WO2004083744A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2004083744A1
WO2004083744A1 PCT/JP2004/003436 JP2004003436W WO2004083744A1 WO 2004083744 A1 WO2004083744 A1 WO 2004083744A1 JP 2004003436 W JP2004003436 W JP 2004003436W WO 2004083744 A1 WO2004083744 A1 WO 2004083744A1
Authority
WO
WIPO (PCT)
Prior art keywords
stop
speed
compressor
air conditioner
control
Prior art date
Application number
PCT/JP2004/003436
Other languages
French (fr)
Japanese (ja)
Inventor
Yasushi Jinno
Yasushi Watanabe
Original Assignee
Matsushita Electric Industrial Co. Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co. Ltd. filed Critical Matsushita Electric Industrial Co. Ltd.
Priority to JP2005503680A priority Critical patent/JP4265601B2/en
Priority to KR1020047018229A priority patent/KR100590352B1/en
Publication of WO2004083744A1 publication Critical patent/WO2004083744A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/025Motor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/27Problems to be solved characterised by the stop of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to control of an air conditioner when a compressor is stopped.
  • the one-piston opening tally has a simple structure and can be manufactured at low cost, and has low mechanical loss. Therefore, there is an advantage that it is possible to design a high-performance and inexpensive air conditioner by driving it with a high-performance DC motor.
  • vibration is large due to speed fluctuation of the rotor caused by load fluctuation during one rotation of the rotor.
  • HFC refrigerants mainly R410A refrigerants
  • R410A refrigerants have become mainstream due to the necessity of using alternative refrigerants to protect the global environment.
  • Since the pressure is higher than that of the refrigerant (R22 refrigerant), the speed fluctuation becomes remarkable, which is a factor of increasing vibration.
  • Japanese Patent Application Laid-Open No. 2001-37828 discloses that speed fluctuation is controlled by finely controlling an inverter output during one rotation of a compressor motor rotor. Disclosure of torque control type inverter control (hereinafter referred to as torque control inverter). Rotor speed fluctuations are detected during the torque control inver and the output of the rotor during one rotation of the rotor is adjusted to be constant, so the rotor speed is kept almost constant and compressor vibration is suppressed. Is done.
  • the piping design around the compressor must be made flexible and the vibration at stoppage should be absorbed by using a vibration-proof material such as a rubber member. This is a common method.
  • the piping was designed in a complicated shape using long piping, and a large number of vibration isolating materials were required, it was burdensome in terms of material costs and design man-hours. Therefore, as described in Japanese Patent Application Laid-Open No. 2001-37828, taking advantage of the advantage of torque control inverter that the rotor position of the compressor motor can be detected, the compressor at the time of stoppage is used.
  • a method to cut off the inverter power at the rotor position that is effective for suppressing vibration at stop according to the speed and the magnitude of the phase current, and a control to further suppress vibration at stop by applying brake output at stop A method is disclosed.
  • the optimal rotor stop position to suppress vibration at stop is mainly when the load on the compressor is the lightest, that is, when the mouth comes near immediately after the refrigerant gas is discharged. It is detected by a fluctuation in the output of the chamber during torque control.
  • An air conditioner according to the present invention is an air conditioner driven by a torque control member that suppresses speed fluctuation of a rotor of a compressor motor.
  • the compressor speed is controlled by torque control. After the compressor speed is changed to a value at which the control amount exceeds a certain value, the compressor is stopped at the optimum rotor position to suppress vibrations when stopping.
  • FIG. 1 is a diagram for explaining the output state of the torque control chamber when the torque control amount is large.
  • FIG. 2 is a diagram illustrating the output state of the torque control chamber when the torque control amount is small.
  • FIG. 3A is a configuration diagram of an air conditioner according to one embodiment of the present invention.
  • FIG. 3B is a configuration diagram of a control unit according to the embodiment of the present invention.
  • Figure 4 shows the relationship between compressor speed and torque control amount during torque control inversion.
  • FIG. 5 is a diagram showing a stop control tape A according to the embodiment of the present invention.
  • FIG. 6 is a flowchart of the control according to the embodiment of the present invention.
  • FIG. 7 is a diagram showing a time series of a series of operations of a flowchart according to the embodiment of the present invention.
  • FIG. 8 is a diagram showing a stop control table B according to one embodiment of the present invention.
  • FIG. 9A is a diagram showing a stop control table C according to one embodiment of the present invention.
  • FIG. 9B is a diagram showing a stop control table D according to one embodiment of the present invention.
  • FIG. 10 is a flowchart of control in one embodiment of the present invention.
  • FIG. 11 is a diagram showing a time series of a series of operations in a control flowchart according to the embodiment of the present invention.
  • FIG. 12 is a control flowchart according to the embodiment of the present invention.
  • FIG. 13 is a diagram showing a time series of a series of operations of a control flowchart according to the embodiment of the present invention.
  • FIG. 14 is a diagram showing a display example of an indoor unit operation lamp in one embodiment of the present invention.
  • FIG. 3A shows a configuration of an air conditioner according to an embodiment of the present invention.
  • a compressor 1 a pressure reducer 2, an indoor heat exchanger 3, an outdoor heat exchanger 4, and a four-way valve 10 are connected by piping as shown in Fig. 3A.
  • the compressor 1 has a driving motor, and the driving motor has a rotor.
  • the indoor heat exchanger 3 heat is exchanged by blowing air from the indoor blower 5, and the indoor heat exchanger 3 detects the heat exchanger temperature.
  • Indoor piping sensor 7 is installed.
  • the outdoor heat exchanger 4 performs heat exchange by blowing air from the outdoor blower 6, and the outdoor heat exchanger 4 is provided with an outdoor piping sensor 8 for detecting a heat exchanger temperature.
  • the compressor 1 is driven by an inverter 9 and the operation of the inverter 9 is controlled by a control unit 11.
  • the control unit 11 includes, for example, a microcomputer, and includes a speed detecting unit 11 1 and a stop position determining unit 1 12 as shown in FIG. 3B, and further includes a load amount determining unit 1 13 or a speed change ratio.
  • Variable means 1 14 can be provided.
  • FIG. 3B illustrates a case where the control unit 11 includes all of the means 1 1 1 1 1 1 2, 1 1 3 and 1 1 4. Of these, means 1 1 1 and means 1 1 2 are essential, but there are cases where the control unit 11 does not have the means 1 1 3 and the means 1 1 4 or has only one of them. Included in the present invention.
  • FIG. 4 is a diagram showing a relationship between the compressor speed and the torque control amount during the torque control impeller in the first embodiment of the present invention.
  • the torque control amount is constant at Ga% from the compressor speed 0 to fb, and the control amount is gradually decreased from the compressor speed f to fd, and fd
  • the torque control amount is set to G c%.
  • a torque control amount of G b% or more is required, and the compressor speed at that time is fc.
  • the stop speed is classified according to the operating speed when the stop instruction is issued. May be.
  • FIG. 5 is a stop control table A in the present embodiment. If the operator gives an instruction to stop while driving at a speed of fc or higher as shown in Fig. 4, the controller 11 sets the rotor speed to the stop speed fc, which is the upper limit of the speed at which the mouth can be accurately detected. After changing, it is determined that the stop is performed at the optimum rotor position) C for stopping at the speed fc.
  • the stop speed fc refers to a low speed at which the torque control amount at a time exceeds a predetermined value.
  • the control unit 11 changes the low-speed speed to the stop speed fa corresponding to the lowest speed at which stable operation is possible. Decision is made to stop at the optimum rotor position ⁇ a for stopping at speed fa.
  • the positions c c and c a can be set, for example, by experimentally finding the position of the rotor at which the vibration at the time of stop is the smallest when stopping under heavy load.
  • FIG. 6 is a flowchart of the control in the first embodiment.
  • the speed detecting means 111 detects the rotor rotation speed at the time of the stop instruction.
  • the stop position determining means 111 queries the stop control table A for the detected low rotation speed, and determines the stop speed fs of the compressor and the low speed corresponding to fs. One stop position ⁇ s is determined.
  • the control unit 11 starts changing the compressor speed toward the stop speed fs.
  • FIG. 7 shows a time series of a series of operations in this flowchart.
  • FIG. 8 shows a stop control table according to the second embodiment of the present invention.
  • the stop control table ⁇ is based on the stop control table ⁇ ⁇ ⁇ ⁇ in the first embodiment of the present invention.
  • the output of the pipe temperature sensor of the condensing-side heat exchanger when the compressor is stopped is added as a stop-and-stop position setting table.
  • the control unit 11 includes a load amount determination unit 113 in addition to the speed detection unit 111 and the stop position determination unit 112.
  • the load amount determining means 113 determines whether the load amount of the compressor is equal to or greater than a predetermined value.
  • the control unit 11 can set the port-evening stop position for stopping the compressor 1 to the optimum position based on the determination of the load amount determination unit 113.
  • the load determining means 113 determines the output of the pipe temperature sensor provided in the condensing-side heat exchanger when the compressor 1 is stopped.
  • the rotor stop position setting can be determined according to.
  • the pipe temperature sensor output is the output of the indoor pipe temperature sensor 7 during heating, and the output of the outdoor pipe temperature sensor 8 during cooling.
  • the compressor is stopped after changing to the speed of fc. I do.
