WO2004087833A1 - 蛍光体及びその製造方法 - Google Patents

蛍光体及びその製造方法 Download PDF

Info

Publication number
WO2004087833A1
WO2004087833A1 PCT/JP2004/003326 JP2004003326W WO2004087833A1 WO 2004087833 A1 WO2004087833 A1 WO 2004087833A1 JP 2004003326 W JP2004003326 W JP 2004003326W WO 2004087833 A1 WO2004087833 A1 WO 2004087833A1
Authority
WO
WIPO (PCT)
Prior art keywords
earth metal
alkaline earth
metal aluminate
aluminate phosphor
compound
Prior art date
Application number
PCT/JP2004/003326
Other languages
English (en)
French (fr)
Inventor
Seiko Hirayama
Keita Kobayashi
Junya Ishii
Mizuho Wada
Shinji Nakahara
Original Assignee
Sakai Chemical Industry Co. Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakai Chemical Industry Co. Ltd. filed Critical Sakai Chemical Industry Co. Ltd.
Priority to US10/549,585 priority Critical patent/US8580148B2/en
Priority to EP04720204A priority patent/EP1607462B1/en
Priority to JP2005504150A priority patent/JP4544155B2/ja
Publication of WO2004087833A1 publication Critical patent/WO2004087833A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7734Aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/64Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/70Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus
    • C09K11/71Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus also containing alkaline earth metals

