WO2004048071A1 - Method for producing polybutylene terephthalate film - Google Patents

Method for producing polybutylene terephthalate film Download PDF

Info

Publication number
WO2004048071A1
WO2004048071A1 PCT/JP2003/015078 JP0315078W WO2004048071A1 WO 2004048071 A1 WO2004048071 A1 WO 2004048071A1 JP 0315078 W JP0315078 W JP 0315078W WO 2004048071 A1 WO2004048071 A1 WO 2004048071A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
polybutylene terephthalate
temperature
producing
roll
Prior art date
Application number
PCT/JP2003/015078
Other languages
French (fr)
Japanese (ja)
Inventor
Seiji Kagawa
Original Assignee
Seiji Kagawa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiji Kagawa filed Critical Seiji Kagawa
Priority to JP2004555043A priority Critical patent/JP4351168B2/en
Priority to US10/535,964 priority patent/US20060131779A1/en
Priority to CA002507430A priority patent/CA2507430A1/en
Priority to EP03775896A priority patent/EP1568468A1/en
Priority to AU2003284451A priority patent/AU2003284451A1/en
Publication of WO2004048071A1 publication Critical patent/WO2004048071A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • B29C55/06Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique parallel with the direction of feed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/91Heating, e.g. for cross linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/914Cooling of flat articles, e.g. using specially adapted supporting means cooling drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/006PBT, i.e. polybutylene terephthalate

