WO2004094047A1 - 中空糸膜型流体処理器 - Google Patents

中空糸膜型流体処理器 Download PDF

Info

Publication number
WO2004094047A1
WO2004094047A1 PCT/JP2004/005870 JP2004005870W WO2004094047A1 WO 2004094047 A1 WO2004094047 A1 WO 2004094047A1 JP 2004005870 W JP2004005870 W JP 2004005870W WO 2004094047 A1 WO2004094047 A1 WO 2004094047A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow fiber
fiber membrane
type fluid
membrane type
container
Prior art date
Application number
PCT/JP2004/005870
Other languages
English (en)
French (fr)
Inventor
Makoto Fukuda
Yukihiko Uchi
Satoshi Uezumi
Hidetoshi Hidaka
Takayasu Fujimura
Original Assignee
Asahi Medical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Medical Co., Ltd. filed Critical Asahi Medical Co., Ltd.
Priority to EP04729218.0A priority Critical patent/EP1634639B1/en
Priority to JP2005505798A priority patent/JP4678776B2/ja
Priority to US10/553,950 priority patent/US8496826B2/en
Priority to KR1020057019972A priority patent/KR101052372B1/ko
Priority to ES04729218.0T priority patent/ES2442853T3/es
Publication of WO2004094047A1 publication Critical patent/WO2004094047A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/021Manufacturing thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/024Hollow fibre modules with a single potted end
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/10Testing of membranes or membrane apparatus; Detecting or repairing leaks
    • B01D65/104Detection of leaks in membrane apparatus or modules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/04Liquids
    • A61M2202/0496Urine
    • A61M2202/0498Urea
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/15Detection of leaks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/14Specific spacers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/20Specific housing
    • B01D2313/205Specific housing characterised by the shape