Definitions

  • the present invention relates to a phosphor and a method for producing the phosphor.
  • PDPs plasma display panels
  • B a, S r blue phosphor MgA 1 10 O 17: 2 divalent europium Al force Li earth metal aluminate phosphor to activator of Eu 2+ and the like The body is used.
  • Such alkaline earth metal aluminate phosphors using divalent Eu palladium as an activator are exposed to high temperatures or to vacuum ultraviolet rays, ultraviolet rays, etc., for exciting the phosphors. Otherwise, it deteriorates and the luminance decreases. The reason is that the surface of the phosphor is oxidized by heating, so that divalent Eu, which is the emission center of the blue phosphor, is oxidized to trivalent, and the divalent blue emission is lost and the luminance decreases. A mechanism to do this has been proposed.
  • the phosphor may be heated at a high temperature during molding.
  • ribs called ribs are formed on a rear glass plate, and each phosphor is applied without being mixed between the ribs after being pasted with a binder and a solvent. Thereafter, it is heated at 400 to 500 ° C to burn off the binder and fuse the front glass plate.
  • a firing step not only the oxidizing action, but also the water originally contained in the dielectric and electrode materials other than the phosphor evaporates, resulting in firing in high humidity, which adversely affects the phosphor.
  • the phosphor preferably has a high powder whiteness.
  • a method for preventing a decrease in luminance of the phosphor a method for producing a phosphor, which is fired in a reducing atmosphere and then fired in an oxidizing atmosphere, is disclosed (for example, Japanese Patent Application Laid-Open No. 2002-34885). No. 70 publication).
  • a method for producing an alkaline earth metal calcium aluminate phosphor is not for increasing the powder whiteness of the phosphor.
  • an object of the present invention is to provide an alkaline earth metal aluminate phosphor having excellent heat resistance and durability against vacuum ultraviolet rays, ultraviolet rays, and the like, and a method for producing the same. .
  • the present invention relates to an alkaline earth metal aluminate phosphor containing divalent europium as an activator, comprising at least one selected from the group consisting of indium, tungsten, niobium, bismuth, molybdenum, tantalum, talmium, and lead.
  • the alkaline earth metal aluminate phosphors include barium and / or strontium (a), magnesium (b), aluminum (c), europium (d), and indium, tungsten, niobium, bismuth.
  • the fired product obtained in the above step (11) may be further obtained in the step (1-2) of firing in an oxidizing atmosphere.
  • the above alkaline earth metal aluminate phosphors are made of barium and / or strontium (a), magnesium (b), aluminum (c), and europium. (d) and at least one compound (B) selected from the group consisting of indium compounds, tungsten compounds, nip compounds, bismuth compounds, molybdenum compounds, tantalum compounds, thallium compounds, and lead compounds. ) And the mixture obtained in the above step (2-1) or the fired product of the mixture obtained in the above step (2-1) in an oxidizing atmosphere. It may be obtained by the firing step (2-2), and may be fired at least once in a reducing atmosphere before the above-mentioned step (2-2).
  • the alkaline earth metal aluminate phosphor is obtained by converting at least one element (e) selected from the group consisting of indium, tungsten, diop, bismuth, molybdenum, tantalum, talmium, and lead into 1 mole of aluminum element. On the other hand, it is preferably contained in the range of 0.001 to 0.01 mol.
  • the alkaline earth metal aluminate phosphor having the above-mentioned divalent europium as an activator is represented by the following general formula (1):
  • the alkaline earth metal aluminate phosphor has a powder whiteness of 85 or more in W value.
  • the present invention relates to a method for producing the above alkaline earth metal aluminate phosphor, comprising: barium and / or strontium (a), magnesium (b), aluminum ( c ), europium (d), and indium.
  • a method for producing an alkaline earth metal aluminate phosphor characterized by comprising a step (1-1) of sintering with an alkali.
  • the method for producing an alkaline earth metal aluminate phosphor includes a step (1-2) of firing the fired product obtained in the step (1-1) of firing in a reducing atmosphere in an oxidizing atmosphere. It is preferred to have.
  • the method for producing the alkaline earth metal aluminate phosphor described above may include a step (113) of firing in an oxidizing atmosphere before the step (111) of firing in a reducing atmosphere. preferable.
  • the present invention relates to a method for producing the above-mentioned alkaline earth metal aluminate phosphor, comprising: barium and strontium (a), magnesium (b), aluminum (c), and europium (d). And at least one compound (B) selected from the group consisting of an indium compound, a tungsten compound, a niobium compound, a bismuth compound, a molybdenum compound, a tantalum compound, a thallium compound, and a lead compound.
  • the fired product (A) preferably further contains at least one element (e) selected from the group consisting of indium, tungsten, niobium, bismuth, molybdenum, tantalum, talmium and tin.
  • the firing under the reducing atmosphere may be performed on the mixture obtained in the step (2-1).
  • the firing under the reducing atmosphere is performed in the firing of the fired product (A) comprising barium and Z or strontium (a), magnesium (b), aluminum (c), and europium (d). Is also good.
  • the phosphor of the present invention is an alkaline earth metal aluminate phosphor using divalent europium as an activator.
  • a commonly known phosphor can be used.
  • alkaline earth metal aluminates composed of barium and Z or strontium, europium, magnesium, aluminum, oxygen Phosphors can be mentioned.
  • Such an alkaline earth metal aluminate phosphor is represented by the following general formula (1):
  • the alkaline earth metal aluminate phosphor of the present invention is an alkaline earth metal aluminate phosphor using divalent europium as an activator, and is indium, tandatin, niobium, bismuth, molybdenum, and tantalum. , And at least one element (e) selected from the group consisting of lead and lead.
  • the element (e) may be present in the alkaline earth metal aluminate phosphor or may be localized on the surface as in the surface treatment with the above-mentioned elemental compound. Preferably, it is more preferably present in the alkaline earth metal aluminate phosphor.
  • the element (e) may contain two or more kinds at the same time, or may contain only one kind.
  • a phosphor having excellent heat resistance and durability against vacuum ultraviolet rays and ultraviolet rays can be obtained, so that tungsten, niobium, and bismuth are more preferred, and tungsten is most preferred.
  • At least one element (e) selected from the group consisting of indium, tungsten, niobium, bismuth, molybdenum, tantalum, thallium, and lead is an aluminum element in the alkaline earth metal aluminate phosphor of the present invention. It is preferably contained in the range of 0.001 to 0.01 mole per mole. If the amount is less than 0.001 mol, the effect of addition is small, and if it is more than 0.01 mol, the luminance becomes too low, which is not preferable.
  • the above range differs depending on the type of element used.
  • the lower limit of the above range is 0.003 mol, and the upper limit is 0.0007 mol.
  • the lower limit of the above range is most preferably 0.0005 mol, and the upper limit is 0.003 mol.
  • the content of the above element (e) is determined by the mixing ratio of the precursor compound of luminium and the precursor compound of the above element in the precursor compound used as a raw material. In the range.
  • the alkaline earth metal aluminate phosphor of the present invention may contain an element other than the element (e) as long as the physical properties are not affected.
  • the presence of impurities may affect brightness, heat resistance, durability against vacuum ultraviolet rays, and the like. Therefore, the content of elements other than the essential components is preferably less than 1%.
  • the alkaline earth metal aluminate phosphor of the present invention preferably has a powder whiteness of 85 or more in W value.
  • the alkaline earth metal aluminate phosphor having a powder whiteness of 85 or more as a W value is preferable because it does not absorb the generated fluorescence and can efficiently obtain the fluorescence.
  • the W value is less than 85, the absorption of the generated fluorescence may be increased, and good phosphor performance may not be obtained.
  • the W value is more preferably 90 or more.
  • the alkaline earth metal aluminate phosphor of the present invention will be described along an example of a method for producing the phosphor.
  • the alkaline earth metal aluminate phosphor of the present invention is not limited to one manufactured by the following manufacturing method.
  • the alkaline earth metal aluminate phosphor of the present invention includes the elements (such as barium and / or 'or strontium (a), magnesium (b), which are main constituent components of the alkaline earth metal aluminate phosphor. ), Aluminum (c), europium (d), and at least one precursor of at least one element (e) selected from the group consisting of indium, tungsten, niobium, bismuth, molybdenum, tantalum, tallium, and lead
  • the mixture of the compounds or the fired product of the above mixture can be obtained by the step (1-1) of firing in a reducing atmosphere.
  • the precursor compound is not particularly limited, and any compound can be used as long as it is an oxide or a compound that becomes an oxide when fired.
  • the precursor compound of barium is not particularly limited, and examples thereof include barium oxide, potassium carbonate, barium nitrate, barium sulfate, barium sulfide, barium chloride, and hydroxide hydroxide.
  • a precursor compound of strontium It is not limited, and examples thereof include strontium oxide, strontium carbonate, strontium nitrate, strontium sulfate, strontium sulfide, strontium chloride, strontium hydroxide and the like.
  • the precursor compound of magnesium is not particularly limited, and examples thereof include magnesium oxide, basic magnesium carbonate, magnesium hydroxide, and the like.
  • the precursor compound of aluminum is not particularly limited, and examples thereof include aluminum oxide, aluminum nitrate, aluminum sulfate, and aluminum chloride.
  • the precursor compound of europium is not particularly limited, and examples thereof include europium oxide, europium carbonate, europium chloride, and europium acetate. Further, the oxidation number of the metal element is not particularly limited.
  • the precursor compound of indium is not particularly limited, and examples thereof include indium oxide, indium trichloride, indium nitrate, indium hydroxide, and indium sulfate.
  • the acid number of the metal element is not particularly limited.
  • the precursor compound of tungsten is not particularly limited, and includes, for example, tungstate oxide, ammonium tungstate, tungsten hexachloride, and the like.
  • the oxidation number of the metal element is not particularly limited.
  • the niobium precursor compound is not particularly limited, and examples thereof include niobium oxide and niobium pentoxide.
  • the oxidation number of the metal element is not particularly limited.
  • the precursor compound of bismuth is not particularly limited, and examples thereof include bismuth oxide and bismuth nitrate. Further, the oxidation number of the metal element is not particularly limited.
  • the molybdenum precursor compound is not particularly limited, and examples thereof include molybdenum oxide, ammonium molybdate, and molybdenum chloride. Further, the oxidation number of the metal element is not particularly limited.
  • the precursor compound of tantalum is not particularly limited, and examples thereof include tantalum oxide, tantalum chloride, and tantalum fluoride. Further, the oxidation number of the metal element is not particularly limited.
  • the precursor compound of thallium is not particularly limited, and examples thereof include thallium oxide, thallium carbonate, and thallium nitrate.
  • the oxidation number of the metal element is not particularly limited.
  • Precursor compound of lead The substance is not particularly limited, and examples thereof include lead oxide, tin carbonate, and nitric acid. The oxidation number of the metal element is not particularly limited.
  • a flux may be further used.
  • the flux is not particularly limited, but a flux that functions as a growth accelerator for the phosphor particles and that volatilizes without affecting the composition is preferable.
  • a flux that functions as a growth accelerator for the phosphor particles and that volatilizes without affecting the composition is preferable.
  • magnesium fluoride, aluminum fluoride, etc. Can be mentioned.
  • the mixture of the precursor compound and the flux used as needed can be obtained by mixing the above components by a known method.
  • the mixing method is not particularly limited as long as each component is uniformly mixed without agglomeration. Specifically, for example, dry mixing using a ball mill or a blender, wet mixing with a stirrer such as a homogenizer in the presence of a solvent, or a media pulverizer such as a ball mill or a bead mill, followed by drying, and a water-soluble salt of a precursor compound A method of preparing an aqueous solution of the above, and adjusting the pH with a pH adjusting agent to precipitate an insoluble salt of the precursor compound so as to have a predetermined composition, followed by washing and drying, and a water-soluble salt of the precursor compound.
  • a W / O type emulsion is prepared with an oil agent and a dispersant, and the emulsion dispersion is heated and dehydrated to obtain an oily dispersion of a precursor mixture obtained by fractionation.
  • firing in a reducing atmosphere is required in order to reduce europium which is a luminescent center.
  • the calcination is performed in a reducing atmosphere.
  • the conditions of the reducing atmosphere are not particularly limited, and examples thereof include firing in a mixed gas atmosphere of nitrogen and hydrogen.
  • the mixing ratio of nitrogen and hydrogen is preferably 99.9 / 0.1 to 80/20 (volume ratio).
  • the firing time in the above reducing atmosphere varies depending on the reaction temperature, but in order to allow the reaction to proceed sufficiently, for example, by setting the reaction time to 0.5 to 10 hours, thus, an alkaline earth metal aluminate phosphor can be obtained efficiently.
  • firing under an arbitrary atmosphere is performed an arbitrary number of times as necessary before firing under the reducing atmosphere. Is also good. Examples of firing before firing in a reducing atmosphere include firing in an oxidizing atmosphere.
  • the firing in the above-mentioned arbitrary oxidizing atmosphere is not particularly limited, and examples thereof include firing in an air atmosphere or a mixed gas atmosphere of nitrogen and oxygen.
  • the calcination in the above-mentioned arbitrary oxidizing atmosphere is preferably performed at a temperature of 100 to 170 ° C.
  • the firing time in the above-mentioned arbitrary oxidizing atmosphere varies depending on the reaction temperature.However, in order for the reaction to proceed sufficiently, for example, the reaction time is set to 0.5 to 10 hours. The objective can be achieved efficiently.
  • baking in a reducing atmosphere is performed after baking in any of the above-mentioned atmospheres, it is preferable to pulverize the fired product appropriately and then bake in a reducing atmosphere.
  • the method for producing an alkaline earth metal aluminate phosphor may further include a step (112) of firing the fired product obtained in the step (1-1) in an oxidizing atmosphere. preferable.
  • the powder whiteness of the alkaline earth metal aluminate phosphor can be increased.
  • the alkaline earth metal aluminate phosphor of the present invention is obtained by adding at least one element (e) selected from the group consisting of indium, tungsten, niobium, bismuth, molybdenum, tantalum, thallium and lead. The brightness maintenance performance is enhanced.
  • the element (e) when such an element is added and calcined in a reducing atmosphere, the element (e) has a strong coloring power ⁇ coloring by being reduced. That is, in a reducing atmosphere, the above-mentioned element (e) changes to a low-valent substance having strong coloring properties, so that the powdered whiteness of the obtained phosphor is reduced, and the luminance is reduced by absorbing light emission. I do. For this reason, it is preferable that the powder whiteness be further increased by the above step (1-2). That is, the alkaline earth metal aluminate phosphor of the present invention contains the above element (e), and is prepared by firing in an oxidizing atmosphere as a final step to obtain a powder whiteness. It is a phosphor that is highly durable and resistant to heating, ultraviolet rays, and vacuum ultraviolet rays during manufacturing.
  • the firing in an oxidizing atmosphere as the final step is not particularly limited, and examples thereof include firing in an air atmosphere or a mixed gas atmosphere of nitrogen and oxygen. Above all, firing in a mixed gas atmosphere of nitrogen and oxygen is preferable in order to minimize oxidation of europium as an activator.
  • the ratio of nitrogen and oxygen in the above mixed gas is not particularly limited, nitrogen / oxygen may be 99.9 / 0.1 to 95/5 (volume ratio) in order to suppress oxidation of europium. preferable.
  • the above mixed gas of nitrogen and oxygen can maintain the same ratio from the beginning to the end of firing, but if the coloring of the added element can be removed, oxygen is injected during the firing process. Is also good.
  • the fired product (A) is a fired product composed of barium and / or strontium (a), magnesium (b), aluminum (c), and europium (d).
  • barium and / or strontium (a) ), Magnesium (b), aluminum (c) and europium (d) by firing a mixture comprising the respective precursor compounds.
  • the precursor compound is not particularly limited, and any compound can be used as long as it is an oxide or a compound which becomes an oxide when calcined. Use each of the precursor compounds described above. Can be.
  • the calcined product (A) containing the element (e) is selected from the following (a) to (d) It can be obtained by adding a desired amount of a precursor compound of at least one element (e) selected from the group consisting of tungsten, niobium, bismuth, molybdenum, tantalum, thallium and lead to a mixture of precursor compounds. it can.
  • the precursor compound of the element (e) is not particularly limited, and the above-mentioned ones can be used.
  • a flux may be further used. The flux is not particularly limited, and the above-mentioned fluxes can be used.
  • the mixture of the precursor compound and the flux used as needed can be obtained by mixing the above components by a known method.
  • the mixing method is not particularly limited as long as the components are uniformly mixed without agglomeration, and the above-described method can be used.
  • the fired product (A) can also be obtained by firing the mixture under a reducing atmosphere.
  • the temperature and the reaction time in the calcination under the reducing atmosphere are preferably in the above ranges.
  • the conditions for the reducing atmosphere are preferably the same as those described above.
  • the fired product (A) may be obtained by firing in an oxidizing atmosphere and then firing in a reducing atmosphere. Further, it may be obtained by performing the firing in the oxidizing atmosphere and the firing in the reducing atmosphere a plurality of times.
  • the calcined product (A) obtained as described above is mixed with an indium compound, a tungsten compound, a niobium compound, a bismuth compound, a molybdenum compound, a tantalum compound, a talmium compound, and a lead compound. And mixing at least one compound (B) selected from the group consisting of
  • the compound (B) is not particularly limited, and any oxide or compound that becomes an oxide when fired can be used in the same manner as the precursor compound. Examples of each compound include the above-mentioned precursor compounds.
  • the method of mixing the calcined product (A) and the compound (B) in the step (2-1) is not particularly limited, and examples thereof include a dry mixing using a pole mill or a blender, a homogenizer in the presence of a solvent, and the like. And wet drying with a media mill such as a pole mill or a bead mill, followed by drying. It is preferable to perform the above step (2-1) using such a method, since the crushing of the calcined product (A) and the mixing of the compound (B) can be simultaneously performed.
  • the mixture obtained in the above step (2-1) may be further calcined before being subjected to the above step (2-2).
  • the firing after the above step (2-1) may be firing in an oxidizing atmosphere or firing in a reducing atmosphere.
  • firing in a reducing atmosphere is performed at least once before the step (2-2).
  • firing in a reducing atmosphere is performed at least once, europium is reduced, and a phosphor having sufficient luminance can be obtained.
  • the firing in the above reducing atmosphere is preferably performed on the mixture obtained in the above-mentioned step (2-1) or in the firing step for obtaining the fired product (A).
  • firing in a reducing atmosphere is performed in the firing step for obtaining the fired product (A)
  • the step (2-2) is a step of firing the mixture obtained in the step (2-1) in an oxidizing atmosphere.
