WO2004074175A1 - Hydrogen gas separator - Google Patents

Hydrogen gas separator Download PDF

Info

Publication number
WO2004074175A1
WO2004074175A1 PCT/JP2003/002007 JP0302007W WO2004074175A1 WO 2004074175 A1 WO2004074175 A1 WO 2004074175A1 JP 0302007 W JP0302007 W JP 0302007W WO 2004074175 A1 WO2004074175 A1 WO 2004074175A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
proton
hydrogen
electron
hydrogen gas
Prior art date
Application number
PCT/JP2003/002007
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshige Matsumoto
Tetsuo Shimura
Toshinobu Yogo
Hiroyasu Iwahara
Koji Katahira
Mitsuhiko Hayashi
Mayuko Suwa
Original Assignee
National University Corporation Nagoya University
Tyk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation Nagoya University, Tyk Corporation filed Critical National University Corporation Nagoya University
Priority to JP2004568499A priority Critical patent/JPWO2004074175A1/en
Priority to PCT/JP2003/002007 priority patent/WO2004074175A1/en
Publication of WO2004074175A1 publication Critical patent/WO2004074175A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • B01D53/326Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00 in electrochemical cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/501Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/501Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
    • C01B3/503Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion characterised by the membrane
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3289Noble metal oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/768Perovskite structure ABO3