Definitions

  • the present invention relates to a novel hollow fiber membrane type fluid processor loaded with a hollow fiber membrane bundle.
  • TECHNICAL FIELD The present invention relates to a hollow fiber membrane type fluid processor suitably used in the medical field and the like as a fluid processor particularly excellent in body fluid purifying ability.
  • a hollow fiber membrane type fluid processor having a cylindrical container loaded with a hollow fiber membrane bundle includes a hemodialyzer, a hemofilter, and a hemodiafiltration filter used for hemodialysis therapy or hemofiltration therapy.
  • Plasma separators and the like are known.
  • hemodialyzers are intended to remove waste or harmful substances accumulated in blood from blood based on the principles of diffusion and filtration. Since its commercialization, it has been used effectively for the treatment of patients with partially or completely lost renal function.
  • the removal of waste or harmful substances is generally carried out mainly through a membrane, and the material of the membrane is a membrane composed of a regenerated cell surface or a synthetic polymer such as polyacrylonitrile, polysulfone, or polyethylene.
  • a membrane consisting of is known and has a shape of a flat membrane or a hollow fiber membrane. In recent years, a hollow fiber membrane having a large contact area with blood and high purification performance has been used in many cases.
  • a hemodialyzer is a hollow fiber membrane, in which hundreds to tens of thousands of hollow fiber membranes are bundled, loaded into a cylindrical plastic container, and then filled with a potting material such as polyurethane resin. Is fixed in a container to produce a semi-finished product, and a part for introducing blood (header cap) is attached, and sterilization is performed to obtain a hemodialyzer.
  • a blood dialyzer using a hollow fiber membrane for blood treatment blood flows inside the hollow fiber membrane, and a dialysate containing an inorganic electrolyte or the like flows outside the hollow fiber membrane. Waste or harmful substances are removed to the dialysate side by diffusion or filtration.
  • the substance removal performance is used as an index indicating the purification capacity of waste or harmful substances of a hemodialyzer.
  • the main factor that determines the substance removal performance is the performance of the hollow fiber membrane that is in direct contact with blood or a permeate. That is, it is the mass transfer coefficient, and the material of the hollow fiber membrane, the size and distribution of the pore diameter permeating the substance, the thickness of the membrane that determines the permeation resistance, and the like have been studied and put to practical use.
  • Patent No. 380,430 Japanese Patent Publication No. 59-59, as a device for improving the material removal performance by making the dialysate flow uniform and improving the dispersion performance.
  • Japanese Patent Application Laid-Open No. 18084/1994 and Japanese Patent Application Laid-Open No. Hei 8-246263 / 1983 disclose a technique of inserting a spacer filament between hollow fiber membranes.
  • Japanese Patent Application Laid-Open No. 57-190407 and International Publication No. 01Z60477 Pamphlet disclosed a technique for making a hollow fiber membrane into a small corrugated shape called a crimp. Have been.
  • a uniform space is formed between the hollow fiber membranes to spin the dialysis fluid in a non-uniform flow so as to obtain a uniform flow.
  • complicated techniques are required, such as inserting spacer filaments between hollow fiber membranes or weaving hollow fiber membranes with spacer filaments. In some cases, the hollow fiber membrane could be broken or clogged, and the productivity was poor.
  • Japanese Patent Application Laid-Open No. Hei 8-173527 discloses a container shape for reducing the stagnation of the dialysate inside the container and obtaining a uniform flow as a result. Have been. In this technique, a transition portion having an inclination is provided between an end portion and a center portion of a container, and the inclination angle is continuously changed in a circumferential direction. However, the flow of the dialysate between the hollow fiber membranes near the dialysate inlet was not uniform, and the material removal performance was not sufficiently exhibited.
  • the space around the dialysate inflow portion of the container has a remarkably non-uniform structure, there is a problem that a desired effect cannot be obtained when the flow rate of the dialysate is changed.
  • the approaches to hollow fiber membranes and container shapes used to improve the substance removal performance by making the dialysate flow uniform in hemodialyzers have their own problems, and their effects are not sufficient. I could not say.
  • the hollow fiber membrane type fluid treatment device if the hollow fiber membrane is broken, the liquid to be treated and the treatment liquid are contaminated and the intended separation cannot be achieved.
  • the treatment liquid is blood, the blood will flow out of the body, and damage to the hollow fiber membrane must be avoided from the viewpoint of safety.
  • Japanese Patent No. 3151168 and Japanese Patent Application Laid-Open No. 59-004403 disclose techniques for partially reinforcing a membrane to reduce stress concentration. Is disclosed.
  • the hollow fiber membrane module corresponds to the cleaning solution inlet and the solution outlet from inside the resin layer at both ends of the hollow fiber membrane bundle.
  • a resin coating layer is provided over the entire circumference of the hollow fiber bundle.
  • a very long coat layer is required to ensure sufficient leak resistance, so that not only the effective membrane area for mass exchange is reduced, but also the hollow fiber is formed by the applied coat layer.
  • the flow of the purification solution flowing outside the membrane was sometimes affected. As a result, the removal performance of the hollow fiber membrane type module was sometimes reduced.
  • Japanese Patent No. 3,151,168 discloses that the filling rate of the hollow fiber membrane bundle (ie, the filling rate of the hollow fiber membrane bundle) By increasing the ratio of the total cross-sectional area of the hollow fiber membrane to the cross-sectional area inside the cylindrical container, the vibration of the hollow fiber membrane due to the flow of the purification treatment liquid is suppressed to prevent leakage due to breakage of the hollow fiber membrane bundle.
  • the method is described as prior art.
  • the filling rate is too high, it becomes extremely difficult to load the hollow fiber membrane bundle into the cylindrical container, and the hollow fiber membrane bundle is set in the cylindrical container. On the contrary, the hollow fiber membrane may be damaged.
  • the filling rate is disclosed as a low range of 34% to 41%, but the filling rate is low.
  • the dialysate causes a short pass, which is not always desirable in terms of substance removal performance.
  • baffle plates to prevent the water flow from directly hitting the hollow fiber membranes located at the inlet and outlet of the purification treatment liquid.
  • Japanese Patent Application Laid-Open No. 2000-420100 a hollow fiber membrane bundle near the top of a tongue-shaped baffle plate arranged corresponding to the inlet for the purification liquid and the outlet for the purification liquid is described.
  • the gap between the baffle plate and the hollow fiber membrane bundle is avoided by increasing the gap between the baffle plate and the side surface of the hollow fiber membrane bundle, thereby preventing breakage.
  • a baffle is used to prevent the hollow fiber membrane from sticking to the baffle plate during production, that is, in the potting step, thereby causing damage.
  • the length of the end of the plate reaches the resin layers formed at both ends of the hollow fiber membrane bundle. In any case, these are formed at positions corresponding to the purification treatment liquid inlet and the purification treatment liquid outlet on the inner peripheral surface of the cylindrical container with a curvature substantially along the inner peripheral surface with a gap from the inner peripheral surface.
  • the shape and size of the tongue-shaped baffle plate used are the same on both the inlet and outlet sides.
  • the leak due to damage to the hollow fiber membrane is limited to the case where the hollow fiber membrane is impacted by the water flow when the purification treatment liquid enters from the treatment liquid inlet or is discharged from the treatment liquid outlet as described above. It is also caused by an accidental drop or other impact when transporting or handling the hollow fiber membrane module.
  • Each of the above-mentioned baffle plates has an excellent effect in alleviating the impact due to the inflow and outflow of the cleaning solution, but when handling the hollow fiber membrane module, the leakage due to the impact such as dropping is reduced. It did not have the effect of preventing it.
  • the hollow fiber membrane type fluid processor is still unsatisfactory from the viewpoint of improving the material removal performance and preventing the Z or membrane breakage.
  • it has been widely used by increasing the strength and adding a spacer crimper.
  • the approach to hollow fiber membranes (bundles), for which technical studies have been conducted there is still room for improvement in the container structure and shape.
  • the present invention relates to a hollow fiber membrane type fluid processor having a cylindrical container loaded with a hollow fiber membrane bundle, wherein a fluid such as a dialysate is uniformly flowed between the hollow fiber membranes by a completely different approach, and the hollow
  • the main purpose is to improve the material removal performance of the thread membrane type fluid processor. More desirably, it is an object of the present invention to provide a hollow fiber membrane type fluid processor which is also excellent in effectively preventing damage to the end of the hollow fiber membrane caused by a drop impact or a water flow impact. is there.
  • the present inventors diligently studied the container shape of the hollow fiber membrane type fluid processor in order to solve the above-mentioned problems. As a result, if at least the treatment solution inlet side inside the cylindrical vessel is provided with a portion that gradually expands toward the vessel end surface, the material removal performance is surprisingly improved, and the variation is small. Was found. In addition, the inventors have also found that the occurrence of leaks due to damage to the hollow fiber membrane is greatly reduced depending on the portion where the diameter is increased, and thus the present invention has been completed.
  • the present invention provides a tubular container body loaded with a hollow fiber membrane bundle, a resin layer portion connected to one end of the container body portion, the hollow fiber membrane bundle fixed with a resin composition, and a processing liquid inlet.
  • a container head having a connection port serving as a connection port, and a resin layer portion connected to the other end of the container body, fixing the hollow fiber membrane bundle with the resin composition, and a connection port serving as a treatment liquid outlet.
  • a head cap attached to the head of each of the containers and provided with a header cap having a connection port for the liquid to be treated, wherein at least the treatment liquid inlet side of the cylindrical container
  • a hollow fiber membrane type fluid treatment device having, on the inner surface thereof, an enlarged portion capable of disposing the hollow fiber membrane so as to gradually increase the interval between the hollow fiber membranes toward the treatment liquid inlet end face.
  • the present invention provides a method of manufacturing a fuel cell system, comprising: A hollow fiber membrane type fluid processor, comprising a baffle plate provided and having a structure in which the diameter of the baffle plate gradually increases toward the container end face. "
  • the present invention provides a method for manufacturing a storage medium, comprising: an end taper portion in which the enlarged diameter portion gradually expands toward an end surface of the container body; A hollow fiber membrane type fluid processor having a hollow section.
  • the dialysate that has entered from the treatment solution inlet penetrates into the inside of the hollow fiber membrane bundle and is evenly distributed between the hollow fiber membranes. Because of the flow, the substance removal performance of the hemodialyzer is greatly improved. In addition, it is possible to very effectively prevent the end of the hollow fiber membrane from being damaged due to a drop impact or a water flow impact. The same applies when an external pressure filter is used as an endotoxin cut filter, for example, and the flow of the processing solution inside the container is made uniform between the hollow fiber membranes, so that the substance removal performance is improved. It can improve and achieve an excellent separation function.
  • FIG. 1 is a schematic partial front view showing an example of a hollow fiber membrane type fluid treatment device of the present invention.
  • FIG. 2 is a schematic diagram in which the vicinity of the processing liquid inlet side in FIG. 1 is enlarged to show an example of the baffle plate of the present invention.
  • FIG. 3 is a schematic three-dimensional view showing the shape of the baffle plate.
  • FIG. 4 is a schematic diagram in which the vicinity of the processing liquid inlet side in FIG. 1 is enlarged in order to show an example of the end portion of the present invention.
  • FIG. 5 is a schematic diagram in which the vicinity of the processing liquid inlet side is enlarged in order to show an example of a conventional technique in which the container body is entirely formed of only a tapered portion.
  • FIG. 6 is a schematic diagram in which the vicinity of the processing liquid inlet side is enlarged in order to show an example of a conventional technique having no end paper.
  • FIG. 7 is a graph showing the results of dialysate fluidity test results using red ink.
  • the hollow fiber membrane type fluid processor of the present invention is used in various fields such as a medical field, a food field, and an industrial field. It can be used and is not limited to hemodialyzers.
  • FIG. 1 is a schematic front view of a partial cross section of a hollow fiber membrane type fluid processor showing an example of an embodiment of the present invention.
  • the hollow fiber membrane type fluid processor according to the present embodiment is also used as a hemodialyzer, and a body 1 in which a hollow fiber membrane bundle 20 in which hundreds to thousands of hollow fiber membranes are bundled is loaded. It is composed of a cylindrical container 10 having an OA and a head 1 OB connected to the body 1 OA, and headers 30 and 40 attached to both ends of the cylindrical container 10.
  • the head 1 OB of the cylindrical container 10 is provided with processing liquid connection ports 12 and 13, and the processing liquid connection port 12 serves as, for example, a dialysate inlet.
  • Reference numeral 13 denotes an outlet for the treatment liquid.
  • the header-to-cap 30 is provided with a supply port 31 for a liquid to be treated such as blood
  • the header-to-cap 40 includes, for example, For example, an outlet 41 for the liquid to be treated is provided.
  • the blood flowing from the supply port 31 flows into the hollow fiber from the open end of the hollow fiber bundle, flows between the membranes, flows out from the other open end, and is discharged from the discharge port 41.
  • the processing liquid such as dialysate flows into the inside of the cylindrical container from the processing liquid connection port 12 and passes through the thousands of hollow fiber membranes arranged in the body to the processing liquid connection port 13. And outflow. These fluids exchange substances through the hollow fiber membrane while flowing in the cylindrical container.
  • Both ends of the hollow fiber membrane bundle 20 are fixed in the container by a resin layer 50 made of a resin composition (potting material) such as urethane.
  • the liquid to be treated flows inside each hollow fiber membrane, whereas the treatment liquid flows outside the hollow fiber membranes, utilizing a diffusion phenomenon caused by a concentration gradient through the hollow fiber bundle 20. Waste products in blood are removed by dialysis or filtration using a pressure gradient.
  • a portion gradually increasing in diameter toward the container end surface is provided at least on the inlet side of the treatment liquid inside the cylindrical container. Specifically, these are a baffle plate provided inside the vicinity of the processing liquid connection port or a tapered portion provided on the container body.
  • FIG. 2 is a schematic diagram enlarging one side of FIG. 1 for explaining an example of the baffle plate.
  • Fig. 3 shows a three-dimensional schematic diagram.
  • the length of the head 10B is L1
  • the half length of the body 10A is L2
  • the inner diameter gradually increases toward the container body end surface by connecting to the body body inner surface 14 and L2.
  • the height of the baffle plate 60 is L3, the inner diameter at the inner surface 14 of the body 1 OA is d4, and the inner diameter at the junction 16 of the body 1 OA and the head 1 OB is d. 3.
  • the inner diameter at the tip of the baffle plate portion 60 is defined as d2, and the diameter of the hollow fiber bundle 20 at the end face of the resin layer portion 50 is defined as d1.
  • the inner surface of the cylindrical container 10 continues to the inner surface 14 of the body main body and a baffle plate portion 60 that is connected to the inner surface 14 and gradually increases in inner diameter toward the end surface of the container main body. Since the baffle plate portion 60 has such a shape, the interval of the hollow fiber membrane bundle gradually increases along the inclined inner surface of the baffle plate portion 60 toward the processing liquid inlet side end surface. Easy to be placed on. That is, the hollow fiber membrane bundle 20 is evenly distributed along the inclined inner surface of the baffle plate 60, and there is no large space between the hollow fiber membranes in the container head 1 OB and one hollow fiber membrane 1 Books are arranged uniformly.
  • the dialysis solution which is a treatment solution
  • the treatment solution connection port 12 permeates into the hollow fiber membrane bundle 20
  • the dialysis solution easily flows uniformly between the hollow fiber membranes.
  • the hollow fiber membrane bundle 20 may be straight with respect to the central axis direction of the container without expanding along the diameter of the baffle plate. In such a case, a slight gap is likely to be formed between the hollow fiber membrane bundles near the entrance due to the flow of the processing liquid entering from the entrance side. Since the vibration of the hollow fiber membrane is moderately suppressed, the membrane is unlikely to be damaged.
  • the taper of the baffle plate portion 60 since the taper of the baffle plate portion 60 is present, the hollow fiber membranes constituting the hollow fiber membrane bundle 20 are uniformly dispersed in the container head 1 OB, and Since the impact load due to falling or water flow is not applied only to the local part of the fiber membrane bundle, it is considered that the damage of the hollow fiber membrane can be effectively prevented.
  • the baffle plate is formed over the entire inner peripheral surface.
  • a small gap such as a slit or a punching plate may be provided to form a gap in the circumferential direction.
  • the taper of the baffle plate allows the dialysate to flow. This is because the permeation into the hollow fiber membrane bundle 20 is facilitated, the dialysate can easily flow evenly between the hollow fiber membranes, and the effect of greatly improving the performance of removing blood wastes can be obtained.
  • the baffle plate is provided at least on the inlet side of the processing solution, the substance removing performance and the effect of preventing damage to the film can be obtained. More preferred.
  • the angle ⁇ formed by the center line of the inner surface of the container body and the inner surface of the baffle plate is defined by the following equation (1).
  • is the rate of change in the diameter of the inner surface of the baffle plate that gradually expands toward the container body end face. It is a numerical value, and this value greatly affects the damage at the end of the hollow fiber membrane.
  • the angle o between the center line of the inner surface of the container body and the inner surface of the baffle plate portion is larger than 0 ° and smaller than tan— 1 ⁇ 1/2 ⁇ (d1-d3) / 13 ⁇ .
  • the baffle plate When the baffle plate is at 0 °, that is, when the baffle plate is parallel to the center line of the inner surface of the container body, the hollow fiber membrane that comes into contact with the end surface of the baffle plate receives a load, and the drop impact or water impact As a result, the hollow fiber membrane in this portion is damaged and leaks easily occur.
  • the angle is smaller than 0 °, the same applies, of course, and the hollow fiber bundle is pressed and tightened by the baffle plate. .
  • there is no gap between the inner peripheral surface of the baffle plate and the hollow fiber membrane bundle especially when the bundle is straight without expanding, even if the processing liquid enters from the processing liquid inlet, it is hollow. It is difficult to form a gap between the yarn membranes, and it is difficult to obtain a uniform flow.
  • the angle is more preferably 1 ° or more, and particularly preferably 3 ° or more.
  • the flow rate of the processing solution varies depending on the purpose of use, In order to obtain a uniform flow and enhance the removal performance of waste products in blood, or to improve the removal performance at high flow rates, when the angle ⁇ is 1 ° or more, 2/3 'tan — 1 ⁇ 1/2 (2) It is more preferably smaller than (d 1 -d 3) / L3 ⁇ , particularly preferably not less than 3 ° and smaller than 2Z3 ⁇ tan — 1 ⁇ 1/2 ⁇ (d 1 -d 3) / L3 ⁇ .
  • the height L3 from the baffle plate tip to the tip is preferably 2 mm to 12 mm, and more preferably 5 mm to 1 Omm. If the height of the baffle plate is too low, it is not possible to suppress damage to the hollow fiber membrane due to a drop impact or a water flow impact. Conversely, if the height of the baffle plate is too high, the distance between the baffle plate 60 and the resin layer becomes narrower, and the processing liquid entered from the processing liquid inlet 12 enters the hollow fiber membrane bundle 20 sufficiently. Don't go.
  • Fig. 2 shows a case where the inner surface 14 of the trunk main body and the inner surface of the baffle plate portion 60 each have a linear slope, but are not limited to the linear shapes, but have a curvature. There is also. In some cases, there may be more than one stage. For example, there are two stages with a combination of taper (large angle) and taper (small angle).
