRtarget for a repetition rate of data packets again received by the subscriber station UE.
  • the base stations NodeBl, NodeB2 each generate a control signal ST1, ST2 by means of a control unit P1, P2, which signals the subscriber station UE an increase or decrease in their transmission power.
  • the control signals ST1, ST2 are processed and used by a control unit PC of the user station UE. The generation of the control signals ST1, ST2 is described below with reference to FIGS. 3 and 4.
  • the subscriber station UE identifies them, as shown schematically in FIG. 2 using the first to fourth data packets D1, D2, D3, D4 and further fifth and sixth data packets D5, D6 , data packets transmitted for the first time with a corresponding identifier NP.
  • the first data packet D1 is transmitted for the first time or received by the base stations NodeBl, NodeB2.
  • the first data packet D1 is retransmitted twice.
  • the second data packet D2 is retransmitted once for the first time with the identifier NP and once.
  • the third and fourth data packets D3, D4 are only for the first time, i. H. transmitted with the identifier NP, while the fifth data packet D5 is transmitted three times.
  • the fifth data packet D5 is therefore transmitted with the identifier NP and two further transmissions are renewed transmissions and therefore have no identifier NP.
  • the sixth data packet D6 is received once with the identifier NP and once again without the identifier NP.
  • the base stations NodeBl, NodeB2 count in a time interval ZI the number of total received data packets in which Sem exemplary embodiment 12 data packets, and the number of data packets transmitted with identifier NP, here 6 data packets.
  • the repetition rate can also be independent of the number of data packets received in total, in that the repetition rate is defined as the number of data packets with identifier NP received within a selectable time interval.
  • FIG. 3 schematically shows a first exemplary embodiment for controlling the transmission power of the subscriber station UE as a function of the repetition rate WR by means of control signals ST1, which the first base station NodeBl generates.
  • Devices with the same functionality can be found in the second base station NodeB2 for generating the control signals ST2.
  • the first base station NodeBl receives control signals PS (pilot symbols) and data packets D from the subscriber station UE by means of its transmitting and receiving unit SEI.
  • the first base station NodeBl uses the control signals PS to determine a reception quality SIR of the data packets D, for example a signal-to-interference ratio.
  • a repetition rate WR of the newly received data packets is determined in a second control unit K2 on the basis of the received data packets D.
  • the repetition rate WR is compared with the setpoint WRtarget of the repetition rate. The result of the comparison is used to determine a target value SIRtar- get the reception quality of the data packets.
  • a comparison signal VI In a first comparison unit VI, the reception quality SIR of the data packets is compared with their target value SIRtarget. If the reception quality SIR is better (greater) than the target value SIRtarget of the reception quality (SIR> SIRtarget), a comparison signal VI generates a control signal ST1 which requests the subscriber station UE to reduce its transmission power. The control signal ST1 requests an increase if the reception quality SIR is less than its target value SIRtarget.
  • the repetition rate WR is lower than its setpoint WRtarget, it follows that the transmission power of the subscriber station UE is too high and the setpoint SIRtarget of the reception quality is lowered. If the repetition rate WR is greater than its setpoint WRtarget, the transmission power of the subscriber station UE is too low and the setpoint SIRtarget of the reception quality is increased.
  • a repetition rate WR of newly received data packets is used to set the setpoint SIRtarget of the reception quality instead of the previously known use of an error rate, for example a block error rate.
  • Repetition rate WR is the same for all base stations NodeBl, NodeB2.
  • the quality of the data transmission that is required or desired is achieved without the subscriber station using an unnecessarily high transmission power.
  • the transmission power of the subscriber station UE is in the Medium lower than in known transmission power control methods. There is less interference.
  • a preferred second embodiment is shown schematically in Figure 4.
  • the repetition rate WR of the newly received data packets is also taken into account.
  • the first base station NodeBl receives control signals PS (pilot symbols) and data packets D from the subscriber station UE by means of its transmitting and receiving unit SE2.
  • the first base station NodeBl uses the control signals PS to determine a reception quality SIR of the data packets D, for example a signal-to-interference ratio.
  • a block error rate BLER of the received data packets is determined in a third control unit K3 on the basis of the received data packets D.
  • the block error rate BLER is compared with the target value BLERtarget of the block error rate. The result of the comparison serves to determine the target value SIRtarget of the reception quality of the data packets.
  • the reception quality SIR of the data packets is compared with their target value SIRtarget. If the reception quality SIR is better than the target value SIRtarget (SIR> SIRtarget), the comparison unit generates a preliminary control signal VST1, which requires a reduction in the transmission power of the subscriber station UE.
  • the provisional control signal VST1 requests an increase if the reception quality SIR is lower than its target value SIRtarget.
  • the repetition rate WR of the newly received data packets is determined on the basis of the received data packets D.
  • the repetition rate WR is compared with the target value WRtarget of the repetition rate. The result of the comparison serves to determine a final control signal ST1 for controlling the transmission power of the subscriber station UE.
  • the final control signal ST1 results from the result of the comparison of the repetition rate WR and the setpoint value WRtarget of the repetition rate and the provisional control signal VSTl.
  • the following combinations are possible:
  • the final control signal ST1 requires a transmission power reduction.
  • the repetition rate results in a transmission power reduction (a lower transmission power causes a larger repetition rate), so that the final control signal ST1 requests a transmission power reduction.
  • the repetition rate results in an increase in transmission power (a higher transmission power results in a lower repetition rate).
  • the result of the repetition rate can now be favored, ie the final control signal STl requests an increase in transmission power contrary to the provisional control signal VSTl or the provisional control signal VSTl is favored, ie the final control signal STl as well the provisional control signal VSTl an increase in transmission power. In order to keep the transmission power of the subscriber station UE as low as possible, the latter option is preferred.
  • the final control signal ST1 requests an increase in transmission power.
  • the subscriber station UE transmits with a lower transmission power and thus generates less interference.
  • the transmission power control according to the invention is particularly advantageous if the subscriber station UE simultaneously transmits data packets to a plurality of base stations NodeBl, NodeB2.
  • the invention can be used both for data transmission from the subscriber station UE to a single base station and for data transmission from a base station to a single subscriber station.
  • the subscriber station receives control signals ST from the base stations NodeBl, NodeB2 and sends data packets D to the base stations NodeBl, NodeB2.
  • the control signals ST were generated in a known manner in the base stations NodeBl, NodeB2 by means of a conventional power control, as would result, for example, if the provisional control signal VST1 from FIG. 4 were used exclusively.
  • the subscriber station UE uses the data packets D it sends in a control unit K to determine a repetition rate WR of the retransmitted data packets and compares them with the desired value WRtarget of the repetition rate in another control unit VV, which generates a corresponding provisional control signal VST.
  • a third control unit V a comparison is made with the received control signal ST and a final control signal EST is generated according to criteria that correspond to the criteria described in relation to FIG. 4 on the basis of cases 1) to 4).
  • the final control signal EST is used to control the transmission power instead of the received control signal ST.
  • the setpoint WRtarget of the repetition rate is communicated to the subscriber station UE by the control station RNC by means of one of the base stations NodeBl, NodeB2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Communication Control (AREA)

Abstract

Bei einem Verfahren zur Steuerung der Sendeleistung einer sendenden Station (UE) eines Funkkommunikationssystems empfängt eine empfangende Station (NodeB1, NodeB2) Datenpakete (D1, D2, D3, D4) von der sendenden Station (UE), empfängt die empfangende Station (NodeB1, NodeB2) nicht korrekt empfangene Datenpakete (D1, D2) erneut von der sendenden Station (UE) und wird die Sendeleistung der sendenden Station (UE) in Abhängigkeit von einer Wiederholungsrate der erneut von der empfangenden Station empfangenen Datenpakete gesteuert.

