WO2004031439A2 - Verfahren und prozessreaktor zur sequentiellen gasphasenabscheidung - Google Patents

Verfahren und prozessreaktor zur sequentiellen gasphasenabscheidung Download PDF

Info

Publication number
WO2004031439A2
WO2004031439A2 PCT/DE2003/003188 DE0303188W WO2004031439A2 WO 2004031439 A2 WO2004031439 A2 WO 2004031439A2 DE 0303188 W DE0303188 W DE 0303188W WO 2004031439 A2 WO2004031439 A2 WO 2004031439A2
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
pressure
auxiliary
process chamber
gas
Prior art date
Application number
PCT/DE2003/003188
Other languages
English (en)
French (fr)
Other versions
WO2004031439A3 (de
Inventor
Thomas Hecht
Jörn LÜTZEN
Original Assignee
Infineon Technologies Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies Ag filed Critical Infineon Technologies Ag
Priority to US10/529,412 priority Critical patent/US20060127576A1/en
Publication of WO2004031439A2 publication Critical patent/WO2004031439A2/de
Publication of WO2004031439A3 publication Critical patent/WO2004031439A3/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45557Pulsed pressure or control pressure

Definitions

  • the invention relates to a method for depositing a layer on a substrate arranged in a process chamber of a process reactor by means of sequential gas phase deposition, in the course of which at least a first and a second process gas are alternately introduced into the process chamber and removed from the process chamber become.
  • layers are deposited for which a high conformity and a large
  • ALD sequential gas phase deposition
  • a first precursor material (precursor) in the gaseous phase is fed to a process chamber in which a substrate is located.
  • the precursor is deposited in activated sections of a substrate surface of the substrate.
  • the first precursor is usually chemically modified. If all activated sections of the substrate surface are covered with the modified precursor material, the first process phase of the deposition is completed and a monomolecular partial single-cell layer is deposited on the substrate surface from a modified first precursor. Thereafter, portions of the first precursor that have not been separated are removed from the process chamber by purging with an inert purge gas and / or pumping out.
  • a second precursor is introduced into the process chamber, which is almost exclusively deposited on the partial single cell layer.
  • the precursors are converted into the layer material.
  • a single layer (monolayer) of the layer to be produced is formed.
  • the process steps of the process cycle are repeated until a layer of a predetermined thickness is formed from the individual layers thus deposited.
  • the precursors are removed in the course of a process cycle by evacuation using a pump device which largely evacuates the process chamber.
  • a pump device which largely evacuates the process chamber.
  • the precursors are each displaced from the process chamber by means of a chemically inert purge gas.
  • the removal of the precursors takes up a significant part of the total duration of a process cycle.
  • the duration of a process cycle results from the deposition time of the precursor, typically 200 to 500 milliseconds, and the duration of the purge steps, typically around 3 seconds. In this way, shorter purge times can be achieved for removing a precursor using a vacuum pump than using a rinsing process.
  • a monomolecular individual layer formed within a process cycle of approximately 5 seconds has a layer thickness of approximately 1 angstrom.
  • the deposition of a layer of 20 nanometers then requires a process time of approximately 20 minutes.
  • the long process duration determines the process costs or limits the throughput of substrates in a process reactor.
  • a process gas is thus removed from a process chamber of a process reactor by at least partially equalizing a pressure difference between the process chamber and an auxiliary chamber, in which a substantially lower auxiliary pressure prevails at the beginning of the pressure equalization. Due to the pressure compensation, the process gas in the process chamber is diluted by several orders of magnitude.
  • the auxiliary pressure is preferably a maximum of one tenth of the process pressure.
  • the auxiliary chamber preferably has a volume which corresponds to at least ten times a volume of the process chamber.
  • Small chamber volumes are generally sought for process chambers for ALD processes in order to accelerate the diffusion-determined deposition process.
  • typical ALD process chambers typically have a cross-sectional area that is sufficient to hold the substrate and a very low height of a few centimeters. Therefore, large-volume auxiliary chambers with about 50 times or 100 times the chamber volume of the process chamber can be realized in a practicable manner.
  • the substrate to be processed is therefore in a process chamber with a small volume during the deposition.
  • the auxiliary pressure in the auxiliary chamber is significantly lower than the process pressure.
  • the process gas can now be removed very quickly from the process chamber by bringing about a pressure or concentration equalization between the process chamber and the auxiliary chamber.
  • the pressure difference between the auxiliary pressure and the process pressure is maintained by means of a differential pump device according to a first preferred embodiment of the method according to the invention.
  • the pressure equalization is then at least partially brought about by switching off the differential pump device.
  • emptying of the process chamber is supported according to the invention by the pressure gradient between the process chamber and the auxiliary chamber.
  • the process chamber and the auxiliary chamber are hermetically sealed from one another during the introduction of one of the process gases or during the separation by means of a controllable separating device.
  • the separator is opened to equalize the pressure.
  • the separating device can now be designed so that the pressure equalization takes place over a large cross-sectional area. Will open and one Hydraulically assisted closing of the separating device, a very rapid dilution of the process gas is brought about by opening the separating device.
  • the differential pump device is put into operation again when a differential pump device is used.
  • this is closed and the pressure in the auxiliary chamber is reduced again to the auxiliary pressure.
  • a further process gas is supplied to the process chamber.
  • the further process gas displaces residual portions of the first process gas that are still in the process chamber from the process chamber.
