WO2004018246A1 - Kraftfahrzeug mit hybridantrieb sowie verfahren zum betreiben desselben - Google Patents

Kraftfahrzeug mit hybridantrieb sowie verfahren zum betreiben desselben Download PDF

Info

Publication number
WO2004018246A1
WO2004018246A1 PCT/DE2003/000589 DE0300589W WO2004018246A1 WO 2004018246 A1 WO2004018246 A1 WO 2004018246A1 DE 0300589 W DE0300589 W DE 0300589W WO 2004018246 A1 WO2004018246 A1 WO 2004018246A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal combustion
combustion engine
electric machine
crankshaft
speed
Prior art date
Application number
PCT/DE2003/000589
Other languages
English (en)
French (fr)
Inventor
Thorsten Juenemann
Volkmar Foelsche
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2004018246A1 publication Critical patent/WO2004018246A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/04Starting of engines by means of electric motors the motors being associated with current generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • B60W2510/0652Speed change rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0616Position of fuel or air injector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0644Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0644Engine speed
    • B60W2710/0661Speed change rate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/042Introducing corrections for particular operating conditions for stopping the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/02Parameters used for control of starting apparatus said parameters being related to the engine
    • F02N2200/022Engine speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the invention relates to a motor vehicle with a hybrid drive with the features mentioned in the preamble of claim 1 and a method for operating a motor vehicle with a hybrid drive with the features mentioned in the preamble of claim 4.
  • Motor vehicles with hybrid drive are motor vehicles that, in addition to a conventional internal combustion engine, have one or possibly several associated electrical machines that can be coupled or permanently connected to the drive train of the motor vehicle (ISG) and can work both in generator operation and in motor operation , While they are driven by the internal combustion engine in generator operation and generate electrical current to supply consumers of the motor vehicle, they operate in engine operation Electricity is supplied from the vehicle battery in order to convert it into drive energy for the motor vehicle.
  • Electricity is supplied from the vehicle battery in order to convert it into drive energy for the motor vehicle.
  • the vehicle battery as a power store, there is usually also a flywheel or another store for kinetic energy, with which, for example, kinetic energy released during braking can be stored and released to the consumer of the motor vehicle via the electric machine or later to its drive train.
  • Most motor vehicles with hybrid drive can be operated in the so-called start / stop mode, in which the internal combustion engine is switched off after a predetermined period of time by interrupting the fuel supply each time the motor vehicle comes to a standstill, as disclosed, for example, in DE 101 32 655 AI.
  • start / stop mode in which the internal combustion engine is switched off after a predetermined period of time by interrupting the fuel supply each time the motor vehicle comes to a standstill, as disclosed, for example, in DE 101 32 655 AI.
  • the electric machine is first driven by supplying power from the vehicle battery or by the flywheel before the internal combustion engine is re-ignited after the idling speed has been reached.
  • This start / stop operation not only has economic advantages, but is also advantageous from an environmental point of view.
  • the motor vehicle according to the invention with the features mentioned in claim 1 and the method according to the invention with the features mentioned in claim 4 offer the advantage that the internal combustion engine can be switched off very quietly and comfortably, and thereby for the acceptance of start / stop systems in motor vehicles with hybrid drive very beneficial significant increase in comfort is possible.
  • the speed of the internal combustion engine is controlled with the aid of the electric machine in such a way that it is number decreases steadily to zero when the fuel supply is interrupted.
  • a steady decrease means that the course of the speed curve of the internal combustion engine between the speed when the fuel supply is interrupted and its standstill has no temporary increase in speed and the negative slope of the speed curve is preferably not subject to strong changes.
  • the electric machine can be used to apply a torque opposite to the ' inertia-related torque of the internal combustion engine ' on the output shaft of the internal combustion engine.
  • the amount of this opposite torque is increased when the gradient is, the nega- tive slope of the speed curve of the engine after the interruption of the fuel supply is temporarily small, 'approaches zero or accepts even positive values, before the engine has come to a standstill.
  • This torque which is opposite to the inertia-related torque of the internal combustion engine, leads very quickly to a standstill of the internal combustion engine.
  • An interim flattening or an interim ⁇ increase in the speed curve of the The internal combustion engine can result from a temporary drop in the braking torque if, for example, immediately after passing through the top dead center of a cylinder, the braking force generated by the compressed air in the cylinder and counteracting the inertia-related torque of the internal combustion engine decreases.
  • the slope of the speed curve of the engine can be calculated from the instantaneous speed of the "internal combustion engine, a preferred embodiment of the invention is measured continuously even after the interruption of the fuel supply to the internal combustion engine according, has come to a standstill until the internal combustion engine.
  • the measured current speed or the slope of the speed drop calculated therefrom or another of the current speed of the combustion Motor-dependent variable is then used as a control variable for controlling the electric machine.
  • the speed curve of the internal combustion engine for various boundary conditions when the internal combustion engine is switched off, such as, for example, speed, engine temperature, clutch condition etc. depending on the angle of rotation of the output shaft of the internal combustion engine to be calculated by simulation or to be determined on a test vehicle.
  • the determined discontinuities can then be stored, for example, in the form of a map from which an anticipated course of the speed curve of the internal combustion engine can be determined taking into account the respective boundary conditions for different rotation angle ranges of the output shaft. Where this curve shows discontinuities, the electric machine is then controlled so that the discontinuities are compensated and the curve is smoothed.