Description

Beschreibung
Verfahren zur Steuerung der Sendeleistung einer sendenden Station eines Funkkommunikationssystems sowie sendende Stati- on, empfangende Station und Funkkommunikationssystem
Die Erfindung betrifft ein Verfahren zur Steuerung der Sendeleistung einer sendenden Station eines Funkkommunikationssystems sowie eine entsprechende sendende Station, eine entspre- chende empfangende Station und ein entsprechendes Funkkommunikationssystem.
Um in Funkkommunikationssystemen, die beispielsweise gemäß dem UMTS-Standard (UMTS: Universal Mobile Telecommunication System) betrieben werden, eine fehlerfreie Datenübertragung für alle zu übertragenden Datenpakete zu ermöglichen, wird ein Verfahren verwendet, bei dem von einer empfangenden Station nicht korrekt empfangene Datenpakete erneut empfangen werden. Diese Verfahren ist unter seiner englischen Bezeich- nung „Automatic Repeat Request" (ARQ) bekannt.
Empfängt eine empfangende Station, beispielsweise eine Basisstation, ein Datenpaket nicht korrekt, d. h. das Datenpaket kann nicht richtig dekodiert werden, signalisiert sie einer sendenden Station, beispielsweise einer Teilnehmerstation, den fehlerhaften Empfang durch ein NACK-Signal (NACK: Not ACKnowledgement) . Die Teilnehmerstation sendet daraufhin das entsprechende Datenpaket erneut an die Basisstation. Einen korrekten (fehlerfreien) Empfang eines Datenpaketes signali- siert die Basisstation durch ein ACK-Signal (ACK: ACKnowledgement) . Wechselt die Teilnehmerstation in eine andere Funkzelle, so gelangt sie in den Sende- und Empfangsbereich von wenigstens einer weiteren Basisstation. Im Fall eines sogenannten Soft- Handovers sendet die Teilnehmerstation gleichzeitig Datenpa- kete an die Basisstation der ursprünglichen Zelle und an die wenigsten eine andere Basisstation der neuen Zelle. Alle von den Basisstationen empfangenen Datenpakete werden an einen Funkzugangskontroller (engl.: Radio Network Controler [RNC] ) weitergeleitet und dort ausgewertet. Im Funkzugangskontroller werden die korrekt empfangenen Datenpakete in der richtigen Reihenfolge aneinandergefügt und gleiche Datenpakete werden kombiniert .
Die Teilnehmerstation empfängt während eines Soft-Handovers von den wenigstens zwei Basisstationen ACK- und NACK-Signale. Ein ausreichendes Kriterium zum Senden eines neuen Datenpaketes ist, dass die Teilnehmerstation ein ACK-Signal von einer der Basisstationen empfängt, da es für eine einwandfreie Datenübertragung ausreicht, dass ein Datenpaket einmal fehler- frei an den Funkzugangskontroller weitergeleitet wird.
Zur Gewährleistung einer gewünschten Qualität der Datenübertragung der Teilnehmerstation, wird im Funkzugangskontroller eine Fehlerrate (BER: Bit Error Rate oder BLER: Block Error Rate) anhand aller empfangener Datenpakete ermittelt und mit einem Sollwert der Fehlerrate verglichen. In Abhängigkeit von dem Ergebnis dieses Vergleichs, wird den Basisstationen ein Sollwert für eine Empfangsqualität, z. B. ein Signal-zuInterferenz-Verhältnis (SIR: Signal to Interference Ratio) , vorgegeben. Die Basisstationen wiederum messen jeweils eine Empfangsqualität für von der Teilnehmerstation empfangene Signale anhand von bekannten Kontrollsignalen (pilot Symbols) der Teilnehmerstation und vergleichen den jeweiligen Messwert mit dem vom Funkzugangskontroller vorgegebenen Sollwert der Empfangsqualität. Je nach Ergebnis des Vergleichs wird der Teilnehmerstation entweder signalisiert, ihre Sendeleistung zu erhöhen oder zu erniedrigen. Zu diesem Zweck werden üblicherweise 1 Bit große Signale, sogenannte TPC-Bits (TPC: Transmit Power Control) verwendet. Empfängt die Teilnehmerstation wenigstens ein TPC-Bit von einer der Basisstationen, das eine Erniedrigung anfordert, so wird sie ihre Sendeleis- tung erniedrigen, um so möglichst wenig Interferenzen bei allen empfangenden Basisstationen zu erzeugen. Die Regelung des Sollwerts der Empfangsqualität durch den Funkzugangskontroller wird als äußere Leistungskontrolle bezeichnet (outer loop power control) , während die vergleichsweise schnelle Regelung der Sendeleistung der Teilnehmerstation durch die Steuersignale der Basisstationen als innere Leistungskontrolle bezeichnet wird (inner loop power control) .
Im Rahmen der aktuellen Standardisierungsvorhaben des 3GPP (3rd Generation Partnership Project) werden zur Zeit Vorschläge diskutiert, auch die äußere Leistungsregelung in die Basisstationen zu verlagern. Dies ist vorteilhaft für eine als „enhanced uplink" (siehe dazu 3GPP TR25.896v0.2.0) bezeichnete Datenübertragung mit hoher Datenrate von einer Teilnehmerstation an eine Basisstation, d. h. in Aufwärtsrichtung (uplink) .
Datenpakete werden bei einem „enhanced uplink" weiterhin an den Funkzugangskontroller weitergeleitet und dort aneinander- gefügt. Redundante Datenpakete werden ebenfalls weiterhin im Funkzugangskontroller kombiniert, der allen empfangenden Basisstationen, dem sogenannten „active set" , eine gemeinsame Fehlerrate vorgibt. Die Messung der tatsächlichen Fehlerrate und der Vergleich mit dem Sollwert der Fehlerrate sowie Modifikationen des Sollwerts der Empfangsqualität werden nun von den Basisstationen selbst durchgeführt.
Der Sollwert der Fehlerrate ist üblicherweise sehr klein (etwa 10~6) , so dass eine Messung der Fehlerrate eine so lange Messzeit erfordert, dass selbst langsame Änderungen der Übertragungsbedingungen nicht messbar sind. Der Sollwert der Emp- fangsqualität muss daher so eingestellt werden, dass auch bei schlechten und sich schnell ändernden Übertragungsbedingungen die gewünschte Fehlerrate im Funkzugangskontroller erreicht wird.
Leiten nun mehrere Basisstationen im Soft-Handover gleichzeitig ihre empfangenen Datenpakete an den Funkzugangskontroller weiter, so resultiert aus der oben beschriebenen Einstellung des Sollwerts der Empfangsqualität, dass im Funkzugangskon- troller tatsächlich eine geringere Fehlerrate vorliegt als durch den Sollwert der Fehlerrate vorgegeben wurde. Dies kommt dadurch zustande, dass die Fehlerrate im Funkzugangskontroller durch die von allen Basisstationen weitergeleiteten Datenpakete bestimmt wird und somit besser ist als von einer Basisstation allein. Die Sendeleistung der Teilnehmer- Station ist somit höher als eigentlich erforderlich wäre, und es gibt daher durch die von der Teilnehmerstation übertragenen Datenpakete mehr Interferenzen, als bei einer den tatsächlichen Anforderungen an die Fehlerrate entsprechenden Datenübertragung nötig wären. Der Erfindung liegt daher die Aufgabe zugrunde, ein verbessertes Verfahren zur Steuerung der Sendeleistung von sendenden Stationen eines Funkkommunikationssystems anzugeben.