  • FIG. 2 not only the case where the tip shape of the baffle plate portion is the same over the entire inner periphery of the container, but also the case where the baffle plate portion is curved along the outer periphery inside the resin layer portion 50 is preferably used.
  • the broken line 61 in FIG. 2 is a line that does not actually appear in the cross-sectional view.
  • the treatment liquid can be kept substantially constant over the entire circumference, and the treatment liquid entering from the treatment liquid connection port 12 uniformly permeates into the hollow fiber membrane bundle 20 after rotating around the outer periphery of the baffle plate portion 60. Therefore, excellent removal performance can be obtained.
  • the shape of the tip of the baffle plate may differ between the vicinity of the processing solution connection port and the vicinity in the opposite circumferential direction (see broken line 62 or FIG. 2). 63).
  • the method of forming the baffle plate described above is not particularly limited, and the baffle plate is externally attached to the cylindrical container body and welded later, or integrally formed as an extension of the inner surface of the cylindrical container by injection molding.
  • a known method such as a method may be used.
  • an end taper of the container body will be described.
  • FIG. 4 is a schematic diagram enlarging one side of the cylindrical container 10 of FIG. 1 for explaining the taper.
  • the length of the head 10 is 1_1, the length of the trunk 1 OA is L2, and the length of the end taper 15 gradually increases toward the end face of the container body.
  • the length (one side) is 4, the inner diameter of the body 1 OA is 14 and the inner diameter of the container is d4, the joint of the 1 OA and the head 1 OB is 16 and the inner diameter of the resin is 3 Hollow fiber bundle 20 at end face of part 50 Is defined as d 1.
  • a portion corresponding to half of the entire length of the body 1 OA of the cylindrical container 10 includes a straight portion 14 whose inner surface is parallel to the center line of the inner surface of the container and a straight portion 14 connected to the container body end surface. And a taper section 15 whose inner surface gradually expands. That is, the straight portion is a portion 14 parallel to the center line of the inner surface of the container main body on the inner surface of the body 1OA of the cylindrical container 10.
  • the length of the straight part is (L2-L4)
  • the inner diameter of the container at both ends is equal d4
  • the taper part is connected to the straight part and gradually expands toward the container body end face.
  • the length of the tapered portion is L4, and the inner diameter of the container at both ends is different between d4 and d3 (d4 ⁇ d3).
  • the reason for this is that, for example, when a dialysate, which is a processing liquid, flows in from the processing liquid connection port 12, the hollow fiber membrane bundle 20 in which thousands of hollow fiber membranes are bundled spreads uniformly along the tapered portion 15. Gaps are formed between the hollow fiber membranes. This is because the dialysate penetrates to the center of the hollow fiber membrane bundle 20 and easily flows uniformly between the hollow fiber membranes. In other words, the dialysate can uniformly come into contact with the dialysate not only on the outside of the hollow fiber bundle but also from the center to the outside on the outer peripheral surface of each hollow fiber membrane. This is considered to be because the substantial surface area of the hollow fiber membrane that comes into contact with the dialysate is greatly increased, and the removal of waste matter in the blood via the hollow fiber membrane bundle 20 is greatly improved. ing.
  • the filling rate in the straight portion 14 is larger than that in the end tapered portion 15. Since the dialysis fluid is uniformly penetrated into the hollow fiber membrane bundle 20 in the taper part, the speed of the dialysis fluid is faster in the straight part than in the taper part, and the mass transfer coefficient in the dialysis fluid is high. We believe that the removal of waste products will be promoted.
  • the straight portion referred to in the present invention is not limited to the case where the inner surface of the container body 1OA is completely parallel to the center line of the inner body surface as described above.
  • the taper used for injection molding is 0.5 ° or less. According to the knowledge, excellent material removal performance could not be obtained unless the taper at the end of the container body was less than 0.5 °.
  • the entrance side It may be provided on both the exit side.
  • the taper angle and shape, the length of the storage portion, and the like may be different between the inlet side and the outlet side, that is, the taper may be asymmetric.
  • the angle 0 between the center line of the inner surface of the container body and the inner surface of the end taper is expressed by the following equation (1).
  • 0 tan- 1 ⁇ 1 Z2 ⁇ (d3-d 4) ZL4 ⁇ (1)
  • 0 is the ratio of the change in diameter of the inner surface 15 of the tapered end portion that gradually increases toward the end surface of the container body. This is a numerical value, and the value of 0 greatly affects the performance of the hemodialyzer for removing waste products.
  • it is important that the angle 0 between the center line of the inner surface of the container body and the inner surface of the tapered end portion is larger than 0 ° and smaller than tan_ 1 ⁇ 1/2-(d 1 -d 4) / L4 ⁇ . .
  • the dialysate causes an extremely short path and the removal performance is extremely low, and the angle 0 is slightly less than 0 °. But if it is big, it will not cause a short pass.
  • the angle 0 is larger than tan— 1 ⁇ 1/2 ⁇ (d 1 -d 4) Z 4 ⁇ , a gap is formed between the hollow fiber membrane bundle 20 and the end taper 15. As a result, the dialysate causes a short path and the removal performance becomes very low. In the above, it is more preferable that the angle 0 is larger than 0.58 °.
  • the flow rate of the treatment liquid varies depending on the purpose of use, it is necessary to obtain a uniform flow even at a lower flow rate to enhance the removal performance of waste products in blood, or to enhance the removal performance at a high flow rate.
  • the more preferable range of the angle 0 is a range larger than 0.58 ° and smaller than 2/3 ⁇ tan— 1 ⁇ 1/2 / (d1-d4) / L4 ⁇ .
  • Fig. 4 shows a case where the straight section and the taper section are constituted by one step each.
  • the number of tapered sections is not limited to one step, and a plurality of taper sections are required. In some cases.
  • the taper large angle
  • taper small angle
  • straight are arranged in this order from the end to the trunk.
  • the angle of any one taper, or the angle of all tapers must be included in this range. If the taper with a smaller angle is less than 0.5 ° even if it is a two-stage taper, it is regarded as a straight part and a one-stage taper.
  • the taper is not necessarily limited to a linear one, but also includes a taper having a certain curvature.
  • the present invention also includes a tubular body whose cross-sectional area continuously increases toward the entrance end.
  • the ratio ((L2-L4)) of the length of the body straight portion to the length of the tapered portion at the end is preferably 0.7 to 20. If the ratio of the length of the body straight part to the sum of the lengths of the tapered part is less than 0.7, a slight short path of the dialysate will occur and the removal performance will be poor. May not be enough. On the other hand, if it is larger than 20, the length of the end taper with respect to the length of the straight portion is short, so that a short path also occurs.
  • the ratio (d 3 / d 4) of the inner diameter of the end taper portion to the inner diameter of the body straight portion is more than 0 and 3 or less, more preferably from 0.35. It is greater than 7.0 and less than or equal to 2.
  • the ratio of the inner diameter of the end taper portion to the inner diameter of the end portion of the body straight portion is 1 or less, the permeability of the dialysate into the hollow fiber bundle is extremely deteriorated because the space between the hollow fiber membranes is small. If it is larger than 3, the hollow fiber membrane bundle 20 will be extremely curved at the joining surface d3 of the container body 1OA and the container head 1OB due to the manufacturing method of the body fluid treatment device, Are not uniformly dispersed in the container head 10B.
  • the minimum diameter (d 4 ′) of the body may be substituted for the straight portion inner diameter (d 4).
  • the dialysate causes a so-called short-pass phenomenon, and the performance of removing waste matter in blood becomes extremely low.
  • the short-pass phenomenon referred to here means that the dialysate enters the inlet and then is immediately discharged from the outlet along the outer peripheral side of the hollow fiber membrane bundle 20.
  • the dialysate is substantially reduced to the hollow fiber membrane bundle 20. A phenomenon that does not go inside.
  • the diameter of the tape is reduced by a certain taper from the processing liquid inlet end to the vicinity of the center of the body, becomes the minimum diameter near the center, and becomes a certain taper from the vicinity of the center to the processing liquid outlet. If the diameter increases, the effect of improving the material removal performance can be obtained.
  • there is practically no straight portion having an inner peripheral surface parallel to the center line but the hollow fiber membrane is dispersed in a wide space by a taper at a certain angle, and the processing liquid flows into it. It seems that the treatment liquid permeates into the inside of the hollow fiber membrane bundle, and the processing liquid speed increases as the diameter of the inner peripheral surface is narrowed, thereby promoting the exchange of substances with the blood in the hollow fiber.
  • the method of forming the container (body portion) provided with the tapered end described above is not particularly limited, and a method of retrofitting an end taper and a container head to the end of a straight pipe, or a method of injection molding.
  • a known method may be used, such as a method of integrally forming by devising conditions.
  • the thickness of the container is almost constant and the shape itself is inclined, but the present invention is not limited to this, and the outer cylinder of the container has the same diameter, and the inner wall is tapered due to the thickness of the cylinder.
  • the baffle plate and the end tape on the inner surface of the container body are separately described as the portion provided at least on the inlet side of the processing liquid inside the cylindrical container and gradually increasing in diameter toward the end surface of the container. These have an effect alone as described above, By having both of them, more excellent effects can be obtained in material removal performance and prevention of damage to the hollow fiber membrane.
  • the combination There is no particular limitation on the combination.For example, when the processing liquid inlet side is provided with the paffle plate of the present invention and the end taper, the outlet side is only the baffle plate, and only the end taper, Either may be used when both have, or when both do not have.
  • the hollow fiber membrane type fluid treatment device of the present invention is a hollow fiber membrane that can be used for purposes such as dialysis, filtration, and adsorption, in which the shape of the container is important and the hollow fiber membrane accommodated therein is not particularly limited. Any may be used.
  • Examples of materials include cellulosic polymers such as regenerated cellulose and cellulose acetate, poly-7 acrylonitrile, polysulfone, polyethersulfone, polyvinylidene fluoride, polyethylene, polyester, polyamide, and ethylene-vinyl alcohol.
  • Examples of the polymer include synthetic polymers such as polymers and polyester-polyethersulfone polymers.
  • hydrophilized polysulfone hollow fiber membranes are widely used as materials that are excellent in removing a wide range of substances from low molecular weight proteins to low molecular components such as urea, and there are many methods for producing them. It has been disclosed. For example, International Published Gazette 9 8 Bruno 5 2 6 8 3 No.
  • Panfuretsu Bok inner diameter 2 0 0 ⁇ m, a thickness of 4 5 m, the water permeability is 1 6 0 ⁇ 2 2 O m I / m 2 ⁇ hr ⁇ Describes a hydrophilic polysulfone hollow fiber membrane of mm Hg.
  • the hollow fiber membrane bundle obtained by bundling about 900 to 100,000 such hollow fiber membranes is used as a specific baffle plate and If the hollow fiber membrane type fluid processor of the present invention can be obtained by loading Z or a cylindrical container provided with an end taper, filling the potting material, fixing the hollow fiber membrane end to the container, and assembling the container. .
  • a clearance of about 186 ml / min to about 20 Om / min is obtained as a urea removal performance, and a clearance of about 130 ml from 170 ml / min.
  • Vitamin B12 clearance of about ml is obtained.
  • the urea clearance is as high as about 195 mIZ to about 20 OmI
  • the clearance of vitamin B12 is as high as about 140 to 170 ml / min. It is possible to improve the performance, and as shown in the examples, the variation in the clearance when a plurality of measurements are performed is small.
  • an endoxin cut filter can be obtained, and a highly permeable water filter can be obtained from the polysulfone hollow fiber membrane.
  • a polysulfone polymer or a polyester-polyethersulfone polymer alloy hollow fiber membrane to which no hydrophilic material is added is used, an endoxin cut filter can be obtained, and a highly permeable water filter can be obtained from the polysulfone hollow fiber membrane.
  • the liquid to be treated is introduced from the treatment liquid inlet 12 and the treatment liquid is derived from the inside of the hollow fiber membrane, the liquid to be treated is easily filtered uniformly from each hollow fiber membrane, resulting in excellent removal. Performance and filtration performance are obtained.
  • the hollow fiber membrane type fluid processor of the present invention can be applied to such various uses, it has a particularly remarkable effect on the improvement of the substance removal performance by diffusion, and is therefore most preferably used as a blood dialyzer. it can.
  • the performance of removing waste products in blood was evaluated using the clearance of urea (molecular weight: 60), a typical uremic substance, and vitamin B12 (molecular weight: 1,355) as an index.
  • the measurement was performed according to the performance evaluation standards of the Japan Society of Artificial Organs, and the hemodialyzer module was equipped with a blood side flow rate of 200 mL, a dialysate flow rate of 500 mL, and a transmembrane pressure (TMP) of 0 mmH.
  • TMP transmembrane pressure
  • the above-mentioned underwater positive pressure test is the following method.
  • the treated liquid outlet 41 is sealed with a stopper, the treated liquid inlet 12 and outlet 13 are opened, and the hollow fiber membrane type body fluid treatment module is immersed in water. Hold for 30 seconds with air injected at 1.5 kgfcm 2. During this time, if air leaks from the liquid to be treated to the treatment liquid, it is determined that a leak has occurred, and if no air has leaked, it is determined that no leak has occurred.
  • the dialysate fluidity was evaluated by the following method. Flow the dialysate at 50 OmI / min to the dialysate side, inject 1 ml of red ink with the dialysate from the dialysate inlet with 1 shot 2 ml, and flow out the dialysate every 1 OmI. Then, the absorbance of the dialysate, that is, the concentration of red ink in the dialysate was measured. The obtained absorbance was plotted in a graph for each fraction, and the flowability of the dialysate was evaluated from the degree of deviation. The shape of the graph close to the normal distribution without bias is the ideal flow (plug flow) in which the dialysate penetrates uniformly into the hollow fiber bundle.
  • Hydrophilized polysulfone hollow fiber membrane obtained from polysulfone and polyvinylpyrrolidone by a known wet spinning method (with an inner diameter of 2.00 ⁇ m, a film thickness of 45 ⁇ m, and a water permeability of 30 O m I / m 2 ⁇ hr ⁇ mm H g, aqueous mass transfer coefficient of the urea 9. 0 x 1 0- 4 cm / sec, aqueous mass transfer coefficient 3 of vitamin B 1 2.
  • Table 1 shows the clearance of the obtained hollow fiber membrane type fluid processor and the rate of occurrence of drop leak.
  • the tip end face shape is a baffle plate which is curved along a 6 1 As the resin layer portion inner periphery of FIG. 4, membrane area 1 in accordance with Example 1.
  • the height L 3 of the baffle plate and the inner diameter d 2 at the tip are not constant at the inner circumference of the vessel, so the data in the table are used as reference values.
  • Table 1 shows the clearance of the obtained hollow fiber membrane type fluid processor and the rate of occurrence of drop leak.
  • a hollow fiber membrane type fluid processor having a membrane area of 1.5 m 2 was produced in the same manner as in Example 1 except that a cylindrical container having a temperature of 2 ° was used. Table 1 shows the treatment equipment clearance and the fall leak rate.
  • a hollow fiber membrane type fluid processor having a membrane area of 1.5 m 2 was produced in the same manner as in Example 1 except that a cylindrical container having ⁇ of 3.3 ° was used. Table 1 shows the clearance and drop leak rate of the obtained hollow fiber membrane type fluid processor.
  • a hollow fiber membrane type fluid treatment device having a membrane area of 1.5 m 2 was produced in the same manner as in Example 1 except that a cylindrical container having 13.6 ° and a body part of a completely straight type was used.
  • Table 1 shows the clearance of the obtained hollow fiber membrane type fluid processor and the rate of occurrence of drop leak.
  • Example 1 except that a cylindrical container provided with a tongue-shaped paffle plate 70 having a height of 9.5 mm and a width of 37 mm along the inner periphery of the trunk as shown in FIG. 5 was used.
  • a hollow fiber membrane type fluid processor having a membrane area of 1.5 m 2 was prepared according to the procedure described in Example 1. Table 1 shows the clearance of the obtained hollow fiber membrane type fluid processor and the rate of occurrence of drop leak. The urea clearances of Examples 1 to 5 were higher than those of Comparative Examples 1 and 2, and the dispersion was small. It was shown that the hollow fiber membrane type fluid treatment device of the present invention was also excellent in the performance of removing unnecessary substances from body fluids.
  • the occurrence rates of drop leaks of Examples 1 to 5 are much smaller than those of Comparative Examples 1 and 2, and the module for treating body fluid of the hollow fiber membrane type according to the present invention is excellent in safety with a low incidence rate of leakage. It was shown to be a module.
  • a hollow fiber membrane type fluid treatment device having a membrane area of 1.5 m 2 was produced in the same manner as in Example 1 except that a cylindrical container having an end taper portion length of 15 mm was used.
  • Table 2 shows the clearance of the obtained hollow fiber membrane type fluid treatment device.
  • Fig. 7 shows the results of a dialysate flow test using the same test sample.
  • Example 1 Using the end tapered portion length is a cylindrical vessel which is 1 1 mm, membrane area 1 a hollow fiber membrane number as 1 0 1 0 0 This. Except for using 7 m 2, the hollow fiber membrane according to Example 1 A fluid processor was fabricated. Table 2 shows the clearance of the obtained hollow fiber membrane type fluid processor. It is a hemodialyzer. Table 2 also shows the numerical values of other definitions.
  • a hollow fiber membrane type fluid processor was produced in the same manner as in Example 1 except that the number of membranes was changed to 00 and the membrane area was set to 1.7 m 2 .
  • Table 2 shows the clearance of the obtained hollow fiber membrane type fluid processor.
  • Example 6 As shown in Table 2, the urea and vitamin B12 clearances of Example 6 were 195.7 ml / min and 1 respectively under the conditions of a blood flow rate of 200 mLZ and a dialysate flow rate of 50 OmLZ. 46.5 ml / min, urea and vitamin B12 clearance of Example 7 were 199.61711 minutes, 165.2 ml1 minute, respectively, and urine and vitamin B12 clearance of Example 7 were 191.
  • the urea and vitamin B12 clearances of 6 mIZ, 135.7 mI / min and Example 9 were as high as 196.8 mlZ and 150.6 mIZ, respectively. — 9 was very high.
  • the urea and vitamin B12 clearances of Comparative Example 3 were 174.7 mI and 109.0 mlZ, respectively, which were lower than those of the examples.
  • the reason for this is that, as shown in Fig. 7, the dialysate of the example is close to the ideal flow (Brag flow), that is, the hollow fiber membrane in which the dialysate flows uniformly into the hollow fiber bundle and comes into contact with the dialysate. It was inferred that the substantial membrane area of the bundle was large.
  • the variation in urea clearance and vitamin B12 clearance ⁇ is smaller than that of Comparative Example 3 because the standard deviation ⁇ of Examples 6-9 is smaller than that of Comparative Example 3. Therefore, the flow of dialysate between the samples of the body fluid processor of the Example It is also shown that the variation of The quality control was also shown to be very good.
  • the hollow fiber membrane type fluid treatment device of the present invention is provided with a portion that gradually increases in diameter toward the container end face, that is, a specific baffle plate or end taper, at least on the inlet side of the treatment liquid inside the cylindrical container. ing.
  • a portion that gradually increases in diameter toward the container end face that is, a specific baffle plate or end taper, at least on the inlet side of the treatment liquid inside the cylindrical container. ing.
  • the material removal performance is remarkably high and the variation is small, and the leakage due to the damage of the hollow fiber membrane is greatly reduced depending on the portion where the diameter is increased. Therefore, it can be suitably used in various fields such as a medical field, a food field, and an industrial field, for example, a hemodialyzer, an endotoxin cut filter, a water filter, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Urology & Nephrology (AREA)
  • Vascular Medicine (AREA)
  • Emergency Medicine (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • External Artificial Organs (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