  • a correspondingly controlled torque curve of the electric motor between the discontinuities' of the torque curve of the engine can last for a linear, or alternatively an increasing or decreasing waste be set to a standstill.
  • the electric machine is preferably switched off as soon as the internal combustion engine is at a standstill.
  • Fig. 1 shows a schematic illustration of a hybrid drive of a motor vehicle with an internal combustion engine and an electric machine
  • Fig. 2 is a graph of speed curves of the
  • Combustion engine of the hybrid drive after interrupting the fuel supply with and without switching on the electric machine.
  • the hybrid drive of a motor vehicle shown in Fig. 1 comprises in a known manner an internal combustion engine 10, the crankshaft 12 via two gear wheels 14, 16 and a clutch 18 can be coupled to the output shaft 20 of an electric machine 22 of the motor vehicle, which, inter alia, as a starter-generator for the Internal combustion engine 10 serves ' and as in the case of a crankshaft starter generator, could possibly also be rigidly connected to the internal combustion engine 10 without an intermediate clutch.
  • the electric machine 22 is connected via a control unit 24 to a battery 26 of the motor vehicle.
  • the crankshaft 12 of the internal combustion engine 10 carries a speed or angle encoder wheel 28, the circumference of which moves past an angle sensor 30 when the engine 10 is running and induces voltage signals there. From the angle sensor 30, the voltage signals are fed to a motor controller 32 of the motor 10.
  • the motor controller 32 comprises an evaluation circuit and a computer (not shown) with which the instantaneous speed of the internal combustion engine 10 can be determined on the basis of the voltage signals supplied.
  • the engine control 32 further comprises a memory (not shown) in which the current speed values are briefly stored in order to call them up when required, for example in order to calculate an averaged engine speed in a known manner via an angle of rotation of the crankshaft 12 of, for example, 120 degrees , which is used in operation to control an injection pump 34 of the internal combustion engine 10.
  • a common control can also be provided.
  • curve I shows the speed curve after the internal combustion engine 10 has been switched off by interrupting the fuel supply when the electric machine 22 is switched off.
  • This speed curve between the idling speed L and the speed zero when the engine is at a standstill S corresponds to the speed curve when conventional internal combustion engines are switched off and v / zv / ei discontinuities in the illustrated embodiment, which are highlighted in FIG. 2 by a circular border and an arrow ' .
  • the falling speed curve I After a preceding steady speed drop due to braking torques acting on the crankshaft 12, the falling speed curve I first becomes flatter in the area of these discontinuities and then rises to a small peak P, before it continues with a slightly lower average gradient until the next discontinuity or decreases to a stop of the engine S '10th In the area of discontinuities, the negative slope of the speed curve decreases to zero, then becomes positive and progressively larger and then smaller again until it reaches zero again at peak P and becomes negative again.
  • the discontinuities are an expression of a non-circular rotation of the crankshaft 12, which is perceived by the vehicle occupants in the form of vibrations or noises.
  • the rotational speed of the internal combustion engine 10 is reduced in a controlled manner according to the invention by each time the fuel supply to the internal combustion engine * 10 is interrupted, be it as a result of the driver switching off the ignition or as a result of a Turning off the internal combustion engine 10 by the engine control (start-stop function) or another control, for example a transmission control, ESP or a battery management, the electric machine is switched on by power supply in the engine mode, provided that it is not already in the engine mode.
  • the instantaneous speed values determined by means of the angle sensor 30 and stored in the memory of the engine control 32 are continuously called up by the engine control computer in order to obtain a value for the current negative slope from two or more successive speed values to calculate the curve I of the speed curve.
  • This calculated instantaneous value then serves as a control variable for the electric machine 22, the torque of which is increased or decreased depending on this value.
  • the electric machine 22 outputs a torque to the crankshaft 12 which is either rectified to the inertia-related torque of the crankshaft 12 (curve II) or opposite thereto (curve III).
  • curve II the inertia-related torque of the crankshaft 12
  • curve III opposite thereto
  • the time period between the interruption of the fuel supply and the standstill S of the internal combustion engine 10 can be controlled such that it becomes larger in the case of the flatter speed curve II and shorter in the case of the steeper speed curve III than in the case of the speed curve I.
  • the torque of the electric machine 22 is the same as the torque of the internal combustion engine 10 due to the inertia (curve II), where the speed curve of the internal combustion engine 10 shows a discontinuity with a temporary increase in speed caused by a decreasing braking torque, as shown in curve I, this decreasing braking torque compensated for by a reduction in the drive torque of the electric machine 22, so that the curve II has a continuous curve without speed fluctuations.
  • the modern mentale speed of the internal combustion engine 10 in the control with by the drive torque of the electric machine 22 is reduced degressively with falling speed, resulting in the resulting degressive course of the speed curve II.
  • a corresponding regulation can also be used to set a linear or progressive curve shape.
  • curve III When the braking torque of the electric machine 22 is opposite to the torque of the internal combustion engine 10 due to the inertia (curve III), where the speed curve of the internal combustion engine 10 has a discontinuity with a temporary increase in speed caused by a decreasing braking torque, as shown in curve I, this decreasing braking torque compensated for by an increase in the drive torque of the electric machine 22, so that the curve III likewise has a continuous curve without speed fluctuations.
  • curve III is considerably steeper than curve II and leads to standstill S of internal combustion engine 10 much more quickly.
  • Curve IV in the lower diagram in FIG. 2 shows the duty cycle of the electric machine 22.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