Diese Aufgabe wird mit dem Verfahren, der sendenden Station, der empfangenden Station und dem Funkkommunikationssystem gemäß den unabhängigen Ansprüchen gelöst.
Vorteilhafte Aus- und Weiterbildungen der Erfindung sind Ge- genstand der abhängigen Ansprüche.
Bei dem erfindungsgemäßen Verfahren zur Steuerung der Sendeleistung einer sendenden Station eines Funkkommunikationssystems empfängt eine empfangende Station Datenpakete von der sendenden Station, empfängt die empfangende Station nicht korrekt empfangene Datenpakete erneut von der sendenden Station und wird die Sendeleistung der sendenden Station in Abhängigkeit von einer Wiederholungsrate der erneut von der empfangenden Station empfangenen Datenpakete gesteuert. Eine Sendeleistungssteuerung, die die Wiederholungsrate der erneut empfangenen Datenpakete berücksichtigt, hat den Vorteil, dass auch bei einem Empfang der Datenpakete durch mehrere empfangende Stationen die empfangenden Stationen alle die gleiche Größe, nämlich die Wiederholungsrate, zur Sendeleistungssteu- erung berücksichtigen. Die sendende Station sendet Ihre Datenpakete an alle empfangenden Stationen, so dass alle empfangenden Stationen die gleichen Datenpakete erneut empfangen, d. h. die gleiche Wiederholungsrate berücksichtigen. Die Sendeleistungssteuerung erfolgt somit derart, dass durch die Wiederholungsrate eine Gesamtübertragungsqualität berücksichtigt werden kann. Die Sendeleistung der sendenden Station kann daher im Mittel niedriger eingestellt werden, als bei einer Sendeleistungsregelung, die beispielsweise statt der Wiederholungsrate jeweils eine Blockfehlerrate in den empfangenden Stationen berücksichtigt. Das gleiche gilt auch bei einer Datenübertragung an nur eine empfangende Station. Die Sendeleistung der sendenden Station kann erniedrigt werden, falls die Wiederholungsrate geringer ist als ein entsprechender Sollwert, selbst wenn eine Regelung, die ein Blockfehlerrate berücksichtigt, eine Erhöhung anfordert.
Vorteilhafter Weise sind erstmalig empfangene Datenpakete mit eine Kennung versehen, die die Datenpakete als erstmalig empfangene kennzeichnet. Auf diese Weise können erstmalig ausgesendete bzw. empfangene Datenpakete von erneut gesendeten bzw. empfangenen Datenpaketen unterschieden werden. Eine Ken- nung, die die sendende Station verwendet, um erstmalig von ihr gesendete Datenpakete zu kennzeichnen, ist selbstverständlich aus Sicht der empfangenden Station eine Kennung, die das Datenpaket als erstmalig empfangen kennzeichnet.
In einer Ausgestaltung der Erfindung wird in der empfangenden Station ein Steuersignal zur Steuerung der Sendeleistung der sendenden Station erzeugt, wobei das Steuersignal von der Abweichung einer Empfangsqualität der Datenpakete von einem Sollwert der Empfangsqualität abhängt, und der Sollwert der Empfangsqualität wird in Abhängigkeit von der Wiederholungsrate der erneut von der empfangenden Station empfangenen Datenpakete eingestellt. Der Sollwert der Empfangsqualität kann durch eine Berücksichtigung der Wiederholungsrate so eingestellt werden, dass im Mittel mehr Steuersignale eine Sende- leistungserniedrigung anfordern als dies mit einer bekannten Sendeleistungssteuerung möglich wäre, die den Sollwert der Empfangsqualität beispielsweise statt in Abhängigkeit von der Wiederholungsrate in Abhängigkeit von einer Blockfehlerrate einstellt.
In einer alternativen Ausgestaltung der Erfindung wird in der empfangenden Station ein vorläufiges Steuersignal zur Steuerung der Sendeleistung der sendenden Station erzeugt, wobei das vorläufige Steuersignal von der Abweichung einer Empfangsqualität der Datenpakete von einem Sollwert der Empfangsqualität abhängt und in Abhängigkeit von der Wiederho- lungsrate der erneut von der empfangenden Station empfangenen Datenpakete wird ein endgültiges Steuersignal erzeugt. Das vorläufige Steuersignal entspricht den bisher verwendeten Steuersignalen einer bekannten Sendeleistungssteuerung mit innerer und äußerer Leistungskontrolle. Durch das endgültige Steuersignal kann die Sendeleistung der sendenden Station im Mittel niedriger sein als bei ausschließlicher Berücksichtigung des vorläufigen Steuersignals, da bei einer ihren Sollwert unterschreitenden Wiederholungsrate die Sendeleistung durch ein entsprechendes endgültiges Steuersignal reduziert werden kann, auch wenn das vorläufige Steuersignal das Gegenteil anfordern würde.
In einer weiteren alternativen Ausgestaltung der Erfindung wird die Wiederholungsrate in der sendenden Station bestimmt.
Von Vorteil ist für diese weitere alternative Ausgestaltung der Erfindung, wenn die sendende Station ein Steuersignal der empfangenden Station zur Steuerung der Sendeleistung erhält und die sendende Station aus dem Vergleich der Wiederholungs- rate mit einem Sollwert der Wiederholungsrate eine andere
Sendeleistung einstellt als durch ein Steuersignal der empfangenden Station angefordert wird. Auf diese Weise kann die Sendeleistung der sendenden Station im Mittel niedriger sein als bei ausschließlicher Berücksichtigung des empfangenen Steuersignals, da bei einer ihren Sollwert unterschreitenden Wiederholungsrate die Sendeleistung reduziert werden kann, auch wenn das Steuersignal das Gegenteil anfordert.
Besonders vorteilhaft wird die Wiederholungsrate der erneut von der empfangenden Station empfangenen Datenpakete entweder aus der gesamten Anzahl der innerhalb eines vorgebbaren Zeit- intervalls empfangenen Datenpakete und der Anzahl der erstmalig empfangenen Datenpakete oder aus der gesamten Anzahl der innerhalb des vorgebbaren Zeitintervalls von der sendenden Station gesendeten Datenpakete und der Anzahl der erstmalig gesendeten Datenpakete ermittelt.
In einer vorteilhaften Ausführungsform ist die empfangende Station eine Basisstation und die sendende Station eine mobile Station.