Definitions

  • the present invention relates to a hydrogen gas separation device using a proton-electron mixed conductive ceramic having both protons and electrons as conductive species as a gas permeable layer.
  • Patent Document 1 Sol id State Ionics 100 (1997) 45-52) describes the chemical formula BaCe. 9 5 ⁇ . ⁇ There have been reports on hydrogen permeability for ceramics with 0 5 O 3 _.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 10-279702 reports a method for producing hydrogen by using a palladium or palladium alloy-based proton conductive film. Palladium is extremely expensive and has many cost restrictions.
  • An object of the present invention is to provide a hydrogen gas separation device capable of producing a hydrogen gas having a high hydrogen concentration from a hydrogen-containing raw material gas without using a proton conductive membrane based on palladium or a palladium alloy. I do. Disclosure of the invention
  • the hydrogen gas separation device comprises: a base having a hollow chamber;
  • a gas permeable layer which is arranged in the hollow chamber of the substrate and partitions the hollow chamber into a gas introduction chamber into which the raw material gas is introduced and a gas outlet chamber from which hydrogen gas is led out is provided.
  • the gas permeable layer is characterized by being formed of a mixed proton-electron conductive ceramic having proton conductivity and electron conductivity as a base material.
  • the proton-electron mixed conductive ceramics according to the present invention combines protons and electrons as conductive species in a high-temperature region, and exhibits proton conductivity and electron conductivity. Is done.
  • the high-temperature region in which the proton conductivity and the electron conductivity are exhibited generally ranges from about 400 to 1700 ° C, particularly about 700 to 1200 ° C.
  • the gas permeable layer is formed using a proton-electron mixed conductive ceramic having a proton conductivity and an electron conductivity as a base material. For this reason, when the source gas is introduced into the gas introduction chamber, when the hydrogen gas contained in the source gas reaches the gas permeable layer, protons are generated from the hydrogen gas.
  • FIG. 1 is a conceptual diagram of the test apparatus used in the example.
  • FIG. 2 is a conceptual diagram having proton conductivity and electronic conductivity.
  • Figure 3 is a graph showing the results of the electromotive force of the hydrogen concentration cell.
  • FIG. 4 is a graph showing the relationship between the electromotive force and the hydrogen permeation rate.
  • Figure 5 is a graph showing the X-ray diffraction of the sample.
  • FIG. 6 is a cross-sectional view schematically showing the hydrogen gas separation device according to the first embodiment.
  • FIG. 7 is a cross-sectional view schematically showing the hydrogen gas separation device according to the second embodiment.
  • FIG. 8 is a cross-sectional view schematically showing the hydrogen gas separation device according to the third embodiment.
  • FIG. 9 is a cross-sectional view schematically showing a hydrogen gas separation device according to application example 4.
  • FIG. 10 is a cross-sectional view schematically showing a hydrogen gas separation device according to application example 5.
  • FIG. 11 is a cross-sectional view schematically showing a mode of holding the gas permeable layer in the hydrogen gas separation device.
  • FIG. 12 is a cross-sectional view schematically showing a mode of holding a gas permeable layer in another hydrogen gas separation device.
  • FIG. 13 is a cross-sectional view schematically showing a holding form of a gas permeable layer in another hydrogen gas separation device.
  • FIG. 14 is a cross-sectional view schematically showing a gas permeation layer holding form in still another hydrogen gas separation device.
  • FIG. 15 is a cross-sectional view schematically showing a mode of holding the gas permeable layer in the hydrogen gas separation device.
  • FIG. 1.6 is a cross-sectional view schematically showing a mode of holding a gas permeable layer in another hydrogen gas separation device.
  • Figure 17 ' shows the gas permeable layer of another hydrogen gas separation device. It is sectional drawing which shows the holding
  • FIG. 18 is a cross-sectional view schematically showing a gas permeation layer holding form in still another hydrogen gas separation device.
  • mixed conductive ceramics combine protons and electrons as conductive species.
  • An example of the mixed conductive ceramics is a form in which the raw material gas is held by a gas-permeable carrier through which the raw material gas can pass.
  • the thickness of the mixed conductive ceramic may be reduced in order to increase the hydrogen permeability of the mixed conductive ceramic.
  • the strength of the mixed conductive ceramic decreases. Therefore, if the mixed conductive ceramics are kept coated on the air-permeable carrier, the retention and durability of the mixed conductive ceramics can be improved even if the thickness of the mixed conductive ceramics is thin. be able to. If the porosity of the carrier is large, the source gas can reach the mixed conductive ceramics.
  • the mixed conductive ceramics can be exemplified by a configuration in which the mixed conductive ceramics are sandwiched between air-permeable carriers through which the raw material gas can pass. Thereby, the retention and durability of the mixed conductive ceramics can be further enhanced.
  • a heating device for heating the mixed conductive ceramics can be exemplified.
  • the heating principle of the heating device is not particularly limited, and may be an electric type, a combustion type, or the like.
  • the mixed conductive ceramic include a form having a catalyst layer on at least one side of the gas introduction chamber and the gas discharge chamber.
  • the catalyst layer can contain at least one of platinum, palladium, rhodium, silver, and gold. Since the catalyst layer is provided, the following anodic and cathodic reactions can be promoted, and an improvement in hydrogen permeability can be expected.
  • the proton-electron mixed conductive ceramic has the first electrode layer on the side facing the gas introduction chamber and the second electrode layer on the side facing the gas outlet chamber.
  • a mode in which a voltage is applied between the first electrode layer and the second electrode layer can be exemplified. Apply a voltage between the first and second electrode layers. If, because the electrons are supplied to the force sword, it can accelerate the reaction rate of 2H + + 2 e- ⁇ H 2 ( force cathode side).
  • the mixed conductive ceramics are metal oxide ceramics having a perovskite structure, and when the total molar ratio of the constituent metals is 2, chromium (Cr) and manganese ( ⁇ ⁇ ⁇ ⁇ ⁇ ) , Iron (Fe), cobalt (Co), nickel (Ni), ruthenium (Ru) in a molar ratio of at least 0.01 and at most 0.8.
  • Cr chromium
  • Mo manganese
  • Iron (Fe) cobalt
  • Ni nickel
  • a form having proton conductivity and electron conductivity can be exemplified.
  • At least one of chromium (Cr), manganese ( ⁇ ), iron (Fe), covanolate (Co), nickel (Ni), and ruthenium (Ru) (hereinafter also referred to as transition metal dopant elements) Is included in the molar ratio in the range of not less than 0.01 and not more than 0.8.
  • the molar ratio of the transition metal dopant element is too small, it is difficult to obtain electron conductivity in addition to the desired proton conductivity. If the molar ratio of the transition metal dopant element is excessive, other elements are relatively reduced, and it is difficult to obtain the desired proton conductivity and electron conductivity, and furthermore, the sinterability is reduced, The chemical stability and mechanical strength tend to decrease depending on the use conditions.
  • the electron conductivity seems to depend on the amount of the transition metal. If the amount of the dopant is small, the electron conductivity does not appear. It is preferable to appropriately adjust the amount of the transition metal dopant element depending on the operating temperature, cost, application, and the like.
  • the transition metal dopant element on the lower limit side, a molar ratio of 0.01 or more, 0.015 or more, 0.02 or more can be exemplified, and 0.025 or more, 0.03 or more.
  • the molar ratio can be, for example, 0.7 or less, 0.6 or less, 0.5 or less, and 0.47 or less, 0.5 or less. Examples are 45 or less, 0.43 or less, and 0.4 or less, 0.35 or less, 0.3 or less.
  • the transition metal dopant element is ruthenium, which is expensive, the molar ratio can be reduced to 0.5 or less in consideration of industrial applicability where cost is required.
  • the transition metal dopant element is more advantageous in cost than ruthenium, such as cobalt, iron, When it is Eckel or the like, the molar ratio can be, for example, 0.6 or less, 0.75 or less, or 0.8 or less.
  • the above-mentioned pair Ropusukai DOO type structure represented by the general formula ABO 3.
  • the sum of the molar ratio of the element at the A site and the molar ratio of the element at the B site is 2, chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (N i) and ruthenium (Ru) in a molar ratio of at least 0.01 and at most 0.8.
  • the transition metal dopant element described above can function mainly as a dopant for the B site. Thereby, electron conductivity can be imparted in addition to proton conductivity.
  • the fact that both proton conductivity and electron conductivity are obtained in a high-temperature region means that the ceramic has hydrogen permeability as described later.
  • the perovskite structure is stably maintained even if oxygen is considerably deficient. That is, in the general formula AB 0 3 oxygen be varied in a rather defective like, Bae Robusukai Preparative structure is stably maintained.
  • Oxygen deficiency is indicated by a symbol, and changes depending on the constituent elements of the A site, the B site (including the B 'element and B "element described below), the operating temperature, and the oxygen partial pressure of the atmosphere. Therefore, the amount of oxygen deficiency ⁇ is a molar ratio and is generally in the range of 10.7 or more to +0.7 or less, or the range of 10.5 to +0.5 inclusive.
  • the amount of oxygen (O) is, for example, in the range of 2.3 or more and 3.7 or less, or 2.5 or more and 3.5 or less in molar ratio. . it can ⁇ and not this to those limited constant
  • the mixed conducting ceramics of the general formula AB 0 3 -. be a metal oxide ceramic having a pair Robusukai preparative structure represented by a it can.
  • chrome (C r), manganese (Mn), At least one of iron (Fe), cobalt (Co), nickel (Ni), and ruthenium (Ru) is contained in a molar ratio of at least 0.01 and at least 0. .8 or less.
  • Chrome (Cr), Man At least one of the following elements (transition metal dopant elements) of gun (Mn), iron (Fe), cobalt (Co), Eckel (Ni), and ruthenium (Ru) is expressed in a molar ratio of 0.01. As described above, 0.015 or more and 0.02 or more can be exemplified, and 0.025 or more and 0.03 or more can be exemplified.
  • chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), and ruthenium (Ru) transition metal dopant element
  • Molar ratio 0.7 or less, 0.6 or less, 0.5 or less, furthermore, 0.47 or less, 0.45 or less, 0.43 or less, further 0.4 or less, Examples are 0.35 or less and 0.3 or less.
  • the basis of the sum of the molar ratio of the A site and the molar ratio of the B site is that even if the ratio of the molar ratio of the A site to the molar ratio of the B site is slightly changed, if the sum is 2, The reason is that both the ton conductivity and the electron conductivity are obtained.
  • the value of (molar ratio of A site, molar ratio of ZB site) can be in the range of 0.8 to 1.2. Alternatively, it can be within the range of 0.9 to 1.1 and within the range of 0.95 to 1.05.
  • the mixed conductive ceramics when the sum of the mole ratios of the metals constituting the metal oxide is 2, that is, the sum of the mole ratio of the A site and the B site is 2 At this time, a form containing zirconium (Zr) in a molar ratio of 0.005 or more or 0.01 or more can be adopted.
  • Zirconium can function as an element of the B site, and the amount of zirconium does not exceed the molar ratio of the B site.
  • Zirconium can be expected to improve the mechanical strength and chemical stability of ceramics. However, excess zirconium tends to decrease the hydrogen permeation rate. For this reason, when zirconium is contained, the molar ratio of zirconium can be set to a value of not less than 0.01 and not more than 0.99.
  • the lower molar ratio of zirconium is 0.012 or more, 0.015 or more, 0.02 or more, 0.025 or more, 0.03 or more, and 0.04 or more can be exemplified as necessary.
  • the molar ratio of the upper limit of zirconium that can be combined with the above lower limit is 0.999 or less, 97 or less, 0.95 or less, 0.90 or less, and 0.85 or less, 0.80 or less, 0.70 or less can be exemplified as necessary.
  • high-temperature type proton conductive ceramics have the formula A + aBi-ab
  • the mixed conductive ceramics can be represented by the composition of the chemical formula Ai + aBi- a - b -cB 'bB "cOs- a .
  • the element includes the element B 'and the element B ".
  • A can be at least one of the alkaline earth metals calcium (Ca), strontium (Sr), and barium (Ba). a satisfies the condition 0.8 ⁇ (1 + a) / (1—a) ⁇ 1.2.
  • B can be at least one of cerium (Ce), zirconium (Zr), and titanium (Ti).
  • Ce cerium
  • Zr zirconium
  • Ti titanium
  • the lanthanoid elements include praseodymium (Pr) with atomic number 59, neodymium (Nd) with atomic number 60, gadolinium (Gd) with atomic number 64, itteribium (Yb) with atomic number 70, and atomic number 62. At least one of samarium (Sm), eurobium (Eu) with atomic number 63 and terbium (Tb) with atomic number 65 can be exemplified.
  • the element B ' is mainly for the presence of protons in the ceramic.
  • the element B ' mainly plays a role in creating oxygen vacancies (sites where oxygen should exist but oxygen does not exist) in the crystal lattice.
  • the range of b can be 0 or more and 0.5 or less.
  • the lower limit of B which is the molar ratio of B and the element, may be, for example, 0.01, 0.05, and 0.1, 0.2 as necessary.
  • the upper limit of b is 0.48, 0.45, and 0.4, 0.3, 0.2 Examples can be made as necessary.
  • the element B is at least one of the transition metals chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), Eckel (Ni), and luteuium (Ru).
  • the element B " is mainly effective in imparting electron conductivity in addition to proton conductivity, and thereby allows the hydrogen permeability of the ceramics to be exhibited.
  • the range of c which is the molar ratio of the element of B ", can be from 0.01 to 0.8.
  • the lower limit of c can be appropriately selected, and is 0.015, 0.02, and 0.
  • the upper limit of c can be selected as appropriate, and 0.7, 0.6, 0.5 can be exemplified as needed, and 0.48, 0.45, 0 4, 0.3, and 0.2 can be exemplified as necessary.
  • the element of B is ruthenium, which is expensive, the value can be set to 0.5 or less.
  • the mixed conductive ceramics include barium (Ba), cerium (Ce), yttrium (Y), luteum (Ru), and oxygen (O) metal oxides. it can.
  • strontium (Sr) -zirconium (Zr) -yttrium (Y) -ruthenium (Ru) -oxygen (O) -based metal oxides can be mentioned.
  • strontium (Sr) -cerium (Ce) -ruthenium (Ru) monoxide (O) -based metal oxides can be mentioned.
  • the catalyst eyebrows can be provided on one or both of the anode side and the force side.
  • the catalyst layer can contain at least one of platinum, palladium, rhodium, silver, and gold.
  • an embodiment in which an electrode layer is laminated on at least one of the front surface and the back surface to apply a voltage can be exemplified. If a voltage is applied, it is expected that the reaction activity in the electrode layer will be promoted.
  • the electrode layer can also be used as a catalyst layer and can contain at least one of platinum, palladium, rhodium, silver, and gold.
  • the thickness is not particularly limited, and can be appropriately selected such as a thin film, a thick film, and a thick layer.
  • the thickness of the mixed conductive ceramics according to the present invention differs depending on the composition and whether the ceramics are used alone or the ceramics is formed into a thin film and held in a thin film by a gas-permeable carrier.
  • the lower limit can be 0.1 l / im, 0.5 ⁇ , 1 ⁇ m as the lower limit, and 1 Omm, 20 mm, 4 Oram, etc. as the upper limit.
  • 1 to 500 / im, 5 to 200 jum, 10 to: L00m can be exemplified.
  • the present invention is not limited to these.
  • a method of manufacturing the mixed conductive ceramics according to the present invention an appropriate method can be adopted according to the thickness and the like.
  • a method of sintering a green compact obtained by pressing a raw material powder can be adopted.
  • a method in which a solution in which the raw material powder is dispersed in a dispersion medium is applied to a substrate in a film form and then fired can be adopted.
  • a physical vapor deposition (PVD) method such as vacuum deposition, ion plating, or sputtering can be employed.
  • a chemical vapor deposition (CVD) method in which a raw material gas is guided on a heated substrate and reacted to form a film can be adopted.
  • a plasma spraying method in which a raw material powder is instantaneously melted using a heat source by plasma and sprayed onto a substrate to form a coating can be employed.
  • This embodiment is directed to a barium-cerium-yttrium-ruthenium-oxygen-based metal oxide. That is, the chemical formula B a C e. . 9 one X Y. For uxO 3 - ⁇ mixed proton-electron mixed conductive ceramics.
  • the chemical formula is Ai + aBi-a- b -eB 'bB ".
  • the B element is cerium (Ce).
  • the B 'element is yttrium (Y), and the molar ratio b of the B' element is 0.1.
  • Ruthenium is a transition metal whose valence can be easily changed.
  • the molar ratio of the oxygen deficiency ⁇ is in the range of -0.5 or more and +0.5 or less.
  • the present invention is not limited to this.
  • the starting raw material powder barium carbonate (B a C0 3, purity 9 9.9 9%), cerium oxide (C e O 3, purity 9 9.9%), yttrium oxide (Y 2 0 3, purity 9 9.9%), using each powder ruthenium oxide (RuOs, purity 99.9%).
  • B a C0 3, purity 9 9.9 9% cerium oxide (C e O 3, purity 9 9.9%)
  • yttrium oxide Y 2 0 3, purity 9 9.9%
  • RuOs ruthenium oxide
  • the calcined compact was ground in an agate mortar. Using ethanol as a dispersant, the powder was ground for 1 to 2 hours using a zirconia planetary pole mill (165 rpm) to form a powder. After that, the ethanol was evaporated by an infrared lamp in the fume hood, and the powder was dried in a vacuum dryer at 125 ° C for at least one day. The powder obtained in this way was molded in another molding die (die) to obtain a disc-shaped green compact. Furthermore, the green compact was pressed with a hydrostatic pressure by a rubber press method (pressing force: 30 OMPa) to form a pressed body. Its pressure body 1 6 5 l O ° in an air atmosphere, and sintered by heating holding 1 0 hours. Thus, a sample was formed.
  • the phases of the sample were identified using an X-ray diffractometer. The surface was further observed with an electron microscope (SEM, magnification: 400x, 1000x). Electron microscopy (SEM) confirmed that the sample had no open pores. Open pores create mechanical gas permeation. Since this sample does not have open pores, there is no mechanical gas permeation.
  • the electromotive force of the hydrogen concentration cell was measured using the device shown in Fig. 1.
  • a disc-shaped pellet 10 with a diameter of about 13 mm and a thickness of 0.5 mm was used.
  • a platinum paste was applied to both ends of Sample 10 and baked at 900 ° C for 1 hour, thereby forming a porous platinum layer 12 (porous catalyst layer) on both ends of Sample 10.
  • a shaft end 16 a of the first ceramic tube (alumina) 16 is inserted through a glass ring-shaped seal 14.
  • the sample 10 was sandwiched between the shaft end 18a of the second ceramic tube 18 (alumina) and the shaft end 18a.
  • a first chamber 16d and a second chamber 18d having the sample 10 as a partition wall were formed.
  • the first ceramic tube 16 has a first gas inlet 16b, a first gas outlet 16c, and a first chamber 16d.
  • a first gas supply pipe (alumina) 20 is disposed at the first gas inlet 16b.
  • the second ceramic tube 18 has a second gas inlet 18b, a second gas outlet 18c, and a second chamber 18d. 2nd gas supply to 2nd gas inlet 18b
  • a tube (alumina) 22 is arranged.
  • a heating device 28 is provided around the sample 10.
  • a leak test (temperature: 800 ° C) was performed to confirm that Sample 10 had no mechanical gas permeability in the thickness direction.
  • argon was introduced as carrier gas into the second chamber 18d
  • the outlet gas discharged from the connected second gas outlet 18c was checked by gas chromatography, and it was confirmed that helium did not leak into the outlet gas. This reconfirmed that Sample 10 had no mechanical gas permeability.
  • a gas having a different partial pressure of hydrogen was introduced into each of the first chamber 16d and the second chamber 18d.
  • the following reactions occur in the vane on the 16 d side of the first chamber and the force sword on the 18 d side of the second chamber, and an electromotive force corresponding to the hydrogen partial pressure is generated.
  • the theoretical electromotive force is obtained based on the Nernst equation shown in Equation 1 below.
  • Anode is defined as a site that undergoes an oxidation reaction.
  • the cathode is defined as the site where the reduction reaction takes place.
  • R indicates a gas constant.
  • T indicates temperature (K).
  • F indicates the Faraday constant.
  • PH2 anode
  • PH2 power sword
  • PH2 indicates the partial pressure of hydrogen on the power sword side (18d in the second chamber).
  • Fig. 2 shows the concept that the electrolyte has electron conductivity in addition to proton conductivity.
  • the sample electrolyte has electron conductivity in addition to proton conductivity
  • hydrogen when hydrogen is supplied to the end face of the sample electrolyte, H 2 ⁇
  • the reaction of 2H ++ 2e- occurs on the anode side.
  • Protons (H +) and electrons (e ⁇ ) permeate the electrolyte.
  • the reaction of 2H + + 2 e- ⁇ H 2 occurs at a force cathode side, as a result of hydrogen is transmitted.
  • the generated electromotive force is smaller than the theoretical electromotive force based on the above-mentioned Nernst equation.
  • the measurement results of the electromotive force (sample temperature: 800 ° C) are shown.
  • the horizontal axis in Fig. 3 shows the logarithm of the hydrogen partial pressure on the force side.
  • the vertical axis in FIG. 3 shows the electromotive force.
  • the characteristic line S1 shows the theoretical electromotive force calculated by the Nernst equation based on the hydrogen partial pressure difference between the anode side and the cathode side.
  • the electromotive force of the hydrogen concentration cell follows the theoretical electromotive force based on the Nernst equation.
  • the electromotive force of the hydrogen concentration cell must be lower than the theoretical electromotive force based on the Nernst equation.
  • a hydrogen permeation test was performed on the above-mentioned sample. In this case, no voltage was applied to the platinum layer 12.
  • a predetermined partial pressure of hydrogen gas pressure: 1 atm, 0.22 atm, 0.05 atm, 0. Olatm
  • the hydrogen gas supplied to the hydrogen supply side (anode side) contains water vapor through a bubbler. The inclusion of water vapor prevents the sample from being exposed to excessive reducing atmosphere.
  • argon containing steam was introduced as carrier gas from the second gas supply pipe 22 into the second chamber 18d on the hydrogen permeation side (force source side). Then, the amount of hydrogen discharged together with the carrier gas from the second gas outlet 18c of the second chamber 18d was measured.
  • the hydrogen permeation rate per unit time per unit area was calculated based on Eq. (2) at 25 ° C.
  • V V g ⁇ (c / 1 00) ⁇ ((273.15 + 25) / (27 3.15 + T)
  • Vg is the flow rate (ml-min- 1 ) of the outlet gas (carrier gas + the amount of generated hydrogen)
  • T room temperature (° C)
  • c is the hydrogen concentration (%)
  • S is the hydrogen permeation area of the sample, It shows the projected area of the platinum layer 12 on the surface side and the area (cm ") where one side of the sample is in contact with hydrogen gas.
  • the hydrogen concentration of the hydrogen gas introduced into the hydrogen supply side was 1% (0.01atm), 5% (0.05atin), 22% (0.22atm), and 100% (latm).
  • a self-short-circuit current flows without applying an external voltage to the platinum layer 12 of the sample. Transmission occurs.
  • Figure 4 shows the measurement results.
  • the horizontal axis in Fig. 4 shows the electromotive force equivalent based on the Nernst equation.
  • the vertical axis in FIG. 4 indicates the hydrogen permeation rate per unit time per unit area.
  • the hydrogen concentration of the hydrogen gas introduced to the hydrogen supply side is shown.
  • hydrogen permeation Rate 0. 02m 1 'min _1 ⁇ cm- 2 or more.
  • Each characteristic line shown in Fig. 4 has linearity, indicating that the measurement plot points are on the straight line.
  • the fact that the plot points are on a straight line is not a gas permeation (gas leak) phenomenon from the open pores of the sample, but an electrochemical permeation, that is, a hydrogen permeation phenomenon based on proton-electron mixed conductivity.
  • the hydrogen permeation rate is basically Should be proportional to the partial pressure of hydrogen supplied to the anode side (when hydrogen permeation is small).
  • the hydrogen permeation rate is 1% when hydrogen gas with a hydrogen concentration of 100% is used. It should be 100, which should be greatly reduced.
  • the present embodiment as shown in the measurement results shown in Fig.
  • the hydrogen permeation rate when the hydrogen concentration of the gas supplied to the anode side is 1% is the same as the hydrogen gas when the hydrogen concentration% 0%. It was about one-third of the hydrogen permeation rate at the time. Therefore, the hydrogen permeation rate according to the present embodiment is based on electrochemical hydrogen permeation, not mechanical gas permeation based on the open pores of the sample. As described above, it was confirmed by electron microscopy (SEM) that no open pores communicating with the sample in the thickness direction were formed in the sample.
  • the electrical conductivity ⁇ of the above ceramics was measured by an AC two-terminal method.
  • the measurement temperature was 800 ° C, and the measurement was performed in hydrogen gas humidified with saturated steam at 17.0 ° C.
  • B a C e. 825 Y. u. .. 75 0 3 - ⁇
  • For had an electric conductivity of ⁇ 1. 7 X 1 0- 3 S ⁇ cm one 1.
  • the ceramics represented by are representative examples. Then, the sample formed by the ceramics was exposed to a high temperature (800 ° C) for 3 hours in a hydrogen atmosphere. In this case, the X-ray diffraction patterns of the sample before and after exposure to a hydrogen atmosphere (reducing atmosphere) were measured. Figure 5 shows the measurement results. As shown in Fig. 5, no change in the diffraction pattern was observed even when the sample was exposed to the hydrogen atmosphere described above, indicating that the sample according to the present example was stable even in a high-temperature hydrogen atmosphere. For reference, Fig. 5 shows the X-ray diffraction pattern of BaCeO3.
  • a sample formed of strontium-zirconium-yttrium oxygen-based metal oxide was manufactured. That is, SrZr. 9 — ⁇ ⁇ . . IR ux0 3 - to prepare a sample of a.
  • a 0 and the element B is zirconium (Zr).
  • the element B is yttrium (Y), and the molar ratio b of the element B 'is 0.1.
  • the mixed proton-electron conductive ceramic according to this example has the chemical formula SrZr. 82S Y. iR u. .. It is represented by 75 0 3 - ⁇ .
  • the molar ratio of ruthenium is 0.075.
  • the proton-electron mixed conductive ceramic is represented by the chemical formula SrZryo.xRuOs-a.
  • the molar ratio of ruthenium 0.100.
  • X 0. 1 when 25 of the pro ton single-electron mixed conductive ceramic box is that represented by the chemical 53 ⁇ 4S r Z r Yo. R u , 25 ⁇ 3.
  • the molar ratio of ruthenium is 0.125, assuming that the total number of moles of the metals constituting the ceramics is 2.
  • the starting raw material powder carbonate scan strontium (S r COa, purity 9 9.9 9%), oxidation Jirukoyuumu (Z r Q 2, purity 9 9.9%), yttrium oxide (Y 2 0 3, purity 9 9.9%), using each powder ruthenium oxide (Ru0 3, purity 9 9.9%).
  • a disk-shaped green compact was formed basically by the same procedure as in the above-described embodiment (calcination temperature: 1350.C, calcination temperature: time 10 hours). Further, the green compact was pressed with a hydrostatic pressure by a rubber press method (pressing force: 300 MPa) to form a pressed body. The pressed body was sintered by heating at 1700 ° C for 10 hours in the atmosphere. Thus, a sample was formed. The thickness of the sample was 0.5 mm and the diameter was 13 mm.
  • the phases of the sample were identified using an X-ray diffractometer. Furthermore, the surface was observed with an electron microscope (SEM, magnifications 400 and 1000). Electron microscopy (SEM) confirmed that the sample did not have open pores that could cause mechanical gas leakage.
  • Figure 4 shows the measurement results.
  • the proton-electron mixed conductivity ceramics according to the present example has the chemical formula SrCe. 9S Ru. .. It is represented by 5 « 3- «.
  • the molar ratio of ruthenium is 0.05.
  • pro ton single-electron mixed conductive ceramics according to the present embodiment is represented by the formula S r C e 9 R uo. 0 a.
  • the molar ratio of ruthenium is 0.10, which is ⁇ 3.
  • the starting raw material powder carbonate scan strontium (S r COs, purity 9 9.9 9%), oxidation Seri um (C e 0 2, purity 9 9.9%), oxidation Le Yuumu (Ru0 3, purity 9 9.9%) using each powder.
  • a disc-shaped green compact was formed in the same procedure as in the working example (calcination temperature: 1200 ° C., calcination temperature: time: 10 hours). Further, the green compact was pressed with a hydrostatic pressure by a rubber press method (pressure: 200 MPa) to form a pressed body. The pressed body was sintered by heating and maintaining it at 1,550,1600 ° C for 10 hours in an air atmosphere. Thus, a sample was formed. The sample thickness was 0.5 mm and the diameter was 13 mm.
  • the phases of the sample were identified using an X-ray diffractometer. Furthermore, the surface was observed with an electron microscope (SEM). Electron microscopy (SEM) confirmed that the sample did not have open pores that could cause mechanical gas leakage. Then, with the sample heated to 800 ° C, the hydrogen permeability (800 ° C) was measured in the same manner as above, and hydrogen permeation was confirmed. Also in this case, no voltage was applied to the platinum layer 12.
  • FIG. 6 shows a hydrogen gas separation device 100 according to the first application mode.
  • the hydrogen gas separation apparatus 100 has a substrate 111 having a hollow chamber 110, and a gas permeable layer 200 disposed inside the hollow chamber 110 of the substrate 111.
  • the substrate 111 has a gas inlet 112 for introducing a raw material gas containing hydrogen into the hollow chamber 110, and an outlet 113 for discharging the exhaust gas of the raw material gas.
  • the gas permeable layer 200 has a substantially cylindrical shape.
  • the gas chamber 220 into which the raw material gas is introduced from the gas inlet port 112 through the hollow chamber 110 of the substrate 111, and the hydrogen gas is led out. Partition from the gas outlet chamber 240.
  • the average thickness of the gas permeable layer 200 can be 0.051 Oi, particularly 0.33 mm.
  • the gas permeable layer 200 having a cylindrical shape has a gas guide chamber 240 inside the gas permeable layer 200 and a gas outlet 260 for discharging hydrogen gas.
  • the anodic reaction described above occurs in the portion of the gas permeable layer 200 facing the gas introduction chamber 220.
  • the above-described force-sword reaction occurs in the portion of the gas permeable layer 200 facing the gas outlet chamber 240.
  • the gas outlet chamber 240 of the gas permeable layer 200 communicates with the gas outlet 260.
  • the gas outlet 260 is connected to a suction pump 350 as a suction element.
  • the hollow chamber 110 of the substrate 111 is provided with a ring-shaped electric first heating device 301 for heating the gas permeable layer 200.
  • the first heating device 301 faces a portion of the gas permeable layer 200 facing the gas introduction chamber 220. This allows gas The portion of the permeable layer 200 facing the gas introduction chamber 220 is effectively heated to a high temperature region. That is, the first heating device 301 can effectively heat the gas permeable layer 200, and can effectively heat the anode side of the gas permeable layer 200.
  • the above-described gas permeable layer 200 is made of a mixed proton-electron conductive ceramic having proton conductivity and electron conductivity.
  • the gas permeable layer 200 is a metal oxide having a perovskite structure. As described above, when the sum of the molar ratios of the constituent metals is 2, chromium (C r), manganese ( Mn), iron (F e), cobalt (C o), Huckel (N i), and ruthenium (R u) in a molar ratio of at least 0.01 and at most 0.8. It is made of ceramics that have high conductivity and electron conductivity.
  • pro ton single-electron mixed Den conductive ceramic that forms the gas permeable layer 200 described above has the formula Ai + aBi- a - a composition of b - - C B, bB "C_ ⁇ 3".
  • A At least one of calcium (C a), strontium (S r), and barium (B a)
  • a 1 Aluminum (A 1), scandium (S c), gallium (G a), yttrium (Y), indium (In), and metal elements belonging to lanthanoid series with atomic numbers of 59 to 71 At least one of
  • b ranges from 0 to 0.5
  • B at least one of chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), ruthenium (Ru)
  • the range of c is 0.01 or more and 0.8 or less
  • the proton-electron mixed conductive ceramic forming the gas permeable layer 200 may be formed of any one of the above-described first to third embodiments. it can.
  • a method of sintering a green compact obtained by pressing the raw material powder can be employed.
  • the gas permeable layer 200 is a thin film
  • a method in which a solution in which the raw material powder is dispersed in a dispersion medium is applied to a substrate in the form of a film and then fired can be adopted.
  • a physical vapor deposition (PVD) method such as vacuum deposition, ion plating, or sputtering can be employed.
  • a chemical vapor deposition (CVD) method in which a raw material gas is guided on a heated substrate and reacted to form a film can be employed.
  • a plasma spraying method can be adopted in which the raw material powder is instantaneously melted using a plasma heat source and sprayed onto a substrate to form a coating.
  • the gas permeable layer 200 is heated to about 500 to 100 ° C. by the first heating device 301. Then, a raw material gas (for example, 1-1 O atra) is introduced from the gas introduction port 112 of the substrate 111 into the gas introduction chamber 222 of the hollow chamber 110.
  • the source gas contains other gas components (at least one of carbon dioxide gas, carbon monoxide gas, nitrogen gas, steam, etc.) in addition to hydrogen.
  • the raw material gas can be natural gas, or a reformed gas obtained by reforming a hydrocarbon gas with steam or the like. Natural gas is methane (CH 4) as a main component. The reformed gas often contains carbon dioxide, carbon monoxide, and the like in addition to hydrogen.
  • FIG. 7 shows a hydrogen gas separator 10 OB according to the second application mode.
  • the second application form has basically the same configuration as the first application form, and has the same effect. The description below focuses on the differences from the first application mode.
  • the gas permeable layer 200B is formed of the mixed conductive ceramics described above, as in the first application mode.
  • the first catalyst layer 401 covers the area of the gas permeable layer 200OB facing the gas introduction chamber 220 (on the anode side).
  • the second catalyst layer 402 is covered in the region (force side) of the gas permeable layer 200 B facing the gas outlet chamber 240.
  • the first catalyst layer 401 and the second catalyst layer 402 are formed in the form of a thin film mainly containing platinum.
  • the first catalyst layer 401 promotes the reaction at the anode (H 2 ⁇ 2 H + +2 e ⁇ ).
  • the second catalyst layer 4 0 2 promotes reaction (2 H + + 2 e one ⁇ H 2) in the force Sword. Thereby, the hydrogen gas is more efficiently separated from the raw material gas introduced into the hollow chamber 110.
  • FIG. 8 shows a hydrogen gas separator 1 O O C according to the third application mode.
  • the second application form has basically the same configuration as the first application form, and has the same effect.
  • the gas permeable layer 2000C is made of the mixed conductive ceramics described above (for example, the ceramics according to the first to third examples), similarly to the first application mode.
  • the average thickness of the gas permeable layer 200 C can be generally 5 to 300 1 ⁇ , particularly 10 to 2000 m.
  • the gas permeable layer 200 C is covered and held on the outer wall surface of a cylindrical porous carrier 501 having air permeability in the thickness direction.
  • the thickness of the gas permeable layer 200 C is preferably small. However, when the thickness of the gas permeable layer 200 C is small, the durability of the gas permeable layer 200 C may decrease. Therefore, if the gas permeable layer 200 C is laminated on the outer wall surface of the porous carrier 501 and the gas permeable layer 200 C is retained, the protection against the thin film-shaped gas permeable layer 200 C is achieved. Thus, the durability to the gas permeable layer 200 C can be improved.
  • the average thickness of the carrier 501 varies depending on the thickness, material, and the like of the gas permeable layer 200C, but can be 0.2 to 20 mm, particularly 0.5 to 5 mm.
  • the carrier 501 is porous and has air permeability in the thickness direction of the carrier 501. Therefore, the source gas can easily reach the gas permeable layer 200C.
  • the porosity (volume ratio) of the carrier 501 can be appropriately selected, but can be about 10 to 90%.
  • the second heating device 302C is disposed inside the gas permeable layer 200C, that is, also in the gas outlet chamber 240.
  • the second heating device 302 C can mainly heat the force sword side of the gas permeable layer 200.
  • the first heating device 301 having a ring shape can heat the gas permeable layer 200 C, and can mainly heat the anode side of the gas permeable layer 200 C effectively. . This makes it possible to enhance the heatability of the gas permeable layer 20 OC.
  • FIG. 9 shows a hydrogen gas separator 100D according to the fourth application mode.
  • the fourth application form has basically the same configuration as the third application form, and has the same effect.
  • the gas permeable layer 20 OD is formed of the mixed conductive ceramics described above (for example, the first to third embodiments), as in the first application mode.
  • the gas permeable layer 200D is in the form of a thin film, and is held by being covered on the outer wall surface of a porous carrier 501D having a cylindrical shape having air permeability in the thickness direction.
  • the average thickness of the gas permeable layer 200 D can be generally 5 to 300 ⁇ , particularly 10 to 200 ⁇ .
  • a blowing pipe 600 for blowing a carrier gas (an inert gas such as an argon gas) is arranged inside the gas permeable layer 200D, that is, in the gas outlet chamber 240.
  • the carrier gas supplied from the inlet 600 of the blowing pipe 600 is discharged into the gas guiding chamber 240 from the outlet 602 of the blowing pipe 600.
  • the hydrogen gas in the gas outlet chamber 240 permeate through the gas permeable layer 200 OD is led to the gas outlet 260 by carrier gas discharged from the outlet 602.
  • a suction pump 350 for sucking the carrier gas can be provided in the passage leading to the gas outlet 260.
  • FIG. 10 shows a hydrogen gas separation device 100 # according to a fifth application mode.
  • the fifth application mode has basically the same configuration as the first application mode, and has the same operation and effect.
  • the hydrogen gas separator 100 0 has a hollow chamber 110 and a gas inlet port 112 for introducing a raw material gas containing hydrogen into the hollow chamber 110.
  • the carrier 501E is porous and has gas permeability in the thickness direction.
  • the carrier 501 E and the gas permeable layer 200 E partition the hollow chamber 110 into a gas introduction chamber 220 into which the source gas is introduced and a gas outlet chamber 240 through which the source gas is introduced. .
  • the gas outlet chamber 240 communicates with the gas outlet 260.
  • the gas outlet 260 is connected to a suction pump 350 as a suction element.
  • the hollow chamber 110 of the base 111E is provided with a ring-shaped electric first heating device 310E for heating the gas permeable layer 200E.
  • the first heating device 301E faces a portion (anode side) of the gas permeable layer 20OE that faces the gas introduction chamber 220. Thereby, the gas permeable layer 200 is effectively heated to a high temperature region.
  • the gas permeable layer 200 E is made of a mixed proton-electron conductive ceramic having proton conductivity and electron conductivity as in the first application mode (for example, ceramics according to the first to third embodiments). It is formed with.
  • Figures 11 to 14 show the concept of each application form of the gas permeable layer.
  • the gas introduction chamber 2 in the porous carrier 501 having gas permeability in the thickness direction, the gas introduction chamber 2
  • a thin film-shaped gas permeable layer 200 H is laminated on the surface facing 20, a thin film-shaped gas permeable layer 200 H is laminated.
  • the first catalyst layer 40 containing platinum as a main component is placed on the side of the gas permeable layer 200H facing the gas introduction chamber 220, that is, on the anode side.
  • a porous carrier 50 having air permeability in the thickness direction is used.
  • a thin film-like gas permeable layer 2 In the surface facing the gas introduction chamber 220, a thin film-like gas permeable layer 2
  • the first catalyst layer 401 H containing platinum as a main component is laminated on the anode side, and platinum is the main component on the power source side of the gas permeable layer 20 OH.
  • a gas permeable layer 20 OH is introduced on the surface of a porous carrier 501 having gas permeability in the thickness direction. It is laminated so as to face the chamber 220.
  • a first electrode layer 405 H is laminated on the anode side of the gas permeable layer 200 H.
  • a second electrode layer 406H is laminated on the force side of the gas permeable layer 200OH.
  • first electrode layer 405H and the second electrode layer 406H are mainly composed of platinum, they can also serve as catalyst layers. Then, a first lead wire 407 made of platinum is derived from the first electrode layer 405H, and a second lead wire 408 made of platinum is derived from the second electrode layer 406H. ing.
  • the first electrode layer 405H on the anode side is the positive pole of the power supply 409, and the second electrode layer 406H on the force side is connected to the negative pole of the power supply 409.
  • a DC voltage is applied between the first electrode layer 405H and the second electrode layer 406H from a DC power supply 409.
  • FIGS. 11 to 14 can be applied to the first to fifth application modes described above.
  • FIGS. 15 to 18 show each application form of another gas permeable layer.
  • the application form shown in Figs. 15 to 18 has basically the same configuration as the application form shown in Figs. 11 to 14, and basically has the same operation and effect.
  • the gas permeable layer 20 OK is formed of the proton-electron mixed conductive ceramic, and the first carrier 501 and the second carrier are formed in the thickness direction. It is sandwiched between 502.
  • the first carrier 501 and the second carrier 502 are porous, have a porosity (volume ratio) of about 10 to 90%, and have air permeability in the thickness direction.
  • the gas permeable layer 200 OK is sandwiched between the first carrier 501 and the second carrier 502 that have air permeability in the thickness direction. Even in this case, the retention of the gas permeable layer 200 K can be ensured, and the protection and durability of the gas permeable layer 200 K can be improved.
  • the first carrier 501 having a higher porosity allows the source gas to reach the gas permeable layer 200K.
  • the strength of the second carrier 502 is ensured, the larger the porosity of the second carrier 502, the more hydrogen gas can be released from the gas permeable layer 200K.
  • the average thickness of the first carrier 501 varies depending on the thickness, material, etc.
  • the base body 111 has a gas inlet 112 for introducing a raw material gas
  • the gas permeable layer 200 has a gas outlet 260 for deriving hydrogen gas.
  • the present invention is not limited to this, and the substrate 111 may have a gas outlet for introducing hydrogen gas, and the gas permeable layer 200 may have a gas inlet for introducing source gas.
  • the present invention is not limited to the above-described embodiments and application forms, but can be implemented with appropriate modifications without departing from the gist. Industrial applicability
  • the hydrogen gas separation device has a gas permeable layer formed of mixed proton-electron conductive ceramics having mixed conductivity of protons and electrons, and therefore can be used to convert hydrogen-containing raw material gas. It can produce gas with high hydrogen concentration and can be used in fuel cell power generation systems, hydrogen combustion engines, etc.

Abstract

A hydrogen gas separator, comprising a base body having a hollow chamber and a gas permeable layer partitioning the hollow chamber into a gas lead-in chamber for leading material gas therein and a gas lead-out chamber for leading hydrogen gas therefrom, wherein the gas permeable layer is formed, as the base material, of a proton-electron mixed conductive ceramics having proton conductivity and electronic conductivity.