Die Erfindung betrifft ein Kraftfahrzeug mit einem Hybridantrieb, umfassend einen Verbrennungsmotor (10) mit einer Kurbelwelle (12), mindestens eine mit der Kurbelwelle (12) kuppelbare oder starr ver­bundene Elektromaschine (22) und mindestens ein Steuergerät (24, 32) zur Steuerung des Verbren­nungsmotors (10) und/oder der Elektromaschine (22), sowie ein Verfahren zum Betreiben eines solchen Kraftfahrzeugs. Es ist vorgesehen, dass das Steuer­gerät (24, 32) im Falle einer Unterbrechung der Kraftstoffzufuhr zum Verbrennungsmotor (10) die Drehzahl des Verbrennungsmotors (10) mittels der im Motorbetrieb arbeitenden Elektromaschine (22) ge­steuert oder geregelt bis zum Stillstand (S) des Verbrennungsmotors (10) absenkt.

Description

Kraftfahrzeug mit Hybridantrieb sowie Verfahren zum Betreiben desselben
Die Erfindung betrifft ein Kraftfahrzeug mit einein Hybridantrieb mit den im Oberbegriff des Patentanspruchs 1 genannten Merkmalen, sowie ein Verfahren zum Betreiben eines Kraftfahrzeugs mit einem Hybridantrieb mit den im Oberbegriff des Patentanspruchs 4 genannten Merkmalen.
Stand der Technik
Als Kraftfahrzeuge mit Hybridantrieb werden Kraftfahrzeuge bezeichnet, die neben einem konventionellen Verbrennungsmotor eine oder ggf. auch mehrere angegliederte Elektro aschinen aufweisen, die mit dem Antriebsstrang des Kraftfahrzeugs kuppelbar o- der fest verbunden (ISG) sind und sowohl im Generatorbetrieb als auch im Motorbetrieb arbeiten können. Während sie im Generatorbetrieb vom Verbrennungsmotor angetrieben werden und elektrischen Strom zur Versorgung von Verbrauchern des Kraftfahrzeugs erzeugen, wird ihnen im Motorbetrieb Strom aus der Fahrzeugbatterie zugeführt, um diesen in -Antriebsenergie für das Kraftfahrzeug umzuwandeln. Neben der Fahrzeugbatterie als Stromspeicher ist gewöhnlich auch ein Schwungrad oder ein anderer Speicher für kinetische Energie vorhanden, mit dem zum Beispiel beim Bremsen freiwerdende kinetische Energie gespeichert und über die Elektromaschine an die Verbraucher des Kraftfahrzeugs oder später wieder an dessen Antriebsstrang abgegeben werden kann.
Die meisten Kraftfahrzeuge mit Hybridantrieb können im sogenannten Start/Stop-Betrieb gefahren werden, in dem bei jedem Stillstand des Kraftfahrzeugs der Verbrennungsmotor nach einer vorbestimmten Zeitdau- er durch Unterbrechung der Kraftstoffzufuhr abgestellt wird, wie zum Beispiel in der DE 101 32 655 AI offenbart. Beim erneuten Anfahren des Kraftfahrzeugs wird zuerst die Elektromaschine durch Strom- zufuhr aus der Fahrzeugbatterie oder durch Energie- zufuhr vom Schwungrad angetrieben, bevor nach Erreichen der Leerlaufdrehzahl der Verbrennungsmotor erneut gezündet wird. Dieser Start/Stop-Betrieb hat nicht nur ökonomische Vorteile, sondern ist auch unter Umweltgesichtspunkten vorteilhaft.
Beim Abstellen des Verbrennungsmotors durch Unterbrechung seiner Kraftstof zufuhr befindet sich der Verbrennungsmotor jedoch nicht sofort im Stillstand, sondern läuft infolge der Trägheit der Kur- beiwelle und anderer rotierender Komponenten noch einige Sekundenbruchteile oder Sekunden weiter,, bevor sich seine Drehzahl hauptsächlich infolge der Kompression von Luft in einem oder mehreren Zylindern auf Null verringert hat. Da in dieser Zeit der Verlauf der auf die rotierenden Komponenten des Motors einwirkenden Kräfte starken Schwankungen unterliegt, können je nach Verbrennungsm tor und Einbauverhältnissen mehr oder weniger starke Vibrationen und/oder Geräuschentwicklungen auftreten. Vor allem im Stadtverkehr, wo der Verbrennungsmotor beim Start-Stop-Betrieb sehr häufig abgestellt wird, werden diese Vibrationen und Geräuschentwicklung infolge ihres häufigen Auftretens als störend empfunden.
Vorteile der Erfindung
Das erfindungsgemäße Kraftfahrzeug mit den im Anspruch 1 genannten Merkmalen und das erfindungsge- mäße Verfahren mit den im Anspruch 4 genannten Merkmalen bieten den Vorteil, dass ein sehr ruhiges und komfortables Abstellen des Verbrennungsmotors und dadurch eine für die Akzeptanz von Start/Stop- Systemen in Kraftfahrzeugen mit Hybridantrieb sehr förderliche deutliche Komfortsteigerung möglich ist.
In bevorzugter Ausgestaltung der Erfindung wird die
Drehzahl des Verbrennungsmotors mit Hilfe der E~ lektromaschine so gesteuert, dass sie von der Dreh- zahl bei der Unterbrechung der Kraftstoffzufuhr stetig auf Null abnimmt. Eine stetige Abnahme bedeutet in diesem Zusammenhang, dass der Verlauf der Drehzahlkurve des Verbrennungsmotors zwischen der Drehzahl bei der Unterbrechung seiner Kraftstoffzufuhr und seinem Stillstand keinen vorübergehenden Drehzahlanstieg aufweist und die negative Steigung der Drehzahlkurve vorzugsweise keinen starken Änderungen unterworfen ist.
Um nach der Unterbrechung der Kraftstoffzufuhr einen zwischenzeitlichen Drehzahlanstieg im Verlauf der Drehzahlkurve des Verbrennungsmotors zu vermeiden, kann mit Hilfe der Elektromaschine ein zum 'trägheitsbedingten Drehmoment des Verbrennungsmotors entgegengesetztes Drehmoment auf die Abtriebswelle des Verbrennungsmotors aufgebracht werden. Der Betrag dieses entgegengesetzten Drehmoments wird vergrößert, wenn der Gradient, d.h. die nega- tive Steigung der Drehzahlkurve des Verbrennungsmotors nach der Unterbrechung der Kraftstoffzufuhr zwischenzeitlich kleiner wird, ' sich an Null annähert oder gar positive Werte annimmt, bevor der Motor zum Stillstand gekommen ist. Dieses zum träg- heitsbedingten Drehmoment des Verbrennungsmotors entgegengesetzte Drehmoment -führt sehr schnell zum Stillstand des Verbrennungsmotors.