従来技術において十分に達成されていなかった物質除去性能が非常に高く、しかも、落下による衝撃や水流による衝撃に起因する中空糸膜端部の破損を効果的に防止する中空糸膜型体液処理器を提供することを課題とする。本発明では、両端を樹脂組成物で固定した樹脂層部をもつ中空糸膜束を装填した筒状容器と、筒状容器の両端部付近の外周面に形成された処理液の出入口となる接続口と、筒状容器の両端部に取り付けられた被処理液の接続口を備えるヘッダーキャップとを少なくとも備えた中空糸膜型体液処理用モジュールにおいて、少なくとも、筒状容器の処理液入口側内面に、中空糸膜を処理液入口端面に向かって徐々に中空糸膜間の間隔が拡大するように配置させることが可能な拡径部を有することを特徴とする中空糸膜型流体処理器を提供する。

Description

明 細 書 中空糸膜型流体処理器
〔技術分野〕
本発明は、 中空糸膜束を装填した新規な中空糸膜型流体処理器に関する。 本 発明は、 特に体液浄化能力に優れた流体処理器として、 医療分野などに好適に 用いられる中空糸膜型流体処理器に関する。
〔背景技術〕
従来、 中空糸膜束が装填された筒状容器を有する中空糸膜型流体処理器とし ては、 血液透析療法あるいは血液濾過療法などに使用される血液透析器や血液 濾過器、 血液透析濾過器、 血漿分離器等が知られている。 例えば、 血液透析器 は、 血液中に蓄積した老廃物あるいは有害物を、 拡散、 濾過などの原理に基づ き血中から除去することを目的とし、 2 0世紀半ばにドラム型血液透析器とし て実用化されてから、 現在においても腎機能が一部または完全に喪失した患者 の治療用途に用いられ有効に利用されている。 老廃物あるいは有害物の除去は 主として膜を介し行われるのが一般的であり、 膜の材質としては、 再生セル口 ースからなる膜や、 たとえばポリアクリロニトリルやポリスルホン、 ポリェチ レンなどの合成高分子からなる膜が公知であり、 形状は、 平膜あるいは中空糸 膜があるが、 近年は血液との接触面積を大きくでき浄化性能の高い中空糸膜状 の膜が多く用いられている。
さらに血液透析器の形状は、 中空糸膜であれば数百から数万本を束ねて筒状 プラスチック製容器に装填した後、 主にポリウレタン樹脂のようなポッティン グ材を充填して中空糸膜を容器に固定し半製品を作成して、 さらに血液を導入 する部品 (ヘッダーキャップ) を取り付け、 滅菌処理を行って血液透析器とさ れる。また、血液処理にあたっては、中空糸膜を用いた血液透析器の場合には、 中空糸膜内側に血液を流し、 さらにその外側には無機電解質等を含んだ透析液 を流して、 血液中の老廃物あるいは有害物を透析液側に拡散あるいは濾過の原 理によって除去している。 血液透析器の老廃物あるいは有害物の浄化能力を表す指標として物質除去性 能が用いられるが、 この物質除去性能を決定する主な要因は、 血液あるいは透 析液と直接接する中空糸膜の性能、 即ち物質移動係数であり、 従来から中空糸 膜の素材、 物質を透過する孔径の大きさや分布、 透過抵抗を決める膜の厚みな どが検討され実用化されてきた。
さらに、 これら中空糸膜の物質除去性能を最大限に発現させるためには、 中 空糸膜束に対する工夫、 および容器の構造や形状に対する工夫という大きく二 つの観点から検討されており、 前者については、 筒状容器の断面積に占める中 空糸膜束の断面積を示す充填率の適正化などが、 後者については、 容器長と容 器内径の関係などが検討され実用化されてきた。 しかし、 これまでの血液透析 器では、 透析液が中空糸膜間に均一には流れておらず、 血液透析器の物質除去 性能は十分ではなかった。
そこで、 中空糸膜束に関しては、 透析液流れを均一にして物質除去性能を上 げるとともに除去性能のバラツキを少なくする工夫として、 特許第 3 0 8 0 4 3 0号公報、 特公昭 5 9 - 1 8 0 8 4号公報および特開平 8— 2 4 6 2 8 3号 公報に、中空糸膜間にスぺ一サ一フィラメントを入れる技術が開示されている。 また、 特開昭 5 7 - 1 9 4 0 0 7号公報および国際公開第 0 1 Z 6 0 4 7 7号 パンフレツ卜には、 中空糸膜をクリンプと呼ばれる小さな波型にする技術が開 示されている。 これらは何れも、 中空糸膜間に一定の空隙を形成することによ リ、 透析液の偏流を紡糸して均一な流れを得ようとするものであるが、 スぺー サーフイラメント入リ中空糸膜束については、 スぺーサ一フイラメントを中空 糸膜間に挿入する、 或いはスぺーサーフイラメン卜で中空糸膜を編むような複 雑な技術を要し、 またクリンプ糸については、 波型部で中空糸膜が折れたり、 閉塞したりする場合があり、 生産性に劣る面があった。
一方、 容器の構造や形状に関しては、 特開平 8— 1 7 3 5 2 7号公報には、 容器内部での透析液の滞留を軽減し、 結果として均一な流れを得るための容器 形状が開示されている。 この技術は、 容器の端部と中央部との間に傾斜を有す る移行部を設け、 しかもその傾斜角度が周方向に連続的に変化する形状にした ものであるが、 この方法でもなお、 透析液入口付近での透析液の中空糸膜間へ の流れ込みが均一にはならず、 物質除去性能を十分に発揮できるものではなか つた。また、容器の透析液進入部付近の空間が著しく不均一な構造になるため、 透析液の流量を変化させると所望の効果が得られないという問題もあった。 以上述べたように、 これまでの血液透析器における透析液流れを均一にして 物質除去性能を向上させるための中空糸膜や容器形状に関するアプローチでは それぞれに問題があり、 その効果は決して十分とは言えなかった。 ところで、 中空糸膜型流体処理器においては、 中空糸膜が破損すると、 被処 理液と処理液がコンタミを起こして目的とする分離を達成できない。 さらに処 理液が血液の場合は、 血液が体外に流出してしまうことになリ、 安全性の観点 からも中空糸膜の破損は避けなければならない。
中空糸膜、 特に中空糸膜端部付近の破損を防ぐため、 従来から種々の技術手 段が提案されているが、 前述の物質除去性能の場合と同様に、 中空糸膜 (束) に対する工夫、 および容器の構造や形状に対する工夫という大きく二つの観点 から検討されている。
中空糸膜に関しては、 例えば、 特許第 3 1 5 1 1 6 8号公報および特開昭 5 9 -0 0 4 4 0 3号公報に、部分的に膜を補強して応力集中を緩和する技術が開 示されている。 すなわち、 水流による衝撃および落下による衝撃の双方を緩和 してリークをなくすことを目的として、 中空糸膜モジュールにおいて、 中空糸 膜束両端の樹脂層内側より浄化処理液入口及び処理液出口に対応する位置まで 中空糸束全周に渡り樹脂のコート層を付与している。 ところが、 いずれも十分 な耐リーク性能を確保するために非常に長いコート層を必要としておリ、 その ため、 物質交換に有効な膜面積が小さくなるばかりか、 付与されたコート層に よって中空糸膜の外部を流れる浄化処理液の流れが影響を受けることがあった その結果、 中空糸膜型モジュールの除去性能を低下させることがあった。
また、 中空糸膜束に関しては、 特許第 3 1 5 1 1 6 8号公報には、 筒状容器 における浄化処理液入口及び処理液出口に対応する位置において、 中空糸膜束 の充填率(すなわち筒状容器内側の断面積に対する中空糸膜断面積の総和の比) を高くして、 浄化処理液の流動による中空糸膜の振動を抑えることにより、 中 空糸膜束の破損によるリークを防ぐ方法が従来技術として記載されている。 し かし、 前記公報に記載されているように、 充填率を上げ過ぎると筒状容器内へ の中空糸膜束の装填が非常に困難となり、 中空糸膜束を筒状容器にセッ卜する 際にかえって中空糸膜の破損を引き起こすおそれがあった。 そのため、 特開昭 5 9 -0 0 4 4 0 3号公報に記載の中空糸膜型モジュールにおいては、充填率が 3 4 %〜4 1 %と低めの範囲が開示されているが、 充填率が低いと透析液がシ ョートパスを起こしゃすいため、 物質除去性能の点で必ずしも好ましいもので はなかった。
一方、 容器形状に関しては、 特に浄化処理液の入口や出口に位置する中空糸 膜に対して、 水流が直接当らないようにするためのバッフル板について数多く 検討されている。 例えば、 特開 2 0 0 0 - 4 2 1 0 0号公報では、 浄化処理液入 口および浄化処理液出口に対応して配置される舌片状のバッフル板の頂部近傍 での中空糸膜束の側面との間の隙間を大きくとるようにして、 バッフル板と中 空糸膜束とが直接接触するのを回避することにより、 破損の発生を防止しょう としている。 また、 特開 2 0 0 0 -3 5 0 7 8 1号公報では、 製造時、 すなわち ポッティング工程においてバッフル板に中空糸膜が固着して破損の一因となる のを防止するために、 バッフル板の先端を中空糸膜束の両端に形成した樹脂層 部に届く長さとしている。 これらは、 いずれにおいても、 筒状容器の内周面に おける浄化処理液入口および浄化処理液出口に対応する位置に、 内周面から隙 間をおいて内周面にほぼ沿った曲率で形成される舌片状のバッフル板の形状と 大きさは、 入口側および出口側とも同じとされている。
ところが、 中空糸膜の損傷によるリークは、 前記のように浄化処理液が処理 液入口から進入する際、 または処理液出口から排出される際に、 水流によって 中空糸膜に衝撃が加わる場合のみではなく、 中空糸膜型モジュールの輸送や取 リ扱い時に、 偶発的に発生する落下等の衝撃によっても発生する。 前述のバッ フル板は、 いずれも浄化処理液の出入りによる衝撃の緩和に対しては優れた効 果が認められるが、 中空糸膜モジュールの取り扱いの際、 落下等の衝撃に基づ くリークを防止する効果までは有していなかった。 例えば、 特開 2 0 0 3— 1 0 2 8 3 3号公報には、 透析器を再利用する際に高水流洗浄により中空糸膜が 破損することを防ぐために、 中空糸膜束全周を支持しかつ遠心成型により湾曲 したウレタン面に沿った周縁型の分散リング (バッフル板と同義) が記載され ており、 このような全周型のバッフル板は、 中空糸膜束の端部全体を保護する うえで好ましいと思われる。 しかし、 ウレタン面の湾曲に沿ったバッフル板を 設置してモジュール成型することは決して容易ではなく、 製造上の困難性を伴 つていた。
以上述べたように、 中空糸膜端部の破損を防止するための中空糸膜や容器形 状に関するアプローチではそれぞれに問題があり、 その効果は決して十分とは 言えなかった。 従って、 中空糸膜型流体処理器においては、 物質除去性能の向 上および Zまたは膜破損防止の観点からまだ満足できるものではなく、 特に、 強度アップおよびスぺーサーゃクリンブの付与等によって広範に技術検討され てきた中空糸膜 (束) に対するアプローチに比して、 容器構造や形状について はまだまだ改善の余地が残されていた。
〔発明の開示〕
本発明は、 中空糸膜束が装填された筒状容器を有する中空糸膜型流体処理器 において、 従来とは全く異なるアプローチにより透析液などの流体を中空糸膜 間にまで均一に流し、 中空糸膜型流体処理器の物質除去性能を向上させること を主目的とする。 さらに望ましくは、 落下による衝撃や水流による衝撃に起因 する中空糸膜端部の破損を効果的に防止することにも優れた中空糸膜型流体処 理器を提供することを目的とするものである。
そこで、 本発明者らは、 前記課題を解決するために中空糸膜型流体処理器の 容器形状について鋭意検討した。 その結果、 筒状容器内部の少なくとも処理液 の入口側に、 容器端面に向かって徐々に拡径する部分を設けると、 驚くべき事 に物質除去性能が格段に向上し、 しかもそのバラつきが少ないことを見出した。 また、 拡径する部分によっては、 中空糸膜の損傷によるリーク発生が大きく低 減することも見出し、 これらを以つて本発明を完成するに至った。
すなわち、 本発明は、 「中空糸膜束を装填した筒状の容器胴部と、 該容器胴部 の一端に連なり、 樹脂組成物で中空糸膜束を固定した樹脂層部および処理液入 口となる接続口とを有する容器頭部と、 該容器胴部の他端に連なり、 樹脂組成 物で中空糸膜束を固定した樹脂層部および処理液出口となる接続口とを有する 容器頭部と、 該それぞれの容器頭部に取り付けられ、 被処理液の接続口を備え るへッダ一キャップとを少なくとも備えた中空糸膜型流体処理器において、 少なくとも、 筒状容器の処理液入口側内面に、 中空糸膜を処理液入口端面に 向かって徐々に中空糸膜間の間隔が拡大するように配置させることが可能な拡 径部を有することを特徴とする中空糸膜型流体処理器。」 に関する。
また、 本発明は 「該拡径部が、 筒状容器の処理液入口に対応する位置に筒状 容器内周面から隙間をおいて内周面に略沿った曲率で内周面全周にわたって設 けられたバッフル板からなり、 かつ該バッフル板が容器端面に向かって徐々に 拡径している構造であることを特徴とする中空糸膜型流体処理器。」 に関する。 また、本発明は、 「該拡径部が容器本体端面に向かって徐々に拡大する端部テ ーパ部からなり、 さらに、 処理液入口側における容器本体内面が胴部ストレー ト部を有すること特徴とする中空糸膜型流体処理器。 J に関する。
本発明の中空糸膜型流体処理器によれば、 例えば血液透析器として使用した 場合に、 処理液入口から進入した透析液が中空糸膜束の内部にまで浸透し中空 糸膜間に均一に流れるので、 血液透析器の物質除去性能が大幅に向上する。 し かも、 落下による衝撃や水流による衝撃に起因する中空糸膜端部の破損を非常 に効果的に防止することもできる。 また、 例えばエンドトキシンカットフィル ターなどで外圧型の濾過器として使用した場合にも同様であり、 容器内部にお ける処理液の流れが中空糸膜間で均一化されることにより、 物質除去性能が向 上し、 優れた分離機能を達成できる。
〔図面の簡単な説明〕
図 1は、 本発明の中空糸膜型流体処理器の一例を示す部分断面正面模式図で あ 。
図 2は、 本発明のバッフル板の一例を示すために、 図 1の処理液入口側付近 を拡大した模式図である。
図 3は、 バッフル板の形状を示す立体模式図である。
図 4は、 本発明の端部テ,パの一例を示すために、 図 1の処理液入口側付近 を拡大した模式図である。
図 5は、 容器胴部が全体にわたってテーパ部のみで構成された従来技術の一 例を示すために、 処理液入口側付近を拡大した模式図である。
図 6は、 端部亍ーパを有さない従来技術の一例を示すために、 処理液入口側 付近を拡大した模式図である。
図 7は、 朱墨汁を用いた透析液流れ性試験結果の結果を示すグラフである。
〔発明を実施するための最良の形態〕
以下に、 本発明を詳細に説明する。
以下、 流体が血液であり、 流体処理器が血液透析器である場合について説明 するが、 本発明の中空糸膜型流体処理器は、 医療分野、 食品分野および工業分 野等の様々な分野で使用することも可能であり、 血液透析器に限定されるもの ではない。
図 1は本件発明の実施形態の一例を示す中空糸膜型流体処理器の部分断面正 面模式図である。
本実施形態の中空糸膜型流体処理器は血液透析器としても用いられるもので あり、 中空糸膜が数百から数千本が束ねられた中空糸膜束 2 0が装填される胴 部 1 O Aおよび該胴部 1 O Aに連なる頭部 1 O Bを有する筒状容器 1 0と、 筒 状容器 1 0の両端に取り付けられたヘッダ一キャップ 3 0、 4 0とから構成さ れる。 前記筒状容器 1 0の頭部 1 O Bには、 処理液接続口 1 2, 1 3が形成さ れており、 処理液接続口 1 2は、 例えば透析液の入口をなし、 処理液接続口 1 3は、 前記処理液の出口をなしている。 ヘッダ一キャップ 3 0には、 例えば、 血液の如く被処理液の供給口 3 1が備えられ、 ヘッダ一キャップ 4 0には、 例 えば、 前記被処理液の排出口 4 1が備えられている。
ここで、 血液が透析器を通過して浄化される仕組みを説明する。 供給口 3 1 から流入した血液は中空糸束の開口端から中空糸内部に流入し各膜の間を流れ てもう一方の開口端から流出し、 排出口 4 1から排出される。 一方、 透析液等 の処理液は処理液接続口 1 2から筒状容器内部に流入し、 胴部に配列している 数千本の中空糸膜間を通過して処理液接続口 1 3へと流出する。 そしてこれら の流体は筒状容器内を流れる間に中空糸膜を介して物質交換を行う。