  • the further process gas is preferably one which contains a further precursor and is supplied under process conditions which preclude a direct reaction with the precursor contained in the first process gas.
  • a chemically inert purge gas is provided as the further process gas.
  • the time required for the purge step can advantageously be reduced further if, as provided for in a further preferred embodiment of the method according to the invention, the auxiliary chamber is continuously evacuated, that is to say both during the pressure equalization and during the deposition in the process chamber.
  • Evacuating or removing residual portions of the first process gas from the auxiliary chamber while at the same time introducing a further process gas into the process chamber to continue the deposition enables quasi-parallel operation of the reaction chamber and auxiliary chamber, which is conventionally not possible.
  • the quasi-parallel operation of the process chamber and auxiliary chamber considerably reduces the time required for a process cycle of a deposition process, since the removal of the first process gas is sometimes carried out simultaneously with the deposition of the precursor from a further process gas.
  • the process according to the invention can be carried out with a process reactor according to the invention for producing a layer on a substrate arranged in a process chamber of the process reactor by means of a sequential gas phase separation, in the course of which at least a first and a second process gas are alternately introduced into the process chamber and removed from the process chamber will carry out.
  • the process reactor has an auxiliary chamber which can be evacuated up to an auxiliary pressure which is substantially lower than a process pressure prevailing in the process chamber during deposition and which is alternately connected to the process chamber or to be separated from the process chamber, for diluting at least one of the process gases.
  • a controllable separating device is arranged between the auxiliary chamber and the process chamber, which closes the process chamber from the auxiliary chamber in a closed state and connects the process chamber to the auxiliary chamber in an open state.
  • a differential pump device which generates a pressure difference between a process pressure in the process chamber and an auxiliary pressure in the auxiliary chamber.
  • the process chamber has a valve device. The valve device prevents backflow of a process gas from the auxiliary chamber into the process chamber.
  • FIG. 1 shows a schematic cross section through a process reactor according to the invention according to a first exemplary embodiment
  • FIG. 2 shows a schematic cross section through a process reactor according to the invention according to a second exemplary embodiment with a closed separation device
  • FIG 3 shows a schematic cross section through the process reactor according to the invention according to the second exemplary embodiment.
  • FIG. 1 shows a process reactor 1 with a process chamber 10 and an auxiliary chamber 20, the auxiliary chamber 20 surrounding the process chamber 10 on all sides.
  • the process chamber 10 has a chamber wall 12 which, together with a separating device 11 in the shown closed state, hermetically seals the process chamber 10 against the auxiliary chamber 20.
  • Chamber wall 12 and the separating devices 11 movable against the chamber wall 12 are arranged seals 5.
  • the seals 5 hermetically seal the process chamber 10 against the auxiliary chamber 20 adjoining the process chamber 10.
  • a process gas is introduced into the process chamber 10 via feeds 61.
  • the auxiliary chamber 20 is evacuated via a suction device 62.
  • the separating device 11 is opened with hydraulic support, for example by opening it or by moving it in the vertical or horizontal direction. Since there is a significantly higher process pressure in the process chamber 10 than in the auxiliary chamber 20, the process gas will emerge from the process chamber 10 and fill the auxiliary chamber 20.
  • This process is supported by the simultaneous introduction of a further process gas, for example a purge gas, by means of the feeds 61.
  • a further process gas for example a purge gas
  • a further process gas for example a purge gas
  • drains 62 By continuously evacuating the auxiliary chamber 20 via drains 62, a pressure difference is maintained between the process chamber 10 and the auxiliary chamber 20, which assists in expelling the first process gas from the process chamber 10.
  • the separating device 11 is closed again with hydraulic assistance.
  • the auxiliary chamber 20 is evacuated further and residual portions of the process gases are removed. This process continues while at the same time a deposition with the following precursor is controlled in the process chamber 10.
  • the time required to remove a process gas from the process chamber 10 is significantly reduced compared to conventional methods in conventional ALD process reactors.
  • the process reactor according to the invention shown schematically in FIG. 2 differs from the process reactor shown in FIG. 1 in the design and arrangement of the separating device.
  • a plurality of flaps 13 are provided as a separating device.
  • the flaps 13 and the seals 5 associated with the flaps 13 are thus arranged outside a heated area of the process chamber 10.
  • the heated area of a process Mer 10 is generally the region of the process chamber 10 which is oriented toward a substrate surface to be processed.
  • FIG. 3 shows the flaps 13 of the second exemplary embodiment from FIG. 2 in the open state.
  • a large opening cross-section between the process chamber 10 and the adjoining auxiliary chamber 20 is achieved in a very short time by a large number of flaps 13 opened downwards. Due to the opposite arrangement of the flaps 13 to feeds 61 is a while introducing a
  • Purge gas advantageously supports expulsion of the process gas from the process chamber 10 via the feeds 61.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

In einer Prozesskammer (10) eines Prozessreaktors (1) wird eine sequentielle Gasphasenabscheidung (ALD, atomic layer deposition) zweier oder mehr mittels Prozessgase zugeführter Präkursoren gesteuert, wobei die Prozesskammer (10) für einen Präkursorwechsel mit einer Hilfskammer (20) verbunden und so der zu entfernende Präkursor in der Prozesskammer (10) verdünnt wird, so dass eine durch einen Präkursorwechsels bestimmte Prozessdauer der sequentiellen Gasphasenabscheidung verkürzt wird.