Eine zwischenzeitliche Abflachung oder ein zwi- ■ schenzeitlicher Anstieg der Drehzahlkurve des Verbrennungsmotors kann sich durch einen vorübergehenden Abfall des bremsenden Drehmoments ergeben, wenn zum Beispiel unmittelbar nach dem Durchlaufen des oberen Totpunkts eines Zylinders die von der komprimierten Luft im Zylinder erzeugte und dem trägheitsbedingten Drehmoment des Verbrennungsmotors entgegenwirkende Bremskraft abnimmt.
Statt einem zum trägheitsbedingten Drehmoment des Verbrennungsmotors entgegengesetzten Drehmoment wird jedoch bevorzugt mit Hilfe der Elektromaschine ein zum Drehmoment des Verbrennungsmotors gleichgerichtetes Drehmoment auf die "Abtriebswelle des Verbrennungsmotors aufgebracht und dieses Drehmo- ent gesteuert verkleinert, wenn sich die negative Steigung der Drehzahlkurve des Verbrennungsmotors abflacht, wodurch eine langsamere sanftere Abbrem- sung möglich ist.
Die Steigung der Drehzahlkurve des Verbrennungsmotors kann aus der momentanen Drehzahl des "Verbrennungsmotors berechnet werden, die gemäß einer bevorzugten Ausgestaltung der Erfindung auch nach der Unterbrechung der Kraftstoffzufuhr zum Verbren- nungsmotor kontinuierlich gemessen wird, bis der Verbrennungsmotor zum Stillstand gekommen ist. Die gemessene momentane Drehzahl bzw. die daraus berechnete Steigung des Drehzahlabfalls oder eine andere von der momentanen Drehzahl des Verbrennungs- motors abhängige Größe wird dann als Regelgröße zur Ansteuerung der Elektromaschine verwendet.
Alternativ zu einer Rückkopplung, bei der die ge- messene momentane Drehzahl des Verbrennungsmotors zur Regelung der Elektromaschine dient, ist es auch möglich, Unstetigkeiten der Drehzahlkurve des Verbrennungsmotors für verschiedene Randbedingungen beim Abstellen des Verbrennungsmotors, wie zum Bei- spiel Drehzahl,' Motortemperatur, Kupplungszustand usw. jeweils in Abhängigkeit vom Drehwinkel der Ab- triebswelle des Verbrennungsmotors durch Simulation zu berechnen oder an einem Versuchsfahrzeug zu bestimmen. Die ermittelten Unstetigkeiten können dann zum Beispiel in Form eines Kennfelds gespeichert werden, aus dem sich unter Berücksichtigung der jeweiligen Randbedingungen für verschiedene Drehwinkelbereiche der Abtriebswelle ein zu erwartender Verlauf der Drehzahlkurve des Verbrennungs- motors bestimmen lässt. Dort, wo dieser Kurvenverlauf Unstetigkeiten aufweist, wird dann die Elektromaschine so angesteuert, dass es zu einem Ausgleich der Unstetigkeiten und zu einer Glättung des Kurvenverlaufs kommt.
Durch einen entsprechend gesteuerten Verlauf der Drehmomentkurve der Elektromaschine zwischen den Unstetigkeiten 'der Drehmomentkurve des Verbrennungsmotors kann für die letzter ein linearer oder alternativ ein progressiver oder degressiver Abfall bis zum Stillstand eingestellt werden . Vorzugsweise wird die Elektromaschine abgeschaltet, sobald sich der Verbrennungsmotor im Stillstand befindet .
Zeichnungen
Im folgenden wird die Erfindung anhand eines in der Zeichnung dargestellten Ausführungsbeispiels näher erläutert . Es zeigen :
Fig . 1 eine schematische Darstellung eines Hybridantriebs eines Kraftfahrzeugs mit einem Verbrennungsmotor und einer Elektromaschine;
Fig . 2 ein Schaubild von Drehzahlverläufen des
Verbrennungsmotors des Hybridantriebs nach dem Unterbrechen der Kraftstoff zufuhr mit und ohne Zuschaltung der Elek- tromaschine .
Beschreibung des Ausführungsbeispiels
Der in Fig. 1 dargestellte Hybridantrieb eines Kraftfahrzeugs umfasst in bekannter Weise einen Verbrennungsmotor 10, dessen Kurbelwelle 12 über zwei Zahnräder 14, 16 und eine Kupplung 18 mit der Abtriebswelle 20 einer Elektromaschine 22 des Kraftfahrzeugs kuppelbar ist, die u.a. als Starter- Generator für den Verbrennungsmotor 10 dient 'und wie bei einem Kurbelwellen-Startergenerator ggf. auch ohne zwischengeschaltete Kupplung starr mit dem Verbrennungsmotors 10 verbunden sein könnte. Die Elektromaschine 22 ist über ein Steuergerät 24 it einer Batterie 26 des Kraftfahrzeugs verbunden.
Die Kurbelwelle 12 des Verbrennungsmotors 10 trägt ein Drehzahl- oder Winkelgeberrad 28, dessen Umfang sich bei laufendem Motor 10 an einem Winkelsensor 30 vorbeibewegt und dort Spannungssignale induziert. Vom Winkelsensor 30 aus werden die Spannungssignale einer Motorsteuerung 32 des Motors 10 zugeführt. Die Motorsteuerung 32 umfasst eine Auswerteschaltung und einen Rechner (nicht darge- stellt) , mit denen sich auf der Grundlage der zugeführten Spannungssignale die momentane Drehzahl des Verbrennungsmotors 10 ermitteln lässt. Die Motorsteuerung 32 umfasst weiter einen Speicher (nicht dargestellt) , in dem die momentanen Dreh- zahlwerte kurzzeitig gespeichert werden, um sie bei Bedarf abzurufen, zum Beispiel um in bekannter Weise über einen Drehwinkel der Kurbelwelle 12 von beispielsweise 120 Grad eine gemittelte Motordrehzahl zu berechnen, die im Betrieb zur Ansteuerung einer Einspritzpumpe 34 des Verbrennungsmotors 10 herangezogen wird.