In einer alternativen vorteilhaften Ausführungsform ist die empfangende Station eine mobile Station und die sendende Station eine Basisstation.
In einer bevorzugten Ausgestaltung empfängt mindestens eine weitere empfangende Station Datenpakete von der sendenden
Station, empfängt die weitere empfangende Station nicht korrekt empfangene Datenpakete erneut von der sendenden Station, wird die Sendeleistung der sendenden Station in Abhängigkeit von einer Wiederholungsrate der erneut von der weiteren emp- fangenden Station empfangenen Datenpakete gesteuert und leiten die empfangenden Stationen ihre empfangenen Datenpakete an eine Kontrollstation weiter. Während einer Datenübertra- gung können die gleichen Datenpakete von beiden empfangenden Stationen empfangen werden, so dass die Wiederholungsrate für beide empfangende Stationen gleich ist. Die Sendeleistung der sendenden Station kann von beiden empfangenden Stationen an- hand der Wiederholungsrate so gesteuert werden, dass von beiden empfangenden Stationen gemeinsam eine bestimmte Wiederholungsrate und somit eine Gesamtempfangsqualität erreicht wird. Leiten die empfangenden Stationen die Datenpakete an die Kontrollstation beispielsweise einen Funkzugangskontrol- 1er weiter, so liegen in der Kontrollstation die Datenpakete mit der Gesamtempfangsqualität (z. B. eine Blockfehlerrate)' vor.
Eine möglichst geringe Belegung von Übertragungsressourcen lässt sich dadurch erreichen, dass die empfangenden Stationen ausschließlich korrekt empfangene Datenpakete an die Kontrollstation weiterleiten.
Die Erfindung wird im folgenden anhand von in den Figuren dargestellten Ausführungsbeispielen näher erläutert. Es zeigen:
Fig. 1 ein Schema eines erfindungsgemäßen Funkkommunikationssystem mit einer Teilnehmerstation, zwei Basisstationen und einer Kontrollstation,
Fig. 2 eine schematische Darstellung von Datenpaketen, die die Teilnehmerstation gemäß Figur 1 an die Basisstationen sendet, Fig. 3 eine schematische Darstellung einer ersten
Sendeleistungssteuerung für die Teilnehmerstation gemäß Figur 1,
Fig. 4 eine schematische Darstellung einer zweiten
Sendeleistungssteuerung für die Teilnehmerstation gemäß Figur 1 und
Fig. 5 eine schematische Darstellung einer dritten Sendeleistungssteuerung für die Teilnehmerstation gemäß Figur 1.
Gleiche Bezugszeichen in den Figuren bezeichnen gleiche Gegenstände.
Eine sendende Station ist jede Station, die Signale senden kann. Im nachfolgenden wird als sendende Station eine Teilnehmerstation betrachtet. Eine Teilnehmerstation ist beispielsweise ein Mobiltelefon oder auch eine ortsbewegliche Vorrichtung zur Übertragung von Bild- und/oder Tondaten, zum Fax-, Short Message Service SMS- und Email-Versand und zum Internet-Zugang. Es handelt sich mithin um eine allgemeine Sende- und/oder Empfangseinheit eines Funkkommunikationssystems.
Als empfangende Station wird im nachfolgenden eine Basisstation betrachtet, ohne jedoch darauf beschränkt zu sein. Selbstverständlich kann eine empfangende Station auch eine Mobilstation oder eine beliebige andere Station mit einer Empfangseinrichtung zum Empfang von über eine Funkverbindung übertragenen Signalen sein. Die Erfindung kann vorteilhaft in beliebigen Funkkommunikationssystemen verwendet werden. Unter Funkkommunikationssystemen sind beliebige Systeme zu verstehen, in denen eine Datenübertragung zwischen Stationen über eine Funkschnittstelle erfolgt. Die Datenübertragung kann sowohl bidirektional als auch unidirektional erfolgen. Funkkommunikationssysteme sind insbesondere beliebige Mobilfunksysteme beispielsweise nach dem GSM- (Global System for Mobile Communication) oder dem UMTS- (Universal Mobile Telecommunication System) Standard. Auch Ad-hoc Netze und zukünftige Mobilfunksysteme beispielsweise der vierten Generation sollen unter Funkkommunikations- systemen verstanden werden.
Im folgenden wird die Erfindung am Beispiel eines Mobilfunk- Systems nach dem UMTS-Standard beschrieben, ohne jedoch darauf beschränkt zu sein.
In Figur 1 ist schematisch eine Datenübertragung von einer Teilnehmerstation UE an eine erste und eine zweite Basissta- tion NodeBl, NodeB2 dargestellt. Die Teilnehmerstation UE ü- berträgt mittels ihrer Sende- und Empfangseinheit SE3 erste Datenpakete Dl, zweite Datenpakete D2, dritte Datenpakete D3 und vierte Datenpakete D4 an die Basisstationen NodeBl, No- deB2. Die Basisstationen NodeBl, NodeB2 empfangen die Daten- pakete Dl, D2, D3, D4 jeweils mit einer Sende- und Empfangseinheit SEI, SE2 und versuchen die Datenpakete Dl, D2, D3, D4 zu dekodieren. Gelingt die Dekodierung, sendet die entsprechende Basisstation NodeBl, NodeB2 ein Bestätigungssignal ACK an die Teilnehmerstation UE. Die Teilnehmerstation UE erkennt an dem Bestätigungssignal ACK, dass das entsprechende Datenpaket korrekt, d. h. fehlerfrei empfangen wurde und sendet daraufhin das nächste Datenpaket. Wird ein Datenpaket von ei- ner Basisstation nicht korrekt empfangen (dekodiert) , so sendet die Basisstation NodeBl, NodeB2 ein entsprechendes Anforderungssignal NACK mit dem sie die erneute Übertragung des nicht korrekt und somit fehlerhaft empfangenen Datenpakets anfordert.
Selbstverständlich können auch zunächst mehrere Datenpakete, beispielsweise die ersten bis vierten Datenpakete Dl, D2, D3, D4, gesendet werden, bevor die Basisstationen NodeBl, NodeB2 für jedes der empfangenen Datenpakete jeweils ein entsprechendes Bestätigungs- ACK oder Anforderungssignal NACK senden. Man spricht dann davon ,dass die Datenpakete in Fenstern (engl.: Windows) übertragen werden.
Die Basisstationen NodeBl, NodeB2 leiten die fehlerfrei empfangenen Datenpakete an eine Datenverarbeitungseinheit DV einer Kontrollstation RNC, beispielsweise eines Funkzu- gangskontrollers, weiter. Während die erste Basisstation NodeBl das erste, dritte und vierte Datenpaket Dl, D3, D4 feh- lerfrei empfangen hat und an die Kontrollstation RNC weiterleitet, hat die zweite Basisstation NodeB2 keines der drei ersten Datenpaketen Dl fehlerfrei empfangen und leitet daher nur das zweite, dritte und vierte Datenpaket D2, D3, D4 an die Datenverarbeitungseinheit DV der Kontrollstation RNC wei- ter.