中空糸膜束 2 0は、 その両端部分をウレタンのような樹脂組成物 (ポッティ ング材) からなる樹脂層部 5 0により容器内に固定されている。 前記被処理液 は、 各中空糸膜の内側に流されるのに対し、 処理液は各中空糸膜の外側面に流 され、 中空糸膜束 2 0を介した濃度勾配による拡散現象を利用した透析や圧力 勾配による濾過により、 血液中の老廃物の除去が行われている。 本発明の中空糸膜型流体処理器においては、 筒状容器内部の少なくとも処理 液の入口側に、 容器端面に向かって徐々に拡径する部分が設けられている。 こ れらは、 具体的には、 処理液接続口付近の内部に設けられたバッフル板または 容器胴部に設けられたテーパ部である。
図 2は、 前記バッフル板の一例を説明するために図 1の片側を拡大した模式 図である。 さらに、 図 3にその立体模式図を示す。
図 2において、 頭部 1 0 Bの長さを L 1、 胴部 1 0 Aの全長の半分の長さを L 2、 胴部本体内面 1 4に連なって容器本体端面に向かって内径が徐々に拡大 するバッフル板部 6 0の高さを L 3、胴部 1 O Aの内面部 1 4での内径を d 4、 胴部 1 O Aと頭部 1 O Bの接合部 1 6での内径を d 3、 バッフル板部 6 0先端 での内径を d 2、樹脂層部 5 0の端面での中空糸束 2 0の径を d 1と定義する。 図示したように、 筒状容器 1 0の内面は、 胴部本体内面 1 4とそれに連なつ て容器本体端面に向かって内径が徐々に拡大するバッフル板部 6 0に続いてい る。 前記バッフル板部 6 0がこのような形状を有することにより、 中空糸膜束 は、 バッフル板部 6 0の傾斜した内面に沿って、 処理液入口側端面に向かって 間隔が徐々に拡大するように配置されやすい。 すなわち、 中空糸膜束 2 0がバ ッフル板部 6 0の傾斜した内面に沿って均一に分散され、 容器頭部 1 O B内の 中空糸膜間には大きな空間がなく中空糸膜 1本 1本が均一に配置される。 この 結果、 例えば処理液である透析液が処理液接続口 1 2から入ると、 中空糸膜束 2 0の内部にまで浸透し、 透析液が中空糸膜間に均一に流れやすくなリ、 透析 液と接触する中空糸膜の実質的な面積が大きくなることで、 中空糸膜束 2 0を 介した血液中の老廃物の除去性能が大幅に向上する。 しかも、 輸送中偶発的に 発生する落下による衝撃や流体による衝撃に起因する中空糸膜端部の破損を効 果的に防止することができるのである。 なお、 中空糸膜束 2 0は、 バッフル板 の拡径に沿って広がらずに、容器の中心軸方向に対して真直ぐであってもよい。 その場合は、 入口側から進入してきた処理液の流れにより、 進入口付近の中空 糸膜束間に僅かな隙間が生じやすいが、 しかし、 全周方向のバッフル板により 中空糸膜の振動が適度に抑制されるため、 膜の損傷は起こりにくいものと思わ れる。
さらに、 この他の効果として、 バッフル板部 6 0のテ一パが存在するため、 中空糸膜束 2 0を構成する中空糸膜が容器頭部 1 O B内にて均一に分散し、 中 空糸膜束のある局所的な部分にのみ落下や水流による衝撃負荷がかかることが ないため中空糸膜の破損を効果的に防止できると考えられる。
本発明においては、 前記バッフル板は内周面の全周にわたって形成されてい るが、 例えば、 スリットやパンチング板などの小さな孔を設けることにより、 周方向に隙間を形成することもできる。 このような場合であっても、 輸送中偶 発的に発生する落下による衝撃や流体による衝撃に起因する中空糸膜端部の破 損が防止でき、 また、 バッフル板のテーパにより、 透析液が中空糸膜束 2 0の 内部にまで浸透し、 透析液が中空糸膜間に均一に流れやすくなリ、 血液中の老 廃物の除去性能が大幅に向上するという効果が得られるからである。
このように、 少なくとも処理液入口側にバッフル板を設ければ、 物質除去性 能および膜の損傷防止効果が得られるが、 特に損傷防止効果の観点から、 入口 側と出口側の両方に設けるとより好ましい。 バッフル板の傾斜については、 容器本体内面中心線とバッフル板部内面との なす角度 αは次式 (1 ) で定義される。
a = tan 一1 { 1 / 2 ■ ( d 2 - d 3 ) /L 3 } ( 1 ) つまり、 αは容器本体端面に向かって徐々に拡径するバッフル板部内面の径 の変化の割合を数値化したものであり、 そしてこの の値が中空糸膜端部の破 損に大きく影響する。
容器本体内面中心線とバッフル板部内面とのなす角度 o ま、 0 ° より大きく、 tan—1 { 1 / 2 ■ ( d 1 - d 3 ) /13 } より小さいことが好ましい。
が 0 ° である場合、 すなわちバッフル板が容器本体内面中心線にそって平 行である場合には、 バッフル板端面に接触する中空糸膜が負荷を受ける状態と なリ、 落下衝撃や水流衝撃によリ該部分の中空糸膜が損傷しリークがおきやす い。 が 0 ° より小さい場合も勿論同様であり、 中空糸束がバッフル板によつ て押し締め付けられることとなり、 落下衝撃や水流衝撃により該部分の中空糸 膜が損傷しリークがおきやすくなってしまう。 また、 バッフル板の内周面と中 空糸膜束との間に隙間が全く無くなるので、 特に束が拡径せずに真直ぐな場合 には、 処理液入口から処理液が進入しても中空糸膜間に間隙が生じ難くなリ、 均一な流れが得られ難い。
一方で、 角度 Ofが tan — 1 { 1 / 2 ■ ( d 1 - d 3 ) /1 3 } より大きい場合、 中空糸膜束 2 0とバッフル板 6 0との間に隙間が生じ中空糸膜が均一に分散さ れず、 中空糸膜間にも大きな空間が生じてしまい、 落下衝撃や水流衝撃により 該部分の中空糸膜が損傷しリークがおきやすくなってしまう。
上記において、 角度は 1 ° 以上がより好ましく、 3 ° 以上が特に好ましい。 さらに、 使用目的により処理液の進入流量は様々であるが、 より低流量でも 均一な流れを得て血液中の老廃物の除去性能を高めたり、 あるいは高流量での 除去性能を高めるためには、 角度 αが 1 ° 以上で、 2/3 ' tan —1 { 1 /2 ■ (d 1 -d 3) /L3} より小さいことがより好ましく、 3° 以上で、 2Z3 ■ tan —1 { 1 /2 ■ (d 1 -d 3) /L3} より小さいことが特に好ましい。 バッフル板部先端までの高さ L 3は、 2 mmから 1 2 mmであることが好ま しく、 5mmから 1 Ommであることがより好ましい。 バッフル板の高さが低 すぎると、 落下衝撃や水流衝撃による中空糸膜の損傷を抑制することができな い。 逆に、 バッフル板の高さが高すぎると、 バッフル板 60と樹脂層部との間 隔が狭くなリ、 処理液入口 1 2から入った処理液が十分に中空糸膜束 20内に 入って行かない。
図 2には、 胴部本体内面 1 4とバッフル板部 60の内面がそれぞれ直線形状 の傾斜を有する場合を図示したが、 それぞれ直線形状に限定されるものではな く、 曲率を持っている場合もある。 また、 2段以上の複数の場合もある。 例え ば、 テーパ (角度大)、 テーパ (角度小) の組み合わせで 2段に構成される場合 などである。
さらに、 図 2においてバッフル板部先端形状が容器内周全体にわたって同じ である場合だけでなく、 樹脂層部 50の内側の外周にあわせて湾曲させた場合 6 1も好ましく用いられる。 これは、 バッフル板の端部形状が、 樹脂層部内側 外周にそって湾曲した形状であることを特徴とする例である。 すなわち、 バッ フル板先端までの高さ (L 3) が、 バッフル板の周方向によって異なる場合で ある。 (なお、 図 2中の破線 6 1は断面図では実際には現れない線である。) こ れによリ、 樹脂層部 50と該バッフル板部 60の先端との間の距離を容器内周 全体にわたってほぼ一定にたもつことができ、 処理液接続口 1 2から入った処 理液が該バッフル板部 6 0の外周をまわった後、 中空糸膜束 20内に均一に浸 透するために優れた除去性能が得られる。
同様に、 バッフル板部の先端形状、 特にバッフル板先端までの高さ (L 3) が、 処理液接続口付近とその円周方向の反対付近とで異なる場合もある (図 2 の破線 62または 63)。
以上述べたバッフル板の形成方法については特に限定せず、 筒状容器本体に バッフル板を後から外付けして溶着する方法、 あるいは、 射出成型により筒状 容器内面の延長として一体的に形成する方法など、公知の方法を用いればよい。 次に、 容器胴部の端部テ一パについて説明する。
図 4は、 テ一パを説明するために図 1の筒状容器 1 0の片側を拡大した模式 図である。
図 4において、 頭部 1 0巳の長さを1_ 1、 胴部 1 O Aの全長の半分の長さを L 2、容器本体端面に向かって徐々に拡大する端部テ一パ部 1 5の長さ (片側) をし 4、 胴部 1 O Aの内面ストレ一ト部 1 4の容器内径を d 4、 胴部 1 O Aと 頭部 1 O Bの接合部 1 6の内径を d 3、 樹脂層部 50の端面での中空糸束 20 の径を d 1 と定義する。
図示したように、筒状容器 1 0の胴部 1 O Aの全長の半分に相当する部分は、 胴部内面が容器本体内面中心線に平行なストレー卜部 1 4とそれに連なって容 器本体端面に向かって内面が徐々に拡大するテ一パ部 1 5とから構成されてい る。 すなわちストレート部とは、 筒状容器 1 0の胴部 1 O Aの内面において容 器本体内面中心線に平行な一部分 1 4である。図 4ではストレート部長さは(L 2 - L 4 ) で、 その両端の容器内径は等しく d 4であり、 テ一パ部とはストレー ト部に連なって容器本体端面に向かって徐々に拡大する一部分 1 5であり、 図 4ではテーパ部長さは L 4、 その両端の容器内径は d 4と d 3とで異なる (d 4 < d 3 )。そしてこれらの構成が血液透析器の物質除去性能を大きく向上させ るのである。
この理由は、例えば処理液である透析液が処理液接続口 1 2から流入すると、 中空糸膜が数千本束ねられた中空糸膜束 2 0がテーパ部 1 5に沿って均一に広 がっているので中空糸膜間に隙間ができる。 そのため透析液が中空糸膜束 2 0 の中心部にまで浸透し中空糸膜間に均一に流れやすくなるからである。 すなわ ち、 透析液は中空糸束の外側のみならず中心から外側まで均一に各中空糸膜外 周面において透析液と接触することが可能になる。 このため、 透析液と接触す る中空糸膜の実質的な表面積が大きくなることで、 中空糸膜束 2 0を介した血 液中の老廃物の除去が大幅に向上するためであると考えている。
さらに、 ストレート部 1 4においては、 容器内面において中空糸膜がどれぐ らい密に詰まっているかを示す充填率に関して、 ストレート部 1 4における充 填率が端部テーパ部 1 5における充填率よりも高いことから、 テーパ部にて中 空糸膜束 2 0に均一に浸透した透析液の速度がテ一パ部よリもストレー卜部で 速くなることで、 透析液内での物質移動係数が高くなリ、 老廃物の除去が促進 されると考えている。
また、 端部テーパ部 1 5があり、 そのテーパに沿って中空糸膜が一定の広が リをもつように樹脂層部 5 0により中空糸が固定されているため.中空糸膜束 2 0を構成する中空糸膜が容器頭部 1 0 B内において均一に分散される。 これに より、上述したような容器頭部 1 0 B内の中空糸膜間に特段大きな空間がなく、 該製品の輸送中に中空糸膜に与えられる衝撃によって中空糸膜が破断してしま うことによる血液の如く被処理液のリークが起こリにくい等の効果も得られる。 なお、 本発明でいうストレート部は、 前記のとおり容器胴部 1 O Aの内面が 本体内面中心線に完全に平行な場合だけではなく、 いわゆる 「抜きテーパ j と 呼ばれる微小なテーパも実質的にストレー卜と見なしてこれに含める。 通常、 長さが 3 0〜5 0 c m程度の筒状容器を射出成型する場合の抜きテ一パは 0 . 5 ° 以下であり、 また、 本発明者らの知見によれば、 容器胴部の端部テーパが 0 . 5 ° に満たないと優れた物質除去性能が得られなかった。 従って、 本発明 においては、 角度が 0 . 5 ° 以下ならば実質的にストレートの範疇とする。 このように、 少なくとも処理液入口側の容器胴部内面に端部テ一パとストレ ート部とを設ければ、 物質除去性能を向上させる効果が得られるが、 入口側と 出口側の両方に設けても構わない。 また、 その場合、 入口側と出口側とでテー パの角度や形状ならびにストレ一卜部の長さ等が異なる、 すなわち非対称型で あってもよい。 容器胴部における端部テーパの傾斜については、 容器本体内面中心線と端部 テーパ部内面とのなす角度 0は、 次式 (1 ) で示される。
Θ = tan - 1 { 1 Z2 ■ ( d 3-d 4) ZL4 } ( 1 ) つまり、 0は容器本体端面に向かって徐々に拡大する端部テーパ部の内面 1 5の径の変化の割合を数値化したものであり、 そしてこの 0の値が血液透析器 の老廃物の除去性能に大きく影響するのである。 すなわち、 容器本体内面中心 線と端部テ一パ部内面とのなす角度 0が、 0° より大きく tan_1 { 1 /2 -(d 1 -d 4) /L4 } より小さいことが重要である。
容器本体内面中心線と端部テ一パ部内面とのなす角度 0が 0° 以下である場 合、透析液が極端なショートパスを起こし除去性能は非常に低く、角度 0が 0 ° より僅かでも大きければショートパスを起こさない。一方、角度 0が tan— 1 { 1 /2 ■ (d 1 -d 4) Zし 4 } より大きい場合、 中空糸膜束 20と端部テ一パ 1 5との間に隙間が生じこの隙間から透析液がショートパスを起こし除去性能が 非常に低くなる。 上記において、 角度 0が 0. 58° より大きいとより好まし い。
さらに、 使用目的により処理液の進入流量は様々であるが、 より低流量でも 均一な流れを得て血液中の老廃物の除去性能を高めたり、 あるいは高流量での 除去性能を高めるためには、 角度 0のより好ましい範囲は 0. 58° より大き く、 2/3 ■ tan— 1 { 1 /2 ■ (d 1 -d 4) /L4 } よリ小さい範囲である。 図 4には、 ス卜レート部とテ一パ部が 1段ずつによって構成される場合を図 示したが、 テーパ部の数は 1段に限定されるものではなく、 2段以上の複数の 場合もある。例えば、端部側から胴部側に向かってテーパ(角度大)、テーパ(角 度小)、 ストレートの順で構成される場合などである。 2段テーパの場合は、 い ずれか 1つのテーパの、 あるいは全てのテーパの角度がこの範囲に含まれるこ とが必要である。 なお、 2段構成のテ一パであっても、 角度が小さいほうのテ ーパが 0. 5° 以下の場合はこれをストレート部と見なし、 1段構成のテーパ と見なす。
ここで、 テーパとは必ずしも直線的なものに限られず、 ある曲率をもってい るものも含む。 つまり、 筒状の胴体が入口端部に向かってその断面積が連続的 に広がっているものも本発明の範疇である。 容器胴部のストレート部に関しては、 図 4において、 端部テーパ部長さに対 する胴部ストレート部長さの割合 ((L 2-L 4) が 0. 7から 20で あることが好ましい。 端部テーパ部長さの和に対する胴部ストレート部長さの 割合が 0. 7より小さいと透析液の僅かなショートパスが起こり、 除去性能が 不十分な場合がある。 また 2 0より大きいとストレー卜部長さに対する端部テ ーパ部長さが短いため、 やはりショートパスが起こるからである。
また、 胴部ス卜レート部内径に対する端部テーパ部端面側内径の割合 (d 3 / d 4 )が 0より大きく 3以下であることが重要であり、より好ましくは、夫々 0 . 3 5から 7 . 0より大きく 2以下である。 胴部ストレート部内径に対する 端部テーパ部端面側内径の割合が 1以下であると中空糸膜間の空間が少ないた めに透析液の中空糸束内への浸透性が極端に悪化する。 3より大きい場合、 体 液処理器の製造方法の関係から、 容器胴部 1 O Aと容器頭部 1 O Bの接合面 d 3において中空糸膜束 2 0が極端に湾曲してしまい、 中空糸膜が容器頭部 1 0 B内において均一に分散されなくなる。