An Stelle einer getrennten Steuerung 24, 32 für den Verbrennungsmotor 10 und die Elektromaschine 22 kann auch eine gemeinsame Steuerung vorgesehen sein.
In Fig. 2 zeigt die Kurve I den Drehzahlverlauf nach dem Abstellen des Verbrennungsmotors 10 durch Unterbrechung der Kraftstoffzufuhr bei abgeschalteter Elektromaschine 22. Dieser Drehzahlverlauf zwischen der Leerlaufdrehzahl L und der Drehzahl Null bei Motorstillstand S entspricht dem Drehzahlver- lauf beim Abstellen konventioneller Verbrennungsmotoren und v/eist bei dem dargestellten Ausführungsbeispiel zv/ei Unstetigkeiten auf, die in Fig. 2 durch eine kreisförmige Umrandung und einen Pfeil ' hervorgehoben sind.
Nach einem vorangehenden stetigen Drehzahlabfall infolge von auf die Kurbelwelle 12 einwirkenden Bremsmomenten wird die abfallende Drehzahlkurve I im Bereich dieser Unstetigkeiten zuerst flacher und steigt dann bis zu einem kleinen Peak P an, bevor sie erneut mit etwas geringerer mittlerer Steigung stetig bis zur nächsten Unstetigkeit bzw. bis zum Stillstand S des Motors' 10 absinkt. Im Bereich der Unstetigkeiten nimmt die negative Steigung der Drehzahlkurve auf Null ab, wird dann positiv und zunehmend größer und dann wieder kleiner, bis sie am Peak P erneut den Wert Null erreicht und wieder negativ wird. Die Unstetigkeiten sind Ausdruck einer unrunden Drehung der Kurbelwelle 12, die von den Fahrzeugin- sassen in Form von Vibrationen oder Geräuschen wahrgenommen wird.
Um diese als unangenehm empfundenen Drehzahlschwankungen beim Abstellen des Verbrennungsmotors 10 des Hybridantriebs zu vermeiden, wird erfindungsgemäß die Drehzahl des Verbrennungsmotors 10 gesteuert verringert, indem bei jeder Unterbrechung der Kraftstoffzufuhr zum Verbrennungsmotor * 10, sei es infolge eines Absteilens der Zündung durch den Fahrer oder infolge eines Abstellens des Verbrennungsmotors 10 durch die Motorsteuerung (Start-Stopp- Funktion) oder eine andere Steuerung, z.B. eine Getriebesteuerung, ESP oder ein Batteriemanagement, die Elektromaschine durch Stromzufuhr im Motorbetrieb zugeschaltet wird, sofern sie sich nicht bereits im Motorbetrieb befindet. Darüber hinaus wer- den beginnend mit jeder Unterbrechung der Kraftstoffzufuhr die mittels des Winkelsensors 30 ermittelten und im Speicher der Motorsteuerung 32 gespeicherten momentanen Drehzahlwerte kontinuierlich vom Rechner der Motorsteuerung abgerufen, um je- weils aus zwei oder mehr aufeinanderfolgenden Drehzahlwerten einen Wert für die momentane negative Steigung der Kurve I des Drehzahlverlaufs zu berechnen. Dieser berechnete Momentanwert dient dann als Re- gelgröße für die Elektromaschine 22, deren Drehmoment in Abhängigkeit von diesem Wert vergrößert bzw. verkleinert wird.
Bei den in Fig. 2 dargestellten. Ausführungsbeispielen gibt die Elektromaschine 22 ein Drehmoment an die Kurbelwelle 12 ab, das entweder zu dem trägheitsbedingten Drehmoment der Kurbelwelle 12 gleichgerichtet (Kurve II) oder zu diesem entgegengesetzt (Kurve III) ist. Dadurch kann die Zeitspanne zwischen der Unterbrechung der Kraftstoffzufuhr und dem Stillstand S des Verbrennungsmotors 10 so gesteuert werden, dass sie im Fall der flacheren Drehzahlkurve II größer und im Fall der steileren Drehzahlkurve III kleiner als im Fall der Drehzahlkurve I wird.
Bei einem zum trägheitsbedingten Drehmoment des Verbrennungsmotors 10 gleichgerichteten Drehmoment der Elektromaschine 22 (Kurve II) wird dort, wo die Drehzahlkurve des Verbrennungsmotors 10 eine Unstetigkeit mit einem durch ein sinkendes Bremsdrehmoment verursachten zeitweiligen Drehzahlanstieg auf- weist, wie in Kurve I dargestellt, dieses sinkende Bremsdrehmoment durch eine Verkleinerung des Antriebsdrehmoments der Elektromaschine 22 kompensiert, so dass die Kurve II einen stetigen Kurvenverlauf ohne Drehzahlschwankungen aufweist. Bei dem vorliegenden Ausführungsbeispiel geht auch die mo- mentane Drehzahl des Verbrennungsmotors 10 in die Regelung mit ein, indem das Antriebsmoment der E- lektromaschine 22 mit sinkender Drehzahl degressiv verkleinert wird, wodurch sich der resultierende degressive Verlauf der Drehzahlkurve II ergibt. Durch eine entsprechende Regelung ist jedoch auch ein linearer oder progressiver Kurvenverlauf einstellbar .
Bei einem zum trägheitsbedingten Drehmoment des Verbrennungsmotors 10 entgegengesetzten, bremsenden Drehmoment der Elektromaschine 22 (Kurve III) wird dort, wo die Drehzahlkurve des Verbrennungsmotors 10 eine Unstetigkeit mit einem durch ein sinkendes Bremsdrehmoment verursachten zeitweiligen Drehzahlanstieg aufweist, wie in Kurve I dargestellt, dieses sinkende Bremsdrehmoment durch eine Vergrößerung des Antriebsdrehmoments der Elektromaschine 22 kompensiert, so dass die Kurve III ebenfalls einen stetigen Kurvenverlauf ohne Drehzahlschwankungen aufweist. Die Kurve III ist jedoch erheblich steiler als die Kurve II und führt sehr viel schneller zum Stillstand S des Verbrennungsmotors 10.
Die Kurve IV im unteren Diagramm der Fig. 2 zeigt die Einschaltdauer der Elektromaschine 22 an.

Claims

Patentansprüche
1. Kraftfahrzeug mit einem Hybridantrieb, umfassend einen Verbrennungsmotor mit einer Kurbelwelle, mindestens eine mit der Kurbelwelle kuppelbare oder starr verbundene Elektromaschine und mindestens ein Steuergerat zur Steuerung des Verbrennungsmotors und/oder der Elektromaschine, dadurch gekennzeichnet, dass das Steuergerät (24, 32) im Falle einer Unterbrechung der Kraftstoffzufuhr zum Verbren- nungsmotor (10) die Drehzahl des Verbrennungsmotors (10) mittels der im Motorbetrieb arbeitenden Elektromaschine (22) gesteuert oder geregelt bis zum Stillstand (S) des Verbrennungsmotors (10) absenkt,
2. Kraftfahrzeug nach Anspruch 1, gekennzeichnet durch eine Einrichtung (28, 30) zum Messen der momentanen Drehzahl des Verbrennungsmotors (10) .
3. Kraftfahrzeug nach Anspruch 2, dadurch gekenn- zeichnet, dass die Einrichtung ein mit Winkelmarken versehenes, drehfest mit der Kurbelwelle (12) verbundenes Drehzahl- oder Winkelgeberrad (28) und einen ortsfesten Winkelsensor (30) umfasst.
4. Verfahren zum Betreiben eines Kraftfahrzeugs mit einem Hybridantrieb,- der einen Verbrennungs o- tor mit einer Kurbelwelle und mindestens eine mit der Kurbelwelle kuppelbare oder starr verbundene Elektromaschine umfasst, bei dem zum Abstellen des Verbrennungsmotors die Kraftstoff ufuhr zu diesem unterbrochen wird, dadurch gekennzeichnet, dass bei der Unterbrechung der Kraftstoffzufuhr die Drehzahl des Verbrennungsmotors (10) mittels der im Motorbetrieb arbeitenden Elektromaschine (22) gesteuert oder geregelt bis zum Stillstand (S) des Motors (10) abgesenkt wird.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die Drehzahl des Verbrennungsmotors (10) so gesteuert oder geregelt wird, dass sie von der Drehzahl (L) bei der Unterbrechung der Kraftstoffzufuhr bis zum Stillstand (S) stetig abnimmt.
6. Verfahren nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass ein zwischen der Unterbrechung der Kraftstoffzufuhr und dem Stillstand (S) des Motors (10) an die Kurbelwelle (12) abgegebenes Drehmoment der Elektromaschine (22) "in Abhängigkeit vom Betrag einer momentanen Drehzahl der Kurbelwelle (12) oder von einem daraus abgeleiteten Wert verän- dert wird»
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass das zwischen der Unterbrechung der Kraftstoffzufuhr und dem Stillstand (S) des Motors (10) an die Kurbelwelle (12) abgegebene Drehmoment der Elektromaschine (22) in Abhängigkeit' von der momentanen Steigung einer Drehzahlkurve der Kurbelwelle (12) verändert wird.
8. Verfahren nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass ein zwischen der Unterbrechung der Kraftstoffzufuhr und dem Stillstand (S) des Motors (10) an die Kurbelwelle (12) abgegebenes Drehmoment der Elektromaschine (22) in Abhängigkeit von einem in der Steuerung (32, 34) gespeicherten Kennfeld verändert wird.
9. Verfahren nach einem der Ansprüche 4 bis 8,
- dadurch gekennzeichnet, dass die Elektromaschine (22) zwischen der Unterbrechung der Kraftstoffzufuhr und dem Stillstand (S)- des Motors (10) ein Drehmoment an die Kurbelwelle (12) abgibt, dessen Richtung zur Richtung eines trägheitsbedingten Drehmoments des Motors (10) entgegengesetzt ist.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass das Drehmoment der Elektromaschine (22) vergrößert wird, wenn die momentane Steigung einer Drehzahlkurve des Verbrennungsmotors (10) zwischen der Unterbrechung der Kraftstoffzufuhr und dem Stillstand (S) des Motors (10) flacher wird.
11. Verfahren nach einem der Ansprüche 4 bis 8, dadurch gekennzeichnet, dass die Elektromaschine (22) zwischen der Unterbrechung der Kraftstoffzu- fuhr und dem Stillstand (S) .des Motors (10) ein Drehmoment an die Kurbelwelle (12) abgibt, dessen Richtung zur Richtung eines trägheitsbedingten Drehmoments des Motors (10) gleichgerichtet ist.
12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass das Drehmoment der Elektromaschine (22) verkleinert wird, wenn die momentane Steigung einer Drehzahlkurve des Verbrennungsmotors (10) zwischen der Unterbrechung der Kraftstoffzufuhr und dem Stillstand (S) des Motors (10) flacher wird.
13. Verfahren nach einem der Ansprüche 4 bis 12, dadurch gekennzeichnet, dass das von der Elektroma- schine (22) an die Kurbelwelle (12) abgegebene Drehmoment mit abnehmender Drehzahl der Kurbelwelle (12) verringert wird.
14. Verfahren nach einem der Ansprüche 4 bis 13, dadurch gekennzeichnet, dass die Drehzahl des
Verbrennungsmotors (10) so gesteuert oder geregelt wird, dass sie zwischen der Unterbrechung der Kraftstoffzufuhr und dem Stillstand (S) des Motors (10) degressiv abnimmt.
15. Verfahren nach einem der Ansprüche 4 bis 14, dadurch gekennzeichnet, dass die Elektromaschine (22) bei Stillstand (S) des Motors (10) abgeschaltet wird.
PCT/DE2003/000589 2002-08-13 2003-02-25 Kraftfahrzeug mit hybridantrieb sowie verfahren zum betreiben desselben WO2004018246A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10236954.2 2002-08-13
DE10236954 2002-08-13

Publications (1)

Publication Number Publication Date
WO2004018246A1 true WO2004018246A1 (de) 2004-03-04

Family

ID=31895546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2003/000589 WO2004018246A1 (de) 2002-08-13 2003-02-25 Kraftfahrzeug mit hybridantrieb sowie verfahren zum betreiben desselben

Country Status (1)

Country Link
WO (1) WO2004018246A1 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004062940A1 (de) * 2004-12-28 2006-07-13 Volkswagen Ag Verfahren zum Betreiben eines Hybridantriebs eines Hybridfahrzeugs
DE102005039920A1 (de) * 2005-08-24 2007-03-08 Zf Friedrichshafen Ag Verfahren zum Abschalten des Verbrennungsmotors bei einem mit einem elektrodynamischen Antriebssystem ausgerüsteten Fahrzeug
WO2007045970A1 (en) 2005-10-18 2007-04-26 Eaton Corporation Method and system for shutting down an engine in a hybrid vehicle
WO2014030368A1 (ja) 2012-08-22 2014-02-27 日本エクス・クロン株式会社 アルミニウムを燃料として利用する方法
WO2014162471A1 (ja) * 2013-04-01 2014-10-09 トヨタ自動車株式会社 内燃機関の停止制御装置
WO2017012784A1 (de) * 2015-07-22 2017-01-26 Robert Bosch Gmbh Verfahren zum ermitteln einer drehmomentgenauigkeit eines von einem riemen-getriebenen startergenerator einer brennkraftmaschine auf die brennkraftmaschine übertragenen drehmoments
WO2017153399A1 (de) * 2016-03-09 2017-09-14 Bayerische Motoren Werke Aktiengesellschaft Start-stopp-einrichtung zum einleiten eines automatischen abschaltvorgangs einer antriebsmaschine
CN110877608A (zh) * 2019-11-28 2020-03-13 东风商用车有限公司 同轴并联混动商用车停机振动抑制控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0839683A2 (de) * 1996-10-29 1998-05-06 Toyota Jidosha Kabushiki Kaisha Antriebsanordnung, Motorsteuerung und Verfahren zur Steuerung der Antriebsanordnung und des Motors
DE19936885A1 (de) * 1999-08-05 2001-02-22 Daimler Chrysler Ag Verfahren zum Abstellen einer Brennkraftmaschine
DE10132655A1 (de) 2000-07-05 2002-03-07 Visteon Global Tech Inc Verbrennungsmotorabschaltsystem für ein elektrisches Hybridfahrzeug

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0839683A2 (de) * 1996-10-29 1998-05-06 Toyota Jidosha Kabushiki Kaisha Antriebsanordnung, Motorsteuerung und Verfahren zur Steuerung der Antriebsanordnung und des Motors
DE19936885A1 (de) * 1999-08-05 2001-02-22 Daimler Chrysler Ag Verfahren zum Abstellen einer Brennkraftmaschine
DE10132655A1 (de) 2000-07-05 2002-03-07 Visteon Global Tech Inc Verbrennungsmotorabschaltsystem für ein elektrisches Hybridfahrzeug

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004062940A1 (de) * 2004-12-28 2006-07-13 Volkswagen Ag Verfahren zum Betreiben eines Hybridantriebs eines Hybridfahrzeugs
DE102005039920A1 (de) * 2005-08-24 2007-03-08 Zf Friedrichshafen Ag Verfahren zum Abschalten des Verbrennungsmotors bei einem mit einem elektrodynamischen Antriebssystem ausgerüsteten Fahrzeug
DE102005039920B4 (de) * 2005-08-24 2018-06-07 Zf Friedrichshafen Ag Verfahren zum Abschalten des Verbrennungsmotors bei einem mit einem elektrodynamischen Antriebssystem ausgerüsteten Fahrzeug
WO2007045970A1 (en) 2005-10-18 2007-04-26 Eaton Corporation Method and system for shutting down an engine in a hybrid vehicle
US8210294B2 (en) 2005-10-18 2012-07-03 Eaton Corporation Method and system for shutting down an engine in a hybrid vehicle
WO2014030368A1 (ja) 2012-08-22 2014-02-27 日本エクス・クロン株式会社 アルミニウムを燃料として利用する方法
WO2014162471A1 (ja) * 2013-04-01 2014-10-09 トヨタ自動車株式会社 内燃機関の停止制御装置
CN107849995A (zh) * 2015-07-22 2018-03-27 罗伯特·博世有限公司 用于获取从内燃机的、带传动的起动器发电机传递到内燃机的转矩的转矩精度的方法
WO2017012784A1 (de) * 2015-07-22 2017-01-26 Robert Bosch Gmbh Verfahren zum ermitteln einer drehmomentgenauigkeit eines von einem riemen-getriebenen startergenerator einer brennkraftmaschine auf die brennkraftmaschine übertragenen drehmoments
US10557449B2 (en) 2015-07-22 2020-02-11 Seg Automotive Germany Gmbh Method for ascertaining a torque accuracy of a torque transmitted from a belt-driven starter-generator of an internal combustion engine to the internal combustion engine
CN107849995B (zh) * 2015-07-22 2020-11-20 索恩格汽车德国有限责任公司 用于获取从内燃机的、带传动的起动器发电机传递到内燃机的转矩的转矩精度的方法
WO2017153399A1 (de) * 2016-03-09 2017-09-14 Bayerische Motoren Werke Aktiengesellschaft Start-stopp-einrichtung zum einleiten eines automatischen abschaltvorgangs einer antriebsmaschine
CN108778884A (zh) * 2016-03-09 2018-11-09 宝马股份公司 用于引入发动机的自动的关断过程的起动停止设备
US10549755B2 (en) 2016-03-09 2020-02-04 Bayerische Motoren Werke Aktiengesellschaft Start-stop device for initiating an automatic switch-off process of a driving machine
CN108778884B (zh) * 2016-03-09 2024-04-26 宝马股份公司 用于引入发动机的自动的关断过程的起动停止设备
CN110877608A (zh) * 2019-11-28 2020-03-13 东风商用车有限公司 同轴并联混动商用车停机振动抑制控制方法

Similar Documents

Publication Publication Date Title
EP1682372B1 (de) Hybridantriebssystem für ein kraftfahrzeug
EP1070837B1 (de) Vorrichtung und Verfahren zur Leistungssteigerung einer mittels Abgasturboladers aufgeladenen Brennkraftmaschine
DE102012209205B4 (de) Verfahren zum ausführen einer getriebeumschaltung in einem antriebsstrangsystem mit einer drehmomentmaschine und einer brennkraftmaschine
DE112008002852B4 (de) Steuerungsvorrichtung und Verfahren zur Steuerung eines an Fahrzeugen montierten Verbrennungsmotors
EP1536967B2 (de) Kraftfahrzeug mit einem hybridantrieb sowie verfahren zur leerlaufregelung eines hybridantriebs eines kraftfahrzeugs
DE102012209081B4 (de) Verfahren und Vorrichtung zum Betreiben eines Antriebsstrangsystems in Ansprechen auf eine Nebenaggregatslast
WO2006002724A1 (de) Verfahren zum betreiben eines hybrid-kraftfahrzeuges
EP1073842A1 (de) Verfahren und startersystem zum starten eines verbrennungsmotors
DE102011086937B4 (de) Fahrzeug-Energieversorgungsvorrichtung
DE10301470A1 (de) Kontrollvorrichtung und-Verfahren für eine Vorrichtung zum Speichern von Energie in motorisierten Fahrzeugen
WO2008128674A1 (de) Hybridantriebsstrang
DE10236010A1 (de) Steuereinrichtung sowie Verfahren für ein Fahrzeug, welches mit einem Verbrennungsmotor ausgerüstet ist
DE10304632A1 (de) Verwendung einer integrierten Anlasserlichtmaschine zum Verhindern des Abwürgens eines Verbrennungsmotors
DE102015213665B4 (de) Motorsteuergerät
DE60301978T2 (de) System und Verfahren zur Steuerung der Stromversorgung eines Hybrid-Fahrzeugs
DE3205722A1 (de) Fremdgezuendete brennkraftmaschine, insbesondere fuer ein kraftfahrzeug, mit einer lastverstellvorrichtung
WO2017012785A1 (de) Verfahren zum ermitteln einer drehmomentgenauigkeit eines von einem riemen-getriebenen startergenerator einer brennkraftmaschine auf die brennkraftmaschine übertragenen drehmoments
DE60110528T2 (de) Gerät und Methode zur Unterdrückung der Erschütterungen, die durch den Start eines Innenverbrennungsmotors verursacht wurden
DE60112349T2 (de) Vorrichtung und Verfahren zur Posionierung einer Brennkraftmaschine in einer startgünstigen Position
WO2004018246A1 (de) Kraftfahrzeug mit hybridantrieb sowie verfahren zum betreiben desselben
DE10100525A1 (de) Verfahren zur Steuerung von Startmoment und Startleistung einer Verbrennungskraftmaschine
DE19858348B4 (de) Fahrzeug-Antriebssystem
EP1457652A2 (de) Verfahren und Steuergerät zur Steuerung eines Verbrennungsmotors in einem Start-Stopp-Betrieb
DE69402532T2 (de) Verfahren und vorrichtung zur verminderung der schädlichen abgase einer kraftfahrzeug-brennkraftmaschine
EP1128044A2 (de) Fahrzeug-Antriebssystem und Verfahren zum Betrieben eines Fahrzeug-Antriebssystems

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP