WO2021002002A1 - Electric motor drive device and refrigeration cycle application equipment - Google Patents

Electric motor drive device and refrigeration cycle application equipment Download PDF

Info

Publication number
WO2021002002A1
WO2021002002A1 PCT/JP2019/026668 JP2019026668W WO2021002002A1 WO 2021002002 A1 WO2021002002 A1 WO 2021002002A1 JP 2019026668 W JP2019026668 W JP 2019026668W WO 2021002002 A1 WO2021002002 A1 WO 2021002002A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
electric motor
phase
value
frequency
Prior art date
Application number
PCT/JP2019/026668
Other languages
French (fr)
Japanese (ja)
Inventor
慎也 豊留
和徳 畠山
貴彦 小林
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021529664A priority Critical patent/JP7308949B2/en
Priority to PCT/JP2019/026668 priority patent/WO2021002002A1/en
Publication of WO2021002002A1 publication Critical patent/WO2021002002A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/10Arrangements for controlling torque ripple, e.g. providing reduced torque ripple
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/24Arrangements for stopping

Definitions

  • the present invention relates to an electric motor drive device and a refrigeration cycle applicable device including the electric motor drive device.
  • Refrigeration cycle application equipment is equipped with a compressor for compressing the refrigerant.
  • the compressor is driven by an electric motor.
  • a metal refrigerant pipe for sucking and discharging the refrigerant is connected to the compressor.
  • vibration occurs.
  • the vibration is transmitted to the pipe, which may cause metal fatigue in the pipe and cause tearing. Therefore, conventionally, control for suppressing vibration when the compressor is stopped has been proposed.
  • Patent Document 1 describes that the output of the inverter is turned off at a phase in which the vibration when the compressor is stopped is reduced, and the output torque of the electric motor is turned off.
  • Patent Document 1 exemplifies a crank angle of 60 to 300 deg as a phase in which vibration decreases, there are cases where vibration suppression is not sufficient even if the vehicle is stopped at a phase within the illustrated range. There was a similar problem when driving something other than a compressor with an electric motor.
  • An object of the present invention is to provide an electric motor drive device capable of sufficiently suppressing vibration of a load element at the time of stopping.
  • the electric motor drive device An electric motor that drives a load element whose load torque fluctuates periodically, An inverter that applies an AC voltage with variable frequency and voltage value to the motor, It has a control device that controls the inverter.
  • the control device is The inverter is controlled so that the output torque of the electric motor follows the periodic fluctuation of the load torque.
  • the inverter is stopped during a period including a minimum torque phase at which the load torque becomes a minimum value or a value close to the minimum value.
  • the vibration of the load element at the time of stopping can be sufficiently suppressed.
  • FIG. 1 It is the schematic which shows an example of the refrigerating cycle of an air conditioner.
  • A is a schematic vertical sectional view showing an example of a compressor, and
  • (b) is a sectional view taken along line 2B-2B of FIG. 2 (a).
  • It is a functional block diagram which shows the structural example of the voltage command value calculation part of FIG.
  • It is a functional block diagram which shows the structural example of the compensation torque current command generation part of FIG.
  • FIG. 1 It is a model diagram for analyzing the mechanical vibration of a compressor.
  • (A) to (e) are graphs showing an example of changes in rotation speed, torque, etc. when the inverter is stopped without limiting the stop phase.
  • (A) to (e) are graphs showing an example of changes in rotational speed, torque, and the like when the inverter is stopped by limiting the stop phase.
  • An example of the magnitude of the angular acceleration of the compressor shell when the inverter is stopped in each phase is shown, and the phase at which the nth-order pulsation component of the load torque is minimized and the value at which the load torque is at or near the minimum value are shown.
  • An example of a refrigeration cycle application device is an air conditioner, and the following embodiment applies the present invention to a drive device of an electric motor that drives a compressor of an air conditioner.
  • the refrigeration cycle 900 of FIG. 1 can be operated for heating or cooling by switching the four-way valve 902.
  • the refrigerant is pressurized by the compressor 904 and sent out, and passes through the four-way valve 902, the indoor heat exchanger 906, the expansion valve 908, the outdoor heat exchanger 910 and the four-way valve 902. Return to compressor 904.
  • the refrigerant is pressurized by the compressor 904 and sent out, and passes through the four-way valve 902, the outdoor heat exchanger 910, the expansion valve 908, the indoor heat exchanger 906 and the four-way valve 902. Return to compressor 904.
  • the indoor heat exchanger 906 acts as a condenser to release heat, and the outdoor heat exchanger 910 acts as an evaporator to absorb heat.
  • the outdoor heat exchanger 910 acts as a condenser to release heat, and the indoor heat exchanger 906 acts as an evaporator to absorb heat.
  • the expansion valve 908 depressurizes the refrigerant and expands it.
  • the compressor 904 is driven by a variable speed controlled electric motor 7.
  • FIGS. 2 (a) and 2 (b) An example of the compressor 904 is shown in FIGS. 2 (a) and 2 (b).
  • the illustrated compressor 904 is a closed rotary compressor, and includes a compressor shell 922 constituting a closed container and a compression mechanism 924 arranged in the compressor shell 922.
  • the refrigerant is guided from the suction pipe 926 into the compression mechanism 924 and discharged from the discharge pipe 928.
  • the compressor shell 922 is supported by a support member 930.
  • the compression mechanism 924 has a cylinder 932 and a rotary piston 934 disposed within the cylinder 932.
  • the electric motor 7 is arranged in the compressor shell 922, has a rotor 7a and a stator 7b that rotatably holds the rotor 7a, and the rotor 7a is coupled to the shaft 936.
  • the shaft 936 is rotatably held by a bearing (not shown) with respect to a frame (not shown), which is fixed to the compressor shell 922.
  • the shaft 936 is coupled to the crankshaft 938, and the crankshaft 938 is coupled to the rotary piston 934.
  • the rotation of the rotor 7a of the electric motor 7 is transmitted to the rotary piston 934 via the shaft 936 and the crankshaft 938.
  • a suction port 942 and a discharge port 944 are formed in the cylinder 932, and a vane 946 is provided in the cylinder 932.
  • the suction port 942 is connected to the suction pipe 926, and the discharge port 944 is connected to the discharge pipe 928.
  • the suction port 942 and the discharge port 944 are conceptually illustrated, and their positions in FIG. 2B do not necessarily accurately represent the actual positions.
  • the vane 946 is urged toward the center of the cylinder 932 so that it can move in the radial direction of the cylinder 932 while sliding on the peripheral surface of the rotary piston 934.
  • the electric motor 7 Since the electric motor 7 is arranged in the compressor shell 922 as described above, the electric motor 7 is a part of the compressor 904, and the electric motor 7 drives the compression mechanism 924 of the compressor 904. You can also see that there is.
  • the electric motor drive device of the present invention drives the electric motor 7, and it is possible to reduce the vibration when the electric motor 7 is stopped, particularly the vibration of the compressor shell 922 and the pipes 926 and 928. It can be done.
  • FIG. 3 is a schematic wiring diagram showing the electric motor driving device 2 according to the embodiment of the present invention together with the electric motor 7.
  • the illustrated electric motor drive device 2 is for driving the electric motor 7, and includes a reactor 4, a rectifier circuit 10, a smoothing capacitor 20, an inverter 30, a bus voltage detection unit 82, and a bus current detection unit 84. It has a control power generation circuit 90 and a control device 100.
  • the rectifier circuit 10 rectifies the AC voltage supplied from the AC power supply 1.
  • the rectifier circuit 10 is composed of a diode bridge.
  • the input terminal of the diode bridge is connected to the AC power supply 1 via the reactor 4, and the output terminal is connected to the smoothing capacitor 20.
  • the smoothing capacitor 20 smoothes the output voltage of the rectifier circuit 10.
  • One electrode of the smoothing capacitor 20 is connected to the first output terminal of the rectifier circuit 10 and the DC bus 22a on the high potential side (positive side).
  • the other electrode of the smoothing capacitor 20 is connected to the second output terminal of the rectifier circuit 10 and the DC bus 22b on the low potential side (negative side).
  • the voltage smoothed by the smoothing capacitor 20 is called a "bus voltage".
  • the inverter 30 receives the voltage across the smoothing capacitor 20, that is, the bus voltage, generates an AC voltage having a variable frequency and a variable voltage, and supplies the AC voltage to the electric motor 7 via the output lines 331 to 333.
  • the electric motor 7 is a three-phase permanent magnet synchronous motor.
  • the inverter 30 generates a three-phase AC voltage and supplies it to the electric motor 7.
  • the bus voltage detection unit 82 detects the voltage V dc between the bus 22a and 22b as the bus voltage.
  • the bus voltage detection unit 82 includes, for example, a circuit that divides the bus voltage V dc by a resistor connected in series, and converts it into a voltage suitable for processing by the microcomputer in the control device 100, for example, a voltage of 5 V or less. Output.
  • This signal (voltage detection signal) is converted into a digital signal by an A / D converter (not shown) in the control device 100 and used for processing inside the control device 100.
  • the bus current detection unit 84 detects the bus current, that is, the input current Idc of the inverter 30.
  • the bus current detection unit 84 includes a shunt resistor inserted in the DC bus 22b, and supplies an analog signal indicating the detection result to the control device 100. This signal (current detection signal) is converted into a digital signal by an A / D converter (not shown) in the control device 100 and used for processing inside the control device 100.
  • the control power generation circuit 90 receives the voltage between both electrodes of the capacitor 20, that is, the bus voltage Vdc , steps down the voltage, generates the control power supply voltage V100, and supplies the control power supply voltage V100 to the control device 100.
  • the control device 100 controls the operation of the inverter 30. In order to operate the inverter 30, the control device 100 generates PWM signals Sm1 to Sm6 and supplies them to the inverter 30.
  • the inverter 30 has an inverter main circuit 310 and a drive circuit 350, and the input terminals of the inverter main circuit 310 are connected to the DC buses 22a and 22b.
  • the inverter main circuit 310 each has six arms including switching elements 311 to 316. Rectifying elements 321 to 326 for reflux are connected in antiparallel to the switching elements 311 to 316.
  • the drive circuit 350 generates drive signals Sr1 to Sr6 based on the PWM signals Sm1 to Sm6, and controls on / off of the switching elements 311 to 316 by the drive signals Sr1 to Sr6, whereby the frequency is variable and the voltage is variable.
  • the three-phase AC voltage is applied to the motor 7 via the output lines 331 to 333.
  • the drive signals Sr1 to Sr6 are voltage levels required to control the switching elements 311 to 316, for example. It is a signal having a magnitude of + 15V to -15V. Further, the PWM signals Sm1 to Sm6 use the ground potential of the control device 100 as a reference potential, whereas the drive signals Sr1 to Sr6 are the potentials of the negative terminals (emitter terminals) of the corresponding switching elements. Is the reference potential.
  • the control device 100 controls the inverter 30 as described above.
  • the control of the inverter 30 includes a control for operating the inverter 30 and a control for stopping the inverter 30.
  • the control device 100 When operating the inverter 30, the control device 100 supplies the PWM signals Sm1 to Sm6 corresponding to frequencies and voltage values other than zero to the inverter 30 to obtain the frequency and voltage value of the output voltage of the inverter 30. Control. When the inverter 30 is stopped, the control device 100 supplies the PWM signals Sm1 to Sm6 corresponding to the output voltage value of the inverter 30 to zero to the inverter 30.
  • the angular frequency ⁇ of the output voltage of the inverter 30 determines the rotational angular velocity of the electric motor 7 at the electric angle (represented by the same code ⁇ as the angular frequency of the output voltage), and is the rotational angular velocity of the electric motor 7 at the mechanical angle.
  • ⁇ m is equal to the rotation angular velocity ⁇ at the electric angle of the electric motor 7 divided by the pole log number P m . Therefore, there is a relationship represented by the following equation (1) between the rotational angular velocity ⁇ m at the mechanical angle of the electric motor 7 and the angular frequency ⁇ of the output voltage of the inverter 30.
  • the angular velocity is simply referred to as the rotational velocity
  • the angular frequency is sometimes referred to simply as the frequency.
  • the motor 7 flows through current I u, I v, I w on the basis of generating an excitation current command value I gamma *, exciting current command value I gamma * on the basis of gamma-axis voltage command value V gamma * Is generated, the torque current command value I ⁇ * is calculated so that the estimated speed ⁇ est of the electric motor 7 matches the speed command value ⁇ * , and the ⁇ -axis voltage is calculated based on the calculated torque current command value I ⁇ *.
  • the command value V ⁇ * is generated, and the inverter 30 is controlled based on the ⁇ -axis voltage command value V ⁇ * and the ⁇ -axis voltage command value V ⁇ * .
  • the control device 100 uses an inverter so that the output torque T m of the electric motor 7 follows the periodic fluctuation (pulsation) of the load torque T l. It is desirable to control 30.
  • the control device 100 may generate a torque current compensation value for the above-mentioned follow-up. The generated torque current compensation value is used to correct the above torque current command value I ⁇ * .
  • the control device 100 stops the driving of the electric motor 7 by the inverter 30 by stopping the inverter 30, thereby stopping the electric motor 7. Specifically, the control device 100 detects the phase (minimum torque phase) at which the load torque T l becomes the minimum (minimum value), and stops the inverter 30 during the period including the minimum torque phase (AC from the inverter 30). (Prevent the voltage from being output), and stop the drive of the electric motor 7.
  • Controller 100 When performing control to follow the output torque T m of a motor to the pulsation of the load torque T l, the output torque T m can be viewed as matching to the load torque T l.
  • control device 100 may calculate the output torque T m of the electric motor 7, use the calculated output torque T m as an estimated value of the load torque, and detect the minimum torque phase based on the estimated value. ..
  • the torque current compensation value is mainly the n-th order pulsating component. It may be for compensation.
  • control device 100 may detect the phase in which the nth-order pulsation component of the load torque T l is minimized.
  • the control unit 100 calculates the output torque T m of a motor 7, the output torque T m calculated, to extract components other n times the frequency of the rotational frequency of the motor 7, the extracted component is minimized phase, may be the n-th order of the pulsating component of the load torque T l is detected as a phase to be minimized.
  • the control device 100 is realized by a microprocessor.
  • the microprocessor may be a processor or a processing device called a CPU (Central Processing Unit), a microcomputer, or a DSP (Digital Signal Processor).
  • CPU Central Processing Unit
  • microcomputer or a DSP (Digital Signal Processor).
  • DSP Digital Signal Processor
  • FIG. 5 is a functional block diagram showing an example of the control device 100. As shown in the figure, the control device 100 includes an operation control unit 102, a torque minimum phase calculation unit 104, and an inverter control unit 110.
  • the operation control unit 102 outputs the frequency command value ⁇ * .
  • the operation control unit 102 also has the pole pair number P m of the motor 7, the interlinkage magnetic flux ⁇ f of the permanent magnet, the ⁇ -axis inductance L ⁇ , and the ⁇ -axis inductance L ⁇ , and the time constant T f of the low-pass filter described later (that is, these). Information indicating) is output.
  • the frequency command value ⁇ * is obtained by multiplying the command value (rotation angular velocity command value) ⁇ m * of the rotation speed of the electric motor 7 by the pole logarithm P m .
  • the frequency command value ⁇ * is supplied to the inverter control unit 110.
  • the pole pair number P m , the interlinkage magnetic flux ⁇ f , the ⁇ -axis inductance L ⁇ and the ⁇ -axis inductance L ⁇ are supplied to the torque minimum phase calculation unit 104.
  • the time constant T f is supplied to the torque minimum phase calculation unit 104 and the inverter control unit 110.
  • the operation control unit 102 receives information indicating the room temperature (temperature of the air conditioning target space) detected by a temperature sensor (not shown), receives an instruction from an operation unit (for example, a remote controller) (not shown), and controls the operation of each part of the air conditioner. To do.
  • the instructions from the operation unit include information indicating the set temperature, selection of the operation mode (heating, cooling, dehumidification, etc.), and instructions for starting and ending the operation.
  • the torque minimum phase calculation unit 104 obtains the phase at which the load torque T l is minimized.
  • the output torque T m is, if it is controlled so as to follow the pulsation of the load torque T l, the output torque T m can be viewed as matching to the load torque T l. Therefore, in the example shown below, the output torque T m is calculated from the current flowing through the electric motor 7, and the calculated value (calculated output torque) is used as the estimated value of the load torque, and the estimated value of the load torque (estimated load torque). Detects the phase that minimizes.
  • n pulsating component detects the phase theta Mn_min which the n-th pulsation component is minimized.
  • the phase ⁇ mn_min at which the nth-order pulsating component is minimized is the phase angle position where the n-th-order pulsating component is minimized in each period of fluctuation.
  • the phase at which the load torque is minimized is the phase angle position at which the load torque is minimized in each period of the fundamental wave of fluctuation of the load torque T l .
  • the number of pole pairs P m , the interlinkage magnetic flux ⁇ f , the ⁇ -axis inductance L ⁇ and the ⁇ -axis inductance L ⁇ is used.
  • the pole pair number P m , the interlinkage magnetic flux ⁇ f , the ⁇ -axis inductance L ⁇ , and the ⁇ -axis inductance L ⁇ are notified from the operation control unit 102.
  • predetermined and held values may be used as the interlinkage magnetic flux ⁇ f , the ⁇ -axis inductance L ⁇ , and the ⁇ -axis inductance L ⁇ .
  • Torque Min phase calculating unit 104 calculates the output torque T m, is calculated from the output torque T m that extracts the order n pulsating component T mn, the phase of the n-order ripple component T mn is minimized Ask.
  • FIG. 6 shows a configuration example of the torque minimum phase calculation unit 104 of FIG.
  • the illustrated minimum torque phase calculation unit 104 includes a torque calculation unit 401, a division unit 402, a multiplication unit 403, a cosine calculation unit 405, a sine calculation unit 406, a multiplication unit 407, 408, and a low pass filter 409, 410. And an inverse tangent calculation unit 411 and an addition unit 412.
  • the torque calculation unit 401 receives the exciting current I ⁇ and the torque current I ⁇ from the inverter control unit 110, and receives the pole pair number P m , the interlinkage magnetic flux ⁇ f , the ⁇ -axis inductance L ⁇ and the ⁇ -axis inductance L from the operation control unit 102. Upon receiving ⁇ , the output torque T m is obtained from these.
  • the output torque T m can be calculated by the following equation (3).
  • the output torque T m calculated by the formula (3) includes a DC component and an AC component.
  • the AC component is a component that changes periodically with time.
  • the division unit 402 calculates the rotation phase (mechanical angle) ⁇ m by dividing the electric angle ⁇ e by the pole logarithm P m .
  • the multiplication unit 403 obtains a phase (phase angle) ⁇ mn that changes at a frequency n times the rotation frequency of the electric motor 7 by multiplying the rotation phase ⁇ m by n.
  • Cosine calculation unit 405 receives the phase theta mn, and outputs the cosine cos [theta] mn.
  • Sine calculating unit 406 receives the phase theta mn, it outputs a sine sin [theta mn.
  • Multiplying unit 407 the output torque T m, multiplied by cos [theta] mn, obtains the cosine component T m ⁇ cos ⁇ mn of the output torque T m.
  • Multiplication section 408 multiplies the sin [theta mn to the output torque T m, determine the sine component T m ⁇ sin ⁇ mn of the output torque T m.
  • the cosine component T m ⁇ cos ⁇ mn and the sine component T m ⁇ sin ⁇ mn include a pulsating component having a frequency of ⁇ mn and a pulsating component (harmonic component) having a higher frequency.
  • the frequency ⁇ mn is n times the frequency ⁇ m , and there is a relationship expressed by the following equation (4) between ⁇ mn and ⁇ mn .
  • the low-pass filters 409 and 410 are first-order lag filters whose transfer function is represented by 1 / (1 + sT f ).
  • s is a Laplace operator.
  • T f is a time constant and is defined to remove (sufficiently attenuate) pulsating components at frequencies higher than the frequency ⁇ mn .
  • the time constant T f is determined by the operation control unit 102 to remove the pulsating component having a frequency higher than the estimated value ⁇ mn_est calculated by the following equation (5) by using the estimated value ⁇ est of the frequency ⁇ . ..
  • equation (5) t represents time.
  • the estimated value ⁇ est is calculated in the inverter control unit 110 as described later. As described above, the estimated value ⁇ mn_est is used instead of the frequency ⁇ mn to determine the time constant T f , but here it is considered that ⁇ mn_est is equal to ⁇ mn .
  • the time constant T f determined in this way is notified from the operation control unit 102 to the low-pass filters 409 and 410.
  • Low pass filter 409 performs low pass filtering on the cosine component T m ⁇ cos ⁇ mn, to remove the ripple component having a frequency higher than the frequency omega mn, and outputs the low frequency components T mcos.
  • the low frequency component T mcos is a DC amount representing a cosine component having a frequency of ⁇ mn among the pulsating components of the torque T m .
  • Low-pass filter 410 performs low pass filtering on the sine component T m ⁇ sin ⁇ mn, to remove the ripple component having a frequency higher than the frequency omega mn, and outputs the low frequency components T msin.
  • the low frequency component T msin is a DC amount representing a sine component having a frequency of ⁇ mn among the pulsating components of torque T m .
  • the inverse tangent calculation unit 411 receives T mcos and T msin and calculates the inverse tangent represented by the following equation (6).
  • the addition unit 412 obtains the phase ⁇ mn_min by adding the inverse tangent represented by the equation (6) and ⁇ as expressed by the following equation (7).
  • the obtained phase ⁇ mn_min is the phase at which the nth-order pulsation component of the output torque T m is minimized.
  • the phase ⁇ mn_min can be seen as the phase in which the nth-order pulsation component of the load torque T l is minimized.
  • the minimum torque phase ⁇ mn_min obtained in this way is notified to the operation control unit 102.
  • the operation control unit 102 stops the inverter 30 during the period Ty including the minimum torque phase ⁇ mn_min .
  • the operation control unit 102 sets the speed command value ⁇ * to 0.
  • the PWM signals Sm1 to Sm6 correspond to the voltage value zero.
  • the PWM signals Sm1 to Sm6 output from the inverter control unit 110 may not be supplied to the inverter 30.
  • a switch (not shown) is provided between the output of the inverter control unit 110 and the drive circuit 350, and normally (when supplying PWM signals Sm1 to Sm6), the switch is used. It may be closed and the switch may be opened when the supply of the PWM signals Sm1 to Sm6 is blocked. The opening and closing of such a switch may be controlled by the operation control unit 102.
  • the bus voltage V dc detected by the bus voltage detection unit 82, the bus current I dc detected by the bus current detection unit 84, the frequency command value ⁇ * supplied from the operation control unit 102, and the frequency command value ⁇ * Based on the time constant T f , PWM signals Sm1 to Sm6 are generated and supplied to the inverter 30, and the inverter 30 is made to output an AC voltage having a variable frequency and voltage value.
  • the inverter control unit 110 includes a current restoration unit 111, a three-phase two-phase conversion unit 112, an exciting current command value generation unit 113, a voltage command value calculation unit 115, an electric phase calculation unit 116, and a two-phase three-phase conversion. It has a unit 117 and a PWM signal generation unit 118.
  • the current restoration unit 111 restores the phase currents I u , I v , and I w flowing through the motor 7 based on the current value I dc detected by the bus current detection unit 84.
  • the current restoration unit 111 restores the phase current by sampling the direct current I dc detected by the bus current detection unit 84 at a timing determined based on the PWM signals Sm1 to Sm6 from the PWM signal generation unit 118. ..
  • the three-phase two-phase conversion unit 112 uses the current values I u , I v , and I w restored by the current restoration unit 111 as the exciting current ( ⁇ ) using the electric phase ⁇ e generated by the electric phase calculation unit 116 described later.
  • Axis current) I ⁇ and torque current ( ⁇ axis current) I ⁇ that is, converted to ⁇ - ⁇ axis current values.
  • the exciting current command value generation unit 113 obtains the optimum exciting current command value I ⁇ * that is most efficient for driving the electric motor 7 based on the torque current I ⁇ .
  • seeking exciting current command value I gamma * based on the torque current I [delta] in FIG. 5 obtains the excitation current command value I gamma * the exciting current I gamma and frequency command value omega * based on
  • the same effect can be obtained.
  • the exciting current command value generator 113 Based on the torque current I ⁇ (or the exciting current I ⁇ and the frequency command value ⁇ * ), the exciting current command value generator 113 has an output torque of a predetermined value or more (or maximum), that is, a current value of a predetermined value or less (or).
  • the exciting current command value I ⁇ * which is the current phase ⁇ m (not shown) that becomes (minimum), is output.
  • the voltage command value calculation unit 115 generates the excitation current I ⁇ and the torque current I ⁇ obtained from the three-phase two-phase conversion unit 112, the frequency command value ⁇ * output from the operation control unit 102, and the excitation current command value.
  • the exciting current command value I ⁇ * obtained from the unit 113 is used as an input, and the voltage command values V ⁇ * and V ⁇ * are generated and output based on these.
  • the voltage command value calculation unit 115 further estimates and outputs the estimated frequency value ⁇ est from the voltage command values V ⁇ * and V ⁇ * , the exciting current I ⁇ , and the torque current I ⁇ .
  • the electric phase calculation unit 116 calculates the electric phase ⁇ e by integrating the estimated value ⁇ est of the frequency output from the voltage command value calculation unit 115.
  • the two-phase three-phase conversion unit 117 calculates the ⁇ -axis voltage command value V ⁇ * and the ⁇ -axis voltage command value V ⁇ * (voltage command value of the two-phase coordinate system) obtained by the voltage command value calculation unit 115. Using the electrical phase ⁇ e obtained by unit 116, the output voltage command value (three-phase voltage command value) of the three-phase coordinate system is converted into V u * , V v * , and V w * for output.
  • the PWM signal generation unit 118 uses the bus voltage V dc detected by the bus voltage detection unit 82 and the three-phase voltage command values V u * , V v * , and V w * obtained by the two-phase three-phase conversion unit 117. Based on this, PWM signals Sm1 to Sm6 are generated and output.
  • the PWM signals Sm1 to Sm6 control the on / off timing of the switching elements 311 to 316 of each arm of the inverter 30 so that the output voltage of the inverter 30 matches the three-phase voltage command values Vu * , Vv * , and Vw *. It is a signal.
  • the voltage command value calculation unit 115 includes a frequency estimation unit 501, a subtraction unit 502, a speed control unit 503, a compensation value calculation unit 504, an addition unit 505, a subtraction unit 509, and a subtraction unit. It has a unit 510, an exciting current control unit 511, and a torque current control unit 512.
  • the frequency estimation unit 501 takes the excitation current I ⁇ and the torque current I ⁇ and the voltage command values V ⁇ * and V ⁇ * as inputs, and estimates and estimates the frequency of the voltage applied to the motor 7 based on these. Output the value ⁇ est .
  • the subtraction unit 502 calculates the difference ( ⁇ * ⁇ est ) of the frequency estimation value ⁇ est generated by the frequency estimation unit 501 with respect to the frequency command value ⁇ * .
  • the speed control unit 503 performs a proportional integration (PI) calculation on the difference ( ⁇ * ⁇ est ) calculated by the subtraction unit 502 to obtain the torque current command value I ⁇ * that brings the difference close to zero.
  • PI proportional integration
  • the compensation value calculation unit 504 outputs the torque current compensation value I ⁇ _trq based on the frequency estimation value ⁇ est output from the frequency estimation unit 501.
  • the torque current compensation value I ⁇ _trq is for suppressing a pulsating component having a frequency of ⁇ est , particularly a pulsating component having a frequency of ⁇ mn .
  • the "pulsating component of frequency ⁇ est particularly the component having a frequency of ⁇ mn” means a pulsating component having a value (DC amount) representing the frequency ⁇ est , particularly a pulsating component having a pulsating frequency of ⁇ mn. ..
  • the addition unit 505 adds the output I ⁇ * of the speed control unit 503 and the torque current compensation value I ⁇ _trq to generate a corrected torque current command value I ⁇ ** .
  • the subtraction unit 509 obtains the difference (I ⁇ * ⁇ I ⁇ ) of I ⁇ with respect to the excitation current command value I ⁇ * generated by the excitation current command value generation unit 113.
  • the exciting current control unit 511 performs a proportional integral (PI) operation on the difference (I ⁇ * -I ⁇ ) obtained by the subtraction unit 509, and brings the difference closer to zero.
  • PI proportional integral
  • the subtraction unit 510 obtains the difference (I ⁇ ** ⁇ I ⁇ ) of I ⁇ with respect to the torque current command value I ⁇ ** generated by the addition unit 505.
  • the torque current control unit 512 performs a proportional integral (PI) operation on the difference (I ⁇ **- I ⁇ ) obtained by the subtraction unit 510, and brings the difference closer to zero.
  • PI proportional integral
  • the compensation value calculation unit 504 is configured as shown in FIG. 8, for example.
  • the illustrated compensation value calculation unit 504 includes a cosine calculation unit 551, a sine calculation unit 552, a multiplication unit 555 and 554, a low-pass filter 555 and 556, a subtraction unit 557 and 558, and a frequency control unit 559 and 560. It has multiplication units 561 and 562 and addition units 563.
  • Cosine calculation unit 551 receives the theta mn, and calculates the cosine cos [theta] mn.
  • Sine calculator 552 receives theta mn, and calculates the sine sin [theta mn.
  • Multiplying unit 553 by multiplying the cos [theta] mn to estimate omega est, obtains the cosine component ⁇ est ⁇ cos ⁇ mn estimates omega est.
  • Multiplier 554 by multiplying the sin [theta mn to estimate omega est, determine the sine component ⁇ est ⁇ sin ⁇ mn estimates omega est.
  • the cosine component ⁇ est ⁇ cos ⁇ mn and sine component ⁇ est ⁇ sin ⁇ mn is calculated by multiplying unit 553 and 554, in addition to the pulsating component frequency is omega mn, even higher frequency of the pulsating component (harmonic component) It is included.
  • the low-pass filters 555 and 556 are first-order lag filters whose transfer function is represented by 1 / (1 + sT f ).
  • s is a Laplace operator.
  • T f is a time constant and is defined to remove (sufficiently attenuate) pulsating components at frequencies higher than the frequency ⁇ mn .
  • the time constant T f is determined by the operation control unit 102 and notified to the low-pass filters 555 and 556, as described for the low-pass filters 409 and 410.
  • the low-pass filter 555 performs low-pass filtering on the cosine component ⁇ est ⁇ cos ⁇ mn , removes the pulsating component having a frequency higher than the frequency ⁇ mn , and outputs the low frequency component ⁇ est_cos .
  • the low frequency component ⁇ est_cos is a DC amount representing a cosine component having a frequency of ⁇ mn among the pulsating components of the estimated value ⁇ est .
  • the low-pass filter 556 performs low-pass filtering on the sine component ⁇ est ⁇ sin ⁇ mn , removes a pulsating component having a frequency higher than the frequency ⁇ mn , and outputs a low frequency component ⁇ est_sin .
  • the low frequency component ⁇ est_sin is a DC amount representing a sine component having a frequency of ⁇ mn among the pulsating components of the estimated value ⁇ est .
  • the subtraction unit 557 obtains the difference between the output ⁇ est_cos of the low-pass filter 555 and 0.
  • the subtraction unit 558 obtains the difference between the output ⁇ est_sin of the low-pass filter 556 and 0.
  • the frequency control unit 559 performs a proportional integration (PI) operation on the difference ( ⁇ est_cos ⁇ 0) obtained by the subtraction unit 557, and obtains the cosine component I ⁇ _trq_cos of the current command value that brings the difference close to zero.
  • PI proportional integration
  • the frequency control unit 560 performs a proportional integration (PI) operation on the difference ( ⁇ est_sin ⁇ 0) obtained by the subtraction unit 558, and obtains the sine component I ⁇ _trq_sin of the current command value that brings the difference close to zero. By generating the sine component I ⁇ _trq_sin in this way, control for matching the low frequency component ⁇ est_sin to 0 is performed.
  • PI proportional integration
  • Multiplication unit 561 generates the I ⁇ _trq_cos ⁇ cos ⁇ mn by multiplying the cos [theta] mn to the output I Deruta_trq_cos of frequency control unit 559.
  • I ⁇ _trq_cos ⁇ cos ⁇ mn is an AC component having a frequency n ⁇ ⁇ est .
  • the multiplication unit 562 generates I ⁇ _trq_sin ⁇ sin ⁇ mn by multiplying the output I ⁇ _trq_sin of the frequency control unit 560 by sin ⁇ mn .
  • I ⁇ _trq_sin ⁇ sin ⁇ mn is an AC component having a frequency n ⁇ ⁇ est .
  • Addition unit 563 an output I ⁇ _trq_cos ⁇ cos ⁇ mn multiplier 561, the sum of the output I ⁇ _trq_sin ⁇ sin ⁇ mn multiplication section 562 obtains.
  • the output of the addition unit 563 is output as the torque current compensation value I ⁇ _trq .
  • the torque current compensation value I ⁇ _trq obtained in this way is added by the adding unit 505 of FIG. 7, and the addition result is used as the corrected torque current command value I ⁇ ** to suppress the pulsating component. Can be done.
  • FIG. 9 is a model diagram for analyzing the mechanical vibration of the compressor 904.
  • the compressor 904 is mechanically divided into a rotating portion 951 and a fixing portion 952 that rotatably supports the rotating portion 941, and the fixing portion 952 is supported by the support member 930.
  • the rotating portion 951 includes a rotor 7a of an electric motor, a rotary piston 934, a shaft 936, and a crankshaft 938.
  • the fixing portion 952 includes a stator 7b of the electric motor, a compressor shell 922, and a cylinder 932.
  • the inertia of the fixed portion 952 is Jsh
  • the spring constant of the support member 930 is ksh
  • the damping constant is Dsh
  • the runout angle of the fixed portion 952 is ⁇ s
  • the output torque of the motor 7 is T m
  • the load torque of the compression mechanism 924 is T l.
  • the equation of motion regarding the vibration of the fixed portion 952 is expressed by the following equation (8). Since the compressor shell 922 is a part of the fixed portion 952, the runout angle and vibration of the compressor shell 922 can be considered to be equal to the runout angle and vibration of the fixed portion 952.
  • the change in the torque difference ⁇ T at the time of stopping may be reduced.
  • the torque difference ⁇ T before stopping is equal to T l ⁇ T m
  • the torque difference ⁇ T after stopping is equal to T l .
  • the horizontal axis is time (seconds).
  • the stop timing of the inverter 30 is indicated by reference numeral Ts.
  • FIGS. 11 (a) to 11 (e) show the inverter during the period including the estimated minimum torque phase. The case where 30 is stopped is shown.
  • FIG. 10 (a) and FIG. 11 (a) a chain line at the indicated per second rotation speed command value f m *, indicates actual speed f m in revolutions per second by the solid line, the estimated value of revolutions per second by a dotted line f M_est Is shown.
  • the solid line shows the U-phase current I u
  • the dotted line shows the V-phase current I v
  • the chain line shows the W-phase current I w .
  • 10 (c) and 11 (c) show the output torque T m with a solid line and the load torque T l with a dotted line.
  • the chain line shows the target value I ⁇ ** of the torque current
  • the solid line shows the actual torque current I ⁇ .
  • 10 (e) and 11 (e) show the angular acceleration Aa of the compressor shell 922 with a solid line.
  • the pulsation of the load torque T l assumes a case where the period is 0.05 seconds and therefore the frequency is 20 Hz.
  • FIG. 12 shows an example of the load torque in each phase and the magnitude Ap of the angular acceleration of the compressor shell 922 after the stop when the inverter 30 is stopped in each phase.
  • the angular acceleration Aa in FIGS. 10 (e) and 11 (e) indicates an instantaneous value at each time point, whereas the magnitude Ap of the angular acceleration in FIG. 12 indicates the case where the inverter 30 is stopped in the relevant phase.
  • it represents the pp value (peak peak value) of the angular acceleration applied to the compressor shell 922 immediately after that, and more specifically, the maximum value of the pp value during the period from the stop to the settlement of the vibration.
  • the smaller the load torque in the stopped phase the smaller the angular acceleration (pp value) Ap after stopping, and by stopping at the minimum torque phase, the angular acceleration (pp value) Ap after stopping. It can be seen that the vibration can be minimized and therefore less vibration is required.
  • a torque minimum phase calculating unit 104 calculates the output torque T m, from T m, the low frequency components T Mcos, the T msin determined, T Mcos, wherein the T msin (7 ) To obtain the phase ⁇ mn_min that minimizes the nth-order pulsation component of the estimated load torque.
  • T m the low frequency components
  • T Mcos the T msin determined, T Mcos
  • the output torque T m is in phase with the load torque T l and has the same amplitude.
  • the phase at which the output torque T m is minimized coincides with the phase at which the load torque T l is minimized.
  • the load torque T l is the phase of the output torque T m is a minimum It is possible to estimate the minimum phase.
  • the phase in which the torque current is minimized and the phase in which the load torque is minimized are almost the same. Therefore, when the output torque is the minimum, the torque current also becomes the minimum value or a value close to the minimum value, and the phase current also becomes the minimum value or a value close to the minimum value. Therefore, the phase current may be detected, and the phase at which the detected phase current becomes the minimum value may be detected as the torque minimum phase.
  • the output torque T m is given by the above equation (3).
  • the output torque Tm given by the equation (3) is added to the DC component and the AC component (nth order pulsation). Since it is considered that the component) is contained, the formula (3) can be modified as shown in the following formula (10).
  • T mDC is a DC component of torque T m
  • T mcos is the amplitude of the cosine component of the nth-order pulsating component of torque T m
  • T msin is the amplitude of the sinusoidal component of the nth-order pulsating component of torque T m .
  • Equation (10) can be transformed as in equation (11) below.
  • T mcos and T msin are DC amounts, and although they may change slowly with time, they do not change at the same period as the change of ⁇ m . Therefore, the output torque T m given by the equation (11) is minimized when the cosine function represented by the following equation (12) is minimized.
  • the load torque may include not only the nth-order pulsating component but also a component other than the nth-order pulsating component, particularly a harmonic component.
  • the length of time that the torque remains close to the minimum depends on the harmonics it contains.
  • FIG. 12 shows not only the load torque T l but also its nth-order pulsating component T ln .
  • the horizontal axis is the phase ⁇ mn with one cycle of the nth-order pulsating component T ln as 360 degrees.
  • the phase theta Mn_min the n-order ripple component T ln is minimized, the period Ty from the previous angle theta Mnya until after the angle theta Mnyb, torque T l is at a value close to the minimum or the minimum is there.
  • the phase theta Mn_min the n-order ripple component T ln is minimized is 62 degrees
  • the phase of the torque T l is minimized
  • the phase theta Mn_min the n-order ripple component T ln is minimized Is consistent with.
  • the pp value Ap of the angular acceleration of the compressor shell 922 after stopping is the same in any phase of the period Ty, and the vibration of the pipe at the time of stopping becomes small.
  • the angles ⁇ mnya and ⁇ mnyb that determine the period Ty are angles in which one cycle of the nth-order pulsating component is 360 degrees.
  • n is other than 1
  • theta Mnya, and ⁇ mnyb, ⁇ mya, between theta myb is a relationship of the following equation (14a) and (14b).
  • the first period is a value obtained by dividing the first mechanical angle ⁇ mya by n
  • the second period is a value obtained by dividing the second mechanical angle ⁇ myb by n. This is the value obtained.
  • the torque minimum phase calculation unit 104 calculates the phase at which the torque is minimized (the phase at which the nth-order pulsating component of the torque is minimized) by the calculation represented by the equation (7).
  • the phase at which the load torque is minimized may be estimated from the history of changes in the output torque T m .
  • the illustrated minimum torque phase calculation unit 104b includes a torque calculation unit 401, a calculation value history storage unit 421, and a calculation value history analysis unit 422.
  • the torque calculation unit 401 calculates the output torque T m by performing the calculation represented by the equation (3), for example.
  • the output torque T m is calculated at each sampling timing having a predetermined period.
  • Calculated history storage unit 421 accumulates the value (calculated value) of the output torque T m calculated at each sampling timing in the torque calculation unit 401, generates the time series of the accumulated value. For example, the value up to the previous value is stored for a predetermined number of cycles.
  • the "cycle” here is the cycle of the nth-order pulsating component of torque.
  • FIG. 14 shows an example of a waveform representing the accumulated time series. White circles in FIG. 14 indicate sampled output torque values. In the illustrated example, a time series is formed by the values for three cycles.
  • Calculated history analysis section 422 from the time series of the, in each period, the value of the output torque T m is determined phase (torque minimum phase) is minimal.
  • phase torque minimum phase
  • Each sampling timing is associated with the phase ⁇ e calculated by the electrical phase calculation unit 116 of FIG. 5, for example, and the relationship between ⁇ e and ⁇ mn is represented by the following equation (15). There is.
  • ⁇ mn_min can be obtained by multiplying the phase ⁇ e corresponding to the sampling timing determined that the value of the output torque T m calculated in each cycle is the minimum value by n / P m. ..
  • the length of each cycle can be determined based on the calculated change in output torque value. For example, it can be calculated based on one or both of the time from the occurrence of the minimum value to the occurrence of the next minimum value and the time from the occurrence of the maximum value to the occurrence of the next maximum value.
  • correction may be performed based on the obtained minimum torque phase for one or more cycles before that. For example, for each cycle, the minimum torque phase determined based only on the calculated value of the cycle (the value of the torque calculated at the sampling timing within the cycle) and one or two or more cycles before it. , The weighted average with the minimum torque phase obtained based only on the calculated value of each period may be used as the minimum torque phase for each period.
  • the largest weight may be given to the minimum torque phase obtained based only on the calculated value of each cycle. Further, for cycles other than each cycle, a cycle closer to each cycle may be given a larger weight.
  • the phase that minimizes the output torque is calculated.
  • the phase in which the torque current is minimized may be calculated, and the calculated phase may be used as the phase in which the load torque is minimized.
  • the inverter 30 is stopped during the period including the phase in which the load torque becomes the minimum (minimum value) in each cycle.
  • the inverter 30 may be stopped during a period including a phase in which the load torque becomes a value close to the minimum value in each cycle.
  • the inverter 30 may be stopped during a period including a phase in which the load torque becomes the minimum value or a value close to the minimum value.
  • all or part of the period in which the load torque becomes negative is set as a period including the phase in which the load torque becomes the minimum value or a value close to the minimum value. You may use it.
  • phase currents I u , I v , and I w are restored from the direct current I dc on the input side of the inverter 30.
  • a current detector may be provided on the output lines 331, 332, and 333 of the inverter 30, and the detector may be used to detect the phase current. In that case, the current detected by the detector may be used instead of the current restored by the current restoration unit 111.
  • IGBTs Insulated Gate Bipolar Transistors
  • MOSFETs Insulated Gate Bipolar Transistors
  • any elements that can perform switching may be used. .. Since the MOSFET has a parasitic diode due to its structure, the same effect can be obtained without connecting the rectifying elements (321 to 326) for circulation in antiparallel.
  • the materials constituting the switching elements 311 to 316 are made of not only silicon (Si) but also silicon carbide (SiC), gallium nitride (GaN), diamond, etc., which are wide bandgap semiconductors. It is possible to reduce the loss.
  • the vibration of the load element at the time of stopping can be reliably and sufficiently suppressed.
  • the load element is a compressor
  • vibration of the compressor shell can be suppressed, and damage to the piping connected to the compressor shell can be prevented.
  • the pipe a pipe having a relatively small metal fatigue resistance can be used, and the cost of the pipe can be reduced.
  • the configuration of the above embodiment is an example of the configuration of the present invention, can be combined with another known technique, and is modified by omitting a part thereof without departing from the gist of the present invention. It is also possible to configure it.
  • the present invention is suitable for an electric motor drive device and a refrigeration cycle applicable device including the electric motor drive device.
  • a refrigeration cycle applicable device including the electric motor drive device.
  • an air conditioner has been mentioned as an example of a refrigeration cycle applicable device, the present invention is not limited to this, and can be applied to, for example, a refrigerator, a freezer, a heat pump water heater, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

This electric motor drive device is provided with an inverter (30) for driving an electric motor (7) for driving a load element having a periodic variation in the load torque. When stopping the electric motor (7) by controlling the inverter (30) so that the output torque of the electric motor (7) follows the periodic variation of the load torque, the driving of the electric motor (7) by the inverter (30) is stopped during a period including a phase at which the load torque becomes the minimum value or a value near the minimum value. Controlling the timing of stopping the drive, as described above, makes it possible to reduce vibration when stopping.

Description

電動機駆動装置及び冷凍サイクル適用機器Electric motor drive and refrigeration cycle applicable equipment
 本発明は、電動機駆動装置、及びそれを備えた冷凍サイクル適用機器に関する。 The present invention relates to an electric motor drive device and a refrigeration cycle applicable device including the electric motor drive device.
 冷凍サイクル適用機器は、冷媒を圧縮するための圧縮機を備えている。圧縮機は電動機で駆動される。
 圧縮機には冷媒を吸入し、吐出するための金属製の冷媒配管が接続されている。圧縮機の運転を停止させると、機械振動が発生する。圧縮機に振動が発生すると、振動が配管に伝わり、配管に金属疲労が生じて断裂する恐れがある。そこで、従来から、圧縮機の運転停止時の振動を抑制するための制御が提案されている。例えば、特許文献1には、圧縮機の停止時の振動が低下する位相でインバータの出力をオフし、電動機の出力トルクをオフすることが記載されている。
Refrigeration cycle application equipment is equipped with a compressor for compressing the refrigerant. The compressor is driven by an electric motor.
A metal refrigerant pipe for sucking and discharging the refrigerant is connected to the compressor. When the operation of the compressor is stopped, mechanical vibration occurs. When vibration is generated in the compressor, the vibration is transmitted to the pipe, which may cause metal fatigue in the pipe and cause tearing. Therefore, conventionally, control for suppressing vibration when the compressor is stopped has been proposed. For example, Patent Document 1 describes that the output of the inverter is turned off at a phase in which the vibration when the compressor is stopped is reduced, and the output torque of the electric motor is turned off.
特許第5094256号(請求項2、段落0024)Japanese Patent No. 5094256 (Claim 2, paragraph 0024)
 特許文献1には、振動が低下する位相として、クランク角60~300degが例示されているものの、例示された範囲内の位相で停止させても振動の抑制が十分でない場合があった。
 電動機で圧縮機以外のものを駆動する場合にも同様の問題があった。
Although Patent Document 1 exemplifies a crank angle of 60 to 300 deg as a phase in which vibration decreases, there are cases where vibration suppression is not sufficient even if the vehicle is stopped at a phase within the illustrated range.
There was a similar problem when driving something other than a compressor with an electric motor.
 本発明は、停止の際の負荷要素の振動を十分に抑制することができる、電動機駆動装置を提供することを目的とする。 An object of the present invention is to provide an electric motor drive device capable of sufficiently suppressing vibration of a load element at the time of stopping.
 本発明に係る電動機駆動装置は、
 負荷トルクが周期的に変動する負荷要素を駆動する電動機と、
 前記電動機に周波数及び電圧値が可変の交流電圧を印加するインバータと、
 前記インバータを制御する制御装置とを有し、
 前記制御装置は、
 前記電動機の出力トルクが前記負荷トルクの周期的変動に追従するように、前記インバータを制御し、
 前記電動機の停止を行う場合、前記負荷トルクが最小値又は該最小値に近い値になるトルク最小位相を含む期間に前記インバータを停止させる。
The electric motor drive device according to the present invention
An electric motor that drives a load element whose load torque fluctuates periodically,
An inverter that applies an AC voltage with variable frequency and voltage value to the motor,
It has a control device that controls the inverter.
The control device is
The inverter is controlled so that the output torque of the electric motor follows the periodic fluctuation of the load torque.
When the electric motor is stopped, the inverter is stopped during a period including a minimum torque phase at which the load torque becomes a minimum value or a value close to the minimum value.
 本発明によれば、停止の際の負荷要素の振動を十分に抑制することができる。 According to the present invention, the vibration of the load element at the time of stopping can be sufficiently suppressed.
空気調和機の冷凍サイクルの一例を示す概略図である。It is the schematic which shows an example of the refrigerating cycle of an air conditioner. (a)は、圧縮機の一例を示す概略縦断面図、(b)は、図2(a)の2B-2B線断面図である。(A) is a schematic vertical sectional view showing an example of a compressor, and (b) is a sectional view taken along line 2B-2B of FIG. 2 (a). 本発明の実施の形態の電動機駆動装置を示す図である。It is a figure which shows the electric motor drive device of embodiment of this invention. 図3のインバータの構成例を示す図である。It is a figure which shows the structural example of the inverter of FIG. 本発明の実施の形態で用いられる制御装置の一例を示す機能ブロック図である。It is a functional block diagram which shows an example of the control apparatus used in embodiment of this invention. 図5のトルク最小位相演算部の構成例を示す機能ブロック図である。It is a functional block diagram which shows the structural example of the torque minimum phase calculation part of FIG. 図5の電圧指令値演算部の構成例を示す機能ブロック図である。It is a functional block diagram which shows the structural example of the voltage command value calculation part of FIG. 図7の補償トルク電流指令生成部の構成例を示す機能ブロック図である。It is a functional block diagram which shows the structural example of the compensation torque current command generation part of FIG. 圧縮機の機械振動を解析するためのモデル図である。It is a model diagram for analyzing the mechanical vibration of a compressor. (a)~(e)は、停止位相に制約を加えることなくインバータを停止させる場合の回転速度、トルク等の変化の一例を示すグラフである。(A) to (e) are graphs showing an example of changes in rotation speed, torque, etc. when the inverter is stopped without limiting the stop phase. (a)~(e)は、停止位相に制約を加えてインバータを停止させる場合の回転速度、トルク等の変化の一例を示すグラフである。(A) to (e) are graphs showing an example of changes in rotational speed, torque, and the like when the inverter is stopped by limiting the stop phase. 各位相でインバータを停止させた場合の圧縮機シェルの角加速度の大きさの一例を示すとともに、負荷トルクのn次の脈動成分が最小になる位相と、負荷トルクが最小値又はそれに近い値を維持する期間との関係の一例を示す図である。An example of the magnitude of the angular acceleration of the compressor shell when the inverter is stopped in each phase is shown, and the phase at which the nth-order pulsation component of the load torque is minimized and the value at which the load torque is at or near the minimum value are shown. It is a figure which shows an example of the relationship with the maintenance period. 図5のトルク最小位相演算部の変形例を示す機能ブロック図である。It is a functional block diagram which shows the modification of the torque minimum phase calculation part of FIG. 図13のトルク計算部により計算されたトルクの計算値の履歴の一例を示す図である。It is a figure which shows an example of the history of the calculated value of the torque calculated by the torque calculation unit of FIG.
 以下に添付の図面を参照し、本発明の実施の形態に係る電動機駆動装置、及びそれを備えた冷凍サイクル適用機器について説明する。なお、以下に示す実施の形態により本発明が限定されるものではない。 The electric motor drive device according to the embodiment of the present invention and the refrigeration cycle applicable device provided with the electric motor drive device will be described below with reference to the accompanying drawings. The present invention is not limited to the embodiments shown below.
 冷凍サイクル適用機器の一例は、空気調和機であり、以下の実施の形態は、本発明を、空気調和機の圧縮機を駆動する電動機の駆動装置に適用したものである。 An example of a refrigeration cycle application device is an air conditioner, and the following embodiment applies the present invention to a drive device of an electric motor that drives a compressor of an air conditioner.
 最初に、空気調和機の一例における冷凍サイクルを、図1を参照して説明する。
 図1の冷凍サイクル900は四方弁902の切替動作により暖房運転又は冷房運転をすることができる。
First, the refrigeration cycle in an example of an air conditioner will be described with reference to FIG.
The refrigeration cycle 900 of FIG. 1 can be operated for heating or cooling by switching the four-way valve 902.
 暖房運転時には、実線矢印で示すように、冷媒が圧縮機904で加圧されて送り出され、四方弁902、室内熱交換器906、膨張弁908、室外熱交換器910及び四方弁902を通って圧縮機904に戻る。
 冷房運転時には、破線矢印で示すように、冷媒が圧縮機904で加圧されて送り出され、四方弁902、室外熱交換器910、膨張弁908、室内熱交換器906及び四方弁902を通って圧縮機904に戻る。
During the heating operation, as shown by the solid line arrow, the refrigerant is pressurized by the compressor 904 and sent out, and passes through the four-way valve 902, the indoor heat exchanger 906, the expansion valve 908, the outdoor heat exchanger 910 and the four-way valve 902. Return to compressor 904.
During the cooling operation, as shown by the broken line arrow, the refrigerant is pressurized by the compressor 904 and sent out, and passes through the four-way valve 902, the outdoor heat exchanger 910, the expansion valve 908, the indoor heat exchanger 906 and the four-way valve 902. Return to compressor 904.
 暖房運転時には、室内熱交換器906が凝縮器として作用して熱放出を行い、室外熱交換器910が蒸発器として作用して熱吸収を行う。冷房運転時には、室外熱交換器910が凝縮器として作用して熱放出を行い、室内熱交換器906が蒸発器として作用し、熱吸収を行う。膨張弁908は、冷媒を減圧して膨張させる。
 圧縮機904は可変速制御される電動機7によって駆動される。
During the heating operation, the indoor heat exchanger 906 acts as a condenser to release heat, and the outdoor heat exchanger 910 acts as an evaporator to absorb heat. During the cooling operation, the outdoor heat exchanger 910 acts as a condenser to release heat, and the indoor heat exchanger 906 acts as an evaporator to absorb heat. The expansion valve 908 depressurizes the refrigerant and expands it.
The compressor 904 is driven by a variable speed controlled electric motor 7.
 圧縮機904の一例を図2(a)及び(b)に示す。図示の圧縮機904は、密閉式のロータリー圧縮機であり、密閉容器を構成する圧縮機シェル922と、圧縮機シェル922内に配置された圧縮機構924とを備えている。冷媒は、吸入配管926から圧縮機構924内に導かれ、吐出配管928から吐出される。
 圧縮機シェル922は、支持部材930に支持されている。
 圧縮機構924は、シリンダ932と、シリンダ932内に配置されたロータリーピストン934とを有する。
An example of the compressor 904 is shown in FIGS. 2 (a) and 2 (b). The illustrated compressor 904 is a closed rotary compressor, and includes a compressor shell 922 constituting a closed container and a compression mechanism 924 arranged in the compressor shell 922. The refrigerant is guided from the suction pipe 926 into the compression mechanism 924 and discharged from the discharge pipe 928.
The compressor shell 922 is supported by a support member 930.
The compression mechanism 924 has a cylinder 932 and a rotary piston 934 disposed within the cylinder 932.
 電動機7は、圧縮機シェル922内に配置されており、回転子7aと、回転子7aを回転可能に保持する固定子7bとを有し、回転子7aはシャフト936に結合されている。シャフト936は図示しない軸受けにより、図示しないフレームに対して回転可能に保持されており、該フレームは、圧縮機シェル922に固定されている。
 シャフト936は、クランクシャフト938に結合され、クランクシャフト938は、ロータリーピストン934に結合されている。
 電動機7の回転子7aの回転は、シャフト936及びクランクシャフト938を介してロータリーピストン934に伝達される。
The electric motor 7 is arranged in the compressor shell 922, has a rotor 7a and a stator 7b that rotatably holds the rotor 7a, and the rotor 7a is coupled to the shaft 936. The shaft 936 is rotatably held by a bearing (not shown) with respect to a frame (not shown), which is fixed to the compressor shell 922.
The shaft 936 is coupled to the crankshaft 938, and the crankshaft 938 is coupled to the rotary piston 934.
The rotation of the rotor 7a of the electric motor 7 is transmitted to the rotary piston 934 via the shaft 936 and the crankshaft 938.
 シリンダ932には、吸込み口942と、吐出口944とが形成され、シリンダ932内には、ベーン946が設けられている。吸込み口942は吸入配管926に接続され、吐出口944は、吐出配管928に接続されている。なお、吸込み口942及び吐出口944は概念的に図示されており、図2(b)におけるそれらの位置は、必ずしも実際の位置を正確に表すものではない。
 ベーン946はシリンダ932の中心に向かって付勢されており、ロータリーピストン934の周面上を摺動しつつシリンダ932の径方向に移動することができるようになっている。
A suction port 942 and a discharge port 944 are formed in the cylinder 932, and a vane 946 is provided in the cylinder 932. The suction port 942 is connected to the suction pipe 926, and the discharge port 944 is connected to the discharge pipe 928. The suction port 942 and the discharge port 944 are conceptually illustrated, and their positions in FIG. 2B do not necessarily accurately represent the actual positions.
The vane 946 is urged toward the center of the cylinder 932 so that it can move in the radial direction of the cylinder 932 while sliding on the peripheral surface of the rotary piston 934.
 シャフト936が回転すると、クランクシャフト938及びロータリーピストン934が矢印RPで示す方向に回転し、その結果、吸込み口942から気化した冷媒が吸い込まれ、圧縮され、圧縮により液化された冷媒が吐出口944から吐出される。
 以上のような、吸込み、圧縮、吐出の一連の工程においては、ロータリーピストン934に掛かる圧力が変化し、この圧力変化が負荷トルクTの変化となる。
When the shaft 936 rotates, the crankshaft 938 and the rotary piston 934 rotate in the direction indicated by the arrow RP, and as a result, the vaporized refrigerant is sucked from the suction port 942, compressed, and the liquefied refrigerant by compression is discharged 944. Is discharged from.
In the series of suction, compression, and discharge steps as described above, the pressure applied to the rotary piston 934 changes, and this pressure change becomes a change in the load torque T l .
 なお、上記のように、電動機7が圧縮機シェル922内に配置されているので、電動機7は圧縮機904の一部であり、電動機7は、圧縮機904の圧縮機構924を駆動するものであると見ることもできる。 Since the electric motor 7 is arranged in the compressor shell 922 as described above, the electric motor 7 is a part of the compressor 904, and the electric motor 7 drives the compression mechanism 924 of the compressor 904. You can also see that there is.
 以下に詳しく述べるように、本発明の電動機駆動装置は、電動機7を駆動するものであり、電動機7を停止させる際の振動、特に圧縮機シェル922及び配管926及び928の振動を小さくすることができるものである。 As described in detail below, the electric motor drive device of the present invention drives the electric motor 7, and it is possible to reduce the vibration when the electric motor 7 is stopped, particularly the vibration of the compressor shell 922 and the pipes 926 and 928. It can be done.
 図3は、本発明の実施の形態の電動機駆動装置2を、電動機7とともに示す概略配線図である。
 図示の電動機駆動装置2は、電動機7を駆動するためのものであり、リアクタ4と、整流回路10と、平滑コンデンサ20と、インバータ30と、母線電圧検出部82と、母線電流検出部84と、制御電源生成回路90と、制御装置100とを有する。
FIG. 3 is a schematic wiring diagram showing the electric motor driving device 2 according to the embodiment of the present invention together with the electric motor 7.
The illustrated electric motor drive device 2 is for driving the electric motor 7, and includes a reactor 4, a rectifier circuit 10, a smoothing capacitor 20, an inverter 30, a bus voltage detection unit 82, and a bus current detection unit 84. It has a control power generation circuit 90 and a control device 100.
 整流回路10は、交流電源1から供給される交流電圧を整流する。図示の例では、整流回路10は、ダイオードブリッジで構成されている。ダイオードブリッジの入力端子はリアクタ4を介して交流電源1に接続されており、出力端子は平滑コンデンサ20に接続されている。 The rectifier circuit 10 rectifies the AC voltage supplied from the AC power supply 1. In the illustrated example, the rectifier circuit 10 is composed of a diode bridge. The input terminal of the diode bridge is connected to the AC power supply 1 via the reactor 4, and the output terminal is connected to the smoothing capacitor 20.
 平滑コンデンサ20は、整流回路10の出力電圧を平滑する。
 平滑コンデンサ20の一方の電極は、整流回路10の第1の出力端子及び高電位側(正側)の直流母線22aに接続されている。
 平滑コンデンサ20の他方の電極は、整流回路10の第2の出力端子及び低電位側(負側)の直流母線22bに接続されている。
 平滑コンデンサ20で平滑された電圧を「母線電圧」と呼ぶ。
The smoothing capacitor 20 smoothes the output voltage of the rectifier circuit 10.
One electrode of the smoothing capacitor 20 is connected to the first output terminal of the rectifier circuit 10 and the DC bus 22a on the high potential side (positive side).
The other electrode of the smoothing capacitor 20 is connected to the second output terminal of the rectifier circuit 10 and the DC bus 22b on the low potential side (negative side).
The voltage smoothed by the smoothing capacitor 20 is called a "bus voltage".
 インバータ30は、平滑コンデンサ20の両端電圧、即ち母線電圧を受けて、周波数可変で電圧可変の交流電圧を発生して、出力線331~333を介して電動機7に供給する。 The inverter 30 receives the voltage across the smoothing capacitor 20, that is, the bus voltage, generates an AC voltage having a variable frequency and a variable voltage, and supplies the AC voltage to the electric motor 7 via the output lines 331 to 333.
 電動機7は、3相永久磁石同期電動機である。この場合インバータ30は、3相交流電圧を発生して、電動機7に供給する。 The electric motor 7 is a three-phase permanent magnet synchronous motor. In this case, the inverter 30 generates a three-phase AC voltage and supplies it to the electric motor 7.
 母線電圧検出部82は、母線22a、22b間の電圧Vdcを母線電圧として検出する。母線電圧検出部82は、例えば、母線電圧Vdcを、直列接続された抵抗で分圧する回路を含み、制御装置100内のマイコンでの処理に適した電圧、例えば5V以下の電圧に変換して出力する。この信号(電圧検出信号)は、制御装置100で図示しないA/D変換部によりデジタル信号に変換されて制御装置100の内部での処理に用いられる。 The bus voltage detection unit 82 detects the voltage V dc between the bus 22a and 22b as the bus voltage. The bus voltage detection unit 82 includes, for example, a circuit that divides the bus voltage V dc by a resistor connected in series, and converts it into a voltage suitable for processing by the microcomputer in the control device 100, for example, a voltage of 5 V or less. Output. This signal (voltage detection signal) is converted into a digital signal by an A / D converter (not shown) in the control device 100 and used for processing inside the control device 100.
 母線電流検出部84は、母線電流、即ち、インバータ30の入力電流Idcを検出する。母線電流検出部84は、直流母線22bに挿入されたシャント抵抗を含み、検出結果を示すアナログ信号を制御装置100に供給する。この信号(電流検出信号)は、制御装置100で図示しないA/D変換部によりデジタル信号に変換されて制御装置100の内部での処理に用いられる。 The bus current detection unit 84 detects the bus current, that is, the input current Idc of the inverter 30. The bus current detection unit 84 includes a shunt resistor inserted in the DC bus 22b, and supplies an analog signal indicating the detection result to the control device 100. This signal (current detection signal) is converted into a digital signal by an A / D converter (not shown) in the control device 100 and used for processing inside the control device 100.
 制御電源生成回路90は、コンデンサ20の両電極間の電圧、即ち母線電圧Vdcを受けて降圧し、制御電源電圧V100を生成し、制御電源電圧V100を制御装置100に供給する。 The control power generation circuit 90 receives the voltage between both electrodes of the capacitor 20, that is, the bus voltage Vdc , steps down the voltage, generates the control power supply voltage V100, and supplies the control power supply voltage V100 to the control device 100.
 制御装置100は、インバータ30の動作の制御を行なう。
 インバータ30を動作させるため、制御装置100は、PWM信号Sm1~Sm6を生成して、インバータ30に供給する。
The control device 100 controls the operation of the inverter 30.
In order to operate the inverter 30, the control device 100 generates PWM signals Sm1 to Sm6 and supplies them to the inverter 30.
 インバータ30は、図4に示すように、インバータ主回路310と、駆動回路350とを有し、インバータ主回路310の入力端子が直流母線22a、22bに接続されている。 As shown in FIG. 4, the inverter 30 has an inverter main circuit 310 and a drive circuit 350, and the input terminals of the inverter main circuit 310 are connected to the DC buses 22a and 22b.
 インバータ主回路310は、それぞれスイッチング素子311~316を含む6つのアームを有する。スイッチング素子311~316には、還流用の整流素子321~326が逆並列接続されている。 The inverter main circuit 310 each has six arms including switching elements 311 to 316. Rectifying elements 321 to 326 for reflux are connected in antiparallel to the switching elements 311 to 316.
 駆動回路350は、PWM信号Sm1~Sm6に基づいて駆動信号Sr1~Sr6を生成して、駆動信号Sr1~Sr6によりスイッチング素子311~316のオン、オフを制御し、これにより、周波数可変で電圧可変の3相交流電圧が出力線331~333を介して電動機7に印加されるようにする。 The drive circuit 350 generates drive signals Sr1 to Sr6 based on the PWM signals Sm1 to Sm6, and controls on / off of the switching elements 311 to 316 by the drive signals Sr1 to Sr6, whereby the frequency is variable and the voltage is variable. The three-phase AC voltage is applied to the motor 7 via the output lines 331 to 333.
 PWM信号Sm1~Sm6が論理回路の信号レベルの大きさ(0~5V)のものであるのに対し、駆動信号Sr1~Sr6は、スイッチング素子311~316を制御するのに必要な電圧レベル、例えば+15V~-15Vの大きさを持つ信号である。また、PWM信号Sm1~Sm6が、制御装置100の接地電位を基準電位とするものであるのに対し、駆動信号Sr1~Sr6は、それぞれ対応するスイッチング素子の負側の端子(エミッタ端子)の電位を基準電位とするものである。 While the PWM signals Sm1 to Sm6 are of the signal level magnitude (0 to 5V) of the logic circuit, the drive signals Sr1 to Sr6 are voltage levels required to control the switching elements 311 to 316, for example. It is a signal having a magnitude of + 15V to -15V. Further, the PWM signals Sm1 to Sm6 use the ground potential of the control device 100 as a reference potential, whereas the drive signals Sr1 to Sr6 are the potentials of the negative terminals (emitter terminals) of the corresponding switching elements. Is the reference potential.
 制御装置100は、上記のように、インバータ30を制御する。インバータ30の制御には、インバータ30を動作させるための制御と、インバータ30を停止させるための制御とが含まれる。 The control device 100 controls the inverter 30 as described above. The control of the inverter 30 includes a control for operating the inverter 30 and a control for stopping the inverter 30.
 インバータ30を動作させる際、制御装置100は、PWM信号Sm1~Sm6として、ゼロ以外の周波数及び電圧値に対応するものをインバータ30に供給することで、インバータ30の出力電圧の周波数及び電圧値を制御する。
 インバータ30を停止させる際、制御装置100は、PWM信号Sm1~Sm6として、インバータ30の出力電圧値ゼロに対応するものをインバータ30に供給する。
When operating the inverter 30, the control device 100 supplies the PWM signals Sm1 to Sm6 corresponding to frequencies and voltage values other than zero to the inverter 30 to obtain the frequency and voltage value of the output voltage of the inverter 30. Control.
When the inverter 30 is stopped, the control device 100 supplies the PWM signals Sm1 to Sm6 corresponding to the output voltage value of the inverter 30 to zero to the inverter 30.
 インバータ30の出力電圧の角周波数ωは、電動機7の電気角での回転角速度(出力電圧の角周波数と同じ符号ωで表される)を定めるものであり、電動機7の機械角での回転角速度ωは、電動機7の電気角での回転角速度ωを極対数Pで割ったものに等しい。従って、電動機7の機械角での回転角速度ωと、インバータ30の出力電圧の角周波数ωとの間には、下記の式(1)で表される関係がある。
Figure JPOXMLDOC01-appb-M000001
 本書では、回転角速度を単に回転速度と言い、角周波数を単に周波数と言うことがある。
The angular frequency ω of the output voltage of the inverter 30 determines the rotational angular velocity of the electric motor 7 at the electric angle (represented by the same code ω as the angular frequency of the output voltage), and is the rotational angular velocity of the electric motor 7 at the mechanical angle. ω m is equal to the rotation angular velocity ω at the electric angle of the electric motor 7 divided by the pole log number P m . Therefore, there is a relationship represented by the following equation (1) between the rotational angular velocity ω m at the mechanical angle of the electric motor 7 and the angular frequency ω of the output voltage of the inverter 30.
Figure JPOXMLDOC01-appb-M000001
In this document, the angular velocity is simply referred to as the rotational velocity, and the angular frequency is sometimes referred to simply as the frequency.
 制御装置100は、電動機7に流れる電流I、I、Iに基づいて励磁電流指令値Iγ を生成し、励磁電流指令値Iγ に基づいてγ軸電圧指令値Vγ を生成し、電動機7の推定速度ωestを速度指令値ωに一致させるようにトルク電流指令値Iδ を算出し、算出されたトルク電流指令値Iδ に基づいて、δ軸電圧指令値Vδ を生成し、γ軸電圧指令値Vγ 及びδ軸電圧指令値Vδ に基づいてインバータ30を制御する。 Controller 100, the motor 7 flows through current I u, I v, I w on the basis of generating an excitation current command value I gamma *, exciting current command value I gamma * on the basis of gamma-axis voltage command value V gamma * Is generated, the torque current command value I δ * is calculated so that the estimated speed ω est of the electric motor 7 matches the speed command value ω * , and the δ-axis voltage is calculated based on the calculated torque current command value I δ *. The command value V δ * is generated, and the inverter 30 is controlled based on the γ-axis voltage command value V γ * and the δ-axis voltage command value V δ * .
 電動機7が、負荷トルクが周期的に変動する負荷要素を駆動する場合、制御装置100は、電動機7の出力トルクTが負荷トルクTの周期的変動(脈動)に追従するように、インバータ30を制御するのが望ましい。
 制御装置100は、上記の追従のためトルク電流補償値を生成することとしても良い。生成されたトルク電流補償値は、上記のトルク電流指令値Iδ を補正するために用いられる。
When the electric motor 7 drives a load element whose load torque fluctuates periodically, the control device 100 uses an inverter so that the output torque T m of the electric motor 7 follows the periodic fluctuation (pulsation) of the load torque T l. It is desirable to control 30.
The control device 100 may generate a torque current compensation value for the above-mentioned follow-up. The generated torque current compensation value is used to correct the above torque current command value I δ * .
 圧縮機904を停止させる場合には、制御装置100は、インバータ30を停止させることで、インバータ30による電動機7の駆動を停止し、これにより電動機7を停止させる。
 具体的には、制御装置100は、負荷トルクTが最小(最小値)になる位相(トルク最小位相)を検出し、トルク最小位相を含む期間中にインバータ30を停止させ(インバータ30から交流電圧が出力されないようにし)、電動機7の駆動を停止させる。
When the compressor 904 is stopped, the control device 100 stops the driving of the electric motor 7 by the inverter 30 by stopping the inverter 30, thereby stopping the electric motor 7.
Specifically, the control device 100 detects the phase (minimum torque phase) at which the load torque T l becomes the minimum (minimum value), and stops the inverter 30 during the period including the minimum torque phase (AC from the inverter 30). (Prevent the voltage from being output), and stop the drive of the electric motor 7.
 制御装置100が、電動機の出力トルクTを負荷トルクTの脈動に追従させるための制御を行なっている場合、出力トルクTは負荷トルクTに一致すると見ることができる。 Controller 100, When performing control to follow the output torque T m of a motor to the pulsation of the load torque T l, the output torque T m can be viewed as matching to the load torque T l.
 そこで、制御装置100は、電動機7の出力トルクTを算出し、算出された出力トルクTを負荷トルクの推定値として用い、該推定値に基づいてトルク最小位相を検出することとしても良い。 Therefore, the control device 100 may calculate the output torque T m of the electric motor 7, use the calculated output torque T m as an estimated value of the load torque, and detect the minimum torque phase based on the estimated value. ..
 負荷トルクTの脈動成分のうち、電動機7の回転周波数のn倍の周波数の成分(n次の脈動成分)が最も大きいとき、上記のトルク電流補償値は、上記n次の脈動成分を主として補償するためのものであっても良い。 Among the pulsating components of the load torque T l, when the component having a frequency n times the rotation frequency of the electric motor 7 (nth-order pulsating component) is the largest, the torque current compensation value is mainly the n-th order pulsating component. It may be for compensation.
 この場合、制御装置100は、負荷トルクTのn次の脈動成分が最小になる位相を検出することとしても良い。 In this case, the control device 100 may detect the phase in which the nth-order pulsation component of the load torque T l is minimized.
 そして、制御装置100は、電動機7の出力トルクTを算出し、算出された出力トルクTから、電動機7の回転周波数のn倍の周波数の成分を抽出し、抽出した成分が最小になる位相を、負荷トルクTの上記n次の脈動成分が最小になる位相として検出することとしても良い。 Then, the control unit 100 calculates the output torque T m of a motor 7, the output torque T m calculated, to extract components other n times the frequency of the rotational frequency of the motor 7, the extracted component is minimized phase, may be the n-th order of the pulsating component of the load torque T l is detected as a phase to be minimized.
 制御装置100は、マイクロプロセッサにより実現される。マイクロプロセッサは、CPU(Central Processing Unit)、マイクロコンピュータ、又はDSP(Digital Signal Processor)といった呼び方をされる処理器又は処理装置であってもよい。 The control device 100 is realized by a microprocessor. The microprocessor may be a processor or a processing device called a CPU (Central Processing Unit), a microcomputer, or a DSP (Digital Signal Processor).
 図5は、制御装置100の一例を示す機能ブロック図である。図示のように、制御装置100は、運転制御部102と、トルク最小位相演算部104と、インバータ制御部110とを有する。 FIG. 5 is a functional block diagram showing an example of the control device 100. As shown in the figure, the control device 100 includes an operation control unit 102, a torque minimum phase calculation unit 104, and an inverter control unit 110.
 運転制御部102は、周波数指令値ωを出力する。運転制御部102は、また電動機7の極対数P、永久磁石の鎖交磁束Φ、γ軸インダクタンスLγ、及びδ軸インダクタンスLδ、並びに後述のローパスフィルタの時定数T(即ちこれらを示す情報)を出力する。 The operation control unit 102 outputs the frequency command value ω * . The operation control unit 102 also has the pole pair number P m of the motor 7, the interlinkage magnetic flux Φ f of the permanent magnet, the γ-axis inductance L γ , and the δ-axis inductance L δ , and the time constant T f of the low-pass filter described later (that is, these). Information indicating) is output.
 周波数指令値ωは、下記の式(2)に示す如く、電動機7の回転速度の指令値(回転角速度指令値)ω に極対数Pを掛けることで求められる。
Figure JPOXMLDOC01-appb-M000002
As shown in the following equation (2), the frequency command value ω * is obtained by multiplying the command value (rotation angular velocity command value) ω m * of the rotation speed of the electric motor 7 by the pole logarithm P m .
Figure JPOXMLDOC01-appb-M000002
 周波数指令値ωはインバータ制御部110に供給される。
 極対数P、鎖交磁束Φ、γ軸インダクタンスLγ及びδ軸インダクタンスLδは、トルク最小位相演算部104に供給される。
 時定数Tはトルク最小位相演算部104及びインバータ制御部110に供給される。
The frequency command value ω * is supplied to the inverter control unit 110.
The pole pair number P m , the interlinkage magnetic flux Φ f , the γ-axis inductance L γ and the δ-axis inductance L δ are supplied to the torque minimum phase calculation unit 104.
The time constant T f is supplied to the torque minimum phase calculation unit 104 and the inverter control unit 110.
 運転制御部102は、図示しない温度センサで検出された室温(空調対象空間の温度)を示す情報を受け、図示しない操作部、例えばリモコンからの指示を受け、空気調和機の各部の動作を制御する。操作部からの指示には、設定温度を示す情報、運転モード(暖房、冷房、除湿など)の選択、運転開始及び終了の指示が含まれる。 The operation control unit 102 receives information indicating the room temperature (temperature of the air conditioning target space) detected by a temperature sensor (not shown), receives an instruction from an operation unit (for example, a remote controller) (not shown), and controls the operation of each part of the air conditioner. To do. The instructions from the operation unit include information indicating the set temperature, selection of the operation mode (heating, cooling, dehumidification, etc.), and instructions for starting and ending the operation.
 トルク最小位相演算部104は、負荷トルクTが最小になる位相を求める。
 上記のように、出力トルクTが、負荷トルクTの脈動に追従するように制御されている場合には、出力トルクTが負荷トルクTに一致すると見ることができる。
 そこで、以下に示す例では、電動機7に流れる電流から出力トルクTを算出し、算出値(算出された出力トルク)を負荷トルクの推定値として用い、負荷トルクの推定値(推定負荷トルク)が最小になる位相を検出する。
The torque minimum phase calculation unit 104 obtains the phase at which the load torque T l is minimized.
As described above, the output torque T m is, if it is controlled so as to follow the pulsation of the load torque T l, the output torque T m can be viewed as matching to the load torque T l.
Therefore, in the example shown below, the output torque T m is calculated from the current flowing through the electric motor 7, and the calculated value (calculated output torque) is used as the estimated value of the load torque, and the estimated value of the load torque (estimated load torque). Detects the phase that minimizes.
 また、負荷トルクTの脈動成分のうち、n次の脈動成分が最も大きい場合を想定し、以下に示す例では、上記n次の脈動成分が最小になる位相θmn_minを検出する。 Also, of the pulsating component of the load torque T l, assuming a case of order n pulsating component is the largest, in the example shown below, detects the phase theta Mn_min which the n-th pulsation component is minimized.
 n次の脈動成分が最小になる位相θmn_minとは、n次の脈動成分の変動の各周期において最小になる位相角位置である。
 一方、負荷トルクが最小になる位相は、負荷トルクTの変動の基本波の各周期において、最小になる位相角位置である。
The phase θ mn_min at which the nth-order pulsating component is minimized is the phase angle position where the n-th-order pulsating component is minimized in each period of fluctuation.
On the other hand, the phase at which the load torque is minimized is the phase angle position at which the load torque is minimized in each period of the fundamental wave of fluctuation of the load torque T l .
 例えば、電動機7の負荷要素がシングルロータリー型の圧縮機である場合には、最も大きい脈動成分の周波数が電動機7の回転周波数と同じであるので、n=1である。
 電動機7の負荷要素がツインロータリー型の圧縮機である場合には、最も大きい脈動成分の周波数が電動機7の回転周波数の2倍であるので、n=2である。
 なお、ここでは、電動機7と圧縮機の間に変速機構が介在しない場合を想定している。変速機構が介在する場合には、変速比をも考慮する必要がある。
For example, when the load element of the electric motor 7 is a single rotary type compressor, the frequency of the largest pulsating component is the same as the rotation frequency of the electric motor 7, so n = 1.
When the load element of the electric motor 7 is a twin rotary type compressor, the frequency of the largest pulsating component is twice the rotation frequency of the electric motor 7, so n = 2.
Here, it is assumed that the transmission mechanism does not intervene between the electric motor 7 and the compressor. When a transmission mechanism is involved, it is necessary to consider the gear ratio as well.
 トルク最小位相θmn_minの計算には、インバータ制御部110から出力される励磁電流Iγ及びトルク電流Iδのほか、極対数P、鎖交磁束Φ、γ軸インダクタンスLγ及びδ軸インダクタンスLδが用いられる。
 ここでは、極対数P、鎖交磁束Φ、γ軸インダクタンスLγ及びδ軸インダクタンスLδは運転制御部102から通知されるものとする。
 鎖交磁束Φ、γ軸インダクタンスLγ及びδ軸インダクタンスLδとしては、予め定められ、保持されている値を用いても良い。
In the calculation of the minimum torque phase θ mn_min , in addition to the exciting current I γ and torque current I δ output from the inverter control unit 110, the number of pole pairs P m , the interlinkage magnetic flux Φ f , the γ-axis inductance L γ and the δ-axis inductance L δ is used.
Here, it is assumed that the pole pair number P m , the interlinkage magnetic flux Φ f , the γ-axis inductance L γ, and the δ-axis inductance L δ are notified from the operation control unit 102.
As the interlinkage magnetic flux Φ f , the γ-axis inductance L γ, and the δ-axis inductance L δ , predetermined and held values may be used.
 トルク最小位相演算部104は、出力トルクTを算出し、算出した出力トルクTから、そのn次の脈動成分Tmnを抽出し、該n次の脈動成分Tmnが最小になる位相を求める。 Torque Min phase calculating unit 104 calculates the output torque T m, is calculated from the output torque T m that extracts the order n pulsating component T mn, the phase of the n-order ripple component T mn is minimized Ask.
 図6は、図5のトルク最小位相演算部104の構成例を示す。
 図示のトルク最小位相演算部104は、トルク計算部401と、除算部402と、乗算部403と、余弦演算部405と、正弦演算部406と、乗算部407、408と、ローパスフィルタ409、410と、逆正接計算部411と、加算部412とを有する。
FIG. 6 shows a configuration example of the torque minimum phase calculation unit 104 of FIG.
The illustrated minimum torque phase calculation unit 104 includes a torque calculation unit 401, a division unit 402, a multiplication unit 403, a cosine calculation unit 405, a sine calculation unit 406, a multiplication unit 407, 408, and a low pass filter 409, 410. And an inverse tangent calculation unit 411 and an addition unit 412.
 トルク計算部401は、インバータ制御部110から励磁電流Iγ及びトルク電流Iδを受け、運転制御部102から、極対数P、鎖交磁束Φ、γ軸インダクタンスLγ及びδ軸インダクタンスLδを受け、これらから出力トルクTを求める。出力トルクTの計算は、下記の式(3)によって行うことができる。 The torque calculation unit 401 receives the exciting current I γ and the torque current I δ from the inverter control unit 110, and receives the pole pair number P m , the interlinkage magnetic flux Φ f , the γ-axis inductance L γ and the δ-axis inductance L from the operation control unit 102. Upon receiving δ , the output torque T m is obtained from these. The output torque T m can be calculated by the following equation (3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 式(3)で算出される出力トルクTは、直流成分と交流成分とを含む。交流成分は、時間とともに周期的に変化する成分である。 The output torque T m calculated by the formula (3) includes a DC component and an AC component. The AC component is a component that changes periodically with time.
 除算部402は電気角θを極対数Pで割ることで回転位相(機械角)θを算出する。
 乗算部403は、回転位相θにnを乗算することで、電動機7の回転周波数のn倍の周波数で変化する位相(位相角)θmnを求める。
The division unit 402 calculates the rotation phase (mechanical angle) θ m by dividing the electric angle θ e by the pole logarithm P m .
The multiplication unit 403 obtains a phase (phase angle) θ mn that changes at a frequency n times the rotation frequency of the electric motor 7 by multiplying the rotation phase θ m by n.
 余弦演算部405は、位相θmnを受けて、余弦cosθmnを出力する。
 正弦演算部406は、位相θmnを受けて、正弦sinθmnを出力する。
Cosine calculation unit 405 receives the phase theta mn, and outputs the cosine cos [theta] mn.
Sine calculating unit 406 receives the phase theta mn, it outputs a sine sin [theta mn.
 乗算部407は、出力トルクTに、cosθmnを掛けて、出力トルクTの余弦成分T・cosθmnを求める。乗算部408は、出力トルクTにsinθmnを掛けて、出力トルクTの正弦成分T・sinθmnを求める。 Multiplying unit 407, the output torque T m, multiplied by cos [theta] mn, obtains the cosine component T m · cosθ mn of the output torque T m. Multiplication section 408 multiplies the sin [theta mn to the output torque T m, determine the sine component T m · sinθ mn of the output torque T m.
 余弦成分T・cosθmn及び正弦成分T・sinθmnには、周波数がωmnである脈動成分のほか、それより高い周波数の脈動成分(高調波成分)が含まれている。 The cosine component T m · cos θ mn and the sine component T m · sin θ mn include a pulsating component having a frequency of ω mn and a pulsating component (harmonic component) having a higher frequency.
 ここで、周波数ωmnは、周波数ωのn倍であり、ωmnとθmnとの間には、下記の式(4)で表される関係がある。
Figure JPOXMLDOC01-appb-M000004
Here, the frequency ω mn is n times the frequency ω m , and there is a relationship expressed by the following equation (4) between ω mn and θ mn .
Figure JPOXMLDOC01-appb-M000004
 ローパスフィルタ409及び410は、伝達関数が1/(1+sT)で表される一次遅れフィルタである。
 ここで、sはラプラス演算子である。Tは時定数であり、周波数ωmnよりも高い周波数の脈動成分を除去する(十分に減衰させる)ように定められる。
The low- pass filters 409 and 410 are first-order lag filters whose transfer function is represented by 1 / (1 + sT f ).
Here, s is a Laplace operator. T f is a time constant and is defined to remove (sufficiently attenuate) pulsating components at frequencies higher than the frequency ω mn .
 時定数Tは運転制御部102において、周波数ωの推定値ωestを用いて、下記の式(5)により算出された推定値ωmn_estよりも高い周波数の脈動成分を除去するように定められる。
Figure JPOXMLDOC01-appb-M000005
 式(5)で、tは時間を表す。
The time constant T f is determined by the operation control unit 102 to remove the pulsating component having a frequency higher than the estimated value ω mn_est calculated by the following equation (5) by using the estimated value ω est of the frequency ω. ..
Figure JPOXMLDOC01-appb-M000005
In equation (5), t represents time.
 推定値ωestは、後述のように、インバータ制御部110内で算出される。
 以上のように、時定数Tの決定には、周波数ωmnの代わりにその推定値ωmn_estが用いられるが、ここではωmn_estがωmnに等しいと見なす。
 このようにして定められた時定数Tは運転制御部102からローパスフィルタ409、410に通知される。
The estimated value ω est is calculated in the inverter control unit 110 as described later.
As described above, the estimated value ω mn_est is used instead of the frequency ω mn to determine the time constant T f , but here it is considered that ω mn_est is equal to ω mn .
The time constant T f determined in this way is notified from the operation control unit 102 to the low- pass filters 409 and 410.
 ローパスフィルタ409は、余弦成分T・cosθmnに対してローパスフィルタリングを行って、周波数ωmnよりも高い周波数の脈動成分を除去し、低周波数成分Tmcosを出力する。
 低周波数成分Tmcosは、トルクTの脈動成分のうち、周波数がωmnである余弦成分を表す直流量である。
Low pass filter 409 performs low pass filtering on the cosine component T m · cosθ mn, to remove the ripple component having a frequency higher than the frequency omega mn, and outputs the low frequency components T mcos.
The low frequency component T mcos is a DC amount representing a cosine component having a frequency of ω mn among the pulsating components of the torque T m .
 ローパスフィルタ410は、正弦成分T・sinθmnに対してローパスフィルタリングを行って、周波数ωmnよりも高い周波数の脈動成分を除去し、低周波数成分Tmsinを出力する。
 低周波数成分Tmsinは、トルクTの脈動成分のうち、周波数がωmnである正弦成分を表す直流量である。
Low-pass filter 410 performs low pass filtering on the sine component T m · sinθ mn, to remove the ripple component having a frequency higher than the frequency omega mn, and outputs the low frequency components T msin.
The low frequency component T msin is a DC amount representing a sine component having a frequency of ω mn among the pulsating components of torque T m .
 逆正接計算部411は、TmcosとTmsinとを受け、下記の式(6)で表される逆正接を算出する。
Figure JPOXMLDOC01-appb-M000006
The inverse tangent calculation unit 411 receives T mcos and T msin and calculates the inverse tangent represented by the following equation (6).
Figure JPOXMLDOC01-appb-M000006
 加算部412は、式(6)で表される逆正接と、πとを、下記の式(7)で表すように加算することで位相θmn_minを求める。
Figure JPOXMLDOC01-appb-M000007
The addition unit 412 obtains the phase θ mn_min by adding the inverse tangent represented by the equation (6) and π as expressed by the following equation (7).
Figure JPOXMLDOC01-appb-M000007
 求められた位相θmn_minは出力トルクTのn次の脈動成分が最小になる位相である。上記のように、脈動補償ができているときは、位相θmn_minは負荷トルクTのn次の脈動成分が最小になる位相であると見ることができる。 The obtained phase θ mn_min is the phase at which the nth-order pulsation component of the output torque T m is minimized. As described above, when the pulsation compensation is completed, the phase θ mn_min can be seen as the phase in which the nth-order pulsation component of the load torque T l is minimized.
 このようにして求められたトルク最小位相θmn_minは、運転制御部102に通知される。電動機7の停止要求があった場合、運転制御部102は、トルク最小位相θmn_minを含む期間Ty中にインバータ30を停止させる。 The minimum torque phase θ mn_min obtained in this way is notified to the operation control unit 102. When there is a request to stop the electric motor 7, the operation control unit 102 stops the inverter 30 during the period Ty including the minimum torque phase θ mn_min .
 具体的には、運転制御部102は、速度指令値ωを0とする。速度指令値ωを0とすると、PWM信号Sm1~Sm6が電圧値ゼロに対応するものとなる。
 代わり、インバータ制御部110から出力されるPWM信号Sm1~Sm6がインバータ30に供給されないようにしても良い。供給されないようにするには、インバータ制御部110の出力と駆動回路350との間にスイッチ(図示しない)を設けておき、通常は(PWM信号Sm1~Sm6を供給するときは)、該スイッチを閉じておき、PWM信号Sm1~Sm6の供給を阻止する際に該スイッチを開くこととしても良い。そのようなスイッチの開閉は、運転制御部102で制御されることとしても良い。
Specifically, the operation control unit 102 sets the speed command value ω * to 0. When the speed command value ω * is set to 0, the PWM signals Sm1 to Sm6 correspond to the voltage value zero.
Alternatively, the PWM signals Sm1 to Sm6 output from the inverter control unit 110 may not be supplied to the inverter 30. In order to prevent the supply, a switch (not shown) is provided between the output of the inverter control unit 110 and the drive circuit 350, and normally (when supplying PWM signals Sm1 to Sm6), the switch is used. It may be closed and the switch may be opened when the supply of the PWM signals Sm1 to Sm6 is blocked. The opening and closing of such a switch may be controlled by the operation control unit 102.
 停止のタイミングを上記の期間Ty内に限ることで、停止の際の配管、例えば吸入配管926及び吐出配管928の振動を低減することができる。 By limiting the stop timing within the above period Ty, it is possible to reduce the vibration of the pipes at the time of stop, for example, the suction pipe 926 and the discharge pipe 928.
 インバータ制御部110は、母線電圧検出部82で検出される母線電圧Vdcと、母線電流検出部84で検出される母線電流Idcと、運転制御部102から供給される周波数指令値ω及び時定数Tとに基づき、PWM信号Sm1~Sm6を生成してインバータ30に供給し、インバータ30に、周波数及び電圧値が可変の交流電圧を出力させる。 In the inverter control unit 110, the bus voltage V dc detected by the bus voltage detection unit 82, the bus current I dc detected by the bus current detection unit 84, the frequency command value ω * supplied from the operation control unit 102, and the frequency command value ω * Based on the time constant T f , PWM signals Sm1 to Sm6 are generated and supplied to the inverter 30, and the inverter 30 is made to output an AC voltage having a variable frequency and voltage value.
 インバータ制御部110は、電流復元部111と、3相2相変換部112と、励磁電流指令値生成部113と、電圧指令値演算部115と、電気位相演算部116と、2相3相変換部117と、PWM信号生成部118とを有する。 The inverter control unit 110 includes a current restoration unit 111, a three-phase two-phase conversion unit 112, an exciting current command value generation unit 113, a voltage command value calculation unit 115, an electric phase calculation unit 116, and a two-phase three-phase conversion. It has a unit 117 and a PWM signal generation unit 118.
 電流復元部111は母線電流検出部84で検出された電流値Idcに基づいて電動機7に流れる相電流I、I、Iを復元する。電流復元部111は、母線電流検出部84で検出される直流電流Idcを、PWM信号生成部118からのPWM信号Sm1~Sm6に基づいて定められるタイミングでサンプリングすることで、相電流を復元する。 The current restoration unit 111 restores the phase currents I u , I v , and I w flowing through the motor 7 based on the current value I dc detected by the bus current detection unit 84. The current restoration unit 111 restores the phase current by sampling the direct current I dc detected by the bus current detection unit 84 at a timing determined based on the PWM signals Sm1 to Sm6 from the PWM signal generation unit 118. ..
 3相2相変換部112は電流復元部111により復元された電流値I、I、Iを、後述の電気位相演算部116で生成される電気位相θを用いて励磁電流(γ軸電流)Iγ及びトルク電流(δ軸電流)Iδ、即ちγ-δ軸の電流値に変換する。 The three-phase two-phase conversion unit 112 uses the current values I u , I v , and I w restored by the current restoration unit 111 as the exciting current (γ) using the electric phase θ e generated by the electric phase calculation unit 116 described later. Axis current) I γ and torque current (δ axis current) I δ , that is, converted to γ-δ axis current values.
 励磁電流指令値生成部113は、トルク電流Iδを基にして、電動機7を駆動するために最も効率が良くなる最適な励磁電流指令値Iγ を求める。
 なお、図5においてはトルク電流Iδを基にして励磁電流指令値Iγ を求めているが、励磁電流Iγ及び周波数指令値ωを基にして励磁電流指令値Iγ を求めても同様の効果を得ることができる。
The exciting current command value generation unit 113 obtains the optimum exciting current command value I γ * that is most efficient for driving the electric motor 7 based on the torque current I δ .
Although seeking exciting current command value I gamma * based on the torque current I [delta] in FIG. 5, obtains the excitation current command value I gamma * the exciting current I gamma and frequency command value omega * based on However, the same effect can be obtained.
 励磁電流指令値生成部113は、トルク電流Iδ(又は励磁電流Iγ及び周波数指令値ω)に基づいて、出力トルクが所定値以上(あるいは最大)、すなわち電流値が所定値以下(あるいは最小)になる電流位相β(図示せず)となる励磁電流指令値Iγ を出力する。 Based on the torque current I δ (or the exciting current I γ and the frequency command value ω * ), the exciting current command value generator 113 has an output torque of a predetermined value or more (or maximum), that is, a current value of a predetermined value or less (or). The exciting current command value I γ * , which is the current phase β m (not shown) that becomes (minimum), is output.
 電圧指令値演算部115は、3相2相変換部112より得られた励磁電流Iγ及びトルク電流Iδと、運転制御部102から出力された周波数指令値ωと、励磁電流指令値生成部113より得られた励磁電流指令値Iγ とを入力とし、これらに基づいて電圧指令値Vγ 及びVδ を生成して出力する。
 電圧指令値演算部115はさらに、電圧指令値Vγ 及びVδ 並びに励磁電流Iγ及びトルク電流Iδから周波数の推定値ωestを推定して出力する。
The voltage command value calculation unit 115 generates the excitation current I γ and the torque current I δ obtained from the three-phase two-phase conversion unit 112, the frequency command value ω * output from the operation control unit 102, and the excitation current command value. The exciting current command value I γ * obtained from the unit 113 is used as an input, and the voltage command values V γ * and V δ * are generated and output based on these.
The voltage command value calculation unit 115 further estimates and outputs the estimated frequency value ω est from the voltage command values V γ * and V δ * , the exciting current I γ, and the torque current I δ .
 電気位相演算部116は、電圧指令値演算部115から出力される周波数の推定値ωestを積分することで、電気位相θを算出する。 The electric phase calculation unit 116 calculates the electric phase θ e by integrating the estimated value ω est of the frequency output from the voltage command value calculation unit 115.
 2相3相変換部117は電圧指令値演算部115により得られたγ軸電圧指令値Vγ 、及びδ軸電圧指令値Vδ (2相座標系の電圧指令値)を電気位相演算部116により得られた電気位相θを用いて3相座標系の出力電圧指令値(3相電圧指令値)V 、V 、V に変換して出力する。 The two-phase three-phase conversion unit 117 calculates the γ-axis voltage command value V γ * and the δ-axis voltage command value V δ * (voltage command value of the two-phase coordinate system) obtained by the voltage command value calculation unit 115. Using the electrical phase θ e obtained by unit 116, the output voltage command value (three-phase voltage command value) of the three-phase coordinate system is converted into V u * , V v * , and V w * for output.
 PWM信号生成部118は、母線電圧検出部82で検出された母線電圧Vdcと、2相3相変換部117により得られた3相電圧指令値V 、V 、V をもとにPWM信号Sm1~Sm6を生成して出力する。
 PWM信号Sm1~Sm6は、インバータ30の出力電圧が3相電圧指令値Vu、Vv、Vwに一致するように、インバータ30の各アームのスイッチング素子311~316のオンオフのタイミングを制御する信号である。
The PWM signal generation unit 118 uses the bus voltage V dc detected by the bus voltage detection unit 82 and the three-phase voltage command values V u * , V v * , and V w * obtained by the two-phase three-phase conversion unit 117. Based on this, PWM signals Sm1 to Sm6 are generated and output.
The PWM signals Sm1 to Sm6 control the on / off timing of the switching elements 311 to 316 of each arm of the inverter 30 so that the output voltage of the inverter 30 matches the three-phase voltage command values Vu * , Vv * , and Vw *. It is a signal.
 電圧指令値演算部115は、例えば図7に示すように、周波数推定部501と、減算部502と、速度制御部503と、補償値演算部504と、加算部505と、減算部509、減算部510と、励磁電流制御部511と、トルク電流制御部512とを有する。 As shown in FIG. 7, for example, the voltage command value calculation unit 115 includes a frequency estimation unit 501, a subtraction unit 502, a speed control unit 503, a compensation value calculation unit 504, an addition unit 505, a subtraction unit 509, and a subtraction unit. It has a unit 510, an exciting current control unit 511, and a torque current control unit 512.
 周波数推定部501は、励磁電流Iγ及びトルク電流Iδと、電圧指令値Vγ 、Vδ とを入力として、これらに基づいて電動機7に印加された電圧の周波数を推定し、推定値ωestを出力する。 The frequency estimation unit 501 takes the excitation current I γ and the torque current I δ and the voltage command values V γ * and V δ * as inputs, and estimates and estimates the frequency of the voltage applied to the motor 7 based on these. Output the value ω est .
 減算部502は、周波数推定部501により生成された周波数推定値ωestの、周波数指令値ωに対する差分(ω-ωest)を算出する。 The subtraction unit 502 calculates the difference (ω * −ω est ) of the frequency estimation value ω est generated by the frequency estimation unit 501 with respect to the frequency command value ω * .
 速度制御部503は、減算部502で算出された差分(ω-ωest)に対して比例積分(PI)演算を行って、該差分をゼロに近付けるトルク電流指令値Iδ を求める。このようにしてトルク電流指令値Iδ を生成することで、周波数推定値ωestを周波数指令値ωに一致させるための制御が行われる。 The speed control unit 503 performs a proportional integration (PI) calculation on the difference (ω * −ω est ) calculated by the subtraction unit 502 to obtain the torque current command value I δ * that brings the difference close to zero. By generating the torque current command value I δ * in this way, control is performed to match the frequency estimation value ω est with the frequency command value ω * .
 補償値演算部504は、周波数推定部501から出力される周波数推定値ωestに基づいて、トルク電流補償値Iδ_trqを出力する。
 トルク電流補償値Iδ_trqは、周波数ωestの脈動成分、特に周波数がωmnである脈動成分を抑制するためのものである。ここで、「周波数ωestの脈動成分、特に周波数がωmnである成分」とは、周波数ωestを表す値(直流量)の脈動成分、特に脈動周波数がωmnである脈動成分を意味する。
The compensation value calculation unit 504 outputs the torque current compensation value I δ_trq based on the frequency estimation value ω est output from the frequency estimation unit 501.
The torque current compensation value I δ_trq is for suppressing a pulsating component having a frequency of ω est , particularly a pulsating component having a frequency of ω mn . Here, the "pulsating component of frequency ω est , particularly the component having a frequency of ω mn " means a pulsating component having a value (DC amount) representing the frequency ω est , particularly a pulsating component having a pulsating frequency of ω mn. ..
 加算部505は、速度制御部503の出力Iδ とトルク電流補償値Iδ_trqとを加算して補正されたトルク電流指令値Iδ **を生成する。
 トルク電流指令値Iδ をトルク電流補償値Iδ_trqで補正することにより負荷トルクの脈動により発生する速度脈動を抑制することができる。
The addition unit 505 adds the output I δ * of the speed control unit 503 and the torque current compensation value I δ_trq to generate a corrected torque current command value I δ ** .
By correcting the torque current command value I δ * with the torque current compensation value I δ_trq , the speed pulsation generated by the pulsation of the load torque can be suppressed.
 減算部509は、励磁電流指令値生成部113で生成された励磁電流指令値Iγ に対するIγの差分(Iγ -Iγ)を求める。 The subtraction unit 509 obtains the difference (I γ * −I γ ) of I γ with respect to the excitation current command value I γ * generated by the excitation current command value generation unit 113.
 励磁電流制御部511は、減算部509で求められた差分(Iγ -Iγ)に対して比例積分(PI)演算を行って、該差分をゼロに近付けるγ軸電圧指令値Vγ を生成する。このようにしてγ軸電圧指令値Vγ を生成することで、IγをIγ に一致させるための制御が行われる。 The exciting current control unit 511 performs a proportional integral (PI) operation on the difference (I γ * -I γ ) obtained by the subtraction unit 509, and brings the difference closer to zero. γ-axis voltage command value V γ * To generate. By generating the γ-axis voltage command value V γ * in this way, control for matching I γ with I γ * is performed.
 減算部510は、加算部505で生成されたトルク電流指令値Iδ **に対するIδの差分(Iδ **-Iδ)を求める。 The subtraction unit 510 obtains the difference (I δ ** −I δ ) of I δ with respect to the torque current command value I δ ** generated by the addition unit 505.
 トルク電流制御部512は、減算部510で求められた差分(Iδ **-Iδ)に対して比例積分(PI)演算を行って、該差分をゼロに近付けるδ軸電圧指令値Vδ を生成する。このようにしてδ軸電圧指令値Vδ を生成することで、IδをIδ **に一致させるための制御が行われる。 The torque current control unit 512 performs a proportional integral (PI) operation on the difference (I δ **- I δ ) obtained by the subtraction unit 510, and brings the difference closer to zero. δ-axis voltage command value V δ * Is generated. By generating the δ-axis voltage command value V δ * in this way, control for matching I δ with I δ ** is performed.
 補償値演算部504は、例えば図8に示すように構成されている。図示の補償値演算部504は、余弦演算部551と、正弦演算部552と、乗算部553、554と、ローパスフィルタ555、556と、減算部557、558と、周波数制御部559、560と、乗算部561、562と、加算部563とを有する。 The compensation value calculation unit 504 is configured as shown in FIG. 8, for example. The illustrated compensation value calculation unit 504 includes a cosine calculation unit 551, a sine calculation unit 552, a multiplication unit 555 and 554, a low- pass filter 555 and 556, a subtraction unit 557 and 558, and a frequency control unit 559 and 560. It has multiplication units 561 and 562 and addition units 563.
 余弦演算部551は、θmnを受け、その余弦cosθmnを算出する。正弦演算部552は、θmnを受け、その正弦sinθmnを算出する。 Cosine calculation unit 551 receives the theta mn, and calculates the cosine cos [theta] mn. Sine calculator 552 receives theta mn, and calculates the sine sin [theta mn.
 乗算部553は、推定値ωestにcosθmnを掛けることで、推定値ωestの余弦成分ωest・cosθmnを求める。 Multiplying unit 553, by multiplying the cos [theta] mn to estimate omega est, obtains the cosine component ω est · cosθ mn estimates omega est.
 乗算部554は、推定値ωestにsinθmnを掛けることで、推定値ωestの正弦成分ωest・sinθmnを求める。 Multiplier 554, by multiplying the sin [theta mn to estimate omega est, determine the sine component ω est · sinθ mn estimates omega est.
 乗算部553、554で算出される余弦成分ωest・cosθmn及び正弦成分ωest・sinθmnには、周波数がωmnである脈動成分のほか、それより高い周波数の脈動成分(高調波成分)が含まれている。 The cosine component ω est · cosθ mn and sine component ω est · sinθ mn is calculated by multiplying unit 553 and 554, in addition to the pulsating component frequency is omega mn, even higher frequency of the pulsating component (harmonic component) It is included.
 ローパスフィルタ555及び556は、ローパスフィルタ409及び410と同様に、伝達関数が1/(1+sT)で表される一次遅れフィルタである。
 ここで、sはラプラス演算子である。Tは時定数であり、周波数ωmnよりも高い周波数の脈動成分を除去する(十分に減衰させる)ように定められる。
The low- pass filters 555 and 556, like the low- pass filters 409 and 410, are first-order lag filters whose transfer function is represented by 1 / (1 + sT f ).
Here, s is a Laplace operator. T f is a time constant and is defined to remove (sufficiently attenuate) pulsating components at frequencies higher than the frequency ω mn .
 時定数Tは、ローパスフィルタ409及び410について述べたように、運転制御部102で定められ、ローパスフィルタ555及び556に通知される。 The time constant T f is determined by the operation control unit 102 and notified to the low- pass filters 555 and 556, as described for the low- pass filters 409 and 410.
 ローパスフィルタ555は、余弦成分ωest・cosθmnに対してローパスフィルタリングを行なって、周波数ωmnよりも高い周波数の脈動成分を除去し、低周波数成分ωest_cosを出力する。低周波数成分ωest_cosは、推定値ωestの脈動成分のうち、周波数がωmnである余弦成分を表す直流量である。 The low-pass filter 555 performs low-pass filtering on the cosine component ω est · cos θ mn , removes the pulsating component having a frequency higher than the frequency ω mn , and outputs the low frequency component ω est_cos . The low frequency component ω est_cos is a DC amount representing a cosine component having a frequency of ω mn among the pulsating components of the estimated value ω est .
 ローパスフィルタ556は、正弦成分ωest・sinθmnに対してローパスフィルタリングを行なって、周波数ωmnよりも高い周波数の脈動成分を除去し、低周波数成分ωest_sinを出力する。低周波数成分ωest_sinは、推定値ωestの脈動成分のうち、周波数がωmnである正弦成分を表す直流量である。 The low-pass filter 556 performs low-pass filtering on the sine component ω est · sin θ mn , removes a pulsating component having a frequency higher than the frequency ω mn , and outputs a low frequency component ω est_sin . The low frequency component ω est_sin is a DC amount representing a sine component having a frequency of ω mn among the pulsating components of the estimated value ω est .
 減算部557は、ローパスフィルタ555の出力ωest_cosと0との差分を求める。
 減算部558は、ローパスフィルタ556の出力ωest_sinと0との差分を求める。
The subtraction unit 557 obtains the difference between the output ωest_cos of the low- pass filter 555 and 0.
The subtraction unit 558 obtains the difference between the output ωest_sin of the low- pass filter 556 and 0.
 周波数制御部559は、減算部557で求められた差分(ωest_cos-0)に対して比例積分(PI)演算を行って、該差分をゼロに近付ける電流指令値の余弦成分Iδ_trq_cosを求める。このようにして余弦成分Iδ_trq_cosを生成することで、低周波数成分ωest_cosを0に一致させるための制御が行われる。 The frequency control unit 559 performs a proportional integration (PI) operation on the difference (ω est_cos −0) obtained by the subtraction unit 557, and obtains the cosine component I δ_trq_cos of the current command value that brings the difference close to zero. By generating the cosine component I δ_trq_cos in this way, control for matching the low frequency component ω est_cos to 0 is performed.
 周波数制御部560は、減算部558で求められた差分(ωest_sin-0)に対して比例積分(PI)演算を行って、該差分をゼロに近付ける電流指令値の正弦成分Iδ_trq_sinを求める。このようにして正弦成分Iδ_trq_sinを生成することで、低周波数成分ωest_sinを0に一致させるための制御が行われる。 The frequency control unit 560 performs a proportional integration (PI) operation on the difference (ω est_sin − 0) obtained by the subtraction unit 558, and obtains the sine component I δ_trq_sin of the current command value that brings the difference close to zero. By generating the sine component I δ_trq_sin in this way, control for matching the low frequency component ω est_sin to 0 is performed.
 乗算部561は、周波数制御部559の出力Iδ_trq_cosにcosθmnを掛けることでIδ_trq_cos・cosθmnを生成する。Iδ_trq_cos・cosθmnは、周波数n・ωestを持つ交流成分である。 Multiplication unit 561 generates the I δ_trq_cos · cosθ mn by multiplying the cos [theta] mn to the output I Deruta_trq_cos of frequency control unit 559. I δ_trq_cos · cos θ mn is an AC component having a frequency n · ω est .
 乗算部562は、周波数制御部560の出力Iδ_trq_sinにsinθmnを掛けることでIδ_trq_sin・sinθmnを生成する。Iδ_trq_sin・sinθmnは、周波数n・ωestを持つ交流成分である。 The multiplication unit 562 generates I δ_trq_sin · sinθ mn by multiplying the output I δ_trq_sin of the frequency control unit 560 by sinθ mn . I δ_trq_sin · sinθ mn is an AC component having a frequency n · ω est .
 加算部563は、乗算部561の出力Iδ_trq_cos・cosθmnと、乗算部562の出力Iδ_trq_sin・sinθmnとの和を求める。
 加算部563の出力が、トルク電流補償値Iδ_trqとして出力される。
Addition unit 563, an output I δ_trq_cos · cosθ mn multiplier 561, the sum of the output I δ_trq_sin · sinθ mn multiplication section 562 obtains.
The output of the addition unit 563 is output as the torque current compensation value I δ_trq .
 このようにして求められたトルク電流補償値Iδ_trqを図7の加算部505で加算し、加算結果を、補正されたトルク電流指令値Iδ **として用いることで、脈動成分を抑圧することができる。 The torque current compensation value I δ_trq obtained in this way is added by the adding unit 505 of FIG. 7, and the addition result is used as the corrected torque current command value I δ ** to suppress the pulsating component. Can be done.
 脈動成分が抑圧された状態においては、上記のように、出力トルクTと負荷トルクTとが一致すると見ることができる。そこで、出力トルクTが最小になる位相を含む期間中にインバータ30による電動機7の駆動を停止させ、圧縮機904を停止させている。
 以下、出力トルクTが最小になる位相を含む期間にインバータ30を停止させるメリットについて説明する。
In the state where the pulsating component is suppressed, it can be seen that the output torque T m and the load torque T l coincide with each other as described above. Therefore, the drive of the electric motor 7 by the inverter 30 is stopped during the period including the phase in which the output torque T m is minimized, and the compressor 904 is stopped.
Hereinafter, the merit of stopping the inverter 30 during the period including the phase in which the output torque T m is minimized will be described.
 図9は、圧縮機904の機械振動を解析するためのモデル図である。圧縮機904は、力学的には、回転部951と、回転部941を回転可能に支持する固定部952とに分けられ、固定部952は支持部材930に支持されている。
 回転部951には、電動機の回転子7a、ロータリーピストン934、シャフト936、及びクランクシャフト938が含まれる。
 固定部952には、電動機の固定子7b、圧縮機シェル922、及びシリンダ932が含まれる。
FIG. 9 is a model diagram for analyzing the mechanical vibration of the compressor 904. The compressor 904 is mechanically divided into a rotating portion 951 and a fixing portion 952 that rotatably supports the rotating portion 941, and the fixing portion 952 is supported by the support member 930.
The rotating portion 951 includes a rotor 7a of an electric motor, a rotary piston 934, a shaft 936, and a crankshaft 938.
The fixing portion 952 includes a stator 7b of the electric motor, a compressor shell 922, and a cylinder 932.
 固定部952のイナーシャをJsh、支持部材930のバネ定数をksh、ダンピング定数をDsh、固定部952の振れ角をθ、電動機7の出力トルクをT、圧縮機構924の負荷トルクをTとすると、固定部952の振動に関する運動方程式は、下記の式(8)で示される。
 圧縮機シェル922は固定部952の一部であるので、圧縮機シェル922の振れ角及び振動は、固定部952の振れ角及び振動に等しいと見ることができる。
The inertia of the fixed portion 952 is Jsh, the spring constant of the support member 930 is ksh, the damping constant is Dsh, the runout angle of the fixed portion 952 is θ s , the output torque of the motor 7 is T m , and the load torque of the compression mechanism 924 is T l. Then, the equation of motion regarding the vibration of the fixed portion 952 is expressed by the following equation (8).
Since the compressor shell 922 is a part of the fixed portion 952, the runout angle and vibration of the compressor shell 922 can be considered to be equal to the runout angle and vibration of the fixed portion 952.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 式(8)から、T-T=ΔT(トルク差)が小さいほど、角加速度(dθ/dt)が小さく、振れ角θが小さいことが分かる。 From equation (8), it can be seen that the smaller T l −T m = ΔT (torque difference), the smaller the angular acceleration (d 2 θ s / dt 2 ) and the smaller the runout angle θ s .
 停止時の振動を小さくするには、停止時のトルク差ΔTの変化を小さくすれば良い。停止前のトルク差ΔTがT-Tに等しいのに対し、停止後のトルク差ΔTはTに等しくなる。インバータ30が停止すると、電動機7の出力トルクTが0になるためである。
 従って、停止時のトルク差ΔTの変化を小さくするには、負荷トルクTが小さい位相で、インバータ30を停止させれば良いことが分かる。
In order to reduce the vibration at the time of stopping, the change in the torque difference ΔT at the time of stopping may be reduced. The torque difference ΔT before stopping is equal to T l −T m , whereas the torque difference ΔT after stopping is equal to T l . When the inverter 30 is stopped, the output torque T m of a motor 7 is to become zero.
Therefore, it can be seen that in order to reduce the change in the torque difference ΔT at the time of stopping, the inverter 30 should be stopped in a phase in which the load torque T l is small.
 一例としてシングルロータリ圧縮機の負荷トルクを想定して、インバータ30を停止させた場合の、トルクの変化、角加速度の変化等について、図10(a)~(e)及び図11(a)~(e)を参照して説明する。図10(a)~(e)及び図11(a)~(e)で横軸は時間(秒)である。図10(a)~(e)及び図11(a)~(e)において、インバータ30の停止のタイミングを符号Tsで示す。 As an example, assuming the load torque of a single rotary compressor, changes in torque, changes in angular acceleration, etc. when the inverter 30 is stopped are shown in FIGS. 10 (a) to 11 (e) and 11 (a) to 11 (a). This will be described with reference to (e). In FIGS. 10 (a) to 10 (e) and FIGS. 11 (a) to 11 (e), the horizontal axis is time (seconds). In FIGS. 10A to 10E and FIGS. 11A to 11E, the stop timing of the inverter 30 is indicated by reference numeral Ts.
 図10(a)~(e)は、タイミングを特に制御することなくインバータ30を停止させた場合を示し、図11(a)~(e)は、推定されたトルク最小位相を含む期間にインバータ30を停止させた場合を示す。 10 (a) to 10 (e) show the case where the inverter 30 is stopped without particularly controlling the timing, and FIGS. 11 (a) to 11 (e) show the inverter during the period including the estimated minimum torque phase. The case where 30 is stopped is shown.
 図10(a)及び図11(a)は、鎖線で毎秒回転数指令値f を示し、実線で毎秒回転数での実速度fを示し、点線で毎秒回転数の推定値fm_estを示す。
 これらは、電気角速度での指令値ω、実速度ω、推定値ωestに対して下記の式(9a)~(9c)の関係を有する。
FIG. 10 (a) and FIG. 11 (a), a chain line at the indicated per second rotation speed command value f m *, indicates actual speed f m in revolutions per second by the solid line, the estimated value of revolutions per second by a dotted line f M_est Is shown.
These have the relations of the following equations (9a) to (9c) with respect to the command value ω * at the electric angular velocity, the actual velocity ω, and the estimated value ω est .
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 図10(b)及び図11(b)は、実線でU相電流Iを示し、点線でV相電流Iを示し、鎖線でW相電流Iを示す。 In FIGS. 10 (b) and 11 (b), the solid line shows the U-phase current I u , the dotted line shows the V-phase current I v , and the chain line shows the W-phase current I w .
 図10(c)及び図11(c)は、実線で出力トルクTを示し、点線で負荷トルクTを示す。
 図10(d)及び図11(d)は、鎖線でトルク電流の目標値Iδ **を示し、実線で実際のトルク電流Iδを示す。
 図10(e)及び図11(e)は、実線で圧縮機シェル922の角加速度Aaを示す。
10 (c) and 11 (c) show the output torque T m with a solid line and the load torque T l with a dotted line.
In FIGS. 10 (d) and 11 (d), the chain line shows the target value I δ ** of the torque current, and the solid line shows the actual torque current I δ .
10 (e) and 11 (e) show the angular acceleration Aa of the compressor shell 922 with a solid line.
 図10(c)及び図11(c)から分かるように、負荷トルクTの脈動は、周期が0.05秒であり、従って周波数が20Hzである場合を想定している。 As can be seen from FIGS. 10 (c) and 11 (c), the pulsation of the load torque T l assumes a case where the period is 0.05 seconds and therefore the frequency is 20 Hz.
 停止のタイミングに制約を加えない場合には、例えば図10(c)に示すように、負荷トルクTが最小になると推定された位相(推定されたトルク最小位相)以外の位相で電動機7を停止させてしまう可能性がある。図10(e)の場合、停止後の圧縮機シェル922の角加速度Aaが大きくなることがあり、好ましくないことが分かる。 In the absence of added constraints on the timing of the stop, for example, as shown in FIG. 10 (c), the load torque T l is minimized and the estimated phase electric motor 7 at (estimated torque minimum phase) other than the phase There is a possibility of stopping it. In the case of FIG. 10E, it can be seen that the angular acceleration Aa of the compressor shell 922 after stopping may be large, which is not preferable.
 一方、負荷トルクTが最小になると推定された位相(推定されたトルク最小位相)を含む期間にインバータ30を停止させる場合には、図11(e)に示すように、停止後の圧縮機シェル922の角加速度Aaが小さい値となり、好ましいことが分かる。 On the other hand, when the inverter 30 is stopped during the period including the phase estimated to minimize the load torque T l (estimated minimum torque phase), as shown in FIG. 11 (e), the compressor after the stop is performed. It can be seen that the angular acceleration Aa of the shell 922 becomes a small value, which is preferable.
 図12に各位相における負荷トルクと、各位相でインバータ30を停止させた場合の、停止後の圧縮機シェル922の角加速度の大きさApの一例を示す。
 図10(e)及び図11(e)の角加速度Aaは、各時点における瞬時値を示すのに対して、図12の角加速度の大きさApは、当該位相でインバータ30を停止させた場合に、その直後に圧縮機シェル922に加わる角加速度のpp値(ピークピーク値)、より具体的には、停止後、振動が収まるまでの期間中の上記pp値の最大値を表す。
FIG. 12 shows an example of the load torque in each phase and the magnitude Ap of the angular acceleration of the compressor shell 922 after the stop when the inverter 30 is stopped in each phase.
The angular acceleration Aa in FIGS. 10 (e) and 11 (e) indicates an instantaneous value at each time point, whereas the magnitude Ap of the angular acceleration in FIG. 12 indicates the case where the inverter 30 is stopped in the relevant phase. In addition, it represents the pp value (peak peak value) of the angular acceleration applied to the compressor shell 922 immediately after that, and more specifically, the maximum value of the pp value during the period from the stop to the settlement of the vibration.
 図12に示されるように、停止させる位相における負荷トルクが小さいほど、停止後の角加速度(pp値)Apが小さく、トルク最小位相で停止させることで、停止後の角加速度(pp値)Apを最小にすることができ、従って、振動が少なくて済むことが分かる。 As shown in FIG. 12, the smaller the load torque in the stopped phase, the smaller the angular acceleration (pp value) Ap after stopping, and by stopping at the minimum torque phase, the angular acceleration (pp value) Ap after stopping. It can be seen that the vibration can be minimized and therefore less vibration is required.
 本実施の形態では、上記のように、トルク最小位相演算部104で、出力トルクTを求め、Tから、低周波数成分Tmcos、Tmsinを求め、Tmcos、Tmsinから式(7)により、推定負荷トルクのn次の脈動成分が最小になる位相θmn_minを求めている。
 上記の方法で、推定負荷トルクのn次の脈動成分が最小になる位相θmn_minを求めることができる理由を以下に説明する。
In this embodiment, as described above, a torque minimum phase calculating unit 104 calculates the output torque T m, from T m, the low frequency components T Mcos, the T msin determined, T Mcos, wherein the T msin (7 ) To obtain the phase θ mn_min that minimizes the nth-order pulsation component of the estimated load torque.
The reason why the phase θ mn_min that minimizes the nth-order pulsation component of the estimated load torque can be obtained by the above method will be described below.
 速度脈動を抑制する制御(脈動抑制制御)が理想的に行えている状況(速度の変動が抑制されている状態)では、出力トルクTが負荷トルクTと同位相でかつ同振幅となり、出力トルクTが最小になる位相は負荷トルクTが最小になる位相と一致する。 In a situation where the control for suppressing the speed pulsation (pulsation suppression control) is ideally performed (a state in which the fluctuation of the speed is suppressed), the output torque T m is in phase with the load torque T l and has the same amplitude. The phase at which the output torque T m is minimized coincides with the phase at which the load torque T l is minimized.
 そのため脈動抑制制御を行って、出力トルクTが負荷トルクTと同位相でかつ同振幅である状態になれば、この状態で、出力トルクTが最小になる位相から負荷トルクTが最小になる位相を推定することが可能となる。 Therefore by performing pulsation suppression control, if the state output torque T m are in phase a and the same amplitude and the load torque T l, in this state, the load torque T l is the phase of the output torque T m is a minimum It is possible to estimate the minimum phase.
 なお、リラクタンストルクが小さい電動機7であればトルク電流が最小になる位相と負荷トルクが最小になる位相も概ね一致する。従って、出力トルクが最小であるときはトルク電流も最小値又はこれに近い値になり、相電流も最小値又はこれに近い値になる。従って、相電流を検出して、検出された相電流が最小値になる位相を、トルク最小位相として検出しても良い。 If the motor 7 has a small reluctance torque, the phase in which the torque current is minimized and the phase in which the load torque is minimized are almost the same. Therefore, when the output torque is the minimum, the torque current also becomes the minimum value or a value close to the minimum value, and the phase current also becomes the minimum value or a value close to the minimum value. Therefore, the phase current may be detected, and the phase at which the detected phase current becomes the minimum value may be detected as the torque minimum phase.
 出力トルクTは上記の式(3)で与えられる。
 例えば電動機7の回転周波数のn倍の周波数の脈動成分のみを補償する脈動抑制制御が行われている場合、式(3)で与えられる出力トルクTに直流分と交流分(n次の脈動成分)とが含まれていると考えられるので、式(3)を下記の式(10)のように変形することが可能である。
The output torque T m is given by the above equation (3).
For example, when pulsation suppression control that compensates only for the pulsation component having a frequency n times the rotation frequency of the electric motor 7 is performed, the output torque Tm given by the equation (3) is added to the DC component and the AC component (nth order pulsation). Since it is considered that the component) is contained, the formula (3) can be modified as shown in the following formula (10).
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 TmDCは、トルクTの直流成分、
 Tmcosは、トルクTのn次の脈動成分の余弦成分の振幅、
 Tmsinは、トルクTのn次の脈動成分の正弦成分の振幅である。
T mDC is a DC component of torque T m ,
T mcos is the amplitude of the cosine component of the nth-order pulsating component of torque T m .
T msin is the amplitude of the sinusoidal component of the nth-order pulsating component of torque T m .
 式(10)は下記の式(11)のように変形できる。
Figure JPOXMLDOC01-appb-M000011
Equation (10) can be transformed as in equation (11) below.
Figure JPOXMLDOC01-appb-M000011
 Tmcos、Tmsinは、直流量であり、時間とともに緩やかに変化することはあってもθの変化と同程度の周期で変化することがない。従って、式(11)で与えられる出力トルクTが最小になるのは、下記の式(12)で表される余弦関数が最小になるときである。 T mcos and T msin are DC amounts, and although they may change slowly with time, they do not change at the same period as the change of θ m . Therefore, the output torque T m given by the equation (11) is minimized when the cosine function represented by the following equation (12) is minimized.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 式(12)で表される余弦関数が最小になるのは、その位相がπであるときである。即ち、下記の式(13)が満たされるときに、式(12)で表される余弦関数が最小になる。 The cosine function represented by equation (12) is minimized when its phase is π. That is, when the following equation (13) is satisfied, the cosine function represented by the equation (12) becomes the minimum.
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 式(13)が満たされるときのθmnをθmn_minで表すと、上記の式(7)が得られる。
 即ち、上記の式(7)で求めた位相θmn_minが、推定負荷トルクのn次の脈動成分が最小になる位相であることが分かる。
When θ mn when the formula (13) is satisfied is expressed by θ mn_min , the above formula (7) is obtained.
That is, it can be seen that the phase θ mn_min obtained by the above equation (7) is the phase at which the nth-order pulsation component of the estimated load torque is minimized.
 次にn次の脈動成分が最小になる位相θmn_minと、トルクが最小値又はそれに近い値を維持する期間Tyとの関係について述べる。
 負荷要素の特性によっては、負荷トルクがn次の脈動成分のみならず、n次の脈動成分以外の成分、特に高調波成分をも含む場合がある。トルクが最小値に近い値を保つ期間の長さは、含まれる高調波によって異なる。
Next, the relationship between the phase θ mn_min in which the nth-order pulsation component is minimized and the period Ty in which the torque maintains the minimum value or a value close to the minimum value will be described.
Depending on the characteristics of the load element, the load torque may include not only the nth-order pulsating component but also a component other than the nth-order pulsating component, particularly a harmonic component. The length of time that the torque remains close to the minimum depends on the harmonics it contains.
 図12は、負荷トルクTのみならずそのn次の脈動成分Tlnをも示す。横軸は、n次の脈動成分Tlnの1周期を360度とする位相θmnである。 FIG. 12 shows not only the load torque T l but also its nth-order pulsating component T ln . The horizontal axis is the phase θ mn with one cycle of the nth-order pulsating component T ln as 360 degrees.
 図示の例では、n次の脈動成分Tlnが最小になる位相θmn_minに対して、角度θmnyaだけ前から角度θmnybだけ後までの期間Ty、トルクTが最小又は最小に近い値である。 In the illustrated example, the phase theta Mn_min the n-order ripple component T ln is minimized, the period Ty from the previous angle theta Mnya until after the angle theta Mnyb, torque T l is at a value close to the minimum or the minimum is there.
 具体的には、n次の脈動成分Tlnが最小になる位相θmn_minは、62度であり、トルクTが最小になる位相は、n次の脈動成分Tlnが最小になる位相θmn_minに一致している。
 そして、2度から120度までの期間Ty、トルクTが負の値であり、かつトルクの最小値又はこれに近い値を維持する。即ち、n次の脈動成分Tlnが最小になる位相θmn_min(=62度)に対して、角度θmnya=60度だけ前から角度θmnyb=58度だけ後までの期間Ty、トルクTが最小値又は最小値に近い値である。
Specifically, the phase theta Mn_min the n-order ripple component T ln is minimized is 62 degrees, the phase of the torque T l is minimized, the phase theta Mn_min the n-order ripple component T ln is minimized Is consistent with.
Then, during the period from 2 degrees to 120 degrees, Ty and torque Tl are negative values, and the minimum value of torque or a value close to this is maintained. That is, with respect to the phase θ mn_min (= 62 degrees) at which the nth-order pulsating component T ln is minimized, the period Ty and torque T l from before the angle θ mnya = 60 degrees to after the angle θ mnyb = 58 degrees. Is the minimum value or a value close to the minimum value.
 このような場合、期間Tyのどの位相でも停止後の圧縮機シェル922の角加速度のpp値Apは同等となり、停止時の配管の振動は小さくなる。 In such a case, the pp value Ap of the angular acceleration of the compressor shell 922 after stopping is the same in any phase of the period Ty, and the vibration of the pipe at the time of stopping becomes small.
 上記の期間Tyを定める角度θmnya、θmnybは、n次の脈動成分の1周期を360度とする角度である。図12に示す例は、n=1の場合であり、角度θmnya、θmnybが、機械角での角度θmya、θmybに等しい。
 nが1以外である場合には、θmnya、θmnybと、θmya、θmybとの間には、下記の式(14a)及び(14b)の関係がある。
The angles θ mnya and θ mnyb that determine the period Ty are angles in which one cycle of the nth-order pulsating component is 360 degrees. The example shown in FIG. 12 is the case of n = 1, and the angles θ mnya and θ mnyb are equal to the angles θ mya and θ myb at the mechanical angle.
When n is other than 1, theta Mnya, and θ mnyb, θ mya, between theta myb is a relationship of the following equation (14a) and (14b).
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 従って、期間Tyを機械角で表す場合には、上記のθmnya、θmnybの代わりに、θmya/n、θmyb/nを用いる必要がある。
 例えば、上記の第1の期間は、第1の機械角θmyaをnで割ることで得られる値であり、上記の第2の期間は、第2の機械角θmybをnで割ることで得られる値である。
Therefore, when the period Ty is expressed by the mechanical angle, it is necessary to use θ mya / n and θ myb / n instead of the above θ mnya and θ mnyb .
For example, the first period is a value obtained by dividing the first mechanical angle θ mya by n, and the second period is a value obtained by dividing the second mechanical angle θ myb by n. This is the value obtained.
 上記の例では、トルク最小位相演算部104で、式(7)で表される演算によりトルクが最小になる位相(トルクのn次の脈動成分が最小になる位相)を算出した。代わりに、出力トルクTの変化の履歴から、負荷トルクが最小になる位相を推定することとしても良い。 In the above example, the torque minimum phase calculation unit 104 calculates the phase at which the torque is minimized (the phase at which the nth-order pulsating component of the torque is minimized) by the calculation represented by the equation (7). Alternatively, the phase at which the load torque is minimized may be estimated from the history of changes in the output torque T m .
 この場合の構成例を図13に示す。
 図示のトルク最小位相演算部104bは、トルク計算部401と、計算値履歴記憶部421と、計算値履歴解析部422とを有する。
A configuration example in this case is shown in FIG.
The illustrated minimum torque phase calculation unit 104b includes a torque calculation unit 401, a calculation value history storage unit 421, and a calculation value history analysis unit 422.
 トルク計算部401は、図6のトルク計算部401と同様に例えば式(3)で表される演算を行って出力トルクTを計算する。出力トルクTの計算は、予め定められた周期のサンプリングタイミング毎に行われる。 Similar to the torque calculation unit 401 of FIG. 6, the torque calculation unit 401 calculates the output torque T m by performing the calculation represented by the equation (3), for example. The output torque T m is calculated at each sampling timing having a predetermined period.
 計算値履歴記憶部421は、トルク計算部401でサンプリングタイミング毎に計算された出力トルクTの値(計算値)を蓄積し、蓄積された値の時系列を生成する。例えば、予め定められた数の周期だけ前までの値を記憶する。ここでいう「周期」は、トルクのn次の脈動成分の周期である。蓄積された時系列を表す波形の一例を図14に示す。図14で白抜きの「〇」は、サンプルされた出力トルクの値を示す。図示の例では3周期分の値により時系列が形成されている。 Calculated history storage unit 421 accumulates the value (calculated value) of the output torque T m calculated at each sampling timing in the torque calculation unit 401, generates the time series of the accumulated value. For example, the value up to the previous value is stored for a predetermined number of cycles. The "cycle" here is the cycle of the nth-order pulsating component of torque. FIG. 14 shows an example of a waveform representing the accumulated time series. White circles in FIG. 14 indicate sampled output torque values. In the illustrated example, a time series is formed by the values for three cycles.
 計算値履歴解析部422は、上記の時系列から、各周期において、出力トルクTの値が最小である位相(トルク最小位相)を求める。
 各サンプリングタイミングは、例えば図5の電気位相演算部116で算出される位相θに対応付けられており、θとθmnとの間には、下記の式(15)で表される関係がある。
Figure JPOXMLDOC01-appb-M000015
Calculated history analysis section 422, from the time series of the, in each period, the value of the output torque T m is determined phase (torque minimum phase) is minimal.
Each sampling timing is associated with the phase θ e calculated by the electrical phase calculation unit 116 of FIG. 5, for example, and the relationship between θ e and θ mn is represented by the following equation (15). There is.
Figure JPOXMLDOC01-appb-M000015
 そこで、例えば、各周期において計算された出力トルクTの値が最小値であると判定されたサンプリングタイミングに対応する位相θにn/Pを掛けることで、θmn_minを求めることができる。
 各周期の長さは、計算された出力トルク値の変化に基づいて判定することができる。例えば、最小値の発生から、次の最小値の発生までの時間、及び最大値の発生から次の最大値の発生までの時間の一方又は双方に基づいて算出することができる。
Therefore, for example, θ mn_min can be obtained by multiplying the phase θ e corresponding to the sampling timing determined that the value of the output torque T m calculated in each cycle is the minimum value by n / P m. ..
The length of each cycle can be determined based on the calculated change in output torque value. For example, it can be calculated based on one or both of the time from the occurrence of the minimum value to the occurrence of the next minimum value and the time from the occurrence of the maximum value to the occurrence of the next maximum value.
 各周期において、トルク最小位相を求めるに当たり、それより前の1又は2以上の周期について求められたトルク最小位相に基づいて補正を行っても良い。例えば、各周期について当該周期の計算値(当該周期内のサンプリングタイミングに計算されたトルクの値)のみに基づいて定められたトルク最小位相と、それより前の1又は2以上の周期の各々について、各々の周期の計算値のみに基づいて求められたトルク最小位相との重み付け平均を、当該各周期についてのトルク最小位相としても良い。 In each cycle, when obtaining the minimum torque phase, correction may be performed based on the obtained minimum torque phase for one or more cycles before that. For example, for each cycle, the minimum torque phase determined based only on the calculated value of the cycle (the value of the torque calculated at the sampling timing within the cycle) and one or two or more cycles before it. , The weighted average with the minimum torque phase obtained based only on the calculated value of each period may be used as the minimum torque phase for each period.
 重み付けに当たり、当該各周期の計算値のみに基づいて求めたトルク最小位相に対し、最も大きな重みを付けても良い。また、当該各周期以外の周期については、当該各周期に近い周期ほどより大きな重みを付けても良い。 For weighting, the largest weight may be given to the minimum torque phase obtained based only on the calculated value of each cycle. Further, for cycles other than each cycle, a cycle closer to each cycle may be given a larger weight.
 上記の例では、出力トルクが最小になる位相を算出している。代わりに、トルク電流が最小になる位相を算出し、算出した位相を、負荷トルクが最小になる位相として用いても良い。 In the above example, the phase that minimizes the output torque is calculated. Alternatively, the phase in which the torque current is minimized may be calculated, and the calculated phase may be used as the phase in which the load torque is minimized.
 上記の例では、各周期において負荷トルクが最小(最小値)になる位相を含む期間中にインバータ30を停止させることとしている。代わりに、各周期において負荷トルクが最小値に近い値になる位相を含む期間中にインバータ30を停止させることとしても良い。
 要するに、負荷トルクが最小値又は該最小値に近い値になる位相を含む期間中にインバータ30を停止させることとすれば良い。
In the above example, the inverter 30 is stopped during the period including the phase in which the load torque becomes the minimum (minimum value) in each cycle. Alternatively, the inverter 30 may be stopped during a period including a phase in which the load torque becomes a value close to the minimum value in each cycle.
In short, the inverter 30 may be stopped during a period including a phase in which the load torque becomes the minimum value or a value close to the minimum value.
 また、負荷トルクが負になる期間がある場合には、負荷トルクが負になる期間の全部又は一部を、上記の負荷トルクが最小値又は該最小値に近い値になる位相を含む期間として用いても良い。 When there is a period in which the load torque becomes negative, all or part of the period in which the load torque becomes negative is set as a period including the phase in which the load torque becomes the minimum value or a value close to the minimum value. You may use it.
 上記の例では、インバータ30の入力側の直流電流Idcから相電流I、I、Iを復元する構成としている。代わりに、インバータ30の出力線331、332、333に電流検知器を設け、該検知器で相電流を検出する構成としても良い。そうする場合には、上記検知器で検出される電流を、電流復元部111で復元された電流の代わりに用いれば良い。 In the above example, the phase currents I u , I v , and I w are restored from the direct current I dc on the input side of the inverter 30. Alternatively, a current detector may be provided on the output lines 331, 332, and 333 of the inverter 30, and the detector may be used to detect the phase current. In that case, the current detected by the detector may be used instead of the current restored by the current restoration unit 111.
 インバータ主回路310のスイッチング素子311~316としては、IGBT(Insulated Gate Bipolar Transistor)或いはMOSFETを想定しているが、スイッチングを行うことが可能な素子であれば、どのようなものを用いても良い。なお、MOSFETの場合は、構造上寄生ダイオードを有するため環流用の整流素子(321~326)を逆並列接続しなくても同様の効果を得ることができる。 As the switching elements 311 to 316 of the inverter main circuit 310, IGBTs (Insulated Gate Bipolar Transistors) or MOSFETs are assumed, but any elements that can perform switching may be used. .. Since the MOSFET has a parasitic diode due to its structure, the same effect can be obtained without connecting the rectifying elements (321 to 326) for circulation in antiparallel.
 スイッチング素子311~316を構成する材料については、ケイ素(Si)だけでなく、ワイドバンドギャップ半導体である炭化ケイ素(SiC)、窒化ガリウム(GaN)、ダイヤモンド等を用いたもので構成することにより、損失をより少なくすることが可能となる。 The materials constituting the switching elements 311 to 316 are made of not only silicon (Si) but also silicon carbide (SiC), gallium nitride (GaN), diamond, etc., which are wide bandgap semiconductors. It is possible to reduce the loss.
 上記の実施の形態によれば、停止の際の負荷要素の振動を確実にかつ十分に抑制することができる。負荷要素が圧縮機である場合、圧縮機シェルの振動を抑制することができ、圧縮機シェルに接続された配管の破損を防ぐことができる。逆に言えば、配管として、金属疲労耐力の比較的小さいものを用いることができ、配管のコストを低減することができる。 According to the above embodiment, the vibration of the load element at the time of stopping can be reliably and sufficiently suppressed. When the load element is a compressor, vibration of the compressor shell can be suppressed, and damage to the piping connected to the compressor shell can be prevented. Conversely, as the pipe, a pipe having a relatively small metal fatigue resistance can be used, and the cost of the pipe can be reduced.
 上記の実施の形態の構成は、本発明の構成の一例であり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、一部を省略する等、変更して構成することも可能である。 The configuration of the above embodiment is an example of the configuration of the present invention, can be combined with another known technique, and is modified by omitting a part thereof without departing from the gist of the present invention. It is also possible to configure it.
 以上のように、本発明は、電動機駆動装置、及びそれを備えた冷凍サイクル適用機器に適している。
 冷凍サイクル適用機器の一例として空気調和機を挙げたが、本発明はこれに限定されず、例えば冷蔵庫、冷凍庫、ヒートポンプ給湯器などにも適用できる。
As described above, the present invention is suitable for an electric motor drive device and a refrigeration cycle applicable device including the electric motor drive device.
Although an air conditioner has been mentioned as an example of a refrigeration cycle applicable device, the present invention is not limited to this, and can be applied to, for example, a refrigerator, a freezer, a heat pump water heater, and the like.
 1 交流電源、 2 電動機駆動装置、 4 リアクタ、 7 電動機、 20 平滑コンデンサ、 30 インバータ、 82 母線電圧検出部、 84 母線電流検出部、 90 制御電源生成回路、 100 制御装置、 102 運転制御部、 104 トルク最小位相演算部、 110 インバータ制御部、 111 電流復元部、 112 3相2相変換部、 113 励磁電流指令値生成部、 115 電圧指令値演算部、 116 電気位相演算部、 117 2相3相変換部、 118 PWM信号生成部、 401 トルク計算部、 402 除算部、 403 乗算部、 405 余弦演算部、 406 正弦演算部、 407,408 乗算部、 409,410 ローパスフィルタ、 411 逆正接計算部、 412 加算部、 421 計算値履歴記憶部、 422 計算値履歴解析部、 501 周波数推定部、 502 減算部、 503 速度制御部、 504 補償値演算部、 505 加算部、  509,510 減算部、 511 励磁電流制御部、 512 トルク電流制御部、 551 余弦演算部、 552 正弦演算部、 553,554 乗算部、 555,556 ローパスフィルタ、 557,558 減算部、 559,560 周波数制御部、 561,562 乗算部、 563 加算部、 900 冷凍サイクル、 902 四方弁、 904 圧縮機、 906 室内熱交換器、 908 膨張弁、 910 室外熱交換器、 922 圧縮機シェル、 924 圧縮機構、 926 吸入配管、 928 吐出配管。
 
1 AC power supply, 2 Motor drive device, 4 Reactor, 7 Electric motor, 20 Smoothing capacitor, 30 Inverter, 82 Bus voltage detector, 84 Bus current detector, 90 Control power generation circuit, 100 Control device, 102 Operation control unit, 104 Minimum torque phase calculation unit, 110 Inverter control unit, 111 Current restoration unit, 112 3-phase 2-phase conversion unit, 113 Excitation current command value generation unit, 115 Voltage command value calculation unit, 116 Electric phase calculation unit, 117 2-phase 3-phase Conversion unit, 118 PWM signal generation unit, 401 torque calculation unit, 402 division unit, 403 multiplication unit, 405 cosine calculation unit, 406 sine calculation unit, 407,408 multiplication unit, 409,410 low pass filter, 411 inverse positive connection calculation unit, 412 Adder, 421 Calculated value history storage unit, 422 Calculated value history analysis unit, 501 Frequency estimation unit, 502 subtractor unit, 503 Speed control unit, 504 Compensation value calculation unit, 505 Adder unit, 509, 510 Subtractor, 511 Excitation Current control unit, 512 torque current control unit, 551 chord calculation unit, 552 sine calculation unit, 555,554 multiplication unit, 555,556 low pass filter, 557,558 subtraction unit, 559,560 frequency control unit, 561,562 multiplication unit. , 563 Adder, 900 Refrigeration Cycle, 902 Four-way Valve, 904 Compressor, 906 Indoor Heat Exchanger, 908 Expansion Valve, 910 Outdoor Heat Exchanger, 922 Compressor Shell, 924 Compression Mechanism, 926 Suction Pipe, 928 Discharge Pipe.

Claims (9)

  1.  負荷トルクが周期的に変動する負荷要素を駆動する電動機と、
     前記電動機に周波数及び電圧値が可変の交流電圧を印加するインバータと、
     前記インバータを制御する制御装置とを有し、
     前記制御装置は、
     前記電動機の出力トルクが前記負荷トルクの周期的変動に追従するように、前記インバータを制御し、
     前記電動機の停止を行う場合、前記負荷トルクが最小値又は該最小値に近い値になるトルク最小位相を含む期間に前記インバータを停止させる
     電動機駆動装置。
    An electric motor that drives a load element whose load torque fluctuates periodically,
    An inverter that applies an AC voltage with variable frequency and voltage value to the motor,
    It has a control device that controls the inverter.
    The control device is
    The inverter is controlled so that the output torque of the electric motor follows the periodic fluctuation of the load torque.
    When the electric motor is stopped, the electric motor drive device that stops the inverter during a period including a minimum torque phase at which the load torque becomes a minimum value or a value close to the minimum value.
  2.  前記制御装置は、前記電動機の出力トルクを前記負荷トルクの周期的変動に追従させるためのトルク電流補償値を生成し、生成されたトルク電流補償値に基づいてトルク電流指令値を補正し、補正されたトルク電流指令値に基づいて電圧指令値を生成し、生成された電圧指令値に基づいて前記インバータを制御する
     ことを特徴とする請求項1に記載の電動機駆動装置。
    The control device generates a torque current compensation value for making the output torque of the electric motor follow the periodic fluctuation of the load torque, and corrects and corrects the torque current command value based on the generated torque current compensation value. The electric motor drive device according to claim 1, wherein a voltage command value is generated based on the generated torque / current command value, and the inverter is controlled based on the generated voltage command value.
  3.  前記制御装置は、前記電動機の出力トルクを算出し、算出された出力トルクを前記負荷トルクの推定値として用い、該推定値に基づいて前記トルク最小位相を検出する
     ことを特徴とする請求項2に記載の電動機駆動装置。
    2. The control device is characterized in that the output torque of the electric motor is calculated, the calculated output torque is used as an estimated value of the load torque, and the minimum torque phase is detected based on the estimated value. The electric motor drive device described in.
  4.  前記負荷トルクの周期的に変動する成分のうち、前記電動機の回転周波数のn倍の周波数の成分が最も大きいとき、前記トルク電流補償値は、前記n倍の周波数の成分を主として補償するためのものである
     ことを特徴とする請求項2に記載の電動機駆動装置。
    When the component having a frequency n times the rotation frequency of the electric motor is the largest among the components that fluctuate periodically of the load torque, the torque current compensation value is mainly for compensating the component having a frequency n times the frequency. The electric motor drive device according to claim 2, wherein the electric motor drive device is characterized.
  5.  前記制御装置は、前記負荷トルクの周期的に変動する成分のうち、前記n倍の周波数の成分が最小値になる位相を、前記トルク最小位相として検出する
     ことを特徴とする請求項4に記載の電動機駆動装置。
    The fourth aspect of claim 4, wherein the control device detects, as the minimum torque phase, the phase in which the n-fold frequency component becomes the minimum value among the periodically fluctuating components of the load torque. Electric motor drive device.
  6.  前記制御装置は、前記電動機の出力トルクを算出し、算出された出力トルクから、前記n倍の周波数の成分を抽出し、抽出した成分が最小値になる位相を、前記負荷トルクのうち、前記n倍の周波数の成分が最小値になる位相として検出する
     ことを特徴とする請求項5に記載の電動機駆動装置。
    The control device calculates the output torque of the electric motor, extracts the n-fold frequency component from the calculated output torque, and sets the phase at which the extracted component becomes the minimum value among the load torques. The electric motor driving device according to claim 5, wherein a component having a frequency of n times is detected as a phase having a minimum value.
  7.  前記トルク最小位相を含む期間は、前記n倍の周波数の成分が最小値になる位相に対し、第1の期間だけ前から第2の期間だけ後までの期間である
     ことを特徴とする請求項6に記載の電動機駆動装置。
    The claim is characterized in that the period including the minimum torque phase is a period from before the first period to after the second period with respect to the phase in which the component of the n times the frequency becomes the minimum value. 6. The electric motor drive device according to 6.
  8.  前記第1の期間は、予め定められた第1の機械角をnで割ることで得られる角度であり、
     前記第2の期間は、予め定められた第2の機械角をnで割ることで得られる角度である
     ことを特徴とする請求項7に記載の電動機駆動装置。
    The first period is an angle obtained by dividing a predetermined first mechanical angle by n.
    The electric motor driving device according to claim 7, wherein the second period is an angle obtained by dividing a predetermined second mechanical angle by n.
  9.  請求項1から8のいずれか1項に記載の電動機駆動装置を備える冷凍サイクル適用機器。 A refrigeration cycle applicable device including the electric motor drive device according to any one of claims 1 to 8.
PCT/JP2019/026668 2019-07-04 2019-07-04 Electric motor drive device and refrigeration cycle application equipment WO2021002002A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021529664A JP7308949B2 (en) 2019-07-04 2019-07-04 Motor drive device and refrigeration cycle application equipment
PCT/JP2019/026668 WO2021002002A1 (en) 2019-07-04 2019-07-04 Electric motor drive device and refrigeration cycle application equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/026668 WO2021002002A1 (en) 2019-07-04 2019-07-04 Electric motor drive device and refrigeration cycle application equipment

Publications (1)

Publication Number Publication Date
WO2021002002A1 true WO2021002002A1 (en) 2021-01-07

Family

ID=74101162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/026668 WO2021002002A1 (en) 2019-07-04 2019-07-04 Electric motor drive device and refrigeration cycle application equipment

Country Status (2)

Country Link
JP (1) JP7308949B2 (en)
WO (1) WO2021002002A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001037281A (en) * 1999-05-18 2001-02-09 Matsushita Electric Ind Co Ltd Motor torque controller
WO2004083744A1 (en) * 2003-03-17 2004-09-30 Matsushita Electric Industrial Co. Ltd. Air conditioner
JP2012100510A (en) * 2010-10-31 2012-05-24 Shinji Aranaka Drive controller of synchronous motor
WO2013042237A1 (en) * 2011-09-22 2013-03-28 三菱電機株式会社 Motor control device
US20180195508A1 (en) * 2016-03-09 2018-07-12 Gd Midea Air-Conditioning Equipment Co., Ltd. Air conditioner, and method and device for controlling its compressor to stop

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001037281A (en) * 1999-05-18 2001-02-09 Matsushita Electric Ind Co Ltd Motor torque controller
WO2004083744A1 (en) * 2003-03-17 2004-09-30 Matsushita Electric Industrial Co. Ltd. Air conditioner
JP2012100510A (en) * 2010-10-31 2012-05-24 Shinji Aranaka Drive controller of synchronous motor
WO2013042237A1 (en) * 2011-09-22 2013-03-28 三菱電機株式会社 Motor control device
US20180195508A1 (en) * 2016-03-09 2018-07-12 Gd Midea Air-Conditioning Equipment Co., Ltd. Air conditioner, and method and device for controlling its compressor to stop

Also Published As

Publication number Publication date
JP7308949B2 (en) 2023-07-14
JPWO2021002002A1 (en) 2021-01-07

Similar Documents

Publication Publication Date Title
WO2004095684A1 (en) Motor controlling device, compressor, air conditioner and refrigerator
JP7072714B2 (en) Motor drive device and refrigeration cycle applicable equipment
WO2017037945A1 (en) Power conversion device and heat pump device
JP7050951B2 (en) Load drive device, refrigeration cycle device and air conditioner
WO2021002002A1 (en) Electric motor drive device and refrigeration cycle application equipment
JP7166468B2 (en) Motor drive device and refrigeration cycle application equipment
WO2022153448A1 (en) Power conversion device
WO2023047486A1 (en) Power conversion device, electric motor drive device, and refrigeration cycle-applicable apparatus
WO2023105689A1 (en) Power conversion device, electric motor drive device, and refrigeration cycle application device
JP7515739B2 (en) Power conversion devices, motor drive devices and refrigeration cycle application devices
WO2023105761A1 (en) Power conversion device, electric motor drive device, and refrigeration cycle-applicable apparatus
WO2023067810A1 (en) Power conversion device, motor drive device, and refrigeration-cycle application apparatus
WO2023095311A1 (en) Power conversion device, electric motor drive device, and refrigeration-cycle-applicable apparatus
JP2020120533A (en) Compressor control device
WO2023073870A1 (en) Power conversion device, motor driving device, and refrigeration-cycle application instrument
WO2024075210A1 (en) Power conversion device, motor drive device, and refrigeration cycle application device
WO2023073994A1 (en) Electric motor drive device and refrigeration cycle application device
TWI662782B (en) Motor driving device, refrigeration cycle device including the same, and motor driving method
WO2023067811A1 (en) Power conversion device, motor drive device, and cooling cycle application apparatus
JP7515740B2 (en) Power conversion devices, motor drive devices and refrigeration cycle application devices
WO2023105570A1 (en) Power conversion device, motor drive device, and refrigeration cycle application apparatus
WO2023100305A1 (en) Power conversion device, motor driving device, and refrigeration-cycle application instrument
WO2023084600A1 (en) Power conversion device, motor drive device, and equipment for refrigeration cycle applications
WO2023162106A1 (en) Motor drive device and refrigeration cycle device
WO2024142324A1 (en) Power conversion device, motor drive device, and refrigeration cycle application apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19936454

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021529664

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19936454

Country of ref document: EP

Kind code of ref document: A1