Definitions

  • the present invention relates to a method for producing a polybutylene terephthalate film having excellent film thickness uniformity and heat shrink resistance by a T-die method.
  • Polybutylene terephthalate (PBT) resin has excellent mechanical strength, heat resistance, chemical resistance, impact resistance, and electrical properties. It has been used as injection products such as parts. PBT also has excellent gas barrier properties and fragrance retention properties, so it would be useful as a packaging material if a thin PBT film with uniform film thickness and excellent heat shrink resistance could be obtained.
  • PBT has a problem that rapid stretching is not possible due to low melt tension, and film wrinkles are likely to occur because the glass transition temperature is close to room temperature. Therefore, it is extremely difficult to form PBT resin into a clean packaging film with a uniform thickness of about 10 to 30 ⁇ .
  • the inflation molding method has higher productivity than the die method and is suitable for the production of thin films.
  • the film manufactured by the inflation molding method has problems that the film thickness is large and the heat shrinkage is large.
  • molten PBT is extruded from a T-die onto a cooling port of, for example, 30 ° C, and the obtained unstretched film is firstly subjected to secondary PBT.
  • a method is proposed in which the film is stretched at a temperature equal to or higher than the transition point and at least 10 ° C lower than the melting point, and then at a temperature equal to or higher than the first-stage stretching temperature in a direction perpendicular to the stretching direction of the first stage.
  • JP-A-51-146572 discloses that a non-stretched film obtained by extruding from a T-die onto a cooling roll at, for example, 30 ° C. is first stretched in the transverse direction at a temperature not lower than the glass transition temperature of PBT to 100 ° C. Then, a method of stretching in the longitudinal direction at a temperature higher than the first-stage stretching temperature and equal to or lower than the melting point of PBT is proposed.
  • an object of the present invention is to provide a method for producing a polybutylene terephthalate film excellent in uniformity of film thickness and heat shrinkage resistance. Disclosure of the invention
  • the present inventor has found that a film of a molten polybutylene terephthalate resin extruded from a T-die is gradually cooled in a substantially undrawn state, crystallized, and then stretched.
  • the present inventors have discovered that a polybutylene terephthalate film excellent in thickness uniformity and heat shrinkage resistance can be obtained, and reached the present invention.
  • the molten polybutylene terephthalate resin is extruded into a film form from a T-die, and the obtained film is gradually cooled in a substantially unstretched state to obtain the polybutylene terephthalate resin.
  • the fat is crystallized, and the obtained crystallized film is stretched.
  • the slow cooling of the unstretched polybutylene terephthalate resin film is preferably performed to a temperature of the crystallization temperature of the polybutylene terephthalate resin—40 ° C. to the crystallization temperature + 20 ° C.
  • Slow cooling rate of the unstretched polybutylene terephthalate resin film Is preferably 30 ° C./sec or less.
  • the thickness of the crystallized unstretched film is preferably 30 to 200 ⁇ . It is preferable that the crystallized unstretched film is stretched at least in the longitudinal direction.
  • the crystallization unstretched film is preferably stretched at a crystallization temperature of the polybutylene terephthalate resin of 50 ° C. to a crystallization temperature of 10 ° C.
  • the stretching magnification is preferably 1.5 times or more.
  • the stretched film is preferably stretched again at a crystallization temperature of the polybutylene terephthalate resin of 110 ° C. to a crystallization temperature of ⁇ 50 ° C.
  • the redrawing ratio is preferably 1.1 times or more.
  • the re-stretched film may be cold-stretched at a temperature within a range from room temperature to the glass transition temperature of the polybutylene terephthalate resin.
  • the ratio of the cold stretching is preferably 1.1 times or more.
  • FIG. 1 is a schematic view showing an example of an apparatus for producing a polybutylene terephthalate film by the T-die method of the present invention
  • FIG. 2 is a schematic diagram showing another example of an apparatus for producing a polybutylene terephthalate film by the T-die method of the present invention
  • FIG. 3 is a schematic view showing still another example of an apparatus for producing a polybutylene terephthalate film by the T-die method of the present invention.
  • polybutylene terephthalate (PBT) resin used as a raw material, but it is preferably composed of a homopolymer containing 1,4-butanediol and terephthalic acid as components.
  • a diol component other than 1,4-butanediol or a cambonic acid component other than terephthalic acid may be contained as a copolymer component as long as physical properties such as heat shrink resistance are not impaired. Examples of such a diol component include ethylene glycolone, diethylene glycolone, neopentinole glycol, and 1,4-cyclohexanemethane. Knol and the like.
  • dicarboxylic acid component examples include isophthalic acid, sebacic acid, adipic acid, azelaic acid, and succinic acid.
  • preferable PBT resin examples include, for example, homo PBT resin commercially available from Toray Industries, Inc. under the trade name “Trecon”.
  • the FBT resin is not limited to the case composed of only PBT, and may contain other thermoplastic resins according to the purpose within a range not to impair the effects of the present invention.
  • Other thermoplastic resins include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN); polyphenylene phenol phenol (PPS); polyamide (PA); polyimide (PI); PAI); polyethersulfone (PES); polyetheretherketone (PEEK); polycarbonate; polyurethane; fluororesin; polyolefins such as polyethylene and polypropylene; polyvinyl chloride; and elastomers.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PPS polyphenylene phenol phenol
  • PA polyamide
  • PAI polyimide
  • PAI polyethersulfone
  • PEEK polyetheretherketone
  • polycarbonate polyurethane
  • fluororesin polyolefins such
  • the PBT resin when the PBT resin contains a polyolefin such as polyethylene or polypropylene and / or an elastomer, the melt viscosity and the melt tension are increased, so that the stretchability is improved and the mechanical properties of the obtained film are improved. It is preferable because strength and heat sealability are improved.
  • the PBT resin preferably contains polyethylene.
  • the proportion is preferably 5 to 15% by mass, and 5 to 10% by mass based on 100% by mass of the whole PBT resin. / 0 is more preferable. Therefore, unless otherwise specified, the term ⁇ polybutylene terephthalate resin '' as used herein should be understood to include not only PBT alone but also PBT + other thermoplastic resin compositions. .
  • thermoplastic resins and thermosetting resins known additives added to general thermoplastic resins and thermosetting resins, that is, plasticizers, stabilizers such as antioxidants and ultraviolet absorbers, antistatic agents, surfactants, and dyes
  • plasticizers such as plasticizers, stabilizers such as antioxidants and ultraviolet absorbers, antistatic agents, surfactants, and dyes
  • Colorants such as pigments and pigments, lubricants for improving fluidity, crystallization accelerators (nucleating agents), inorganic fillers, etc. can also be used as appropriate according to required performance.
  • FIG. 1 shows an example of an apparatus for producing a PBT film by the T-die method of the present invention.
  • the extruded film 5 obtained by extruding the molten PBT resin from the T die 7 is gradually cooled by taking it off with a heated casting roll 1 to form a crystallized unstretched film 6.
  • the obtained crystallized unstretched film 6 is heated and rolled. After stretching between 1 and the second roll 2 provided in parallel with this, it is wound up by a guide roll 9 and a winding roll 8.
  • the PBT resin and the additives described in [1] above are melt-kneaded to prepare a molten PBT resin.
  • the method of melt-kneading is not particularly limited, but usually a method of uniformly kneading in a twin-screw extruder is used.
  • the kneading temperature is preferably from the melting point of the PBT resin + 10 ° C to the melting point + 40 ° C. If the kneading temperature is higher than the melting point of the PBT resin + 40 ° C, thermal deterioration of the resin may proceed. For this reason, when kneading in an extruder, use a screw structure that does not generate heat or a device that has an appropriate cooling device.
  • the lower limit of the kneading temperature it is not preferable to set the lower limit of the kneading temperature to less than the melting point of the PBT resin + 10 ° C because the extrusion rate becomes unstable.
  • the PBT resin is a homopolymer, its melting point is about 220-230 ° C, so the kneading temperature should be 230-270 ° C.
  • the melting point was measured by ASTM D4591 (the same applies hereinafter).
  • the kneaded molten PBT resin is extruded from the T-die 7 directly from the extruder or through another extruder, or once cooled and pelletized, and extruded again from the T-die 7 through the extruder.
  • the gap of the T die 7 is usually 5 mm or less.
  • the temperature of the resin extruded from the T-die 7 is preferably from the melting point of the PBT resin -10 ° C to the melting point + 30 ° C, and more preferably from the melting point of the PBT resin to the melting point + 10 ° C.
  • the extruded film 5 obtained by extruding the molten PBT resin from the T die 7 is received by a heated casting roll 1 and gradually cooled by the roll 1 to form a crystallized unstretched film 6. Since the stretchability is improved by forming the crystallized unstretched film 6, when the film is stretched to reduce the film thickness, the thickness unevenness is reduced as compared with the case where the amorphous unstretched film is thinned.
  • the heating casting roll 1 has a crystallization temperature of the PBT resin—40 ° C. to a crystallization temperature + 20 ° C.
  • crystallization temperature means the temperature of the crystallization peak detected by a differential scanning calorimeter (DSC) when the sample is melted at 250 ° C and cooled down by 20 ° CZ.
  • DSC differential scanning calorimeter
  • the PBT resin is a homopolymer
  • its crystallization The temperature is about 170-190 ° C.
  • the extruded film 5 in contact with the heating casting mouth 1 in this temperature range is gradually cooled to a temperature of 40 ° C. to a crystallization temperature of + 20 ° C. for the crystallization temperature of the PBT resin.
  • the obtained unstretched film 6 does not crystallize.
  • the crystallization temperature of the SPBT resin is less than 40 ° C, the extruded film 5 cools too quickly, and the resulting unstretched film 6 has a low crystallinity, and therefore stretchability. Is also low. More preferably, the extruded film 5 is gradually cooled to a temperature of 35 ° C. to a crystallization temperature of + 10 ° C. for the crystallization temperature of the PBT resin.
  • the distance between the T-die 7 and the heating casting roll 1 should be as short as possible to secure a sufficient cooling rate. Preferably, it is specifically set to 20 cm or less.
  • the slow cooling rate is preferably 30 ° C / second or less, more preferably 20 ° CZ second or less, and particularly preferably 10 ° C / second or less! / ,.
  • the extruded film 5 does not crystallize sufficiently when cooled slowly.
  • the lower limit of the slow cooling rate is not particularly limited, but is preferably 0.3 ° CZ seconds from the viewpoint of productivity.
  • the thickness of the crystallized unstretched film 6 is preferably from 30 to 200 ⁇ , more preferably from 35 to 100 ⁇ .
  • the thickness of the uncrystallized unstretched film 6 is 30 to 200 m, and the neck-in phenomenon when forming the uncrystallized unstretched film 6 (Phenomenon in which the film cast on the heated casting roll 1 becomes narrower than the effective width of the T die 7)
  • the peripheral speed of the heating casting roll 1 is preferably 5 to 20 m / min, more preferably 5 to 15 mZ.
  • the diameter of the heated casting roll 1 is preferably between 35 and 70 cm.
  • a plurality of heating casting rolls 1 may be provided as necessary. In this case, the peripheral speed of each heating casting roll 1 should be the same, but the temperature of each heating casting port 1 may be the same, and the crystallization temperature of the PBT resin is 40 ° C as going downstream. To crystallization temperature + 20 ° C.
  • the obtained crystallized unstretched film 6 is provided with a peripheral speed difference between the heated casting roll 1 and the second roll 2, and stretched in the machine direction (MD).
  • the crystallized unstretched film 6 is preferably stretched at a crystallization temperature of the FBT resin of 50 ° C to a crystallization temperature of 10 ° C, thereby making the melt tension suitable for stretching at a relatively high magnification. Since it can be in the range, it is possible to perform uniform stretching with less ⁇ thickness unevenness.