  • firing in an oxidizing atmosphere it is possible to achieve objects such as a reduction in luminance and a suppression of emission color shift while maintaining the powder whiteness of the phosphor.
  • the firing in the oxidizing atmosphere in the above step (2-2) is not particularly limited, and the firing is preferably performed under the same conditions as the firing in the oxidizing atmosphere as the final step.
  • the mixed gas of nitrogen and oxygen can maintain the same ratio from the beginning to the end of firing, but may be one in which oxygen is injected during the firing.
  • the temperature, time, and timing for injecting oxygen can be arbitrarily selected and are not particularly limited. Firing in the above oxidizing atmosphere minimizes the oxidation of europium, It is preferable that the heating is performed within the range of the lower limit of 500 ° C and the upper limit of 1000 ° C, and the holding time of the maximum temperature is preferably 0 to 20 hours.
  • the particle size of the alkaline earth metal aluminate phosphor obtained by the above-described method is adjusted by crushing.
  • the crusher used in the crushing may be the crusher described above.
  • the method for producing such an alkaline earth metal aluminate phosphor is also part of the present invention.
  • the alkaline earth metal aluminate phosphor of the present invention also has excellent properties in that emission color shift is suppressed.
  • the emission color shift referred to here is a change in the chromaticity of the emission of the alkaline earth metal aluminate phosphor, and the smaller the change in the chromaticity of the emission, the smaller the change in the emission color and the smaller the emission color shift. Indicates that it is suppressed.
  • the chromaticity change of the above luminescence is calculated using the chromaticity (y) of the luminescence of the phosphor measured using a luminance meter (for example, MCPD-30000 manufactured by Otsuka Electronics Co., Ltd.). 3) can be determined according to
  • the color of the luminescence immediately after preparation and after heating in the atmosphere at a rate of 150 ° C for 1 hour in air, holding at 500 for 1 hour, and then cooling at a rate of 150 ° C for 1 hour Phosphors having a degree change ( ⁇ y) of 0.01 or less can be regarded as having a suppressed emission color shift. If it exceeds 0.01, the emission color changes greatly and the ability to suppress the emission color shift is insufficient.
  • the chromaticity change is more preferably 0.007 or less.
  • the alkaline earth metal aluminate phosphor of the present invention is excellent in heat resistance and durability against vacuum ultraviolet rays and ultraviolet rays, does not cause a decrease in luminance or shift in emission color, and is suitably used for applications such as PDP. can do. Further, the alkaline earth metal aluminate phosphor has a high powder whiteness and therefore has excellent fluorescence emission.
  • LLG carbonate scan Toronchi ⁇ beam (analytical purity 99.5 wt%) 2.
  • 0.119 g of aluminum fluoride (special grade reagent) were weighed with an electronic balance, and mixed in an automatic mortar (ANM-150, manufactured by Nissot Kagaku Co., Ltd.) for 6 Omin.
  • the mixture was placed in an alumina crucible, heated at a rate of 200 ° C / hour in an air atmosphere, maintained at a maximum temperature of 1500 ° C for 5 hours, and then heated to 200 ° C / hour.
  • the obtained fired product was crushed in an automatic mortar for 10 minutes.
  • the temperature was raised at a rate of 200 aC per hour, and the temperature was maintained at a maximum temperature of 1500 ° C for 5 hours.
  • the obtained fired product was crushed in an automatic mortar for 10 minutes.
  • an alkaline earth metal aluminate phosphor containing 0.0005 mol of tungsten as W element per mol of aluminum was obtained.
  • Example 1 In the same manner as in Example 1 except that 0.331 g of tungsten oxide (VI) (special reagent) was added instead of 0.166 g of tungsten oxide (VI) (special reagent), tungsten was added to 1 mole of aluminum. In contrast, an alkaline earth metal aluminate phosphor containing 0.001 mol of W element was obtained. (Comparative Example 1)
  • the alkaline earth metal aluminate phosphors obtained in Examples 1 and 2 to which tungsten was added were both calcined compared to the alkaline earth metal aluminate phosphor of Comparative Example 1 containing no tungsten. It is clear that the luminance retention ratio afterwards is high, and the resistance to deterioration due to oxidation is improved.
  • the mixture is placed in an alumina rupturable, heated at a rate of 200 ° C / hour in an air atmosphere, maintained at a maximum temperature of 1500 ° C for 5 hours, and then maintained at 200 ° C / hour.
  • the obtained fired product was crushed in an automatic mortar for 10 minutes.
  • the temperature was raised at a rate of 200 ° C / hour, and maintained at a maximum temperature of 1,500 ° C for 5 hours. Thereafter, the temperature was reduced at a rate of 200 ° C. for one hour, and the resultant was fired by reduction. Then, the obtained fired product was crushed in an automatic mortar for 10 minutes.
  • Example 3 In the same manner as in Example 3, except that 0.197 g of indium (III) oxide was added and 0.329 g of tungsten (VI) oxide (special reagent grade) was added, tungsten was added to W per mole of aluminum. An alkaline earth metal aluminate phosphor containing 0.001 mole as an element was obtained.
  • Example 6 In the same manner as in Example 3 except that 0.158 g of indium (III) oxide was added, and 0.658 g of tungsten (VI) oxide (special grade reagent) was added instead of 0.197 g of indium (III), tungsten was added to W per mole of aluminum. An alkali earth metal aluminate phosphor containing 0.002 mol as an element was obtained. (Example 6)
  • Example 3 instead of adding 0.197 g of indium (III) oxide, the same procedure as in Example 3 was carried out except that niobium pentoxide (V) was 0.189 g. An alkaline earth metal aluminate phosphor containing 001 mol was obtained.
  • Example 9 In the same manner as in Example 3 except that niobium pentoxide (V) was changed to 0.378 g instead of adding 0.197 g of indium (III) oxide, niobium was changed to 0% as Nb element per mole of aluminum. An alkaline earth metal aluminate phosphor containing .002 monoles was obtained. (Example 9)
  • Bismuth was added to 1 mol of aluminum in the same manner as in Example 3 except that bismuth (III) oxide was changed to 0.331 g instead of adding 0.197 g of indium (III) oxide.
  • bismuth (III) oxide was changed to 0.331 g instead of adding 0.197 g of indium (III) oxide.
  • Example 3 Instead of adding 0.197 g of indium (III) oxide and 0.205 g of molybdenum (VI) oxide, the same procedure as in Example 3 was carried out, except that molybdenum was added to Mo per mole of aluminum. As a result, an alkaline earth metal aluminate phosphor containing 0.001 mol was obtained.
  • tantalum (V) oxide instead of adding 0.197 g of indium (III) oxide, tantalum (V) oxide.
  • indium (III) oxide 0.197 g
  • tantalum (V) oxide 0.197 g
  • an alkaline earth metal aluminate phosphor containing 0.001 mol of tantalum as a Ta element per 1 mol of aluminum was obtained.
  • Example 3 In the same manner as in Example 3 except that 0.197 g of indium (III) oxide was added and 0.324 g of talmium oxide (III) was added, thallium was added to T 1 with respect to 1 mol of aluminum. An alkaline earth metal aluminate phosphor containing 0.001 mole as an element was obtained.
  • Example 3 In the same manner as in Example 3 except that instead of adding 0.197 g of indium (III) oxide and 0.317 g of lead (II) oxide, Pb was added to lead per mole of aluminum. Thus, an alkaline earth metal aluminate phosphor containing 0.001 mol was obtained.
  • Tungsten was added to 1 mole of aluminum in the same manner as in Example 3 except that 0.166 g of tungsten oxide (VI) (special reagent grade) was added instead of 0.197 g of indium (III) oxide.
  • VI tungsten oxide
  • III indium oxide
  • Example 15 In the same manner as in Example 3 except that niobium pentoxide (V) was changed to 0.095 g instead of adding 0.197 g of indium (III) oxide, niobium was converted to Nb element per mole of aluminum. An alkaline earth metal aluminate phosphor containing 0.0005 mole was obtained.
  • a time-dependent deterioration test by irradiation with vacuum ultraviolet rays was performed.
  • a test film for irradiating vacuum ultraviolet rays was prepared.
  • the alkaline earth metal aluminate phosphors obtained in the above Examples and Comparative Examples, ethyl cellulose (STD-10, manufactured by Dow Chemical Co., Ltd.), and terbineol (special grade reagent) were converted by mass conversion ratio. The mixture was mixed at a ratio of 17.5: 1: 9 and dispersed by a Hoover type muller to obtain a phosphor paste.
  • the phosphor paste is used to form a 2 x 2 cm square film on a slide glass with a dry film thickness of 20 / im, and then baked in air at 500 ° C for 20 minutes to remove binder and solvent components. Removed.
  • each test piece was irradiated with 147 nm vacuum ultraviolet light for 2 hours in a vacuum of 5 Pa or less using a vacuum ultraviolet lamp manufactured by Shio Electric Co., Ltd.
  • the luminance before and after irradiation was measured, (luminance after irradiation Z, luminance before irradiation) X 100 was calculated as a luminance maintenance ratio, and the degree of deterioration of each sample before and after irradiation was compared based on the luminance maintenance ratio. Table 3 shows the results.
  • Comparative Example 2 85 From the results in Table 3, the alkaline earth metal aluminate phosphors of Examples 4, 14, and 15 according to the present invention have a brightness of about 5 to 10% compared to the alkaline earth metal aluminate phosphor of Comparative Example 2. It is clear that the retention rate has improved. That is, it is apparent that the present invention has an effect of suppressing not only the deterioration due to oxidation but also the deterioration with time of vacuum ultraviolet rays.
  • a fired product was obtained in the same manner as in Example 1, except that 0.198 g of indium oxide (III) (special reagent) was added instead of 0.166 g of tungsten (VI) oxide (special reagent).
  • the temperature was raised at a rate of 200 ° C / hour, and after holding at a maximum temperature of 800 ° C for 1 hour After the temperature was lowered at a rate of 200 ° C. for one hour to perform oxidative firing, the obtained fired product was crushed in an automatic mortar for 5 minutes.
  • Example 16 In the same manner as in Example 16 except that 0.331 g of tungsten oxide (VI) (special grade of reagent) was added instead of 0.198 g of indium (III) oxide (special grade of reagent), tungsten was replaced with an aluminum element. 0 as W element per mole.
  • VI tungsten oxide
  • III indium oxide
  • Niobium was prepared in the same manner as in Example 16 except that 0.190 g of diopoxide (V) (special reagent grade) was added instead of 0.198 g of indium (III) oxide (special reagent grade). Thus, an alkaline earth metal aluminate phosphor containing 0.001 mol of Nb element per 1 mol of aluminum element was obtained. (Example 19)
  • Bismuth was converted to aluminum in the same manner as in Example 16, except that 0.133 g of bismuth (III) oxide (special grade of reagent) was added instead of 0.198 g of indium (III) oxide (special grade of reagent). Thus, an alkaline earth metal aluminate phosphor containing 0.001 mole of Bi element per mole of palladium element was obtained.
  • Tantalum was replaced with aluminum element in the same manner as in Example 16 except that 0.315 g of tantalum oxide (V) (special grade of reagent) was added instead of 0.198 g of indium (III) oxide (special grade of reagent). Thus, an alkaline earth metal aluminate phosphor containing 0.001 mole of Ta element per mole was obtained.
  • V tantalum oxide
  • III indium oxide
  • Example 23 In the same manner as in Example 16 except that 0.326 g of thallium (III) oxide (special grade of reagent) was added instead of 0.198 g of indium (III) oxide (special grade of reagent), thallium was converted to an aluminum element. Thus, an alkaline earth metal aluminate phosphor containing 0.001 mole of T1 element per mole was obtained. (Example 23)
  • Example 24 In the same manner as in Example 16 except that 0.139 g of lead oxide (II) (special grade reagent) was added instead of 0.198 g of indium (III) oxide (special grade reagent), lead was converted to 1 mol of aluminum element. Contains 0.001 mole of Pb A lukali earth metal aluminate phosphor was obtained. (Example 24)
  • Example 25 Indium was converted to aluminum element in the same manner as in Example 1 except that 0.198 g of indium oxide (III) (special reagent) was added instead of 0.166 g of tungsten (VI) oxide (special reagent). An alkaline earth metal aluminate phosphor which was not fired in an oxidizing atmosphere and contained 0.011 mole of In element per mole was obtained. (Example 25)
  • Example 1 Instead of adding 0.166 g of niobium oxide (V) (special grade of reagent) instead of 0.166 g of tungsten (VI) oxide (special grade of reagent), the procedure of Example 1 was repeated, except that niobium was replaced by aluminum element 1 An alkaline earth metal aluminate phosphor containing 0.001 mole of Nb element per mole was obtained.
  • V niobium oxide
  • VI tungsten oxide
  • Bismuth was replaced with aluminum element in the same manner as in Example 1 except that 0.166 g of bismuth (III) oxide (special reagent) was added instead of 0.166 g of tandastene oxide (VI) (special reagent).
  • an alkaline earth metal aluminum silicate phosphor containing 0.001 mol of Bi element per mol was obtained.
  • Tantalum was replaced with aluminum in the same manner as in Example 1 except that 0.315 g of tantalum oxide (V) (special reagent) was added instead of 0.166 g of tungsten oxide (VI) (special reagent). An alkaline earth metal aluminate phosphor containing 0.001 mole of Ta element per mole of element was obtained.
  • V tantalum oxide
  • VI tungsten oxide
  • Example 2 In the same manner as in Example 1 except that 0.326 g of thallium (III) oxide (special grade of reagent) was added instead of 0.166 g of tungsten (VI) oxide (special grade of reagent), the talium was changed to an aluminum element 1 Thus, an alkaline earth metal aluminate phosphor containing 0.001 mol of T 1 element per mol was obtained.
  • Chromaticity (y value) of luminescence of fired film The chromaticity (y value) of luminescence for one powder was defined as chromaticity change, and the amount of change was compared.
  • the luminance before and after irradiation with vacuum ultraviolet rays was measured, and (the luminance after irradiation / the luminance before irradiation) was calculated by defining X100 as the luminance maintenance rate, and the degree of deterioration of each sample before and after firing was calculated based on the luminance maintenance rate.
  • Table 5 shows the results.
  • the luminance shown in Table 5 was expressed as a value obtained by converting the measured value of the luminance of each test into a relative luminance with the measured value of the luminance of the powder of Comparative Example 3 being 100.
  • Comparative Example 1 has a high luminance but a large emission color shift, whereas the phosphors of Examples 16 to 23 have a very small change in the chromaticity of the emission, and the emission color shift is suppressed. It was shown. (Example 31)
  • LLG carbonate scan Toronchi ⁇ beam (analytical purity 99.5 mass ./.)
  • 26 g, 1.19 g of aluminum fluoride (special grade reagent) was weighed on an electronic balance and mixed in an automatic mortar for 60 minutes.
  • Example 31 In the same manner as in Example 31 except that 0.331 g of tungsten oxide (VI) (special grade of reagent) was added instead of 0.198 g of indium (III) oxide (special grade of reagent), tungsten was converted to 1 mol of aluminum element. Thus, an alkaline earth metal aluminate phosphor containing 0.001 mol of W element was obtained.
  • VI tungsten oxide
  • III indium oxide
  • Example 31 The procedure of Example 31 was repeated, except that 0.190 g of dioboxide (V) (special grade reagent) was added instead of 0.198 g of indium (III) oxide (special grade reagent). An alkaline earth metal aluminate phosphor containing 0.001 mole of Nb element per mole was obtained.
  • V dioboxide
  • III indium oxide
  • Example 31 Instead of adding 0.198 g of indium (III) oxide (special grade reagent), The same procedure as in Example 31 was carried out except that 0.333 g of Smuth (III) (special grade reagent) was added, and an Al-rich earth containing 0.001 mol of Bi as element Bi with respect to 1 mol of aluminum element was used. A metal-like aluminate phosphor was obtained.
  • Example 31 In the same manner as in Example 31 except that 0.26 g of molybdenum oxide (VI) (special grade of reagent) was added instead of 0.198 g of indium (III) oxide (special grade of reagent), the molybdenum was replaced with an aluminum element. Thus, an alkaline earth metal aluminate phosphor containing 0.001 mole of Mo element per mole was obtained.
  • VI molybdenum oxide
  • indium (III) oxide special grade of reagent
  • Tantalum oxide was prepared in the same manner as in Example 31 except that 0.315 g of tantalum oxide (V) (special grade of reagent) was added instead of 0.198 g of indium (III) oxide (special grade of reagent). Thus, an alkaline earth metal aluminate phosphor containing 0.001 mol as a Ta element per 1 mol of an aluminum element was obtained.
  • V tantalum oxide
  • III indium oxide
  • Example 31 In the same manner as in Example 31 except that 0.326 g of thallium (III) oxide (special grade of reagent) was added instead of 0.198 g of indium (III) oxide (special grade of reagent), the talmium was changed to aluminum. Thus, an alkaline earth metal aluminate phosphor containing 0.001 mol of T1 element per 1 mol of element was obtained.
  • Example 3 In the same manner as in Example 31 except that 0.139 g of lead oxide (II) (special grade reagent) was added instead of 0.198 g of zinc oxide (III) (special grade reagent), lead was converted to 1 mol of aluminum element. On the other hand, an alkaline earth metal aluminate phosphor containing 0.001 mol as a Pb element was obtained. (Example 3 9)
  • Barium carbonate (analytical purity 9 9.3 9 wt%) 24.
  • llg carbonate Sutoronchi ⁇ beam (analytical purity 9 9.5 wt%) 2.
  • magnesium hydroxide (analytical purity 9 9.5 mass 0 / 0) 8.
  • 3 3 g aluminum oxide (analytical purity 9 9.2 7 mass 0/0) 7 3.
  • 3 2 g europium oxide and (III) (analysis purity 9 9.6 mass 0/0) 1.26 g and 1.19 g of aluminum fluoride (special reagent grade) were each weighed with an electronic balance, and mixed in an automatic mortar (ANM-150, manufactured by Nitto Kagaku) for 60 minutes.
  • the mixture is placed in an alumina rupturable, heated at a rate of 200 ° C per hour in an air atmosphere, maintained at a maximum temperature of 1,500 ° C for 5 hours, and then maintained at 200 ° C per hour. After the temperature was reduced at a rate of ⁇ ⁇ and baked, the obtained baked product was crushed in an automatic mortar for 10 minutes.
  • the temperature was raised at a rate of 200 ° C / hour and maintained at a maximum temperature of 1500 ° C for 5 hours. After that, the temperature was lowered at a rate of 200 ° C. for one hour, and the material was calcined by reduction.
  • Tungsten oxide (VI) (special grade reagent) is weighed in a 0.33 g electronic beam, crushed and mixed for 10 minutes in an automatic mortar with the calcined material obtained above, At the same time. Furthermore, in an electric furnace maintained in an oxidizing atmosphere with a mixed gas of 10% by volume of oxygen and 90% by volume of nitrogen, the temperature was raised at a rate of 200 ° C./hour and held at a maximum temperature of 800 ° C. for 1 hour. Thereafter, the temperature was lowered at a rate of 200 ° C. for one hour to perform oxidative firing, and the obtained fired product was crushed in an automatic mortar for 5 minutes. Thus, an alkaline earth metal aluminate phosphor containing 0.001 mol of tungsten as a W element per 1 mol of an aluminum element was obtained.
  • Example 41 In the same manner as in Example 39 except that 0.26 g of molybdenum oxide (VI) (reagent grade) was added instead of 0.33 g of tungsten oxide (VI) (reagent grade), was obtained as an Al element earth metal aluminate phosphor containing 0.001 mol as an Mo element per 1 mol of an aluminum element. (Example 41)
  • Bismuth was replaced with aluminum element 1 in the same manner as in Example 39 except that 0.333 g of bismuth oxide (III) (special grade of reagent) was added instead of 0.331 g of tungsten (VI) oxide (special grade of reagent).
  • III bismuth oxide
  • VI tungsten oxide
  • the phosphors of Examples 31 to 38 and the phosphors of Examples 39 to 41 are different in the addition process of indium, tungsten, niobium, bismuth, molybdenum, tantalum, thallium and lead, respectively, after irradiation with vacuum ultraviolet rays. It was shown that the brightness of the sample was improved and the deterioration was extremely suppressed. Industrial applicability
  • the alkaline earth metal aluminate phosphor of the present invention is a phosphor excellent in luminance maintenance performance, which is significantly suppressed from deterioration over time and shift in emission color during heating and irradiation with vacuum ultraviolet rays, and is excellent in luminance maintenance performance. It is possible to suppress the deterioration and the like in the manufacturing process when it is applied to a semiconductor device. Furthermore, the alkaline earth metal aluminate phosphor of the present invention has high powder whiteness and excellent fluorescence reflectivity, and thus does not cause a decrease in function due to absorption of generated fluorescence.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)
  • Gas-Filled Discharge Tubes (AREA)