なお、 容器胴部の内部に完全なストレート部を持たない場合は、 胴部の最小 径 (d 4 ' ) をストレート部内径 (d 4 ) に代用することもある。 このように、 容器胴部の内面に端部テーパとストレート部とを有することが 重要であり、 図 6に示すように、 胴部内面全体がストレート部のみによって構 成されている場合には、 透析液は所謂ショートパス現象を起こし、 血液中の老 廃物の除去性能は極端に低くなる。 ここで言うショートパス現象とは、 透析液 が入口から入った後中空糸膜束 2 0の外周側に沿って即出口より排出されてし まい、実質的に透析液が中空糸膜束 2 0内に入って行かない現象のことをいう。 ところが、 処理液入口端部よリ胴体の中心近傍まである一定のテ一パによリ 径が縮小し、 中心近傍で最小径となり、 中心近傍から処理液出口に向かってあ る一定のテーパによリ径が拡大するという場合は、 物質除去性能を向上させる 効果が得られる。 この場合、 中心線と平行な内周面を有するストレート部とい うものは実質的に存在しないが、 ある角度のテーパによって中空糸膜が広い空 間に分散され、 そこへ処理液が流入することで中空糸膜束内部にまで処理液が 浸透し、 内周面の径が絞られるに応じて処理液速度も増し、 中空糸内の血液と の物質の交換が促進されるものと思われる。 但しその場合は、 いわゆる抜きテ ーパ程度の微小な角度では効果が得られず、少なくとも端部テ一パ角度 Θが 0 . 5 ° 以上であることが好ましい。 以上述べた端部テーパを設けた容器 (胴部) の形成方法については、 特に限 定せず、 ストレートパイプの端部に端部テーパと容器頭部を後付けする方法、 あるいは、 射出成型の抜き条件を工夫して一体的に形成する方法など、 公知の 方法を用いればよい。 なお、 図 1および図 4では容器の厚みはほぼ一定で形状 自体が傾斜しているが、 これに限定されることなく、 容器の外筒は同一径で、 筒の肉厚により内周にテーパを設ける場合もありうる。 以上、 筒状容器内部の少なくとも処理液の入口側に設けられ、 容器端面に向 かって徐々に拡径する部分として、 バッフル板および容器胴部内面の端部テー パについて別個に説明した。これらは、前述のとおり単独でも効果を有するが、 それぞれを併せ持つことにより、 物質除去性能や中空糸膜の損傷防止において より優れた効果が得られる。 その組み合わせについては特に制限はなく、 例え ば、 処理液入口側に本発明のパッフル板と端部テーパとを設けた場合は、 出口 側は、 バッフル板のみの場合、 端部テーパのみの場合、 双方を有する場合、 あ るいは双方とも有しない場合、 の何れであってもよい。 また、 バッフル板と端 部テーパを併せ持つ場合、 それぞれの傾斜角度 および 0が前述の好ましぃ範 囲であればよい。よリこのマイクは、それぞれの傾斜角度 および 0が同一で、 バッフル板と端部テーパ部の内面の傾斜が連続している形状 (面一の形状) で あ 。 本発明の中空糸膜型流体処理器は、 その容器形状が重要であって内部に収容 される中空糸膜については特に限定せず、 透析、 濾過、 吸着等の目的で使用で きる中空糸膜なら何れでもよい。 例えば、.材質としては再生セルロースや酢酸 セルロースなどのセルロース系ポリマーや、 ポリ 7クリロニトリル、 ポリスル ホン、 ポリエーテルスルホン、 ポリ弗化ビニリデン、 ポリエチレン、 ポリエス テルおよびポリアミドなどの他、 エチレン一ビニルアルコール共重合体やポリ エステル一ポリエーテルスルホンのポリマ一ァロイなどの合成ポリマーが挙げ られる。
中でも、 特に血液透析の分野では、 低分子量蛋白質から尿素などの低分子成 分までの広範囲な除去に優れた素材として、 親水化ポリスルホン中空糸膜が広 く普及しており、 その製造方法が数多く開示されている。 例えば、 国際公開公 報 9 8ノ5 2 6 8 3号パンフレツ卜には、 内径 2 0 0〃 m、 膜厚 4 5 mで、 透水量が 1 6 0〜2 2 O m I /m 2■ h r ■ mm H gの親水化ポリスルホン中空 糸膜が記載されており、 このような中空糸膜を約 9 0 0 0 ~ 1 0 0 0 0本束ね た中空糸膜束を、 特定のバッフル板および Zまたは端部テーパを設けた筒状容 器に装填した後、 ポッティング材を充填して中空糸膜端を容器に固定して組み 立てれば、 本発明の中空糸膜型流体処理器が得られる。 そして、 このような中 空糸膜型流体処理器によれば、 尿素の除去性能として 1 8 6 m l /分から 2 0 O m 1ノ分程度のクリアランスが、 また、 1 3 0 m l 分から 1 7 0 m l 分 程度のビタミン B 1 2のクリアランスが得られる。 より好ましい実施態様にお いては、 尿素のクリアランスが 1 9 5 m I Z分から 2 0 O m Iノ分程度、 ビタ ミン B 1 2のクリアランスが 1 4 0 m l 分から 1 7 0 m l /分程度の高性能 化も可能であり、 しかも実施例に示すように、 複数本の測定を行った際のクリ ァランスのバラつきが小さい。
また、 例えば、 親水化材を添加しないポリスルホンポリマーやポリエステル 一ポリエーテルスルホンのポリマーァロイ中空糸膜を用いれば、 ェンドトキシ ンカツトフィルターが得られ、 ポリスルホン中空糸膜からは高透水型の水濾過 器が得られる。 これらにおいては、 処理液入口 1 2から被処理液を導入し、 中 空糸膜内部から処理液を導出すると、 被処理液が各中空糸膜から均一に濾過さ れやすく、 結果として優れた除去性能や濾過性能が得られる。 本発明の中空糸膜型流体処理器は、 このような様々な用途に適用できるが、 拡散による物質除去性能の向上に対してとりわけ顕著な効果を有するので、 血 液透析器として最も好適に使用できる。
〔実施例〕
以下に実施例及び比較例を用いて本発明を詳細に説明するが、 本発明はこれ に何ら限定されるものではない。 先ず、 本発明で用いる測定方法、 評価方法に ついて説明する。
〔尿素およびビタミン B 1 2クリアランス〕
血液中の老廃物の除去性能は、 代表的な***物質である尿素(分子量 6 0 ) とビタミン B 1 2 (分子量 1 , 3 5 5 ) のクリアランスを指標として評価した。 測定は日本人工臓器学会の性能評価基準に従い、 血液透析器のモジュールに、 血液側流量 2 0 0 m L 分、 透析液側流量 5 0 0 m L 分、 膜間差圧( T M P ) 0 m m H gの条件下で実施した。 血液入口側の尿素あるいはビタミン B 1 2の 濃度(C B i n )、 出口側の濃度(C B o u t )から、 下式によリクリアランスを 算出した。 測定は、 中空糸膜型流体処理器について、 3本をランダムに取り出 し、 クリアランスの測定を行ってそれぞれ平均値と標準偏差を算出した。 クリアランス =
2 0 0 X ( C B i n— C B o u t ) / C B i n ( 2 ) ここで得られる数値の単位は m I /分となり、 血液側溶液中からどれくらい の溶液から老廃物が除去されたのかを示し、 数値が大きいほど血液透析器の血 液中老廃物の除去性能が高いことを示す。
〔落下衝撃試験〕 ' 図 1に示すような中空糸膜型流体処理用モジュールの被処理液の処理液接続 口 1 2, 1 3から 2 m Iずつ滅菌水を抜き、 被処理液出口が下向きになる方向 にて 3 0 c mの高さからコンクリート製床上に落下させた。 これを 5回繰り返 した後に水中陽圧テストを実施してリークの有無を確認することを合計 5 0回 落下させるまで繰り返した。
上記の水中陽圧テストとは以下の方法である。 被処理液出口 4 1を栓で密封 し、 処理液入口 1 2および出口 1 3は開封した状態にて中空糸膜型体液処理用 モジュールを水中に浸潰した後、 被処理液入口 3 1 より空気を 1 . 5 k g f c m 2にて圧入した状態で 3 0秒間保持させる。 この間、 被処理液側から処理 液側に空気が漏れ出せばリークが発生したと判定し、 空気が漏れ出さなければ リークが発生しなかつたと判定する。
この操作をモジュール 1 0本について行い、 1 0本中リークが発生したモジ ユール数を落下リーク発生率とした。 〔透析液の流れ性試験〕
透析液流れ性は以下の方法にて評価した。 透析液側に透析液を 5 0 O m I / 分にて流し、透析液入口から透析液と一緒に朱墨汁を 1 ショッ 卜 2 m I注入し、 流出してきた透析液を 1 O m I毎にサンプリングし、 その透析液の吸光度、 す なわち透析液中の朱墨濃度を測定した。 得られた吸光度をフラクション毎にグ ラフにプロットし、 その偏り度合いから透析液の流れ性を評価した。 偏りのな い正規分布に近いグラフの形状が、 透析液が中空糸束内に均一に浸透する理想 的な流れ (プラグフロー) である。
〔実施例 1〕
ポリスルホンとポリビニルピロリ ドンから公知の湿式紡糸法によって得られ た親水化ポリスルホン中空糸膜 (—内径 2.0 0〃m、 膜厚 4 5〃m、 透水量 3 0 O m I /m 2 ■ h r ■ m m H g、 尿素の水系物質移動係数 9 . 0 x 1 0— 4 c m /秒、 ビタミン B 1 2の水系物質移動係数 3 . 1 X 1 0 4 c m/秒) を 9 2 0 0本束ねた中空糸膜束を、 膜面積 1 . 5 m 2になるように筒状容器に装填し、 両 端をポリウレタン樹脂でポッティング加工して中空糸膜型流体処理器を作製し た。 容器バッフル板の傾斜角度 α ま 1 1 . 9 ° とした。 その他の定義の数値も 併せて表 1 に示した。
得られた中空糸膜型流体処理器のクリアランス、 および落下リーク発生率を 表 1に示した。
〔実施例 2〕
が 1 1 . 9。 であり、 その先端端面形状が図 4の 6 1の如く樹脂層部内側 外周に沿って湾曲した形状であるバッフル板とした以外は、 実施例 1 に準じて 膜面積 1 . 5 m 2の中空糸膜型流体処理器を作製した。 この場合、 バッフル板の 高さ L 3と先端での内径 d 2は、 容器内周において一定ではないため、 表中デ ータは参考値とした。
得られた中空糸膜型流体処理器のクリアランス、 および落下リーク発生率を 表 1に示した。
〔実施例 3〕
が"! . 2 ° である筒状容器を用いた以外は、 実施例 1 に準じて膜面積 1 . 5 m 2の中空糸膜型流体処理器を作製した。得られた中空糸膜型流体処理器のク リアランス、 および落下リーク発生率を表 1に示した。
〔実施例 4〕
αが 3 . 3 ° である筒状容器を用いた以外は、 実施例 1 に準じて膜面積 1 . 5 m 2の中空糸膜型流体処理器を作製した。得られた中空糸膜型流体処理器のク リアランス、 および落下リーク発生率を表 1 に示した。 〔実施例 5 ]
が 1 3 . 6 ° 、 胴部が完全ストレート型である筒状容器を用いた以外は、 実施例 1 に準じて膜面積 1 . 5 m 2の中空糸膜型流体処理器を作製した。得られ た中空糸膜型流体処理器のクリアランス、 および落下リーク発生率を表 1 に示 した。
〔比較例 1:]
Ofが 0 ° 、 すなわちバッフル板が容器本体内面中心線にそって平行である筒 状容器を用いた以外は、実施例 1に準じて膜面積 1 . 5 m 2の中空糸膜型流体処 理器を作製した。 得られた中空糸膜型流体処理器のクリアランス、 および落下 リーク発生率を表 1に示した。
〔比較例 2〕
図 5の如く、 高さが 9 . 5 mm、 胴部内周に沿った幅が 3 7 mmである舌片 状のパッフル板 7 0が備えられた筒状容器を用いた以外は、 実施例 1 に準じて 膜面積 1 . 5 m 2の中空糸膜型流体処理器を作製した。得られた中空糸膜型流体 処理器のクリアランス、 および落下リーク発生率を表 1に示した。 実施例 1〜5の尿素クリアランスは、 比較例 1, 2のそれに比べて高く、 し かもバラつきも小さかった。 本発明の中空糸膜型流体処理器が体液中の不要物 質の除去性能にも優れていることが示された。 また、 実施例 1〜5の落下リー ク発生率は、 比較例 1, 2に比べ格段に小さく、 本発明の中空糸膜型体液処理 用モジユールがリ一ク発生率の少ない安全性に優れたモジユールであることが 示された。
〔実施例 6〕
端部テーパ部長さが 1 5 mmである筒状容器を用いた以外は、 実施例 1 に準 じて膜面積 1 . 5 m 2の中空糸膜型流体処理器を作製した。得られた中空糸膜型 流体処理器のクリアランスを表 2に示した。 さらに、 同じ試験品を用いて透析 液流れ性試験を行った結果を図 7に示した。
〔実施例 7〕
端部テーパ部長さが 1 1 mmである筒状容器を用い、 中空糸膜本数を 1 0 1 0 0本として膜面積 1 . 7 m 2とした以外は、実施例 1に準じて中空糸膜型流体 処理器を作製した。 得られた中空糸膜型流体処理器のクリアランスを表 2に示 した。 血液透析器である。 その他の定義の数値も併せて表 2に示した。
〔実施例 8〕
端部テーパ部長さが 7 O mmである筒状容器を用い、 中空糸膜本数を 1 0 1 00本として膜面積 1. 7m2とした以外は、実施例 1 に準じて中空糸膜型流体 処理器を作製した。 得られた中空糸膜型流体処理器のクリアランスを表 2に示 した。
〔実施例 9〕
容器胴部の中心側には非常に緩やかなテーパ (0. 1 2° ) をもった第 1の 亍ーパ部と、 それに続いて第 1のテーパよりもきついテーパ (6. 8° ) を端 部側にもった第 2のテ一パ部からなる筒状容器を用いて、 中空糸膜本数を 92 00本として膜面積 1. 5 m2とした以外は、 実施例 1に準じて中空糸膜型流体 処理器を作製した。 得られた中空糸膜型流体処理器のクリアランスを表 2に示 した。
〔比較例 3〕
図 6の如く、 胴部 1 OAをストレート部 (但し抜きテ一パはある) のみで構 成し、 中空糸膜本数を 9200本として膜面積 1. 5m2とした以外は、 実施例 1 に準じて中空糸膜型流体処理器を作製した。 得られた中空糸膜型流体処理器 のクリアランスを表 2に示した。 さらに、 同じ試験品を用いて透析液流れ性試 験を行った結果を図 7に示した。 以上の実施例および比較例に示した中空糸膜型流体処理器 (血液透析器) に おいては、 同じ性能特性を有するポリスルホン製中空糸膜を用いたため、 表に 示された実施例および比較例のデータの違いは筒状容器の設計の違いのみに起 因するものである。
表 2に示すように実施例 6の尿素およびビタミン B 1 2クリアランスは、 血 液側流量 200m LZ分、 透析液側流量 50 OmLZ分の条件下で、 夫々 1 9 5. 7m l /分、 1 46. 5m l /分、 実施例 7の尿素およびビタミン B 1 2 クリアランスは夫々 1 99. 61711 分、 1 65. 2m 1 分、 実施例 7の尿 素およびビタミン B 1 2クリアランスは夫々 1 91. 6 m I Z分、 1 35. 7 m I /分、 実施例 9の尿素およびビタミン B 1 2クリアランスは夫々 1 96. 8m l Z分、 1 50. 6m I Z分と高い値を示し、 実施例 6— 9は非常に高い 値を示した。
一方、 比較例 3の尿素およびビタミン B 1 2クリアランスは夫々、 1 74. 7m I 分、 1 09. 0m l Z分と、実施例のそれらに比して低い値を示した。 これらの理由は、 図 7に示したとおり実施例の透析液が理想的な流れ (ブラ グフロー) に近いこと、 すなわち透析液が中空糸束内に均一に流れこみ透析液 が接触する中空糸膜束の実質的な膜面積が大きいことによると推察された。 さらに、 尿素クリアランス、 ビタミン B 1 2クリアランスのバラツキ σにつ いても比較例 3比し実施例 6— 9の標準偏差 σが小さいことから、 実施例の体 液処理器のサンプル間の透析液流れのバラツキも小さいことが示され、 製品品 質管理上も非常に優れていることが示された。
〔産業上の利用可能性〕
本発明の中空糸膜型流体処理器は、 筒状容器内部の少なくとも処理液の入口 側に、 容器端面に向かって徐々に拡径する部分、 すなわち特定のバッフル板ま たは端部テーパを設けている。 その結果、 物質除去性能が格段に高くしかもそ のバラつきが少なく、 さらに拡径する部分によっては、 中空糸膜の損傷による リーク発生が大きく低減する。 従って、 医療分野、 食品分野および工業分野等 の様々な分野において、 例えば血液透析器、 エンドトキシンカットフィルタ一 および水濾過器などに好適に使用することができる。
表 1
Figure imgf000020_0002
表 2
Figure imgf000020_0001

Claims

請 求 の 範 囲
1 . 中空糸膜束を装填した筒状の容器胴部と、 該容器胴部の一端に連なり、 樹脂組成物で中空糸膜束を固定した樹脂層部および処理液入口となる接続口と を有する容器頭部と、 該容器胴部の他端に連なり、 樹脂組成物で中空糸膜束を 固定した樹脂層部および処理液出口となる接続口とを有する容器頭部と、 該そ れぞれの容器頭部に取り付けられ、 被処理液の接続口を備えるヘッダーキヤッ プとを少なくとも備えた中空糸膜型流体処理器において、
少なくとも、 筒状容器の処理液入口側内面に、 中空糸膜を処理液入口端面に 向かって徐々に中空糸膜間の間隔が拡大するように配置させることが可能な拡 径部を有することを特徴とする中空糸膜型流体処理器。
2 . 拡径部が、 筒状容器の処理液入口に対応する位置に筒状容器内周面から 隙間をおいて内周面に略沿った曲率で内周面全周にわたって設けられたバッフ ル板からなり、 かつ該バッフル板が容器端面に向かつて徐々に拡径している構 造であることを特徴とする請求項 1に記載の中空糸膜型流体処理器。
3 . 中空糸膜束がバッフル板の拡径に沿って、 入口側端面に向かって徐々に 中空糸膜間の間隔が拡大するように配置されている請求項 2に記載の中空糸膜 型流体処理器。
4. バッフル板の端部形状が、 樹脂層部内側外周にそって湾曲した形状であ る請求項 2または 3に記載の中空糸膜型流体処理器。
5 . 筒状容器中心線とバッフル板内周面のなす角度が 0度より大きく、 tan - 1 { 1 / 2 ' ( cM— d 3 ) ZL 3 } で定義される角度より小さい請求項 2〜4 のいずれかに記載の中空糸膜型流体処理器。 (ここで、 d 1は樹脂層部の端面で の中空糸束の径、 d 3は筒状容器の胴部と頭部の接合部での内径、 L 3はバッ フル板部の高さ、 をいう)
6 .筒状容器中心線とパッフル板内周面のなす角度が 1 ° 以上で、 tan { 1 / 2 ,.(d 1 - d 3 ) /し3 } よリ小さい請求項 2〜5のいずれかに記載の中空糸 膜型流体処理器。 (ここで、 d 1は樹脂層部の端面での中空糸束の径、 d 3は筒 状容器の胴部と頭部の接合部での内径、 L 3はバッフル板部の高さ、 をいう)
7 . バッフル板の高さが 2 mmから 1 2 mmである請求項 2〜 6の何れかに 記載の中空糸膜型流体処理器。
8 . 尿素のクリアランスが夫々 1 9 1 m l 分から 2ひ O m I 分である請 求項 2〜 7の何れかに記載の中空糸膜型流体処理器。
9. 落下衝撃試験による落下リーク発生率が 3 1 0以下である請求項 2〜 8の何れかに記載の中空糸膜型流体処理器。
1 0 . 少なくとも処理液入口側における容器本体内面が胴部ストレート部と容 器本体端面に向かって徐々に拡大する端部テーパ部からなる請求項 2〜 9の何 れかに記載の中空糸膜型流体処理器。
1 1 .拡径部が容器本体端面に向かって徐々に拡大する端部テ一パ部からなり、 さらに、 処理液入口側における容器本体内面が胴部ストレート部を有すること 特徴とする請求項 1に記載の中空糸膜型流体処理器。
1 2. 中空糸膜束が容器本体内面のテ一パ部のテーパに沿うように処理液入口 側端面に向かって徐々に中空糸膜間の間隔が拡大するように配置されている請 求項 1 1に記載の中空糸膜型流体処理器。
1 3. テーパ部が、 胴部側に位置し、 第 1のテーパを有する第 1テーパ部と、 処理液入口側に位置し第 2のテーパ部を有する第 2テ一パ部とを有し、 第 1の テ一パの角度の方が第 2のテーパの角度よりも小さい請求項 1 1または 1 2に 記載の中空糸膜型流体処理器。
1 4.容器本体内面中心線と端部テーパ部内面とのなす角度が 0° より大きく、 tan 一1 {1 /2 ■ (d 1 -d 4) /L4 } で定義される角度より小さい請求項 1 1〜1 3の何れかに記載の中空糸膜型流体処理器。 (ここで、 d 1は樹脂層部の 端面での中空糸束の径、 d 4は胴部の内面ストレート部又は最小径部の容器内 径、 L 4は容器本体端面に向かって徐々に拡大する端部テーパ部長さ (片側)、 をいう)
1 5. 容器本体内面中心線と端部テーパ部内面とのなす角度が 0. 58° より 大きく、 tan _1 {1 /2 ■ (d 1 -d 4) ZL4 } で定義される角度より小さい 請求項 1 0~1 4に記載の中空糸膜型流体処理器。 (ここで、 d 1は樹脂層部の 端面での中空糸束の径、 d 4は胴部の内面ストレート部又は最小径部の容器内 径、 L 4は容器本体端面に向かって徐々に拡大する端部テーパ部長さ (片側)、 をいう)
1 6. 端部テ一パ部長さの和に対する胴部ストレート部長さの割合が 0. 7か ら 20、 胴部ス卜レート部内径に対する端部テーパ部端面側内径の割合が 1よ リ大きく 3以下である請求項 1 1 〜1 5の何れかに記載の中空糸膜型流体処理
1 7. 尿素およびビタミン B 1 2のクリアランスが夫々 1 91 m l /分から 2 00m l /分、 1 35m l /分から 1 70m l 分である請求項 1 "!〜 1 6の 何れかに記載の中空糸膜型流体処理器。
1 8. 筒状容器の処理液入口および処理液出口に対応する位置に、 筒状容器内 周面から隙間をおいて内周面に略沿った曲率で内周面全周にわたるバッフル板 が備えられている構造である請求項 1 1〜 1 7の何れかに記載の中空糸膜型流 体処理器。
1 9. さらに、 該バッフル板が容器端面に向かって徐々に拡径している構造で ある請求項 1 8に記載の中空糸膜型流体処理器。
PCT/JP2004/005870 2003-04-23 2004-04-23 中空糸膜型流体処理器 WO2004094047A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP04729218.0A EP1634639B1 (en) 2003-04-23 2004-04-23 Hollow fiber membrane device for treating body fluids
JP2005505798A JP4678776B2 (ja) 2003-04-23 2004-04-23 中空糸膜型流体処理器
US10/553,950 US8496826B2 (en) 2003-04-23 2004-04-23 Body fluid treating device of hollow fiber membrane type
KR1020057019972A KR101052372B1 (ko) 2003-04-23 2004-04-23 중공사막형 유체 처리기
ES04729218.0T ES2442853T3 (es) 2003-04-23 2004-04-23 Dispositivo del tipo de membrana de fibra hueca para el tratamiento de fluidos corporales

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-118950 2003-04-23
JP2003118950 2003-04-23
JP2003118951 2003-04-23
JP2003-118951 2003-04-23

Publications (1)

Publication Number Publication Date
WO2004094047A1 true WO2004094047A1 (ja) 2004-11-04

Family

ID=33312636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/005870 WO2004094047A1 (ja) 2003-04-23 2004-04-23 中空糸膜型流体処理器

Country Status (8)

Country Link
US (1) US8496826B2 (ja)
EP (1) EP1634639B1 (ja)
JP (1) JP4678776B2 (ja)
KR (1) KR101052372B1 (ja)
CN (1) CN100421771C (ja)
ES (1) ES2442853T3 (ja)
TW (1) TW200510059A (ja)
WO (1) WO2004094047A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010162171A (ja) * 2009-01-15 2010-07-29 Kawasumi Lab Inc 血液処理装置
JP2010233991A (ja) * 2009-03-31 2010-10-21 Asahi Kasei Kuraray Medical Co Ltd 高性能血液浄化器
JP2010233987A (ja) * 2009-03-31 2010-10-21 Asahi Kasei Kuraray Medical Co Ltd 血液浄化器
US8828225B2 (en) 2004-08-06 2014-09-09 Asahi Kasei Medical Co., Ltd. Polysulfone hemodialyzer
WO2016104757A1 (ja) * 2014-12-25 2016-06-30 旭化成メディカル株式会社 血液透析濾過器及び血液透析濾過装置
US10112000B2 (en) 2010-07-08 2018-10-30 Asahi Kasei Medical Co., Ltd. Method for reducing amyloid beta concentration in blood
WO2021100811A1 (ja) * 2019-11-20 2021-05-27 ニプロ株式会社 中空糸膜モジュール

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101180089B (zh) * 2005-05-23 2010-12-08 旭化成可乐丽医疗株式会社 体液处理过滤装置
EP2067521A4 (en) * 2006-09-19 2011-04-20 Toray Industries HOLLOW FIBER MEMBRANE MODULE
CN101888863B (zh) 2007-12-06 2012-11-28 旭化成医疗株式会社 血液处理用多孔中空纤维膜
US20100125235A1 (en) * 2008-06-16 2010-05-20 Triaxis Medical Devices, Inc. Blood Treatment Apparatus Having Branched Flow Distribution
JP5284848B2 (ja) * 2009-03-31 2013-09-11 旭化成メディカル株式会社 目止め用治具及び流体処理器の製造方法
EP2440498B1 (en) * 2009-06-07 2020-08-26 Nufiltration Ltd. Use of recycled medical filters for water filtration
TWI395610B (zh) * 2010-12-24 2013-05-11 Univ Nat Cheng Kung 液體過濾裝置及其過濾方法
CN102078646A (zh) * 2011-01-22 2011-06-01 江西三鑫医疗器械集团有限公司 聚醚砜空心纤维血液透析器
KR101368181B1 (ko) * 2011-10-07 2014-03-12 주식회사 디어포스 중공사막 모듈 및 그 제작방법
JP5494720B2 (ja) * 2012-05-14 2014-05-21 Nok株式会社 中空糸膜モジュール
CN106102794B (zh) * 2014-01-21 2018-07-13 肾脏解决方案公司 具有透析仪的透析设备
CN103877634B (zh) * 2014-03-10 2016-06-22 石家庄达爱医疗器械科技有限公司 一种血液透析器及血液透析装置
WO2015153370A2 (en) * 2014-03-29 2015-10-08 Labib Mohamed E Blood processing cartridges and systems, and methods for extracorporeal blood therapies
US10426884B2 (en) 2015-06-26 2019-10-01 Novaflux Inc. Cartridges and systems for outside-in flow in membrane-based therapies
WO2017053805A1 (en) 2015-09-24 2017-03-30 Labib Mohamed E Cartridges for hollow fibre membrane-based therapies
US10758844B2 (en) * 2017-07-25 2020-09-01 Hamilton Sundstrand Corporation Fluid degassing devices having selected profiles
CN107583119A (zh) * 2017-09-29 2018-01-16 成都威力生生物科技有限公司 一种血液透析用透析器
CN107469170A (zh) * 2017-09-29 2017-12-15 成都威力生生物科技有限公司 一种佩戴式人工肾
EP3706887A1 (de) 2017-11-09 2020-09-16 Evonik Fibres GmbH Membranbündelaufmachung mit abstandshaltern
EP3482817A1 (de) * 2017-11-09 2019-05-15 Frank Wiese Membranbündelaufmachung mit abstandshaltern
US20230025394A1 (en) * 2019-12-25 2023-01-26 Sumitomo Electric Fine Polymer, Inc. Method for manufacturing hollow fiber membrane module, and hollow fiber membrane module

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5331828B2 (ja) * 1976-09-03 1978-09-05
JP2003111836A (ja) * 2001-06-28 2003-04-15 Terumo Corp 人工心肺回路システム

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5331828A (en) * 1976-08-31 1978-03-25 Daiwa Spinning Co Ltd Method of spinning carbon fiber
US4201673A (en) * 1977-07-04 1980-05-06 Terumo Corporation Apparatus for dialysis of solution
JPS57194007A (en) 1981-05-26 1982-11-29 Nitsushiyoo:Kk Hollow yarn type permeating device
JPS594403A (ja) 1982-06-28 1984-01-11 Kuraray Co Ltd 中空糸型「ろ」過素子
JPS5918084A (ja) 1982-07-22 1984-01-30 クロ−ド・カルボネル 舟艇の安定装置
US4620965A (en) * 1982-09-22 1986-11-04 Terumo Corporation Hollow fiber-type artificial lung
JPS6356044A (ja) 1986-08-26 1988-03-10 S M K Kk デイジタルデ−タの伝送方法
JPS6356044U (ja) * 1986-09-30 1988-04-14
JP2647516B2 (ja) 1989-11-07 1997-08-27 三菱重工業株式会社 消耗電極式ガスシールドアーク溶接方法
JP3080430B2 (ja) 1990-07-02 2000-08-28 旭メディカル株式会社 選択透過性中空繊維束及びそれを内蔵した流体分離装置
JP3331534B2 (ja) * 1994-12-26 2002-10-07 日機装株式会社 血液浄化器用ケーシング
ES2143580T3 (es) 1995-03-11 2000-05-16 Akzo Nobel Nv Haz de hilos huecos, asi como intercambiador de sustancias y/o calor.
JP3151168B2 (ja) 1997-05-07 2001-04-03 日機装株式会社 中空糸型モジュール及びその製造方法
JP2000042100A (ja) 1998-07-31 2000-02-15 Terumo Corp 中空糸膜型流体処理装置
JP2000350781A (ja) 1999-06-14 2000-12-19 Nikkiso Co Ltd 中空糸型モジュール
DE10007327A1 (de) 2000-02-17 2001-08-30 Fresenius Medical Care De Gmbh Filtervorrichtung, vorzugsweise Hohlfaserdialysator mit gelockten Hohlfasern
US6994824B2 (en) 2001-06-28 2006-02-07 Terumo Kabushiki Kaisha Artificial cardiopulmonary circuit system
CA2390214C (en) 2001-07-17 2009-09-08 Fresenius Usa, Inc. Dialyzer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5331828B2 (ja) * 1976-09-03 1978-09-05
JP2003111836A (ja) * 2001-06-28 2003-04-15 Terumo Corp 人工心肺回路システム

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8828225B2 (en) 2004-08-06 2014-09-09 Asahi Kasei Medical Co., Ltd. Polysulfone hemodialyzer
JP2010162171A (ja) * 2009-01-15 2010-07-29 Kawasumi Lab Inc 血液処理装置
JP2010233991A (ja) * 2009-03-31 2010-10-21 Asahi Kasei Kuraray Medical Co Ltd 高性能血液浄化器
JP2010233987A (ja) * 2009-03-31 2010-10-21 Asahi Kasei Kuraray Medical Co Ltd 血液浄化器
US10112000B2 (en) 2010-07-08 2018-10-30 Asahi Kasei Medical Co., Ltd. Method for reducing amyloid beta concentration in blood
WO2016104757A1 (ja) * 2014-12-25 2016-06-30 旭化成メディカル株式会社 血液透析濾過器及び血液透析濾過装置
JPWO2016104757A1 (ja) * 2014-12-25 2017-09-28 旭化成メディカル株式会社 血液透析濾過器及び血液透析濾過装置
WO2021100811A1 (ja) * 2019-11-20 2021-05-27 ニプロ株式会社 中空糸膜モジュール

Also Published As

Publication number Publication date
TWI296540B (ja) 2008-05-11
KR20060006045A (ko) 2006-01-18
TW200510059A (en) 2005-03-16
EP1634639A1 (en) 2006-03-15
ES2442853T3 (es) 2014-02-13
JPWO2004094047A1 (ja) 2006-07-13
US20070007193A1 (en) 2007-01-11
CN1777471A (zh) 2006-05-24
JP4678776B2 (ja) 2011-04-27
EP1634639A4 (en) 2007-09-19
EP1634639B1 (en) 2013-12-25
KR101052372B1 (ko) 2011-07-28
CN100421771C (zh) 2008-10-01
US8496826B2 (en) 2013-07-30

Similar Documents

Publication Publication Date Title
WO2004094047A1 (ja) 中空糸膜型流体処理器
EP1790364B1 (en) Polysulfone hemodialyzer
EP1433490B1 (en) Dialyzer and method for manufacturing the same
EP2326410B1 (en) Diffusion and/or filtration device
US8840788B2 (en) Hollow fiber membrane, method for manufacturing the same, and blood purification module
EP3405277B1 (en) Process for preparing a filter membrane
JP6231733B2 (ja) 中空糸膜型医療用具
US20100089817A1 (en) Hollow fiber, hollow fiber bundle, filter and method for the production of a hollow fiber or a hollow fiber bundle
EP3238758A1 (en) Hemodiafilter and hemodiafiltration device
JP4599934B2 (ja) 中空糸膜モジュール
JP2007014666A (ja) 外部灌流型血液浄化器
EP2363196B1 (en) Diffusion and/or filtration device
JPH0999064A (ja) 中空糸型血液浄化器
JPS61268304A (ja) 流体分離器
JP2018086137A (ja) 血液透析濾過器およびその製造方法
JPH06509746A (ja) 透析用中空糸
EP3473327A1 (en) Integrated fluid treatment device, and process using such device
JPH07163659A (ja) 中空糸膜を用いた血液透析器
JP2005152295A (ja) 中空糸膜型血液浄化器
JP2005342415A (ja) 高透水性中空糸膜型血液浄化器
JPS61266609A (ja) 血液透析器

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005505798

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020057019972

Country of ref document: KR

Ref document number: 20048108576

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2004729218

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057019972

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004729218

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007007193

Country of ref document: US

Ref document number: 10553950

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10553950

Country of ref document: US