Description

明細書  Specification
水素ガス分離装置 技術分野  Technical field of hydrogen gas separation equipment
本発明は, プロトンと電子とを導電種として併せもつプロトン一電子混合伝導 性セラミックスをガス透過層として用いた水素ガス分離装置に関する。 背景技術  The present invention relates to a hydrogen gas separation device using a proton-electron mixed conductive ceramic having both protons and electrons as conductive species as a gas permeable layer. Background art
従来, ある種のぺロプスカイト構造を有するセラミックスは, かなりのプロト ン伝導性を示すことは知られている。 また従来, 特許文献 1 (Sol id State Ioni cs 100 (1997) 45-52) には, 化学式 B a C e。. 9 5 Υ。· 0 5 O 3 _ をもつセラミック スについての水素透過性に関する報告がなされている。 Heretofore, it has been known that ceramics having a certain perovskite structure exhibit considerable proton conductivity. Conventionally, Patent Document 1 (Sol id State Ionics 100 (1997) 45-52) describes the chemical formula BaCe. 9 5 Υ. · There have been reports on hydrogen permeability for ceramics with 0 5 O 3 _.
また従来, パラジウム一銀系に代表されるパラジゥム合金を用いて水素を透過 させる技術の開発が進められている。 そして特許文献 2 (特開平 1 0— 2 9 7 9 0 2号公報) には, パラジウムまたはパラジウム合金基のプ口トン伝導膜を用レ、 る水素の製造方法が報告されている。 パラジウム系は極めて高価であり, コス ト 上の制約が多い。  In the past, technology for permeating hydrogen using a palladium alloy typified by a palladium-silver system has been developed. Patent Document 2 (Japanese Patent Application Laid-Open No. 10-279702) reports a method for producing hydrogen by using a palladium or palladium alloy-based proton conductive film. Palladium is extremely expensive and has many cost restrictions.
本発明は, パラジウムまたはパラジウム合金基のプロ トン伝導膜を用いること なく, 水素を含有する原料ガスから, 水素濃度が高い水素ガスを製造することが できる水素ガス分離装置を提供することを課題とする。 発明の開示  An object of the present invention is to provide a hydrogen gas separation device capable of producing a hydrogen gas having a high hydrogen concentration from a hydrogen-containing raw material gas without using a proton conductive membrane based on palladium or a palladium alloy. I do. Disclosure of the invention
本発明に係る水素ガス分離装置は, 中空室を有する基体と,  The hydrogen gas separation device according to the present invention comprises: a base having a hollow chamber;
基体の中空室に配置され, 原料ガスが導入されるガス導入室と水素ガスが導出 されるガス導出室とに中空室を仕切るガス透過層とを具備しており,  A gas permeable layer which is arranged in the hollow chamber of the substrate and partitions the hollow chamber into a gas introduction chamber into which the raw material gas is introduced and a gas outlet chamber from which hydrogen gas is led out is provided.
ガス透過層は, プロトン伝導性及び電子伝導性を有するプロトン—電子混合伝 導性セラミックスを基材として形成されていることを特徴とするものである。 本発明に係るプロトン一電子混合伝導性セラミックスは, 高温領域においてプ 口.トンと電子とを導電種として併せもち, プロトン伝導性及び電子伝導性が発現 される。 プロ トン伝導性及び電子伝導性が発現される高温領域としては, 一般的 には 4 0 0〜 1 7 0 0 °C程度, 殊に 7 0 0〜 1 2 0 0 °Cが例示される。 The gas permeable layer is characterized by being formed of a mixed proton-electron conductive ceramic having proton conductivity and electron conductivity as a base material. The proton-electron mixed conductive ceramics according to the present invention combines protons and electrons as conductive species in a high-temperature region, and exhibits proton conductivity and electron conductivity. Is done. The high-temperature region in which the proton conductivity and the electron conductivity are exhibited generally ranges from about 400 to 1700 ° C, particularly about 700 to 1200 ° C.
本発明に係る水素ガス分離装置によれば, 前述したように, ガス透過層は, プ 口トン伝導性及び電子伝導性を有するプロトン—電子混合伝導性セラミックスを 基材として形成されている。 このため, ガス導入室に原料ガスが導入されると, 原料ガスに含まれている水素ガスがガス透過層に至ると, 水素ガスからプロトン According to the hydrogen gas separation device of the present invention, as described above, the gas permeable layer is formed using a proton-electron mixed conductive ceramic having a proton conductivity and an electron conductivity as a base material. For this reason, when the source gas is introduced into the gas introduction chamber, when the hydrogen gas contained in the source gas reaches the gas permeable layer, protons are generated from the hydrogen gas.
(H+) 及び電子が生成する。 プロトン (H+) 及び電子はガス透過層を透過し, ガス導出室において力ソード反応を生じて再び結合する。 このようにして水素及 び他のガス成分を有する原料ガスからガス透過層によって水素を分離させること ができるため, 純水素ガス等のような水素濃度の高いガスが製造される。 図面の簡単な説明 (H +) and electrons are generated. Protons (H +) and electrons permeate the gas permeable layer, generate a force sword reaction in the gas outlet, and combine again. In this manner, hydrogen can be separated from the source gas having hydrogen and other gas components by the gas permeable layer, so that a gas having a high hydrogen concentration such as pure hydrogen gas is produced. BRIEF DESCRIPTION OF THE FIGURES
図 1は実施例で用いた試験装置の概念図である。 図 2はプロトン伝導性及び電 子伝導性を有する概念図である。 図 3は水素濃淡電池の起電力の結果を示すグラ フである。 図 4は起電力と水素透過速度との関係を示すグラフである。 図 5は試 料の X線回折を示すグラフである。  FIG. 1 is a conceptual diagram of the test apparatus used in the example. FIG. 2 is a conceptual diagram having proton conductivity and electronic conductivity. Figure 3 is a graph showing the results of the electromotive force of the hydrogen concentration cell. FIG. 4 is a graph showing the relationship between the electromotive force and the hydrogen permeation rate. Figure 5 is a graph showing the X-ray diffraction of the sample.
図 6は適用形態 1に係る水素ガス分離装置を模式的に示す断面図である。 図 7 は適用形態 2に係る水素ガス分離装置を模式的に示す断面図である。 図 8は適用 形態 3に係る水素ガス分離装置を模式的に示す断面図である。 図 9は適用形態 4 に係る水素ガス分離装置を模式的に示す断面図である。 図 1 0は適用形態 5に係 る水素ガス分離装置を模式的に示す断面図である。  FIG. 6 is a cross-sectional view schematically showing the hydrogen gas separation device according to the first embodiment. FIG. 7 is a cross-sectional view schematically showing the hydrogen gas separation device according to the second embodiment. FIG. 8 is a cross-sectional view schematically showing the hydrogen gas separation device according to the third embodiment. FIG. 9 is a cross-sectional view schematically showing a hydrogen gas separation device according to application example 4. FIG. 10 is a cross-sectional view schematically showing a hydrogen gas separation device according to application example 5.
図 1 1は水素ガス分離装置におけるガス透過層の保持形態を模式的に示す断面 図である。 図 1 2は他の水素ガス分離装置におけるガス透過層の保持形態を模式 的に示す断面図である。 図 1 3は別の他の水素ガス分離装置におけるガス透過層 の保持形態を模式的に示す断面図である。 図 1 4は更に別の他の水素ガス分離装 置におけるガス透過層の保持形態を模式的に示す断面図である。  FIG. 11 is a cross-sectional view schematically showing a mode of holding the gas permeable layer in the hydrogen gas separation device. FIG. 12 is a cross-sectional view schematically showing a mode of holding a gas permeable layer in another hydrogen gas separation device. FIG. 13 is a cross-sectional view schematically showing a holding form of a gas permeable layer in another hydrogen gas separation device. FIG. 14 is a cross-sectional view schematically showing a gas permeation layer holding form in still another hydrogen gas separation device.
図 1 5は水素ガス分離装置におけるガス透過層の保持形態を模式的に示す断面 図である。 図 1 .6は他の水素ガス分離装置におけるガス透過層の保持形態を模式 的に示す断面図である。 図 1 7'は別の他の水素ガス分離装置におけるガス透過層 の保持形態を模式的に示す断面図である。 図 1 8は更に別の他の水素ガス分離装 置におけるガス透過層の保持形態を模式的に示す断面図である。 発明を実施するための最良の形態 FIG. 15 is a cross-sectional view schematically showing a mode of holding the gas permeable layer in the hydrogen gas separation device. FIG. 1.6 is a cross-sectional view schematically showing a mode of holding a gas permeable layer in another hydrogen gas separation device. Figure 17 'shows the gas permeable layer of another hydrogen gas separation device. It is sectional drawing which shows the holding | maintenance form typically. FIG. 18 is a cross-sectional view schematically showing a gas permeation layer holding form in still another hydrogen gas separation device. BEST MODE FOR CARRYING OUT THE INVENTION
-プロトン一電子混合伝導性セラミックス (以下, 混合伝導性セラミックスと もいう) は, プロトンと電子とを導電種として併せもつものである。 混合伝導性 セラミッタスとしては, 原料ガスが透過可能な通気性をもつ担体に保持されてい る形態を例示できる。 この場合, 当該混合伝導性セラミックスにおける水素透過 性を高めるために, 当該混合伝導性セラミッタスの厚みを薄くすることがある。 この場合, 混合伝導性セラミックスの強度が低下する。 そこで, 通気性をもつ担 体に当該混合伝導性セラミックスを被覆状態に保持すれば, 当該混合伝導性セラ ミックスの厚みが薄くても, 当該混合伝導性セラミッタスの保持性, 耐久性を高 めることができる。 担体は, その気孔率が大きいと, 原料ガスを当該混合伝導性 セラミッタスに到達させることができる。  -Proton-electron mixed conductive ceramics (hereinafter also referred to as mixed conductive ceramics) combine protons and electrons as conductive species. An example of the mixed conductive ceramics is a form in which the raw material gas is held by a gas-permeable carrier through which the raw material gas can pass. In this case, the thickness of the mixed conductive ceramic may be reduced in order to increase the hydrogen permeability of the mixed conductive ceramic. In this case, the strength of the mixed conductive ceramic decreases. Therefore, if the mixed conductive ceramics are kept coated on the air-permeable carrier, the retention and durability of the mixed conductive ceramics can be improved even if the thickness of the mixed conductive ceramics is thin. be able to. If the porosity of the carrier is large, the source gas can reach the mixed conductive ceramics.
•当該混合伝導性セラミックスは, 原料ガスが透過可能な通気性をもつ担体に 挟持されている形態を例示できる。 これにより当該混合伝導性セラミッタスの保 持性, 耐久性を一層高めることができる。  • The mixed conductive ceramics can be exemplified by a configuration in which the mixed conductive ceramics are sandwiched between air-permeable carriers through which the raw material gas can pass. Thereby, the retention and durability of the mixed conductive ceramics can be further enhanced.
-当該混合伝導性セラミックスを加熱する加熱装置が設けられている形態を例 示できる。 加熱装置の加熱原理は特に限定されず, 電気式, 燃焼式等を問わない 。 当該混合^導性セラミックスは, ガス導入室及びガス導出室のうちの少なくと も一方側に触媒層を有する形態を例示できる。 触媒層としては, 白金, パラジゥ ム, ロジウム, 銀, 金のうちの少なくとも 1種を含むことができる。 触媒層が設 けられているため, 下記のアノード反応及びカソード反応を促進させることがで き, 水素透過性の向上を期待できる。 H 2→2 H+ + 2 e— (アノード側) , 2 H + + 2 e—→H 2 (カソ一ド側) -An example in which a heating device for heating the mixed conductive ceramics is provided can be exemplified. The heating principle of the heating device is not particularly limited, and may be an electric type, a combustion type, or the like. Examples of the mixed conductive ceramic include a form having a catalyst layer on at least one side of the gas introduction chamber and the gas discharge chamber. The catalyst layer can contain at least one of platinum, palladium, rhodium, silver, and gold. Since the catalyst layer is provided, the following anodic and cathodic reactions can be promoted, and an improvement in hydrogen permeability can be expected. H 2 → 2 H + + 2 e— (anode side), 2 H + + 2 e— → H 2 (cathode side)
'本発明によれば, プロトン一電子混合伝導性セラミックスは, ガス導入室に 対面する側に第 1電極層を有すると共にガス導出室に対面する側に第 2電極層を 有しており, 第 1電極層と第 2電極層との間に電圧を印加させ得るように設定さ れている形態を例示できる。 第 1電極層と第 2電極層との間に電圧を印加させれ ば, 電子が力ソードに供給されるため, 2H++ 2 e—→H2 (力ソード側) の反 応速度を早めることができる。 According to the present invention, the proton-electron mixed conductive ceramic has the first electrode layer on the side facing the gas introduction chamber and the second electrode layer on the side facing the gas outlet chamber. A mode in which a voltage is applied between the first electrode layer and the second electrode layer can be exemplified. Apply a voltage between the first and second electrode layers. If, because the electrons are supplied to the force sword, it can accelerate the reaction rate of 2H + + 2 e- → H 2 ( force cathode side).
-当該混合伝導性セラミックスは, ぺロブスカイト型構造を有する金属酸化セ ラミックスであって, これを構成する金属のモル比の総和を 2としたとき, クロ ム (C r) , マンガン (Μη) , 鉄 (F e) , コバルト (C o) , ニッケル (N i ) , ルテニウム (Ru) のうちの少なくとも 1種を, モル比で, 0. 0 1以上 , 0. 8以下の範囲で含み, プロトン伝導性及び電子伝導性を有する形態を例示 できる。  -The mixed conductive ceramics are metal oxide ceramics having a perovskite structure, and when the total molar ratio of the constituent metals is 2, chromium (Cr) and manganese (マ ン ガ ン η) , Iron (Fe), cobalt (Co), nickel (Ni), ruthenium (Ru) in a molar ratio of at least 0.01 and at most 0.8. A form having proton conductivity and electron conductivity can be exemplified.
ここで, クロム (C r) , マンガン (Μη) , 鉄 (F e) , コバノレト (C o) , ニッケル (N i ) , ルテニウム (Ru) のうちの少なくとも 1種 (以下, 遷移 金属ドーパント元素ともいう) は, モル比で, 0. 0 1以上, 0. 8以下の範囲 で含まれている。  Here, at least one of chromium (Cr), manganese (Μη), iron (Fe), covanolate (Co), nickel (Ni), and ruthenium (Ru) (hereinafter also referred to as transition metal dopant elements) Is included in the molar ratio in the range of not less than 0.01 and not more than 0.8.
遷移金属ドーパント元素のモル比が過少であると, 目的とするプロトン伝導性 の他に電子伝導性が得られにくい。 遷移金属ドーパント元素のモル比が過剰であ ると, 他の元素が相対的に減少し, 目的とするプロ トン伝導性及び電子伝導性が 得られにくいし, 更に焼結性が低下したり, 使用条件によっては化学的安定性, 機械的強度が低下する傾向がある。  If the molar ratio of the transition metal dopant element is too small, it is difficult to obtain electron conductivity in addition to the desired proton conductivity. If the molar ratio of the transition metal dopant element is excessive, other elements are relatively reduced, and it is difficult to obtain the desired proton conductivity and electron conductivity, and furthermore, the sinterability is reduced, The chemical stability and mechanical strength tend to decrease depending on the use conditions.
即ち, 電子伝導性は遷移金属の量に依存すると思われるため, ドーパント量が 少ないと, 電子伝導性が発現しない。 なお, 使用温度, コスト, 用途等によって も, 遷移金属ドーパント元素の量を適宜調整することが好ましい。  In other words, the electron conductivity seems to depend on the amount of the transition metal. If the amount of the dopant is small, the electron conductivity does not appear. It is preferable to appropriately adjust the amount of the transition metal dopant element depending on the operating temperature, cost, application, and the like.
上記した実情を考慮し, 遷移金属ドーパント元素としては, 下限側において, モル比で, 0. 01以上, 0. 01 5以上, 0. 02以上を例示でき, 更に 0. 025以上, 0. 03以上を例示できる。 また, 遷移金属ドーパント元素として は, 上記した下限と組み合わせ得る上限側において, モル比で, 0. 7以下, 0 . 6以下, 0. 5以下を例示でき, 更に, 0. 47以下, 0. 45以下, 0. 4 3以下を例示でき, 更に 0. 4以下, 0. 35以下, 0. 3以下を例示できる。 遷移金属ドーパント元素が価格の高いルテニウムであるときには, コストが要 請される工業的な利用性を考慮すると, モル比で, 0. 5以下を例示できる。 ま た, 遷移金属ドーパント元素がルテニウムよりも価格的に有利なコバルト, 鉄, エッケル等であるときには, モル比で, 0. 6以下, 0. 7 5以下, 0. 8以下 を例示できる'。 In consideration of the above-mentioned circumstances, as the transition metal dopant element, on the lower limit side, a molar ratio of 0.01 or more, 0.015 or more, 0.02 or more can be exemplified, and 0.025 or more, 0.03 or more. The above can be exemplified. Further, as the transition metal dopant element, on the upper limit side which can be combined with the lower limit described above, the molar ratio can be, for example, 0.7 or less, 0.6 or less, 0.5 or less, and 0.47 or less, 0.5 or less. Examples are 45 or less, 0.43 or less, and 0.4 or less, 0.35 or less, 0.3 or less. When the transition metal dopant element is ruthenium, which is expensive, the molar ratio can be reduced to 0.5 or less in consideration of industrial applicability where cost is required. In addition, the transition metal dopant element is more advantageous in cost than ruthenium, such as cobalt, iron, When it is Eckel or the like, the molar ratio can be, for example, 0.6 or less, 0.75 or less, or 0.8 or less.
上記したぺロプスカイ ト型構造は一般式 A B O 3で表される。 Aサイトの元素 のモル比と Bサイトの元素のモル比との総和を 2としたとき, クロム (C r ) , マンガン (Mn) , 鉄 (F e ) , コバルト (C o) , ニッケル (N i ) , ルテニ ゥム (R u) のうちの少なくとも 1種を, モル比で, 0. 0 1以上, 0. 8以下 の範囲で含む形態を採用できる。 上記した遷移金属ドーパント元素は, 主として Bサイトへのドーパントとして機能することができる。 これによりプロトン伝導 性に加えて電子伝導性を付与させることができる。 The above-mentioned pair Ropusukai DOO type structure represented by the general formula ABO 3. When the sum of the molar ratio of the element at the A site and the molar ratio of the element at the B site is 2, chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (N i) and ruthenium (Ru) in a molar ratio of at least 0.01 and at most 0.8. The transition metal dopant element described above can function mainly as a dopant for the B site. Thereby, electron conductivity can be imparted in addition to proton conductivity.
当該混合伝導性セラミックスによれば, 高温領域においてプロトン伝導性及び 電子伝導性の双方が得られることは, 後述するように, 当該セラミックスが水素 透過性を有することを意味する。  According to the mixed conductive ceramics, the fact that both proton conductivity and electron conductivity are obtained in a high-temperature region means that the ceramic has hydrogen permeability as described later.
ぺロプスカイ ト型構造によれば, 酸素がかなり欠損しても, ぺロプスカイ ト型 構造は安定的に保たれる。 即ち, 一般式 AB 03において酸素がかなり欠損等の ように変化しても, ぺロブスカイ ト型構造は安定的に保たれる。 酸素欠損はひで 示され, 構成元素である Aサイ トの元素, Bサイト (後述する B ' の元素, B" の元素を含む) , 使用温度, 雰囲気の酸素分圧などに応じて変化する値である。 従って, 酸素欠損量《としてはモル比で, 一般的には一 0. 7以上で + 0. 7以 下の範囲, あるいは, 一 0. 5以上で + 0. 5以下の範囲を例示できる。 故に酸 素 (O) の量としては, モル比で, 2. 3以上で且つ 3. 7以下の範囲, あるい は, 2. 5以上で且つ 3. 5以下の範囲を例示することができる。 伹しこれに限 定されるものではない。 故に, 当該混合伝導性セラミックスは, 一般式 AB 03 - aで表されるぺロブスカイ ト型構造を有する金属酸化セラミックスとすることが できる。 According to the perovskite structure, the perovskite structure is stably maintained even if oxygen is considerably deficient. That is, in the general formula AB 0 3 oxygen be varied in a rather defective like, Bae Robusukai Preparative structure is stably maintained. Oxygen deficiency is indicated by a symbol, and changes depending on the constituent elements of the A site, the B site (including the B 'element and B "element described below), the operating temperature, and the oxygen partial pressure of the atmosphere. Therefore, the amount of oxygen deficiency << is a molar ratio and is generally in the range of 10.7 or more to +0.7 or less, or the range of 10.5 to +0.5 inclusive. Therefore, the amount of oxygen (O) is, for example, in the range of 2.3 or more and 3.7 or less, or 2.5 or more and 3.5 or less in molar ratio. . it can伹and not this to those limited constant Thus, the mixed conducting ceramics of the general formula AB 0 3 -. be a metal oxide ceramic having a pair Robusukai preparative structure represented by a it can.
ここで, 当該混合伝導性セラミックスによれば, 一般式 AB 03において, A サイトのモル比と Bサイトのモル比との総和を 2としたとき, クロム (C r ) , マンガン (Mn) , 鉄 (F e ) , コバルト (C o) , ニッケル (N i ) , ルテニ ゥム (R u) のうちの少なくとも 1種 (遷移金属ドーパント元素) を, モル比で , 0. 0 1以上, 0. 8以下の範囲で含むことができる。 クロム (C r ) , マン ガン (Mn) , 鉄 (F e) , コバルト (C o) , エッケル (N i ) , ルテニウム (Ru) のうちの少なくとも 1種 (遷移金属ドーパント元素) としては, モル比 で, 0. 0 1以上, 0. 0 1 5以上, 0. 02以上を例示でき, 更に 0. 025 以上, 0. 03以上を例示できる。 Here, according to the mixed conducting ceramics, in the general formula AB 0 3, when two the sum of the molar ratio of the molar ratio and the B site of the A-site, chrome (C r), manganese (Mn), At least one of iron (Fe), cobalt (Co), nickel (Ni), and ruthenium (Ru) is contained in a molar ratio of at least 0.01 and at least 0. .8 or less. Chrome (Cr), Man At least one of the following elements (transition metal dopant elements) of gun (Mn), iron (Fe), cobalt (Co), Eckel (Ni), and ruthenium (Ru) is expressed in a molar ratio of 0.01. As described above, 0.015 or more and 0.02 or more can be exemplified, and 0.025 or more and 0.03 or more can be exemplified.