Description

Beschreibung
Verfahren und Prozessreaktor zur sequentiellen Gasphasenab- scheidung mittels einer Prozess- und einer Hilfskammer
Die Erfindung betrifft ein Verfahren zum Abscheiden einer Schicht auf einem in einer Prozesskammer eines Prozessreaktors angeordneten Substrat mittels einer sequentiellen Gas- phasenabscheidung, in deren Verlauf aufeinander folgend min- destens ein erstes und ein zweites Prozessgas jeweils abwechselnd in die Prozesskammer eingeleitet und aus der Prozesskammer entfernt werden.
In der Halbleiterprozesstechnologie erfolgt das Abscheiden von Schichten, für die eine hohe Konformität und eine große
Homogenität gefordert werden, zunehmend mittels sequentieller Gasphasenabscheidung (ALD, atomic layer deposition) .
Bei einem ALD-Prozess wird in einer ersten Prozessphase ein erstes Vorstufenmaterial (Präkursor) in gasförmiger Phase einer Prozesskammer, in der sich ein Substrat befindet, zugeführt. Durch einen als Chemisorption bezeichneten Prozess lagert sich der Präkursor in aktivierten Abschnitten einer Substratoberfläche des Substrats ab. Dabei wird der erste Prä- kursor in der Regel chemisch modifiziert. Sind alle aktivierten Abschnitte der Substratoberfläche mit dem modifizierten Vorstufenmaterial bedeckt, so ist die erste Prozessphase der Abscheidung abgeschlossen und eine monomolekulare Teileinzellage aus einem modifizierten ersten Präkursor auf der Sub- stratoberflache abgeschieden. Danach werden nicht abgeschiedene Anteile des ersten Präkursors durch Spülen mit einem i- nerten Spülgas und/oder Abpumpen aus der Prozesskammer entfernt. In einer zweiten Phase wird ein zweiter Präkursor in die Prozesskammer eingebracht, der sich nahezu ausschließlich auf der Teileinzellage ablagert. Dabei werden die Präkursoren in das Schichtmaterial umgesetzt. Es bildet sich eine Einzellage (Monolayer) der zu erzeugenden Schicht. Nach einem Ent- fernen nicht abgeschiedener Anteile des zweiten Präkursors aus der Prozesskammer ist ein einzelner Prozesszyklus des ALD-Prozesses abschlössen. Die Verfahrensschritte des Prozesszyklus werden solange wiederholt, bis aus den so abge- schiedenen Einzellagen eine Schicht vorher bestimmter Schichtdicke gebildet ist.
Dabei ist wesentlich, dass sich zu keinem Zeitpunkt des Prozesses mehr als ein Präkursor in der Prozesskammer befindet. Bei gleichzeitigem Vorhandensein beider Präkursoren reagieren die beiden Präkursoren bereits vor der Abscheidung miteinander. Es kommt zu CVD-Prozessen (chemical vapor deposition), die zur Nukleus- und Partikelbildung führen und der Konformität und der Homogenität der abgeschiedenen Schicht abträglich sind.
Herkömmlicherweise erfolgt das Entfernen der Präkursoren im Zuge eines Prozesszyklus durch Evakuieren mittels einer Pumpvorrichtung, die die Prozesskammer weit gehend evakuiert. Ein solches Verfahren ist aus der US 5,916,365 (Sherman) bekannt.
Nach einem weiteren üblichen Verfahren werden die Präkursoren jeweils mittels eines chemisch inerten Spülgases aus der Prozesskammer verdrängt.
Das Entfernen der Präkursoren (purge, im Folgenden Purgeschritt) beansprucht einen wesentlichen Anteil an der gesamten Dauer eines Prozesszyklus. Die Dauer eines Prozesszyklus ergibt sich aus der Abscheidedauer des Präkursors, typi- scherweise 200 bis 500 Millisekunden, und der Dauer der Purgeschritte, typischerweise etwa 3 Sekunden. Dabei lassen sich für ein Entfernen eines Präkursors mittels einer Vakuumpumpe kürzere Purgezeiten realisieren als mittels eines Spülvorgangs. Eine innerhalb eines Prozesszyklus von etwa 5 Sekunden gebildete monomolekulare Einzellage weist eine Schichtdicke von etwa 1 Angström auf. Das Abscheiden einer Schicht von 20 Nanometer erfordert dann eine Prozessdauer von etwa 20 Minu- ten. Die lange Prozessdauer bestimmt die Prozesskosten bzw. beschränkt den Durchsatz an Substraten an einem Prozessreaktor.