In der Datenverarbeitungseinheit DV werden die mehrfach empfangen Datenpakete D3, D4 kombiniert. Alle korrekt empfangenen Datenpakete Dl, D2, D3, D4 werden ausgewertet, anhand ei- ner Datenpaketnummer in die richtige Reihenfolge gebracht und über ein nicht dargestelltes Kernnetz an einen Empfänger weitergeleitet. Die Teilnehmerstation UE überträgt das erste Datenpakete Dl insgesamt dreimal an die beiden Basisstationen NodeBl, NodeB2 und erhält von der zweiten Basisstation NodeB2 jedes Mal ein Anforderungssignal NACK. Da die Teilnehmerstation UE jedoch nach der dritten Übertragung des ersten Datenpakets Dl ein Bestätigungssignal ACK von der ersten Basisstation NodeBl erhält, überträgt sie als nächstes das zweite Datenpaket D2, obwohl die zweite Basisstation NodeB2 das erste Datenpaket Dl immer noch nicht fehlerfrei empfangen hat.
Der fehlerfreie Empfang des zweite Datenpakets D2 wird der Teilnehmerstation UE durch ein entsprechendes Bestätigungssignal ACK nach der zweiten Übertragung von der zweiten Ba- sisstationen NodeB2 bestätigt. In diesem Fall hat die erste
Basisstation NodeBl keines der zweiten Datenpakete D2 korrekt empfangen. Die dritten und vierten Datenpakete D3, D4 werden von beiden Basisstationen NodeBl, NodeB2 bereits bei der ersten Übertragung fehlerfrei empfangen.
Zur Steuerung der Sendeleistung der Teilnehmerstation UE wird den Basisstationen NodeBl, NodeB2 von der Kontrollstation RNC ein Sollwert BLERtarget für eine Fehlerrate der empfangenen Datenpakete sowie ein Sollwert WRtarget für eine Wiederho- lungsrate erneut von der Teilnehmerstation UE empfangener Datenpakete mitgeteilt. In Abhängigkeit von einem Vergleich eines oder beider Sollwerte mit einer entsprechenden Messgröße, erzeugen die Basisstationen NodeBl, NodeB2 jeweils mittels einer Steuereinheit Pl, P2 ein Steuersignal STl, ST2, das der Teilnehmerstation UE eine Erhöhung oder Erniedrigung ihrer Sendeleistung signalisiert. Die Verarbeitung und Anwendung der Steuersignale STl, ST2 erfolgt durch eine Steuereinheit PC der Teilnehmerstation UE. Die Erzeugung der Steuersignale STl, ST2 wird nachfolgend anhand der Figuren 3 und 4 beschrieben.
Damit die Basisstationen NodeBl, NodeB2 eine Wiederholungsrate WR der erneut empfangen Datenpakete bestimmen kann, kennzeichnet die Teilnehmerstation UE, wie schematisch in Figur 2 anhand der ersten bis vierten Datenpakete Dl, D2, D3, D4 sowie anhand weiterer fünfter und sechster Datenpakete D5, D6 dargestellt, erstmalig übertragene Datenpakete mit einer entsprechenden Kennung NP.
Die zeitliche Reihenfolge des Eintreffens der Datenpakete Dl, D2, D3, D4, D5, D6 bei den Basisstationen NodeBl, NodeB2 er- folgt in Figur 2 von rechts nach links.
Zunächst wird das erste Datenpaket Dl, mit einer entsprechenden Kennung NP versehen, erstmalig übertragen bzw. von den Basisstationen NodeBl, NodeB2 empfangen. Es folgt eine zwei- malige erneute Übertragung des ersten Datenpakets Dl. Das zweite Datenpaket D2 wird einmal erstmalig mit Kennung NP und einmal erneut übertragen. Das dritte und vierte Datenpaket D3, D4 werden nur erstmalig, d. h. mit Kennung NP übertragen, während das fünfte Datenpaket D5 dreimal übertragen wird. Ei- ne Übertragung des fünften Datenpakets D5 erfolgt daher mit Kennung NP und zwei weitere Übertragungen sind erneute Übertragungen und haben daher keine Kennung NP. Das sechste Datenpaket D6 wird einmal erstmalig mit Kennung NP und einmal erneut ohne Kennung NP empfangen.
Die Basisstationen NodeBl, NodeB2 zählen in einem Zeitintervall ZI die Anzahl insgesamt empfangener Datenpakete, in die- sem Ausführungsbeispiel 12 Datenpakete, und die Anzahl mit Kennung NP übertragener Datenpakete, hier 6 Datenpakete. Die Wiederholungsrate WR ergibt sich dann aus dem Verhältnis der Anzahl mit Kennung empfangener Datenpakete zur Anzahl insge- samt empfangener Datenpakete. In dem Ausführungsbeispiel von Figur 2 ist die Wiederholungsrate somit 6/12 = 0,5. Selbstverständlich kann die Wiederholungsrate auch unabhängig von der Anzahl insgesamt empfangender Datenpakete sein, in dem die Wiederholungsrate als Anzahl innerhalb eines wählbaren Zeitintervalls empfangener Datenpakete mit Kennung NP definiert wird.
Figur 3 zeigt schematisch ein erstes Ausführungsbeispiel zur Steuerung der Sendeleistung der Teilnehmerstation UE in Ab- hängigkeit von der Wiederholungsrate WR mittels Steuersignalen STl, die die erste Basisstation NodeBl erzeugt. Vorrichtungen mit gleicher Funktionsweise finden sich entsprechend in der zweiten Basisstation NodeB2 zur Erzeugung der Steuersignale ST2.
Die erste Basisstation NodeBl empfängt mittels ihrer Sende- und Empfangseinheit SEI Kontrollsignale PS (pilot Symbols) und Datenpakete D von der Teilnehmerstation UE. In einer ersten Kontrolleinheit Kl ermittelt die erste Basisstation No- deBl anhand der Kontrollsignale PS eine Empfangsqualität SIR der Datenpakete D, beispielsweise ein Signal-zu-Interferenz- Verhältnis. In einer zweiten Kontrolleinheit K2 wird anhand der empfangenen Datenpakete D eine Wiederholungsrate WR der erneut empfangen Datenpakete bestimmt. In einer zweiten Ver- gleichseinheit V2 wird die Wiederholungsrate WR mit dem Sollwert WRtarget der Wiederholungsrate verglichen. Das Ergebnis des Vergleichs dient zur Festlegung eines Sollwertes SIRtar- get der Empfangsqualität der Datenpakete. In einer ersten Vergleichseinheit VI wird die Empfangsqualität SIR der Datenpakete mit ihrem Sollwert SIRtarget verglichen. Ist die Empfangsqualität SIR besser (größer) als der Sollwert SIRtarget der Empfangsqualität (SIR > SIRtarget) , so wird von der Vergleichseinheit VI ein Steuersignal STl generiert, das die Teilnehmerstation UE zur Erniedrigung ihrer Sendeleistung auffordert. Das Steuersignal STl fordert eine Erhöhung an, wenn die Empfangsqualität SIR kleiner ist als ihr Sollwert SIRtarget.
Ist beispielsweise die Wiederholungsrate WR kleiner als ihr Sollwert WRtarget, so folgt daraus, dass die Sendeleistung der Teilnehmerstation UE zu hoch ist und der Sollwert SIRtar- get der Empfangsqualität wird erniedrigt. Ist die Wiederholungsrate WR größer als ihr Sollwert WRtarget, so ist die Sendeleistung der Teilnehmerstation UE zu niedrig und der Sollwert SIRtarget der Empfangsqualität wird erhöht.
Entsprechend der Erfindung wird zur Einstellung des Sollwertes SIRtarget der Empfangsqualität anstelle der bisher bekannten Verwendung einer Fehlerrate, beispielsweise einer Blockfehlerrate, eine Wiederholungsrate WR erneut empfangener Datenpakete verwendet. Dies hat den Vorteil, dass alle Basis- Stationen NodeBl, NodeB2 den gleichen Wert messen, da die
Wiederholungsrate WR für alle Basisstationen NodeBl, NodeB2 gleich ist. In der Datenverarbeitungseinheit DV der Kontrollstation RNC wird somit diejenige Qualität der Datenübertragung erreicht, die benötigt bzw. gewünscht wird, ohne dass dazu die Teilnehmerstation eine unnötig hohe Sendeleistung verwendet. Die Sendeleistung der Teilnehmerstation UE ist im Mittel geringer als bei bekannten Sendeleistungssteuerungs- verfahren. Es entstehen somit weniger Interferenzen.
Ein bevorzugtes zweites Ausführungsbeispiel wird in Figur 4 schematisch dargestellt. In eine bekannte Sendeleistungssteuerung mit einem inneren (inner loop) und äußeren (outer loop) Regelkreis zur Sendeleistungssteuerung wird zusätzlich die Wiederholungsrate WR der erneut empfangenen Datenpakete berücksichtigt.
Die erste Basisstation NodeBl empfängt mittels ihrer Sende- und Empfangseinheit SE2 Kontrollsignale PS (pilot Symbols) und Datenpakete D von der Teilnehmerstation UE. In der ersten Kontrolleinheit Kl ermittelt die erste Basisstation NodeBl anhand der Kontrollsignale PS eine Empfangsqualität SIR der Datenpakete D, beispielsweise ein Signal-zu-Interferenz- Verhältnis. In einer dritten Kontrolleinheit K3 wird anhand der empfangenen Datenpakete D eine Blockfehlerrate BLER der empfangenen Datenpakete bestimmt. In einer dritten Ver- gleichseinheit V3 wird die Blockfehlerrate BLER mit dem Sollwert BLERtarget der Blockfehlerrate verglichen. Das Ergebnis des Vergleichs dient zur Festlegung des Sollwertes SIRtarget der Empfangsqualität der Datenpakete. In der ersten Vergleichseinheit VI wird die Empfangsqualität SIR der Datenpa- kete mit ihrem Sollwert SIRtarget verglichen. Ist die Empfangsqualität SIR besser als der Sollwert SIRtarget (SIR > SIRtarget) , so wird von der Vergleichseinheit ein vorläufiges Steuersignal VST1 generiert, das eine Erniedrigung der Sendeleistung der Teilnehmerstation UE fordert. Das vorläufige Steuersignal VST1 fordert eine Erhöhung an, wenn die Empfangsqualität SIR kleiner ist als ihr Sollwert SIRtarget. In der zweiten Kontrolleinheit K2 wird anhand der empfangenen Datenpakete D die Wiederholungsrate WR der erneut empfangen Datenpakete bestimmt. In der zweiten Vergleichseinheit V2 wird die Wiederholungsrate WR mit dem Sollwert WRtarget der Wiederholungsrate verglichen. Das Ergebnis des Vergleichs dient zur Festlegung eines endgültigen Steuersignals STl zur Steuerung der Sendeleistung der Teilnehmerstation UE.
Das endgültige Steuersignal STl ergibt sich aus dem Ergebnis des Vergleichs von Wiederholungsrate WR und Sollwert WRtarget der Wiederholungsrate sowie dem vorläufigen Steuersignal VSTl. Es gibt folgende Kombinationsmöglichkeiten:
1) WR < WRtarget und VSTl entspricht einer Sendeleistungser- niedrigung
2) WR < WRtarget und VSTl entspricht einer Sendeleistungserhöhung
3) WR > WRtarget und VSTl entspricht einer Sendeleistungserniedrigung
4) WR > WRtarget und VSTl entspricht einer Sendeleistungsererhöhung
Im Fall 1) fordert das endgültige Steuersignal STl eine Sendeleistungserniedrigung .
Im Fall 2) ergibt sich aus der Wiederholungsrate eine Sende- leistungserniedrigung (eine kleinere Sendeleistung bewirkt eine größere Wiederholungsrate) , so dass das endgültige Steuersignal STl eine Sendeleistungserniedrigung anfordert. Im Fall 3) ergibt sich aus der Wiederholungsrate eine Sendeleistungserhöhung (eine höhere Sendeleistung bewirkt eine kleinere Wiederholungsrate) . Je nach Vorgabe durch das Funk- kommunikationssystem, kann nun entweder das Ergebnis der Wiederholungsrate favorisiert werden, d. h. das endgültige Steuersignal STl fordert entgegen dem vorläufigen Steuersignal VSTl eine Sendeleistungserhöhung oder das vorläufige Steuersignal VSTl wird favorisiert, d. h. das endgültige Steuersig- nal STl fordert ebenso wie das vorläufige Steuersignal VSTl eine Sendeleistungserhöhung. Um insgesamt die Sendeleistung der Teilnehmerstation UE möglichst niedrig zu halten, wird die letztgenannte Möglichkeit bevorzugt.
Im Fall 4) fordert das endgültige Steuersignal STl eine Sendeleistungserhöhung.
Die Erfindung bewirkt durch die in bisherigen Sendeleistungssteuerungen nicht vorgesehene Erniedrigung der Sendeleistung im Fall 2), dass die Teilnehmerstation UE insgesamt mit einer geringeren Sendeleistung sendet und somit weniger Interferenzen erzeugt.
Besonders vorteilhaft ist die erfindungsgemäße Sendeleis- tungssteuerung, wenn die Teilnehmerstation UE an mehrere Basisstationen NodeBl, NodeB2 gleichzeitig Datenpakete überträgt. Selbstverständlich lässt sich die Erfindung sowohl für eine Datenübertragung von der Teilnehmerstation UE an eine einzige Basisstation als auch für eine Datenübertragung von einer Basisstation an eine einzige Teilnehmerstation verwenden. In einem dritten Ausführungsbeispiel, das in Figur 5 schematisch dargestellt ist, empfängt die Teilnehmerstation Steuersignale ST von den Basisstationen NodeBl, NodeB2 und sendet Datenpakete D an die Basisstationen NodeBl, NodeB2. Die Steuersignale ST wurden in bekannter Weise in den Basisstationen NodeBl, NodeB2 mittels einer üblichen Leistungskontrolle erzeugt, wie sie sich beispielsweise bei ausschließlicher Verwendung des vorläufigen Steuersignals VSTl aus Figur 4 ergeben würde .
Die Teilnehmerstation UE bestimmt Anhand der von ihr gesendeten Datenpakete D in einer Kontrolleinheit K eine Wiederholungsrate WR der erneut gesendeten Datenpakete und vergleicht diese mit dem Sollwert WRtarget der Wiederholungsrate in ei- ner weiteren Kontrolleinheit VV, die ein entsprechendes vorläufiges Steuersignal VST erzeugt. In einer dritten Kontrolleinheit V erfolgt ein Vergleich mit dem empfangenen Steuersignal ST und es wird ein endgültiges Steuersignal EST nach Kriterien erzeugt, die den zu Figur4 anhand der Fälle 1) bis 4) beschriebenen Kriterien entsprechen. Das endgültige Steuersignal EST dient zur Steuerung der Sendeleistung anstelle des empfangenen Steuersignals ST.
Der Sollwert WRtarget der Wiederholungsrate wird der Teilneh- merstation UE von der Kontrollstation RNC mittels einer der Basisstationen NodeBl, NodeB2 mitgeteilt.

Claims

Patentansprüche
1. Verfahren zur Steuerung der Sendeleistung einer sendenden Station (UE) eines Funkkommunikationssystems, bei dem - eine empfangende Station (NodeBl, NodeB2) Datenpakete (Dl, D2, D3, D4, D5, D6; D) von der sendenden Station (UE) empfängt, die empfangende Station (NodeBl, NodeB2) nicht korrekt empfangene Datenpakete (Dl, D2; Dl, D2, D5, D6) erneut von der sendenden Station (UE) empfängt, und die Sendeleistung der sendenden Station (UE) in Abhängigkeit von einer Wiederholungsrate (WR) der erneut von der empfangenden Station (NodeBl, NodeB2) empfangenen Datenpakete (Dl, D2; Dl, D2, D5, D6) gesteuert wird.
2. Verfahren nach Anspruch 1, bei dem erstmalig empfangene Datenpakete mit eine Kennung (NP) versehen sind, die die Datenpakete als erstmalig empfangene kennzeichnet .
3. Verfahren nach Anspruch 1 oder 2, bei dem in der empfangenden Station (NodeBl, NodeB2) ein Steuersignal (STl, ST2) zur Steuerung der Sendeleistung der sendenden Station (UE) erzeugt wird, wobei das Steuersignal (STl, ST2) von der Abweichung einer Empfangsqualität (SIR) der Datenpakete (Dl, D2, D3 , D4, D5, D6; D) von einem Sollwert (SIRtarget) der Empfangsqualität abhängt, und der Sollwert (SIRtarget) der Empfangsqualität in Abhängigkeit von der Wiederholungsrate (WR) der erneut von der empfangenden Station (NodeBl, NodeB2) empfangenen Datenpakete (Dl, D2; Dl, D2, D5, D6) eingestellt wird.
4. Verfahren nach Anspruch 1 oder 2, bei dem in der empfangenden Station (NodeBl, NodeB2) ein vorläufiges Steuersignal (VSTl) zur Steuerung der Sendeleistung der sendenden Station (UE) erzeugt wird, wobei das vorläu- fige Steuersignal (VSTl) von der Abweichung einer Empfangsqualität (SIR) der Datenpakete (Dl, D2, D3, D4, D5, D6; D) von einem Sollwert (SIRtarget) der Empfangsqualität abhängt,
- und in Abhängigkeit von der Wiederholungsrate (WR) der er- neut von der empfangenden Station (NodeBl, NodeB2) empfangenen Datenpakete (Dl, D2; Dl, D2, D5, D6) ein endgültiges Steuersignal (STl) erzeugt wird.
5. Verfahren nach Anspruch 1 oder 2, bei dem die Wiederholungsrate (WR) in der sendenden Station (UE) bestimmt wird.
6. Verfahren nach Anspruch 5, bei dem
- die sendende Station (UE) ein Steuersignal (ST) der emp- fangenden Station (NodeBl, NodeB2) zur Steuerung der Sendeleistung erhält und die sendende Station (UE) aus dem Vergleich der Wiederholungsrate (WR) mit einem Sollwert (WRtarget) der Wiederholungsrate eine andere Sendeleistung einstellt als durch das Steuersignal (ST) der empfangenden Station (NodeBl, NodeB2) angefordert wird.
7. Verfahren nach einem der Ansprüche 1 bis 6, bei dem die Wiederholungsrate (WR) der erneut von der empfangenden Station (NodeBl, NodeB2) empfangenen Datenpakete (Dl, D2; Dl, D2, D5, D6) entweder aus der gesamten Anzahl der innerhalb eines vorgebbaren Zeitintervalls (ZI) empfangenen Datenpakete und der Anzahl der erstmalig empfangenen Datenpakete oder aus der gesamten Anzahl der innerhalb des vorgebbaren Zeitintervalls (ZI) von der sendenden Station (UE) gesendeten Datenpakete und der Anzahl der erstmalig gesendeten Datenpakete er- mittelt wird.
8. Verfahren nach einem der vorstehenden Ansprüche, bei dem die empfangende Station eine Basisstation und die sendende Station eine mobile Station ist.
9. Verfahren nach einem der Ansprüche 1 bis 7, bei dem die empfangende Station eine mobile Station und die sendende Station eine Basisstation ist.
10. Verfahren nach einem der vorstehenden Ansprüche, bei dem
- mindestens eine weitere empfangende Station (NodeBl, No- deB2) Datenpakete (Dl, D2, D3, D4, D5, D6; D) von der sendenden Station (UE) empfängt, die weitere empfangende Station (NodeBl, NodeB2) nicht korrekt empfangene Datenpakete (Dl, D2; Dl, D2, D5, D6) erneut von der sendenden Station (UE) empfängt, die Sendeleistung der sendenden Station (UE) in Abhängigkeit von einer Wiederholungsrate (WR) der erneut von der weiteren empfangenden Station (NodeBl, NodeB2) empfangenen Datenpakete (Dl, D2; Dl, D2, D5, D6) gesteuert wird
- und die beiden empfangenden Stationen (NodeBl, NodeB2) ihre empfangenen Datenpakete an eine Kontrollstation (RNC) weiterleiten.
11. Verfahren nach Anspruch 10, bei dem die empfangenden Stationen (NodeBl, NodeB2) ausschließlich korrekt empfangene Datenpakete an die Kontrollstation (RNC) weiterleiten.
12. Empfangende Station (NodeBl, NodeB2) für ein Funkkommunikationssystem mit
- Mitteln (SEI, SE2) zum Empfang von Datenpaketen (Dl, D2, D3, D4, D5, D6; D) von einer sendenden Station (UE) ,
- Mitteln (SEI, SE2) zum erneuten Empfang von nicht korrekt empfangenen Datenpaketen (Dl, D2; Dl, D2, D5, D6) von der sendenden Station (UE) , und mit Mitteln (Pl, P2) zum Steuern der Sendeleistung der sendenden Station (UE) in Abhängigkeit von einer Wiederholungsrate (WR) der erneut von der sendenden Station (UE) empfangenen Datenpakete (Dl, D2; Dl, D2, D5, D6) .
13. Sendende Station (UE) für ein Funkkommunikationssystem mit
- Mitteln (SE3) zum Senden von Datenpaketen (Dl, D2, D3, D4, D5, D6; D) an eine empfangende Station (NodeBl, NodeB2),
- Mitteln (SE3) zum erneuten Senden von nicht korrekt von der empfangenden Station (NodeBl, NodeB2) empfangenen Datenpaketen (Dl, D2; Dl, D2 , D5, D6) , und mit Mitteln (PC) zum Steuern der Sendeleistung der sendenden Station (UE) in Abhängigkeit von einer Wiederholungsrate (WR) der erneut an die empfangende Station (NodeBl, NodeB2) gesendeten Datenpakete (Dl, D2; Dl, D2, D5, D6) .
14. Funkkommunikationssystem mit einer sendenden Station (UE) mit - Mitteln (SE3) zum Senden von Datenpaketen (Dl, D2, D3, D4, D5, D6; D) an eine empfangende Station (NodeBl, NodeB2) ,
- Mitteln (SE3) zum erneuten Senden von nicht korrekt von der empfangenden Station (NodeBl, NodeB2) empfangenen Da- tenpaketen (Dl, D2; Dl, D2, D5, D6) ,
- und mit Mitteln (PC) zum Steuern der Sendeleistung der sendenden Station (UE) in Abhängigkeit von einer Wiederholungsrate (WR) der erneut an die empfangende Station (NodeBl, NodeB2) gesendeten Datenpakete (Dl, D2; Dl, D2, D5, D6), und mit einer empfangenden Station (NodeBl, NodeB2) mit
- Mitteln (SEI, SE2) zum Empfang von Datenpaketen (Dl, D2, D3, D4, D5, D6; D) von der sendenden Station (UE) ,
- Mitteln (SEI, SE2) zum erneuten Empfang von nicht korrekt von der sendenden Station (UE) empfangenen Datenpaketen
(Dl, D2; Dl, D2, D5, D6) ,
- und mit Mitteln (Pl, P2) zum Steuern der Sendeleistung der sendenden Station (UE) in Abhängigkeit von einer Wiederholungsrate (WR) der erneut von der sendenden Station (UE) empfangenen Datenpakete (Dl, D2; Dl, D2, D5, D6) .
15. Funkkommunikationssystem nach Anspruch 14,
- mit mindestens einer weiteren empfangenden Station (NodeBl, NodeB2) mit Mitteln (SEI, SE2) zum Empfang von Da- tenpaketen (Dl, D2, D3, D4, D5, D6; D) von der sendenden Station (UE) , mit Mitteln (SEI, SE2) zum erneuten Empfang von nicht korrekt von der sendenden Station (UE) empfangenen Datenpaketen (Dl, D2; Dl, D2, D5, D6) und mit Mitteln (Pl, P2) zum Steuern der Sendeleistung der sendenden Sta- tion (UE) in Abhängigkeit von einer Wiederholungsrate (WR) der erneut von der sendenden Station (UE) empfangenen Datenpakete (Dl, D2; Dl, D2, D5, D6) , dessen empfangende Stationen (NodeBl, NodeB2) jeweils Mittel (SEI, SE2) zum Weiterleiten der empfangenen Datenpakete an eine Kontrollstation (RNC) aufweisen.
PCT/EP2004/002359 2003-05-12 2004-03-08 Verfahren zur steuerung der sendeleistung einer sendenden station eines funkkommunikationssystems sowie sendende station, empfangende station und funkkommunikationssystem WO2004100393A2 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/556,533 US7489941B2 (en) 2003-05-12 2004-03-08 Method for control of the transmission power of a transmitting station in a radio communication system, transmitting station, receiving station and radio communication system
CN2004800128014A CN101048954B (zh) 2003-05-12 2004-03-08 控制无线电通信***发射站的发射功率的方法及相关装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10321207A DE10321207B3 (de) 2003-05-12 2003-05-12 Verfahren zur Steuerung der Sendeleistung einer sendenden Station eines Funkkommunikationssystems sowie sendende Station, empfangende Station und Funkkomunikationssystem
DE10321207.8 2003-05-12

Publications (2)

Publication Number Publication Date
WO2004100393A2 true WO2004100393A2 (de) 2004-11-18
WO2004100393A3 WO2004100393A3 (de) 2009-03-05

Family

ID=33426740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/002359 WO2004100393A2 (de) 2003-05-12 2004-03-08 Verfahren zur steuerung der sendeleistung einer sendenden station eines funkkommunikationssystems sowie sendende station, empfangende station und funkkommunikationssystem

Country Status (4)

Country Link
US (1) US7489941B2 (de)
CN (1) CN101048954B (de)
DE (1) DE10321207B3 (de)
WO (1) WO2004100393A2 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1662674A2 (de) * 2004-11-30 2006-05-31 NEC Corporation Funkkommunikationseinrichtung, Verfahren zur Leistungssteuerung dafür und Programm dafür
WO2006067137A1 (de) * 2004-12-22 2006-06-29 Siemens Aktiengesellschaft Verfahren zur übertragung von datenpaketen
WO2006129201A1 (en) * 2005-05-31 2006-12-07 Nokia Corporation A method of controlling power

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007102363A1 (ja) * 2006-03-01 2007-09-13 Matsushita Electric Industrial Co., Ltd. 無線送信装置および無線送信方法
KR100930519B1 (ko) * 2007-02-12 2009-12-09 삼성전자주식회사 이동통신 시스템에서 적응적 타깃 패킷에러율을 결정하기위한 장치 및 방법
JP5199930B2 (ja) * 2009-03-23 2013-05-15 株式会社エヌ・ティ・ティ・ドコモ 受信装置
US9025572B2 (en) * 2009-09-03 2015-05-05 Via Telecom Co., Ltd. Apparatus, system, and method for access procedure enhancements
US10448386B2 (en) * 2017-01-06 2019-10-15 Kt Corporation Method and apparatus for controlling redundant data transmission
JP7204614B2 (ja) * 2019-08-30 2023-01-16 株式会社東芝 無線通信装置
US10887782B1 (en) * 2020-01-31 2021-01-05 Trakpoint Solutions, Inc. Optimization and failure detection of a wireless base station network
US11418977B2 (en) 2020-01-31 2022-08-16 Trakpoint Solutions, Inc. Optimization and failure detection of a wireless base station network
US11159962B2 (en) * 2020-01-31 2021-10-26 Trakpoint Solutions, Inc. Optimization and failure detection of a wireless base station network

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1067706A1 (de) * 1999-05-21 2001-01-10 Alcatel Verfahren zur Verbesserung der Leistung eines mobilen Radiokommunikationssystems unter Feststellung der Konvergenz des Leistungs-Regelkreises
WO2001078291A2 (en) * 2000-04-07 2001-10-18 Telefonaktiebolaget Lm Ericsson (Publ) System and method for data burst communications in a cdma network
US20020049068A1 (en) * 2000-07-05 2002-04-25 Samsung Electronics Co., Ltd. Data retransmission apparatus and method in a mobile communication system employing HARQ technique

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4495648A (en) * 1982-12-27 1985-01-22 At&T Bell Laboratories Transmitter power control circuit
JP2000151504A (ja) * 1998-11-18 2000-05-30 Nec Saitama Ltd 基地局無線装置及びその制御方法
CN1210886C (zh) * 2000-08-21 2005-07-13 皇家菲利浦电子有限公司 用于信息通信的方法和使用该方法的装置
US7016364B2 (en) * 2001-05-04 2006-03-21 Alcatel Canada Inc. Power pooling in network downstream data transmission
DE10142123A1 (de) * 2001-08-30 2003-03-20 Philips Corp Intellectual Pty Verfahren zur Übertragung von Datenpaketen
DE10132577A1 (de) 2001-07-10 2003-01-30 Philips Corp Intellectual Pty Verfahren zur Übertragung von Datenpaketen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1067706A1 (de) * 1999-05-21 2001-01-10 Alcatel Verfahren zur Verbesserung der Leistung eines mobilen Radiokommunikationssystems unter Feststellung der Konvergenz des Leistungs-Regelkreises
WO2001078291A2 (en) * 2000-04-07 2001-10-18 Telefonaktiebolaget Lm Ericsson (Publ) System and method for data burst communications in a cdma network
US20020049068A1 (en) * 2000-07-05 2002-04-25 Samsung Electronics Co., Ltd. Data retransmission apparatus and method in a mobile communication system employing HARQ technique

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BAKER M P J ET AL: "POWER CONTROL IN UMTS RELEASE '99" INTERNATIONAL CONFERENCE ON 3G MOBILE COMMUNICATION TECHNOLOGIES, XX, XX, Nr. 471, 1999, Seiten 36-40, XP000900538 *
KUMAR P S ET AL: "POWER CONTROL BASED ON BIT ERROR RATE (BER) MEASUREMENTS" PROCEEDINGS OF THE MILITARY COMMUNICATIONS CONFERENCE (MILCOM). SAN DIEGO, NOV. 6 - 8, 1995, NEW YORK, IEEE, US, Bd. 1, 6. November 1995 (1995-11-06), Seiten 617-620, XP000580896 ISBN: 0-7803-2490-0 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1662674A2 (de) * 2004-11-30 2006-05-31 NEC Corporation Funkkommunikationseinrichtung, Verfahren zur Leistungssteuerung dafür und Programm dafür
EP1662674A3 (de) * 2004-11-30 2011-11-30 NEC Corporation Funkkommunikationseinrichtung, Verfahren zur Leistungssteuerung dafür und Programm dafür
WO2006067137A1 (de) * 2004-12-22 2006-06-29 Siemens Aktiengesellschaft Verfahren zur übertragung von datenpaketen
US8433356B2 (en) 2004-12-22 2013-04-30 Siemens Aktiengesellschaft Method for transmitting data packets
WO2006129201A1 (en) * 2005-05-31 2006-12-07 Nokia Corporation A method of controlling power

Also Published As

Publication number Publication date
US7489941B2 (en) 2009-02-10
WO2004100393A3 (de) 2009-03-05
DE10321207B3 (de) 2005-02-17
CN101048954B (zh) 2011-09-21
US20070015528A1 (en) 2007-01-18
CN101048954A (zh) 2007-10-03

Similar Documents

Publication Publication Date Title
DE60221606T2 (de) Verfahren zum Steuern der Datenübertragung in einem Funkkommunikationssystem
DE60311466T2 (de) Adaptive verstärkungsregelung mit rückkopplung
DE602004011141T2 (de) Verfahren zur Leistungsregelung mit Detektion von DTX (Diskontinuierliche Übertragungs)-Rahmen für Kommunikationskanäle
WO2004073245A1 (de) Verfahren zur datenübertragung
DE69838261T2 (de) Modifizierte downlink-leistungsregelung während makrodiversity
EP1668952B1 (de) Verfahren zur datenübertragung mit reduzierter wahrscheinlichkeit vom fälschlichen verwerfen von daten
EP1621037A2 (de) Verfahren zur daten bertragung
EP1119925B1 (de) Verfahren und funk-kommunikationssystem zur leistungsregelung zwischen einer basisstation und einer teilnehmerstation
DE602004002883T2 (de) Verfahren zur Verbesserung der Kapazität eines Rückverbindungskanals in einem drahtlosen Netzwerk
DE10321207B3 (de) Verfahren zur Steuerung der Sendeleistung einer sendenden Station eines Funkkommunikationssystems sowie sendende Station, empfangende Station und Funkkomunikationssystem
DE60108501T2 (de) Funksystem und -stationen für und verfahren zur multicast-kommunikation
EP1829243B1 (de) Verfahren zur übertragung von datenpaketen
DE10320156A1 (de) Verfahren zur Datenübertragung
EP1741249B1 (de) Verfahren, Teilnehmerstation und Netzseitige Einrichtung zur Funkkommunikation inbesondere im Rahmen des HSDPA-Dienstes
DE102004037815B4 (de) Mobilfunkeinrichtung und Verfahren zum Steuern von Mobilfunk-Senderessourcen in einer Mobilfunkeinrichtung
EP1487142A1 (de) Verfahren zur Einstellung der Parameter einer Datenübertragung anhand der Kanalqualität
EP1657858A1 (de) Verfahren zum Festlegen einer steuernden Basisstation für eine Übertragung in Aufwärtsrichtung von Datenpaketen einer Teilnehmerstation eines Funkkommunikationsystems sowie Vorrichtung zum Festlegen der steuernden Basisstation
EP1382210B1 (de) Verfahren zur paketorientierten übertragung von daten in einem kommunikationssystem
WO2004109951A1 (de) Verfahren zur steuerung von sendeleistungen von wenigstens zwei von einer sendenden station gleichzeitig übertragenen kanälen sowie sendende station
EP1587256A1 (de) Verfahren zur Datenübertragung in einem Funkkommunikationssystem
EP1694000A1 (de) Verfahren zum Betrieb einer Teilnehmerstation und zum Betrieb einer netzseitigen Einrichtung eines Funkkommunikationssystems
DE10315057A1 (de) Verfahren zur Datenübertragung
WO2008023002A1 (de) Verfahren zum betrieb einer ersten empfangenden station und verfahren zum betrieb einer sendenden station in einem multicast funkkommunikationssystem sowie empfangende station, sendende station und funkkommunikationssystem
WO2004028188A2 (de) Verfahren zur funkdatenübertragung, teilnehmerstation und basisstation
WO2005050900A1 (de) Verfahren zur übertragung von datenpaketen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20048128014

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2007015528

Country of ref document: US

Ref document number: 10556533

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10556533

Country of ref document: US