Abstract

 本発明は、優れた耐熱性及び真空紫外線や紫外線等に対する耐久性を有するアルカリ土類金属アルミン酸塩蛍光体及びその製造方法を提供する。 2価のユーロピウムを付活剤とするアルカリ土類金属アルミン酸塩蛍光体であって、インジウム、タングステン、ニオブ、ビスマス、モリブデン、タンタル、タリウム及び鉛よりなる群から選ばれる少なくとも1種類の元素(e)を含有するアルカリ土類金属アルミン酸塩蛍光体。

Description

明細書
蛍光体及びその製造方法 技術分野
本発明は、 蛍光体及びその製造方法に関する。 背景技術
近年、 プラズマディスプレイパネル (以下、 PDPと記す) 等において、 種々 の蛍光体が使用されている。 このような蛍光体のうち、 青色蛍光体として (B a、 S r) MgA 1 10O17 : Eu2+等の 2価のユーロピウムを付活剤とするアル力 リ土類金属アルミン酸塩蛍光体等が用いられている。
このような 2価のユー口ピウムを付活剤とするアル力リ土類金属アルミン酸塩 蛍光体は、 高温下にさらされたり、 蛍光体を励起する為の真空紫外線、 紫外線等 にさらされたりすると劣化して輝度が低下する。 この理由として、 加熱により蛍 光体表面が酸化作用を受けるため、 特に青色蛍光体の発光中心である 2価の Eu が酸化されて 3価となり、 2価の青色発光が失われて輝度が低下するというメカ 二ズムが提唱されている。
蛍光体は、 用途によっては成形時に高温での加熱を経ることがある。 例えば、 PDPの製造工程においては、 背面ガラス板上にリブと呼ばれる隔壁を形成し、 各蛍光体はバインダー及び溶剤でペースト化された後に隔壁間にそれぞれ混色す ることなく塗布される。 その後バインダ一を焼き飛ばし、 前面ガラス板を融着さ せる目的で、 400〜500°Cで加熱される。 このような焼成工程では酸化作用 だけではなく、 蛍光体以外の誘電体や電極等の材料に元々含まれる水が蒸発する ため、 結果的に高湿度中での焼成となり、 蛍光体に悪影響を及ぼす可能性も示唆 されている。 そのため、 青色蛍光体では加熱焼成工程での輝度低下と発光色シフ トを抑制することが大きな課題となっている。
劣化抑制のために、 蛍光体表面への化学的処理によって劣化を抑制する試みが なされている (例えば、 特開平 10— 1 95428号公報、 特開平 10— 298 548号公報、 特開平 10_ 204429号公報等) 。 しかし、 これらの方法は いずれもホウ素やアンチモン、 シリカ等の元素の化合物を表面に被覆することで あり、 酸化劣化を完全に防ぐことが困難であるだけでなく、 蛍光体表面を他物質 で覆うために輝度が低下するという問題を生じる。
また、 着色して粉体白色度が低下した蛍光体は、 発生した蛍光を吸収してしま うため機能が低下してしまうという問題がある。 このため、 蛍光体は、 高い粉体 白色度を有することが好ましい。 蛍光体の輝度低下を防ぐ方法としては、 還元雰 囲気下で焼成した後に、 酸化雰囲気下で焼成する蛍光体の製造方法が開示されて いる (例えば、 特開 2 0 0 2— 3 4 8 5 7 0号公報) 。 しかしながら、 このよう な方法は、 アル力リ土類金属ケィアルミン酸塩蛍光体を製造するための方法であ り、 蛍光体の粉体白色度を高めるためのものではなかった。 発明の要約
本発明は、 上記に鑑み、 優れた耐熱性及び真空紫外線や紫外線等に対する耐久 性を有するアル力リ土類金属アルミン酸塩蛍光体及びその製造方法を提供するこ とを目的とするものである。
本発明は、 2価のユーロピウムを付活剤とするアルカリ土類金属アルミン酸塩 蛍光体であって、 インジウム、 タングステン、 ニオブ、 ビスマス、 モリブデン、 タンタル、 タリゥム及び鉛よりなる群から選ばれる少なくとも 1種類の元素 ( e ) を含有することを特徴とするアルカリ土類金属アルミン酸塩蛍光体である。 上記アル力リ土類金属アルミン酸塩蛍光体は、 バリウム及び/又はス トロンチ ゥム ( a ) 、 マグネシウム ( b ) 、 アルミニウム ( c ) 、 ユーロピウム ( d ) 、 並びに、 インジウム、 タングステン、 ニオブ、 ビスマス、 モリブデン、 タンタル 、 タリウム及び鉛か なる群から選ばれる少なくとも 1種類の元素 ( e ) のそれ ぞれの前駆体化合物の混合物を、 還元性雰囲気下で焼成する工程 (1一 1 ) 、 及 び、 上記工程 (1一 1 ) により得られた焼成物を、 更に、 酸化性雰囲気下で焼成 する工程 (1— 2 ) により得られるものであってもよい。
上記アル力リ土類金属アルミン酸塩蛍光体は、 バリゥム及び 又はストロンチ ゥム (a ) 、 マグネシウム (b ) 、 アルミニウム (c ) 、 並びに、 ユーロピウム (d) からなる焼成物 (A) と、 インジウム化合物、 タングステン化合物、 ニォ プ化合物、 ビスマス化合物、 モリブデン化合物、 タンタノレ化合物、 タリウム化合 物及び鉛化合物からなる群から選ばれる少なくとも 1種類の化合物 (B) とを混 • 合する工程 (2— 1) 、 及び、 上記工程 (2— 1) によって得られた混合物又は 上記工程 (2— 1) によって得られた混合物の焼成物を酸化性雰囲気下で焼成す る工程 (2— 2) により得られるものであり、 上記工程 (2— 2) 前に還元性雰 囲気下での焼成を少なくとも一回行うものであってもよい。
上記アルカリ土類金属アルミン酸塩蛍光体は、 インジウム、 タングステン、 二 ォプ、 ビスマス、 モリプデン、 タンタル、 タリゥム及び鉛よりなる群から選ばれ る少なくとも 1種類の元素 (e) をアルミニウム元素 1モルに対して、 0. 00 01〜0. 01モルの範囲で含有することが好ましい。
上記 2価のユー口ピウムを付活剤とするアル力リ土類金属アルミン酸塩蛍光体 は、 下記一般式 (1) ;
(B a X_XS r χ)
Figure imgf000004_0001
YMg A 110O17 ( 1 )
(式中、 0 X≤0. 3、 0 < Y≤ 0. 2)
で表されることが好ましい。
上記アル力リ土類金属アルミン酸塩蛍光体は、 粉体白色度が W値で 85以上で あることが好ましい。
本発明は、 上記アル力リ土類金属アルミン酸塩蛍光体の製造方法であって、 バリウム及び/又はストロンチウム (a) 、 マグネシウム (b) 、 アルミニウム (c) 、 ユーロピウム (d) 、 並びに、 インジウム、 タングステン、 ニオブ、 ビ スマス、 モリプデン、 タンタル、 タリゥム及び鉛よりなる群から選ばれる少なく とも 1種類の元素 (e) のそれぞれの前駆体化合物の混合物又は上記混合物の焼 成物を、 還元雰囲気下で焼成する工程 (1 - 1) からなることを特徴とするアル カリ土類金属アルミン酸塩蛍光体の製造方法でもある。
上記アル力リ土類金属アルミン酸塩蛍光体の製造方法は、 還元雰囲気下で焼成 する工程 (1— 1) により得られた焼成物を、 酸化雰囲気下で焼成する工程 (1 -2) を有することが好ましい。 上記アル力リ土類金属アルミン酸塩蛍光体の製造方法は、 還元雰囲気下で焼成 する工程 (1一 1) の前に、 酸化雰囲気下で焼成する工程 (1一 3) を有するこ とが好ましい。
本発明とは、 上記アル力リ土類金属アルミン酸塩蛍光体の製造方法であって、 バリウム及びノ又はストロンチウム (a) 、 マグネシウム (b) 、 アルミニウム (c) 、 並びに、 ユーロピウム (d) からなる焼成物 (A) と、 インジウム化合 物、 タングステン化合物、 ニオブ化合物、 ビスマス化合物、 モリブデン化合物、 タンタル化合物、 タリゥム化合物及び鉛化合物からなる群から選ばれる少なくと も 1種類の化合物 (B) とを混合する工程 (2— 1) 、 及び、 上記工程 (2— 1 ) によって得られた混合物又は上記工程 (2— 1) によって得られた混合物の焼 成物を酸化雰囲気下で焼成する工程 (2— 2) からなり、 上記工程 (2- 2) 前 に還元雰囲気下での焼成を少なくとも一回行うことを特徴とするアルカリ土類金 属アルミン酸塩蛍光体の製造方法でもある。
上記焼成物 (A) は、 更に、 インジウム、 タングステン、 ニオブ、 ビスマス、 モリブデン、 タンタル、 タリゥム及ぴ鈴からなる群から選ばれる少なくとも 1種 の元素 (e) を含有するものであることが好ましい。
上記還元雰囲気下での焼成は、 上記工程 (2— 1) によって得られた混合物に 対して行ってもよい。
上記還元雰囲気下での焼成は、 上記バリウム及び Z又はストロンチウム (a) 、 マグネシウム (b) 、 アルミニウム (c) 、 並びに、 ユーロピウム (d) からな る焼成物 (A) の製造における焼成において行ってもよい。 発明の詳細な開示
以下に本発明を詳述する。
本発明の蛍光体は、 2価のユーロピウムを付活剤とするアルカリ土類金属アル ミン酸塩蛍光体であって、 このような蛍光体としては、 通常知られているものを 使用することができ、 例えば、 バリウム及び Z又はストロンチウム、 ユーロピウ ム、 マグネシウム、 アルミニウム、 酸素からなるアルカリ土類金属アルミン酸塩 蛍光体を挙げることができる。 このようなアル力リ土類金属アルミン酸塩蛍光体 としては、 下記一般式 (1 ) ;
(B aト xS r x)
Figure imgf000006_0001
uYMg A 1 10O17 ( 1 )
(式中、 0≤X≤ 0. 3、 0 < Y≤ 0. 2)
で表されるものであることが好ましい。
本発明のアル力リ土類金属アルミン酸蛍光体は、 2価のユーロピウムを付活剤 とするアルカリ土類金属アルミン酸塩蛍光体であって、 インジウム、 タンダステ ン、 ニオブ、 ビスマス、 モリブデン、 タンタル、 タリゥム及び鉛よりなる群から 選ばれる少なくとも 1種類の元素 (e ) を含有するものである。 上記元素 (e) は、 上記アルカリ土類金属アルミン酸塩蛍光体中に存在するものであっても、 上 記元素化合物による表面処理のように表面に局在化して存在するものであっても よいが、 アルカリ土類金属アルミン酸塩蛍光体中に存在するものであることが、 より好ましい。 上記元素 (e ) としては、 2種類以上を同時に含有するものであ つてもよいし、 一種類のみを含有するものであってもよい。 上記元素のなかでも、 優れた耐熱性及び真空紫外線や紫外線等に対する耐久性を有する蛍光体が得られ るため、 タングステン、 ニオブ、 ビスマスがより好ましく、 タングステンが最も 好ましい。
上記インジウム、 タングステン、 ニオブ、 ビスマス、 モリブデン、 タンタル、 タリゥム及び鉛よりなる群から選ばれる少なくとも 1種類の元素 (e ) は、 本発 明のアル力リ土類金属アルミン酸蛍光体中にアルミニウム元素 1モルに対して、 0. 0 0 0 1〜0. 0 1モルの範囲で含有することが好ましい。 0. 0 0 0 1モ ルより少ないと添加効果が小さく、 0. 0 1モルより多いと、 輝度が低くなりす ぎるため好ましくない。 上記範囲は、 使用する元素の種類によって相違するが、 例えば、 タングステン及びノ又はニオブを使用した場合には、 上記範囲の下限は、 0. 0 0 0 3モル、 上限は 0. 00 7モルであることが好ましい。 更には、 上記 範囲の下限は 0. 00 0 5モル、 上限は 0. 0 0 3モルであることが最も好まし い。 上記元素 (e ) の含有量は、 原料として使用する前駆体化合物において、 了 ルミ二ゥム前駆体化合物と上記元素の前駆体化合物との混合比率によって、 特定 の範囲内のものとすることができる。
本発明のアル力リ土類金属アルミン酸蛍光体は、 物性に影響を与えない範囲内 で、 上記元素 (e) 以外の元素を含有するものであってもよい。 伹し、 不純物が 存在すると、 輝度や耐熱性、 真空紫外線に対する耐久性等に影響を与えるおそれ があるため、 必須成分以外の元素は、 1%未満であることが好ましい。
更に、 本発明のアルカリ土類金属アルミン酸塩蛍光体は、 粉体白色度が W値で 85以上であることが好ましい。 上記粉体白色度が W値として 85以上であるァ ルカリ土類金属アルミン酸塩蛍光体は、 発生した蛍光を吸収することがなく、 効 率よく蛍光を得ることができる点で好ましい。 上記 W値は、 下記の式 (2) に従 い、 ハンター表色系 L (明度) 、 a (彩度) 、 b (色相) の各値より算出される。 W= 1 00 - { (10 O-L) 2+ (a 2+b2) } 1/2 (2)
上記 W値が 85未満であると、 発生した蛍光の吸収が高まり、 良好な蛍光体性 能が得られないおそれがある。 上記 W値は、 90以上であることがより好ましい。 以下、 本発明のアル力リ土類金属アルミン酸塩蛍光体を製造方法の一例に沿つて 説明する。 なお、 本発明のアル力リ土類金属アルミン酸塩蛍光体は、 以下の製造 方法によつて製造されたものに限定されるものではない。
本発明のアル力リ土類金属アルミン酸塩蛍光体は、 アル力リ土類金属アルミン 酸塩蛍光体の主構成成分である各元素 (バリゥム及び/ '又はス トロンチウム (a ) 、 マグネシウム (b) 、 アルミニウム (c) 、 ユーロピウム (d) 、 並びに、 インジウム、 タングステン、 ニオブ、 ビスマス、 モリプデン、 タンタル、 タリウ ム及び鉛よりなる群から選ばれる少なくとも 1種類の元素 (e) ) のそれぞれの 前駆体化合物の混合物又は上記混合物の焼成物を、 還元雰囲気下で焼成する工程 (1 - 1) によって得ることができる。
上記前駆体化合物としては特に限定されず、 酸化物又は焼成すると酸化物にな る化合物であればどのようなものでも用いることができる。
バリウムの前駆体化合物としては特に限定されず、 例えば、 酸化バリウム、 炭酸 ノ リウム、 硝酸バリウム、 硫酸バリゥム、 硫化バリゥム、 塩化バリゥム、 水酸化 バリゥム等を挙げることができる。 ストロンチウムの前駆体化合物としては特に 限定されず、 例えば、 酸化ストロンチウム、 炭酸ス トロンチウム、 硝酸ス トロン チウム、 硫酸ス トロンチウム、 硫化ストロンチウム、 塩化ストロンチウム、 水酸 化ストロンチウム等を挙げることができる。 マグネシウムの前駆体化合物として は特に限定されず、 例えば、 酸化マグネシウム、 塩基性炭酸マグネシウム、 水酸 化マグネシウム等を挙げることができる。 アルミニウムの前駆体化合物としては 特に限定されず、 例えば、 酸化アルミニウム、 硝酸アルミユウム、 硫酸アルミ二 ゥム、 塩化アルミエゥム等を挙げることができる。 ユーロピウムの前駆体化合物 としては特に限定されず、 例えば、 酸化ユーロピウム、 炭酸ユーロピウム、 塩化 ユーロピウム、 酢酸ユーロピウム等を挙げることができる。 また、 その金属元素 の酸化数についても特に限定されない。
インジウムの前駆体化合物としては特に限定されず、 例えば、 酸化インジウム、 三塩化インジウム、 硝酸インジウム、 水酸化インジウム、 硫酸インジウム等を挙 げることができる。 また、 その金属元素の酸ィヒ数についても特に限定されない。 タングステンの前駆体化合物としては特に限定されず、 例えば、 酸化タンダステ ン、 タングステン酸アンモニゥム、 六塩化タングステン等を挙げることができる。 また、 その金属元素の酸化数についても特に限定されない。 ニオブの前駆体化合 物としては特に限定されず、 例えば、 酸化ニオブ、 五酸化ニオブ等を挙げること ができる。 また、 その金属元素の酸化数についても特に限定されない。 ビスマス の前駆体化合物としては特に限定されず、 例えば、 酸化ビスマス、 硝酸ビスマス 等を挙げることができる。 また、 その金属元素の酸化数についても特に限定され ない。 モリブデンの前駆体化合物としては特に限定されず、 例えば、 酸化モリブ デン、 モリプデン酸アンモニゥム、 塩化モリブデン等を挙げることができる。 ま た、 その金属元素の酸化数についても特に限定されない。
タンタルの前駆体化合物としては特に限定されず、 例えば、 酸化タンタル、 塩 化タンタル、 弗化タンタル等を挙げることができる。 また、 その金属元素の酸化 数についても特に限定されない。 タリゥムの前駆体化合物としては特に限定され ず、 例えば、 酸化タリウム、 炭酸タリウム、 硝酸タリウム等を挙げることができ る。 また、 その金属元素の酸化数についても特に限定されない。 鉛の前駆体化合 物としては特に限定されず、 例えば、 酸化鉛、 炭酸鈴、 硝酸 等を挙げることが できる。 また、 その金属元素の酸化数についても特に限定されない。
上記前駆体化合物として使用される化合物は、 できるだけ高純度であることが 好ましく、 特に揮発成分以外の不純物を含まないか、 含有していても極めて少量 であることが好ましい。 原料中に不純物が存在していると、 得られるアルカリ土 類金属アルミン酸塩蛍光体の物性が変化するおそれがあるため、 好ましくない。 原料としては、 すべて純度 9 9 %以上のものを使用することが好ましい。 上記そ れぞれの前駆体化合物は、 目的とするアル力リ土類金属アルミン酸塩蛍光体にお ける各元素の割合に応じた比となるような割合で配合して、 混合物とする。
本発明のアルカリ土類金属アルミン酸塩蛍光体の製造においては、 更に融剤を使 用しても良い。 融剤としては特に限定されるものではないが、 該蛍光体粒子の成 長促進剤として機能し、 尚且つ組成に影響することなく揮発するものが好ましく、 例えば、 弗化マグネシウム、 弗化アルミニウム等を挙げることができる。
上記前駆体化合物及び必要に応じて使用する上記融剤の混合物は、 上記各成分 を公知の方法によって混合することによって得ることができる。
上記混合の方法は、 各成分が単独で凝集することなく均一に混合されるような 方法であれば、 特に限定されるものではない。 具体的には例えば、 ボールミルや プレンダ一等を使用した乾式混合、 溶媒存在下ホモジナイザー等の攪拌機やボー ルミル、 ビーズミル等のメディァ粉砕機で湿式混合した後に乾燥する方法、 前駆 体化合物の水溶性塩類の水溶液を調製して、 p H調整剤により p H調整して所定 の組成になるように前駆体化合物の不溶性塩を沈殿させた後、 洗浄し乾燥する方 法、 前駆体化合物の水溶性塩類の水溶液を調製した後に油剤と分散剤で W/O型 ェマルジヨンを調製し、 そのェマルジョン液を加熱脱水して得られる前駆体混合 物の油性分散液を分別して得る方法等を挙げることができる。
上記混合物を還元雰囲気で焼成することによって、 本発明のアル力リ土類金属 アルミン酸塩蛍光体が得られる。 上記焼成は、 1 0 0 0〜 1 7 0 0 °Cの範囲で行 うことが好ましい。 上記焼成温度が 1 0 0 0 °Cより低いと、 完全にアル力リ土類 金属アルミン酸塩蛍光体の結晶とならなかったり、 アル力リ土類金属アルミン酸 塩蛍光体の結晶となっても結晶性が著しく悪くなつたりするおそれがあり、 1 7 0 0 °Cより高いと粒子が大きくなりすぎて性能が著しく悪くなるおそれがあり、 強い粒子間融着のため分散が困難となり均一な蛍光膜形成を著しく阻害するため 好ましくない。 上記還元雰囲気下での焼成においては、 発光中心であるユーロピ ゥムを還元するために、 還元雰囲気で焼成することが必要とされるものである。 上記焼成は、 還元雰囲気下で行うものである。 上記還元雰囲気の条件は、 特に限 定されるものではないが、 例えば、 窒素と水素との混合ガス雰囲気下での焼成等 を挙げることができる。 上記窒素と水素との混合ガス雰囲気下での焼成において は、 窒素と水素の混合割合は、 9 9 . 9 / 0 . 1 〜 8 0 / 2 0 (体積比) である ことが好ましい。
上記還元雰囲気下での焼成は、 反応温度によって反応時間が異なるものである が、 反応を充分に進行させるためには、 例えば、 反応時間を 0 . 5 - 1 0時間と することによって、 目的とするアル力リ土類金属アルミン酸塩蛍光体を効率良く 得ることができる。
上記アルカリ土類金属アルミン酸塩蛍光体の製造方法においては、 上記還元雰 囲気下での焼成の前に、 必要に応じて、 任意の雰囲気下での焼成を任意の回数行 うものであっても良い。 このような還元雰囲気下での焼成の前の焼成としては、 例えば、 酸化雰囲気下での焼成等を挙げることができる。
上記任意の酸化雰囲気下での焼成としては特に限定されず、 例えば、 大気雰囲 気下、 窒素と酸素との混合ガス雰囲気下での焼成などを挙げることができる。 上 記任意の酸化雰囲気下での焼成は、 1 0 0 0〜 1 7 0 0 °Cの温度で行うことが好 ましい。 上記任意の酸化雰囲気下での焼成は、 反応温度によって反応時間が異な るものであるが、 反応を充分に進行させるためには、 例えば、 反応時間を 0 . 5 〜 1 0時間とすることによって、 効率良く目的を達成することができる。 上記任 意の雰囲気下での焼成を行った後で還元雰囲気下での焼成を行う場合、 焼成物を 適時粉砕してから還元雰囲気下での焼成を行うことが好ましい。
上述した方法によって得られたァノレ力リ土類金属アルミン酸塩蛍光体は、 解砕 することによって粒径を整えることが好ましい。 上記解砕において用いる粉碎機 は、 ハンマーミル、 流体エネルギーミル、 ミックスマラー等の乾式粉砕機やボー ルミル、 ビーズミル等の湿式粉砕機を用いることができる。 上記解砕においては、 強粉碎すると蛍光体の特性が著しく悪くなるため、 焼成物の状態により、 適した 粉砕機の選定と最適な条件の設定が必要である。 液体サイク口ン等の分級操作も 適宜利用することができる。 このようなアルカリ土類金属アルミン酸塩蛍光体の 製造方法も、 本発明の一部である。
上記アルカリ土類金属アルミン酸塩蛍光体の製造方法は、 更に、 上記工程 (1 - 1 ) により得られた焼成物を、 酸化雰囲気下で焼成する工程 (1一 2 ) を有す ることが好ましい。 上記酸化雰囲気下で焼成する工程 ( 1 - 2 ) を行うことによ り、 アル力リ土類金属アルミン酸塩蛍光体の粉体白色度を高めることができる。 本発明のアル力リ土類金属アルミン酸塩蛍光体は、 インジウム、 タングステン、 ニオブ、 ビスマス、 モリブデン、 タンタル、 タリウム及び鉛からなる群から選ば れる少なくとも 1種類の元素 ( e ) を添加することにより、 輝度維持性能を高め たものである。 しかし、 このような元素を添加して還元雰囲気下で焼成すると、 上記元素 (e ) は、 還元されることによって着色する力 \ 着色が強くなる。 すな わち、 還元雰囲気下で上記元素 (e ) は着色性の強い低価数物質に変化するため、 得られる蛍光体の粉体白色度が低下し、 ひいては発光を吸収して輝度が低下する。 このため、 上記工程 ( 1 - 2 ) により、 粉体白色度を更に高めることが好ましい。 つまり、 本発明のアル力リ土類金属アルミン酸塩蛍光体は、 上記元素 (e ) を 含有し、 なおかつ、 最終工程として酸化雰囲気下で焼成を行って調製することに より、 粉体白色度が高く、 製造時の加熱、 紫外線、 真空紫外線の照射等に対する 耐久性に優れた蛍光体となるものである。
上記最終工程としての酸化雰囲気下での焼成としては特に限定されず、 例えば、 大気雰囲気下、 窒素と酸素との混合ガス雰囲気下での焼成等を挙げることができ る。 なかでも、 付活剤であるユーロピウムの酸化を極力抑えるため、 窒素と酸素 との混合ガス雰囲気下での焼成が好ましい。 上記混合ガスにおける窒素と酸素と の割合としては特に限定されないが、 ユーロピウムの酸化を抑制するため、 窒素 /酸素 = 9 9 . 9 / 0 . 1〜9 5 / 5 (体積比) であることが好ましい。 上記窒素と酸素との混合ガスは、 焼成初期から終了時まで同じ割合を保持する こともできるが、 添加元素の着色を取り除くことができるならば、 焼成の過程で 酸素を注入するものであってもよい。 この際、 酸素を注入する温度、 時間及ぴ時 期としては、 任意に選ぶことができ、 特に限定されない。 上記酸化雰囲気下での 焼成は、 ユーロピウムの酸化を極力抑えるため、 下限 500°C、 上限 1 000°C の範囲内で行われることが好ましく、 最高到達温度の保持時間は 0〜 20時間で 行うことが好ましい。
本発明のアルカリ土類金属アルミン酸塩蛍光体は、 バリゥム及び/又はストロ ンチウム (a) 、 マグネシウム (b) 、 アルミニウム (c) 、 並びに、 ユーロピ ゥム (d) からなる焼成物 (A) と、 インジウム化合物、 タングステン化合物、 ニオブ化合物、 ビスマス化合物、 モリブデン化合物、 タンタル化合物、 タリウム 化合物及び鉛化合物からなる群から選ばれる少なくとも 1種類の化合物 (B) と を混合する工程 (2- 1) 、 及び、 上記工程 (2- 1) によって得られた混合物 又は上記工程 (2- 1) によつて得られた混合物の焼成物を酸化雰囲気下で焼成 する工程 (2— 2) からなり、 上記工程 (2- 2) 前に還元雰囲気下での焼成を 少なくとも一回行う方法により得ることもできる。
上記焼成物 (A) は、 バリウム及び/又はストロンチウム (a) 、 マグネシゥ ム (b) 、 アルミニウム (c) 、 並びに、 ユーロピウム (d) からなる焼成物で あり、 例えば、 バリウム及び/又はストロンチウム (a) 、 マグネシウム (b) 、 アルミニウム (c) 、 並びに、 ユーロピウム (d) のそれぞれの前駆体化合物か らなる混合物を焼成することによつて得ることができる。
上記前駆体化合物としては特に限定されず、 酸化物又は焼成すると酸化物にな る化合物であればどのようなものでも用いることができ、 それぞれの前駆体化合 物としては上述のものを使用することができる。
上記焼成物 (A) は、 更に、 インジウム、 タングステン、 ニオブ、 ビスマス、 モリプデン、 タンタル、 タリウム及び鉛からなる群から選ばれる少なくとも 1種 の元素 (e) を含有するものであってもよい。
上記元素 (e) を含有する上記焼成物 (A) は、 (a) ~ (d) のそれぞれの 前駆体化合物の混合物に、 タングステン、 ニオブ、 ビスマス、 モリブデン、 タン タル、 タリウム及び鉛からなる群から選ばれる少なくとも 1種の元素 (e ) の前 駆体化合物を所望量添加することによって得ることができる。 上記元素 (e ) の 前駆体化合物としては特に限定されず、 上述のものを使用することができる。 上記焼成物 (A) の製造においては、 更に、 融剤を使用してもよい。 上記融剤と しては特に限定されず、 上述のものを使用することができる。
上記前駆体化合物及び必要に応じて使用する上記融剤の混合物は、 上記各成分 を公知の方法によって混合することによって得ることができる。
上記混合の方法は、 各成分が単独で凝集することなく均一に混合されるような 方法であれば特に限定されず、 上述の方法を用いることができる。
上記焼成物 (A) は、 例えば、 大気雰囲気下、 窒素と酸素との混合ガス雰囲気 下等の酸化雰囲気下での焼成を、 任意の回数行うことによって得ることができる。 上記酸化雰囲気下での焼成における温度、 反応時間は、 上記任意の酸化雰囲気下 での焼成の条件が好ましい。
上記焼成物 (A) は、 上記混合物の還元雰囲気下での焼成によっても得ること ができる。 上記還元雰囲気下での焼成における温度、 反応時間は、 上述の範囲が 好ましい。 また、 還元雰囲気の条件も上述と同様の条件が好ましい。
上記焼成物 (A) は、 上記任意の酸化雰囲気下での焼成を行った後で、 還元雰 囲気下での焼成を行うことによって得られたものであってもよい。 また、 上記酸 化雰囲気下での焼成と還元雰囲気下での焼成を複数回行うことによって得られた ものであってもよい。
上記工程 ( 2 - 1 ) は、 上述のようにして得られた焼成物 (A) と、 インジゥ ム化合物、 タングステン化合物、 ニオブ化合物、 ビスマス化合物、 モリブデン化 合物、 タンタル化合物、 タリゥム化合物及び鉛化合物からなる群から選ばれる少 なくとも 1種類の化合物 (B ) とを混合する工程である。
上記化合物 (B ) としては特に限定されず、 上記前駆体化合物と同様に、 酸化 物又は焼成すると酸化物になる化合物であればどのようなものでも用いることが できる。 それぞれの化合物としては、 上述の前駆体化合物を挙げることができる。 上記工程 (2— 1) における上記焼成物 (A) と上記化合物 (B) の混合方法と しては特に限定されず、 例えば、 ポールミルやプレンダ一等を使用した乾式混合、 溶媒存在下ホモジナイザー等の攪拌機やポールミル、 ビーズミル等のメディァ粉 碎機で湿式混合した後に乾燥する方法等を挙げることができる。 このような方法 を用いて、 上記工程 (2— 1) を行うことにより、 上記焼成物 (A) の解砕と化 合物 (B) の混合が同時にできることから好ましい。
上記工程 (2— 1) によって得られた混合物を更に焼成してから上記工程 (2 —2) に供するものであってもよい。 上記工程 (2- 1) の後の焼成は、 酸化雰 囲気下での焼成であっても、 還元雰囲気下での焼成であってもよい。
本発明の蛍光体は、 上記工程 (2-2) の前に還元雰囲気下での焼成を少なく とも一回行うものである。 少なくとも一回の還元雰囲気下での焼成を行うことに よって、 ユーロピウムが還元されて、 充分な輝度を有する蛍光体が得られる。 上 記還元雰囲気下での焼成は、 上述した工程 (2- 1) で得られた混合物に対して 行うものであるか、 上記焼成物 (A) を得るための焼成工程において行うことが 好ましい。 上記焼成物 (A) を得るための焼成工程において、 還元雰囲気下での 焼成を行う場合、 酸化雰囲気下での焼成後に、 還元雰囲気下での焼成を行うこと が好ましい。
上記工程 (2-2) は、 上記工程 (2- 1) で得られた混合物を酸化雰囲気下 で焼成する工程である。 上記酸化雰囲気下での焼成を行うことによって、 蛍光体 の粉体白色度を維持したままで、 輝度の低下、 発光色シフトの抑制等の目的を達 成することができるものである。
上記工程 (2-2) における酸化雰囲気下での焼成としては特に限定されなレ、 力 上記最終工程としての酸化雰囲気下での焼成と同様の条件で行われることが 好ましい。
上記窒素と酸素との混合ガスは、 焼成初期から終了時まで同じ割合を保持する こともできるが、 焼成の過程で酸素を注入するものであってもよい。 この際、 酸 素を注入する温度、 時間及び時期としては、 任意に選ぶことができ、 特に限定さ れない。 上記酸化雰囲気下での焼成は、 ユーロピウムの酸化を極力抑えるため、 下限 500 °C、 上限 1000 °Cの範囲内で行われることが好ましく、 最高到達温 度の保持時間は 0〜 20時間で行うことが好ましい。
上述した方法によつて得られたアル力リ土類金属アルミン酸塩蛍光体は、 解碎 することによって粒径を整えることが好ましい。 上記解砕において用いる粉碎機 は、 上述のものを挙げることができる。 このようなアルカリ土類金属アルミン酸 塩蛍光体の製造方法も、 本発明の一部である。
本発明のアルカリ土類金属アルミン酸塩蛍光体は、 発光色シフトが抑えられて いるという点でも優れた性質を有する。 ここでいう発光色シフトは、 上記アル力 リ土類金属アルミン酸塩蛍光体の発光の色度変化であって、 発光の色度変化が小 さいほど、 発光色の変化が小さく発光色シフトが抑えられていることを示す。 上 記発光の色度変化は、 輝度計 (例えば、 大塚電子株式会社社製 MCPD— 300 0) を用いて測定した蛍光体の発光の色度 (y) を用いて算定すると、 下記一般 式 (3) に従って求めることができる。
Ay=焼成、 紫外線照射等を行った後の発光の色度 (y 2) —蛍光体粉体の発光 の色度 (y 1) (3)
例えば、 調製直後と大気中 1時間で 150 °Cの割合で昇温し、 500でで 1時 間保持した後、 1時間で 1 50 °Cの割合で降温する加熱工程後との発光の色度変 化 (Δ y) が 0. 01以下であるような蛍光体は、 発光色シフトが抑えられたも のであるとみなすことができる。 0. 01を超えると、 発光色の変化が大きく、 発光色シフトを抑制する性能が不充分である。 上記色度変化は、 0. 007以下 であることがより好ましい。
本発明のアル力リ土類金属アルミン酸塩蛍光体は、 耐熱性及び真空紫外線や紫 外線に対する耐久性に優れ、 輝度の低下や発光色のシフトが生じず、 PDP等の 用途に好適に使用することができる。 更に、 上記アルカリ土類金属アルミン酸塩 蛍光体は、 高い粉体白色度を有するため蛍光放射に優れたものである。 発明を実施するための最良の形態
以下に実施例を挙げて説明するが、 本発明はこれらに限定されるものではない (実施例 1 )
炭酸バリウム (分析純度 99. 39質量%) を24. l l g、 炭酸ス トロンチ ゥム (分析純度 99. 5質量%) を 2. l g、 水酸化マグネシウム (分析純度 9 9. 5質量0 /0) を 8. 33 g、 酸化アルミニウム (分析純度 99. 27質量%) を 73. 32 g、 酸化ユーロピウム (I I I) (99. 6質量0 /。) を 1. 26 g 酸化タングステン (V I) (試薬特級) を 0. 166 g、 弗化アルミユウム (試 薬特級) を 1. 1 9 gを電子天秤で秤量し、 自動乳鉢 (日陶科学社製、 ANM— 1 50) にて 6 Om i n間混合した。 その後、 混合物をアルミナ製のルツボにい れて、 大気雰囲気下、 1時間に 200°Cの割合で昇温し、 最高温度 1500°Cに て 5時間保持した後、 1時間に 200 °Cの割合で降温して焼成した後、 得られた 焼成物を自動乳鉢にて 10分間解砕した。 次いで、 水素 10体積%/窒素 90体 積%の混合ガスにて還元雰囲気に保持した電気炉で、 1時間に 200 aCの割合で 昇温し、 最高温度 1500 °Cにて 5時間保持した後、 1時間に 200 °Cの割合で 降温して還元焼成した後、 得られた焼成物を自動乳鉢にて 10分間解砕した。 以上のようにしてタングステンをアルミニウム 1モルに対して W元素として 0. 0005モル含有するアル力リ土類金属アルミン酸塩蛍光体を得た。
(実施例 2)
酸化タングステン (V I) (試薬特級) を 0. 166 g加えるかわりに酸化タ ングステン (V I ) (試薬特級) を 0. 331 g加えること以外は実施例 1と同 様にして、 タングステンをアルミニウム 1モルに対して W元素として 0, 001 モル含有するアル力リ土類金属アルミン酸塩蛍光体を得た。 (比較例 1 )
酸化タングステン (V I) (試薬特級) を 0. 166 g加えないこと以外は実 施例 1と同様にして、 アル力リ土類金属アルミン酸塩蛍光体を得た。 (耐熱性試験方法)
実施例 1 2及び比較例 1で調製した蛍光体を磁製ルツポに 2 g測り取り、 電 気炉にて大気中 1時間で 200 °Cの割合で昇温し、 500でで 1時間保持した後、 1時間で 200°Cの割合で降温し、 焼成した。 また、 保持温度を 600°C 70 0°C 800°C 900°Cとして同様の焼成を行った。 大塚電子 (株) 製 MCP D— 3000型蛍光スぺク トル測定装置を用いて、 実施例 1 2及び比較例 1の 酸化焼成前後での輝度を測定した。 (焼成後の輝度) / (焼成前の輝度) X I 0 0を輝度維持率として算出し、 輝度維持率により焼成前後の各試料の劣化耐性を 比較した。 結果を表 1に示す。
表 1
Figure imgf000017_0001
表 1より、 タングステンを含有しない比較例 1のアルカリ土類金属アルミン酸 塩蛍光体に比べ、 タングステンを添加した実施例 1及び 2で得られたアルカリ土 類金属アルミン酸塩蛍光体はいずれも焼成後の輝度維持率が高く、 酸化による劣 化耐性が向上していることが明らかである。
(実施例 3)
炭酸バリウム (分析純度 99. 39質量。/。) を 22. 69 g加え、 炭酸ス ト口 ンチウム (分析純度 99. 5質量0/。) を 2. 14 g、 水酸化マグネシウム (分析 純度 99. 5質量%) を 8. 33 g、 酸化アルミニウム (分析純度 99. 27質 量0/0) を72. 96 g、 酸化ユーロピウム ( I I I ) (99. 6質量0 /0) を 2. 52 g、 酸化インジウム (1 1 1) を0. I 97 g、 弗化アルミニウム (試薬特 級) を 1. 20 gを電子天秤で秤量し、 自動乳鉢にて 6 Om i n間混合した。 そ の後、 混合物をアルミナ製のルツポにいれて、 大気雰囲気下、 1時間に 200°C の割合で昇温し、 最高温度 1 500 °Cにて 5時間保持した後、 1時間に 200 °C の割合で降温して焼成した後、 得られた焼成物を自動乳鉢にて 10分間解砕した。 次いで、 水素 10体積% 窒素 90体積%の混合ガスにて還元雰囲気に保持した 電気炉で、 1時間に 200°Cの割合で昇温し、 最高温度 1 500°Cにて 5時間保 持した後、 1時間に 200°Cの割合で降温して還元焼成した後、 得られた焼成物 を自動乳鉢にて 10分間解砕した。
以上のようにしてインジウムをアルミニウム 1モルに対して I n元素として 0. 001モル含有するアル力リ土類金属アルミン酸塩蛍光体を得た。
(実施例 4)
酸化インジウム ( I I I ) を 0. 1 97 g加えるかわりに、 酸化タングステン (V I ) (試薬特級) を 0. 329 g加える以外は実施例 3と同様にして、 タン グステンをアルミニウム 1モルに対して W元素として 0. 001モル含有するァ ルカリ土類金属アルミン酸塩蛍光体を得た。
(実施例 5 )
酸化インジウム ( I I I ) を 0. 1 97 g加えるかわりに、 酸化タングステン (V I ) (試薬特級) を 0. 658 g加える以外は実施例 3と同様にして、 タン グステンをアルミニウム 1モルに対して W元素として 0. 002モル含有するァ ルカリ土類金属アルミン酸塩蛍光体を得た。 (実施例 6 )
酸化インジウム (I I I) を 0. 1 97 g加えるかわりに、 酸化タングステン (V I) (試薬特級) を 1. 66 g加える以外は実施例 3と同様にして、 タンダ ステンをアルミニウム 1モルに対して W元素として◦. 005モル含有するアル 力リ土類金属アルミン酸塩蛍光体を得た。 (実施例 7)
酸化インジウム (I I I) を 0. 1 97 g加えるかわりに、 五酸化ニオブ (V ) を 0. 189 gにする以外は実施例 3と同様にして、 ニオブをアルミユウム 1 モルに対して Nb元素として 0. 001モル含有するアルカリ土類金属アルミン 酸塩蛍光体を得た。
(実施例 8)
酸化インジウム ( I I I ) を 0. 1 97 g加えるかわりに、 五酸化ニオブ (V ) を 0. 378 gにする以外は実施例 3と同様にして、 ニオブをアルミニウム 1 モルに対して Nb元素として 0. 002モノレ含有するアルカリ土類金属アルミン 酸塩蛍光体を得た。 (実施例 9 )
酸化インジウム (I I I) を 0. 1 97 g加えるかわりに、 酸化ビスマス (I I I ) を 0. 33 1 gにする以外は実施例 3と同様にして、 ビスマスをアルミ二 ゥム 1モルに対して B i元素として 0. 001モル含有するアル力リ土類金属ァ ルミン酸塩蛍光体を得た。
(実施例 10)
酸化インジウム (I I I ) を 0. 1 97 g加えるかわりに、 酸化モリブデン ( V I ) を 0. 205 gにする以外は実施例 3と同様にして、 モリプデンをアルミ -ゥム 1モルに対して Mo元素として 0. 001モル含有するアルカリ土類金属 アルミン酸塩蛍光体を得た。
(実施例 1 1 )
酸化インジウム (I I I) を 0. 1 97 g加えるかわりに、 酸化タンタル (V) を 0. 314 gにする以外は実施例 3と同様にして、 タンタルをアルミニウム 1 モルに対して T a元素として 0. 001モル含有するアルカリ土類金属アルミン 酸塩蛍光体を得た。
(実施例 1 2)
酸化インジウム (I I I) を 0. 1 97 g加えるかわりに、 酸化タリゥム (I I I) を 0. 324 gにする以外は実施例 3と同様にして、 タリウムをアルミ二 ゥム 1モルに対して T 1元素として 0. 001モル含有するアル力リ土類金属ァ ルミン酸塩蛍光体を得た。
(実施例 1 3)
酸化インジウム (I I I ) を 0. 1 97 g加えるかわりに、 酸化鉛 (I I) を 0. 31 7 gにする以外は実施例 3と同様にして、 鉛をアルミニウム 1モルに対 して P b元素として 0. 001モル含有するアル力リ土類金属アルミン酸塩蛍光 体を得た。
(比較例 2)
酸化インジウム ( I I I ) を 0. 1 97 g加えないこと以外は実施例 3と同様 にして、 アル力リ土類金属アルミン酸塩蛍光体を得た。
(耐熱性試験方法)
実施例 3〜 1 3及び比較例 2で調製した蛍光体を用いて、 上記実施例 1、 2及 び比較例 1において行った耐熱性試験方法と同様の手法で、 最高到達温度が 90 0 °cの場合の劣化耐性評価を行い、 輝度維持率により焼成前後の各試料の劣化耐 性を比較した。 結果を表 2に示す。
Figure imgf000021_0001
表 2の結果から、 比較例 2のアル力 V土類金属アルミン酸塩蛍光体に比べて実 施例 3 1 3で得られたアル力リ土類金属アルミン酸塩蛍光体は、 いずれも焼成 後の輝度維持率が向上し、 劣化耐性が向上したことが明らかである。
(実施例 1 4 )
酸化インジウム ( I I I ) を 0 . 1 9 7 g加えるかわりに、 酸化タングステン ( V I ) (試薬特級) を 0 . 1 6 6 g加える以外は実施例 3と同様にして、 タング ステンをアルミニウム 1モルに対して W元素として 0 . 0 0 0 5モル含有するァ ルカリ土類金属アルミン酸塩蛍光体を得た。
(実施例 1 5 ) 酸化インジウム (I I I) を 0. 1 97 g加えるかわりに、 五酸化ニオブ (V ) を 0. 095 gにする以外は実施例 3と同様.にして、 ニオブをアルミニウム 1 モルに対して Nb元素として 0. 0005モル含有するアルカリ土類金属アルミ ン酸塩蛍光体を得た。
(真空紫外線照射による劣化試験)
実施例 4、 14、 15及び比較例 2で得られたアル力リ土類金属アルミン酸塩 蛍光体を用いて、 真空紫外線照射による経時劣化試験を行った。 試験に際して、 まず真空紫外線を照射するための試験膜を調製した。 上記実施例及び比較例によ つて得られたアル力リ土類金属アルミン酸塩蛍光体とェチルセルロース (ダウケ ミカル社製、 STD— 10) 及びタービネオール (試薬特級) を、 質量換算比で それぞれ 1 7. 5 : 1 : 9の割合で混合し、 フーバー式マラーにて分散したもの を蛍光体ペーストとした。 蛍光体ペーストを用いてスライドガラスに乾燥膜厚が 20 /imになるように 2 X 2 c mの正方形に成膜した後、 大気中 500°Cにて 2 0分間焼成してバインダーや溶剤成分を除去した。 以上のようにして得られた焼成膜を試験片として、 ゥシォ電機社製真空紫外線 ランプを用いて 5 P a以下の真空中で 147 nmの真空紫外線を各試験片にっき 2時間照射した。 照射前後の輝度を測定し、 (照射後の輝度 Z照射前の輝度) X 100を輝度維持率として算出して、 その輝度維持率により照射前後の各試料の 劣化度合いを比較した。 結果を表 3に示す。
表 3
元素含 輝度維持率
兀 禾里
有 : (%)
実施例 4 W 0.001 92
実施例 14 W 0.0005 90
実施例 15 Nb 0.0005 95
比較例 2 85 表 3の結果から、 比較例 2のアルカリ土類金属アルミン酸塩蛍光体に比べて、 本発明による実施例 4、 14、 15のアルカリ土類金属アルミン酸塩蛍光体は 5 〜10%程度輝度維持率が向上していることが明らかである。 即ち、 本発明では、 酸化による劣化を抑制する効果だけでなく、 真空紫外線の経時劣化に対しても抑 制効果があることが明らかである。
(実施例 16)
酸化タングステン (V I) (試薬特級) を 0. 166 g加えるかわりに酸化ィ ンジゥム (I I I) (試薬特級) を 0. 1 98 g加えること以外は実施例 1と同 様にして、 焼成物を得た。 更に、 酸素 10体積% /窒素 90体積%の混合ガスに て酸化雰囲気に保持した電気炉で、 1時間に 200°Cの割合で昇温し、 最高温度 800 °Cにて 1時間保持した後、 1時間に 200 °Cの割合で降温して酸化焼成し た後、 得られた焼成物を自動乳鉢にて 5分間解砕した。
以上のようにしてインジゥムをアルミニゥム元素 1モルに対して I n元素とし TO. 001モル含有するアル力リ土類金属アルミン酸塩蛍光体を得た。
(実施例 17)
酸化インジウム ( I I I) (試薬特級) を 0. 1 98 g加えるかわりに酸化タ ングステン (V I ) (試薬特級) を 0. 331 g加えること以外は実施例 1 6と 同様にして、 タングステンをアルミニウム元素 1モルに対して W元素として 0.
001モル含有するアル力リ土類金属アルミン酸塩蛍光体 Bを得た。
(実施例 18)
酸化インジウム (I I I) (試薬特級) を 0. 1 98 g加えるかわりに酸化二 ォプ (V) (試薬特級) を 0. 1 90 g加えること以外は実施例 1 6と同様にし て、 ニオブをアルミニウム元素 1モルに対して N b元素として 0. 001モル含 有するアル力リ土類金属アルミン酸塩蛍光体を得た。 (実施例 1 9)
酸化インジウム (I I I) (試薬特級) を 0. 1 98 g加えるかわりに酸化ビ スマス (I I I) (試薬特級) を 0. 333 g加えること以外は実施例 16と同 様にして、 ビスマスをアルミ-ゥム元素 1モルに対して B i元素として 0. 00 1モル含有十るアル力リ土類金属アルミン酸塩蛍光体を得た。
(実施例 20 )
酸化インジウム (I I I) (試薬特級) を 0. 198 g加えるかわりに酸化モ リブデン (V I) (試薬特級) を 0. 206 g加えること以外は実施例 16と同 様にして、 モリブデンをアルミニウム元素 1モルに対して Mo元素として 0. 0
01モル含有するアル力リ土類金属アルミン酸塩蛍光体を得た。
(実施例 21 )
酸化インジウム (I I I) (試薬特級) を 0. 198 g加えるかわりに酸化タ ンタル (V) (試薬特級) を 0. 31 5 g加えること以外は実施例 16と同様に して、 タンタルをアルミニウム元素 1モルに対して T a元素として 0. 001モ ル含有するアル力リ土類金属アルミン酸塩蛍光体を得た。
(実施例 22 )
酸化インジウム (I I I) (試薬特級) を 0. 1 98 g加えるかわりに酸化タ リウム (I I I) (試薬特級) を 0. 326 g加えること以外は実施例 16と同 様にして、 タリウムをアルミニウム元素 1モルに対して T 1元素として 0. 00 1モル含有するアル力リ土類金属アルミン酸塩蛍光体を得た。 (実施例 23 )
酸化インジウム (I I I) (試薬特級) を 0. 1 98 g加えるかわりに酸化鉛 (I I) (試薬特級) を 0. 319 g加えること以外は実施例 16と同様にして、 鉛をアルミニウム元素 1モルに対して P b元素として 0. 001モル含有するァ ルカリ土類金属アルミン酸塩蛍光体を得た。 (実施例 24)
酸化タングステン (V I) (試薬特級) を 0. 166 g加えるかわりに酸化ィ ンジゥム (I I I) (試薬特級) を 0. 1 98 g加えること以外は実施例 1と同 様にして、 インジウムをアルミニウム元素 1モルに対して I n元素として 0. 0 01モル含有する、 酸化雰囲気下の焼成をしないアル力リ土類金属アルミン酸塩 蛍光体を得た。 (実施例 25 )
酸化タングステン (V I) (試薬特級) を 0. 1 66 g加えるかわりに、 酸化 ニオブ (V) (試薬特級) を 0. 190 g加えること以外は実施例 1と同様にし て、 ニオブをアルミニウム元素 1モルに対して N b元素として 0. 001モル含 有するアル力リ土類金属アルミン酸塩蛍光体を得た。
(実施例 26)
酸化タンダステン ( V I ) (試薬特級) を 0. 1 66 g加えるかわりに、 酸化 ビスマス ( I I I ) (試薬特級) を 0. 333 g加えること以外は実施例 1と同 様にして、 ビスマスをアルミニウム元素 1モルに対して B i元素として 0. 00 1モル含有するアル力リ土類金属アルミシ酸塩蛍光体を得た。
(実施例 27)
酸化タングステン (V I) (試薬特級) を 0. 166 g加えるかわりに、 酸化 モリプデン (V I ) (試薬特級) を 0. 206 g加えること以外は実施例 1と同 様にして、 モリプデンをアルミニウム元素 1モルに対して Mo元素として 0. 0 01モル含有するアル力リ土類金属アルミン酸塩蛍光体を得た。
(実施例 28 ) 酸化タングステン (V I) (試薬特級) を 0. 166 g加えるかわりに、 酸化タ ンタル (V) (試薬特級) を 0. 3 1 5 g加えること以外は実施例 1と同様にし て、 タンタルをアルミニウム元素 1モルに対して T a元素として 0. 001モル 含有するアル力リ土類金属アルミン酸塩蛍光体を得た。
(実施例 29)
酸化タングステン (V I) (試薬特級) を 0. 166 g加えるかわりに、 酸化 タリウム (I I I) (試薬特級) を 0. 326 g加えること以外は実施例 1と同 様にして、 タリゥムをアルミニウム元素 1モルに対して T 1元素として 0. 00 1モル含有するアル力リ土類金属アルミン酸塩蛍光体を得た。
(実施例 30)
酸化タングステン (V I ) (試薬特級) を 0. 166 g加えるかわりに、 酸化 鉛 ( I I ) (試薬特級) を 0. 31 9 g加えること以外は実施例 1と同様にして、 鉛をアルミニウム元素 1モルに対して P b元素として 0. 001モル含有するァ ルカリ土類金属アルミン酸塩蛍光体を得た。
(粉体白色度測定方法)
実施例 2及び 16〜 30で得られたアル力リ土類金属アルミン酸塩蛍光体を用 いて、 直径 10 深さ 5 mmの容器内に充填して表面を平滑にした後、 カラ 一メーター (スガ試験機株式会社製、 商品名 : SMカラーコンピューター、 SM -4) にてハンター表色系 L a b値を測定し、 W値を計算した。 結果を表 4 に示す。 表 4
Figure imgf000027_0001
表 4より、 酸化雰囲気下での焼成を最終工程として行った実施例 1 6〜 2 3の 蛍光体は、 同一の添加元素を有し、 酸化雰囲気下での焼成を行わなかった実施例 の蛍光体より高い粉体白色度を有することが示された。
(比較例 3 )
酸化インジウムを 0 . 1 9 8 g加えないこと以外は実施例 1 6と同様にしてァ ルカリ土類金属アルミン酸塩蛍光体を得た。 (真空紫外線照射による劣化試験方法)
実施例 1 6〜2 3及び比較例 1、 3で得られた蛍光体を用いて、 粉体輝度の測 定及び真空紫外線照射による劣化試験を行った。 試験に際して、 まず実施例 1 6 〜 2 3及び比較例 1、 3で得られた蛍光体の粉体そのものの発光の輝度と発光の 色度 (y値) を、 粉体白色度の測定と同じ方法で測定試料を作成し、 大塚電子株 式会社製 M C P D— 3 0 0 0輝度計を用いて測定した。 その後、 紫外線を照射す るための試験片を上記真空紫外線照射による劣化試験における方法と同様にして 調製した。 得られた焼成膜を試験片として、 ゥシォ電機社製真空紫外線ランプを 用いて、 5 P a以下の真空中で 1 4 7 n mの紫外線を各試験片にっき 2時間照射 した。
焼成膜の発光の色度 (y値) 一粉体時の発光の色度 (y値) を色度変化 と 定義し、 変化量を比較した。 また、 真空紫外線照射前後の輝度を測定し、 (照射 後の輝度/照射前の輝度) X 1 0 0を輝度維持率と定義して算出し、 輝度維持率 により焼成前後の各試料の劣化度合いを比較した。 結果を表 5に示す。 表 5に示 す輝度は、 それぞれの試験の輝度の測定値を、 比較例 3の粉体の輝度の測定値を 1 0 0とした相対輝度として換算した値を輝度として表した。
表 5
Figure imgf000029_0001
表 5の結果から、 特にタングステンを含有する実施例 1 7の蛍光体、 及び、 二 ォプを含有する実施例 18の蛍光体は、 比較例 1及び 3の蛍光体に比べて真空紫 外線照射後の輝度が 10%以上向上し、 真空紫外線による劣化が極めて抑制され ていることが示された。
また、 比較例 1は、 輝度は高いが発光色シフトが大きいことに比べ、 実施例 1 6〜 23の蛍光体はその発光の色度変化が非常に小さく、 発光色シフトが抑制さ れていることが示された。 (実施例 31 )
炭酸バリウム (分析純度 99. 39質量%) を24. l l g、 炭酸ス トロンチ ゥム (分析純度 99. 5質量。/。) を 2. 1 g、 水酸化マグネシゥム (分析純度 9 9. 5質量0 /0) を 8. 33 g、 酸化アルミニウム (分析純度 99. 27質量%) を 73. 32 g、 酸ィ匕ユーロピウム (I I I) (分析純度 99. 6質量0 /0) を 1. 26 g、 弗化アルミニウム (試薬特級) を 1. 1 9 g各々電子天秤で秤量し、 自 動乳鉢にて 60分間混合した。 その後、 混合物をアルミナ製のルツポにいれて、 大気雰囲気下、 1時間に 200°Cの割合で昇温し、 最高温度 1500°Cにて 5時 間保持した後、 1時間に 200°Cの割合で降温して焼成した。 酸化インジウム ( I I I) (試薬特級) を 0. 198 g電子天秤で秤量し、 上記で得られた焼成物 と自動乳鉢にて 10分間粉砕混合し、 焼成物の解砕と添加物の混合を同時に行つ た。 次いで、 水素 10体積%Z窒素 90体積。/。の混合ガスにて還元雰囲気に保持 した電気炉で、 1時間に 200 °Cの割合で昇温し、 最高温度 1500 °Cにて 5時 間保持した後、 1時間に 200 °Cの割合で降温して還元焼成し、 得られた焼成物 を自動乳鉢にて 10分間解砕した。 更に、 酸素 10体積。/。/窒素 90体積%の混 合ガスにて酸化雰囲気に保持した電気炉で、 1時間に 200°Cの割合で昇温し、 最高温度 800 °Cにて 1時間保持した後、 1時間に 200 °Cの割合で降温して酸 化焼成した後、 得られた焼成物を自動乳鉢にて 5分間解砕した。 以上のようにし てィンジゥムをアルミニウム元素 1モルに対して I n元素として 0. 001モル 含有するアル力リ土類金属アルミン酸塩蛍光体を得た。 (実施例 32)
酸化インジウム (I I I) (試薬特級) を 0. 198 g加えるかわりに酸化タ ングステン (V I ) (試薬特級) を 0. 331 g加えること以外は実施例 31と 同様にして、 タングステンをアルミニウム元素 1モルに対して W元素として 0. 001モル含有するアル力リ土類金属アルミン酸塩蛍光体を得た。
(実施例 33 )
酸化インジウム (I I I) (試薬特級) を 0. 198 g加えるかわりに酸化二 ォブ (V) (試薬特級) を 0. 190 g加えること以外は実施例 31と同様にし て、 ニオブをアルミニゥム元素 1モルに対して N b元素として 0. 001モル含 有するアル力リ土類金属アルミン酸塩蛍光体を得た。
(実施例 34)
酸化インジウム (I I I) (試薬特級) を 0. 198 g加えるかわりに酸化ビ スマス (I I I) (試薬特級) を 0. 333 g加えること以外は実施例 31と同 様にして、 ビスマスをアルミニウム元素 1モルに対して B i元素として 0. 00 1モル含有するアル力リ土類金属アルミン酸塩蛍光体を得た。
(実施例 35)
酸化インジウム (I I I) (試薬特級) を 0. 1 98 g加えるかわりに酸化モ リブデン (V I) (試薬特級) を 0. 206 g加えること以外は実施例 31と同 様にして、 モリブデンをアルミニウム元素 1モルに対して Mo元素として 0. 0 01モル含有するアル力リ土類金属アルミン酸塩蛍光体を得た。
(実施例 36)
酸化インジウム ( I I I) (試薬特級) を 0. 1 98 g加えるかわりに酸化タ ンタル' (V) (試薬特級) を 0. 31 5 g加えること以外は実施例 3 1と同様に して、 タンタルをアルミェゥム元素 1モルに対して T a元素として 0. 001モ ル含有するアル力リ土類金属アルミン酸塩蛍光体を得た。
(実施例 37)
酸化インジウム (I I I) (試薬特級) を 0. 1 98 g加えるかわりに酸化タ リウム (I I I) (試薬特級) を 0. 326 g加えること以外は実施例 3 1と同 様にして、 タリゥムをアルミニウム元素 1モルに対して T 1元素として 0. 00 1モル含有するアル力リ土類金属アルミン酸塩蛍光体を得た。
(実施例 38 )
酸化ィンジゥム (I I I ) (試薬特級) を 0. 1 98 g加えるかわりに酸化鉛 (I I) (試薬特級) を 0. 319 g加えること以外は実施例 31と同様にして、 鉛をアルミニウム元素 1モルに対して P b元素として 0. 001モル含有するァ ルカリ土類金属アルミン酸塩蛍光体を得た。 (実施例 3 9 )
炭酸バリウム (分析純度 9 9. 3 9質量%) を24. l l g、 炭酸ストロンチ ゥム (分析純度 9 9. 5質量%) を 2. l g、 水酸化マグネシウム (分析純度 9 9. 5質量0 /0) を 8. 3 3 g、 酸化アルミニウム (分析純度 9 9. 2 7質量0 /0) を 7 3. 3 2 g、 酸化ユーロピウム (I I I ) (分析純度 9 9. 6質量0 /0) を 1. 26 g、 弗化アルミニウム (試薬特級) を 1. 1 9 g各々電子天秤で秤量し、 自 動乳鉢 (日陶科学社製、 ANM- 1 50) にて 60分間混合した。 その後、 混合 物をアルミナ製のルツポにいれて、 大気雰囲気下、 1時間に 200°Cの割合で昇 温し、 最高温度 1 500 °Cにて 5時間保持した後、 1時間に 200 °Cの割合で降 温して焼成した後、 得られた焼成物を自動乳鉢にて 1 0分間解砕した。 次いで、 水素 1 0体積%/窒素 90体積%の混合ガスにて還元雰囲気に保持した電気炉で、 1時間に 200 °Cの割合で昇温し、 最高温度 1 500 °Cにて 5時間保持した後、 1時間に 200 °Cの割合で降温して還元焼成した。 酸化タングステン (V I ) ( 試薬特級) を 0. 3 3 1 g電子天枰で秤量し、 上記で得られた焼成物と自動乳鉢 にて 1 0分間粉砕混合し、 焼成物の解砕と添加物の混合を同時に行った。 更に、 酸素 1 0体積%Z窒素 90体積%の混合ガスにて酸化雰囲気に保持した電気炉で、 1時間に 200 °Cの割合で昇温し、 最高温度 800 °Cにて 1時間保持した後、 1 時間に 200 °Cの割合で降温して酸化焼成した後、 得られた焼成物を自動乳鉢に て 5分間解砕した。 以上のようにしてタングステンをアルミニウム元素 1モルに 対して W元素として 0. 00 1モル含有するアル力リ土類金属アルミン酸塩蛍光 体を得た。
(実施例 40)
酸化タングステン (V I ) (試薬特級) を 0. 3 3 1 g加えるかわりに酸化モ リブデン (V I ) (試薬特級) を 0. 20 6 g加えること以外は実施例 3 9と同 様にして、 モリブデンをアルミ二ゥム元素 1モルに対して M o元素として 0. 0 0 1モル含有するアル力リ土類金属アルミン酸塩蛍光体を得た。 (実施例 41)
酸化タングステン (V I) (試薬特級) を 0. 331 g加えるかわりに酸化ビ スマス (I I I) (試薬特級) を 0. 333 g加えること以外は実施例 39と同 様にして、 ビスマスをアルミニウム元素 1モルに対して B i元素として 0. 00 1モル含有するアル力リ土類金属アルミン酸塩蛍光体を得た。
(粉体白色度測定方法)
実施例 2及ぴ 24〜 41で得られたアル力リ土類金属アルミン酸塩蛍光体を用 いて、 上述の方法でハンター表色系 L、 a、 b値を測定し、 W値を計算した。 結 果を表 6に示す。
表 6
Figure imgf000034_0001
表 6より、 最終工程として酸化雰囲気下で焼成した蛍光体は、 同一の添加元素 を有し、 最終工程として酸化雰囲気下で焼成しなかった蛍光体よりも高い粉体白 色度を有することが示された。 (比較例 4 )
酸化インジウムを 0 . 1 9 8 g加えないこ と以外は実施例 3 1と同様にしてァ ルカリ土類金属アルミン酸塩蛍光体を得た。
(真空紫外線照射による劣化試験方法)
実施例 3 1 〜 4 1及び比較例 1 、 4で得られた蛍光体を用いて、 粉体輝度の測 定及び真空紫外線照射による劣化試験を上記真空紫外線照射による劣化試験方法 と同様に比較例 4の粉体の輝度の測定値を 1 0 0とした相対輝度として換算した 値を輝度として表した。 ·
表 7 添カロ 添加 酸化 粉体 膜 真空紫外線 輝度 色度変化 兀 時期 焼成 照射後輝度 維持率 △ y
31 £π あり 106 104 97 93 0.004
32 W ¾ y 1 10 108 105 97 0.000
33 Nb あり 1 12 1 11 108 97 0.001
返兀
34 Bi あり 101 94 0.002 焼成
35 Mo →— ' あり - 105 103 97 94 0.002 実
施 36 Ta あり 100 99 90 91 0.003 例
37 Tl あり 106 102 94 92 0.003
38 Pb あり 103 98 90 92 0.004
39 W 酸化 あり 1 15 1 13 108 96 0.000
40 Mo 焼成 あり 102 101 96 95 0.001
41 Bi 直前 あり 98 97 90 93 0.001 比 4 あり 100 97 86 89 0.006 例 1 なし 130 1 16 98 83 0.031 最終工程として酸化雰囲気下での焼成を行った蛍光体は、 行わなかった蛍光体 よりも真空紫外線照射後の輝度が 1 0 %以上向上し、 真空紫外線による劣化が極 めて抑制されていることが示された。 また、 比較例 1は、 輝度は高いが発光色シ フトが大きいことに比べ、 実施例 3 1〜4 1の蛍光体はその発光の色度変化が非 常に小さく、 発光色シフトが抑制されていることが示された。
実施例 3 1〜 3 8の蛍光体、 実施例 3 9〜4 1の蛍光体はそれぞれィンジゥム、 タングステン、 ニオブ、 ビスマス、 モリプデン、 タンタル、 タリウム及び鉛の添 加工程は異なるが、 真空紫外線照射後の輝度が向上し、 劣化が極めて抑制されて いることが示された。 産業上の利用可能性
本発明のアル力リ土類金属アルミン酸塩蛍光体は、 加熱時及び真空紫外線照射 時における経時劣化や発光色のシフトが著しく抑えられ、 輝度維持性能に優れた 蛍光体であるため、 P D P等に応用した場合の製造工程での劣化等を抑制するこ とができるものである。 更に、 本 明のアルカリ土類金属アルミン酸塩蛍光体は、 高い粉体白色度を有し、 蛍光反射性に優れた蛍光体であるため、 発生した蛍光の 吸収による機能低下が生じない。

Claims

請求の範囲
1. 2価のユーロピウムを付活剤とするアルカリ土類金属アルミン酸塩蛍光体 であって、
インジウム、 タングステン、 ニオブ、 ビスマス、 モリプデン、 タンタル、 タリウ ム及び鉛よりなる群から選ばれる少なくとも 1種類の元素 (e) を含有する ことを特徴とするアル力リ土類金属アルミン酸塩蛍光体。
2. バリウム及び Z又はストロンチウム (a) 、 マグネシウム (b) 、 アルミ -ゥム (c) 、 ユーロピウム (d) 、 並びに、 インジウム、 タングステン、 ニォ ブ、 ビスマス、 モリプデン、 タンタル、 タリウム及び鉛からなる群から選ばれる 少なくとも 1種類の元素 ( e ) のそれぞれの前駆体化合物の混合物を、 還元性雰 囲気下で焼成する工程 (1 - 1) 、 及び、
前記工程 (1— 1) により得られた焼成物を、 更に、 酸化性雰囲気下で焼成する 工程 (1一 2) により得られる請求項 1記載のアルカリ土類金属アルミン酸塩蛍 光体。
3. バリウム及ぴ Z又はストロンチウム (a) 、 マグネシウム (b) 、 アルミ ニゥム (c) 、 並びに、 ユーロピウム (d) からなる焼成物 (A) と、 インジゥ ム化合物、 タングステン化合物、 ニオブ化合物、 ビスマス化合物、 モリブデン化 合物、 タンタル化合物、 タリウム化合物及び鉛化合物からなる群から選ばれる少 なくとも 1種類の化合物 (B) とを混合する工程 (2— 1) 、 及び、
前記工程 (2— 1) によって得られた混合物又は前記工程 (2— 1) によって得 られた混合物の焼成物を酸化性雰囲気下で焼成する工程 (2— 2) により得られ るものであり、
前記工程 (2— 2) 前に還元性雰囲気下での焼成を少なくとも一回行う請求項 1 記載のアル力リ土類金属アルミン酸塩蛍光体。
4. インジウム、 タングステン、 ニオブ、 ビスマス、 モリプデン、 タンタノレ、 タリウム及び鉛よりなる群から選ばれる少なくとも 1種類の元素 (e) をアルミ ニゥム元素 1モルに対して、 0. 0001〜0. 01モルの範囲で含有する請求 項 1、 2又は 3記載のアルカリ土類金属アルミン酸塩蛍光体。
5. 2価のユーロピウムを付活剤とするアル力リ土類金属アルミン酸塩蛍光体 は、 下記一般式 (1) ;
(B aト XS r x) ト YE uYMg A 110O17 (1)
(式中、 3、 0 <Y≤ 0. 2)
で表される請求項 1、 2、 3又は 4記載のアルカリ土類金属アルミン酸塩蛍光体。
6. 粉体白色度が W値で 85以上である請求項 1、 2、 3、 4又は 5記載のァ ルカリ土類金属アルミン酸塩蛍光体。
7. 請求項 1、 4、 5又は 6記載のアルカリ土類金属アルミン酸塩蛍光体の製 造方法であって、
バリウム及び/又はス トロンチウム (a) 、 マグネシウム (b) 、 アルミニウム (c) 、 ユーロピウム (d) 、 並びに、 インジウム、 タングステン、 ニオブ、 ビ スマス、 モリプデン、 タンタル、 タリゥム及び鉛よりなる群から選ばれる少なく とも 1種類の元素 (e) のそれぞれの前駆体化合物の混合物又は前記混合物の焼 成物を、 還元雰囲気下で焼成する工程 (1 -1) からなる
ことを特徴とするアル力リ土類金属アルミン酸塩蛍光体の製造方法。
8. 還元雰囲気下で焼成する工程 (1 - 1) により得られた焼成物を、 酸化雰 囲気下で焼成する工程 (1— 2) を有する請求項 7記載のアルカリ土類金属アル ミン酸塩蛍光体の製造方法。
9. 還元雰囲気下で焼成する工程 (1一 1) の前に、 酸化雰囲気下で焼成する 工程 (1— 3) を有する請求項 7又は 8記載のアルカリ土類金属アルミン酸塩蛍 光体の製造方法。
1 0. 請求項 1、 3、 4、 5又は 6記載のアルカリ土類金属アルミン酸塩蛍光 体の製造方法であって、
バリウム及び/又はストロンチウム (a) 、 マグネシウム (b) 、 アルミニウム (c) 、 並びに、 ユーロピウム (d) からなる焼成物 (A) と、 インジウム化合 物、 タングステン化合物、 ニオブ化合物、 ビスマス化合物、 モリプデン化合物、 タンタル化合物、 タリゥム化合物及び鉛化合物からなる群から選ばれる少なくと も 1種類の化合物 (B) とを混合する工程 (2— 1) 、 及び、
前記工程 (2— 1) によって得られた混合物又は前記工程 (2— 1) によって得 られた混合物の焼成物を酸化雰囲気下で焼成する工程 (2- 2) からなり、 前記工程 (2- 2) 前に還元雰囲気下での焼成を少なくとも一回行う
ことを特徴とするアル力リ土類金属アルミン酸塩蛍光体の製造方法。
1 1. 焼成物 (A) は、 更に、 インジウム、 タングステン、 ニオブ、 ビスマス、 モリプデン、 タンタル、 タリゥム及び鉛からなる群から選ばれる少なくとも 1種 の元素 (e) を含有するものである請求項 1 0記載のアル力リ土類金属アルミン' 酸塩蛍光体の製造方法。
1 2. 還元雰囲気下での焼成は、 前記工程 (2- 1) によって得られた混合物 に対して行うものである請求項 1 0又は 1 1記载のアル力リ土類金属アルミン酸 塩蛍光体の製造方法。
1 3. 還元雰囲気下での焼成は、 前記バリウム及び/又はストロンチウム (a ) 、 マグネシウム (b) 、 アルミニウム (c) 、 並びに、 ユーロピウム (d) か らなる焼成物 (A) の製造における焼成において行う請求項 1 0、 1 1又は 1 2 記載のアル力リ土類金属アルミン酸塩蛍光体の製造方法。
PCT/JP2004/003326 2003-03-14 2004-03-12 蛍光体及びその製造方法 WO2004087833A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/549,585 US8580148B2 (en) 2003-03-14 2004-03-12 Phosphor and method for producing same
EP04720204A EP1607462B1 (en) 2003-03-14 2004-03-12 Phosphor and method for producing same
JP2005504150A JP4544155B2 (ja) 2003-03-14 2004-03-12 蛍光体及びその製造方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2003-069228 2003-03-14
JP2003069228 2003-03-14
JP2003-100646 2003-04-03
JP2003100646 2003-04-03
JP2003-282828 2003-07-30
JP2003282828 2003-07-30

Publications (1)

Publication Number Publication Date
WO2004087833A1 true WO2004087833A1 (ja) 2004-10-14

Family

ID=33135741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/003326 WO2004087833A1 (ja) 2003-03-14 2004-03-12 蛍光体及びその製造方法

Country Status (6)

Country Link
US (1) US8580148B2 (ja)
EP (2) EP2361959A3 (ja)
JP (2) JP4544155B2 (ja)
KR (1) KR100793543B1 (ja)
TW (1) TW200502359A (ja)
WO (1) WO2004087833A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005314464A (ja) * 2004-04-27 2005-11-10 Matsushita Electric Ind Co Ltd プラズマディスプレイ装置
WO2008136170A1 (ja) * 2007-04-18 2008-11-13 Panasonic Corporation 青色蛍光体、発光装置およびプラズマディスプレイパネル
WO2010001624A1 (ja) * 2008-07-03 2010-01-07 パナソニック株式会社 青色蛍光体およびそれを用いた発光装置
WO2010001623A1 (ja) * 2008-07-03 2010-01-07 パナソニック株式会社 青色蛍光体およびそれを用いた発光装置
JP2011057969A (ja) * 2009-09-04 2011-03-24 Samsung Sdi Co Ltd 緑色蛍光体、その製造方法及び前記緑色蛍光体を含むプラズマディスプレイパネル
US8410677B2 (en) 2007-04-18 2013-04-02 Panasonic Corporation Blue phosphor, light-emitting device, and plasma display panel

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2361959A3 (en) * 2003-03-14 2011-09-07 Sakai Chemical Industry Co., Ltd. Phosphor and method for producing same
KR100846483B1 (ko) * 2007-03-30 2008-07-17 삼성전기주식회사 Ba-Sr-Ca 함유 화합물 및 이를 포함한 백색 발광소자
US8152586B2 (en) 2008-08-11 2012-04-10 Shat-R-Shield, Inc. Shatterproof light tube having after-glow
EP2292719A1 (en) * 2009-09-04 2011-03-09 Samsung SDI Co., Ltd. Green phosphor and plasma display panel comprising same

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0622440A1 (en) 1993-04-28 1994-11-02 Nemoto & Co., Ltd. Phosphorescent phosphor
JPH10195428A (ja) 1997-01-16 1998-07-28 Toshiba Corp 蛍光体粒子、その製造方法およびプラズマディスプレイパネル
JPH10204429A (ja) 1997-01-22 1998-08-04 Toshiba Corp 蛍光体粒子および蛍光ランプ
JPH10298548A (ja) 1997-04-30 1998-11-10 Nichia Chem Ind Ltd 真空紫外線励起発光蛍光体およびその製造方法
JPH1167158A (ja) * 1997-08-25 1999-03-09 Nec Home Electron Ltd 蛍光ランプ
JP2000001672A (ja) * 1998-06-15 2000-01-07 Hirotsu Naotoshi 蓄光性蛍光体微粒粉末及びその製造方法
JP2000144129A (ja) * 1998-11-06 2000-05-26 Agency Of Ind Science & Technol 可視光で励起される蓄光性蛍光体およびその製造方法
JP2000212557A (ja) * 1999-01-28 2000-08-02 Ohara Inc 蓄光性蛍光体
JP2000234088A (ja) * 1999-02-15 2000-08-29 Beijing City Fengtai Kogyo Toso Horyosho 高速励起・高輝度低減衰性発光材料
JP2001123162A (ja) * 1999-10-25 2001-05-08 Agency Of Ind Science & Technol 光メモリー用蛍光体とその製造方法
JP2001271064A (ja) * 2001-01-22 2001-10-02 Nemoto & Co Ltd 蓄光性蛍光体
JP2002348570A (ja) 2001-05-28 2002-12-04 Nichia Chem Ind Ltd 真空紫外線励起蛍光体及びその製造方法
JP2003336056A (ja) * 2002-05-17 2003-11-28 Kasei Optonix Co Ltd アルカリ土類アルミン酸塩蛍光体、蛍光体ペースト組成物及び真空紫外線励起発光素子
JP2004067739A (ja) * 2002-08-02 2004-03-04 Kasei Optonix Co Ltd アルカリ土類アルミン酸塩蛍光体、蛍光体ペースト組成物及び真空紫外線励起発光素子

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3753759A (en) * 1971-09-03 1973-08-21 Sylvania Electric Prod Method of manufacturing arc discharge lamps
TW353678B (en) * 1994-08-17 1999-03-01 Mitsubishi Chem Corp Aluminate phosphor
US5650094A (en) * 1995-06-06 1997-07-22 Royce; Martin R. Red emitting long decay phosphors
KR100338860B1 (ko) 1996-01-22 2002-07-18 이시즈까 가즈오 축광성형광체
US6010644A (en) 1997-05-09 2000-01-04 Kabushiki Kaisha Ohara Long-lasting phosphor
JP3193677B2 (ja) 1997-05-09 2001-07-30 株式会社オハラ 蓄光性蛍光体
JPH11140437A (ja) * 1997-11-06 1999-05-25 Matsushita Electric Ind Co Ltd 二価ユーロピウム付活蛍光体の製造方法
JP2000309775A (ja) 1999-04-27 2000-11-07 Ohara Inc 蓄光性蛍光体
US6190577B1 (en) * 1999-07-20 2001-02-20 Usr Optonix Inc. Indium-substituted aluminate phosphor and method for making the same
JP2003336055A (ja) * 2002-05-17 2003-11-28 Matsushita Electric Ind Co Ltd プラズマディスプレイ装置
EP2361959A3 (en) * 2003-03-14 2011-09-07 Sakai Chemical Industry Co., Ltd. Phosphor and method for producing same

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0622440A1 (en) 1993-04-28 1994-11-02 Nemoto & Co., Ltd. Phosphorescent phosphor
JPH10195428A (ja) 1997-01-16 1998-07-28 Toshiba Corp 蛍光体粒子、その製造方法およびプラズマディスプレイパネル
JPH10204429A (ja) 1997-01-22 1998-08-04 Toshiba Corp 蛍光体粒子および蛍光ランプ
JPH10298548A (ja) 1997-04-30 1998-11-10 Nichia Chem Ind Ltd 真空紫外線励起発光蛍光体およびその製造方法
JPH1167158A (ja) * 1997-08-25 1999-03-09 Nec Home Electron Ltd 蛍光ランプ
JP2000001672A (ja) * 1998-06-15 2000-01-07 Hirotsu Naotoshi 蓄光性蛍光体微粒粉末及びその製造方法
JP2000144129A (ja) * 1998-11-06 2000-05-26 Agency Of Ind Science & Technol 可視光で励起される蓄光性蛍光体およびその製造方法
JP2000212557A (ja) * 1999-01-28 2000-08-02 Ohara Inc 蓄光性蛍光体
JP2000234088A (ja) * 1999-02-15 2000-08-29 Beijing City Fengtai Kogyo Toso Horyosho 高速励起・高輝度低減衰性発光材料
JP2001123162A (ja) * 1999-10-25 2001-05-08 Agency Of Ind Science & Technol 光メモリー用蛍光体とその製造方法
JP2001271064A (ja) * 2001-01-22 2001-10-02 Nemoto & Co Ltd 蓄光性蛍光体
JP2002348570A (ja) 2001-05-28 2002-12-04 Nichia Chem Ind Ltd 真空紫外線励起蛍光体及びその製造方法
JP2003336056A (ja) * 2002-05-17 2003-11-28 Kasei Optonix Co Ltd アルカリ土類アルミン酸塩蛍光体、蛍光体ペースト組成物及び真空紫外線励起発光素子
JP2004067739A (ja) * 2002-08-02 2004-03-04 Kasei Optonix Co Ltd アルカリ土類アルミン酸塩蛍光体、蛍光体ペースト組成物及び真空紫外線励起発光素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1607462A4

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005314464A (ja) * 2004-04-27 2005-11-10 Matsushita Electric Ind Co Ltd プラズマディスプレイ装置
JP4513397B2 (ja) * 2004-04-27 2010-07-28 パナソニック株式会社 プラズマディスプレイ装置
US8366965B2 (en) 2007-04-18 2013-02-05 Panasonic Corporation Blue phosphor, light-emitting device, and plasma display panel
WO2008136170A1 (ja) * 2007-04-18 2008-11-13 Panasonic Corporation 青色蛍光体、発光装置およびプラズマディスプレイパネル
US8410677B2 (en) 2007-04-18 2013-04-02 Panasonic Corporation Blue phosphor, light-emitting device, and plasma display panel
JP5150622B2 (ja) * 2007-04-18 2013-02-20 パナソニック株式会社 青色蛍光体、発光装置およびプラズマディスプレイパネル
US8040063B2 (en) 2007-04-18 2011-10-18 Panasonic Corporation Blue phosphor, light-emitting device, and plasma display panel
WO2010001623A1 (ja) * 2008-07-03 2010-01-07 パナソニック株式会社 青色蛍光体およびそれを用いた発光装置
JP5112513B2 (ja) * 2008-07-03 2013-01-09 パナソニック株式会社 青色蛍光体およびそれを用いた発光装置
JP5112514B2 (ja) * 2008-07-03 2013-01-09 パナソニック株式会社 青色蛍光体およびそれを用いた発光装置
US8361347B2 (en) 2008-07-03 2013-01-29 Panasonic Corporation Blue phosphor, and light-emitting device using the same
KR101205088B1 (ko) 2008-07-03 2012-11-26 파나소닉 주식회사 청색 형광체 및 그것을 이용한 발광 장치
WO2010001624A1 (ja) * 2008-07-03 2010-01-07 パナソニック株式会社 青色蛍光体およびそれを用いた発光装置
US8652356B2 (en) 2008-07-03 2014-02-18 Panasonic Corporation Blue phosphor, and light-emitting device using the same
JP2011057969A (ja) * 2009-09-04 2011-03-24 Samsung Sdi Co Ltd 緑色蛍光体、その製造方法及び前記緑色蛍光体を含むプラズマディスプレイパネル

Also Published As

Publication number Publication date
US8580148B2 (en) 2013-11-12
TW200502359A (en) 2005-01-16
US20060091360A1 (en) 2006-05-04
EP1607462A1 (en) 2005-12-21
TWI304088B (ja) 2008-12-11
JPWO2004087833A1 (ja) 2006-07-06
EP2361959A3 (en) 2011-09-07
JP4544155B2 (ja) 2010-09-15
KR100793543B1 (ko) 2008-01-14
EP1607462A4 (en) 2009-10-28
JP2010185082A (ja) 2010-08-26
EP1607462B1 (en) 2011-07-27
EP2361959A2 (en) 2011-08-31
KR20060002817A (ko) 2006-01-09

Similar Documents

Publication Publication Date Title
JP2010185082A (ja) 蛍光体及びその製造方法
EP2100943A1 (en) ABOS:M-based phosphors and light sources containing these phosphors
US6241911B1 (en) Oxide based phosphors and processes therefor
US5965192A (en) Processes for oxide based phosphors
JP2001172627A (ja) 希土類燐酸塩、その製造方法及び希土類燐酸塩蛍光体
WO2000071637A1 (en) Coated phosphors
JP5483898B2 (ja) 酸化物蛍光体の製造方法
JP2002180043A (ja) 真空紫外線励起型蛍光体
KR101414948B1 (ko) Eu 활성화 알칼리 토류 금속 실리케이트 형광체의 제조 방법
Singh et al. Pb2+ doped diopside CaMgSi2O6: New UV luminescent phosphor
WO2010137247A1 (ja) 蛍光体及びその製造方法ならびに発光装置
CN110746967A (zh) 近红外长余辉纳米发光材料及其制备方法与应用
JP3559210B2 (ja) 耐熱・耐水性・高輝度・長残光性黄緑発光色蓄光体及びその製造法
JP3268761B2 (ja) 耐熱・耐候性に優れた高輝度・長残光性アルミン酸塩蓄光体
KR940006072B1 (ko) 형광체
JP5248008B2 (ja) 燐酸水素アルカリ土類金属塩及びその製造方法並びに該燐酸水素アルカリ土類金属塩を用いた蛍光体
JP2008174690A (ja) ユーロピウム賦活酸化イットリウム蛍光材料及びその製造方法
CN100537703C (zh) 荧光体及其制造方法
US6071633A (en) Oxide based phosphors and processes therefor
JP2006348221A (ja) 蛍光体粒子
KR20080072573A (ko) 청색 발광 형광체 분말 및 그 제조 방법
JPS606783A (ja) 燐酸塩螢光体およびその製造方法
JPH09291280A (ja) 蛍光体および蛍光ランプ
JP2002275462A (ja) ランプ用蛍光体およびその製造方法
JP4395251B2 (ja) アルミン酸塩蛍光体、蛍光ランプ、アルミン酸塩蛍光体の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005504150

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020057017111

Country of ref document: KR

Ref document number: 20048068494

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2004720204

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006091360

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10549585

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004720204

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057017111

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10549585

Country of ref document: US