Es ist daher Aufgabe der vorliegenden Erfindung, ein Verfahren zum Abscheiden einer Schicht mittels sequentieller Gas- phasenabscheidung zur Verfügung zu stellen, das gegenüber herkömmlichen Verfahren kürzere Prozesszykluszeiten und einen höheren Durchsatz an Substraten an einem Prozessreaktor er- möglicht. Es ist weiter Aufgabe der Erfindung, einen Prozessreaktor zur sequentiellen Gasphasenabscheidung zur Verfügung zu stellen, der im Vergleich zu herkömmlichen ALD-Reaktoren kürzere Prozesszykluszeiten für das Abscheiden einer Schicht ermöglicht .
Diese Aufgabe wird bei einem Verfahren der eingangs genannten Art erfindungsgemäß durch die im kennzeichnenden Teil des Patentanspruchs 1 genannten Merkmale gelöst. Ein die Aufgabe lösender Prozessreaktor weist die im kennzeichnenden Teil des Patenanspruchs 12 genannten Merkmale auf. Vorteilhafte Weiterbildungen ergeben sich aus den jeweils untergeordneten Patentansprüchen.
Erfindungsgemäß erfolgt also das Entfernen eines Prozessgases aus einer Prozesskammer eines Prozessreaktors durch mindestens teilweisen Druckausgleich einer Druckdifferenz zwischen der Prozesskammer und einer Hilfskammer, in der zu Beginn des Druckausgleichs ein wesentlich niedrigerer Hilfsdruck herrscht. Durch den Druckausgleich wird das Prozessgas in der Prozesskammer um mehrere Größenordnungen verdünnt.
Bevorzugt beträgt dabei der Hilfsdruck maximal ein Zehntel des Prozessdrucks. Die Hilfskammer weist bevorzugt ein Volumen auf, das mindestens dem Zehnfachen eines Volumens der Prozesskammer entspricht. Für Prozesskammern für ALD-Prozesse werden generell kleine Kammervolumen angestrebt, um den diffusionsbestimmten Abscheidungsprozess zu beschleunigen. Typi- scherweise weisen ALD-Prozesska mern eine gerade zur Aufnahme des Substrats ausreichende Querschnittsfläche und eine sehr geringe Höhe von wenigen Zentimetern auf. Daher lassen sich auch großvolumige Hilfskammern mit etwa dem 50-fachen oder 100-fachen des Kammervolumens der Prozesskammer in durchaus in praktikabler Weise realisieren.
Das zu prozessierende Substrat befindet sich also während der Abscheidung in einer Prozesskammer mit kleinem Volumen. In der Prozesskammer herrscht während der Abscheidung eines Präkursors ein Prozessdruck. In der Hilfskammer herrscht ein gegenüber dem Prozessdruck deutlich geringerer Hilfsdruck.
Nach der Abscheidung des Präkursors kann nun sehr rasch das Prozessgas aus der Prozesskammer entfernt werden, indem ein Druck- bzw. Konzentrationsausgleich zwischen der Prozesskammer und der Hilfskammer herbeigeführt wird.
Während des Einleitens der Prozessgase wird dabei nach einer ersten bevorzugten Ausbildung des erfindungsgemäßen Verfahrens die Druckdifferenz zwischen dem Hilfsdruck und dem Prozessdruck mittels einer differenziellen Pumpvorrichtung aufrecht erhalten. Der Druckausgleich wird dann mindestens teilweise durch Abschalten der differenziellen Pumpvorrichtung herbeigeführt. Gegenüber herkömmlichen Verfahren, die Prozesskammer mittels Pumpen zu evakuieren, wird erfindungsgemäß das Entleeren der Prozesskammer durch den Druckgradienten zwischen der Prozesskammer und der Hilfskammer unterstützt.
Nach einer anderen bevorzugten Ausbildung des erfindungsgemäßen Verfahrens sind die Prozesskammer und die Hilfskammer während des Einleitens eines der Prozessgase bzw. während der Abscheidung mittels einer steuerbaren Trennvorrichtung voneinander hermetisch abgedichtet. Zum Druckausgleich wird die Trennvorrichtung geöffnet. Die Trennvorrichtung lässt sich nun so ausführen, dass der Druckausgleich über eine große Querschnittsfläche stattfindet. Wird ein Öffnen und ein Schließen der Trennvorrichtung hydraulisch unterstützt, so wird durch das Öffnen der Trennvorrichtung eine sehr schnelle Verdünnung des Prozessgases herbeigeführt.