  • the stretching temperature is more preferably in the range of crystallization temperature of resin minus 50 ° C to crystallization temperature minus 30 ° C.
  • the region (stretching region) 61 where the crystallized unstretched film 6 is stretched is located between the heated casting roll 1 and the second roll 2, so that the stretching region 61 is set so as to have the above-mentioned preferred stretching temperature range. It is preferable that the distance between the rails (the distance between the two tangent points on the common tangent line between the two rails) be 10 cm or less. By setting the distance between the rolls to 10 cm or less, the stretching region 61 can be made relatively narrow, and thereby the neck-in phenomenon can be more effectively suppressed. In order to keep the temperature of the stretching region 61 constant, the crystallized unstretched film 6 may be heated between both rolls using a heating means. The stretched film is preferably cooled by the second roll 2 to a crystallization temperature of the PBT resin of 140 ° C. or less, whereby the stretched state can be stabilized.
  • the stretching ratio is preferably a force S that varies depending on the thickness of the crystallized unstretched film 6, usually 1.5 times or more, and more preferably 1.8 to 4 times.
  • the transparency increases as the stretching ratio increases.
  • the diameter of the second roll 2 is not particularly limited, and may be generally 35 to 70 cm as in the case of the heating casting roll 1.
  • FIG. 2 shows an example of an apparatus for performing a re-stretching step after the stretching step.
  • This device is the same as the device in FIG. 1 except that a nipple 10 is provided on the roll 2 and a pair of rolls 3 and 10 are inserted between the roll 2 and the roll 9.
  • a nipple 10 is provided on the roll 2 and a pair of rolls 3 and 10 are inserted between the roll 2 and the roll 9.
  • the operation of the pair of rolls 3 and 10 will be mainly described.
  • Re-stretching is performed by the difference in peripheral speed between the second roll 2 and the third roll 3 of the device shown in Fig. 2. This is performed by providing
  • the temperature of the stretching area 62 between the second roll 2 and the third roll 3 is preferably in the range of the crystallization temperature of the PBT resin minus 110 ° C. to the crystallization temperature minus 50 ° C.
  • the crystallization temperature of the resin is more preferably in the range of 90 ° C to 50 ° C.
  • the stretched film 11 obtained in the above step (i) is subjected to the second roll 2 to crystallize the PBT resin at a crystallization temperature of 90 ° C to 90 ° C.
  • the treatment is preferably performed at a temperature of 30 ° C., and the distance between the second roll 2 and the third roll 3 is preferably 10 cm or less.
  • the processing temperature by the second roll 2 is more preferably in the range of the crystallization temperature of the PBT resin-80 ° C to the crystallization temperature-40 ° C.
  • the re-stretched film 12 is preferably cooled by the third roll 3 to a crystallization temperature of the PBT resin of 140 ° C. or less.
  • the diameter of the third roll 3 should be 35 to 70 cm, the same as that of the second roll 2.
  • the redrawing magnification is preferably 1.1 times or more, more preferably 1.3 to 3 times.
  • the re-stretched film may be further cold-stretched in the longitudinal direction.
  • FIG. 3 shows an example of an apparatus for performing a cold stretching step after the re-stretching step.
  • This device is the same as the device in FIG. 2 except that a pair of rolls 4 and 10 are inserted between the roll 3 and the roll 9. Therefore, the operation of the pair of rolls 4 and 10 will be mainly described.
  • the cold stretching is performed by providing a peripheral speed difference between the third roll 3 and the fourth roll 4 shown in FIG.
  • the temperature of the stretching region 63 between the third roll 3 and the fourth roll 4 is preferably in the range of room temperature to the glass transition temperature (Tg) of the PBT resin.
  • Tg glass transition temperature
  • the glass transition temperature Tg is measured according to JIS K7121.
  • the Tg of a homo PBT resin is typically 22-45 ° C.
  • the re-stretched film 12 is treated at a temperature of 110 ° C. to 110 ° C. for the crystallization temperature of the PBT resin by the third port 3.
  • the distance between the third roll 3 and the fourth roll 4 is 10 era or less.
  • the processing temperature by the third roll 3 is more preferably from 140 ° C. to the crystallization temperature of the PBT resin to 90 ° C. By performing such cold stretching, the transparency of the film can be further improved.
  • the diameter of the fourth roll 4 may be 35 to 70 cm as in the case of the third roll 3.
  • the cold stretching magnification is preferably 1.1 times or more, more preferably 1.3 to 3 times.
  • the stretching step (i) above may be performed using the apparatus shown in FIG.
  • the stretching film 11 is cooled to a crystallization temperature of the PBT resin of 140 ° C. or less, so that the cooling process is further performed. Can be performed for a long time.
  • the stretched film 11 is annealed by the second roll 2 at a temperature of higher than the glass transition temperature (Tg) of the PBT resin to a crystallization temperature less than 10 ° C. May be provided, whereby the heat shrink resistance of the obtained PBT film is further improved.
  • Tg glass transition temperature
  • stretching may be performed up to the re-stretching step (ii).
  • the re-stretched film 12 can be cooled for a longer time.
  • the cooling treatment is performed by the fourth roll 4, the re-stretched film 12 is annealed by the third roll 3 at a temperature of from the glass transition temperature (Tg) of the PBT resin to the crystallization temperature minus 10 ° C or less.
  • Tg glass transition temperature
  • the PBT film produced by any of the above steps (i) to (iv) may be subsequently stretched in the transverse direction (TD).
  • a known method such as a tenter method may be used.
  • the PBT film produced by the above method has better heat shrink resistance than that obtained by the conventional production method as it is, it may be further subjected to a heat treatment to further improve the heat shrink resistance.
  • the heat treatment may be performed by a heat setting treatment and a Z or heat shrink treatment. These heat treatments are preferably performed at a temperature above the glass transition temperature of the PBT film to a crystallization temperature of 10 ° C. or less.
  • the heat setting may be performed by a tenter method, a roll method or a rolling method.
  • the heat shrink treatment may be performed by a tenter method, a roll method, a rolling method, a belt conveyor method or a floating method.
  • the PBT film manufactured as described above is translucent to transparent, and has excellent film thickness uniformity and heat shrink resistance as compared with the conventional stretched PBT film.
  • the film thickness difference of the average film thickness of 8-20 m is 1-3 ⁇
  • the heat shrinkage of MD (longitudinal direction) is 0.3% or less
  • the heat shrinkage of TD (horizontal direction) The rate is less than 0.5%.
  • the average film thickness is an average value obtained by measuring the film thickness at the center and both ends in the lateral direction of the film at two points each, for a total of six points.
  • the difference in film thickness is obtained by measuring the thickness at the center and both ends in the lateral direction of the film at two points each, for a total of six points, and calculating the difference between the maximum value and the minimum value. A smaller value means better results.
  • the heat shrinkage was measured by measuring the shrinkage of MD and TD when the film was exposed to 150 ° C for 10 minutes.
  • the PBT film obtained by the production method of the present invention may be laminated with another film as necessary.
  • Example 1 The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.
  • Example 1
  • PBT resin (trade name “Trecon 1200S” manufactured by Toray Industries, Inc. Melting point: 220 ° C. Glass transition temperature: 22 ° C. Crystallization temperature: 182 ° C) using a twin-screw extruder (screw diameter: 300 mm) , Extrusion rate: 50 kg / hr) and melt-kneaded at 235 ⁇ 5 ° C to prepare a molten PBT resin in an extruder.
  • this molten PBT resin is extruded from a T-die 7 installed at the tip of the extruder, and is heated to 170 ° C.
  • a rotating heating casting roll 1 (peripheral speed: 10 m / min. Roll diameter: 50 cm).
  • the extruded film 5 was gradually cooled on the heating casting roll 1 at a rate of 9 ° C.Z to form a crystallized unstretched film 6 having an average film thickness of 50 ⁇ m.
  • the obtained crystallized unstretched film 6 is doubled between the heated casting roll 1 and the second roll 2 (peripheral speed: 20 mZ) (temperature between rolls: 5 cm), which is adjusted to 130 ° C. Stretched.
  • the obtained stretched film 11 is further doubled between the second roll 2 and the third roll 3 (peripheral speed: 40 mZ) (temperature between rolls: 5 cm) which is adjusted to 80 ° C. It was redrawn.
  • the fourth roll 4 (Circumferential speed: 40 mZ)) to produce a PBT film 13 having an average film thickness of 13 im.
  • the film thickness difference was 2 m
  • the heat shrinkage in the longitudinal direction was 0.1%
  • the heat shrinkage in the lateral direction was 0.2%.
  • the temperature of the heating casting roll 1 was set to 150 ° C, the peripheral speed was set to 15 mZ, the slow cooling speed was set to 18 ° C / sec, and the process was performed in the same manner as in Example 1 except that the apparatus shown in Fig. 2 was used.
  • Crystallized unstretched finolem 6 having a uniform thickness of 40 ⁇ m was formed.
  • the obtained crystallized unstretched film 6 is placed between a heated casting roll 1 and a second roll 2 (peripheral speed: 30 m / min) whose temperature is controlled to 100 ° C (distance between rolls: 5 cm). Stretched twice.
  • the obtained stretched film 11 was cooled by a third roll 3 (peripheral speed: 30 liters) controlled at 35 ° C.
  • a crystallization with an average film thickness of 40 zm was performed in the same manner as in Example 1 except that the temperature of the heating casting roll 1 was set to 180 ° C, the peripheral speed was set to 15 mZ minutes, and the annealing rate was set to 12 ° CZ seconds.
  • a stretched film 6 was formed.
  • the obtained crystallized unstretched film 6 was placed between the heated casting roll 1 and the second roll 2 (peripheral speed: 30 mZ) controlled at 130 ° C. (distance between rolls: 5 cm). It was stretched twice.
  • the obtained stretched film 11 is further placed between a second mouth 2 and a third mouth 3 (temperature: 45 ⁇ minutes) controlled at 60 ° C (distance between rolls: 5 cm). And re-stretched 1.5 times.
  • the obtained re-stretched film 12 is 1.5 times between the third roll 3 and the fourth roll 4 (peripheral speed: 67.5 mZ) (temperature between rolls: 5 cm) which is adjusted to 25 ° C. Then, a PBT film 13 having an average film thickness of 8 ⁇ was produced. When the film thickness difference and the heat shrinkage of the obtained film 13 were measured, the film thickness difference was 2 m, the heat shrinkage in the longitudinal direction was 0.2%, and the heat shrinkage in the transverse direction was 0.2%. there were. Comparative Example 1
  • a film 13 having an average film thickness of 13 ⁇ m was produced in the same manner as in Example 1 except that the temperature of the casting roll 1 was changed to 60 ° C.
  • the film thickness difference was 4 ⁇ m
  • the heat shrinkage in the longitudinal direction was 15%
  • the heat shrinkage in the transverse direction was 20%. %Met.
  • the PBT films of Examples 1 to 3 were obtained by extruding a molten PBT resin from a T-die, gradually cooling the film on a heating casting nozzle 1 to form a crystallized unstretched film, and then stretching the film.
  • the PBT film of Comparative Example 1 was obtained by stretching an amorphous unstretched film produced by quenching the molten PBT resin. Shrinkage is also poor.
  • the method for producing a polybutylene terephthalate film of the present invention involves extruding a molten polybutylene terephthalate resin into a film from a T-die and gradually cooling the obtained film in a substantially unstretched state.
  • the obtained polybutylene terephthalate resin is crystallized and the obtained crystallized film is stretched, so that the obtained polybutylene terephthalate film is excellent in uniformity of film thickness and heat shrink resistance. Therefore, the polybutylene terephthalate film obtained by the production method of the present invention is suitable for applications such as various packaging materials, packaging bags, and lid materials for instant food containers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

In the method of the present invention, a molten polybutylene terephthalate resin is extruded from a T-die in the form of a film, the thus-obtained substantially undrawn film is slowly cooled so as to crystallize the polybutylene terephthalate resin, and then the thus-obtained crystallized film is drawn.

Description

明細書  Specification
ポリプチレンテレフタレートフィルムの製造方法 技術分野  Method for producing polybutylene terephthalate film
本発明は、 膜厚の均一性及ぴ耐熱収縮性に優れたポリプチレンテレフタレート フィルムを Tダイ法により製造する方法に関する。 背景技術  The present invention relates to a method for producing a polybutylene terephthalate film having excellent film thickness uniformity and heat shrink resistance by a T-die method. Background art
ポリブチレンテレフタレート (PBT) 樹脂は、 機械的強度、 耐熱性、 耐薬品性 、 耐衝擊性、 電気的性質等に優れているため、 従来からエンジニアリング用ブラ スチックとして注目され、 自動車部品、 電気 ·電子部品等の射出品として使用さ れてきた。 PBTはまたガスバリア性や保香性にも優れているので、 膜厚の均一性 や耐熱収縮性に優れた薄い PBTフィルムができれば、 包装材として有用である。 しかし PBTには、 溶融張力が低いため急速な延伸ができず、 ガラス転移温度が常 温に近いためフィルム皺が発生しやすいといった問題がある。 そのため、 PBT樹 脂を 10〜30 μ πι程度で均一な厚さを有するきれいな包装用フィルムに成形する のは極めて困難である。  Polybutylene terephthalate (PBT) resin has excellent mechanical strength, heat resistance, chemical resistance, impact resistance, and electrical properties. It has been used as injection products such as parts. PBT also has excellent gas barrier properties and fragrance retention properties, so it would be useful as a packaging material if a thin PBT film with uniform film thickness and excellent heat shrink resistance could be obtained. However, PBT has a problem that rapid stretching is not possible due to low melt tension, and film wrinkles are likely to occur because the glass transition temperature is close to room temperature. Therefore, it is extremely difficult to form PBT resin into a clean packaging film with a uniform thickness of about 10 to 30 μπι.
フィルムの製造法には Τダイ法とインフレーション 形法とがあるが、 一般的 に Τダイ法に比較してインフレーション成形法は生産性が高く、 薄いフィルムの 製造に適している。 しかしインフレーション成形法で製造した ΡΒΤフィルムには 、 膜厚ムラが多く、 熱収縮率が大きいという問題がある。  There are two types of film production methods: die method and inflation method. In general, the inflation molding method has higher productivity than the die method and is suitable for the production of thin films. However, the film manufactured by the inflation molding method has problems that the film thickness is large and the heat shrinkage is large.
Τダイ法により ΡΒΤフィルムを製造する場合、 Τダイから押し出した溶融 ΡΒΤ 樹脂を冷却することにより得られる未延伸フィルムは、 薄膜化とともに機械的強 度等の物性の改善のために、 延伸する。 Τダイ法により作製した未延伸フィルム に二軸延伸を施して ΡΒΤフィルムを製造する方法として、 特開昭 49-80178号は、 溶融 ΡΒΤを Τダイから例えば 65°Cの冷却口ール上に押し出し、 得られた未延伸フ イルムを PBTの二次転移点温度以上で融点より 10°C以上低い温度で同時ニ軸延 伸する方法を提案している。 また特公昭 51-40904号は、 溶融 PBTを Tダイから例 えば 30°Cの冷却口ール上に押し出し、得られた未延伸フィルムをまず PBTの二次 転移点温度以上で融点より 10°C以上低い温度で延伸し、次いで一段目の延伸温度 以上の温度で一段目の延伸方向に対して直角方向に延伸する方法を提案しているΤWhen producing a film by the die method ΤMolten extruded from the die ΡΒΤThe unstretched film obtained by cooling the resin is stretched to make it thinner and to improve the physical properties such as mechanical strength.未 Biaxially stretching an unstretched film produced by a die method ΡΒΤ As a method for producing a film, JP-A-49-80178 discloses that 溶 融 is melted from a die onto a cooling port at, for example, 65 ° C. A method is proposed in which the unstretched film is extruded and simultaneously biaxially stretched at a temperature higher than the secondary transition temperature of PBT and lower than the melting point by 10 ° C or more. In Japanese Patent Publication No. 51-40904, molten PBT is extruded from a T-die onto a cooling port of, for example, 30 ° C, and the obtained unstretched film is firstly subjected to secondary PBT. A method is proposed in which the film is stretched at a temperature equal to or higher than the transition point and at least 10 ° C lower than the melting point, and then at a temperature equal to or higher than the first-stage stretching temperature in a direction perpendicular to the stretching direction of the first stage.
。 また特開昭 51-146572号は、 Tダイから例えば 30°Cの冷却ロール上に押し出し 、 得られた未延伸フィルムをまず PBTのガラス転移温度以上〜 100°C以下の温度 で横方向に延伸し、 次いで一段目の延伸温度より高くかつ; PBTの融点以下の温度 で長手方向に延伸する方法を提案している。 . JP-A-51-146572 discloses that a non-stretched film obtained by extruding from a T-die onto a cooling roll at, for example, 30 ° C. is first stretched in the transverse direction at a temperature not lower than the glass transition temperature of PBT to 100 ° C. Then, a method of stretching in the longitudinal direction at a temperature higher than the first-stage stretching temperature and equal to or lower than the melting point of PBT is proposed.
しカゝしこれらの文献は、 溶融 PBT榭脂を急冷することにより作製した未延伸フ イルムを二軸延伸するために、 延伸加工性が不十分であり、 得られるフィルムの 膜厚ムラ及び熱収縮率が大きかった。 PBTフィルムの二軸延伸を容易にするため に、 他の樹脂フィルムと積層する方法、 ポリエチレン、 ポリプロピレン等の相溶 性の良い樹脂をプレンドする方法等が提案されている力 いずれの方法でも包装 フィルムとして最適な 10〜30μ m程度の膜厚まで薄膜ィ匕するのは困難であった。 発明の目的  These documents disclose that the drawability of the unstretched film produced by quenching the molten PBT resin is insufficient because the stretchability is insufficient, and the resulting film has uneven film thickness and heat. The shrinkage was large. To facilitate biaxial stretching of PBT film, a method of laminating with another resin film, a method of blending a resin with good compatibility such as polyethylene or polypropylene, etc. are proposed. Packaging film by any method It is difficult to form a thin film to a film thickness of about 10 to 30 μm, which is optimal. Purpose of the invention
従って、 本発明の目的は、 膜厚の均一性及び耐熱収縮性に優れたポリプチレン テレフタレートフィルムの製造方法を提供することである。 発明の開示  Accordingly, an object of the present invention is to provide a method for producing a polybutylene terephthalate film excellent in uniformity of film thickness and heat shrinkage resistance. Disclosure of the invention
上記目的に鑑み鋭意研究の結果、 本発明者は、 Tダイから押し出した溶融ポリ ブチレンテレフタレート樹脂のフィルムを、 実質的に未延伸の状態で徐冷して結 晶化させた後に延伸すると、 膜厚の均一性及ぴ耐熱収縮性に優れたポリブチレン テレフタレートフィルムが得られることを発見し、 本発明に想到した。  As a result of intensive research in view of the above object, the present inventor has found that a film of a molten polybutylene terephthalate resin extruded from a T-die is gradually cooled in a substantially undrawn state, crystallized, and then stretched. The present inventors have discovered that a polybutylene terephthalate film excellent in thickness uniformity and heat shrinkage resistance can be obtained, and reached the present invention.
すなわち、 本発明のポリプチレンテレフタレートフィルムの製造方法は、 溶融 ポリブチレンテレフタレート樹脂を Tダイからフィルム状に押し出し、得られた フィルムを実質的に未延伸の状態で徐冷して前記ポリブチレンテレフタレート樹 脂を結晶化させ、 得られた結晶化フィルムを延伸することを特徴とする。  That is, in the method for producing a polybutylene terephthalate film of the present invention, the molten polybutylene terephthalate resin is extruded into a film form from a T-die, and the obtained film is gradually cooled in a substantially unstretched state to obtain the polybutylene terephthalate resin. The fat is crystallized, and the obtained crystallized film is stretched.
未延伸のポリブチレンテレフタレート樹脂フィルムの徐冷は、 前記ポリブチレ ンテレフタレ一ト樹脂の結晶化温度一 40°C〜結晶化温度 +20°Cの温度まで行う のが好ましレ、。 前記未延伸ポリプチレンテレフタレート樹脂フィルムの徐冷速度 は 30°C/秒以下とするのが好ましい。 前記結晶化未延伸フィルムの厚さは 30〜2 00 μ ιηであるのが好ましい。 前記結晶化未延伸フィルムは少なくとも長手方向に 延伸するのが好ましい。 前記結晶化未延伸フィルムは、 前記ポリブチレンテレフ タレート樹脂の結晶化温度一50°C〜結晶化温度一 10°Cの温度で延伸するのが好 ましい。 前記延伸の倍率は 1.5倍以上であるのが好ましい。 The slow cooling of the unstretched polybutylene terephthalate resin film is preferably performed to a temperature of the crystallization temperature of the polybutylene terephthalate resin—40 ° C. to the crystallization temperature + 20 ° C. Slow cooling rate of the unstretched polybutylene terephthalate resin film Is preferably 30 ° C./sec or less. The thickness of the crystallized unstretched film is preferably 30 to 200 μιη. It is preferable that the crystallized unstretched film is stretched at least in the longitudinal direction. The crystallization unstretched film is preferably stretched at a crystallization temperature of the polybutylene terephthalate resin of 50 ° C. to a crystallization temperature of 10 ° C. The stretching magnification is preferably 1.5 times or more.
延伸フィルムは、 前記ポリブチレンテレフタレート樹脂の結晶化温度一 110°C 〜結晶化温度 _50°Cの温度で再延伸するのが好ましレ、。 前記再延伸の倍率は 1.1 倍以上であるのが好ましい。 再延伸フィルムは、 室温〜前記ポリプチレンテレフ タレート樹脂のガラス転移温度の範囲内の温度で冷延伸してもよい。 前記冷延伸 の倍率は 1.1倍以上であるのが好ましい。前記ポリブチレンテレフタレート榭脂は 、樹脂全体を 100質量0 /0として、 ポリオレフイン及び Z又はエラストマ一を 5〜1 5質量%含むのが好ましい。 図面の簡単な説明 The stretched film is preferably stretched again at a crystallization temperature of the polybutylene terephthalate resin of 110 ° C. to a crystallization temperature of −50 ° C. The redrawing ratio is preferably 1.1 times or more. The re-stretched film may be cold-stretched at a temperature within a range from room temperature to the glass transition temperature of the polybutylene terephthalate resin. The ratio of the cold stretching is preferably 1.1 times or more. The polybutylene terephthalate榭脂as the entire resin 100 mass 0/0, preferably comprises a polyolefin and Z or elastomeric one 5-1 5 wt%. BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明の Tダイ法によるポリブチレンテレフタレートフィルムを製造す る装置の一例を示す概略図であり、  FIG. 1 is a schematic view showing an example of an apparatus for producing a polybutylene terephthalate film by the T-die method of the present invention,
図 2は本発明の Tダイ法によるポリブチレンテレフタレートフィルムを製造す る装置の別の例を示す概略図であり、  FIG. 2 is a schematic diagram showing another example of an apparatus for producing a polybutylene terephthalate film by the T-die method of the present invention,
図 3は本発明の Tダイ法によるポリブチレンテレフタレートフィルムを製造す る装置のさらに別の例を示す概略図である。 発明を実施するための最良の形態  FIG. 3 is a schematic view showing still another example of an apparatus for producing a polybutylene terephthalate film by the T-die method of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
[1] ポリブチレンテレフタレート樹月旨  [1] Polybutylene terephthalate
原料とするポリブチレンテレフタレート (PBT)樹脂に特に制限はないが、 1,4- ブタンジオールとテレフタル酸とを構成成分とするホモポリマーからなるのが好 ましい。 伹し耐熱収縮性等の物性を損なわない範囲で、 1,4-ブタンジオール以外 のジオール成分、 又はテレフタル酸以外のカンボン酸成分を共重合成分として含 んでいてもよい。 そのようなジォ一ル成分としては、 例えば、 エチレングリコー ノレ、 ジエチレングリコーノレ、 ネオペンチノレグリコール、 1,4-シク口へキサンメタ ノール等が挙げられる。 ジカルボン酸成分としては、 例えば、 イソフタル酸、 セ バシン酸、 アジピン酸、 ァゼライン酸、 コハク酸等が挙げられる。 好ましい PBT 樹脂の具体例としては、 例えば東レ (株) から商品名 「トレコン」 として市販さ れているホモ PBT樹脂を挙げることができる。 There is no particular limitation on the polybutylene terephthalate (PBT) resin used as a raw material, but it is preferably composed of a homopolymer containing 1,4-butanediol and terephthalic acid as components. A diol component other than 1,4-butanediol or a cambonic acid component other than terephthalic acid may be contained as a copolymer component as long as physical properties such as heat shrink resistance are not impaired. Examples of such a diol component include ethylene glycolone, diethylene glycolone, neopentinole glycol, and 1,4-cyclohexanemethane. Knol and the like. Examples of the dicarboxylic acid component include isophthalic acid, sebacic acid, adipic acid, azelaic acid, and succinic acid. Specific examples of preferable PBT resin include, for example, homo PBT resin commercially available from Toray Industries, Inc. under the trade name “Trecon”.