  • the setting of the stop control table B of the second embodiment further refers to the condensation side pipe temperature Ts at the time of stop. That is, the load amount determining means 113 determines whether Ts is equal to or greater than Tc or less than Tc.
  • the control unit 11 stops the compressor at the optimal low-night stop position co c 1 corresponding to the load, and when T s is less than T c , The compressor can be stopped at the position of the optimum mouth-to-night stop position cc 2 corresponding to the load.
  • the setting of the stop control table B in the second embodiment refers to the condensation-side piping temperature Ts at the time of stop.
  • the load amount determination means 113 determines whether or not the third is greater than or equal to the third and less than Ta. If T s is equal to or greater than Ta, the control unit 11 stops at the position of the optimal mouth overnight stop position ⁇ a 1 corresponding to the load, and if T s is less than Ta, The stop is set so that the stop is performed at the position of the optimum mouth stop position ⁇ a2 corresponding to the load.
  • each rotor stop position ⁇ s can be set based on experimentally obtained data. You.
  • the pipe temperature detected by the sensor 7 or 8 is used as a means for determining the load, but it goes without saying that the present invention is not limited to this.
  • FIG. 9A shows a stop control table C according to the third embodiment of the present invention.
  • the stop control table C is based on the stop control table A described in the first embodiment, and further includes a compressor speed change ratio setting table.
  • the control unit 11 includes a speed change ratio varying unit 114 in addition to the speed detecting unit 111, the stop position determining unit 112, and the load amount determining unit 113.
  • the load amount determining means 1 1 3 detects the compressor load at the time when the stop instruction is issued, and the speed change ratio setting means sets the compressor speed to the stop speed according to the detected compressor load. Compressor speed change ratio can be set.
  • the speed change ratio setting means refers to the pipe temperature sensor output of the condensing-side heat exchanger as the compressor load. If the operator gives a stop instruction during operation at a speed of fc or higher as shown in Fig. 4, the compressor is stopped after changing to the stop speed fc in the setting of the stop control table A described in the first embodiment.
  • the pipe temperature Tk of the condensing-side heat exchanger at the time when the stop instruction is further issued is referred to.
  • the load amount determination means 113 determines whether Tk is equal to or greater than Tc or less than Tc. If it is less than Tc, the speed change ratio variable means 114 changes the speed to the stop speed at the normal compressor change speed ratio Rt. If it is higher than Tc, it is determined that the operation is under heavy load, and the speed change ratio variable means 1 1 4 changes the compressor change speed ratio more slowly than the normal compressor change speed ratio R. Speed change up to the stop speed can be performed with Rc.
  • the setting of the stop control table B of the third embodiment further refers to the condensation-side pipe temperature Tk when the stop instruction is issued.
  • the load amount determining means 1 13 determines whether Tk is equal to or greater than Ta or less than Ta. If Tk is less than Ta, the speed change ratio varying means 1 14 determines whether the normal compressor change speed ratio R t Change the speed up to the stop speed with. If it is equal to or greater than Ta, it is determined that the operation is under heavy load, and the speed change ratio variable means 1 1 4 is set to a compressor change speed that is slower than the normal compressor change speed ratio Rt. Change the speed up to the stop speed at the ratio Ra.
  • control may be performed based on a stop control table D shown in FIG. 9B.
  • the control unit 11 selects a stop position in consideration of the pipe temperature T k of the condensation-side heat exchanger. For example, if the stop speed is: f c and the pipe temperature is equal to or higher than T c, the stop position c c 1 is selected.
  • the compressor speed under a heavy load can be changed gently, and the torque control during that time can be stably performed.
  • the pipe temperature is used as a means for determining the load, but it goes without saying that the present invention is not limited to this.
  • FIG. 10 is a flowchart of control in Embodiment 4 of the present invention.
  • the stop control table according to the present embodiment uses the same stop control table A as that of the first embodiment, and a description thereof will be omitted.
  • the speed detecting means 111 detects the mouth rotation speed at the time of the stop instruction.
  • the stop position determining means 1 1 2 refers to the stop control table A for the detected rotation speed of the mouth and determines the stop speed fs of the compressor and the stop position ⁇ s of the compressor to stop. I do.
  • step 403 the change of the compressor speed is started toward the stop speed fs.
  • step 404 when the compressor speed reaches the stop speed fs set in step 402, At this point, the control unit 11 switches the four-way valve 10 in FIG. 3A. This balances the pressure of the air conditioner. Then, at the mouth stop position ⁇ s set in step 405, the power supply in the evening is cut off and the compressor is stopped.
  • Fig. 11 shows a series of operations of this flow chart in chronological order.
  • FIG. 12 is a flowchart of control in Embodiment 5 of the present invention.
  • the stop control table in the fifth embodiment uses the same stop control table as in the first embodiment, and a description thereof will be omitted.
  • the speed detecting means 111 detects the low speed rotation speed at the time of the stop instruction.
  • the stop position determining means 112 queries the stop control table A for the detected port rotation speed, and determines the compressor stop speed f s and the rotor stop position ⁇ s to stop.
  • step 503 at the same time as changing the compressor speed toward the stop speed, the control unit 11 stops the blower of the evaporating heat exchanger.
  • step 504 the controller 11 stops the blower of the condensing-side heat exchanger at the same time that the compressor speed reaches the stop speed f s set in step 502.
  • step 505 the power supply to the impeller is cut off at the mouth-evening stop position ⁇ s set in step 502, and the compressor is stopped.
  • FIG. 13 shows a time series of a series of operations in this flowchart.
  • the air conditioner does not absorb heat throughout the evaporator, while the condenser keeps radiating heat, reducing the load when the compressor is stopped and reducing the vibration when the compressor is stopped.
  • the change in the optimum rotor position due to the load is suppressed, and the stop control can be performed even with a small number of control parameters.
  • FIG. 14 shows a display example of the indoor unit operation lamp in the sixth embodiment of the present invention.
  • the indoor unit operation lamp is installed in the indoor unit and is set to light up when operating.
  • the control unit 11 controls the blinking operation of the operation lamp during the stop control, that is, from when the operator issues a stop instruction using the remote control until the compressor actually stops. For example, as shown in Fig. 14, the lighting operation for 2 seconds and the turning off for 1 second are taken as one cycle, and the blinking display operation is repeated, and the indoor unit is shown to the operator to indicate that the control operation for stopping is being performed. Control the running ramp.
  • this blinking display operation is performed from step 501 to step 505 in the control flowchart.
  • this blinking display operation is required for another purpose, it goes without saying that another display operation pattern may be set.
  • the person operating the air conditioner sent an operation stop instruction using the remote control, the compressor was running, and the internal and external blowers were operating, and a malfunction was detected. Misunderstandings can be prevented.
  • the rotor position can be reliably detected, and in any case, the compressor can be located at the position of the mouth and the night which is most suitable for suppressing vibration at the time of stop * noise. It is possible to stop. In addition, by reducing the moment of inertia of the mouth, it is possible to more effectively exhibit the effect of stopping vibration and noise. In addition, since the inertia of the mouth and the mouth becomes small, the change of the optimum position of the mouth and the mouth due to the compressor load at the time of stoppage can be suppressed as small as possible, and the control can be simplified. Furthermore, since the compressor speed at which the compressor stops can be limited, the change in the optimal rotor position due to the compressor speed at the time of the stop can be suppressed as small as possible, and the control can be simplified.
  • the present invention determines the rotor stop position of the compressor motor in accordance with the compressor load at the time of stop, so that even when the stop control is performed under various operating conditions, the vibration at the time of stop is more effective. Noise can be suppressed. For example, it is possible to gradually change the compressor speed at the time of heavy load, and to stably perform torque control during the change. Further, according to the present invention, the speed change ratio is changed according to the compressor load at the time of a stop instruction. By doing so, the operation during stop control can be performed stably even when a stop instruction is issued under various operating conditions.
  • the refrigerant pressure at the stop can be balanced, and the vibration and noise at the stop can be further reduced.
  • the blower of the condensing-side heat exchanger continues, and the blower of the evaporator-side heat exchanger is stopped.
  • the evaporator of the air conditioner does not absorb heat, while the condenser continues to radiate heat. The operation during control can be performed stably.
  • the present invention has a display unit for displaying to the indoor unit that the control operation for stopping is being performed.
  • a display portion a liquid crystal display device, an LED, an EL element, a light bulb, or the like can be used.
  • one position of the rotor can be reliably detected, so that it is possible to provide an air conditioner with less vibration and noise suppression at the time of stop.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

In an air conditioner driven by a torque control inverter for restricting the speed variation of a rotor of a compressor motor, when an operation stop instruction is output, a compressor speed is first changed to a speed where an amount of torque control is equal to or more than a predetermined value, and then the compressor is stopped at a rotor position appropriate to control vibration occurring at the time of the stop. Further, a rotor stop position and a ratio of change in compressor speeds during the stop control above are determined in accordance with a compressor load.

Description

明細書  Specification
空気調和機 技術分野  Air Conditioner Technical Field
本発明は、 空気調和機の圧縮機停止時の制御に関するものである。 背景技術  The present invention relates to control of an air conditioner when a compressor is stopped. Background art
近年の空気調和機においては、 トルク制御方式のィンバー夕にて駆動される D Cモータ 1ピストンロータリー圧縮機を搭載している機種が増えてきている。  In recent years, an increasing number of air conditioners are equipped with a DC motor and a one-piston rotary compressor driven by a torque-controlled inverter.
1ピストン口一タリーは構造がシンプルなため廉価に製造でき、 また機械的な 損失が少ない。 従って、 これを高性能な D Cモー夕で駆動することにより、 高性 能かつ廉価な空気調和機を設計することが可能であるという利点がある。 その一 方で、 ローター 1回転中の負荷変動に起因するロータ一の速度変動により振動が 大きいというデメリットがあった。 加えて、 地球環境保護の面から代替冷媒化が 必須となってきたことにより H F C冷媒 (主に R 4 1 0 A冷媒) が主流となって いるが、 ^[ (冷媒は従来の11。 (冷媒 (R 2 2冷媒) に比して圧力が高いた め速度変動が顕著になり振動が増大する要因となっている。  The one-piston opening tally has a simple structure and can be manufactured at low cost, and has low mechanical loss. Therefore, there is an advantage that it is possible to design a high-performance and inexpensive air conditioner by driving it with a high-performance DC motor. On the other hand, there is a demerit that vibration is large due to speed fluctuation of the rotor caused by load fluctuation during one rotation of the rotor. In addition, HFC refrigerants (mainly R410A refrigerants) have become mainstream due to the necessity of using alternative refrigerants to protect the global environment. ^ [ Since the pressure is higher than that of the refrigerant (R22 refrigerant), the speed fluctuation becomes remarkable, which is a factor of increasing vibration.
振動の問題を解決する手段として、 特開 2 0 0 1— 3 7 2 8 1号公報は、 圧縮 機モー夕のロータ一 1回転中のインバ一タ出力を微細に制御することで速度変動 を抑制するトルク制御方式のインバー夕 (以降、 トルク制御インバー夕と記す) を開示する。 トルク制御インバ一夕ではローターの速度変動を検出し、 一定とな るようにローター 1回転中のィンバ一夕出力を調節するため、 ローター速度はほ ぼ一定に保たれ、 圧縮機の振動は抑制される。  As a means for solving the problem of vibration, Japanese Patent Application Laid-Open No. 2001-37828 discloses that speed fluctuation is controlled by finely controlling an inverter output during one rotation of a compressor motor rotor. Disclosure of torque control type inverter control (hereinafter referred to as torque control inverter). Rotor speed fluctuations are detected during the torque control inver and the output of the rotor during one rotation of the rotor is adjusted to be constant, so the rotor speed is kept almost constant and compressor vibration is suppressed. Is done.
このトルク制御ィンバ一夕により、 運転時の圧縮機振動を大幅に抑制すること が可能となったが、 停止時の振動はィンバ一タ通電が遮断された以降の圧縮機の ローター慣性によって引き起こされるため抑制することができない。 そのため、 圧縮機自身や圧縮機まわりの配管の停止時振動 ·応力が著しく大きくなり、 また、 騒音も発するという問題があつた。 Although this torque control chamber enabled a significant reduction in compressor vibration during operation, the vibration during stoppage was caused by the rotor inertia of the compressor after the power was cut off. Therefore, it cannot be suppressed. Therefore, the vibration and stress at the time of stoppage of the compressor itself and the piping around the compressor become remarkably large. There was a problem that noise was generated.
停止時の振動の問題を解決するためには、 圧縮機まわりの配管設計を柔軟な形 状 flexible shapeとし、 かつゴム部材などの防振材を用いることで停止時の振動 を吸収するというのが一般的な方法である。 しかし、 長い配管を利用した複雑な 形状の配管設計となり、 また多数の防振材が必要となるため、 材料費の面でも設 計工数の面でも負担のかかるものであった。 そこで、 特開 2 0 0 1— 3 7 2 8 1 号公報にも記載されているように、 圧縮機モータのローター位置を検出できると いうトルク制御インバー夕のメリットを生かし、 停止時の圧縮機速度や、 相電流 の大きさに応じて停止時の振動抑制に効果的なローター位置にてィンバータ通電 の遮断を行なう方法や、 停止時にブレーキ出力を行なうことで更なる停止時振動 抑制を行なう制御方法が開示されている。  In order to solve the problem of vibration at stoppage, the piping design around the compressor must be made flexible and the vibration at stoppage should be absorbed by using a vibration-proof material such as a rubber member. This is a common method. However, since the piping was designed in a complicated shape using long piping, and a large number of vibration isolating materials were required, it was burdensome in terms of material costs and design man-hours. Therefore, as described in Japanese Patent Application Laid-Open No. 2001-37828, taking advantage of the advantage of torque control inverter that the rotor position of the compressor motor can be detected, the compressor at the time of stoppage is used. A method to cut off the inverter power at the rotor position that is effective for suppressing vibration at stop according to the speed and the magnitude of the phase current, and a control to further suppress vibration at stop by applying brake output at stop A method is disclosed.
次に、 開示されている上記制御方法の課題について説明する。 トルク制御イン バー夕においては、 トルク制御量が大きい時のィンバ一夕の出力は図 1に示すよ うに圧縮機の回転に伴う負荷変ィヒに応じて大きく変化する。 停止時の振動を抑制 するのに最適なローター停止位置は、 主に圧縮機の負荷が最も軽くなる付近、 す なわち冷媒ガス吐出直後付近に口一夕一がきたときであり、 こうしたタイミング はトルク制御時のィンバ一夕出力の変動により検出される。  Next, problems of the disclosed control method will be described. In the torque control inverter, when the torque control amount is large, the output of the inverter changes greatly according to the load change accompanying the rotation of the compressor as shown in Fig. 1. The optimal rotor stop position to suppress vibration at stop is mainly when the load on the compressor is the lightest, that is, when the mouth comes near immediately after the refrigerant gas is discharged. It is detected by a fluctuation in the output of the chamber during torque control.
しかしながら、 圧縮機を高速で運転する際にトルク制御量を大きくすると、 圧 縮機相電流のピーク値の著しい増大や、 運転効率の悪化をもたらす。 悪化を避け るためには、 高速での運転時はトルク制御の制御量を小さくするように設定しな ければならない。 ところが、 トルク制御量を小さくすると、 図 2に示すようにィ ンバ一夕の出力は圧縮機負荷の変動を反映しづらくなる。 この結果、 高速運転時 の停止においてはローター位置の検出精度が低下して、 停止時振動抑制に最適な 口—夕一位置で停止しない場合があり、 その場合には大きな停^:時の振動 ·騒音 が発生するという課題があつた。  However, if the amount of torque control is increased when the compressor is operated at high speed, the peak value of the compressor phase current will increase significantly and the operating efficiency will deteriorate. In order to avoid deterioration, it is necessary to set the torque control amount to be small during high-speed operation. However, as shown in Fig. 2, when the torque control amount is reduced, it becomes difficult for the output of the inverter to reflect the fluctuation of the compressor load. As a result, when stopping during high-speed operation, the rotor position detection accuracy is reduced, and the rotor may not stop at the mouth-evening position, which is optimal for suppressing vibration during stop. · There was a problem that noise was generated.
また、 高速運転時の圧縮機停止では、 適切な口一夕一位置での停止を行えたと しても、 ローター自身の持つ慣性の大きさから停止時の振動抑制効果は限定的で あるため、 制振のためのゴムやテープといった補助部材の使用が不可欠であり、 それが製品コストを押し上げる要因となっていた。 さらに、 高速運転の圧縮機停 止において適切なロー夕一位置での停止を行おうとした場合、 停止時の圧縮機速 度や圧縮機負荷によって最適な口一ター停止位置が大きく変化するため、 運転条 件や空調条件からの推定負荷や、 従来技術にみられるような圧縮機相電流による 負荷の検出値によって最適なローター停止位置で停止する方法においても、 非常 に多く場合分けして設定なければならず、 制御が複雑になるという課題を有して いた。 In addition, when stopping the compressor during high-speed operation, even if it was possible to stop the compressor at an appropriate position every night, the effect of suppressing the vibration at the time of stop is limited due to the inertia of the rotor itself. As a result, the use of auxiliary members such as rubber and tape for vibration suppression was indispensable, and this was a factor that increased product costs. Furthermore, if an attempt is made to stop at an appropriate low and high speed position when stopping the compressor during high-speed operation, the optimal port stop position will vary greatly depending on the compressor speed and compressor load at the time of stoppage. Even in the method of stopping at the optimum rotor stop position based on the load estimated from the operating conditions and air conditioning conditions and the load value detected by the compressor phase current as seen in the conventional technology, a very large number of cases must be set separately. And the control becomes complicated.
さらに、 高速 ·高負荷運転時のブレーキ出力を行なう場合も電流の増大が大き く、 そのためパヮ一素子の容量を大きくしなければならず、 これも製品コストを 押し上げる要因となっていた。 発明の開示  In addition, when the brake output during high-speed and high-load operation is performed, the current increases greatly, and therefore, the capacity of the power element must be increased, which also increases the product cost. Disclosure of the invention
本発明の空気調和機は、 圧縮機モータのロータ一の速度変動を抑制するトルク 制御ィンバ一夕によって駆動される空気調和機において、 運転停止指示が出たと きは、 圧縮機速度をトルク制御の制御量が一定の値以上となる圧縮機速度まで変 更させたのち、 停止時の振動抑制に最適なローター位置で圧縮機を停止するよう にしたものである。 本構成により、 停止時には確実なロータ一位置検出を行なえ るとともに、 ロー夕一の慣性を小さくすることで、 停止時の振動抑制効果を充分 に発揮することが可能となる。 また、 ローターの慣性が小さくなることから停止 時の圧縮機負荷による最適ローター位置の変化も極力小さく抑えることができ、 制御を簡易なものとすることができる。 さらに停止する圧縮機速度を限定できる ため、 制御を簡易なものとすることができる。 図面の簡単な説明  An air conditioner according to the present invention is an air conditioner driven by a torque control member that suppresses speed fluctuation of a rotor of a compressor motor. When an operation stop instruction is issued, the compressor speed is controlled by torque control. After the compressor speed is changed to a value at which the control amount exceeds a certain value, the compressor is stopped at the optimum rotor position to suppress vibrations when stopping. With this configuration, it is possible to reliably detect the position of the rotor at the time of stoppage, and to sufficiently reduce the inertia at low speed to sufficiently exhibit the vibration suppression effect at the time of stoppage. Further, since the inertia of the rotor is reduced, the change in the optimum rotor position due to the compressor load at the time of stoppage can be suppressed as small as possible, and the control can be simplified. Further, since the speed of the compressor to be stopped can be limited, the control can be simplified. BRIEF DESCRIPTION OF THE FIGURES
図 1はトルク制御ィンバ一夕における、 トルク制御量の大きい時のィンバ一夕 の出力状態を説明する図。 図 2はトルク制御ィンバ一夕における、 トルク制御量の小さい時のィンバ一夕 の出力状態を説明する図。 FIG. 1 is a diagram for explaining the output state of the torque control chamber when the torque control amount is large. FIG. 2 is a diagram illustrating the output state of the torque control chamber when the torque control amount is small.