Nach dem Verdünnen des Prozessgases in der Prozesskammer wird bei Verwendung einer differenziellen Pumpvorrichtung die dif- ferenzielle Pumpvorrichtung wieder in Betrieb gesetzt. Bei der Verwendung einer hermetischen Trennvorrichtung wird diese geschlossen und der Druck in der Hilfskammer wieder auf den Hilfsdruck reduziert.
Nach dem Inbetriebsetzen der differenziellen Pumpvorrichtung bzw. dem Schließen der Trennvorrichtung wird der Prozesskammer ein weiteres Prozessgas zugeführt. Das weitere Prozessgas verdrängt sich noch in der Prozesskammer befindende Restanteile des ersten Prozessgases aus der Prozesskammer.
In bevorzugter Weise wird jedoch ein Rückströmen des ersten Prozessgases in die Prozesskammer durch eine steuerbare Ven- tileinrichtung und/oder ein Einleiten des weiteren Prozessgases bereits während des Druckausgleichs vermieden. Beim weiteren Prozessgas handelt es sich bevorzugt um ein solches, das einen weiteren Präkursor enthält und unter Prozessbedingungen zugeführt wird, die eine unmittelbare Reaktion mit dem im ersten Prozessgas enthaltenen Präkursor ausschließen.
Nach einer weiteren bevorzugten Ausbildung des erfindungsgemäßen Verfahrens wird als das weitere Prozessgas ein chemisch inertes Spülgas vorgesehen.
Die für den Purgeschritt benötigte Zeit lässt sich vorteilhafterweise weiter reduzieren, wenn, wie nach einer weiteren bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens vorgesehen, die Hilfskammer laufend, also sowohl während des Druckausgleichs als auch während der Abscheidung in der Prozesskammer evakuiert wird. Ein Evakuieren bzw. ein Entfernen von Restanteilen des ersten Prozessgases aus der Hilfskammer bei gleichzeitigem Einleiten eines weiteres Prozessgases in die Prozesskammer zur Fortführung der Abscheidung ermöglicht einen quasi parallelen Be- trieb von Reaktionskammer und Hilfskammer, wie er herkömmlicherweise nicht möglich ist. Der quasi parallele Betrieb von Prozesskammer und Hilfskammer reduziert den Zeitbedarf für einen Prozesszyklus eines Abscheidungsprozesses erheblich, da das Entfernen des ersten Prozessgases teilweise gleichzeitig mit der Abscheidung des Präkursors aus einem weiteren Prozessgas erfolgt.
Das erfindungsgemäße Verfahren lässt sich mit einem erfindungsgemäßen Prozessreaktor zum Erzeugen einer Schicht auf einem in einer Prozesskammer des Prozessreaktors angeordneten Substrat mittels einer sequentiellen Gasphasenabscheidung, in deren Verlauf aufeinander folgend mindestens ein erstes und ein zweites Prozessgas jeweils abwechselnd in die Prozesskammer eingeleitet und aus der Prozesskammer entfernt werden, durchführen. Dabei weist der Prozessreaktor erfindungsgemäß eine bis zu einen gegenüber einen in der Prozesskammer während der Abscheidung herrschenden Prozessdruck wesentlich niedrigeren Hilfsdruck evakuierbare und abwechselnd mit der Prozesskammer zu verbindende oder von der Prozesskammer zu trennende Hilfskammer zur Verdünnung mindestens eines der Prozessgase auf.
Zwischen der Hilfskammer und der Prozesskammer ist eine steuerbare Trennvorrichtung angeordnet, die in einem geschlosse- nen Zustand die Prozesskammer gegen die Hilfskammer verschließt und in einem geöffneten Zustand die Prozesskammer mit der Hilfskammer verbindet.
Alternativ oder ergänzend zur Trennvorrichtung ist eine dif- ferenzielle Pumpvorrichtung vorgesehen, die eine zwischen einem Prozessdruck in der Prozesskammer und einem Hilfsdruck in der Hilfskammer herrschende Druckdifferenz erzeugt. Ergänzend weist die Prozesskammer eine Ventileinrichtung auf. Die Ventileinrichtung verhindert ein Rückströmen eines Prozessgases aus der Hilfskammer in die Prozesskammer.
Nachfolgend wird die Erfindung anhand der Zeichnungen näher erläutert, wobei für einander entsprechende Bauteile und Komponenten gleiche Bezugszeichen verwendet werden. Es zeigen:
Fig. 1 einen schematischen Querschnitt durch einen erfindungsgemäßen Prozessreaktor nach einem ersten Ausführungsbeispiel,