FBT樹脂は: PBTのみからなる場合に限定されず、 本発明の効果を阻害しない 範囲で目的に応じて他の熱可塑性樹脂を含有しても良い。 他の熱可塑性榭脂とし てはポリエチレンテレフタレート (PET)、 ポリエチレンナフタレート (PEN) 等のポリエステル;ポリフエ二レンサノレフアイ ド (PPS) ;ポリアミ ド (PA) ;ポ リイミ ド (PI) ;ポリアミ ドィミ ド (PAI) ;ポリエーテルサルフォン (PES) ;ポ リエーテルエーテルケトン (PEEK) ;ポリカーボネート ;ポリウレタン;フッ素 樹脂;ポリエチレン、 ポリプロピレン等のポリオレフイン;ポリ塩化ビニル;ェ ラストマー等を挙げることができる。 特に PBT樹脂がポリエチレン、 ポリプロ ピレン等のポリオレフイン及ぴ/ /又はエラストマ一を含有していると、 溶融粘度 及びメルトテンションが高くなるので、 延伸加工性が向上するとともに、 得られ るフィルムの機械的強度やヒートシール性が向上するので好ましい。中でも PBT 樹脂はポリエチレンを含むのが好ましい。 他の熱可塑性樹脂を含有する場合、 そ の割合は: PBT樹脂全体を 100質量%として、 5〜: 15質量%であるのが好ましく、 5〜: 10質量。 /0であるのがより好ましい。従って、特に断りがない限り、本明細書 において使用する用語「ポリブチレンテレフタレート樹脂」 は、 PBT単体のみな らず、 PBT+他の熱可塑性樹脂の組成物の両方を含むものと理解すべきである。 The FBT resin is not limited to the case composed of only PBT, and may contain other thermoplastic resins according to the purpose within a range not to impair the effects of the present invention. Other thermoplastic resins include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN); polyphenylene phenol phenol (PPS); polyamide (PA); polyimide (PI); PAI); polyethersulfone (PES); polyetheretherketone (PEEK); polycarbonate; polyurethane; fluororesin; polyolefins such as polyethylene and polypropylene; polyvinyl chloride; and elastomers. In particular, when the PBT resin contains a polyolefin such as polyethylene or polypropylene and / or an elastomer, the melt viscosity and the melt tension are increased, so that the stretchability is improved and the mechanical properties of the obtained film are improved. It is preferable because strength and heat sealability are improved. Among them, the PBT resin preferably contains polyethylene. When another thermoplastic resin is contained, the proportion is preferably 5 to 15% by mass, and 5 to 10% by mass based on 100% by mass of the whole PBT resin. / 0 is more preferable. Therefore, unless otherwise specified, the term `` polybutylene terephthalate resin '' as used herein should be understood to include not only PBT alone but also PBT + other thermoplastic resin compositions. .
PBT樹脂には一般の熱可塑性榭脂及び熱硬化性樹脂に添加される公知の添加 剤、 すなわち可塑剤、 酸化肪止剤や紫外線吸収剤等の安定剤、 帯電防止剤、 界面 活性剤、染料や顔料等の着色剤、流動性の改善のための潤滑材、結晶化促進剤(核 剤)、 無機充填材等も要求性能に応じ適宜使用できる。  For PBT resin, known additives added to general thermoplastic resins and thermosetting resins, that is, plasticizers, stabilizers such as antioxidants and ultraviolet absorbers, antistatic agents, surfactants, and dyes Colorants such as pigments and pigments, lubricants for improving fluidity, crystallization accelerators (nucleating agents), inorganic fillers, etc. can also be used as appropriate according to required performance.
〖2] PBTフィルムの製造方法 〖2] Manufacturing method of PBT film
図 1は、 本発明の Tダイ法による PBTフィルムを製造する装置の一例を示す。 溶融 PBT樹脂を Tダイ 7から押し出すことにより得られた押出フィルム 5は、 加 熱キャスティングロール 1で引き取ることにより徐冷して結晶化未延伸フィルム 6を形成する。 得られた結晶化未延伸フィルム 6は、 加熱キャスティングロール 1とこれに平行に設けた第 2のロール 2との間で延伸した後、 ガイドローノレ 9を 経て卷き取りリーノレ 8により卷き取る。 FIG. 1 shows an example of an apparatus for producing a PBT film by the T-die method of the present invention. The extruded film 5 obtained by extruding the molten PBT resin from the T die 7 is gradually cooled by taking it off with a heated casting roll 1 to form a crystallized unstretched film 6. The obtained crystallized unstretched film 6 is heated and rolled. After stretching between 1 and the second roll 2 provided in parallel with this, it is wound up by a guide roll 9 and a winding roll 8.
(a)結晶化未延伸フィルムの形成 (a) Formation of crystallized unstretched film
(i)溶融混練工程 (i) Melt kneading process
まず PBT樹脂と、上記 [1]で述べた添加剤等とを溶融混練し、溶融 PBT樹脂を調 製する。 溶融混練の方法は特に限定されないが、 通常は二軸押出機中で均一に混 練する方法をとる。混練温度は PBT樹脂の融点 + 10°C〜融点 +40°Cであるのが好 ましい。 混練温度を PBT樹脂の融点 +40°Cより高くすると、樹脂の熱劣化が進行 する恐れがある。 このため押出機中で混練を行う場合、 発熱しないようなスクリ ユー構造を有するもの、 又は適当な冷却装置を有するものを使用する。 混練温度 の下限を PBT樹脂の融点 + 10°C未満にすると、押出量が不安定となるため好まし くない。例えば PBT樹脂がホモポリマーの場合、その融点は約 220〜230°Cである ので、 混練温度は 230〜270°Cとする。 融点は ASTM D4591により測定した (以 下同じ)。  First, the PBT resin and the additives described in [1] above are melt-kneaded to prepare a molten PBT resin. The method of melt-kneading is not particularly limited, but usually a method of uniformly kneading in a twin-screw extruder is used. The kneading temperature is preferably from the melting point of the PBT resin + 10 ° C to the melting point + 40 ° C. If the kneading temperature is higher than the melting point of the PBT resin + 40 ° C, thermal deterioration of the resin may proceed. For this reason, when kneading in an extruder, use a screw structure that does not generate heat or a device that has an appropriate cooling device. It is not preferable to set the lower limit of the kneading temperature to less than the melting point of the PBT resin + 10 ° C because the extrusion rate becomes unstable. For example, if the PBT resin is a homopolymer, its melting point is about 220-230 ° C, so the kneading temperature should be 230-270 ° C. The melting point was measured by ASTM D4591 (the same applies hereinafter).
混練した溶融 PBT樹脂を押出機から直接に又は別の押出機を介して Tダイ 7か ら押し出すか、 一旦冷却してペレツト化した後再度押出機を介して Tダイ 7から 押し出す。 Tダイ 7のギャップは通常 5 mm以下とする。 Tダイ 7から押し出す樹 脂温度は PBT樹脂の融点 _10°C〜融点 + 30°Cであるのが好ましく、 PBT樹脂の融 点〜融点 + 10°Cであるのがより好ましい。  The kneaded molten PBT resin is extruded from the T-die 7 directly from the extruder or through another extruder, or once cooled and pelletized, and extruded again from the T-die 7 through the extruder. The gap of the T die 7 is usually 5 mm or less. The temperature of the resin extruded from the T-die 7 is preferably from the melting point of the PBT resin -10 ° C to the melting point + 30 ° C, and more preferably from the melting point of the PBT resin to the melting point + 10 ° C.
(ii)徐冷工程 (ii) Slow cooling process
溶融 PBT樹脂を Tダイ 7から押し出すことにより得られた押出フィルム 5は、 加熱キャスティングロール 1で受け、 ロール 1で徐冷して結晶化未延伸フィルム 6を形成する。 結晶化未延伸フィルム 6を形成することにより延伸加工性が向上 するので、 これを延伸により薄膜ィ匕すると、 非晶質の未延伸フィルムを薄膜化し た場合より膜厚ムラが減少する。  The extruded film 5 obtained by extruding the molten PBT resin from the T die 7 is received by a heated casting roll 1 and gradually cooled by the roll 1 to form a crystallized unstretched film 6. Since the stretchability is improved by forming the crystallized unstretched film 6, when the film is stretched to reduce the film thickness, the thickness unevenness is reduced as compared with the case where the amorphous unstretched film is thinned.
加熱キャスティングロール 1は PBT樹脂の結晶化温度— 40°C〜結晶化温度 +2 0°Cの温度とするのが好ましい。 ここで用語 「結晶化温度」 は、 試料を 250°Cで溶 融後、 20°CZ分で降温した時に、 示差走查熱量計 (DSC) により検出される結晶 化ピークの温度を意味する。 例えば PBT樹脂がホモポリマーの場合、 その結晶化 温度は約 170〜 190°Cである。この温度範囲の加熱キヤスティング口ール 1に接し た押出フィルム 5は、 PBT樹脂の結晶化温度一 40°C〜結晶化温度 +20°Cの温度ま で徐冷される。 It is preferable that the heating casting roll 1 has a crystallization temperature of the PBT resin—40 ° C. to a crystallization temperature + 20 ° C. Here, the term “crystallization temperature” means the temperature of the crystallization peak detected by a differential scanning calorimeter (DSC) when the sample is melted at 250 ° C and cooled down by 20 ° CZ. For example, if the PBT resin is a homopolymer, its crystallization The temperature is about 170-190 ° C. The extruded film 5 in contact with the heating casting mouth 1 in this temperature range is gradually cooled to a temperature of 40 ° C. to a crystallization temperature of + 20 ° C. for the crystallization temperature of the PBT resin.
ロール 1が PBT樹脂の結晶化温度 +20°C超の温度であると、得られる未延伸フ イルム 6は結晶化しなレ、。一方口ール 1力 SPBT樹脂の結晶化温度一 40°C未満の温 度であると、 押出フィルム 5の冷却が速すぎ、 得られる未延伸フィルム 6の結晶 化度が低く、 従って延伸加工性も低い。 押出フィルム 5は、 PBT樹脂の結晶化温 度一 35°C〜結晶化温度 +10°Cの温度まで徐冷するのがより好ましい。  If the temperature of the roll 1 is higher than the crystallization temperature of the PBT resin + 20 ° C, the obtained unstretched film 6 does not crystallize. On the other hand, if the crystallization temperature of the SPBT resin is less than 40 ° C, the extruded film 5 cools too quickly, and the resulting unstretched film 6 has a low crystallinity, and therefore stretchability. Is also low. More preferably, the extruded film 5 is gradually cooled to a temperature of 35 ° C. to a crystallization temperature of + 10 ° C. for the crystallization temperature of the PBT resin.
Tダイ 7と加熱キャスティングロール 1との間に加熱手段を設けなレ、場合、 十 分な徐冷速度を確保するために、 Tダイ 7と加熱キャスティングロール 1との間 の距離はできるだけ短い方が好ましく、 具体的には 20 cm以下とするのが好まし い。  If no heating means is provided between the T-die 7 and the heating casting roll 1, the distance between the T-die 7 and the heating casting roll 1 should be as short as possible to secure a sufficient cooling rate. Preferably, it is specifically set to 20 cm or less.
徐冷速度は、 30°C/秒以下であるのが好ましく、 20°CZ秒以下であるのがより 好ましく、 10°C /秒以下であるのが特に好まし!/、。 押出フィルム 5は徐冷しなレヽ と十分に結晶化しない。 徐冷速度の下限は特に限定的ではないが、 生産性の観点 から、 0.3°CZ秒であるのが好ましい。  The slow cooling rate is preferably 30 ° C / second or less, more preferably 20 ° CZ second or less, and particularly preferably 10 ° C / second or less! / ,. The extruded film 5 does not crystallize sufficiently when cooled slowly. The lower limit of the slow cooling rate is not particularly limited, but is preferably 0.3 ° CZ seconds from the viewpoint of productivity.
後段での延伸を容易にするために、 結晶化未延伸フィルム 6の厚さを 30〜200 μ πιとするのが好ましく、 35〜: 100 μ πιとするのがより好ましい。 結晶化未延伸 フィルム 6の厚さを 30〜200 mとし、 かつ結晶化未延伸フィルム 6形成時のネ ックイン現象 (加熱キャスティングロール 1にキャストされたフィルムが Tダイ 7の有効幅より狭くなる現象) を抑制するために、 加熱キャスティングロール 1 の周速を 5〜20 m/分とするのが好ましく、 5〜15 mZ分とするのがより好ま しレ、。 加熱キャスティングロール 1の直径は 35〜70 cmであるのが好ましい。 必 要に応じて加熱キャスティングロール 1を複数設けてもよい。 この場合各加熱キ ヤスティングロール 1の周速は同じにするが、 各加熱キヤスティング口ール 1の 温度は同じでも良く、また下流に行くに従つて PBT樹脂の結晶化温度一 40°C〜結 晶化温度 + 20°Cの温度範囲内で順に低下してもよい。  In order to facilitate the subsequent stretching, the thickness of the crystallized unstretched film 6 is preferably from 30 to 200 μπι, more preferably from 35 to 100 μπι. The thickness of the uncrystallized unstretched film 6 is 30 to 200 m, and the neck-in phenomenon when forming the uncrystallized unstretched film 6 (Phenomenon in which the film cast on the heated casting roll 1 becomes narrower than the effective width of the T die 7) In order to suppress the above, the peripheral speed of the heating casting roll 1 is preferably 5 to 20 m / min, more preferably 5 to 15 mZ. The diameter of the heated casting roll 1 is preferably between 35 and 70 cm. A plurality of heating casting rolls 1 may be provided as necessary. In this case, the peripheral speed of each heating casting roll 1 should be the same, but the temperature of each heating casting port 1 may be the same, and the crystallization temperature of the PBT resin is 40 ° C as going downstream. To crystallization temperature + 20 ° C.
(b)延伸 (b) Stretching