また, クロム (C r) , マンガン (Mn) , 鉄 (F e) , コバルト (C o) , ニッケル (N i ) , ルテニウム (Ru) のうちの少なくとも 1種 (遷移金属ドー パント元素) については, モル比で, 0. 7以下, 0. 6以下, 0. 5以下を例 示でき, 更に, 0. 47以下, 0. 45以下, 0. 43以下を例示でき, 更に 0 . 4以下, 0. 35以下, 0. 3以下を例示できる。  In addition, at least one of chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), and ruthenium (Ru) (transition metal dopant element) , Molar ratio, 0.7 or less, 0.6 or less, 0.5 or less, furthermore, 0.47 or less, 0.45 or less, 0.43 or less, further 0.4 or less, Examples are 0.35 or less and 0.3 or less.
Aサイトのモル比と Bサイトのモル比との総和を基準としたのは, Aサイトの モル比と Bサイトのモル比との比率を多少変化させても, 総和が 2であれば, プ 口トン伝導性及び電子伝導性の双方が得られることを考慮したものである。 (A サイトのモル比 ZBサイトのモル比) の値としては, 0. 8〜 1. 2の範囲内と することができる。 あるいは, 0. 9〜 1. 1の範囲内, 0. 9 5〜1. 05の 範囲内とすることができる。  The basis of the sum of the molar ratio of the A site and the molar ratio of the B site is that even if the ratio of the molar ratio of the A site to the molar ratio of the B site is slightly changed, if the sum is 2, The reason is that both the ton conductivity and the electron conductivity are obtained. The value of (molar ratio of A site, molar ratio of ZB site) can be in the range of 0.8 to 1.2. Alternatively, it can be within the range of 0.9 to 1.1 and within the range of 0.95 to 1.05.
•当該混合伝導性セラミックスによれば, 金属酸化物を構成する金属のモル比 の総和を 2としたとき, つまり, Aサイ トのモル比と Bサイ トのモル比との総和 を 2としたとき, モル比で, ジルコニウム (Z r ) を 0. 005以上, または, 0. 0 1以上の割合で含む形態を採用できる。 ジルコニウムは Bサイ トの元素と して機能することができ, ジルコニウムの量は Bサイトのモル比を越えるもので はない。 ジルコニウムはセラミックスの機械的強度の向上, 化学的安定性の向上 を期待できる。 しかしジルコニウムが過剰であると, 水素透過速度が減少する傾 向がある。 このため, ジルコニウムが含まれる場合には, ジルコニウムのモル比 としては 0. 0 1以上で 0. 99以下の割合とすることができる。  • According to the mixed conductive ceramics, when the sum of the mole ratios of the metals constituting the metal oxide is 2, that is, the sum of the mole ratio of the A site and the B site is 2 At this time, a form containing zirconium (Zr) in a molar ratio of 0.005 or more or 0.01 or more can be adopted. Zirconium can function as an element of the B site, and the amount of zirconium does not exceed the molar ratio of the B site. Zirconium can be expected to improve the mechanical strength and chemical stability of ceramics. However, excess zirconium tends to decrease the hydrogen permeation rate. For this reason, when zirconium is contained, the molar ratio of zirconium can be set to a value of not less than 0.01 and not more than 0.99.
ここで, 当該混合伝導性セラミックスに要請される機械的強度, 化学的安定性 , 用途, 使用温度等によっても異なるものの, ジルコニウムの下限側のモル比と しては, 0. 0 1 2以上, 0. 0 1 5以上, 0. 02以上, 更には 0. 025以 上, 0. 03以上, 0. 04以上を必要に応じて例示できる。 また上記した下限 と組み合わせ得るジルコニウムの上限側のモル比としては, 0. 99以下, 0. 97以下, 0. 9 5以下, 0. 90以下, 更には 0. 8 5以下, 0. 80以下, 0. 70以下を必要に応じて例示できる。 Here, although it depends on the mechanical strength, chemical stability, application, operating temperature, etc. required for the mixed conductive ceramics, the lower molar ratio of zirconium is 0.012 or more, 0.015 or more, 0.02 or more, 0.025 or more, 0.03 or more, and 0.04 or more can be exemplified as necessary. The molar ratio of the upper limit of zirconium that can be combined with the above lower limit is 0.999 or less, 97 or less, 0.95 or less, 0.90 or less, and 0.85 or less, 0.80 or less, 0.70 or less can be exemplified as necessary.
'一般的には, 高温型のプロトン伝導性セラミックスは, 化学式 A + aBi- a- b 'In general, high-temperature type proton conductive ceramics have the formula A + aBi-ab
B' b03-aの組成で表すことができる。 これに対して当該混合伝導性セラミック スは, 化学式 Ai + aBi— a- b- cB' bB" cOs-aの組成で表すことができる。 Bサ イ トの元素としては, 上記化学式における Bの元素を含む他に, B' の元素 , B" の元素を含む。 B 'b 0 3 - can be expressed as a composition of a. On the other hand, the mixed conductive ceramics can be represented by the composition of the chemical formula Ai + aBi- a - b -cB 'bB "cOs- a . In addition to the element, it includes the element B 'and the element B ".
ここで次のように設定できる。  Here, it can be set as follows.
Aは, アルカリ土類金属であるカルシウム (C a) , ストロンチウム (S r) , バリウム (B a) のうちの少なくとも 1種とすることができる。 aは, 0. 8 ≤ (1 + a) / (1— a) ≤ 1. 2の条件を満足する。  A can be at least one of the alkaline earth metals calcium (Ca), strontium (Sr), and barium (Ba). a satisfies the condition 0.8 ≤ (1 + a) / (1—a) ≤ 1.2.
Bは, セリウム (C e ) , ジルコニウム (Z r ) , チタン (T i ) のうち少な くとも 1種とすることができる。 ここで, B, B, , B" のモル比の総和を 1と したときには, Bサイトとなるジルコニウム (Z r) を 0, 005以上, 0. 0 1以上を含有することができる。  B can be at least one of cerium (Ce), zirconium (Zr), and titanium (Ti). Here, when the sum of the molar ratios of B, B,, and B "is set to 1, zirconium (Zr) serving as the B site can contain 0.0005 or more and 0.01 or more.
B, は, アルミニウム (A 1 ) , スカンジウム (S c) , ガリウム (G a) , イットリウム (Y) , インジウム (I n) , 及び, ランタノイド系列に属する原 子番号が 59〜7 1の元素のうちの少なくとも 1種とすることができる。 ランタ ノイド系列の元素としては, 原子番号 5 9のプラセオジム (P r) , 原子番号 6 0のネオジム (Nd) , 原子番号 64のガドリニウム (Gd) , 原子番号 70の イツテリビゥム (Yb) , 原子番号 62のサマリウム (Sm) , 原子番号 6 3の ユウロムビゥム (E u) , 原子番号 6 5のテルビウム (Tb) のうちの少なくと も 1種を例示できる。  B, are aluminum (A 1), scandium (S c), gallium (G a), yttrium (Y), indium (In), and lanthanoid series elements with element numbers 59 to 71. It can be at least one of them. The lanthanoid elements include praseodymium (Pr) with atomic number 59, neodymium (Nd) with atomic number 60, gadolinium (Gd) with atomic number 64, itteribium (Yb) with atomic number 70, and atomic number 62. At least one of samarium (Sm), eurobium (Eu) with atomic number 63 and terbium (Tb) with atomic number 65 can be exemplified.
B' の元素は, 主として, 当該セラミックスにプロトンを存在させるためのも のである。 B' の元素は, 主として, 結晶格子中に酸素空孔 (酸素があるべきで ありながら, 酸素が存在しないサイト) を作る役割を果たす。 bの範囲は 0以上 で 0. 5以下とすることができる。 なお, B, 元素のモル比である bの下限とし ては, 0. 0 1, 0. 05, 更には, 0. 1, 0. 2を必要に応じて例示できる 。 bの上限としては, 0. 48, 0. 45, 更には, 0. 4, 0. 3, 0. 2を 必要に応じて例示できる。 The element B 'is mainly for the presence of protons in the ceramic. The element B 'mainly plays a role in creating oxygen vacancies (sites where oxygen should exist but oxygen does not exist) in the crystal lattice. The range of b can be 0 or more and 0.5 or less. The lower limit of B, which is the molar ratio of B and the element, may be, for example, 0.01, 0.05, and 0.1, 0.2 as necessary. The upper limit of b is 0.48, 0.45, and 0.4, 0.3, 0.2 Examples can be made as necessary.
B" は, 遷移金属であるクロム (C r) , マンガン (Mn) , 鉄 (F e) , コ バルト (C o) , エッケル (N i ) , ルテユウム (Ru) のうちの少なくとも 1 種とすることができる。 B" の元素は, 主として, プロ トン伝導性に加えて電子 伝導性を付与するのに有効であり, これによりセラミッタスの水素透過性を発現 させることができる。 B" の元素のモル比である cの範囲は, 0. 01以上で 0 . 8以下とすることができる。 なお, cの下限としては適宜選択でき, 0. 01 5, 0. 02, 0. 05を必要に応じて例示できる。 cの上限としては適宜選択 でき, 0. 7, 0. 6, 0. 5を必要に応じて例示でき,更に, 0. 48, 0. 4 5, 0. 4, 0. 3, 0. 2を必要に応じて例示できる。 B" の元素が価格の高 いルテニウムであるときには, 0. 5以下とすることができる。  B "is at least one of the transition metals chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), Eckel (Ni), and luteuium (Ru). The element B "is mainly effective in imparting electron conductivity in addition to proton conductivity, and thereby allows the hydrogen permeability of the ceramics to be exhibited. The range of c, which is the molar ratio of the element of B ", can be from 0.01 to 0.8. The lower limit of c can be appropriately selected, and is 0.015, 0.02, and 0. The upper limit of c can be selected as appropriate, and 0.7, 0.6, 0.5 can be exemplified as needed, and 0.48, 0.45, 0 4, 0.3, and 0.2 can be exemplified as necessary. When the element of B "is ruthenium, which is expensive, the value can be set to 0.5 or less.
• 当該混合伝導性セラミックスの代表的なものとして, バリウム (B a) —セ リウム (C e) 一イットリウム (Y) —ルテェゥム (Ru) —酸素 (O) 系の金 属酸化物を挙げることができる。 この金属酸化物として, 例えば, B a C e 03 系にイットリウム, ルテ二ゥムをド一プしたセラミックス ( B a C e o. -xYo. ι R ux03_。系, X=0. 05〜0. 8 , または, X=0. 05〜0. 5) を挙げる ことができる。 • Representative examples of the mixed conductive ceramics include barium (Ba), cerium (Ce), yttrium (Y), luteum (Ru), and oxygen (O) metal oxides. it can. As the metal oxide, for example, B a C e 0 3 based on yttrium, lutein two © beam of de one-flop with ceramic (B a C e o. -XYo . Ι R u x 0 3 _. System, X = 0.05 to 0.8, or X = 0.05 to 0.5).
また, ストロンチウム (S r) 一ジルコニウム (Z r) —イットリウム (Y) —ルテニウム (Ru) —酸素 (O) 系の金属酸化物を挙げることができる。 この 金属酸化物として, 例えば, S r Z r 03系にイットリウム, ルテニウムをドー プしたセラミックス (S r Z r -xYo.! R ux03 系, X = 0. 05〜0. 8, または, X = 0. 05〜0. 5) を挙げることができる。 Also, strontium (Sr) -zirconium (Zr) -yttrium (Y) -ruthenium (Ru) -oxygen (O) -based metal oxides can be mentioned. As the metal oxide, for example, S r Z r 0 3 based on yttrium, ruthenium dough flop with ceramics (S r Z r -xYo.! R ux0 3 system, X = 0. 05~0. 8, or, X = 0.05 to 0.5).
また, ストロンチウム (S r) —セリウム (C e) —ルテニウム (Ru) 一酸 素 (O) 系の金属酸化物を挙げることができる。 この金属酸化物として, 例えば , S r C e 03系にルテニウムをドープしたセラミックス (S r C e。.9- XR ux 03- tt系, X=0. 05〜0. 8, または, X=0. 0 5〜0. 5) を挙げること ができる。 Also, strontium (Sr) -cerium (Ce) -ruthenium (Ru) monoxide (O) -based metal oxides can be mentioned. As the metal oxide, for example, S r C e 0 3 system ruthenium doped ceramics (S r C e .. 9 - X R u x 0 3 -.. Tt system, X = 0 from 05 to 0 8, Or, X = 0.05 to 0.5).
-当該混合伝導性セラミックスによれば, その表面及び裏面のうちの少なくと も一方に, 触媒層を積層させる形態を例示できる。 触媒層により, 下記の反応の 活性を促進させることができ, 水素透過性の向上を期待できる。 H2→2H++ 2 e一 (アノード側) , 2H++ 2 e—→H2 (力ソード側) -According to the mixed conductive ceramics, a form in which a catalyst layer is laminated on at least one of the front and back surfaces can be exemplified. Depending on the catalyst layer, Activity can be promoted, and improvement in hydrogen permeability can be expected. H 2 → 2H + + 2 e-1 (anode side), 2H ++ 2 e- → H 2 (force side)
従って触媒眉としては, アノード側, 力ソード側のいずれか一方, または双方 に設けることができる。 触媒層としては白金, パラジウム, ロジウム, 銀, 金の うちの少なくとも 1種を含むことができる。  Therefore, the catalyst eyebrows can be provided on one or both of the anode side and the force side. The catalyst layer can contain at least one of platinum, palladium, rhodium, silver, and gold.
-本発明に係る混合伝導性セラミックスによれば, その表面及び裏面のうちの 少なくとも一方には, 電圧を印加させるため電極層を積層させる形態を例示でき る。 電圧を印加させれば, 電極層における反応活性の促進を期待できる。 電極層 としては触媒層と兼用することができ, 白金, パラジウム, ロジウム, 銀, 金の うちの少なくとも 1種を含むことができる。  -According to the mixed conductive ceramics according to the present invention, an embodiment in which an electrode layer is laminated on at least one of the front surface and the back surface to apply a voltage can be exemplified. If a voltage is applied, it is expected that the reaction activity in the electrode layer will be promoted. The electrode layer can also be used as a catalyst layer and can contain at least one of platinum, palladium, rhodium, silver, and gold.
-本発明に係る混合伝導性セラミックスによれば, その厚みは特に限定される ものではなく, 薄膜, 厚膜, 厚層等のように適宜選択できる。 本発明に係る混合 伝導性セラミックスの厚みとしては, 組成, 当該セラミックスを単独で用いるか , 当該セラミックスを薄膜状とし, 通気性をもつ担体に薄膜状として保持させる かによつても相違する。 厚みについては, 一般的には下限として 0. l /im, 0 . 5 μ τη, 1 μ mを例示でき, 上限として 1 Omm, 20 mm, 4 Oram等を例 示できる。 例えば 1〜 500 /i m, 5〜200 jum, 1 0〜: L 00 mを例示で きる。 伹しこれらに限定されるものではない。  -According to the mixed conductive ceramics of the present invention, the thickness is not particularly limited, and can be appropriately selected such as a thin film, a thick film, and a thick layer. The thickness of the mixed conductive ceramics according to the present invention differs depending on the composition and whether the ceramics are used alone or the ceramics is formed into a thin film and held in a thin film by a gas-permeable carrier. In general, the lower limit can be 0.1 l / im, 0.5 μτη, 1 μm as the lower limit, and 1 Omm, 20 mm, 4 Oram, etc. as the upper limit. For example, 1 to 500 / im, 5 to 200 jum, 10 to: L00m can be exemplified. However, the present invention is not limited to these.
•本発明に係る混合伝導性セラミッタスの製造方法としては, その厚み等に応 じて適当な方法を採用できる。 厚膜のときには, 例えば, 原料粉末を加圧した圧 粉体を焼結して形成する方法を採用できる。 薄膜のときには, 原料粉末を分散媒 に分散させた溶液を基板に膜状に塗布し , 焼成する方法を採用できる。 あるいは , 真空蒸着, イオンプレーティング, スパッタリング等の物理的気相蒸着 (P V D) 方法を採用できる。 あるいは, 原料気体を加熱した基板上に導いて反応させ て被膜を形成する化学的気相蒸着 (CVD) 方法を採用できる。 場合によっては , プラズマによる熱源を用い原料粉末を瞬時に溶融して基板に吹き付けて被膜を 形成するブラズマ溶射方法を採用できる。  • As a method of manufacturing the mixed conductive ceramics according to the present invention, an appropriate method can be adopted according to the thickness and the like. In the case of a thick film, for example, a method of sintering a green compact obtained by pressing a raw material powder can be adopted. In the case of a thin film, a method in which a solution in which the raw material powder is dispersed in a dispersion medium is applied to a substrate in a film form and then fired can be adopted. Alternatively, a physical vapor deposition (PVD) method such as vacuum deposition, ion plating, or sputtering can be employed. Alternatively, a chemical vapor deposition (CVD) method in which a raw material gas is guided on a heated substrate and reacted to form a film can be adopted. In some cases, a plasma spraying method in which a raw material powder is instantaneously melted using a heat source by plasma and sprayed onto a substrate to form a coating can be employed.
(実施例)  (Example)
以下, 本発明に係るプロトン一電子混合伝導性セラミックスについての実施例 を具体的に説明する。 Hereinafter, examples of the proton-electron mixed conductive ceramics according to the present invention will be described. Is specifically described.
(第 1実施例)  (First embodiment)
本実施例は, バリウム一セリウム一イツトリゥムールテニウム—酸素系の金属 酸化物を対象とする。 つまり, 化学式 B a C e。.9XY。. uxO3 - αで表される プロトン一電子混合伝導性セラミックスを対象とする。 This embodiment is directed to a barium-cerium-yttrium-ruthenium-oxygen-based metal oxide. That is, the chemical formula B a C e. . 9 one X Y. For uxO 3 - α mixed proton-electron mixed conductive ceramics.
このセラミックスによれば, 化学式 Ai + aBi— a-b— eB' bB" 。〇 — ^とすればAccording to this ceramic, the chemical formula is Ai + aBi-a- b -eB 'bB ".
, A元素はバリウム (B a) であり, a = 0である。 B元素はセリウム (C e) である。 B' 元素はイットリウム (Y) であり, B' 元素のモル比 bは 0. 1で ある。 また B" 元素はルテニウム (Ru) であり, B" 元素のモル比 cは X (X =c) である。 ルテニウムは価数変化が容易な遷移金属である。 , A element is barium (B a), and a = 0. The B element is cerium (Ce). The B 'element is yttrium (Y), and the molar ratio b of the B' element is 0.1. The B "element is ruthenium (Ru), and the molar ratio c of the B" element is X (X = c). Ruthenium is a transition metal whose valence can be easily changed.
B' 及び B" は Bサイトの元素を一部置換したものである。 酸素欠損量 αのモ ノレ比としては, 一般的には—0. 5以上で + 0. 5以下の範囲となるが, これに 限定されるものではない。  B 'and B "are partial substitutions of the element at the B site. Generally, the molar ratio of the oxygen deficiency α is in the range of -0.5 or more and +0.5 or less. However, the present invention is not limited to this.
本実施例によれば, Αサイ 卜のモル比と Bサイトのモル比との総和を 2とした とき, B" 元素であるルテニウムのモル比である X (X=c ) としては, X=0. 075, X=0. 100としている。  According to the present embodiment, when the sum of the molar ratio of the Α site and the molar ratio of the B site is 2, X (X = c), which is the molar ratio of ruthenium as the B ″ element, is X = 0.075 and X = 0.100.
X=0. 07 5のときには, B a C e 825 Y。. i R u。.。7503 - αの化学式で表 されるプロ トン一電子混合伝導性セラミ ックスである。 この場合, セラミックス を構成する金属のモル数の総和を 2としたとき, つまり, Αサイ トの元素のモル 比と Bサイトの元素 (Β' , Β" を含む) のモル比との総和を 2としたとき, Β " 元素であるルテニウムのモル比である X (X=c ) は 0. 075である。 When X = 0.705, BaCe825Y. i R u. .. 75 0 3 - in the chemical formula of α are pro ton one-electron mixed conductive ceramic box to be displayed. In this case, assuming that the total number of moles of the metals constituting the ceramics is 2, that is, the sum of the molar ratio of the Α site element and the molar ratio of the B site element (including Β 'and Β ") Assuming that 2, the molar ratio X (X = c) of the ruthenium Β "element is 0.075.
X=0. 100のときには, B a C e Yo.! R u i Ο 3 -。の化学式で表され るプロトン一電子混合伝導性セラミックスである。 この場合, セラミックスを構 成する金属のモル数の総和を 2としたとき, Β" 元素であるルテニウムのモル比 である X (X=c) としては 0. 100である。 When X = 0.100, B a C e Yo.! R ui Ο 3- . It is a mixed proton-electron conductive ceramic represented by the following chemical formula. In this case, assuming that the total number of moles of the metals constituting the ceramics is 2, X (X = c), which is the molar ratio of the ruthenium element, is 0.100.
本実施例によれば, 出発原料粉末として, 炭酸バリウム (B a C03, 純度 9 9. 9 9%) , 酸化セリウム (C e O3, 純度 9 9. 9%) , 酸化イットリウム (Y203, 純度 9 9. 9%) , 酸化ルテニウム (RuOs, 純度 99. 9%) の 各粉末を用いた。 これらの出発原料粉末を所定の割合で秤量した。 秤量した出発 原料をメノゥ製の乳鉢でエタノールを用いて湿式混合し, 混合粉末を形成した。 その後, 混合粉末からエタノールを蒸発させた。 その混合粉末を成形型 (金型) で加圧成形して成形体を形成した。 成形体を大気中で 1400°Cで 10時間, か 焼した。 その後, か焼した成形体をメノウ製の乳鉢で粉碎した。 更にエタノール を分散剤として用い, ジルコユア製の遊星式ポールミル (1 6 5 r pm) で 1〜 2時間粉砕し, 粉末を形成した。 その後, ドラフト内で赤外線ランプによりエタ ノールを蒸発させ, 1 25°Cの真空乾燥機中で粉末を 1日以上乾燥させた。 この ようにした得られた粉末を別の成形型 (金型) で成形し, 円盤形状の圧粉体を得 た。 更に圧粉体をラバープレス法により静水圧で加圧 (加圧力: 30 OMP a) し, 加圧体を形成した。 その加圧体を大気雰囲気において 1 6 5lO° , 1 0時間 加熱保持することにより焼結した。 これにより試料を形成した。 According to this embodiment, as the starting raw material powder, barium carbonate (B a C0 3, purity 9 9.9 9%), cerium oxide (C e O 3, purity 9 9.9%), yttrium oxide (Y 2 0 3, purity 9 9.9%), using each powder ruthenium oxide (RuOs, purity 99.9%). These starting material powders were weighed at a predetermined ratio. Weighed departure The raw materials were wet-mixed with ethanol in a mortar made of Meno using ethanol to form a mixed powder. After that, ethanol was evaporated from the mixed powder. The mixed powder was press-formed with a forming die (mold) to form a formed body. The compact was calcined in air at 1400 ° C for 10 hours. Then, the calcined compact was ground in an agate mortar. Using ethanol as a dispersant, the powder was ground for 1 to 2 hours using a zirconia planetary pole mill (165 rpm) to form a powder. After that, the ethanol was evaporated by an infrared lamp in the fume hood, and the powder was dried in a vacuum dryer at 125 ° C for at least one day. The powder obtained in this way was molded in another molding die (die) to obtain a disc-shaped green compact. Furthermore, the green compact was pressed with a hydrostatic pressure by a rubber press method (pressing force: 30 OMPa) to form a pressed body. Its pressure body 1 6 5 l O ° in an air atmosphere, and sintered by heating holding 1 0 hours. Thus, a sample was formed.
X線回折装置を用いて, 試料の相の同定を行った。 更に電子顕微鏡 (SEM, 倍率: 400倍, 1000倍) にて表面観察を行った。 試料が開気孔を有しない ことは, 電子顕微鏡 (SEM) でも確認された。 開気孔は機械的なガス透過を発 生させる。 この試料は開気孔を有しないため, 機械的なガス透過はないことにな る。  The phases of the sample were identified using an X-ray diffractometer. The surface was further observed with an electron microscope (SEM, magnification: 400x, 1000x). Electron microscopy (SEM) confirmed that the sample had no open pores. Open pores create mechanical gas permeation. Since this sample does not have open pores, there is no mechanical gas permeation.
更に, プロ トン伝導性を評価するために, 図 1に示す装置を用い, 水素濃淡電 池の起電力を測定した。 この場合, 直径約 1 3mm, 厚み 0. 5mmの円盤ペレ ット状の試料 10を用いた。 試料 10の両端面に白金ペーストを塗布して 900 °Cで 1時間焼き付け, これにより多孔質の白金層 1 2 (多孔質の触媒層) を試料 10の両端面に形成した。  Furthermore, to evaluate the proton conductivity, the electromotive force of the hydrogen concentration cell was measured using the device shown in Fig. 1. In this case, a disc-shaped pellet 10 with a diameter of about 13 mm and a thickness of 0.5 mm was used. A platinum paste was applied to both ends of Sample 10 and baked at 900 ° C for 1 hour, thereby forming a porous platinum layer 12 (porous catalyst layer) on both ends of Sample 10.
更に, その白金層 1 2を白金集電体で覆った後, 図 1に示すように, ガラス製 のリング状のシール 14を介して第 1セラミックス管 (アルミナ) 1 6の軸端 1 6 aと第 2セラミックス管 1 8 (アルミナ) の軸端 1 8 aとの間に試料 10を挟 んだ。 これにより試料 10を隔壁とする第 1室 16 dと第 2室 1 8 dとを形成し た。 第 1セラミックス管 1 6は第 1ガス導入口 1 6 b, 第 1ガス導出口 1 6 c, 第 1室 1 6 dをもつ。 第 1ガス導入口 1 6 bには第 1ガス供給管 (アルミナ) 2 0が配置されている。 第 2セラミックス管 18は第 2ガス導入口 18 b, 第 2ガ ス導出口 1 8 c, 第 2室 1 8 dをもつ。 第 2ガス導入口 18 bには第 2ガス供給 管 (アルミナ) 22が配置されている。 試料 10の周辺には加熱装置 28が設け られている。 After covering the platinum layer 12 with a platinum current collector, as shown in FIG. 1, a shaft end 16 a of the first ceramic tube (alumina) 16 is inserted through a glass ring-shaped seal 14. The sample 10 was sandwiched between the shaft end 18a of the second ceramic tube 18 (alumina) and the shaft end 18a. Thus, a first chamber 16d and a second chamber 18d having the sample 10 as a partition wall were formed. The first ceramic tube 16 has a first gas inlet 16b, a first gas outlet 16c, and a first chamber 16d. A first gas supply pipe (alumina) 20 is disposed at the first gas inlet 16b. The second ceramic tube 18 has a second gas inlet 18b, a second gas outlet 18c, and a second chamber 18d. 2nd gas supply to 2nd gas inlet 18b A tube (alumina) 22 is arranged. A heating device 28 is provided around the sample 10.
そして, 試料 10がその厚み方向に機械的ガス透過性を有しないことを確認す る漏れテス ト (温度: 800°C) を行った。 漏れテス トでは, 第 2室 18 dにァ ルゴンをキャリアガスとして導入すると共に, 第 1室 16 dにヘリウム (圧力: latm, latra=1013hPa) を導入し, アルゴン側の第 2室 18 dに繋がる第 2ガス 導出口 1 8 cから吐出された出口ガスをガスクロマトグラフィーによりチェック し, 当該出口ガスにヘリウムが漏れていないことを確認した。 これにより試料 1 0は機械的ガス透過性を有しないことが再確認された。  Then, a leak test (temperature: 800 ° C) was performed to confirm that Sample 10 had no mechanical gas permeability in the thickness direction. In the leak test, argon was introduced as carrier gas into the second chamber 18d, helium (pressure: latm, latra = 1013hPa) was introduced into the first chamber 16d, and into the second chamber 18d on the argon side. The outlet gas discharged from the connected second gas outlet 18c was checked by gas chromatography, and it was confirmed that helium did not leak into the outlet gas. This reconfirmed that Sample 10 had no mechanical gas permeability.
プロトン伝導性を調べるべく水素濃淡電池で起電力を測定する試験を行った。 この場合, 第 1室 16 d及び第 2室 1 8 dのそれぞれに水素分圧が異なるガスを 導入して行った。 第 1室 16 d側のァノード及び第 2室 18 d側の力ソードでは 次の反応が生じるため, 水素分圧に見合った起電力が生じる。 理論起電力は, 下 記の式 1に示すネルンス トの式に基づいて求められる。 ァノードは酸化反応を行 う部位と定義される。 カソードは還元反応を行う部位と定義される。  A test was conducted to measure the electromotive force in a hydrogen concentration cell in order to examine proton conductivity. In this case, a gas having a different partial pressure of hydrogen was introduced into each of the first chamber 16d and the second chamber 18d. The following reactions occur in the vane on the 16 d side of the first chamber and the force sword on the 18 d side of the second chamber, and an electromotive force corresponding to the hydrogen partial pressure is generated. The theoretical electromotive force is obtained based on the Nernst equation shown in Equation 1 below. Anode is defined as a site that undergoes an oxidation reaction. The cathode is defined as the site where the reduction reaction takes place.
ァノード H2→2H + + 2 e一 Node H 2 → 2H + + 2 e
カソード 2 H++ 2 e―→H2 Cathode 2 H ++ 2 e- → H 2
理論起電力 E。= (RT/2 F) X 1 n [ (PH2 (アノード) / (PH2 (カソ一 ド) ] …… (1) Theoretical electromotive force E. = (RT / 2 F) X 1 n [(PH2 ( anode) / (P H2 (cathode one de) ...... (1)
周知のように, Rは気体定数を示す。 Tは温度 (K) を示す。 Fはファラデー 定数を示す。 PH2 (アノード) はアノード側 (第 1室 16 d) の水素分圧を示す 。 PH2 (力ソード) は力ソード側 (第 2室 1 8 d) の水素分圧を示す。 As is well known, R indicates a gas constant. T indicates temperature (K). F indicates the Faraday constant. PH2 (anode) indicates the partial pressure of hydrogen on the anode side (first chamber 16d). PH2 (power sword) indicates the partial pressure of hydrogen on the power sword side (18d in the second chamber).
起電力を測定する際には, ペレツト状の試料 10 (厚み 0. 5 mm, 直径 1 3 mm) を用いると共に, 試料 10の表裏の白金層 1 2にリード線 24, 26を電 気的に接続した。 更に, 水素濃淡電池の基準ガスとして 1 a tm ( 1 a t m= 1 01 3 h P a) の水素ガスをアノード側の第 1室 1 6 d側に導入した。 ガス混合 器を用いてアルゴンガスと水素とを所定の比率で混合した混合ガスをカソード側 の第 2室 1 8 dに導入した。 そして, 力ソード側の第 2室 1 8 dの混合ガスの水 素分圧をガスクロマトグラフィーで測定した。 発生した起電力については, レコ ーダで起電力が安定したことを確認した後に, エレクトロメータで起電力を測定 した。 When measuring the electromotive force, a pellet-shaped sample 10 (0.5 mm thick, 13 mm in diameter) was used, and lead wires 24 and 26 were electrically connected to the platinum layers 12 on the front and back of the sample 10. Connected. In addition, 1 atm (1 atm = 1103 hPa) of hydrogen gas was introduced into the first chamber 16d on the anode side as a reference gas for the hydrogen concentration cell. Using a gas mixer, a mixed gas obtained by mixing argon gas and hydrogen at a predetermined ratio was introduced into the second chamber 18d on the cathode side. The hydrogen partial pressure of the mixed gas in the second chamber 18d on the force sword side was measured by gas chromatography. For the generated electromotive force, After confirming that the electromotive force was stable using a radar, the electromotive force was measured using an electrometer.
ここで図 2は, 電解質がプロトン伝導性を有する他に電子伝導性を有する概念 を示す。 図 2に示すように, 試料である電解質がプロ トン伝導性を有する他に電 子伝導性を有すると, 試料である電解質の端面に水素が供給されると, 電解質の 端面において, H2→2H + + 2 e—の反応がアノード側で起こる。 プロトン (H + ) 及び電子 (e— ) は電解質を透過する。 電解質の反対側の端面において, 2H + + 2 e—→H2の反応が力ソード側で起こり, 結果として水素は透過する。 ここで , 試料である電解質がプロ トン伝導性を有する他に電子伝導性を有すると, 発生 する起電力は上記したネルンストの式に基づく理論起電力の値よりも小さくなる 図 3は水素濃淡電池の起電力の測定結果 (試料温度: 800°C) を示す。 図 3 の横軸は力ソード側の水素分圧の対数を示す。 図 3の縦軸は起電力を示す。 図 3 において, 特性線 S 1は, アノード側とカソード側とにおける水素分圧差に基づ いてネルンス トの式で算出された理論起電力を示す。 Here, Fig. 2 shows the concept that the electrolyte has electron conductivity in addition to proton conductivity. As shown in Fig. 2, when the sample electrolyte has electron conductivity in addition to proton conductivity, when hydrogen is supplied to the end face of the sample electrolyte, H 2 → The reaction of 2H ++ 2e- occurs on the anode side. Protons (H +) and electrons (e−) permeate the electrolyte. In the opposite end face of the electrolyte, the reaction of 2H + + 2 e- → H 2 occurs at a force cathode side, as a result of hydrogen is transmitted. Here, if the sample electrolyte has electron conductivity in addition to proton conductivity, the generated electromotive force is smaller than the theoretical electromotive force based on the above-mentioned Nernst equation. The measurement results of the electromotive force (sample temperature: 800 ° C) are shown. The horizontal axis in Fig. 3 shows the logarithm of the hydrogen partial pressure on the force side. The vertical axis in FIG. 3 shows the electromotive force. In Fig. 3, the characteristic line S1 shows the theoretical electromotive force calculated by the Nernst equation based on the hydrogen partial pressure difference between the anode side and the cathode side.
化学式 B a C e 0. 9-xYo. R u χθ 3- αで表されるプロトン一電子混合伝導性セ ラミ ックスにおいて, 図 3の⑩印は Χ=0. 0 75の測定結果を示し, 図 3の騸 印は Χ=0. 100の測定結果を示す。 Χ=0. 100のときには, プロ トンー電 子混合伝導性セラミックスは, 化学式 B a C e 0. 3Yo. iRuo. i03- で表される 。 Χ=0. 07 5のときには, プロ トン一電子混合伝導性セラミックスは, 化学 式 B a C e o.82 s Υο. ι R u ο. o ? s O a-aで表される。 In the proton-electron mixed conducting ceramics represented by the chemical formula B a C e 0.9-xYo.R u Rθ 3 , the triangles in Fig. 3 show the measurement results for Χ = 0.075. The mark in FIG. 3 indicates the measurement result when Χ = 0.100. . Chi = 0 when 100 of the pro tons of electron mixed conductive ceramics has the formula B a C e 0. 3 Yo iRuo i0 3 -.. Represented by. Chi = 0. 07 at 5, pro ton single-electron mixed conductive ceramics is represented by the chemical formula B a C e o.82 s Υο. Ι R u ο. O? S O a- a.
ここで, 電解質がプロ トンのみを導電種とするときには, 水素濃淡電池の起電 力は, ネルンス トの式に基づく理論起電力に従うものである。 しかし電解質がプ ロトン及ぴ電子 (あるいは電子ホール) の双方を導電種とするときには, 水素濃 淡電池の起電力は, ネルンス トの式に基づく理論起電力を下回るはずである。 図 3に示すように, X=0. 075の測定結果, X=0. 100の測定結果は共 に直線性が認められた。 更に X=0. 075の測定結果, X=0. 100の測定結 果は, 共に, ネルンス トの式に基づく理論起電力の値 (特性線 S 1) を下回って いる。 従って, 本実施例に係る試料がプロ トン伝導性及び電子伝導性の双方を有 するものである。 Here, when the electrolyte uses only protons as the conductive species, the electromotive force of the hydrogen concentration cell follows the theoretical electromotive force based on the Nernst equation. However, when the electrolyte uses both protons and electrons (or electron holes) as conductive species, the electromotive force of the hydrogen concentration cell must be lower than the theoretical electromotive force based on the Nernst equation. As shown in Fig. 3, both the measurement results at X = 0.075 and the measurement results at X = 0.100 showed linearity. Furthermore, both the measurement results at X = 0.075 and the measurement results at X = 0.10 are lower than the theoretical electromotive force value (characteristic line S1) based on the Nernst equation. Therefore, the sample according to this example has both proton conductivity and electron conductivity. Is what you do.
更に, 上記した試料について水素透過試験を行った。 この場合, 白金層 1 2に 電圧を印加させてない。 そして水素供給側 (アノード側) である第 1室 1 6 dに 所定分圧の水素ガス (圧力: 1 atm, 0.22atm, 0.05atm, 0. Olatm) をそれぞれ第 1 ガス供給管 20から導入した。 水素供給側 (アノード側) に供給した水素ガスは , バブラ一を通して水蒸気を含有させたものである。 水蒸気を含有させるのは, 試料を過度の還元性雰囲気にさらすのを防止するためである。 また, 水素透過側 (力ソード側) である第 2室 1 8 dに, 水蒸気を含有させたアルゴンをキャリア ガスとして第 2ガス供給管 22から導入した。 そして第 2室 1 8 dの第 2ガス導 出口 1 8 cからキャリアガスと共に吐出された水素の量を測定した。 ここで, 2 5°C換算で, 単位時間 ·単位面積当たりの水素透過速度を式 (2) に基づいて求 めた。  Further, a hydrogen permeation test was performed on the above-mentioned sample. In this case, no voltage was applied to the platinum layer 12. A predetermined partial pressure of hydrogen gas (pressure: 1 atm, 0.22 atm, 0.05 atm, 0. Olatm) was introduced from the first gas supply pipe 20 into the first chamber 16 d on the hydrogen supply side (anode side). . The hydrogen gas supplied to the hydrogen supply side (anode side) contains water vapor through a bubbler. The inclusion of water vapor prevents the sample from being exposed to excessive reducing atmosphere. In addition, argon containing steam was introduced as carrier gas from the second gas supply pipe 22 into the second chamber 18d on the hydrogen permeation side (force source side). Then, the amount of hydrogen discharged together with the carrier gas from the second gas outlet 18c of the second chamber 18d was measured. Here, the hydrogen permeation rate per unit time per unit area was calculated based on Eq. (2) at 25 ° C.
V = V g ■ (c/1 00) · { (273. 1 5 + 25) / (27 3. 1 5 +T) V = V g ■ (c / 1 00) · ((273.15 + 25) / (27 3.15 + T)
} · (l/'S) } · (L / 'S)
(m 1 · m i n一1 · c m— 2) … ( 2 ) (m 1 · min 1 · cm— 2 )… (2)
ここで Vgは出口ガス (キャリアガス +発生した水素量) の流量 (m l - m i n一1) , Tは室温 (°C) , cは水素濃度 (%) , Sは試料の水素透過面積, つま り表面側の白金層 12の投影面積でかつ試料の片面側に水素ガスが接触する面積 (cm") を示す。 Where Vg is the flow rate (ml-min- 1 ) of the outlet gas (carrier gas + the amount of generated hydrogen), T is room temperature (° C), c is the hydrogen concentration (%), S is the hydrogen permeation area of the sample, It shows the projected area of the platinum layer 12 on the surface side and the area (cm ") where one side of the sample is in contact with hydrogen gas.
水素供給側に導入する水素ガスの水素濃度としては 1 %(0.01atm), 5 % (0.05 atin), 22 % (0.22atm) , 1 00% (latm)とした。 ここで, 試料がプロ トン伝導 性を有する他に電子伝導性を有すると, 試料の白金層 1 2に外部から電圧を印加 しなくても, 自己短絡電流が流れるため, 試料において水素の電気化学的な透過 が生じる。  The hydrogen concentration of the hydrogen gas introduced into the hydrogen supply side was 1% (0.01atm), 5% (0.05atin), 22% (0.22atm), and 100% (latm). Here, if the sample has electron conductivity in addition to proton conductivity, a self-short-circuit current flows without applying an external voltage to the platinum layer 12 of the sample. Transmission occurs.
図 4は測定結果を示す。 図 4の横軸はネルンストの式に基づく起電力相当を示 す。 図 4の縦軸は単位時間 .単位面積当たりの水素透過速度を示す。 翁印は X = 0. 0 75の測定結果を示す。 矚印は Χ=0· 1 00の測定結果を示す。 各印の 周囲に, 水素供給側に導入した水素ガスの水素濃度を示す。  Figure 4 shows the measurement results. The horizontal axis in Fig. 4 shows the electromotive force equivalent based on the Nernst equation. The vertical axis in FIG. 4 indicates the hydrogen permeation rate per unit time per unit area. Okina indicates the measurement result of X = 0. The black mark indicates the measurement result of Χ = 0 · 100. Around each mark, the hydrogen concentration of the hydrogen gas introduced to the hydrogen supply side is shown.
図 4に示すように, 100%水素ガスをアノード側に供給したとき, 水素透過 速度は, 0. 02m 1 ' m i n_1 ■ c m—2以上であった。 As shown in Fig. 4, when 100% hydrogen gas was supplied to the anode side, hydrogen permeation Rate was 0. 02m 1 'min _1 ■ cm- 2 or more.
具体的には, 図 4に示すように, X=0. 1 00のときには, 100%水素ガ ス (= latin) をアノード側に供給したとき水素透過速度は約 0. 1 1m l - m i r 1 · cm— 2であった。 これは電流密度でいうと, 約 1 5mAZc m2に相当す る。 また, 5%水素ガス (水素分圧 =0. 05 atm) をアノード側に供給したとき , 水素透過速度は約 0. 05m l ■ m i n— 1 ■ cm—2であり, また, 1 %水素ガ ス (水素分圧 =0. 01 atra) をァノード側に供給したとき, 水素透過速度は約 0 . 03m l - m i n— 1 ■ c m— 2であった。 Specifically, as shown in Fig. 4, when X = 0.100, when 100% hydrogen gas (= latin) is supplied to the anode side, the hydrogen permeation rate is about 0.11 ml-mir 1 · Cm— 2 . This is to say a current density, you equivalent to about 1 5mAZc m 2. Also, when 5% hydrogen gas (hydrogen partial pressure = 0.05 atm) was supplied to the anode side, the hydrogen permeation rate was about 0.05 ml l min- 1 cm- 2 , and 1% hydrogen gas When hydrogen (hydrogen partial pressure = 0.01 atra) was supplied to the anode side, the hydrogen permeation rate was about 0.03 ml-min- 1 cm- 2 .
また, X=0. 075のときには, 1 00%水素ガス (latm) をアノード側に 供給したとき水素透過速度は約 0. 06m l ■ m i n—1 ■ cm— 2であり, また, 5%水素ガス (水素分圧 0. 0 5 atm) をァノード側に供給したとき, 水素透過 速度は 0. 03〜0. 04m 1 ■ m i n— 1 ■ cm— 2であり, また, 1 %水素ガス (水素分圧 0. 0 1 atm) をァノード側に供給したとき, 水素透過速度は約 0. 025m l - m i n_1 · cm でめった。 When X = 0.075, when 100% hydrogen gas (latm) is supplied to the anode side, the hydrogen permeation rate is about 0.06 ml l min- 1 cm- 2 , and 5% hydrogen gas. When gas (hydrogen partial pressure: 0.05 atm) was supplied to the anode side, the hydrogen permeation rate was 0.03 to 0.04 m1 ■ min— 1 ■ cm— 2 , and 1% hydrogen gas (hydrogen when supplying the partial pressure 0. 0 1 atm) to Anodo side, the hydrogen permeation rate of about 0. 025m l - rare in min _1 · cm.
試料の厚みが 0. 5mmと相当厚いこと, 単位面積当たり換算であることを考 慮すると, 水素透過速度としてはかなり大きいといえる。 従ってセラミックスの 薄肉化, 水素透過面積の増加を図れば, かなりの水素透過量を期待することがで きる。  Considering that the sample thickness is as thick as 0.5 mm and converted per unit area, it can be said that the hydrogen permeation rate is quite large. Therefore, if the ceramics are made thinner and the hydrogen permeation area is increased, a considerable amount of hydrogen permeation can be expected.
図 4に示す各特性線は直線性を有しており, 測定プロット点が直線上に載って いることがわかる。 プロット点が直線上に載ることは, 試料の開気孔からのガス 透過 (ガス漏れ) 現象ではなく, 電気化学的な透過, 即ち, プロ トン一電子混合 伝導性に基づく水素透過の現象であることを意味する。  Each characteristic line shown in Fig. 4 has linearity, indicating that the measurement plot points are on the straight line. The fact that the plot points are on a straight line is not a gas permeation (gas leak) phenomenon from the open pores of the sample, but an electrochemical permeation, that is, a hydrogen permeation phenomenon based on proton-electron mixed conductivity. Means
もし, 試料にこれの厚み方向に連通する開気孔が形成されており, 上記した水 素透過性が開気孔による機械的な水素透過による.ものであると仮定すると, 水素 透過速度は基本的にはアノード側に供給した水素分圧に比例するはずである (水 素透過量が小さいとき) 。 この場合, アノード側に供給した水素ガスの水素濃度 が 1% (水素分圧 =0. 0 1 atm) のときにおける水素透過速度は, 水素濃度 10 0%の水素ガスを用いたときの 1ノ100となるはずであり, 大きく低下するこ とになるはずである。 しかしながら本実施例によれば, 図 4に示す測定結果のように, ァノード側に 供給したガスの水素濃度が 1 %のときにおける水素透過速度は, 水素濃度 Ο 0 %のときにおける水素ガスを用いたときの水素透過速度に対して, 1/3程度で あった。 従って本実施例に係る水素透過速度は, 試料の開気孔に基づく機械的ガ ス透過ではなく, 電気化学的な水素透過によるものである。 なお試料の厚み方向 に連通する開気孔が試料に形成されていないことは, 前述したように, 電子顕微 鏡 (S EM) 観察により確認されている。 If it is assumed that an open pore communicating with the sample in the thickness direction is formed in the sample and the above-mentioned hydrogen permeability is due to mechanical hydrogen permeation through the open pore, the hydrogen permeation rate is basically Should be proportional to the partial pressure of hydrogen supplied to the anode side (when hydrogen permeation is small). In this case, when the hydrogen concentration of the hydrogen gas supplied to the anode side is 1% (hydrogen partial pressure = 0.01 atm), the hydrogen permeation rate is 1% when hydrogen gas with a hydrogen concentration of 100% is used. It should be 100, which should be greatly reduced. However, according to the present embodiment, as shown in the measurement results shown in Fig. 4, the hydrogen permeation rate when the hydrogen concentration of the gas supplied to the anode side is 1% is the same as the hydrogen gas when the hydrogen concentration% 0%. It was about one-third of the hydrogen permeation rate at the time. Therefore, the hydrogen permeation rate according to the present embodiment is based on electrochemical hydrogen permeation, not mechanical gas permeation based on the open pores of the sample. As described above, it was confirmed by electron microscopy (SEM) that no open pores communicating with the sample in the thickness direction were formed in the sample.
また上記したセラミックスについて電気伝導度 σを交流二端子法により測定し た。 測定温度は 8 00°Cとし, 1 7. 0°Cの飽和水蒸気により加湿した水素ガス 中において測定した。 B a C e。. 825 Y。. u。.。7503- ^については, 電気伝導 度 σ = 1. 7 X 1 0— 3 S · c m一1であった。 S r Z r o. 825 Yo. ! R u o. OTS OS-C については, 電気伝導度 σ = 2. 2 X 1 0一3 S · c in一1であった。 The electrical conductivity σ of the above ceramics was measured by an AC two-terminal method. The measurement temperature was 800 ° C, and the measurement was performed in hydrogen gas humidified with saturated steam at 17.0 ° C. B a C e. 825 Y. u. .. 75 0 3 - ^ For had an electric conductivity of σ = 1. 7 X 1 0- 3 S · cm one 1. S r Z r o. 825 Yo .! R u o. For OTS OS-C, was electrical conductivity σ = 2. 2 X 1 0 one 3 S · c in one 1.
上記したように第 1実施例によれば, プロトン伝導性及び電子伝導性の双方を 有し' 水素を透過できるプロトンー電子混合伝導性セラミックスを提供すること ができた。  As described above, according to the first embodiment, it was possible to provide a mixed proton-electron conductive ceramic having both proton conductivity and electron conductivity and capable of transmitting hydrogen.
更に本発明に係るプロトン一電子混合伝導性セラミックスの安定性を調べた。 この場合, X = 0. 1 00に係る試料, つまり化学式 B a C e 0. 8Yo. iR uo. iOFurther, the stability of the proton-electron mixed conductive ceramics according to the present invention was examined. In this case, X = sample of the 0.1 00, i.e. the formula B a C e 0. 8 Yo. IR uo. IO