図 3 Aは本発明の一実施の形態における空気調和機の構成図。  FIG. 3A is a configuration diagram of an air conditioner according to one embodiment of the present invention.
図 3 Bは本発明の一実施の形態における制御部の構成図。  FIG. 3B is a configuration diagram of a control unit according to the embodiment of the present invention.
図 4はトルク制御インバー夕における圧縮機速度とトルク制御量の関係を示し た図。  Figure 4 shows the relationship between compressor speed and torque control amount during torque control inversion.
図 5は本発明の一実施の形態における停止制御テ一プル Aを示す図。  FIG. 5 is a diagram showing a stop control tape A according to the embodiment of the present invention.
図 6は本発明の一実施の形態における制御のフロ一チヤ一ト。  FIG. 6 is a flowchart of the control according to the embodiment of the present invention.
図 7は本発明の一実施の形態におけるフローチャートの一連の動作を時系列に 示した図。  FIG. 7 is a diagram showing a time series of a series of operations of a flowchart according to the embodiment of the present invention.
図 8は本発明の一実施の形態における停止制御テーブル Bを示す図。  FIG. 8 is a diagram showing a stop control table B according to one embodiment of the present invention.
図 9 Aは本発明の一実施の形態における停止制御テーブル Cを示す図。  FIG. 9A is a diagram showing a stop control table C according to one embodiment of the present invention.
図 9 Bは本発明の一実施の形態における停止制御テーブル Dを示す図。  FIG. 9B is a diagram showing a stop control table D according to one embodiment of the present invention.
図 1 0は本発明の一実施の形態における制御のフローチヤ一ト。  FIG. 10 is a flowchart of control in one embodiment of the present invention.
図 1 1は本発明の一実施の形態における制御のフローチャートの一連の動作を 時系列に示した図。  FIG. 11 is a diagram showing a time series of a series of operations in a control flowchart according to the embodiment of the present invention.
図 1 2は本発明の一実施の形態における制御のフローチャート。  FIG. 12 is a control flowchart according to the embodiment of the present invention.
図 1 3は本発明の一実施の形態における制御のフローチャートの一連の動作を 時系列に示した図。  FIG. 13 is a diagram showing a time series of a series of operations of a control flowchart according to the embodiment of the present invention.
図 1 4は本発明の一実施の形態における室内機運転ランプの表示例を示した図。 発明を実施するための最良の形態  FIG. 14 is a diagram showing a display example of an indoor unit operation lamp in one embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の一実施の形態の空気調和機の構成を図 3 Aに示す。 空気調和機 は、 圧縮機 1、 減圧機 2、 室内熱交換器 3、 室外熱交換器 4および四方弁 1 0が 図 3 Aのように配管にて接続される。 なお、 圧縮機 1は、 駆動用モ一夕を備えて おり、 駆動用モ一夕はローターを有している。 また 室内熱交換器 3は室内送風 機 5による送風により熱交換が行われ、 室内熱交換器 3には熱交換器温度を検出 する室内配管センサー 7が設置される。 同様に室外熱交換器 4は室外送風機 6に よる送風により熱交換が行われ、 室外熱交換器 4には熱交換器温度を検出する室 外配管センサー 8が設置される。 圧縮機 1はインバータ 9により駆動され イン バー夕 9は制御部 1 1によって動作を制御される。 制御部 1 1は、 例えばマイコ ンによって構成され、 図 3 Bに示すように、 速度検出手段 1 1 1、 停止位置決定 手段 1 1 2を有し さらに負荷量判定手段 1 1 3または速度変更比率可変手段 1 1 4を有することができる。 なお、 図 3 Bには、 制御部 1 1が手段 1 1 1 1 1 2、 1 1 3及び 1 1 4をすベて含む場合を例示する。 このうち、 手段 1 1 1と手 段 1 1 2は必須であるが、 制御部 1 1が手段 1 1 3及び手段 1 1 4を有していな い場合、 または何れか一方のみを有する場合も本発明に含まれる。 FIG. 3A shows a configuration of an air conditioner according to an embodiment of the present invention. In the air conditioner, a compressor 1, a pressure reducer 2, an indoor heat exchanger 3, an outdoor heat exchanger 4, and a four-way valve 10 are connected by piping as shown in Fig. 3A. The compressor 1 has a driving motor, and the driving motor has a rotor. In the indoor heat exchanger 3, heat is exchanged by blowing air from the indoor blower 5, and the indoor heat exchanger 3 detects the heat exchanger temperature. Indoor piping sensor 7 is installed. Similarly, the outdoor heat exchanger 4 performs heat exchange by blowing air from the outdoor blower 6, and the outdoor heat exchanger 4 is provided with an outdoor piping sensor 8 for detecting a heat exchanger temperature. The compressor 1 is driven by an inverter 9 and the operation of the inverter 9 is controlled by a control unit 11. The control unit 11 includes, for example, a microcomputer, and includes a speed detecting unit 11 1 and a stop position determining unit 1 12 as shown in FIG. 3B, and further includes a load amount determining unit 1 13 or a speed change ratio. Variable means 1 14 can be provided. FIG. 3B illustrates a case where the control unit 11 includes all of the means 1 1 1 1 1 1 2, 1 1 3 and 1 1 4. Of these, means 1 1 1 and means 1 1 2 are essential, but there are cases where the control unit 11 does not have the means 1 1 3 and the means 1 1 4 or has only one of them. Included in the present invention.
以降、 本発明の一実施の形態について、 図 3Aおよび 3 Bを参照し、 実施例に沿 つて説明を行う。 Hereinafter, an embodiment of the present invention will be described along with the example with reference to FIGS. 3A and 3B.
(実施例 1 )  (Example 1)
図 4は本発明の実施例 1において、 トルク制御インパ一夕における圧縮機速度 とトルク制御量の関係を示した図である。 この図 4におけるトルク制御設定の場 合、 トルク制御量は圧縮機速度 0から f bまではトルク制御量を G a %で一定と し、 圧縮機速度 f から f dにかけて徐々に制御量を落とし、 f d以上の圧縮機 速度ではトルク制御量を G c %とする設定とする。 ここで、 トルク制御において いかなる運転状況下でも精度よく口一ター位置を定めて停止するためには、 G b %以上のトルク制御量が必要であり、 その時の圧縮機速度は f cである。 このようなトルク制御量設定において、 圧縮機が f c以上の高速で運転してい る際に、 空気調和機の操作者がリモコンで運転停止の指示をした場合、 圧縮機速 度を f c以下に変化させた後に、 最適な口一ター位置でインバー夕通電を遮断し て停止をおこなうことで、 確実な振動の抑制ができる。 なお、 実際に停止させる 圧縮機速度は低いほど振動抑制効果も大きく、 また低速での停止では負荷による 最適停止位置の変化も少ないので制御パラメ一タも少なくて済むため、 出来るか ぎり最低速度に設定するのが好ましい。 しかしながら、 例えば最高速度で運転時 に操作者から停止指示が出された場合、 最低速度まで変化させるのにはかなりの 時間を要してしまうため、 停止指示がされた際の運転速度に応じて、 停止する速 度を場合分けしてもよい。 FIG. 4 is a diagram showing a relationship between the compressor speed and the torque control amount during the torque control impeller in the first embodiment of the present invention. In the case of the torque control setting in Fig. 4, the torque control amount is constant at Ga% from the compressor speed 0 to fb, and the control amount is gradually decreased from the compressor speed f to fd, and fd At the above compressor speed, the torque control amount is set to G c%. Here, in order to accurately determine the stop position and stop in any operating condition in torque control, a torque control amount of G b% or more is required, and the compressor speed at that time is fc. In such a torque control setting, if the air conditioner operator gives an instruction to stop operation with the remote control while the compressor is operating at a high speed of fc or more, the compressor speed will change to fc or less. After that, shutting off the inverter and stopping the motor at the optimum position of the mouth enables reliable suppression of vibration. In addition, the lower the compressor speed actually stopped, the greater the vibration suppression effect.At low speeds, the change in the optimal stop position due to the load is also small, so the number of control parameters can be reduced. It is preferable to set. However, for example when driving at maximum speed If the operator issues a stop instruction at a later time, it takes a considerable amount of time to change the speed to the minimum speed.Therefore, the stop speed is classified according to the operating speed when the stop instruction is issued. May be.
図 5は本実施例における停止制御テーブル Aである。 操作者の停止指示が図 4 に示す f c以上の速度で運転中に行われた場合、 制御部 1 1は、 精度よく口一夕 —位置を検出できる速度の上限である停止速度 f cにローター速度を変化させた 後に、 速度 f cでの停止に最適なローター位置 ) Cで停止を行うように決定する。 ここで、 停止速度 f cとは、 ィンバ一夕のトルク制御量が所定値以上となるロー 夕一速度のことを言う。 一方、 f c未満の速度で運転中に停止指示が行われた場 合は、 制御部 1 1は、 安定に運転できる最低の速度に相当する停止速度 f aまで ロー夕一速度を変化させた後に、 速度 f aでの停止に最適なロータ一位置 ω aで 停止を行うように決定する。 ここで、 位置 c cと c aは、 例えば重負荷時の停止 において最も停止時の振動が小さくなるロータ一位置を実験的に求めることによ つて設定することができる。  FIG. 5 is a stop control table A in the present embodiment. If the operator gives an instruction to stop while driving at a speed of fc or higher as shown in Fig. 4, the controller 11 sets the rotor speed to the stop speed fc, which is the upper limit of the speed at which the mouth can be accurately detected. After changing, it is determined that the stop is performed at the optimum rotor position) C for stopping at the speed fc. Here, the stop speed fc refers to a low speed at which the torque control amount at a time exceeds a predetermined value. On the other hand, if the stop instruction is issued during operation at a speed less than fc, the control unit 11 changes the low-speed speed to the stop speed fa corresponding to the lowest speed at which stable operation is possible. Decision is made to stop at the optimum rotor position ωa for stopping at speed fa. Here, the positions c c and c a can be set, for example, by experimentally finding the position of the rotor at which the vibration at the time of stop is the smallest when stopping under heavy load.
図 6は本実施例 1における制御のフローチャートである。 ステップ 1 0 1にお いて運転中の空気調和機がリモコンにより操作者から停止指示を受けると、 速度 検出手段 1 1 1は停止指示時のローター回転速度を検出する。 ステップ 1 0 2に おいて、 停止位置決定手段 1 1 2は、 検出したロー夕一回転速度を、 停止制御テ 一ブル Aに照会し、 圧縮機の停止速度 f sと、 f sに対応するロー夕一停止位置 ω sを決定する。 次のステツプ 1 0 3において、 制御部 1 1は、 停止速度 f sに 向けて圧縮機速度の変更を開始する。 最後のステップ 1 0 4では、 圧縮機速度が ステップ 1 0 2にて設定した停止速度 f sに達した時点で、 ステップ 1 0 2にて 設定したローター停止位置 ω sにてインバー夕の通電を遮断し、 圧縮機を停止す る。 図 7に、 このフローチャートの一連の動作を時系列に示す。  FIG. 6 is a flowchart of the control in the first embodiment. In step 101, when the operating air conditioner receives a stop instruction from the operator using the remote controller, the speed detecting means 111 detects the rotor rotation speed at the time of the stop instruction. In step 102, the stop position determining means 111 queries the stop control table A for the detected low rotation speed, and determines the stop speed fs of the compressor and the low speed corresponding to fs. One stop position ωs is determined. In the next step 103, the control unit 11 starts changing the compressor speed toward the stop speed fs. In the last step 104, when the compressor speed reaches the stop speed fs set in step 102, the power to the inverter is cut off at the rotor stop position ωs set in step 102. And stop the compressor. FIG. 7 shows a time series of a series of operations in this flowchart.
(実施例 2 )  (Example 2)