( 延伸工程 図 1に示すように、 得られた結晶化未延伸フィルム 6は、 加熱キャスティング ロール 1と第 2のロール 2との間に周速差を設け、 長手方向 (MD) に延伸する 。 結晶化未延伸フィルム 6は、 FBT榭脂の結晶化温度一 50°C〜結晶化温度一 10 °Cの温度で延伸するのが好ましく、 これにより溶融張力を比較的高倍率の延伸に 適した範囲にできるので、 β莫厚ムラの少ない均一な延伸が可能となる。 延伸温度 は ΡΒΤ樹脂の結晶化温度一 50°C〜結晶化温度一 30°Cの温度とするのがより好ま しい。 結晶化未延伸フィルム 6が延伸される領域 (延伸領域) 61は、 加熱キャス ティングロール 1と第 2のロール 2の間にあるので、延伸領域 61が上記好ましい 延伸温度範囲となるように、 口ール間距離 (両口ールの共通接線上における両接 点間の距離) を 10 cm以下とするのが好ましい。 ロール間距離を 10 cm以下とす ることにより、 延伸領域 61を比較的狭くすることもでき、 これによりネックイン 現象を一層効果的に抑制できる。 延伸領域 61の温度を一定に保っために、加熱手 段を用いて両ロール間において結晶化未延伸フィルム 6を加熱してもよい。 延伸 したフィルムは、 第 2のロール 2により PBT樹脂の結晶化温度一 140°C以下に冷 却するのが好ましく、 これにより延伸した状態を安定ィ匕できる。 (Stretching process As shown in FIG. 1, the obtained crystallized unstretched film 6 is provided with a peripheral speed difference between the heated casting roll 1 and the second roll 2, and stretched in the machine direction (MD). The crystallized unstretched film 6 is preferably stretched at a crystallization temperature of the FBT resin of 50 ° C to a crystallization temperature of 10 ° C, thereby making the melt tension suitable for stretching at a relatively high magnification. Since it can be in the range, it is possible to perform uniform stretching with less β thickness unevenness. The stretching temperature is more preferably in the range of crystallization temperature of resin minus 50 ° C to crystallization temperature minus 30 ° C. The region (stretching region) 61 where the crystallized unstretched film 6 is stretched is located between the heated casting roll 1 and the second roll 2, so that the stretching region 61 is set so as to have the above-mentioned preferred stretching temperature range. It is preferable that the distance between the rails (the distance between the two tangent points on the common tangent line between the two rails) be 10 cm or less. By setting the distance between the rolls to 10 cm or less, the stretching region 61 can be made relatively narrow, and thereby the neck-in phenomenon can be more effectively suppressed. In order to keep the temperature of the stretching region 61 constant, the crystallized unstretched film 6 may be heated between both rolls using a heating means. The stretched film is preferably cooled by the second roll 2 to a crystallization temperature of the PBT resin of 140 ° C. or less, whereby the stretched state can be stabilized.
延伸倍率は結晶化未延伸フィルム 6の厚さによって異なる力 S、通常は 1.5倍以上 であるのが好ましく、 1.8〜 4倍であるのがより好ましい。延伸倍率を上げるほど 透明性が向上する。 加熱キャスティングロール 1と第 2のロール 2との周速比を 適宜設定することにより、 所望の倍率に延伸できる。 第 2のロール 2の直径に特 に制限はなく、 通常は加熱キャスティングロール 1と同じく 35〜70 cmとすれば よい。  The stretching ratio is preferably a force S that varies depending on the thickness of the crystallized unstretched film 6, usually 1.5 times or more, and more preferably 1.8 to 4 times. The transparency increases as the stretching ratio increases. By appropriately setting the peripheral speed ratio between the heating casting roll 1 and the second roll 2, the film can be stretched to a desired magnification. The diameter of the second roll 2 is not particularly limited, and may be generally 35 to 70 cm as in the case of the heating casting roll 1.
(ii)再延伸工程  (ii) Redrawing step
上記 (i)の工程により得られた延伸フィルムは長手方向に再延伸してもよく、 こ れにより透明性が一層向上するとともに、 一層薄膜化できる。 図 2は延伸工程後 に再延伸工程を行う装置の一例を示す。 この装置は、 ロール 2の上にニップロ一 ル 10を設けるとともに、 ロール 2とロール 9との間に一対のロール 3, 10を挿入 した以外、 図 1の装置と同じである。 以下、 一対のロール 3, 10の作用を中心に 説明する。  The stretched film obtained in the step (i) may be stretched again in the longitudinal direction, whereby the transparency is further improved and the film can be further thinned. FIG. 2 shows an example of an apparatus for performing a re-stretching step after the stretching step. This device is the same as the device in FIG. 1 except that a nipple 10 is provided on the roll 2 and a pair of rolls 3 and 10 are inserted between the roll 2 and the roll 9. Hereinafter, the operation of the pair of rolls 3 and 10 will be mainly described.
再延伸は、 図 2に示す装置の第 2のロール 2と第 3のロール 3との間に周速差 を設けることにより行う。 第 2のロール 2と第 3のロール 3との間にある延伸領 域 62の温度は PBT樹脂の結晶化温度一 110°C〜結晶化温度一 50°Cの範囲とするの が好ましく、 PBT樹脂の結晶化温度— 90°C〜結晶化温度一 50°Cの範囲とするのが より好ましレ、。 延伸領域 62の温度を上記好ましい範囲にするために、 上記 (i)のェ 程により得られた延伸フィルム 11を、第 2のロール 2により PBT樹脂の結晶化温 度一 90°C〜結晶化温度一30°Cの温度で処理するとともに、第 2のロール 2と第 3 のロール 3とのロール間距離を 10 cm以下とするのが好ましい。 第 2のロール 2 による処理温度は、 PBT樹脂の結晶化温度一 80°C〜結晶化温度一40°Cの範囲であ るのがより好ましい。 再延伸フィルム 12は、 第 3のロール 3により PBT樹脂の結 晶化温度一 140°C以下に冷却するのが好ましレ、。 第 3のロール 3の直径は、 第 2 のロール 2と同じく 35〜70 cmとすればょレ、。再延伸の倍率は 1.1倍以上とするの が好ましく、 1.3〜 3倍と'するのがより好ましい。 Re-stretching is performed by the difference in peripheral speed between the second roll 2 and the third roll 3 of the device shown in Fig. 2. This is performed by providing The temperature of the stretching area 62 between the second roll 2 and the third roll 3 is preferably in the range of the crystallization temperature of the PBT resin minus 110 ° C. to the crystallization temperature minus 50 ° C. The crystallization temperature of the resin is more preferably in the range of 90 ° C to 50 ° C. In order to keep the temperature of the stretching region 62 in the above-mentioned preferable range, the stretched film 11 obtained in the above step (i) is subjected to the second roll 2 to crystallize the PBT resin at a crystallization temperature of 90 ° C to 90 ° C. The treatment is preferably performed at a temperature of 30 ° C., and the distance between the second roll 2 and the third roll 3 is preferably 10 cm or less. The processing temperature by the second roll 2 is more preferably in the range of the crystallization temperature of the PBT resin-80 ° C to the crystallization temperature-40 ° C. The re-stretched film 12 is preferably cooled by the third roll 3 to a crystallization temperature of the PBT resin of 140 ° C. or less. The diameter of the third roll 3 should be 35 to 70 cm, the same as that of the second roll 2. The redrawing magnification is preferably 1.1 times or more, more preferably 1.3 to 3 times.
(iii)冷延伸工程 (iii) Cold drawing process
再延伸フィルムは、 さらに長手方向に冷延伸してもよレヽ。 図 3は再延伸工程後 に冷延伸工程を行う装置の一例を示す。 この装置は、 ロール 3とロール 9との間 に一対のロール 4 , 10を挿入した以外、 図 2の装置と同じである。 従って、 一対 のロール 4 , 10の作用を中心に説明する。 冷延伸は、 図 3に示す第 3のロール 3 と第 4のロール 4との間に周速差を設けることにより行う。 第 3のロール 3と第 4のロール 4との間にある延伸領域 63の温度は室温〜; PBT樹脂のガラス転移温 度 (Tg) の範囲とするのが好ましい。 ここでガラス転移温度 Tgは JIS K7121に より測定したものである。 ホモ PBT樹脂の Tgは一般的に 22〜45°Cである。 延伸 領域 63の温度を上記好ましい範囲にするために、再延伸フィルム 12を、第 3の口 ール 3により PBT樹脂の結晶化温度一 110°C〜結晶化温度一 80°Cの温度で処理す るとともに、 第 3のロール 3と第 4のロール 4とのロール間距離を 10 era以下と するのが好ましい。 第 3のロール 3による処理温度は、 PBT樹脂の結晶化温度一 140°C〜結晶化温度一 90°Cであるのがより好ましい。 このような冷延伸を施すこ とにより、 フィルムの透明性を一層向上できる。 第 4のロール 4の直径は、 第 3 のロール 3と同じく 35〜70 cmとすればよい。冷延伸の倍率は 1.1倍以上とするの が好ましく、 1.3〜 3倍とするのがより好ましい。 (iv) その他の態様 The re-stretched film may be further cold-stretched in the longitudinal direction. FIG. 3 shows an example of an apparatus for performing a cold stretching step after the re-stretching step. This device is the same as the device in FIG. 2 except that a pair of rolls 4 and 10 are inserted between the roll 3 and the roll 9. Therefore, the operation of the pair of rolls 4 and 10 will be mainly described. The cold stretching is performed by providing a peripheral speed difference between the third roll 3 and the fourth roll 4 shown in FIG. The temperature of the stretching region 63 between the third roll 3 and the fourth roll 4 is preferably in the range of room temperature to the glass transition temperature (Tg) of the PBT resin. Here, the glass transition temperature Tg is measured according to JIS K7121. The Tg of a homo PBT resin is typically 22-45 ° C. In order to keep the temperature of the stretching region 63 within the above preferred range, the re-stretched film 12 is treated at a temperature of 110 ° C. to 110 ° C. for the crystallization temperature of the PBT resin by the third port 3. In addition, it is preferable that the distance between the third roll 3 and the fourth roll 4 is 10 era or less. The processing temperature by the third roll 3 is more preferably from 140 ° C. to the crystallization temperature of the PBT resin to 90 ° C. By performing such cold stretching, the transparency of the film can be further improved. The diameter of the fourth roll 4 may be 35 to 70 cm as in the case of the third roll 3. The cold stretching magnification is preferably 1.1 times or more, more preferably 1.3 to 3 times. (iv) Other aspects
図 2に示す装置を用いて、 上記 (i)の延伸工程のみを行ってもよい。 この場合、 例えば第 3のロール 3を第 2のロール 2と同じ周速で回転させながら、 延伸フィ ルム 11を PBT樹脂の結晶化温度一 140°C以下に冷却することにより、 冷却処理を さらに長時間行うことができる。 また第 3のロール 3により冷却処理を行う場合 、延伸フィルム 11を、第 2のロール 2により PBT樹脂のガラス転移温度 (Tg) 超 〜結晶化温度一 10°C以下の温度で焼きなます工程を設けてもよく、 これにより得 られる PBTフィルムの耐熱収縮性が一層向上する。  Only the stretching step (i) above may be performed using the apparatus shown in FIG. In this case, for example, while the third roll 3 is being rotated at the same peripheral speed as the second roll 2, the stretching film 11 is cooled to a crystallization temperature of the PBT resin of 140 ° C. or less, so that the cooling process is further performed. Can be performed for a long time. When the cooling treatment is performed by the third roll 3, the stretched film 11 is annealed by the second roll 2 at a temperature of higher than the glass transition temperature (Tg) of the PBT resin to a crystallization temperature less than 10 ° C. May be provided, whereby the heat shrink resistance of the obtained PBT film is further improved.
図 3に示す装置を用いて、延伸を上記 (ii)の再延伸工程までとしてもよい。 この 場合、 第 4のロール 4を冷却用とすれば、 再延伸フィルム 12に対する冷却処理を さらに長時間行うことができる。 また第 4のロール 4により冷却処理を行う場合 、 再延伸フィルム 12を、 第 3のロール 3により PBT樹脂のガラス転移温度 (Tg ) 超〜結晶化温度一 10°C以下の温度で焼きなます工程を設けてもよい。  Using the apparatus shown in FIG. 3, stretching may be performed up to the re-stretching step (ii). In this case, if the fourth roll 4 is used for cooling, the re-stretched film 12 can be cooled for a longer time. When the cooling treatment is performed by the fourth roll 4, the re-stretched film 12 is annealed by the third roll 3 at a temperature of from the glass transition temperature (Tg) of the PBT resin to the crystallization temperature minus 10 ° C or less. A step may be provided.
(v)横延伸工程  (v) Horizontal stretching process
上記 (i)〜(iv)のいずれかの工程により製造された PBTフィルムに対して、 引き 続き横方向 (TD) に延伸してもよい。横延伸を行う方法としては、 テンター法等 の公知の方法が挙げられる。  The PBT film produced by any of the above steps (i) to (iv) may be subsequently stretched in the transverse direction (TD). As a method for performing the transverse stretching, a known method such as a tenter method may be used.
(c)熱処理 (c) Heat treatment
上述の方法により製造された PBTフィルムは、 そのままでも従来の製造方法で 得られるものよりも優れた耐熱収縮性を有するが、 耐熱収縮性を一層向上させる ために、 さらに熱処理を施してもよい。 熱処理は、 熱固定処理及ぴ Z又は熱収縮 処理により行えばよい。 これらの熱処理は、 PBTフィルムのガラス転移温度超〜 結晶化温度一10°C以下の温度で行うのが好ましい。  Although the PBT film produced by the above method has better heat shrink resistance than that obtained by the conventional production method as it is, it may be further subjected to a heat treatment to further improve the heat shrink resistance. The heat treatment may be performed by a heat setting treatment and a Z or heat shrink treatment. These heat treatments are preferably performed at a temperature above the glass transition temperature of the PBT film to a crystallization temperature of 10 ° C. or less.