Fig. 2 einen schematischen Querschnitt durch einen erfin- dungsgemäßen Prozessreaktor nach einem zweiten Ausführungsbeispiel mit einer geschlossenen Trennvorrichtung und
Fig. 3 einen schematischen Querschnitt durch den erfindungs- gemäßen Prozessreaktor nach dem zweiten Ausführungsbeispiel.
In der Fig. 1 ist ein Prozessreaktor 1 mit einer Prozesskammer 10 und einer Hilfskammer 20 dargestellt, wobei die Hilfs- kammer 20 die Prozesskammer 10 allseitig umgibt. Die Prozesskammer 10 weist eine Kammerwandung 12 auf, die gemeinsam mit einer Trennvorrichtung 11 im gezeigten, geschlossenen Zustand die Prozesskammer 10 gegen die Hilfskammer 20 hermetisch abdichtet. Im Inneren der Prozesskammer 10 ist ein Suszeptor 4 vorgesehen, auf dem ein Substrat 3 aufliegt. Zwischen der
Kammerwandung 12 und den gegen die Kammerwandung 12 beweglichen Trennvorrichtungen 11 sind Dichtungen 5 angeordnet. Im geschlossenen Zustand der Trennvorrichtung 11 schließen die Dichtungen 5 die Prozesskammer 10 hermetisch gegen den die Prozesskammer 10 anschließende Hilfskammer 20 ab. Während der Abscheidung wird über Zuführungen 61 ein Prozessgas in die Prozesskammer 10 eingeleitet. Gleichzeitig wird die Hilfskammer 20 über eine Absaugvorrichtung 62 evakuiert. Nach einer Abscheidung eines ersten Präkursors aus einem ers- ten Prozessgas wird die Trennvorrichtung 11 mit hydraulischer Unterstützung geöffnet, etwa durch Aufklappen oder durch Verschieben in vertikaler oder horizontaler Richtung. Da in der Prozesskammer 10 ein deutlich höherer Prozessdruck herrscht als in der Hilfskammer 20, wird das Prozessgas aus der Pro- zesskammer 10 austreten und die Hilfskammer 20 füllen. Dieser Prozess wird durch gleichzeitiges Einleiten eines weiteren Prozessgases, etwa eines Spülgases, mittels der Zuführungen 61 unterstützt. Durch andauerndes Evakuieren der Hilfskammer 20 über Abführungen 62 wird zwischen der Prozesskammer 10 und der Hilfskammer 20 eine Druckdifferenz aufrecht erhalten, die das Austreiben des ersten Prozessgases aus der Prozesskammer 10 unterstützt. Nach einer Zeit, die kurz ist gegenüber herkömmlichen Purgeschritten, wird die Trennvorrichtung 11 mit hydraulischer Unterstützung wieder geschlossen. Parallel dazu wird die Hilfskammer 20 weiter evakuiert und Restanteile der Prozessgase entfernt. Dieser Vorgang hält an, während gleichzeitig in der Prozesskammer 10 eine Abscheidung mit dem folgenden Präkursor gesteuert wird.
Der Zeitaufwand für das Entfernen eines Prozessgases aus der Prozesskammer 10 ist gegenüber herkömmlichen Verfahren in üblichen ALD-Prozessreaktoren deutlich reduziert.
Der in der Fig. 2 schematisch dargestellte erfindungsgemäße Prozessreaktor unterscheidet sich von dem in der Fig. 1 dargestellten Prozessreaktor durch die Ausführung und Anordnung der Trennvorrichtung. Im in der Fig. 2 dargestellten zweiten Ausführungsbeispiel des erfindungsgemäßen Prozessreaktors sind eine Mehrzahl von Klappen 13 als Trennvorrichtung vorge- sehen. Die Klappen 13 und den Klappen 13 zugeordnete Dichtungen 5 sind so außerhalb eines geheizten Bereichs der Prozesskammer 10 angeordnet. Der geheizte Bereich einer Prozesskam- mer 10 ist dabei in der Regel der zu einer zu bearbeitenden Substratoberfläche orientierte Bereich der Prozesskammer 10.
In der Fig. 3 sind die Klappen 13 des zweiten Ausführungsbei- spiels aus der Fig. 2 im geöffneten Zustand dargestellt.
Durch eine Vielzahl von nach unten geöffneten Klappen 13 wird in sehr kurzer Zeit ein großer Öffnungsquerschnitt zwischen der Prozesskammer 10 und der anschließenden Hilfskammer 20 erzielt. Durch die gegenüberliegende Anordnung der Klappen 13 zu Zuführungen 61 wird bei gleichzeitigem Einleiten eines
Spülgases über die Zuführungen 61 ein Austreiben des Prozessgases aus der Prozesskammer 10 vorteilhaft unterstützt.
Bezugs zeichenliste
1 Prozessreaktor
10 Prozesskammer
11 Trennvorrichtung
12 Kammerwandung
13 Klappen
20 Hilfskammer
3 Substrat
4 Suszeptor
5 Dichtung
61 Zuführung
62 Abführung