図 8は、 本発明の実施例 2における停止制御テーブル Βを示す。 停止制御テー ブル Βは、 本発明の実施例 1における停止制御テーブル Αを基本とし、 さらに圧 縮機停止時の凝縮側熱交換器の配管温度センサー出力を口一夕一停止位置設定テ 一ブルとして追加したものである。 実施例 2では、 制御部 1 1が、 速度検出手段 1 1 1と停止位置決定手段 1 1 2に加え、 さらに負荷量判定手段 1 1 3を有する。 負荷量判定手段 1 1 3は、 圧縮機の負荷量が所定値以上か否かを判定する。 制御 部 1 1は、 負荷量判定手段 1 1 3の判定に基づき、 圧縮機 1を停止させる際の口 —夕一停止位置を最適位置に設定することが出来る。 実施例 2において、 負荷量 判定手段 1 1 3が、 圧縮機 1の停止時の凝縮側熱交換器に備えられた配管温度セ ンサ一出力を判定することにより、 制御部 1 1はセンサ一出力に応じたローター 停止位置設定を決定することができる。 なお、 図 3 Aに示すように、 配管温度セ ンサー出力とは、 暖房時は室内配管温度センサー 7の出力であり、 冷房時は室外 配管温度センサー 8の出力をいう。 FIG. 8 shows a stop control table according to the second embodiment of the present invention. The stop control table Β is based on the stop control table に お け る in the first embodiment of the present invention, The output of the pipe temperature sensor of the condensing-side heat exchanger when the compressor is stopped is added as a stop-and-stop position setting table. In the second embodiment, the control unit 11 includes a load amount determination unit 113 in addition to the speed detection unit 111 and the stop position determination unit 112. The load amount determining means 113 determines whether the load amount of the compressor is equal to or greater than a predetermined value. The control unit 11 can set the port-evening stop position for stopping the compressor 1 to the optimum position based on the determination of the load amount determination unit 113. In the second embodiment, the load determining means 113 determines the output of the pipe temperature sensor provided in the condensing-side heat exchanger when the compressor 1 is stopped. The rotor stop position setting can be determined according to. As shown in FIG. 3A, the pipe temperature sensor output is the output of the indoor pipe temperature sensor 7 during heating, and the output of the outdoor pipe temperature sensor 8 during cooling.
実施例 1で説明した停止制御テーブル Aの設定では、 操作者の停止指示が図 4 に示す f c以上の速度で運転中に行われた場合は f cの速度に変化させた後に圧 縮機を停止する。 実施例 2の停止制御テーブル Bの設定は、 さらに、 停止する際 の凝縮側配管温度 T sを参照する。 すなわち、 負荷量判定手段 1 1 3は、 T sが T c以上か、 T c未満かを判定する。 制御部 1 1は、 T sが T c以上であった場 合は、 その負荷に見合った最適ロー夕一停止位置 co c 1の位置で圧縮機を停止さ せ、 T c未満であった場合は、 その負荷に見合った最適口一夕一停止位置 c c 2 の位置で圧縮機を停止させることができる。  In the setting of the stop control table A described in the first embodiment, if the operator issues a stop instruction during operation at a speed higher than fc shown in Fig. 4, the compressor is stopped after changing to the speed of fc. I do. The setting of the stop control table B of the second embodiment further refers to the condensation side pipe temperature Ts at the time of stop. That is, the load amount determining means 113 determines whether Ts is equal to or greater than Tc or less than Tc. When T s is equal to or greater than T c, the control unit 11 stops the compressor at the optimal low-night stop position co c 1 corresponding to the load, and when T s is less than T c , The compressor can be stopped at the position of the optimum mouth-to-night stop position cc 2 corresponding to the load.
また、 停止制御テーブル Aの設定では、 f c未満の速度で運転中に操作者の停 止指示が行われた場合は f aの速度に変化させた後に圧縮機を停止する。 実施例 2の停止制御テーブル Bの設定は、 停止する際の凝縮側配管温度 T sを参照する。 すなわち、 負荷量判定手段 1 1 3は、 丁3が丁&以上か、 T a未満かを判定する。 制御部 1 1は、 T sが T a以上であった場合は、 その負荷に見合った最適口一夕 一停止位置 ω a 1の位置で停止を行い、 T a未満であった場合は、 その負荷に見 合つた最適口一ター停止位置 ω a 2の位置で停止を行うように設定される。 ここ で、 各ローター停止位置 ω sは実験的に求めたデータを基に設定することができ る。 Also, in the setting of the stop control table A, when an operator gives a stop instruction during operation at a speed lower than fc, the compressor is stopped after the speed is changed to fa. The setting of the stop control table B in the second embodiment refers to the condensation-side piping temperature Ts at the time of stop. In other words, the load amount determination means 113 determines whether or not the third is greater than or equal to the third and less than Ta. If T s is equal to or greater than Ta, the control unit 11 stops at the position of the optimal mouth overnight stop position ω a 1 corresponding to the load, and if T s is less than Ta, The stop is set so that the stop is performed at the position of the optimum mouth stop position ωa2 corresponding to the load. Here, each rotor stop position ω s can be set based on experimentally obtained data. You.
これにより、 さまざまな運転条件下から停止のための制御を行つても、 よ り効果的に停止時の振動を抑制することができる。 なお、 本実施形態においては 負荷を判別する手段としてセンサー 7または 8が検出する配管温度を利用してい るが、 この限りではないのはいうまでもない。  As a result, even when control for stopping is performed under various operating conditions, vibration at the time of stopping can be more effectively suppressed. In the present embodiment, the pipe temperature detected by the sensor 7 or 8 is used as a means for determining the load, but it goes without saying that the present invention is not limited to this.
(実施例 3 )  (Example 3)
図 9 Aは、 本発明の実施例 3における停止制御テーブル Cを示したものである。 停止制御テーブル Cは、 実施例 1で説明した停止制御テーブル Aを基本とし、 さ らに、 圧縮機速度変更比率設定テーブルを追加したものである。  FIG. 9A shows a stop control table C according to the third embodiment of the present invention. The stop control table C is based on the stop control table A described in the first embodiment, and further includes a compressor speed change ratio setting table.
実施例 3では、 制御部 1 1は、 速度検出手段 1 1 1、 停止位置決定手段 1 1 2お よび負荷量判定手段 1 1 3に加え、 さらに速度変更比率可変手段 1 1 4を有する。 負荷量判定手段 1 1 3は停止指示がされたときの圧縮機負荷を検出し、 検出され た圧縮機負荷に応じて、 速度変更比率設定手段は、 圧縮機速度を停止速度に変更 させる際の圧縮機速度変更比率を設定することが出来る。 速度変更比率設定手段 は、 圧縮機負荷として、 凝縮側熱交換器の配管温度センサー出力を参照する。 操作者の停止指示が図 4に示す f c以上の速度で運転中に行われた場合、 実施 例 1で説明した停止制御テーブル Aの設定では、 停止速度 f cまで変化させた後 に圧縮機を停止する。 実施例 3の停止制御テーブル Cの設定では、 さらに停止指 示がされた際の凝縮側熱交換器の配管温度 T kを参照する。 負荷量判定手段 1 1 3は T kが T c以上か、 T c未満かを判定する。 T c未満であった場合、 速度変 更比率可変手段 1 1 4が、 通常の圧縮機変更速度比率 R tにて停止速度までの速 度変更を実施する。 T c以上であった場合には、 負荷の重い運転時であると判定 され、 速度変更比率可変手段 1 1 4は通常の圧縮機変更速度比率 Rに比して緩や かな圧縮機変更速度比率 R cにて停止速度までの速度変更を実施することが出来 る。 In the third embodiment, the control unit 11 includes a speed change ratio varying unit 114 in addition to the speed detecting unit 111, the stop position determining unit 112, and the load amount determining unit 113. The load amount determining means 1 1 3 detects the compressor load at the time when the stop instruction is issued, and the speed change ratio setting means sets the compressor speed to the stop speed according to the detected compressor load. Compressor speed change ratio can be set. The speed change ratio setting means refers to the pipe temperature sensor output of the condensing-side heat exchanger as the compressor load. If the operator gives a stop instruction during operation at a speed of fc or higher as shown in Fig. 4, the compressor is stopped after changing to the stop speed fc in the setting of the stop control table A described in the first embodiment. I do. In the setting of the stop control table C of the third embodiment, the pipe temperature Tk of the condensing-side heat exchanger at the time when the stop instruction is further issued is referred to. The load amount determination means 113 determines whether Tk is equal to or greater than Tc or less than Tc. If it is less than Tc, the speed change ratio variable means 114 changes the speed to the stop speed at the normal compressor change speed ratio Rt. If it is higher than Tc, it is determined that the operation is under heavy load, and the speed change ratio variable means 1 1 4 changes the compressor change speed ratio more slowly than the normal compressor change speed ratio R. Speed change up to the stop speed can be performed with Rc.
また、 停止制御テ一ブル Aの設定では、 f c未満の速度で運転中に操作者の停 止指示が行われた場合は、 停止速度 f aまで変化させた後に圧縮機を停止する。 実施例 3の停止制御テーブル Bの設定は、 さらに、 停止指示がされた際の凝縮側 配管温度 T kを参照する。 負荷量判定手段 1 1 3は T kが T a以上か、 T a未満 かを判定し、 T a未満の場合は、 速度変更比率可変手段 1 1 4が、 通常の圧縮機 変更速度比率 R tにて停止速度までの速度変更を実施する。 T a以上であった場 合は、 負荷の重い運転時であると判断し、 速度変更比率可変手段 1 1 4は、 通常 の圧縮機変更速度比率 R tに比して緩やかな圧縮機変更速度比率 R aにて停止速 度までの速度変更を実施する。 In the setting of the stop control table A, if the operator gives a stop instruction during operation at a speed less than fc, the compressor is stopped after changing to the stop speed fa. The setting of the stop control table B of the third embodiment further refers to the condensation-side pipe temperature Tk when the stop instruction is issued. The load amount determining means 1 13 determines whether Tk is equal to or greater than Ta or less than Ta.If Tk is less than Ta, the speed change ratio varying means 1 14 determines whether the normal compressor change speed ratio R t Change the speed up to the stop speed with. If it is equal to or greater than Ta, it is determined that the operation is under heavy load, and the speed change ratio variable means 1 1 4 is set to a compressor change speed that is slower than the normal compressor change speed ratio Rt. Change the speed up to the stop speed at the ratio Ra.
上記の停止制御テーブル Cでは、 停止速度 f cまたは f aに到達したのち、 口 一夕一はそれぞれ停止位置 co cまたは ω aで停止させる。 一方、 図 9 Bに示す停 止制御テーブル Dに基づいて制御してもよい。 停止制御テーブル Dでは、 停止速 度 f cまたは f aに到達したのち、 制御部 1 1は、 凝縮側熱交換器の配管温度 T kを参酌して、 停止位置を選択する。 例えば、 停止速度が: f cで、 かつ配管温度 が T c以上の場合には停止位置 c c 1が選択される。  In the above stop control table C, after reaching the stop speed fc or fa, the mouth is stopped at the stop position coc or ωa, respectively. On the other hand, control may be performed based on a stop control table D shown in FIG. 9B. In the stop control table D, after reaching the stop speed f c or f a, the control unit 11 selects a stop position in consideration of the pipe temperature T k of the condensation-side heat exchanger. For example, if the stop speed is: f c and the pipe temperature is equal to or higher than T c, the stop position c c 1 is selected.
これにより、 例えば重負荷時の圧縮機速度の変更を緩やかに行ない、 その間の トルク制御を安定的に行なうことが出来る。 なお、 本実施形態においては負荷を 判別する手段として配管温度を利用しているが、 この限りではないのはいうまで もない。  Thus, for example, the compressor speed under a heavy load can be changed gently, and the torque control during that time can be stably performed. In the present embodiment, the pipe temperature is used as a means for determining the load, but it goes without saying that the present invention is not limited to this.
(実施例 4 )  (Example 4)