熱固定処理は、 テンター方式、 ロール方式又は圧延方式により行えばよレ、。 熱 収縮処理は、 テンター方式、 ロール方式、 圧延方式、 ベルトコンベア方式又はフ ローティング方式により行えばょレヽ。  The heat setting may be performed by a tenter method, a roll method or a rolling method. The heat shrink treatment may be performed by a tenter method, a roll method, a rolling method, a belt conveyor method or a floating method.
[3] PBTフイノレム [3] PBT huinorem
以上のようにして製造された PBT フィルムは、 半透明から透明であり、 従来 の延伸 PBT フィルムと比較して、 膜厚の均一性及び耐熱収縮性に優れている。 具体的には、 平均膜厚 8〜20 mのフィルムの膜厚差は 1〜3 ιηであり、 MD (長手方向) の熱収縮率は 0.3%以下であり、 TD (横方向) の熱収縮率は 0.5% 以下である。 このためムラの少ない印刷層や金属蒸着層を形成できる。 またヒ トシール、印刷等の二次加工にぉ 、てフィルム寸法の変化が少な 、。平均膜厚は、 ΡΒΤ フィルムの横方向における中心部及ぴ両端部の厚さをそれぞれ 2点ずつ計 6点の膜厚を測定した値の平均値である。膜厚差は、 ΡΒΤ.フィルムの横方向にお ける中心部及び両端部の厚さをそれぞれ 2点ずつ計 6点測定し、 そのうちの最大 値と最小値との差を算出したものである。 この値が小さいほうが良好な結果とな ることを意味する。 熱収縮率は、 ΡΒΤフィルムを 150°Cで 10分間暴露したとき の MD及び TDの収縮率をそれぞれ測定したものである。 The PBT film manufactured as described above is translucent to transparent, and has excellent film thickness uniformity and heat shrink resistance as compared with the conventional stretched PBT film. Specifically, the film thickness difference of the average film thickness of 8-20 m is 1-3 ιη, the heat shrinkage of MD (longitudinal direction) is 0.3% or less, and the heat shrinkage of TD (horizontal direction) The rate is less than 0.5%. For this reason, a printing layer or a metal deposition layer with less unevenness can be formed. In addition, there is little change in film dimensions due to secondary processing such as heat sealing and printing. The average film thickness is an average value obtained by measuring the film thickness at the center and both ends in the lateral direction of the film at two points each, for a total of six points. The difference in film thickness is obtained by measuring the thickness at the center and both ends in the lateral direction of the film at two points each, for a total of six points, and calculating the difference between the maximum value and the minimum value. A smaller value means better results. The heat shrinkage was measured by measuring the shrinkage of MD and TD when the film was exposed to 150 ° C for 10 minutes.
本発明の製造方法により得られる PBT フィルムは、 必要に応じて他のフィル ムと積層化してもよい。  The PBT film obtained by the production method of the present invention may be laminated with another film as necessary.
本発明を以下の実施例によりさらに詳細に説明するが、 本発明はこれらの例に 限定されるものではない。 実施例 1  The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples. Example 1
PBT樹脂 (商品名 「トレコン 1200S」。 東レ (株) 製。 融点: 220°C。 ガラス転 移温度: 22°C。 結晶化温度: 182°C) を二軸押出機 (スクリュー径: 300 mm, 押出量: 50 kg/hr) に投入し、 235± 5 °Cで溶融混練して、 押出機中で溶融 PBT 樹脂を調製した。 図 3に示す装置を用いて、 この溶融 PBT樹脂を押出機の先端に 設置された Tダイ 7から押し出し、 170°Cに温調した回転する加熱キャスティング ロール 1 (周速: 10 m/分、 ロール径: 50 cm) 上に受けた。 押出フィルム 5を 加熱キヤスティングロール 1上で 9 °CZ秒の速度で徐冷し、 平均膜厚が 50 μ の 結晶化未延伸フィルム 6を形成した。  PBT resin (trade name “Trecon 1200S” manufactured by Toray Industries, Inc. Melting point: 220 ° C. Glass transition temperature: 22 ° C. Crystallization temperature: 182 ° C) using a twin-screw extruder (screw diameter: 300 mm) , Extrusion rate: 50 kg / hr) and melt-kneaded at 235 ± 5 ° C to prepare a molten PBT resin in an extruder. Using the apparatus shown in Fig. 3, this molten PBT resin is extruded from a T-die 7 installed at the tip of the extruder, and is heated to 170 ° C. A rotating heating casting roll 1 (peripheral speed: 10 m / min. Roll diameter: 50 cm). The extruded film 5 was gradually cooled on the heating casting roll 1 at a rate of 9 ° C.Z to form a crystallized unstretched film 6 having an average film thickness of 50 μm.
得られた結晶化未延伸フィルム 6を、 加熱キャスティングロール 1と 130°Cに 温調した第 2のロール 2 (周速: 20 mZ分) との間 (ロール間距離: 5 cm) で 2倍に延伸した。 得られた延伸フィルム 11を、 さらに第 2のロール 2と 80°Cに温 調した第 3のロール 3 (周速: 40 mZ分) との間 (ロール間距離: 5 cm) で 2 倍に再延伸した。 得られた再延伸フィルム 12を 35°Cに温調した第 4のロール 4 ( 周速: 40 mZ分) で冷却し、 平均膜厚が 13 i mの PBTフィルム 13を作製した。 得られた PBTフィルム 13の膜厚差及ぴ熱収縮率を測定した結果、 膜厚差は 2 m であり、 長手方向の熱収縮率は 0.1%であり、 横方向の熱収縮率は 0.2%であった The obtained crystallized unstretched film 6 is doubled between the heated casting roll 1 and the second roll 2 (peripheral speed: 20 mZ) (temperature between rolls: 5 cm), which is adjusted to 130 ° C. Stretched. The obtained stretched film 11 is further doubled between the second roll 2 and the third roll 3 (peripheral speed: 40 mZ) (temperature between rolls: 5 cm) which is adjusted to 80 ° C. It was redrawn. The fourth roll 4 ( (Circumferential speed: 40 mZ)) to produce a PBT film 13 having an average film thickness of 13 im. As a result of measuring the film thickness difference and the heat shrinkage of the obtained PBT film 13, the film thickness difference was 2 m, the heat shrinkage in the longitudinal direction was 0.1%, and the heat shrinkage in the lateral direction was 0.2%. Met
実施例 2 Example 2
加熱キャスティングロール 1の温度を 150°Cとし、周速を 15 mZ分とし、徐冷 速度を 18°C/秒とし、 図 2に示す装置を用いた以外は実施例 1と同様にして、 平 均膜厚が 40 μ mの結晶化未延伸フイノレム 6を形成した。 得られた結晶化未延伸フ イルム 6を、 加熱キャスティングロール 1と、 100°Cに温調した第 2のロール 2 (周速: 30 m/分) との間 (ロール間距離: 5 cm) で 2倍に延伸した。 得られ た延伸フィルム 11を、 35°Cに温調した第 3のロール 3 (周速: 30 ι Ζ分) で冷 却し、平均膜厚が 20μ ιαの PBTフィルム 13を作製した。得られた ΡΒΤフィルムの 膜厚差及び熱収縮率を測定したところ、 膜厚差は 2 μ ηιであり、 長手方向の熱収 縮率は 0.1%であり、 横方向の熱収縮率は 0.15%であった。 実施例 3  The temperature of the heating casting roll 1 was set to 150 ° C, the peripheral speed was set to 15 mZ, the slow cooling speed was set to 18 ° C / sec, and the process was performed in the same manner as in Example 1 except that the apparatus shown in Fig. 2 was used. Crystallized unstretched finolem 6 having a uniform thickness of 40 μm was formed. The obtained crystallized unstretched film 6 is placed between a heated casting roll 1 and a second roll 2 (peripheral speed: 30 m / min) whose temperature is controlled to 100 ° C (distance between rolls: 5 cm). Stretched twice. The obtained stretched film 11 was cooled by a third roll 3 (peripheral speed: 30 liters) controlled at 35 ° C. to produce a PBT film 13 having an average film thickness of 20 μια. When the film thickness difference and the heat shrinkage of the obtained ΡΒΤ film were measured, the film thickness difference was 2 μηι, the heat shrinkage in the longitudinal direction was 0.1%, and the heat shrinkage in the lateral direction was 0.15%. Met. Example 3
加熱キャスティングロール 1の温度を 180°Cとし、 周速を 15 mZ分とし、徐冷 速度を 12°CZ秒とした以外は実施例 1と同様にして、平均膜厚が 40 z mの結晶化 未延伸フィルム 6を形成した。 得られた結晶化未延伸フィルム 6を、 加熱キャス ティングロール 1と、 130°Cに温調した第 2のロール 2 (周速: 30 mZ分) との 間 (ロール間距離: 5 cm) で 2倍に延伸した。 得られた延伸フィルム 11をさら に第 2の口ール 2と 60°Cに温調した第 3の口ール 3 (周速: 45 πιΖ分) との間 (ロール間距離: 5 cm) で 1.5倍に再延伸した。 得られた再延伸フィルム 12を、 第 3のロール 3と、 25°Cに温調した第 4のロール 4 (周速: 67.5 mZ分) との間 (ロール間距離: 5 cm) で 1.5倍に冷延伸し、 平均膜厚が 8 μ πιの PBTフィルム 13を作製した。得られた ΡΒΤフィルム 13の膜厚差及び熱収縮率を測定したところ 、 膜厚差は 2 mであり、長手方向の熱収縮率は 0.2%であり、横方向の熱収縮率 は 0.2%であった。 比較例 1 A crystallization with an average film thickness of 40 zm was performed in the same manner as in Example 1 except that the temperature of the heating casting roll 1 was set to 180 ° C, the peripheral speed was set to 15 mZ minutes, and the annealing rate was set to 12 ° CZ seconds. A stretched film 6 was formed. The obtained crystallized unstretched film 6 was placed between the heated casting roll 1 and the second roll 2 (peripheral speed: 30 mZ) controlled at 130 ° C. (distance between rolls: 5 cm). It was stretched twice. The obtained stretched film 11 is further placed between a second mouth 2 and a third mouth 3 (temperature: 45 πιΖ minutes) controlled at 60 ° C (distance between rolls: 5 cm). And re-stretched 1.5 times. The obtained re-stretched film 12 is 1.5 times between the third roll 3 and the fourth roll 4 (peripheral speed: 67.5 mZ) (temperature between rolls: 5 cm) which is adjusted to 25 ° C. Then, a PBT film 13 having an average film thickness of 8 μπι was produced. When the film thickness difference and the heat shrinkage of the obtained film 13 were measured, the film thickness difference was 2 m, the heat shrinkage in the longitudinal direction was 0.2%, and the heat shrinkage in the transverse direction was 0.2%. there were. Comparative Example 1
キャスティングロール 1の温度を 60°Cとした以外は実施例 1と同様にして、平 均膜厚が 13 μ mの ΡΒΤフィルム 13を作製した。得られた PBTフィルム 13の膜厚差 及び熱収縮率を測定したところ、膜厚差は 4 μ mであり、長手方向の熱収縮率は 1 5%であり、 横方向の熱収縮率は 20%であった。 実施例 1〜 3の PBTフィルムは、 溶融 PBT樹脂を Tダイから押出すことにより 得られたフィルムを、 加熱キャスティング口ール 1上で徐冷して結晶化未延伸フ イルムとした上で延伸しているので、 膜厚の均一性に優れており、 且つ熱収縮率 が低レ、ことが分かる。 一方比較例 1の PBTフィルムは、溶融 PBT樹脂を急冷する ことにより作製した非晶質の未延伸フィルムを延伸したものであるため、 実施例 1〜3と比較して膜厚差が大きく、 熱収縮率も劣っている。  A film 13 having an average film thickness of 13 μm was produced in the same manner as in Example 1 except that the temperature of the casting roll 1 was changed to 60 ° C. When the film thickness difference and the heat shrinkage of the obtained PBT film 13 were measured, the film thickness difference was 4 μm, the heat shrinkage in the longitudinal direction was 15%, and the heat shrinkage in the transverse direction was 20%. %Met. The PBT films of Examples 1 to 3 were obtained by extruding a molten PBT resin from a T-die, gradually cooling the film on a heating casting nozzle 1 to form a crystallized unstretched film, and then stretching the film. As a result, it was found that the film thickness was excellent in uniformity and the heat shrinkage was low. On the other hand, the PBT film of Comparative Example 1 was obtained by stretching an amorphous unstretched film produced by quenching the molten PBT resin. Shrinkage is also poor.
以上の通り、 実施例を参照して本発明を詳細に説明したが、 本発明はそれらに 限定されず本発明の趣旨を変更しない限り種々の変更を加えることができる。 産業上の利用可能性  As described above, the present invention has been described in detail with reference to the examples. However, the present invention is not limited thereto, and various changes can be made without changing the gist of the present invention. Industrial applicability
以上詳述したように、 本発明のポリブチレンテレフタレートフィルムの製造方 法は、溶融ポリブチレンテレフタレート樹脂を Tダイからフィルム状に押し出し、 得られたフィルムを実質的に未延伸の状態で徐冷してポリブチレンテレフタレー ト榭脂を結晶化させ、 得られた結晶化フィルムを延伸するので、 得られるポリブ チレンテレフタレートフィルムは膜厚の均一性及び耐熱収縮性に優れている。 そ のため本発明の製造方法により得られるポリブチレンテレフタレートフィルムは 各種包装材、 包装袋、 即席食品用容器の蓋材等の用途に好適である。  As described in detail above, the method for producing a polybutylene terephthalate film of the present invention involves extruding a molten polybutylene terephthalate resin into a film from a T-die and gradually cooling the obtained film in a substantially unstretched state. Thus, the obtained polybutylene terephthalate resin is crystallized and the obtained crystallized film is stretched, so that the obtained polybutylene terephthalate film is excellent in uniformity of film thickness and heat shrink resistance. Therefore, the polybutylene terephthalate film obtained by the production method of the present invention is suitable for applications such as various packaging materials, packaging bags, and lid materials for instant food containers.

Claims

請求の範囲 The scope of the claims
1 . 溶融ポリプチレンテレフタレート樹脂を Tダイからフィルム状に押し出し、 得られたフィルムを実質的に未延伸の状態で徐冷して前記ポリブチレンテレフタ レート樹脂を結晶化させ、 得られた結晶化フィルムを延伸することを特徴とする ポリブチレンテレフタレートフィルムの製造方法。  1. The molten polybutylene terephthalate resin is extruded from a T-die into a film, and the obtained film is gradually cooled in a substantially unstretched state to crystallize the polybutylene terephthalate resin. A method for producing a polybutylene terephthalate film, comprising stretching the film.
2 . 請求項 1に記载のポリブチレンテレフタレートフィルムの製造方法にぉレヽ て、 未延伸のポリブチレンテレフタレート樹脂フィルムの徐冷を前記ポリブチレ ンテレフタレート樹脂の結晶化温度一 40°C〜結晶化温度 + 20°Cの温度まで行う ことを特徴とする方法。  2. In the method for producing a polybutylene terephthalate film according to claim 1, the slow cooling of the unstretched polybutylene terephthalate resin film is carried out by reducing the crystallization temperature of the polybutylene terephthalate resin to a temperature ranging from 40 ° C to a crystallization temperature. A method characterized by carrying out up to a temperature of + 20 ° C.
3 . 請求項 1又は 2に記載のポリプチレンテレフタレートフィルムの製造方法 において、 前記未延伸ポリブチレンテレフタレート榭脂フィルムの徐冷速度を 30°C/秒以下とすることを特 ί教とする方法。  3. The method for producing a polybutylene terephthalate film according to claim 1 or 2, wherein a slow cooling rate of the unstretched polybutylene terephthalate resin film is set to 30 ° C / sec or less.
4 . 請求項 1〜 3のいずれかに記載のポリブチレンテレフタレートフィルムの 製造方法において、前記結晶化未延伸フィルムの厚さを 30〜200 μ ιηとすること を特徴とする方法。  4. The method for producing a polybutylene terephthalate film according to any one of claims 1 to 3, wherein the thickness of the crystallized unstretched film is 30 to 200 μιη.
5 . 請求項 1〜4のいずれかに記載のポリブチレンテレフタレートフィルムの 製造方法において、 前記結晶化未延伸フィルムを少なくとも長手方向に延伸する ことを特徴とする方法。  5. The method for producing a polybutylene terephthalate film according to any one of claims 1 to 4, wherein the crystallized unstretched film is stretched at least in a longitudinal direction.
6 . 請求項:!〜 5のいずれかに記载のポリブチレンテレフタレートフイルムの 製造方法において、 前記結晶化未延伸フィルムを前記ポリブチレンテレフタレ一 ト樹脂の結晶化温度一 50°C〜結晶化温度一 10°Cの温度で延伸することを特徴と する方法。  6. Claim :! The method for producing a polybutylene terephthalate film according to any one of claims 1 to 5, wherein the crystallized unstretched film has a crystallization temperature of 50 ° C to 10 ° C of the polybutylene terephthalate resin. A method characterized by stretching at a temperature.
7 . 請求項 1〜 6のレ、ずれかに記載のポリプチレンテレフタレ一トフィルムの 製造方法において、 前記延伸の倍率は 1.5倍以上であることを特徴とする方法。  7. The method for producing a polybutylene terephthalate film according to any one of claims 1 to 6, wherein the stretching ratio is 1.5 times or more.
8 . 請求項 6又は 7に記載のポリプチレンテレフタレートフィルムの製造方法 において、 延伸フィルムを前記ポリブチレンテレフタレート樹脂の結晶化温度一 110°C〜結晶化温度一 50°Cの温度で再延伸することを特徴とする方法。 8. The method for producing a polybutylene terephthalate film according to claim 6 or 7, wherein the stretched film is re-stretched at a crystallization temperature of the polybutylene terephthalate resin of 110 ° C to 50 ° C. The method characterized by the above.
9 . 請求項 8に記載のポリプチレンテレフタレートフィルムの製造方法におい て、 前記再延伸の倍率は 1.1倍以上であることを特徴とする方法。 9. The method for producing a polybutylene terephthalate film according to claim 8, wherein the redrawing ratio is 1.1 times or more.
10. 請求項 8又は 9に記載のポリプチレンテレフタレートフィルムの製造方法 において、 再延伸フィルムを、 室温〜前記ポリプチレンテレフタレート樹脂のガ ラス転移温度の範囲内の温度で冷延伸することを特徴とする方法。 10. The method for producing a polybutylene terephthalate film according to claim 8 or 9, wherein the re-stretched film is cold-stretched at a temperature within a range from room temperature to a glass transition temperature of the polybutylene terephthalate resin. Method.
11. 請求項 10に記載のポリブチレンテレフタレートフィルムの製造方法にお いて、 前記冷延伸の倍率は 1.1倍以上であることを特徴とする方法。  11. The method for producing a polybutylene terephthalate film according to claim 10, wherein a magnification of the cold stretching is 1.1 times or more.
12. 請求項 1〜: L1のいずれかに記載のポリブチレンテレフタレートフィルムの 製造方法において、 前記ポリブチレンテレフタレート樹脂は、 樹脂全体を 100質 量%として、ポリォレフィン及び Z又はエラストマ一を 5〜: 15質量0 /0含有するこ とを特徴とする方法。 12. The method for producing a polybutylene terephthalate film according to any one of claims 1 to 1, wherein the polybutylene terephthalate resin is 100% by mass, and polyolefin and Z or an elastomer are 5 to 15%. wherein the mass 0/0 containing child.
PCT/JP2003/015078 2002-11-26 2003-11-26 Method for producing polybutylene terephthalate film WO2004048071A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004555043A JP4351168B2 (en) 2002-11-26 2003-11-26 Method for producing polybutylene terephthalate film
US10/535,964 US20060131779A1 (en) 2002-11-26 2003-11-26 Method for producing polybutylene terephthalate film
CA002507430A CA2507430A1 (en) 2002-11-26 2003-11-26 Method for producing polybutylene terephthalate film
EP03775896A EP1568468A1 (en) 2002-11-26 2003-11-26 Method for producing polybutylene terephthalate film
AU2003284451A AU2003284451A1 (en) 2002-11-26 2003-11-26 Method for producing polybutylene terephthalate film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002342418 2002-11-26
JP2002-342418 2002-11-26

Publications (1)

Publication Number Publication Date
WO2004048071A1 true WO2004048071A1 (en) 2004-06-10

Family

ID=32375882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/015078 WO2004048071A1 (en) 2002-11-26 2003-11-26 Method for producing polybutylene terephthalate film

Country Status (8)

Country Link
US (1) US20060131779A1 (en)
EP (1) EP1568468A1 (en)
JP (1) JP4351168B2 (en)
KR (1) KR20050086817A (en)
CN (1) CN1717312A (en)
AU (1) AU2003284451A1 (en)
CA (1) CA2507430A1 (en)
WO (1) WO2004048071A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4968065B2 (en) * 2005-03-31 2012-07-04 凸版印刷株式会社 Solar cell back surface protection sheet and solar cell module using the same
WO2015046122A1 (en) * 2013-09-26 2015-04-02 富士フイルム株式会社 Polyester film, production method for polyester film, polarizing plate, and image display device
WO2017126563A1 (en) * 2016-01-22 2017-07-27 東洋紡株式会社 Biaxially-stretched polyester film, laminate and packaging bag
JP2017149164A (en) * 2017-06-13 2017-08-31 リケンテクノス株式会社 Method of producing heat-resistant film and polybutylene terephthalate-based heat-resistant film
JP2020019196A (en) * 2018-07-31 2020-02-06 ローランドディー.ジー.株式会社 Damper device and inkjet printer including the same
JPWO2022225013A1 (en) * 2021-04-22 2022-10-27

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101142073B (en) * 2005-03-15 2010-06-02 积水化学工业株式会社 Process for production of stretched thermoplastic polyester resin sheet and laminated molded article
KR101295525B1 (en) * 2011-06-17 2013-08-12 (주)이쎌텍 Apparatus and Method for manufacturing microporous film for a separator of battery
WO2013146795A1 (en) * 2012-03-26 2013-10-03 三菱レイヨン株式会社 Manufacturing device and manufacturing method for porous hollow fiber membrane
CN107443776B (en) * 2017-08-03 2019-06-28 营口康辉石化有限公司 A kind of preparation method of 350 μm of polyester thick films
US11173644B2 (en) 2017-09-26 2021-11-16 Davis-Standard, Llc Casting apparatus for manufacturing polymer film

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2055680A (en) * 1979-08-02 1981-03-11 Celanese Corp Electrical grade extrusion filled thermoplastic sheet material and process for the manufacture thereof
JPH0247031A (en) * 1988-08-09 1990-02-16 Toray Ind Inc Manufacture of microporous film
JPH0531799A (en) * 1991-07-30 1993-02-09 Shin Etsu Polymer Co Ltd Manufacture of transparent heat resistant container
JPH06238734A (en) * 1993-02-18 1994-08-30 Polyplastics Co Polyester wrap film
JPH0788931A (en) * 1993-09-20 1995-04-04 Aipetsuku:Kk Method and apparatus for producing thermoplastic resin sheet or film
JPH11335539A (en) * 1998-05-28 1999-12-07 Teijin Ltd Sheet molding

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54137076A (en) * 1978-04-17 1979-10-24 Unitika Ltd Manufacturing of biaxially oriented thermoplastic polyester film
US4500603A (en) * 1979-08-02 1985-02-19 Celanese Corporation Electrical grade extruded filled thermoplastic sheet material and process for the manufacture thereof
JPH0645267B2 (en) * 1985-07-15 1994-06-15 旭化成工業株式会社 Film for high-sensitivity and heat-sensitive stencil paper
CA2020342A1 (en) * 1989-07-07 1991-01-08 Shigeru Nedzu Film or sheet having excellent heat sealability
US6077904A (en) * 1992-02-03 2000-06-20 Lawson Mardon Thermaplate Corporation Elevated temperature dimensionally stable, impact modified polyester with low gas permeability

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2055680A (en) * 1979-08-02 1981-03-11 Celanese Corp Electrical grade extrusion filled thermoplastic sheet material and process for the manufacture thereof
JPH0247031A (en) * 1988-08-09 1990-02-16 Toray Ind Inc Manufacture of microporous film
JPH0531799A (en) * 1991-07-30 1993-02-09 Shin Etsu Polymer Co Ltd Manufacture of transparent heat resistant container
JPH06238734A (en) * 1993-02-18 1994-08-30 Polyplastics Co Polyester wrap film
JPH0788931A (en) * 1993-09-20 1995-04-04 Aipetsuku:Kk Method and apparatus for producing thermoplastic resin sheet or film
JPH11335539A (en) * 1998-05-28 1999-12-07 Teijin Ltd Sheet molding

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4968065B2 (en) * 2005-03-31 2012-07-04 凸版印刷株式会社 Solar cell back surface protection sheet and solar cell module using the same
WO2015046122A1 (en) * 2013-09-26 2015-04-02 富士フイルム株式会社 Polyester film, production method for polyester film, polarizing plate, and image display device
JPWO2015046122A1 (en) * 2013-09-26 2017-03-09 富士フイルム株式会社 Polyester film and method for producing polyester film, polarizing plate and image display device
WO2017126563A1 (en) * 2016-01-22 2017-07-27 東洋紡株式会社 Biaxially-stretched polyester film, laminate and packaging bag
JPWO2017126563A1 (en) * 2016-01-22 2018-11-08 東洋紡株式会社 Biaxially stretched polyester film, laminate and packaging bag
EP3406421A4 (en) * 2016-01-22 2019-09-25 Toyobo Co., Ltd. Biaxially-stretched polyester film, laminate and packaging bag
JP2017149164A (en) * 2017-06-13 2017-08-31 リケンテクノス株式会社 Method of producing heat-resistant film and polybutylene terephthalate-based heat-resistant film
JP2020019196A (en) * 2018-07-31 2020-02-06 ローランドディー.ジー.株式会社 Damper device and inkjet printer including the same
JP7169805B2 (en) 2018-07-31 2022-11-11 ローランドディー.ジー.株式会社 Damper device and inkjet printer equipped with the same
JPWO2022225013A1 (en) * 2021-04-22 2022-10-27
WO2022225013A1 (en) * 2021-04-22 2022-10-27 東洋製罐株式会社 Unstretched polyester film and method for manufacturing same
JP7248199B2 (en) 2021-04-22 2023-03-29 東洋製罐株式会社 Unstretched polyester film and its manufacturing method

Also Published As

Publication number Publication date
EP1568468A1 (en) 2005-08-31
US20060131779A1 (en) 2006-06-22
AU2003284451A1 (en) 2004-06-18
KR20050086817A (en) 2005-08-30
CA2507430A1 (en) 2004-06-10
JPWO2004048071A1 (en) 2006-03-23
JP4351168B2 (en) 2009-10-28
CN1717312A (en) 2006-01-04

Similar Documents

Publication Publication Date Title
JP6194629B2 (en) Polyester film and method for producing the same
US20050287358A1 (en) Packaging film
JP6032780B2 (en) Biaxially stretched polybutylene terephthalate film
JP4351168B2 (en) Method for producing polybutylene terephthalate film
JP4650019B2 (en) Polypropylene-based laminated film and package using the same
JP6588720B2 (en) Easy tear biaxially stretched polybutylene terephthalate film
CN113056507B (en) Film for coating metal plate and resin-coated metal plate
JPH1110723A (en) Manufacture of biaxially oriented polyester film
JP2008114606A (en) Polypropylene-based laminated film and packaging body using the film
JP3505050B2 (en) Method for producing polyester film containing fine bubbles
JP3640282B2 (en) Method for producing biaxially stretched polyester film
TWI297705B (en) Process for producing polybutylene terephthalate film
JP2021161151A (en) Biaxial oriented film
JP4967504B2 (en) Biaxially stretched polyester film laminate
JP6120302B2 (en) Twin screw extruder and method for producing thermoplastic resin film using the same
JP2000238128A (en) Aliphatic polyester film
JP2003260734A (en) Co-biaxially orientated film of polylactic acid and method of manufacturing the same
JP2001288281A (en) Aliphatic polyester based film
WO2021230207A1 (en) Copolyester raw material for films, heat-shrinkable polyester films, heat-shrinkable labels, and packages
JP2010058370A (en) Production process of thermoplastic resin film
JP2005335311A (en) Metal deposition polyester film for bending packaging
JP2000238126A (en) Aliphatic polyester film
JP2008030494A (en) Manufacturing process of heat-shrinkable polyester film
JP2001026053A (en) Production of heat-shrinkable film
JP2001026044A (en) Production of thermoplastic resin film

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003775896

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004555043

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2006131779

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10535964

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2507430

Country of ref document: CA

Ref document number: 1020057009422

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20038A42904

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057009422

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003775896

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10535964

Country of ref document: US