3 -。で表されるセラミックスを代表例とした。 そしてこのセラミッタスで形成し た試料を水素雰囲気において高温 (8 00°C) において 3時間さらした。 この場 合, 水素雰囲気 (還元性雰囲気) にさらす前後における試料の X線回折パターン を測定した。 図 5は測定結果を示す。 図 5に示すように, 上記した水素雰囲気に 試料をさらしたとしても, 回折パターンの変化は認められず, 本実施例に係る試 料は高温の水素雰囲気においても安定であること示す。 参考として, 図 5に B a C e O 3についての X線回折パターンを示す。 3-. The ceramics represented by are representative examples. Then, the sample formed by the ceramics was exposed to a high temperature (800 ° C) for 3 hours in a hydrogen atmosphere. In this case, the X-ray diffraction patterns of the sample before and after exposure to a hydrogen atmosphere (reducing atmosphere) were measured. Figure 5 shows the measurement results. As shown in Fig. 5, no change in the diffraction pattern was observed even when the sample was exposed to the hydrogen atmosphere described above, indicating that the sample according to the present example was stable even in a high-temperature hydrogen atmosphere. For reference, Fig. 5 shows the X-ray diffraction pattern of BaCeO3.
(第 2実施例)  (Second embodiment)
第 2実施例として, ストロンチウム一ジルコニウムーィットリゥムー酸素系の 金属酸化物で形成した試料を作製した。 つまり, S r Z r。. 9ΧΥ。. iR ux03a の試料を作製した。 この場合, X=0. 0 7 5 , X=0. 1 0 0, X=0. 1 2 5 とした。 このセラミックスによれば, 化学式 A1 + aB a - b- CB, bB" <:03- »と すれば, a = 0であり, B元素はジルコニウム (Z r) である。 B, 元素はイツ トリウム (Y) であり, B' 元素のモル比 bは 0. 1である。 また B" 元素はル テユウム (Ru) であり, B" 元素のモル比 cは X (X = 0. 075, X=0. 1 00, X=0. 1 25, X=c) である。 As a second example, a sample formed of strontium-zirconium-yttrium oxygen-based metal oxide was manufactured. That is, SrZr. 9Χ Υ. . IR ux0 3 - to prepare a sample of a. In this case, X = 0.075, X = 0.10, X = 0.125. According to this ceramic, the chemical formula A 1 + a B a - b - C B, b B "<: 0 3- » Then, a = 0 and the element B is zirconium (Zr). The element B is yttrium (Y), and the molar ratio b of the element B 'is 0.1. The B "element is luteuium (Ru), and the molar ratio c of the B" element is X (X = 0.075, X = 0.100, X = 0.125, X = c).
X=0. 075のときには, 本実施例に係るプロトン一電子混合伝導性セラミ ックスは, 化学式 S r Z r。.82SY。. iR u。.。7503- βで表される。 この場合, セ ラミックスを構成する金属のモル数の総和を 2としたとき, ルテニウムのモル比 は 0. 075である。 When X = 0.075, the mixed proton-electron conductive ceramic according to this example has the chemical formula SrZr. 82S Y. iR u. .. It is represented by 75 0 3 - β . In this case, when the total number of moles of the metals constituting the ceramics is 2, the molar ratio of ruthenium is 0.075.
第 2実施例によれば, Χ=0. 1 00のときには, プロ トン一電子混合伝導性 セラミックスは, 化学式 S r Z r Yo. xR u Os-aで表される。 この場合, セラミックスを構成する金属のモル数の総和を 2としたとき, ルテニウムのモル 比は 0. 100である。  According to the second embodiment, when Χ = 0.100, the proton-electron mixed conductive ceramic is represented by the chemical formula SrZryo.xRuOs-a. In this case, when the total number of moles of the metals constituting the ceramics is 2, the molar ratio of ruthenium is 0.100.
X=0. 1 25のときには, プロ トン一電子混合伝導性セラミ ックスは, 化学 5¾S r Z r Yo. R u , 25 Ο 3 で表さ る。 この場合, セラミックスを構 成する金属のモル数の総和を 2としたとき, ルテニウムのモル比は 0. 1 25で ある。 X = 0. 1 when 25 of the pro ton single-electron mixed conductive ceramic box is that represented by the chemical 5¾S r Z r Yo. R u , 25 Ο 3. In this case, the molar ratio of ruthenium is 0.125, assuming that the total number of moles of the metals constituting the ceramics is 2.
第 2実施例によれば, 出発原料粉末として, 炭酸ス トロンチウム (S r COa , 純度 9 9. 9 9%) , 酸化ジルコユウム (Z r Q2, 純度 9 9. 9%) , 酸化 イットリウム (Y203, 純度 9 9. 9%) , 酸化ルテニウム (Ru03, 純度 9 9. 9%) の各粉末を用いた。 そして基本的には前記した実施例と同様な手順に より円盤形状の圧粉体を形成した (か焼温度: 1 3 50。C,か焼温度:時間 1 0 時間) 。 更に圧粉体をラバープレス法により静水圧で加圧 (加圧力: 300MP a) し, 加圧体を形成した。 その加圧体を大気雰囲気において 1 700°C, 10 時間加熱保持することにより焼結した。 これにより試料を形成した。 試料の厚み は 0. 5 mm, 直径は 1 3 mmとした。 According to the second embodiment, as the starting raw material powder, carbonate scan strontium (S r COa, purity 9 9.9 9%), oxidation Jirukoyuumu (Z r Q 2, purity 9 9.9%), yttrium oxide (Y 2 0 3, purity 9 9.9%), using each powder ruthenium oxide (Ru0 3, purity 9 9.9%). Then, a disk-shaped green compact was formed basically by the same procedure as in the above-described embodiment (calcination temperature: 1350.C, calcination temperature: time 10 hours). Further, the green compact was pressed with a hydrostatic pressure by a rubber press method (pressing force: 300 MPa) to form a pressed body. The pressed body was sintered by heating at 1700 ° C for 10 hours in the atmosphere. Thus, a sample was formed. The thickness of the sample was 0.5 mm and the diameter was 13 mm.
X線回折装置を用いて, 試料の相の同定を行った。 更に電子顕微鏡 (SEM, 倍率 400倍, 1000倍) にて表面観察を行った。 機械的ガス漏れの要因とな る開気孔を試料が有しないことは, 電子顕微鏡 (SEM) でも確認された。  The phases of the sample were identified using an X-ray diffractometer. Furthermore, the surface was observed with an electron microscope (SEM, magnifications 400 and 1000). Electron microscopy (SEM) confirmed that the sample did not have open pores that could cause mechanical gas leakage.
そして試料を 800°Cに加熱した状態で, 前述同様に水素透過性を測定した。 この場合, 白金層 1 2に電圧を印加させてない。 測定結果を図 4に示す。 図 4に おいて, ◊印は, X=0. 075の測定結果を示す。 △印は, X=0. 100の測 定結果を示す。 ▽印は, X=0. 1 25の測定結果を示す。 Then, with the sample heated to 800 ° C, the hydrogen permeability was measured as described above. In this case, no voltage was applied to the platinum layer 12. Figure 4 shows the measurement results. In Fig. 4, the symbol ◊ indicates the measurement result when X = 0.075. The △ mark indicates the measurement result when X = 0.100. ▽ indicates the measurement result when X = 0.125.
図 4に示すようにアノード側に供給した水素ガスの濃度が 22°/0のときには, 水素透過速度としては約 0. 035〜0. 04 Om 1 ■ m i n— 1 · c πΓ2であつ た。 アノード側に供給した水素ガスの濃度が 5%のときには, 水素透過速度とし ては約 0. 0 1〜0. 02 m 1 ■ m i η—1 ■ cnT2程度であった。 When the concentration of the hydrogen gas supplied to the anode side as shown in FIG. 4 of 22 ° / 0, as the hydrogen permeation rate was filed at about 0. 035~0. 04 Om 1 ■ min- 1 · c πΓ 2. The concentration of the hydrogen gas supplied to the anode side at 5%, is a hydrogen permeation rate was about 0. 0 1~0. 02 m 1 ■ mi η- 1 ■ cnT 2 about.
このように第 2実施例においても, プロトン伝導性及び電子伝導性の双方を有 し, 水素を透過できるプロトン一電子混合伝導性セラミックスを提供することが できた。  Thus, also in the second embodiment, it was possible to provide a proton-electron mixed conductive ceramic having both proton conductivity and electron conductivity and capable of transmitting hydrogen.
(第 3実施例)  (Third embodiment)
第 3実施例としては, ス トロンチウムーセリゥム—ルテニウム一酸素系の金属 酸化物で形成した試料を作製した。 つまり, S r C e ,-xR uxOsiの試料を作 成した。 この場合には, X=0. 05 , X=0. 100, X=0. 1 5とした。 In the third embodiment, a sample formed of a strontium-cerium-ruthenium-oxygen-based metal oxide was manufactured. That, S r C e, - have created a sample x R uxOsi. In this case, X = 0.05, X = 0.100, and X = 0.15.
X=0. 0 5のときには, 本実施例に係るプロトン一電子混合伝導性セラミッ タスは, 化学式 S r C e。.9SR u。.。53-«で表される。 この場合, セラミック スを構成する金属のモル数の総和を 2としたとき, ルテニウムのモル比は 0. 0 5である。 When X = 0.05, the proton-electron mixed conductivity ceramics according to the present example has the chemical formula SrCe. 9S Ru. .. It is represented by 5 « 3- «. In this case, when the total number of moles of the metals constituting the ceramics is 2, the molar ratio of ruthenium is 0.05.
X = 0. 1のときには, 本実施例に係るプロ トン一電子混合伝導性セラミック スは, 化学式 S r C e 9R uo. 0 aで表される。 この場合, セラミックスを 構成する金属のモル数の総和を 2としたとき, ルテニウムのモル比は 0. 1 0で め <3。 When X = 0. 1 are pro ton single-electron mixed conductive ceramics according to the present embodiment is represented by the formula S r C e 9 R uo. 0 a. In this case, assuming that the total number of moles of the metals constituting the ceramics is 2, the molar ratio of ruthenium is 0.10, which is <3.
X = 0. 1 5のときには, 本実施例に係るプロ トン一電子混合伝導性セラミツ クスは, 化学式 S r C e 85R uo.1503_αで表される。 この場合, セラミック スを構成する金属のモル数の総和を 2としたとき, ルテニウムのモル比は 0. 1 5である。 When X = 0. 1 5 is a professional tons one-electron mixed conductive Seramitsu box according to the present embodiment is represented by the formula S r C e 85 R uo. 15 0 3 _ α. In this case, the molar ratio of ruthenium is 0.15, assuming that the total number of moles of the metals constituting the ceramics is 2.
第 3実施例によれば, 出発原料粉末として, 炭酸ス トロンチウム (S r COs , 純度 9 9. 9 9%) , 酸化セリ ウム (C e 02, 純度 9 9. 9%) , 酸化ル ユウム (Ru03, 純度 9 9. 9%) の各粉末を用いた。 そして基本的には前記 した実施例と同様な手順により円盤形状の圧粉体を形成した (か焼温度: 1 20 0°C,か焼温度:時間 1 0時間) 。 更に圧粉体をラバープレス法により静水圧で 加圧 (加圧力: 200MP a) し, 加圧体を形成した。 その加圧体を大気雰囲気 において 1 5 50 1 600 °C, 10時間加熱保持することにより焼結した。 こ れにより試料を形成した。 試料の厚みは 0. 5mm, 直径は 1 3mmとした。 According to the third embodiment, as the starting raw material powder, carbonate scan strontium (S r COs, purity 9 9.9 9%), oxidation Seri um (C e 0 2, purity 9 9.9%), oxidation Le Yuumu (Ru0 3, purity 9 9.9%) using each powder. And basically said A disc-shaped green compact was formed in the same procedure as in the working example (calcination temperature: 1200 ° C., calcination temperature: time: 10 hours). Further, the green compact was pressed with a hydrostatic pressure by a rubber press method (pressure: 200 MPa) to form a pressed body. The pressed body was sintered by heating and maintaining it at 1,550,1600 ° C for 10 hours in an air atmosphere. Thus, a sample was formed. The sample thickness was 0.5 mm and the diameter was 13 mm.
X線回折装置を用いて, 試料の相の同定を行った。 更に電子顕微鏡 (SEM) にて表面観察を行った。 機械的ガス漏れの要因となる開気孔を試料が有しないこ とは, 電子顕微鏡 (SEM) でも確認された。 そして試料を 800°Cに加熱した 状態で, 前述同様に水素透過性 (800°C) を測定したところ, 水素透過が確認 された。 この場合においても, 白金層 1 2に電圧を印加させてない。  The phases of the sample were identified using an X-ray diffractometer. Furthermore, the surface was observed with an electron microscope (SEM). Electron microscopy (SEM) confirmed that the sample did not have open pores that could cause mechanical gas leakage. Then, with the sample heated to 800 ° C, the hydrogen permeability (800 ° C) was measured in the same manner as above, and hydrogen permeation was confirmed. Also in this case, no voltage was applied to the platinum layer 12.
(第 1適用形態)  (First application)
図 6は第 1適用形態に係る水素ガス分離装置 100を示す。 図 6に示すように , 水素ガス分離装置 1 00は, 中空室 1 10を有する基体 1 1 1と, 基体 1 1 1 の中空室 1 1 0の内部に配置されたガス透過層 200とを有する。 基体 1 1 1は , 中空室 1 1 0に水素を含有する原料ガスを導入するガス導入口 1 1 2と, 原料 ガスの排ガスを排出する排出口 1 1 3と有する。 ガス透過層 200はほぼ円筒形 状をなしており, 基体 1 1 1の中空室 1 10を, 原料ガスがガス導入口 1 1 2か ら導入されるガス導入室 220と, 水素ガスが導出されるガス導出室 240とを 仕切る。 ガス透過層 200の平均厚みは 0. 05 1 Oi 殊に 0. 3 3m mとすることができる。 円筒形状をなすガス透過層 200は, その内部のガス導 出室 240と, 水素ガスを導出させるガス導出口 260とをもつ。 ガス透過層 2 00のうちガス導入室 220に対面する部分では, 前記したアノード反応が生じ る。 ガス透過層 200のうちガス導出室 240に対面する部分では, 前記した力 ソード反応が生じる。  FIG. 6 shows a hydrogen gas separation device 100 according to the first application mode. As shown in FIG. 6, the hydrogen gas separation apparatus 100 has a substrate 111 having a hollow chamber 110, and a gas permeable layer 200 disposed inside the hollow chamber 110 of the substrate 111. . The substrate 111 has a gas inlet 112 for introducing a raw material gas containing hydrogen into the hollow chamber 110, and an outlet 113 for discharging the exhaust gas of the raw material gas. The gas permeable layer 200 has a substantially cylindrical shape. The gas chamber 220 into which the raw material gas is introduced from the gas inlet port 112 through the hollow chamber 110 of the substrate 111, and the hydrogen gas is led out. Partition from the gas outlet chamber 240. The average thickness of the gas permeable layer 200 can be 0.051 Oi, particularly 0.33 mm. The gas permeable layer 200 having a cylindrical shape has a gas guide chamber 240 inside the gas permeable layer 200 and a gas outlet 260 for discharging hydrogen gas. In the portion of the gas permeable layer 200 facing the gas introduction chamber 220, the anodic reaction described above occurs. In the portion of the gas permeable layer 200 facing the gas outlet chamber 240, the above-described force-sword reaction occurs.
図 6に示すように, ガス透過層 200のガス導出室 240はガス導出口 260 に連通する。 ガス導出口 260は吸引要素としての吸引ポンプ 350に繋がる。 基体 1 1 1の中空室 1 10には, ガス透過層 200を加熱するためのリング形状 をなす電気式の第 1加熱装置 30 1が設けられている。 第 1加熱装置 30 1はガ ス透過層 200のうちガス導入室 220に対面する部分に臨む。 これによりガス 透過層 200のうちガス導入室 220に対面する部分は高温領域に効果的に加熱 される。 即ち, 第 1加熱装置 30 1は, ガス透過層 200を効果的に加熱させる ことができ, ガス透過層 200のうちアノード側を効果的に加熱させることがで きる。 As shown in Fig. 6, the gas outlet chamber 240 of the gas permeable layer 200 communicates with the gas outlet 260. The gas outlet 260 is connected to a suction pump 350 as a suction element. The hollow chamber 110 of the substrate 111 is provided with a ring-shaped electric first heating device 301 for heating the gas permeable layer 200. The first heating device 301 faces a portion of the gas permeable layer 200 facing the gas introduction chamber 220. This allows gas The portion of the permeable layer 200 facing the gas introduction chamber 220 is effectively heated to a high temperature region. That is, the first heating device 301 can effectively heat the gas permeable layer 200, and can effectively heat the anode side of the gas permeable layer 200.
上記したガス透過層 200は, プロトン伝導性及ぴ電子伝導性を有するプロト ンー電子混合伝導性セラミッタスで形成されている。 このガス透過層 200は, ぺロブスカイト型構造を有する金属酸化物であって, 前述したように, これを構 成する金属のモル比の総和を 2としたとき, クロム (C r ) , マンガン (Mn) , 鉄 (F e ) , コバルト (C o) , ュッケル (N i ) , ルテニウム (R u) のう ちの少なくとも 1種を, モル比で, 0. 01以上, 0. 8以下の範囲で含み, プ 口トン伝導性及ぴ電子伝導性を有するセラミックスで形成されている。  The above-described gas permeable layer 200 is made of a mixed proton-electron conductive ceramic having proton conductivity and electron conductivity. The gas permeable layer 200 is a metal oxide having a perovskite structure. As described above, when the sum of the molar ratios of the constituent metals is 2, chromium (C r), manganese ( Mn), iron (F e), cobalt (C o), Huckel (N i), and ruthenium (R u) in a molar ratio of at least 0.01 and at most 0.8. It is made of ceramics that have high conductivity and electron conductivity.
より具体的には, 上記したガス透過層 200を形成するプロ トン一電子混合伝 導性セラミックスは, 化学式 Ai + aBi- a- b- CB, bB" c〇3-„の組成を有する。 ここで, More specifically, pro ton single-electron mixed Den conductive ceramic that forms the gas permeable layer 200 described above has the formula Ai + aBi- a - a composition of b - - C B, bB "C_〇 3". here,
A: カルシウム (C a ) , ストロンチウム (S r ) , バリウム (B a ) のうち の少なくとも 1種  A: At least one of calcium (C a), strontium (S r), and barium (B a)
aは, 0. 8≤ (1 + a) / (1一 a) ≤ 1. 2の条件を満足する。  a satisfies the condition 0.8 ≤ (1 + a) / (1-a) ≤ 1.2.
B :セリウム (C e) , ジノレコユウム (Z r ) , チタン (T i ) のうち少なく とも 1種  B: At least one of cerium (Ce), dinorecoium (Zr), and titanium (Ti)
B, :アルミニウム (A 1 ) , スカンジウム (S c) , ガリウム (G a ) , ィ ットリウム (Y) , インジウム (I n) , 及び, ランタノイド系列に属する原子 番号が 5 9〜7 1の金属元素のうちの少なくとも 1種  B,: Aluminum (A 1), scandium (S c), gallium (G a), yttrium (Y), indium (In), and metal elements belonging to lanthanoid series with atomic numbers of 59 to 71 At least one of
bの範囲は 0以上で 0. 5以下  b ranges from 0 to 0.5
B" : クロム (C r ) , マンガン (Mn) , 鉄 (F e) , コバルト (C o) , ニッケル (N i ) , ルテニウム (R u) のうちの少なくとも 1種  B ": at least one of chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), ruthenium (Ru)
cの範囲は 0. 01以上で0. 8以下  The range of c is 0.01 or more and 0.8 or less
更に具体的には, 上記したガス透過層 200を形成するプロトン一電子混合伝 導性セラミックスは, 前記した第 1実施例から第 3実施例のうちのいずれかのセ ラミックスで形成することができる。 上記したガス透過層 2 0 0の製造にあたり, 原料粉末を加圧した圧粉体を焼結 して形成する方法を採用できる。 またガス透過層 2 0 0が薄膜のときには, 原料 粉末を分散媒に分散させた溶液を基板に膜状に塗布し, 焼成する方法を採用でき る。 あるいは, ガス透過層 2 0 0が薄膜のときには, 真空蒸着, イオンプレーテ イング, スパッタリング等の物理的気相蒸着 (P V D ) 方法を採用できる。 ある いは, 原料気体を加熱した基板上に導いて反応させて被膜を形成する化学的気相 蒸着 (C V D ) 方法を採用できる。 場合によっては, プラズマによる熱源を用い 原料粉末を瞬時に溶融して基板に吹き付けて被膜を形成するプラズマ溶射方法を 採用できる。 More specifically, the proton-electron mixed conductive ceramic forming the gas permeable layer 200 may be formed of any one of the above-described first to third embodiments. it can. In manufacturing the gas permeable layer 200 described above, a method of sintering a green compact obtained by pressing the raw material powder can be employed. When the gas permeable layer 200 is a thin film, a method in which a solution in which the raw material powder is dispersed in a dispersion medium is applied to a substrate in the form of a film and then fired can be adopted. Alternatively, when the gas permeable layer 200 is a thin film, a physical vapor deposition (PVD) method such as vacuum deposition, ion plating, or sputtering can be employed. Alternatively, a chemical vapor deposition (CVD) method in which a raw material gas is guided on a heated substrate and reacted to form a film can be employed. In some cases, a plasma spraying method can be adopted in which the raw material powder is instantaneously melted using a plasma heat source and sprayed onto a substrate to form a coating.
上記した水素ガス分離装置 1 0 0を使用する際には, 第 1加熱装置 3 0 1でガ ス透過層 2 0 0を 5 0 0〜 1 0 0 0 °C程度に加熱する。 そして, 原料ガス (例え ば 1〜 1 O atra) を基体 1 1 1のガス導入口 1 1 2から中空室 1 1 0のガス導入 室 2 2 0に導入する。 原料ガスは, 水素の他に他のガス成分 (二酸化炭素ガス, 一酸化炭素ガス, 窒素ガス, 水蒸気などの少なくとも 1種) を含有する。 原料ガ スとしては, 天然ガスとすることができ, あるいは, 炭化水素系のガスを水蒸気 等で改質した改質ガス等とすることができる。 天然ガスはメタン ( C H 4 ) を主 成分とする。 改質ガスは水素の他に二酸化炭素, 一酸化炭素等を含むことが多い 基体 1 1 1のガス導入口 1 1 2から導入された原料ガスがガス透過層 2 0 0の 表面に到達すると, 原料ガスに含まれている水素ガスが上記したアノード反応に よりプロトン (H + ) 及び電子 (e— ) に分離し, プロ トン及び電子はガス透過層 2 0 0をその厚み方向に透過する。 他のガス成分がガス透過層 2 0 0を透過する ことは, 妨げられる。 これにより中空室 1 1 0に導入された原料ガスから水素ガ スが分離される。 ガス透過層 2 0 0を透過した水素ガスは, 吸引ポンプ 3 5 0の 作動により, ガス透過層 2 0◦の内部であるガス導出室 2 4 0 , ガス導出口 2 6 0力 ら導出される。 このようにして他のガス成分と共に水素を含有する原料ガス から, 純度の高い水素ガスが製造される。 原料ガスから水素ガスが分離された後 の排ガスは, 排出口 1 1 3から排出される。 When using the hydrogen gas separator 100 described above, the gas permeable layer 200 is heated to about 500 to 100 ° C. by the first heating device 301. Then, a raw material gas (for example, 1-1 O atra) is introduced from the gas introduction port 112 of the substrate 111 into the gas introduction chamber 222 of the hollow chamber 110. The source gas contains other gas components (at least one of carbon dioxide gas, carbon monoxide gas, nitrogen gas, steam, etc.) in addition to hydrogen. The raw material gas can be natural gas, or a reformed gas obtained by reforming a hydrocarbon gas with steam or the like. Natural gas is methane (CH 4) as a main component. The reformed gas often contains carbon dioxide, carbon monoxide, and the like in addition to hydrogen. When the raw material gas introduced from the gas introduction port 112 of the substrate 111 reaches the surface of the gas permeable layer 200, The hydrogen gas contained in the source gas is separated into protons (H +) and electrons (e−) by the above-described anodic reaction, and the protons and electrons pass through the gas permeable layer 200 in the thickness direction. Permeation of other gas components through the gas permeable layer 200 is prevented. Thereby, hydrogen gas is separated from the raw material gas introduced into the hollow chamber 110. The hydrogen gas that has passed through the gas permeable layer 200 is drawn out of the gas outlet chamber 240 and the gas outlet port 260 inside the gas permeable layer 200 by the operation of the suction pump 350. . In this way, a highly pure hydrogen gas is produced from a source gas containing hydrogen together with other gas components. The exhaust gas after hydrogen gas has been separated from the raw material gas is discharged from outlets 113.
(第 2適用形態) ' 図 7は第 2適用形態に係る水素ガス分離装置 1 0 O Bを示す。 第 2適用形態は 第 1適用形態と基本的には同様の構成を有しており, 同様の作用効果を奏する。 以下, 第 1適用形態と異なる部分を中心として説明する。 ガス透過層 2 0 0 Bは 第 1適用形態と同様に, 上記した混合伝導性セラミックスで形成されている。 図 7に示すように, ガス透過層 2 0 O Bのうちガス導入室 2 2 0に対面する領域 ( アノード側) には第 1触媒層 4 0 1が被覆されている。 ガス透過層 2 0 0 Bのう ちガス導出室 2 4 0に対面する領域 (力ソード側) には第 2触媒層 4 0 2が被覆 されている。 第 1触媒層 4 0 1及び第 2触媒層 4 0 2は白金を主成分として薄膜 状に形成されている。 第 1触媒層 4 0 1はアノードにおける反応 (H 2→2 H+ + 2 e— ) を促進させる。 第 2触媒層 4 0 2は力ソードにおける反応 (2 H+ + 2 e 一→H 2 ) を促進させる。 これにより中空室 1 1 0に導入された原料ガスから水素 ガスが一層効率よく分離される。 (Second application) '' FIG. 7 shows a hydrogen gas separator 10 OB according to the second application mode. The second application form has basically the same configuration as the first application form, and has the same effect. The description below focuses on the differences from the first application mode. The gas permeable layer 200B is formed of the mixed conductive ceramics described above, as in the first application mode. As shown in Fig. 7, the first catalyst layer 401 covers the area of the gas permeable layer 200OB facing the gas introduction chamber 220 (on the anode side). The second catalyst layer 402 is covered in the region (force side) of the gas permeable layer 200 B facing the gas outlet chamber 240. The first catalyst layer 401 and the second catalyst layer 402 are formed in the form of a thin film mainly containing platinum. The first catalyst layer 401 promotes the reaction at the anode (H 2 → 2 H + +2 e−). The second catalyst layer 4 0 2 promotes reaction (2 H + + 2 e one → H 2) in the force Sword. Thereby, the hydrogen gas is more efficiently separated from the raw material gas introduced into the hollow chamber 110.
(第 3適用形態)  (Third application form)
図 8は第 3適用形態に係る水素ガス分離装置 1 O O Cを示す。 第 2適用形態は 第 1適用形態と基本的には同様の構成を有しており, 同様の作用効果を奏する。 ガス透過層 2 0 0 Cは第 1適用形態と同様に上記した混合伝導性セラミックス ( 例えば第 1実施例〜第 3実施例に係るセラミックス) で形成されている。 ガス透 過層 2 0 0 Cの平均厚みは一般的には 5〜 3 0 0 0 1 ηι, 殊に 1 0〜 2 0 0 0 ^ mとすることができる。 ガス透過層 2 0 0 Cは, 厚み方向に通気性を有する円筒 形状の多孔質の担体 5 0 1の外壁面に被覆されて保持されている。  FIG. 8 shows a hydrogen gas separator 1 O O C according to the third application mode. The second application form has basically the same configuration as the first application form, and has the same effect. The gas permeable layer 2000C is made of the mixed conductive ceramics described above (for example, the ceramics according to the first to third examples), similarly to the first application mode. The average thickness of the gas permeable layer 200 C can be generally 5 to 300 1 ηι, particularly 10 to 2000 m. The gas permeable layer 200 C is covered and held on the outer wall surface of a cylindrical porous carrier 501 having air permeability in the thickness direction.
ガス透過層 2 0 0 Cによる水素透過速度を高めるためには, ガス透過層 2 0 0 Cの厚みは薄いことが好ましい。 しかしガス透過層 2 0 0 Cの厚みが薄いときに は, ガス透過層 2 0 0 Cの耐久性が低下するおそれがある。 そこで, 多孔質の担 体 5 0 1の外壁面にガス透過層 2 0 0 Cを積層させてガス透過層 2 0 0 Cを保持 すれば, 薄い膜状のガス透過層 2 0 0 Cに対する保護性を高めることができ, ガ ス透過層 2 0 0 Cに対する耐久性を高めることができる。 担体 5 0 1の平均厚み はガス透過層 2 0 0 Cの厚み, 材質等よつても相違するが, 0 . 2〜2 0 mm, 殊に 0 . 5〜 5 mmとすることができる。 但しこれに限定されるものではない。 更に, 担体 5 0 1は多孔質であり, 担体 5 0 1の厚み方向に通気性を有するた め, 原料ガスをガス透過層 2 0 0 Cに容易に到達させることができる。 担体 5 0 1の気孔率 (体積比) は適宜選択できるが, 1 0〜9 0 %程度とすることができ る。 更に本適用形態によれば, 図 8に示すように, ガス透過層 2 0 0 Cの内部側 つまりガス導出室 2 4 0にも第 2加熱装置 3 0 2 Cが配置されている。 第 2加熱 装置 3 0 2 Cは, 主として, ガス透過層 2 0 0のうち力ソード側を加熱させるこ とができる。 リング形状をなす第 1加熱装置 3 0 1は, ガス透過層 2 0 0 Cを加 熱させることができ, 主として, ガス透過層 2 0 0 Cのうちアノード側を効果的 に加熱させることができる。 これによりガス透過層 2 0 O Cに対する加熱性を高 めることができる。 In order to increase the hydrogen permeation rate through the gas permeable layer 200 C, the thickness of the gas permeable layer 200 C is preferably small. However, when the thickness of the gas permeable layer 200 C is small, the durability of the gas permeable layer 200 C may decrease. Therefore, if the gas permeable layer 200 C is laminated on the outer wall surface of the porous carrier 501 and the gas permeable layer 200 C is retained, the protection against the thin film-shaped gas permeable layer 200 C is achieved. Thus, the durability to the gas permeable layer 200 C can be improved. The average thickness of the carrier 501 varies depending on the thickness, material, and the like of the gas permeable layer 200C, but can be 0.2 to 20 mm, particularly 0.5 to 5 mm. However, it is not limited to this. Furthermore, the carrier 501 is porous and has air permeability in the thickness direction of the carrier 501. Therefore, the source gas can easily reach the gas permeable layer 200C. The porosity (volume ratio) of the carrier 501 can be appropriately selected, but can be about 10 to 90%. Further, according to the present embodiment, as shown in FIG. 8, the second heating device 302C is disposed inside the gas permeable layer 200C, that is, also in the gas outlet chamber 240. The second heating device 302 C can mainly heat the force sword side of the gas permeable layer 200. The first heating device 301 having a ring shape can heat the gas permeable layer 200 C, and can mainly heat the anode side of the gas permeable layer 200 C effectively. . This makes it possible to enhance the heatability of the gas permeable layer 20 OC.
(第 4適用形態)  (Fourth application)
図 9は第 4適用形態に係る水素ガス分離装置 1 0 0 Dを示す。 第 4適用形態は 第 3適用形態と基本的には同様の構成を有しており, 同様の作用効果を奏する。 ガス透過層 2 0 O Dは第 1適用形態と同様に, 上記した混合伝導性セラミックス (例えば第 1実施例〜第 3実施例) で形成されている。 ガス透過層 2 0 0 Dは薄 い膜状であり, 厚み方向に通気性を有する円筒形状をなす多孔質の担体 5 0 1 D の外壁面に被覆されて保持されている。 ガス透過層 2 0 0 Dの平均厚みは一般的 には 5〜3 0 0 0 μ πι, 殊に 1 0〜2 0 0 0 μ πιとすることができる。 ガス透過 層 2 0 0 Dの内部側つまりガス導出室 2 4 0には, キャリアガス (アルゴンガス 等の不活性ガス) を吹き込む吹込管 6 0 0が配置されている。 吹込管 6 0 0の入 口 6 0 1から供給されたキヤ Vァガスは, 吹込管 6 0 0の出口 6 0 2からガス導 出室 2 4 0内に吐出される。 そして, ガス透過層 2 0 O Dを透過したガス導出室 2 4 0內の水素ガスは, 出口 6 0 2から吐出されたキヤリァガスによりガス導出 口 2 6 0に導かれる。 なお, 必要に応じて, ガス導出口 2 6 0につながる通路に キヤリァガスを吸引させる吸引ポンプ 3 5 0を設けることができる。  FIG. 9 shows a hydrogen gas separator 100D according to the fourth application mode. The fourth application form has basically the same configuration as the third application form, and has the same effect. The gas permeable layer 20 OD is formed of the mixed conductive ceramics described above (for example, the first to third embodiments), as in the first application mode. The gas permeable layer 200D is in the form of a thin film, and is held by being covered on the outer wall surface of a porous carrier 501D having a cylindrical shape having air permeability in the thickness direction. The average thickness of the gas permeable layer 200 D can be generally 5 to 300 μππ, particularly 10 to 200 μππ. A blowing pipe 600 for blowing a carrier gas (an inert gas such as an argon gas) is arranged inside the gas permeable layer 200D, that is, in the gas outlet chamber 240. The carrier gas supplied from the inlet 600 of the blowing pipe 600 is discharged into the gas guiding chamber 240 from the outlet 602 of the blowing pipe 600. The hydrogen gas in the gas outlet chamber 240 permeate through the gas permeable layer 200 OD is led to the gas outlet 260 by carrier gas discharged from the outlet 602. If necessary, a suction pump 350 for sucking the carrier gas can be provided in the passage leading to the gas outlet 260.
(第 5適用形態)  (Fifth application form)
図 1 0は第 5適用形態に係る水素ガス分離装置 1 0 0 Εを示す。 第 5適用形態 は第 1適用形態と基本的には同様の構成を有しており, 同様の作用効果を奏する 。 図 1 0に示すように, 水素ガス分離装置 1 0 0 Εは, 中空室 1 1 0を有すると 共に中空室 1 1 0に水素を含有する原料ガスを導入するガス導入口 1 1 2を有す る基体 1 1 1 Eと, 基体 1 1 1 Eの中空室 1 1 0の内部に配置された円筒形状の 担体 5 0 1 Eと, 担体 5 0 1 Eの外周面に積層されたガス透過層 2 0 0 Eとを有 する。 担体 5 0 1 Eは多孔質であり, これの厚み方向に通気性を有する。 担体 5 0 1 E及びガス透過層 2 0 0 Eは, 原料ガスが導入されるガス導入室 2 2 0と, 原料ガスが導出されるガス導出室 2 4 0とに中空室 1 1 0を仕切る。 ガス導出室 2 4 0はガス導出口 2 6 0に連通する。 ガス導出口 2 6 0は吸引要素としての吸 引ポンプ 3 5 0に繋がる。 基体 1 1 1 Eの中空室 1 1 0には, ガス透過層 2 0 0 Eを加熱するためのリング形状をなす電気式の第 1加熱装置 3 0 1 Eが設けられ ている。 第 1加熱装置 3 0 1 Eはガス透過層 2 0 O Eのうちガス導入室 2 2 0に 対面する部分 (アノード側) に対面する。 これによりガス透過層 2 0 0は高温領 域に効果的に加熱される。 ガス透過層 2 0 0 Eは, 第 1適用形態と同様に, プロ トン伝導性及ぴ電子伝導性を有するプロトンー電子混合伝導性セラミックス (例 えば第 1実施例〜第 3実施例に係るセラミックス) で形成されている。 FIG. 10 shows a hydrogen gas separation device 100 # according to a fifth application mode. The fifth application mode has basically the same configuration as the first application mode, and has the same operation and effect. As shown in Fig. 10, the hydrogen gas separator 100 0 has a hollow chamber 110 and a gas inlet port 112 for introducing a raw material gas containing hydrogen into the hollow chamber 110. You 11E, a cylindrical carrier 501E disposed inside the hollow chamber 110 of the substrate 111E, and a gas permeable layer laminated on the outer peripheral surface of the carrier 501E 2 0 E. The carrier 501E is porous and has gas permeability in the thickness direction. The carrier 501 E and the gas permeable layer 200 E partition the hollow chamber 110 into a gas introduction chamber 220 into which the source gas is introduced and a gas outlet chamber 240 through which the source gas is introduced. . The gas outlet chamber 240 communicates with the gas outlet 260. The gas outlet 260 is connected to a suction pump 350 as a suction element. The hollow chamber 110 of the base 111E is provided with a ring-shaped electric first heating device 310E for heating the gas permeable layer 200E. The first heating device 301E faces a portion (anode side) of the gas permeable layer 20OE that faces the gas introduction chamber 220. Thereby, the gas permeable layer 200 is effectively heated to a high temperature region. The gas permeable layer 200 E is made of a mixed proton-electron conductive ceramic having proton conductivity and electron conductivity as in the first application mode (for example, ceramics according to the first to third embodiments). It is formed with.
(他の適用形態)  (Other application forms)
図 1 1〜図 1 4は, ガス透過層の各適用形態の概念を示す。 図 1 1に示す適用 形態では, 厚み方向に通気性を有する多孔質の担体 5 0 1のうち, ガス導入室 2 Figures 11 to 14 show the concept of each application form of the gas permeable layer. In the application mode shown in Fig. 11, in the porous carrier 501 having gas permeability in the thickness direction, the gas introduction chamber 2
2 0に対面する表面において薄い膜状のガス透過層 2 0 0 Hが積層されている。 図 1 2に示す適用形態では, 更に, ガス透過層 2 0 0 Hのうちガス導入室 2 2 0 に対面する側, つまり, アノード側には, 白金を主要成分とする第 1触媒層 4 0On the surface facing 20, a thin film-shaped gas permeable layer 200 H is laminated. In the application mode shown in Fig. 12, the first catalyst layer 40 containing platinum as a main component is placed on the side of the gas permeable layer 200H facing the gas introduction chamber 220, that is, on the anode side.
1 Hが積層されている。 1 H is laminated.
更に図 1 3に示す適用形態では, 厚み方向に通気性を有する多孔質の担体 5 0 Further, in the application mode shown in FIG. 13, a porous carrier 50 having air permeability in the thickness direction is used.
1のうち, ガス導入室 2 2 0に対面する表面において, 薄い膜状のガス透過層 2In the surface facing the gas introduction chamber 220, a thin film-like gas permeable layer 2
0 O Hが積層されている。 ガス透過層 2 0 O Hのうちアノード側には白金を主要 成分とする第 1触媒層 4 0 1 Hが積層されていると共に, ガス透過層 2 0 O Hの うち力ソード側には白金を主要成分とする第 2触媒層 4 0 2 Hが積層されている 図 1 4に示す適用形態では, 厚み方向に通気性を有する多孔質の担体 5 0 1の 表面にガス透過層 2 0 O Hがガス導入室 2 2 0に対面するように積層されている 。 更にガス透過層 2 0 0 Hのうちアノード側には第 1電極層 4 0 5 Hが積層され ていると共に, ガス透過層 2 0 O Hのうち力ソード側には第 2電極層 4 0 6 Hが 積層されている。 第 1電極層 4 0 5 H及び第 2電極層 4 0 6 Hは白金を主要成分 として形成されているため, 触媒層も兼用することができる。 そして, 第 1電極 層 4 0 5 Hから白金製の第 1リード線 4 0 7が導出されていると共に, 第 2電極 層 4 0 6 Hから白金製の第 2リード線 4 0 8が導出されている。 アノード側の第 1電極層 4 0 5 Hは電源 4 0 9のプラス極であり, 力ソード側の第 2電極層 4 0 6 Hは電源 4 0 9のマイナス極に繋がれる。 そして, 原料ガスから水素ガスを分 離させるときに, 第 1電極層 4 0 5 Hと第 2電極層 4 0 6 Hとの間に, 直流用の 電源 4 0 9から直流電圧を印加させる。 すると, 電子が力ソード側に供給される ため, プロトン伝導性よりも電子伝導性が低いときであっても, 力ソード反応を 活性化させることを期待でき, ひいてはガス透過層 2 0 O Hによる水素透過性能 を高めることを期待できる。 0 OH is laminated. Of the gas permeable layer 20 OH, the first catalyst layer 401 H containing platinum as a main component is laminated on the anode side, and platinum is the main component on the power source side of the gas permeable layer 20 OH. In the application form shown in Fig. 14, a gas permeable layer 20 OH is introduced on the surface of a porous carrier 501 having gas permeability in the thickness direction. It is laminated so as to face the chamber 220. Further, a first electrode layer 405 H is laminated on the anode side of the gas permeable layer 200 H. In addition, a second electrode layer 406H is laminated on the force side of the gas permeable layer 200OH. Since the first electrode layer 405H and the second electrode layer 406H are mainly composed of platinum, they can also serve as catalyst layers. Then, a first lead wire 407 made of platinum is derived from the first electrode layer 405H, and a second lead wire 408 made of platinum is derived from the second electrode layer 406H. ing. The first electrode layer 405H on the anode side is the positive pole of the power supply 409, and the second electrode layer 406H on the force side is connected to the negative pole of the power supply 409. When hydrogen gas is separated from the source gas, a DC voltage is applied between the first electrode layer 405H and the second electrode layer 406H from a DC power supply 409. Then, since electrons are supplied to the force side, even when the electron conductivity is lower than the proton conductivity, it can be expected that the force-sword reaction is activated, and consequently, hydrogen generated by the gas permeable layer 20 OH It can be expected to improve the transmission performance.
なお, 図 1 1〜図 1 4に示す形態は, 前記した第 1適用形態〜第 5適用形態に 適用することができる。  The configurations shown in FIGS. 11 to 14 can be applied to the first to fifth application modes described above.
図 1 5〜図 1 8は, 他のガス透過層の各適用形態を示す。 図 1 5〜図 1 8に示 す適用形態は, 図 1 1〜図 1 4に示す適用形態と基本的には同様の構成であり, 基本的には同様の作用効果を奏する。 図 1 5〜図 1 8に示す適用形態では, ガス 透過層 2 0 O Kは, 前記プロトン一電子混合伝導性セラミックスで形成されてお り , その厚み方向において第 1担体 5 0 1と第 2担体 5 0 2とで挟まれている。 第 1担体 5 0 1及び第 2担体 5 0 2は多孔質であり , 気孔率 (体積比) が 1 0〜 9 0 %程度に設定されており, 厚み方向に通気性を有する。 このようにガス透過 層 2 0 O Kは, 厚み方向に通気性をもつ第 1担体 5 0 1及び第 2担体 5 0 2で挟 まれているため, ガス透過層 2 0 0 Kの厚みが薄いときであっても, ガス透過層 2 0 0 Kの保持性を確保でき, ガス透過層 2 0 0 Kの保護性, 耐久性を向上させ ることができる。 第 1担体 5 0 1の強度が確保される限り, 第 1担体 5 0 1は, 気孔率が大きい方が原料ガスをガス透過層 2 0 0 Kに到達させることができる。 第 2担体 5 0 2の強度が確保される限り, 第 2担体 5 0 2は, 気孔率が大きい方 が水素ガスをガス透過層 2 0 0 Kから離脱させることができる。 第 1担体 5 0 1 の平均厚みはガス透過層 2 0 0 Cの厚み, 材質等によっても相違するが, 0 . 2 〜2 0 rnm, 殊殊に 0 . 5〜 5 mmとすることができる。 また第 2担体 5 0 2の 平均厚みはガス透過層 2 0 0 Cの厚み, 材質等によっても相違するが, 0 . 0 1 〜5 mm, 殊に 0 . 0 l〜l mmとすることができる。 但しこれに限定されるも のではない。 第 1担体 5 0 1の平均厚みを t 1とし, 第 2担体 5 0 2の平均厚み を t 2とすると, t l = t 2 , t 1 = t 2 , t 1 > t 2 , t lく t 2のいずれで も良い。 なお, 図 1 5〜図 1 8に示す形態は, 第 1適用形態〜第 5適用形態に適 用することができる。 FIGS. 15 to 18 show each application form of another gas permeable layer. The application form shown in Figs. 15 to 18 has basically the same configuration as the application form shown in Figs. 11 to 14, and basically has the same operation and effect. In the application form shown in FIGS. 15 to 18, the gas permeable layer 20 OK is formed of the proton-electron mixed conductive ceramic, and the first carrier 501 and the second carrier are formed in the thickness direction. It is sandwiched between 502. The first carrier 501 and the second carrier 502 are porous, have a porosity (volume ratio) of about 10 to 90%, and have air permeability in the thickness direction. As described above, the gas permeable layer 200 OK is sandwiched between the first carrier 501 and the second carrier 502 that have air permeability in the thickness direction. Even in this case, the retention of the gas permeable layer 200 K can be ensured, and the protection and durability of the gas permeable layer 200 K can be improved. As long as the strength of the first carrier 501 is secured, the first carrier 501 having a higher porosity allows the source gas to reach the gas permeable layer 200K. As long as the strength of the second carrier 502 is ensured, the larger the porosity of the second carrier 502, the more hydrogen gas can be released from the gas permeable layer 200K. The average thickness of the first carrier 501 varies depending on the thickness, material, etc. of the gas permeable layer 200 C. -20 nm, especially 0.5-5 mm. The average thickness of the second carrier 502 varies depending on the thickness, material, etc. of the gas permeable layer 200 C, but it is preferably 0.01 to 5 mm, especially 0.0 l to l mm. it can. However, it is not limited to this. Assuming that the average thickness of the first carrier 501 is t1, and the average thickness of the second carrier 502 is t2, tl = t2, t1 = t2, t1> t2, tl Either is acceptable. The configurations shown in Figs. 15 to 18 can be applied to the first to fifth application modes.
(その他)  (Other)
図 6に示す第 1適用形態によれば, 基体 1 1 1が原料ガス導入用のガス導入口 1 1 2を有すると共に, ガス透過層 2 0 0が水素ガス導出用のガス導出口 2 6 0 を有するが, これに限らず, 基体 1 1 1が水素ガス導出用のガス導出口を有する と共に, ガス透過層 2 0 0が原料ガス導入用のガス導入口を有することにしても 良い。 その他, 本発明は上記した実施例, 適用形態のみに限定されるものではな く, 要旨を逸脱しない範囲内で適宜変更して実施できるものである。 産業上の利用可能性  According to the first application example shown in FIG. 6, the base body 111 has a gas inlet 112 for introducing a raw material gas, and the gas permeable layer 200 has a gas outlet 260 for deriving hydrogen gas. However, the present invention is not limited to this, and the substrate 111 may have a gas outlet for introducing hydrogen gas, and the gas permeable layer 200 may have a gas inlet for introducing source gas. In addition, the present invention is not limited to the above-described embodiments and application forms, but can be implemented with appropriate modifications without departing from the gist. Industrial applicability
以上のように本発明に係る水素ガス分離装置は, プロトンと電子との混合伝導 性を有するプロトン一電子混合伝導性セラミックスで形成されたガス透過層を有 するため, 水素を含む原料ガスから, 水素濃度が高いガスを製造することができ , 燃料電池発電システム, 水素燃焼式エンジン等に利用することができる。  As described above, the hydrogen gas separation device according to the present invention has a gas permeable layer formed of mixed proton-electron conductive ceramics having mixed conductivity of protons and electrons, and therefore can be used to convert hydrogen-containing raw material gas. It can produce gas with high hydrogen concentration and can be used in fuel cell power generation systems, hydrogen combustion engines, etc.

Claims

請求の範囲 The scope of the claims
1 . 中空室を有する基体と,  1. a substrate having a hollow chamber;
前記基体の前記中空室に配置され, 原料ガスが導入されるガス導入室と原料ガ スから分離された水素ガスが導出されるガス導出室とに前記中空室を仕切るガス 透過層とを具備しており,  A gas permeable layer that is disposed in the hollow chamber of the base body and that partitions the hollow chamber into a gas introduction chamber into which a source gas is introduced and a gas outlet chamber through which hydrogen gas separated from the source gas is led. And
前記ガス透過層は, プロトン伝導性及び電子伝導性を有するプロトン一電子混 合伝導性セラミックスを基材として形成されていることを特徴とする水素ガス分 離装置。  The hydrogen gas separation device according to claim 1, wherein the gas permeable layer is formed using a proton-electron mixed conductive ceramic having proton conductivity and electron conductivity as a base material.
2 . 請求項 1において, 前記プロ トン—電子混合伝導性セラミックスは, 原料ガ スが透過可能な通気性をもつ担体に保持されていることを特徴とする水素ガス分 離装置。 2. The hydrogen gas separation apparatus according to claim 1, wherein the mixed proton-electron conductive ceramic is held on a gas-permeable carrier through which a raw material gas can pass.
3 . 請求項 1において, 前記プロ トン一電子混合伝導性セラミックスは, 原料ガ スが透過可能な通気性をもつ担体に挟持されていることを特徴とする水素ガス分 離装置。 3. The hydrogen gas separation apparatus according to claim 1, wherein the proton-electron mixed conductive ceramic is sandwiched between air-permeable carriers through which a raw material gas can pass.
4 . 請求項 1において, 前記プロトンー電子混合伝導性セラミックスを加熱する 加熱装置が設けられていることを特徴とする水素ガス分離装置。 4. The hydrogen gas separation device according to claim 1, further comprising a heating device for heating the mixed proton-electron conductive ceramic.
5 . 請求項 1において, 前記プロ トン一電子混合伝導性セラミックスは, ガス導 入室及びガス導出室のうちの少なくとも一方側に触媒層を有することを特徴とす る水素ガス分離装置。 5. The hydrogen gas separation device according to claim 1, wherein the proton-electron mixed conductive ceramic has a catalyst layer on at least one of a gas introduction chamber and a gas discharge chamber.
6 . 請求項 1において, 前記プロ トン一電子混合伝導性セラミックスは, 前記ガ ス導入室に対面する側に第 1電極層を有すると共に前記ガス導出室に対面する側 に第 2電極層を有しており, 前記第 1電極層と前記第 2電極層との間に電圧を印 加させ得るように設定されていることを特徴とする水素ガス分離装置。 6. In claim 1, the proton-electron mixed conductive ceramic has a first electrode layer on a side facing the gas introduction chamber and a second electrode layer on a side facing the gas outlet chamber. A hydrogen gas separating device, wherein a voltage is applied between the first electrode layer and the second electrode layer.
7. 請求項 1において, 前記プロトン—電子混合伝導性セラミックスは, ぺロブ スカイト型構造を有する金属酸化セラミッタスであって, 7. In claim 1, the mixed proton-electron conductive ceramic is a metal oxide ceramic having a perovskite structure,
これを構成する金属のモル比の総和を 2としたとき, クロム (C r) , マンガ ン (Mn) , 鉄 (F e) , コバルト (C o) , ニッケル (N i ) , ルテニウム ( Ru) のうちの少なくとも一種を 0. 0 1以上, 0. 5以下の範囲で含み, プロ トン伝導性及び電子伝導性を有することを特徴とする水素ガス分離装置。  Assuming that the sum of the molar ratios of the constituent metals is 2, chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), ruthenium (Ru) A hydrogen gas separation device containing at least one of the above in the range of not less than 0.01 and not more than 0.5 and having proton conductivity and electron conductivity.
8. 請求項 7において, 前記プロ トン一電子混合伝導性セラミックスは, ぺロブ スカイト型構造を有する金属酸化物であって, これを構成する金属のモル比の総 和を 2としたとき, クロム (C r) , マンガン (Mn) , 鉄 (F e) , コバノレト8. In claim 7, the proton-electron mixed conductive ceramic is a metal oxide having a perovskite structure, and when the sum of the molar ratios of the constituent metals is 2, chromium (Cr), manganese (Mn), iron (F e), cobanoleto
(C o) , ニッケル (N i ) , ルテニウム (Ru) のうちの少なくとも 1種を, モル比で, 0. 0 1以上, 0. 8以下の範囲で含むことを特徴とする水素ガス分 離装置。 Hydrogen gas separation characterized by containing at least one of (Co), nickel (Ni), and ruthenium (Ru) in a molar ratio of not less than 0.01 and not more than 0.8. apparatus.
9. 請求項 8において, 前記プロトン一電子混合伝導性セラミックスは, 一般式 AB03で表され, 上記した総和は, Aサイトの元素のモル比と Bサイトの元素 のモル比との総和であることを特徴とするプロ トン伝導性及び電子伝導性を有す ることを特徴とする水素ガス分離装置。 9. The method of claim 8, wherein the proton one-electron mixed conductive ceramics is represented by the general formula AB0 3, the sum described above is the sum of the molar ratio of the element molar ratio and B-site element of the A site A hydrogen gas separation device having proton conductivity and electron conductivity.
10. 請求項 7において, 前記プロトン一電子混合伝導性セラミックスは, 更に , モル比で, ジルコニウム (Z r ) を 0. 005以上の割合で含むことを特徴と する水素ガス分離装置。 10. The hydrogen gas separation device according to claim 7, wherein the proton-electron mixed conductive ceramic further contains zirconium (Zr) in a molar ratio of 0.005 or more.
1 1. 請求項 7において, 前記プロ トン一電子混合伝導性セラミックスは, モル 比で, ジルコニウム (Z r) を 0. 005以上で0. 99以下の割合で含むこと を特徴とする水素ガス分離装置。 11. The hydrogen gas separation method according to claim 7, wherein the proton-electron mixed conductive ceramic contains zirconium (Zr) in a molar ratio of not less than 0.005 and not more than 0.99. apparatus.
1 2. 請求項 7において, 前記プロ トン一電子混合伝導性セラミックスは, 化学 式 A + a_bCB, bB" 。03-αの組成を有することを特徴とする水素ガス分 離装置。 ここで, In 1 2. Claim 7, wherein the pro ton one-electron mixed conductive ceramic has the formula A + a_ b - C B, bB ".0 3 - hydrogen gas partial characterized by having a composition of α Separation device. here,
A:カルシウム (C a) , ストロンチウム (S r) , バリウム (B a) のうち の少なくとも 1種  A: At least one of calcium (Ca), strontium (Sr), and barium (Ba)
aは, 0. 8≤ (1 + a) / (1 - a) ≤ 1. 2の条件を満足する。  a satisfies the condition 0.8 ≤ (1 + a) / (1-a) ≤ 1.2.
B :セリウム (C e) , ジノレコニゥム (Z r ) , チタン (T i ) のうち少なく とも 1種  B: At least one of cerium (Ce), dinoreconium (Zr), and titanium (Ti)
B' :アルミニウム (A 1 ) , スカンジウム (S c) , ガリウム (Ga) , ィ ットリウム (Y) , インジウム ( I n) , 及び, ランタノィド系列に属する原子 番号が 59〜7 1の金属元素のうちの少なくとも 1種  B ': aluminum (A 1), scandium (S c), gallium (Ga), yttrium (Y), indium (In), and metal elements belonging to the lanthanide series and having an atomic number of 59 to 71 At least one of
bの範囲は 0以上で 0. 5以下  b ranges from 0 to 0.5
B" : クロム (C r ) , マンガン (Mn) , 鉄 (F e) , コバルト (C o) , ニッケル (N i ) , ルテニウム (R u) のうちの少なく とも 1種  B ": at least one of chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), and ruthenium (Ru)
cの範囲は 0. 01以上で0. 8以下  The range of c is 0.01 or more and 0.8 or less
1 3. 請求項 1において, 前記プロ トン一電子混合伝導性セラミックスは, 電圧 を印加しない状態で, プロトン伝導性及び電子伝導性を有することを特徴とする 水素ガス分離装置。 1 3. The hydrogen gas separation device according to claim 1, wherein the proton-electron mixed conductive ceramic has a proton conductivity and an electron conductivity when no voltage is applied.
PCT/JP2003/002007 2003-02-24 2003-02-24 Hydrogen gas separator WO2004074175A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004568499A JPWO2004074175A1 (en) 2003-02-24 2003-02-24 Hydrogen gas separator
PCT/JP2003/002007 WO2004074175A1 (en) 2003-02-24 2003-02-24 Hydrogen gas separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/002007 WO2004074175A1 (en) 2003-02-24 2003-02-24 Hydrogen gas separator

Publications (1)

Publication Number Publication Date
WO2004074175A1 true WO2004074175A1 (en) 2004-09-02

Family

ID=32894259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/002007 WO2004074175A1 (en) 2003-02-24 2003-02-24 Hydrogen gas separator

Country Status (2)

Country Link
JP (1) JPWO2004074175A1 (en)
WO (1) WO2004074175A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006290686A (en) * 2005-04-12 2006-10-26 Noritake Co Ltd Hydrogen separating material and hydrogen separating apparatus
JP2006289345A (en) * 2005-03-14 2006-10-26 Ngk Insulators Ltd Hydrogen separating body and its producing method
JP2013543425A (en) * 2010-07-19 2013-12-05 フォルシュウングスゼントルム ユーリッヒ ゲーエムベーハー CO2-resistant mixed conducting oxide and its use for hydrogen separation
WO2021019869A1 (en) * 2019-08-01 2021-02-04 株式会社村田製作所 Hydrocarbon reforming catalyst and hydrocarbon reforming device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62256976A (en) * 1986-04-30 1987-11-09 Mitsubishi Heavy Ind Ltd Production of hydrogen
JPS6353135B2 (en) * 1980-08-15 1988-10-21 Teijin Ltd
JPH06157004A (en) * 1992-11-17 1994-06-03 Mitsubishi Heavy Ind Ltd Apparatus for producing hydrogen by catalytic type steam decomposition method
EP1029837A2 (en) * 1999-02-17 2000-08-23 Matsushita Electric Industrial Co., Ltd. Mixed ionic conductor and device using the same
EP1125893A1 (en) * 2000-02-14 2001-08-22 Matsushita Electric Industrial Co., Ltd. Ion Conductor
JP2003002610A (en) * 2001-06-25 2003-01-08 Japan Science & Technology Corp Method for isolating hydrogen from reformed hydrocarbon bas by using high temperature durable proton conducting material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6353135B2 (en) * 1980-08-15 1988-10-21 Teijin Ltd
JPS62256976A (en) * 1986-04-30 1987-11-09 Mitsubishi Heavy Ind Ltd Production of hydrogen
JPH06157004A (en) * 1992-11-17 1994-06-03 Mitsubishi Heavy Ind Ltd Apparatus for producing hydrogen by catalytic type steam decomposition method
EP1029837A2 (en) * 1999-02-17 2000-08-23 Matsushita Electric Industrial Co., Ltd. Mixed ionic conductor and device using the same
EP1125893A1 (en) * 2000-02-14 2001-08-22 Matsushita Electric Industrial Co., Ltd. Ion Conductor
JP2003002610A (en) * 2001-06-25 2003-01-08 Japan Science & Technology Corp Method for isolating hydrogen from reformed hydrocarbon bas by using high temperature durable proton conducting material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006289345A (en) * 2005-03-14 2006-10-26 Ngk Insulators Ltd Hydrogen separating body and its producing method
JP2006290686A (en) * 2005-04-12 2006-10-26 Noritake Co Ltd Hydrogen separating material and hydrogen separating apparatus
JP2013543425A (en) * 2010-07-19 2013-12-05 フォルシュウングスゼントルム ユーリッヒ ゲーエムベーハー CO2-resistant mixed conducting oxide and its use for hydrogen separation
WO2021019869A1 (en) * 2019-08-01 2021-02-04 株式会社村田製作所 Hydrocarbon reforming catalyst and hydrocarbon reforming device
JPWO2021019869A1 (en) * 2019-08-01 2021-02-04
JP7044206B2 (en) 2019-08-01 2022-03-30 株式会社村田製作所 Hydrocarbon reforming catalyst and hydrocarbon reforming equipment

Also Published As

Publication number Publication date
JPWO2004074175A1 (en) 2006-06-01

Similar Documents

Publication Publication Date Title
JP4883364B2 (en) Porous support / hydrogen selective permeable membrane substrate and porous support fuel cell
US7906006B2 (en) Steam electrolysis
US10981786B2 (en) Process for producing compressed hydrogen in a membrane reactor and reactor therefor
JP2005529464A (en) Ceramic anode and method for producing the same
JP2009509751A (en) Mixed ion and electron conducting membranes
Mulmi et al. A perovskite-type Nd 0.75 Sr 0.25 Co 0.8 Fe 0.2 O 3− δ cathode for advanced solid oxide fuel cells
Hermawan et al. Densification of an YSZ electrolyte layer prepared by chemical/electrochemical vapor deposition for metal-supported solid oxide fuel cells
JP2005336022A (en) Proton conductive ceramic
JP2009074172A (en) Method of processing ceramic layer and related article
Shen et al. Effects of TiO2 and SDC addition on the properties of YSZ electrolyte
JP4330151B2 (en) Proton-electron mixed conductive ceramics
JP5389378B2 (en) Composite ceramic electrolyte structure, manufacturing method thereof and related article
US5989634A (en) Process of manufacturing solid oxygen ion conducting oxide layers
JP7055473B2 (en) Electrodes for solid oxide fuel cells and solid oxide fuel cells using them
González-Varela et al. High CO2 permeation using a new Ce0. 85Gd0. 15O2-δ-LaNiO3 composite ceramic–carbonate dual-phase membrane
WO2004074175A1 (en) Hydrogen gas separator
CN117999679A (en) Electrode and electrochemical cell
JP2016016389A (en) Oxygen permeation membrane and reformer
JP2005281077A (en) Ceramic composition, composite material, and chemical reaction apparatus
JP2017113714A (en) Oxygen permeation membrane, method for manufacturing same, and reformer
JP6986126B2 (en) Oxygen permeable membrane, its manufacturing method, and reformer
JP2008246314A (en) Hydrogen separation device and fuel cell
EP4239731A1 (en) Solid oxide electrochemical cell and use thereof
JP6845102B2 (en) Reform structure and reformer
Zhang Performance and Stability Study of Solid Oxide Fuel Cell Nanocomposite Electrodes

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004568499

Country of ref document: JP

122 Ep: pct application non-entry in european phase