図 1 0は本発明の実施例 4における制御のフローチャートである。 本実施形態 における停止制御テーブルは実施例 1と同じ停止制御テーブル Aを用いるので、 これについては説明を省略する。 ステップ 4 0 1において運転中の空気調和機が リモコンにより操作者から停止指示を受けると、 速度検出手段 1 1 1は停止指示 時の口一夕一回転速度を検出する。 ステップ 4 0 2において、 停止位置決定手段 1 1 2は、 検出した口一夕一回転速度を停止制御テーブル Aに照会し、 圧縮機の 停止速度 f sと停止する口一ター停止位置 ω sを決定する。 次に、 ステップ 4 0 3において停止速度 f sに向けて圧縮機の速度の変更を開始する。 そしてステツ プ 4 0 4では圧縮機速度がステップ 4 0 2にて設定した停止速度 f sに達した時 点で、 制御部 1 1は、 図 3 Aにおける四方弁 1 0を切り替える。 これにより空気 調和機の圧力をバランスさせる。 その後、 ステップ 4 0 5にて設定した口一ター 停止位置 ω sにてインバー夕の通電を遮断し、 圧縮機を停止する。 図 1 1はこの フ口ーチャ一卜の一連の動作を時系列に示したものである。 FIG. 10 is a flowchart of control in Embodiment 4 of the present invention. The stop control table according to the present embodiment uses the same stop control table A as that of the first embodiment, and a description thereof will be omitted. In step 401, when the operating air conditioner receives a stop instruction from the operator by the remote controller, the speed detecting means 111 detects the mouth rotation speed at the time of the stop instruction. In step 402, the stop position determining means 1 1 2 refers to the stop control table A for the detected rotation speed of the mouth and determines the stop speed fs of the compressor and the stop position ω s of the compressor to stop. I do. Next, in step 403, the change of the compressor speed is started toward the stop speed fs. Then, in step 404, when the compressor speed reaches the stop speed fs set in step 402, At this point, the control unit 11 switches the four-way valve 10 in FIG. 3A. This balances the pressure of the air conditioner. Then, at the mouth stop position ω s set in step 405, the power supply in the evening is cut off and the compressor is stopped. Fig. 11 shows a series of operations of this flow chart in chronological order.
停止直前に四方弁 1 0を切り替える操作を行うことにより、 圧縮機停止時の負 荷を軽くし、 停止時の振動をより低減することが出来、 同時に、 負荷による最適 ローター位置の変化を抑制し、 少ない制御パラメ一夕にても停止制御を行うこと が可能になる。  By switching the four-way valve 10 immediately before the stop, the load when the compressor is stopped can be lightened, and the vibration at the stop can be further reduced.At the same time, the change in the optimal rotor position due to the load is suppressed. However, stop control can be performed even with a small number of control parameters.
(実施例 5 )  (Example 5)
図 1 2は本発明の実施例 5における制御のフローチヤ一トである。 本実施例 5 における停止制御テ一ブルは実施例 1と同じ停止制御テーブル Αを用いるので、 これについては説明を省略する。 ステップ 5 0 1において運転中の空気調和機が リモコンにより操作者から停止指示を受けると、 速度検出手段 1 1 1は停止指示 時のロー夕一回転速度を検出する。 ステップ 5 0 2において停止位置決定手段 1 1 2は、 検出した口一ター回転速度を停止制御テーブル Aに照会し、 圧縮機の停 止速度 f sと停止するロータ一停止位置 ω sを決定する。 次に、 ステップ 5 0 3 において停止速度に向けて圧縮機速度の変更を開始するのと同時に、 制御部 1 1 は蒸発側熱交換器の送風機を停止する。 ステップ 5 0 4では圧縮機速度がステツ プ 5 0 2にて設定した停止速度 f sに達すると同時に、 制御部 1 1は凝縮側熱交 換器の送風機を停止させる。 ステップ 5 0 5では、 ステップ 5 0 2で設定した口 —夕一停止位置 ω sにてインパ一夕の通電が遮断され、 圧縮機が停止される。 図 1 3はこのフローチャートの一連の動作を時系列に示したものである。  FIG. 12 is a flowchart of control in Embodiment 5 of the present invention. The stop control table in the fifth embodiment uses the same stop control table as in the first embodiment, and a description thereof will be omitted. In step 501, when the operating air conditioner receives a stop instruction from the operator using the remote controller, the speed detecting means 111 detects the low speed rotation speed at the time of the stop instruction. In step 502, the stop position determining means 112 queries the stop control table A for the detected port rotation speed, and determines the compressor stop speed f s and the rotor stop position ω s to stop. Next, in step 503, at the same time as changing the compressor speed toward the stop speed, the control unit 11 stops the blower of the evaporating heat exchanger. In step 504, the controller 11 stops the blower of the condensing-side heat exchanger at the same time that the compressor speed reaches the stop speed f s set in step 502. In step 505, the power supply to the impeller is cut off at the mouth-evening stop position ω s set in step 502, and the compressor is stopped. FIG. 13 shows a time series of a series of operations in this flowchart.
これにより停止制御の間、 空気調和機のェパポレ一夕一の吸熱は行なわれず、 一方、 コンデンサ一の放熱は継続されるため、 圧縮機停止時の負荷を軽くし、 停 止時の振動をより低減するとともに、 負荷による最適ロータ一位置の変化を抑制 し、 少ない制御パラメ一夕にても停止制御を行うことが可能になる。  As a result, during the stop control, the air conditioner does not absorb heat throughout the evaporator, while the condenser keeps radiating heat, reducing the load when the compressor is stopped and reducing the vibration when the compressor is stopped. In addition to the reduction, the change in the optimum rotor position due to the load is suppressed, and the stop control can be performed even with a small number of control parameters.
(実施例 6 ) 図 1 4は本発明の実施例 6における室内機運転ランプの表示例を示したもので ある。 室内機運転ランプは、 室内機に設置され、 運転時は点灯するように設定さ れている。 実施例 6においては 制御部 1 1は., 停止制御中 すなわち操作者が リモコンで停止指示を行つてから実際に圧縮機が停止するまでの間、 運転ランプ の点滅動作を制御する。 例えば、 図 1 4に示すように、 2秒間の点灯と 1秒間の 消灯を 1サイクルとして、 点滅表示動作を繰り返し行い、 停止のための制御動作 中であることを操作者に示すように室内機運転ランプを制御する。 本発明の実施 例 5を例に挙げると、 制御フローチヤ一卜にてステップ 5 0 1からステップ 5 0 5までの間はこの点滅表示動作をおこなう。 もちろん、 この点滅表示動作が他の 目的に必要とされる場合は、 別の表示動作パターンを設定してもよいのは言うま でもない。 これにより、 空気調和機を操作している人が、 リモコンで運転停止 指示を送ったにも関わらず、 圧縮機が駆動していることや、 内外送風機が動いて いることに対して、 故障と誤解を受けることを防止することができる。 (Example 6) FIG. 14 shows a display example of the indoor unit operation lamp in the sixth embodiment of the present invention. The indoor unit operation lamp is installed in the indoor unit and is set to light up when operating. In the sixth embodiment, the control unit 11 controls the blinking operation of the operation lamp during the stop control, that is, from when the operator issues a stop instruction using the remote control until the compressor actually stops. For example, as shown in Fig. 14, the lighting operation for 2 seconds and the turning off for 1 second are taken as one cycle, and the blinking display operation is repeated, and the indoor unit is shown to the operator to indicate that the control operation for stopping is being performed. Control the running ramp. Taking the fifth embodiment of the present invention as an example, this blinking display operation is performed from step 501 to step 505 in the control flowchart. Of course, if this blinking display operation is required for another purpose, it goes without saying that another display operation pattern may be set. As a result, even if the person operating the air conditioner sent an operation stop instruction using the remote control, the compressor was running, and the internal and external blowers were operating, and a malfunction was detected. Misunderstandings can be prevented.
以上のように、 本発明の圧縮機停止制御方法によれば、 確実なローター位置検 出を行え、 いかなる場合も停止時の振動 *騷音抑制に最も適した口一夕一位置で 圧縮機を停止することが可能になる。 加えて口一夕一の慣性を小さくすることで 停止時振動 ·騒音抑制効果をより効果的に発揮することが可能となる。 また、 口 一夕一の慣性が小さくなることから停止時の圧縮機負荷による最適口一夕一位置 の変化も極力小さく抑えることができ、 制御を簡易なものとすることができる。 さらに停止する圧縮機速度を限定できるため、 停止時の圧縮機速度による最適 ローター位置の変化も極力小さく抑えることができ、 制御を簡易なものとするこ とができる。  As described above, according to the compressor stop control method of the present invention, the rotor position can be reliably detected, and in any case, the compressor can be located at the position of the mouth and the night which is most suitable for suppressing vibration at the time of stop * noise. It is possible to stop. In addition, by reducing the moment of inertia of the mouth, it is possible to more effectively exhibit the effect of stopping vibration and noise. In addition, since the inertia of the mouth and the mouth becomes small, the change of the optimum position of the mouth and the mouth due to the compressor load at the time of stoppage can be suppressed as small as possible, and the control can be simplified. Furthermore, since the compressor speed at which the compressor stops can be limited, the change in the optimal rotor position due to the compressor speed at the time of the stop can be suppressed as small as possible, and the control can be simplified.
また、 本発明は停止時の圧縮機負荷に応じて圧縮機モータのローター停止位置 を決定することにより、 さまざまな運転条件下から停止制御を行っても、 より効 果的に停止時の振動 ·騷音を抑制することができる。 例えば重負荷時の圧縮機速 度の変更を緩やかに行ない、 その間のトルク制御を安定的に行なうことが出栾る。 さらに、 本発明は停止指示時の圧縮機負荷に応じて前記速度変更比率を可変さ せることで、 さまざまな運転条件下での停止指示においても、 停止制御中の動作 を安定的に行なうことが出来る。 In addition, the present invention determines the rotor stop position of the compressor motor in accordance with the compressor load at the time of stop, so that even when the stop control is performed under various operating conditions, the vibration at the time of stop is more effective. Noise can be suppressed. For example, it is possible to gradually change the compressor speed at the time of heavy load, and to stably perform torque control during the change. Further, according to the present invention, the speed change ratio is changed according to the compressor load at the time of a stop instruction. By doing so, the operation during stop control can be performed stably even when a stop instruction is issued under various operating conditions.
さらに、 本発明は圧縮機停止直前に四方弁 1 0を切り替えることにより、 停止 時の冷媒圧力をバランスさせ、 停止時の振動 ·騷音をより低減することができる。 さらに、 本発明の停止制御において圧縮機速度を停止する速度まで変更させる 間、 凝縮側熱交換器の送風は継続し、 蒸発側熱交換器の送風機を停止する。 すな わち、 停止制御の間、 空気調和機の蒸発器の吸熱は行なわれず、 一方、 凝縮器の 放熱は継続されるため、 停止制御の最中の負荷の上昇を抑えることができ、 停止 制御中の動作を安定的に行なうことが出来る。  Further, according to the present invention, by switching the four-way valve 10 immediately before the compressor stops, the refrigerant pressure at the stop can be balanced, and the vibration and noise at the stop can be further reduced. Further, while changing the compressor speed to the stop speed in the stop control of the present invention, the blower of the condensing-side heat exchanger continues, and the blower of the evaporator-side heat exchanger is stopped. In other words, during the stop control, the evaporator of the air conditioner does not absorb heat, while the condenser continues to radiate heat. The operation during control can be performed stably.
さらに、 本発明は室内機に停止のための制御動作中であることを表示する表示 部を有する。 表示部としては、 液晶表示装置、 L E D、 E L素子、 電球などを用 いることができる。 動作中であることを表示させることにより、 リモコンで運転 停止指示を送った後に、 圧縮機が駆動していることや、 内外送風機が動いている ことを見た使用者が、 空気調和機の故障であると誤解することを防止できる。 産業上の利用可能性  Further, the present invention has a display unit for displaying to the indoor unit that the control operation for stopping is being performed. As the display portion, a liquid crystal display device, an LED, an EL element, a light bulb, or the like can be used. By displaying that the air conditioner is operating, after sending an operation stop instruction with the remote control, the user who sees that the compressor is running and that the internal and external blowers are running can be damaged by the user. Can be prevented from being misunderstood. Industrial applicability
本発明の圧縮機停止制御を用いることにより、 確実なロータ一位置検出を行う ことが出来るため、 停止時の振動 ·騒音抑制の少ない空気調和機を提供すること が出来る。  By using the compressor stop control of the present invention, one position of the rotor can be reliably detected, so that it is possible to provide an air conditioner with less vibration and noise suppression at the time of stop.

Claims

請求の範囲 The scope of the claims
1 . 空気調和機であって、  1. An air conditioner,
圧縮機と、  A compressor,
口一夕一を有して前記圧縮機を駆動するモータと、  A motor having a mouth and driving the compressor,
前記モー夕を駆動するトルク制御方式のインバー夕と、  A torque control type invertor for driving the motor,
前記ィンバ一夕の動作を制御する制御部を有し、 前記制御部は、  A control unit configured to control an operation of the chamber, and the control unit includes:
前記ロータ一の回転速度を検出する速度検出手段と、  Speed detection means for detecting the rotation speed of the rotor,
前記回転速度に基づき前記口一ターの停止速度と停止位置を決定する停止 位置決定手段を有し、  A stop position determining unit that determines a stop speed and a stop position of the mouth based on the rotation speed,
停止指示を受けた前記制御部は、 運転中の前記回転速度を前記速度検出手 段で検出し、 ィンバー夕のトルク制御量が所定値以上となる前記停止速度まで減 速した後、 前記停止位置決定手段が指定するロータ一位置で前記モ一夕を停止さ せる。  Upon receiving the stop instruction, the control unit detects the rotational speed during operation by the speed detection means, and after reducing the rotational speed to the stop speed at which the torque control amount of the inverter becomes equal to or more than a predetermined value, stops the stop position. The motor is stopped at the position of the rotor designated by the determining means.
2 . 請求項 1記載の空気調和機であって、 前記制御部は、 2. The air conditioner according to claim 1, wherein the control unit comprises:
圧縮機に与えられる負荷が所定値以上か否かを判定する負荷量判定手段を さらに有し、  Load amount determining means for determining whether the load applied to the compressor is equal to or greater than a predetermined value,
前記停止位置決定手段が、 前記判定を参酌して前記停止位置を決定する。 The stop position determining means determines the stop position in consideration of the determination.
3 . 請求項 2記載の空気調和機であって、 さらに、 凝縮側熱交換器の配管温度を 測定する温度センサーを有し、 3. The air conditioner according to claim 2, further comprising a temperature sensor for measuring a pipe temperature of the condensation-side heat exchanger,
前記負荷量判定手段は、 前記停止指示が与えられた時点における前記温度 センサ一の出力を負荷量として判定する。  The load amount determining means determines the output of the temperature sensor at the time when the stop instruction is given as a load amount.
4. 請求項 1記載の空気調和機であって、 前記制御部は、  4. The air conditioner according to claim 1, wherein the control unit includes:
圧縮機に与えられる負荷が所定値以上か否かを判定する負荷量判定手段と、 前記判定を参酌して、 前記ローターの速度を前記停止速度まで減速させる 速度変更比率可変手段をさらに有する。  A load amount determining unit that determines whether a load applied to the compressor is equal to or more than a predetermined value, and a speed change ratio variable unit that reduces the speed of the rotor to the stop speed in consideration of the determination.
5 . 請求項 4記載の空気調和機であって、 さらに、 凝縮側熱交換器の配管温度を 測定する温度センサーを有し、 5. The air conditioner according to claim 4, further comprising: controlling a pipe temperature of the condensing-side heat exchanger. Has a temperature sensor to measure,
前記負荷量判定手段は、 前記停止指示が与えられた時点における前記温度 センサ一の出力を負荷量として判定する。  The load amount determining means determines the output of the temperature sensor at the time when the stop instruction is given as a load amount.
6 . 請求項 5記載の空気調和機であって、 前記停止位置決定手段は 前記判定を 参酌して前記停止位置を決定する。  6. The air conditioner according to claim 5, wherein the stop position determining means determines the stop position in consideration of the determination.
7 . 請求項 1記載の空気調和機であって、 さらに、 冷房と暖房を切り替える四方 弁を有し、  7. The air conditioner according to claim 1, further comprising a four-way valve for switching between cooling and heating,
前記制御部が、 前記圧縮機の停止直前に前記四方弁を切替える。  The control unit switches the four-way valve immediately before stopping the compressor.
8 . 請求項 7記載の空気調和機であって、 前記制御部は、 前記回転速度が前記停 止速度に達したことを判定して前記圧縮機の停止直前に前記四方弁を切替える。 8. The air conditioner according to claim 7, wherein the control unit determines that the rotation speed has reached the stop speed, and switches the four-way valve immediately before stopping the compressor.
9 . 請求項 1記載の空気調和機であって、 さらに、 9. The air conditioner according to claim 1, further comprising:
凝縮側熱交換器の送風機と、  A condenser heat exchanger blower,
蒸発側熱交換器の送風機を有し、  It has a blower for the evaporation side heat exchanger,
前記制御部は、 前記停止速度への減速開始時に、 前記蒸発側熱交換器の送 風機を停止させ、 前記停止速度に達したことを判定して前記凝縮側熱交換器の送 風機を停止させる。  The control unit stops the blower of the evaporation-side heat exchanger at the start of deceleration to the stop speed, determines that the stop speed has been reached, and stops the blower of the condensation-side heat exchanger. .
1 0 . 請求項 1記載の空気調和機であって、 さらに表示器を有し、  10. The air conditioner according to claim 1, further comprising an indicator,
前記制御部は、 前記停止指示を受けた時から前記モータ停止までの期間、 前記表示器の点灯動作を制御する。  The control unit controls the lighting operation of the display during a period from when the stop instruction is received to when the motor is stopped.
PCT/JP2004/003436 2003-03-17 2004-03-15 Air conditioner WO2004083744A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005503680A JP4265601B2 (en) 2003-03-17 2004-03-15 Air conditioner
KR1020047018229A KR100590352B1 (en) 2003-03-17 2004-03-15 Air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003071407 2003-03-17
JP2003-071407 2003-03-17

Publications (1)

Publication Number Publication Date
WO2004083744A1 true WO2004083744A1 (en) 2004-09-30

Family

ID=33027690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/003436 WO2004083744A1 (en) 2003-03-17 2004-03-15 Air conditioner

Country Status (4)

Country Link
JP (1) JP4265601B2 (en)
KR (1) KR100590352B1 (en)
CN (1) CN100412464C (en)
WO (1) WO2004083744A1 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009048577A3 (en) * 2007-10-08 2009-08-06 Emerson Climate Technologies System and method for calculating parameters for a refrigeration system with a variable speed compressor
WO2009048579A3 (en) * 2007-10-08 2009-08-06 Emerson Climate Technologies System and method for calibrating parameters for a refrigeration system with a variable speed compressor
US7895003B2 (en) 2007-10-05 2011-02-22 Emerson Climate Technologies, Inc. Vibration protection in a variable speed compressor
US8448459B2 (en) 2007-10-08 2013-05-28 Emerson Climate Technologies, Inc. System and method for evaluating parameters for a refrigeration system with a variable speed compressor
US8459053B2 (en) 2007-10-08 2013-06-11 Emerson Climate Technologies, Inc. Variable speed compressor protection system and method
US8539786B2 (en) 2007-10-08 2013-09-24 Emerson Climate Technologies, Inc. System and method for monitoring overheat of a compressor
JP2013240274A (en) * 2013-07-10 2013-11-28 Mitsubishi Electric Corp Ac-dc conversion device, motor drive device, compressor drive device, air conditioner and heat pump water heater
JP2014507589A (en) * 2011-01-26 2014-03-27 ワールプール,ソシエダッド アノニマ Reciprocating compressor control system and method for cooling
US8950206B2 (en) 2007-10-05 2015-02-10 Emerson Climate Technologies, Inc. Compressor assembly having electronics cooling system and method
JPWO2013114461A1 (en) * 2012-02-02 2015-05-11 三菱電機株式会社 Air conditioner and air conditioner for railway vehicles
EP2789936A4 (en) * 2011-12-06 2015-06-03 Panasonic Corp Refrigerator
WO2017022626A1 (en) * 2015-07-31 2017-02-09 株式会社デンソー Electric compressor control device and refrigeration cycle device
WO2018114978A1 (en) * 2016-12-19 2018-06-28 Nidec Global Appliance Germany Gmbh Control device and method for operating a refrigerant compressor
US20180195508A1 (en) * 2016-03-09 2018-07-12 Gd Midea Air-Conditioning Equipment Co., Ltd. Air conditioner, and method and device for controlling its compressor to stop
US20190072301A1 (en) * 2015-11-06 2019-03-07 Bsh Hausgeraete Gmbh Domestic refrigeration appliance with a coolant circuit and method for operating a domestic refrigeration appliance with a coolant circuit
EP3514458A4 (en) * 2017-11-27 2020-01-01 Hitachi-Johnson Controls Air Conditioning, Inc. Air conditioner and motor control device
WO2020070879A1 (en) * 2018-10-05 2020-04-09 日立ジョンソンコントロールズ空調株式会社 Compressor and refrigeration air conditioning apparatus using same
WO2021002002A1 (en) * 2019-07-04 2021-01-07 三菱電機株式会社 Electric motor drive device and refrigeration cycle application equipment
US11206743B2 (en) 2019-07-25 2021-12-21 Emerson Climate Technolgies, Inc. Electronics enclosure with heat-transfer element

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0702369A2 (en) * 2007-05-29 2009-01-20 Whirlpool Sa Diagnostic system and method by capturing mechanical waves in refrigeration and / or household appliances
JP5043521B2 (en) * 2007-06-06 2012-10-10 サンデン株式会社 Control device for electric compressor
CN105698453A (en) * 2016-03-09 2016-06-22 广东美的制冷设备有限公司 Frequency conversion air conditioner and stop control method and stop control device for compressor of frequency conversion air conditioner
EP3282126B1 (en) * 2016-03-30 2019-08-21 Nidec Global Appliance Germany GmbH Electronic control device for a refrigerant compressor
CN106524415B (en) * 2016-11-18 2018-11-02 珠海格力电器股份有限公司 Air conditioner control method and device and air conditioner
CN107101345B (en) * 2017-06-02 2020-09-11 广东美的制冷设备有限公司 Air conditioner, compressor stop control method thereof and computer readable storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6332253A (en) * 1986-07-25 1988-02-10 三菱電機株式会社 Controller for air conditioner
JPH11201528A (en) * 1998-01-08 1999-07-30 Funai Electric Co Ltd Air conditioner
JP2000055485A (en) * 1998-08-07 2000-02-25 Sharp Corp Air conditioner
JP2001037281A (en) * 1999-05-18 2001-02-09 Matsushita Electric Ind Co Ltd Motor torque controller
JP2002372322A (en) * 2001-06-12 2002-12-26 Toshiba Kyaria Kk Air conditioner

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS632253A (en) * 1986-06-20 1988-01-07 Yuasa Battery Co Ltd Lead-acid battery and its manufacture
CN1078341C (en) * 1993-10-15 2002-01-23 三洋电机株式会社 Method for controlling operation of compressor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6332253A (en) * 1986-07-25 1988-02-10 三菱電機株式会社 Controller for air conditioner
JPH11201528A (en) * 1998-01-08 1999-07-30 Funai Electric Co Ltd Air conditioner
JP2000055485A (en) * 1998-08-07 2000-02-25 Sharp Corp Air conditioner
JP2001037281A (en) * 1999-05-18 2001-02-09 Matsushita Electric Ind Co Ltd Motor torque controller
JP2002372322A (en) * 2001-06-12 2002-12-26 Toshiba Kyaria Kk Air conditioner

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8849613B2 (en) 2007-10-05 2014-09-30 Emerson Climate Technologies, Inc. Vibration protection in a variable speed compressor
US9683563B2 (en) 2007-10-05 2017-06-20 Emerson Climate Technologies, Inc. Vibration protection in a variable speed compressor
US7895003B2 (en) 2007-10-05 2011-02-22 Emerson Climate Technologies, Inc. Vibration protection in a variable speed compressor
US9021823B2 (en) 2007-10-05 2015-05-05 Emerson Climate Technologies, Inc. Compressor assembly having electronics cooling system and method
US8950206B2 (en) 2007-10-05 2015-02-10 Emerson Climate Technologies, Inc. Compressor assembly having electronics cooling system and method
US8418483B2 (en) 2007-10-08 2013-04-16 Emerson Climate Technologies, Inc. System and method for calculating parameters for a refrigeration system with a variable speed compressor
KR101137740B1 (en) 2007-10-08 2012-04-24 에머슨 클리메이트 테크놀로지즈 인코퍼레이티드 System and method for calibrating parameters for a refrigeration system with a variable speed compressor
US8539786B2 (en) 2007-10-08 2013-09-24 Emerson Climate Technologies, Inc. System and method for monitoring overheat of a compressor
US10962009B2 (en) 2007-10-08 2021-03-30 Emerson Climate Technologies, Inc. Variable speed compressor protection system and method
WO2009048577A3 (en) * 2007-10-08 2009-08-06 Emerson Climate Technologies System and method for calculating parameters for a refrigeration system with a variable speed compressor
US8448459B2 (en) 2007-10-08 2013-05-28 Emerson Climate Technologies, Inc. System and method for evaluating parameters for a refrigeration system with a variable speed compressor
US9541907B2 (en) 2007-10-08 2017-01-10 Emerson Climate Technologies, Inc. System and method for calibrating parameters for a refrigeration system with a variable speed compressor
US8459053B2 (en) 2007-10-08 2013-06-11 Emerson Climate Technologies, Inc. Variable speed compressor protection system and method
US10077774B2 (en) 2007-10-08 2018-09-18 Emerson Climate Technologies, Inc. Variable speed compressor protection system and method
WO2009048579A3 (en) * 2007-10-08 2009-08-06 Emerson Climate Technologies System and method for calibrating parameters for a refrigeration system with a variable speed compressor
US9057549B2 (en) 2007-10-08 2015-06-16 Emerson Climate Technologies, Inc. System and method for monitoring compressor floodback
US9476625B2 (en) 2007-10-08 2016-10-25 Emerson Climate Technologies, Inc. System and method for monitoring compressor floodback
US9494354B2 (en) 2007-10-08 2016-11-15 Emerson Climate Technologies, Inc. System and method for calculating parameters for a refrigeration system with a variable speed compressor
US9494158B2 (en) 2007-10-08 2016-11-15 Emerson Climate Technologies, Inc. Variable speed compressor protection system and method
JP2014507589A (en) * 2011-01-26 2014-03-27 ワールプール,ソシエダッド アノニマ Reciprocating compressor control system and method for cooling
US10590925B2 (en) 2011-01-26 2020-03-17 Embraco—Industria De Compressores E Solucoes Em Refrigeracao Ltda. Control system and method for reciprocating compressors
EP2789936A4 (en) * 2011-12-06 2015-06-03 Panasonic Corp Refrigerator
US9796398B2 (en) 2012-02-02 2017-10-24 Mitsubishi Electric Corporation Air-conditioning apparatus and railway vehicle air-conditioning apparatus
JPWO2013114461A1 (en) * 2012-02-02 2015-05-11 三菱電機株式会社 Air conditioner and air conditioner for railway vehicles
JP2013240274A (en) * 2013-07-10 2013-11-28 Mitsubishi Electric Corp Ac-dc conversion device, motor drive device, compressor drive device, air conditioner and heat pump water heater
JPWO2017022626A1 (en) * 2015-07-31 2017-12-21 株式会社デンソー Electric compressor control device and refrigeration cycle device
WO2017022626A1 (en) * 2015-07-31 2017-02-09 株式会社デンソー Electric compressor control device and refrigeration cycle device
US20190072301A1 (en) * 2015-11-06 2019-03-07 Bsh Hausgeraete Gmbh Domestic refrigeration appliance with a coolant circuit and method for operating a domestic refrigeration appliance with a coolant circuit
US10677241B2 (en) * 2016-03-09 2020-06-09 Gd Midea Air-Conditioning Equipment Co., Ltd. Air conditioner, and method and device for controlling its compressor to stop
US20180195508A1 (en) * 2016-03-09 2018-07-12 Gd Midea Air-Conditioning Equipment Co., Ltd. Air conditioner, and method and device for controlling its compressor to stop
WO2018114978A1 (en) * 2016-12-19 2018-06-28 Nidec Global Appliance Germany Gmbh Control device and method for operating a refrigerant compressor
EP3514458A4 (en) * 2017-11-27 2020-01-01 Hitachi-Johnson Controls Air Conditioning, Inc. Air conditioner and motor control device
WO2020070879A1 (en) * 2018-10-05 2020-04-09 日立ジョンソンコントロールズ空調株式会社 Compressor and refrigeration air conditioning apparatus using same
WO2021002002A1 (en) * 2019-07-04 2021-01-07 三菱電機株式会社 Electric motor drive device and refrigeration cycle application equipment
US11206743B2 (en) 2019-07-25 2021-12-21 Emerson Climate Technolgies, Inc. Electronics enclosure with heat-transfer element
US11706899B2 (en) 2019-07-25 2023-07-18 Emerson Climate Technologies, Inc. Electronics enclosure with heat-transfer element

Also Published As

Publication number Publication date
KR100590352B1 (en) 2006-06-19
JP4265601B2 (en) 2009-05-20
JPWO2004083744A1 (en) 2006-06-22
CN1697954A (en) 2005-11-16
CN100412464C (en) 2008-08-20
KR20050003440A (en) 2005-01-10

Similar Documents

Publication Publication Date Title
WO2004083744A1 (en) Air conditioner
US5335507A (en) Control system for an air conditioning/refrigeration system
JP2002340423A (en) Air conditioning apparatus for vehicle
JP2007183020A (en) Capacity variable air conditioner
JP3461633B2 (en) Air conditioner
KR20100018230A (en) Method for controlling one body type electric compressor of air conditioning system for a vehicle
JP2010032107A (en) Air conditioner
JP5407342B2 (en) Air conditioner
JP2000055485A (en) Air conditioner
JP2008232500A (en) Refrigerating cycle device
JP2003050066A (en) Controller for air conditioner
JP3676327B2 (en) Air conditioner and indoor heat exchanger frost prevention method for air conditioner
JPH10148378A (en) Air conditioner
JP2019138603A (en) Fan motor control device for heat exchanger
JPH02290471A (en) Air-conditioner
JP2006207893A (en) Cooling device
JP2007225230A5 (en)
JP3603466B2 (en) Air conditioner abnormality detection device
KR20070066585A (en) Air-conditioner and method for the same
JP2006194552A (en) Air conditioner
KR100395437B1 (en) How to remove wet compression of air conditioners_
JP4089630B2 (en) Refrigeration cycle for vehicles
KR101201512B1 (en) Method for controlling inverter compressor
JP4141083B2 (en) Air conditioner
JPH03279691A (en) Torque control device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2005503680

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 1020047018229

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20048002158

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1020047018229

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1020047018229

Country of ref document: KR

122 Ep: pct application non-entry in european phase