Claims

Patentansprüche
1. Verfahren zum Abscheiden einer Schicht auf einem in einer Prozesskammer (10) eines Prozessreaktors (1) angeordneten Substrat (3) mittels einer sequentiellen Gasphasenabschei- dung, in deren Verlauf aufeinander folgend mindestens ein erstes und ein zweites Prozessgas jeweils abwechselnd in die Prozesskammer (10) eingeleitet und aus der Prozesskammer (10) entfernt werden, d a d u r c h g e k e n n z e i c h n e t , d a s s zum teilweisen Entfernen mindestens eines der Prozessgase das Prozessgas durch einen mindestens teilweisen Druckausgleich einer zwischen einem in der Prozesskammer (10) herrschenden Prozessdruck und einem zum Beginn des Druckausgleichs wesentlich niedrigeren Hilfsdruck in einer Hilfskammer (20) des Prozessreaktors (1) vorliegenden Druckdifferenz verdünnt wird.
2. Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , d a s s der Hilfsdruck zu Beginn des Druckausgleichs mit maximal einem Zehntel des Prozessdrucks vorgesehen wird.
3. Verfahren nach einem der Ansprüche 1 oder 2, d a d u r c h g e k e n n z e i c h n e t , d a s s die Hilfskammer (20) mit mindestens einem Zehnfachen eines Volumens der Prozesskammer (10) vorgesehen wird.
4. Verfahren nach einem der Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t , d a s s die Druckdifferenz zwischen dem Prozessdruck und dem Hilfsdruck während des Einleitens eines der Prozessgase durch einen zwischen der Hilfskammer (20) und der Prozesskammer (10) wirkenden Pumpvorgang aufrecht erhalten und der Druckausgleich mindestens teilweise durch Beenden des Pumpvorgangs herbeigeführt wird.
5. Verfahren nach einem der Ansprüche 1 bis 4, d a d u r c h g e k e n n z e i c h n e t , d a s s die Druckdifferenz zwischen dem Prozessdruck und dem Hilfs- druck während eines Einleitens eines der Prozessgase mittels einer in einem geschlossenen Zustand die Prozesskammer (10) hermetisch gegen die Hilfskammer (20) abdichtenden Trennvorrichtung (11) und Abpumpen der Hilfskammer (20) erzeugt und der Druckausgleich mindestens teilweise durch Öffnen der Trenneinrichtung (11) herbeigeführt wird.
6. Verfahren nach einem der Ansprüche 1 bis 5, d a d u r c h g e k e n n z e i c h n e t , d a s s die Druckdifferenz zwischen dem Prozessdruck und dem Hilfs- druck jeweils nach dem Verdünnen eines ersten Prozessgases durch einen Pumpvorgang einer eine zwischen dem Prozessdruck in der Prozesskammer und dem Hilfsdruck in der Hilfskammer herrschende Druckdifferenz erzeugende Pumpvorrichtung und/oder Schließen der Trennvorrichtung (11) und Evakuieren der Hilfskammer (20) aufgebaut wird.
7. Verfahren nach Anspruch 6, d a d u r c h g e k e n n z e i c h n e t , d a s s nach dem Anschalten der Pumpvorrichtung und/oder dem Schlie- ßen der Trennvorrichtung (11) ein weiteres Prozessgas in die Prozesskammer (10) eingeleitet wird und in der Prozesskammer (10) befindliche Restanteile des ersten Prozessgases aus der Prozesskammer (10) verdrängt werden.
8. Verfahren nach einem der Ansprüche 1 bis 7, d a d u r c h g e k e n n z e i c h n e t , d a s s ein Rückströmen des Prozessgases in die Prozesskammer (10) durch Vorsehen einer Ventileinrichtung und/oder Einleiten eines weiteren Prozessgases in die Prozesskammer (10) vermieden wird.
9. Verfahren nach einem der Ansprüche 7 oder 8, d a d u r c h g e k e n n z e i c h n e t , d a s s als das weitere Prozessgas ein chemisch inertes Spülgas vorgesehen wird.
10. Verfahren nach einem der Ansprüche 1 bis 9, d a d u r c h g e k e n n z e i c h n e t , d a s s die Hilfskammer (20) während des Druckausgleichs evakuiert wird.
11. Verfahren nach einem der Ansprüche 1 bis 10, d a d u r c h g e k e n n z e i c h n e t , d a s s während des Evakuierens der Hilfskammer (2) ein zweites, einen zur Abscheidung bestimmten Präkursor aufweisendes Pro- zessgas in die Prozesskammer (10) eingeleitet wird.
12. Prozessreaktor mit einer zum Erzeugen einer Schicht auf einem Substrat (3) mittels einer sequentiellen Gasphasenabscheidung, in deren Verlauf aufeinanderfolgend mindestens ein erstes und ein zweites Prozessgas jeweils abwechselnd in die Prozesskammer (10) eingeleitet und aus der Prozesskammer (10) entfernt werden, geeigneten Prozesskammer (10) einem im Inneren der Prozesskammer (10) angeordneten Suszeptor (4), auf dem das Substrat (3) aufliegt und Zuführungen (61) zum Einleiten von Prozessgasen, g e k e n n z e i c h n e t d u r c h eine bis zu einen gegenüber einen in der Prozesskammer (10) während der Abscheidung herrschenden Prozessdruck wesentlich niedrigeren Hilfsdruck evakuierbare und abwechselnd mit der Prozesskammer (10) zu verbindende oder von der Prozesskammer (10) zu trennende Hilfskammer (20) zur Verdünnung mindestens eines der Prozessgase.
13. Prozessreaktor nach Anspruch 12, g e k e n n z e i c h n e t d u r c h eine in einem geschlossenen Zustand die Prozesskammer (10) gegen die Hilfskammer (20) verschließenden und in einem ge- öffneten Zustand die Hilfskammer (20) und die Prozesskammer (10) verbindende Trennvorrichtung (11) .
14. Prozessreaktor nach einem der Ansprüche 12 oder 13, g e k e n n z e i c h n e t d u r c h eine eine zwischen einem Prozessdruck in der Prozesskammer (10) und einem Hilfsdruck in der Hilfskammer (20) wirkende Druckdifferenz erzeugende Pumpvorrichtung.
15. Prozessreaktor nach einem der Ansprüche 12 bis 14, g e k e n n z e i c h n e t d u r c h eine ein Rückströmen eines Prozessgases aus der Hilfskammer (20) in die Prozesskammer (10) blockierende Ventileinrichtung.
PCT/DE2003/003188 2002-09-30 2003-09-24 Verfahren und prozessreaktor zur sequentiellen gasphasenabscheidung WO2004031439A2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/529,412 US20060127576A1 (en) 2002-09-30 2003-09-24 Method and process reactor for sequential gas phase deposition by means of a process and an auxiliatry chamber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10245537A DE10245537B4 (de) 2002-09-30 2002-09-30 Verfahren und Prozessreaktor zur sequentiellen Gasphasenabscheidung mittels einer Prozess- und einer Hilfskammer
DE10245537.6 2002-09-30

Publications (2)

Publication Number Publication Date
WO2004031439A2 true WO2004031439A2 (de) 2004-04-15
WO2004031439A3 WO2004031439A3 (de) 2004-11-04

Family

ID=31984263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2003/003188 WO2004031439A2 (de) 2002-09-30 2003-09-24 Verfahren und prozessreaktor zur sequentiellen gasphasenabscheidung

Country Status (3)

Country Link
US (1) US20060127576A1 (de)
DE (1) DE10245537B4 (de)
WO (1) WO2004031439A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110797435A (zh) * 2019-10-16 2020-02-14 暨南大学 一种组分可调无机钙钛矿光电薄膜及其低温制备方法和器件应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1446262A1 (de) * 1960-12-10 1970-03-05 Max Schmidt Hochvakuum-Metallisierungsanlage
GB1321640A (en) * 1970-12-05 1973-06-27 Hunt C J L Vacuum metallising or vacuum coating
EP0095369A2 (de) * 1982-05-24 1983-11-30 Varian Associates, Inc. Methoden und Geräte zur Evakuierung einer Schleuse
US5357996A (en) * 1990-08-18 1994-10-25 Oxford Glycosystems Limited Pressure regulating system
DE4401718C1 (de) * 1994-01-21 1995-08-17 Anke Gmbh & Co Kg Verfahren und Vorrichtung zur Bearbeitung von Werkstücken in einer Vakuumatmospähre
JP2000195803A (ja) * 1998-12-25 2000-07-14 Shibaura Mechatronics Corp 真空処理装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5216012A (en) * 1975-07-30 1977-02-07 Toshiba Corp Vacuum system
JPS54113511A (en) * 1978-02-23 1979-09-05 Seiko Epson Corp Vacuum unit
US5916365A (en) * 1996-08-16 1999-06-29 Sherman; Arthur Sequential chemical vapor deposition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1446262A1 (de) * 1960-12-10 1970-03-05 Max Schmidt Hochvakuum-Metallisierungsanlage
GB1321640A (en) * 1970-12-05 1973-06-27 Hunt C J L Vacuum metallising or vacuum coating
EP0095369A2 (de) * 1982-05-24 1983-11-30 Varian Associates, Inc. Methoden und Geräte zur Evakuierung einer Schleuse
US5357996A (en) * 1990-08-18 1994-10-25 Oxford Glycosystems Limited Pressure regulating system
DE4401718C1 (de) * 1994-01-21 1995-08-17 Anke Gmbh & Co Kg Verfahren und Vorrichtung zur Bearbeitung von Werkstücken in einer Vakuumatmospähre
JP2000195803A (ja) * 1998-12-25 2000-07-14 Shibaura Mechatronics Corp 真空処理装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN Bd. 0010, Nr. 68 (M-024), 4. Juli 1977 (1977-07-04) & JP 52 016012 A (TOSHIBA CORP), 7. Februar 1977 (1977-02-07) *
PATENT ABSTRACTS OF JAPAN Bd. 0031, Nr. 37 (M-080), 14. November 1979 (1979-11-14) & JP 54 113511 A (SEIKO EPSON CORP), 5. September 1979 (1979-09-05) *
PATENT ABSTRACTS OF JAPAN Bd. 2000, Nr. 10, 17. November 2000 (2000-11-17) & JP 2000 195803 A (SHIBAURA MECHATRONICS CORP), 14. Juli 2000 (2000-07-14) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110797435A (zh) * 2019-10-16 2020-02-14 暨南大学 一种组分可调无机钙钛矿光电薄膜及其低温制备方法和器件应用

Also Published As

Publication number Publication date
DE10245537A1 (de) 2004-04-08
WO2004031439A3 (de) 2004-11-04
DE10245537B4 (de) 2007-04-19
US20060127576A1 (en) 2006-06-15

Similar Documents

Publication Publication Date Title
DE112014005386B4 (de) Verbessertes plasmaaktiviertes ALD-System
DE4412915B4 (de) Plasmabehandlungsanlage, Verfahren zu deren Betrieb und Verwendung derselben
DE10132882B4 (de) Verfahren zum Ausbilden einer Dünnschicht unter Verwendung einer Atomschichtabscheidung
DE4241932C2 (de) Verfahren sowie Vorrichtung zur Steuerung des Gasflusses bei CVD-Prozessen
DE4412902A1 (de) Verfahren zur Erhöhung der Beschichtungsrate, Verfahren zur Reduzierung der Staubdichte in einem Plasmaentladungsraum und Plasmakammer
DE69904910T2 (de) Gaszuführsystem für cvd reaktor und verfahren zu dessen steuerung
DE69937554T2 (de) Synchron gemultiplexte architektur für vakuumverfahren mit einem überschuss nahenull
DE60217317T2 (de) Wärmebehandlungsverfahren
DE10255688A1 (de) Verfahren und Vorrichtung zum Durchführen von sequentiellen Verfahren, die verschiedene Zeitdauern erfordern, bei der Herstellung von Halbleitervorrichtung
EP0307539A2 (de) Verfahren und Vorrichtung zum Beschichten von Substraten
DE69735271T2 (de) Verfahren zum Reinigen eines Vakuumbearbeitungskammer einschliesslich der Gaseinlassöffnung
DE112007002218T5 (de) Bedampfungsvorrichtung und Verfahren zu deren Betrieb
EP2878006A1 (de) Verfahren und vorrichtung zum permanenten bonden von wafern
DE112015003176T5 (de) Düsenkopf, Vorrichtung und Verfahren, die dazu geeignet sind, eine Oberfläche eines Substrats aufeinanderfolgenden Oberflächenreaktionen zu unterziehen
EP2422362B1 (de) Transporteinrichtung mit einem auslenkbaren dichtrahmen
DE60132950T2 (de) Vakuumbehandlungsvorrichtung
DE60001521T2 (de) Vorrichtung und Verfahren zur Herstellung von Halbleiterbauelementen
DE102017201925A1 (de) PE-ALD-Verfahren mit reduzierter Kontamination auf Quarzbasis
WO2004031439A2 (de) Verfahren und prozessreaktor zur sequentiellen gasphasenabscheidung
WO2019105985A1 (de) Vakuumschleuse und verfahren zum schleusen eines substratträgers
EP2609619B1 (de) Vorrichtung und verfahren zur prozessierung von wafern
EP1344243A1 (de) Verfahren und vorrichtung zur bearbeitung von halbleitersubstraten
DE102004024207A1 (de) Verfahren und Vorrichtung zur Niedertemperaturepitaxie auf einer Vielzahl von Halbleitersubstraten
DE10141084A1 (de) Vorrichtung zur Abscheidung von dünnen Schichten auf einem Stubstrat und entsprechendes Verfahren
DE102004019741B4 (de) Plasmareaktor zur Oberflächenmodifikation von Gegenständen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): JP KR US

ENP Entry into the national phase

Ref document number: 2006127576

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10529412

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10529412

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP