WO2004011502A1 - ポリウロン酸誘導体およびポリウロン酸誘導体を含んでなる水性インク組成物 - Google Patents

ポリウロン酸誘導体およびポリウロン酸誘導体を含んでなる水性インク組成物 Download PDF

Info

Publication number
WO2004011502A1
WO2004011502A1 PCT/JP2003/009681 JP0309681W WO2004011502A1 WO 2004011502 A1 WO2004011502 A1 WO 2004011502A1 JP 0309681 W JP0309681 W JP 0309681W WO 2004011502 A1 WO2004011502 A1 WO 2004011502A1
Authority
WO
WIPO (PCT)
Prior art keywords
pigment
acid
triamine
oxypropylene
acid derivative
Prior art date
Application number
PCT/JP2003/009681
Other languages
English (en)
French (fr)
Inventor
William Marritt
Original Assignee
Seiko Epson Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corporation filed Critical Seiko Epson Corporation
Priority to AU2003252735A priority Critical patent/AU2003252735A1/en
Priority to CNB038184346A priority patent/CN100338097C/zh
Priority to JP2005505582A priority patent/JP4059269B2/ja
Priority to EP03771432A priority patent/EP1548034A4/en
Priority to US10/523,455 priority patent/US7195666B2/en
Publication of WO2004011502A1 publication Critical patent/WO2004011502A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/324Inkjet printing inks characterised by colouring agents containing carbon black
    • C09D11/326Inkjet printing inks characterised by colouring agents containing carbon black characterised by the pigment dispersant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0084Guluromannuronans, e.g. alginic acid, i.e. D-mannuronic acid and D-guluronic acid units linked with alternating alpha- and beta-1,4-glycosidic bonds; Derivatives thereof, e.g. alginates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Definitions

  • the present invention relates to a novel polyuronic acid derivative and an ink composition containing the same as a dispersant or an additive polymer, and particularly to an ink composition used in an ink jet recording system.
  • Ink-jet printing is a non-impact printing method in which a printer responds to digital signals generated by a computer to produce ink droplets. Ink droplets adhere to substrates such as paper and transparent films. Inkjet printers have become widespread due to their print quality, low cost, relatively quiet operating noise, and graphic forming capabilities. Inks used in inkjet printers can be categorized as dye-based inks or pigment-based inks. Dye-based inks are satisfactory for most applications, but generally have poor light and waterfastness. Since printed matter is expected to have some durability, it is problematic that printed images obtained with dye-based inks are inferior in light fastness and water fastness. On the other hand, pigment-based inks are excellent in light resistance and water resistance. Therefore, pigment-based inks are generally preferred over dye-based inks in printed matter requiring durability.
  • the colorant spreads and penetrates along the length of the cellulose fiber, as long as the dispersion stability of the colorant is not lost by contact with paper. It is sucked to the same extent as the solvent.
  • the edges of the obtained colored dots are poor in clarity and may be accompanied by feathering.
  • Dispersants that disperse pigments in water are known to those skilled in the art and have been used to apply coatings, such as paints, to various substrates.
  • a dispersant using polyperonic acid has also been proposed.
  • U.S. Pat. No. 6,242,529 describes a dispersant in which the hydrophobic polymer is a polyperonic acid derivative covalently bonded to the reducing end of polyperonic acid.
  • the hydrophobic polymer comprises at least one monomer selected from the group consisting of styrene or substituted styrene, vinyl pyridine or substituted pyridine, methacrylate, acrylate, atari ethryl, methacryl ethryl, butadiene and isoprene.
  • the resulting homopolymer or copolymer Hydrophobic polymers also include poly (dimethylsiloxane), hydrophobic polyamides, and hydrophobic polyamines.
  • a self-dispersible pigment in the ink composition can be mentioned.
  • self-dispersing generally indicates, such pigments do not require a dispersant to stabilize the pigment dispersion in the aqueous carrier, such as a polymer dispersant or a surfactant.
  • a method of intentionally introducing a sufficient number of charged functional groups to the surface of the pigment particles is employed. This method is based on carbon black Widely applied to black face department.
  • aqueous pigment based inks that use self-dispersed pigments in their ink compositions have advantages.
  • the superiority in print quality is based on the fact that the use of self-dispersing pigments can produce inks having a relatively high proportion of pigment components.
  • the higher the pigment component ratio the higher the optical density.
  • higher optical densities generally provide consumer-favored images as compared to images that are perceived as “dull” due to lower optical densities.
  • aqueous pigment-based ink containing a self-dispersible pigment when printed on a special coated paper, poor gloss and insufficient adhesion may be accompanied. This defect is generally caused by the absence of a polymer dispersant in the ink.
  • a resin dispersant which is a resin and partially adsorbed on the surface of the pigment, serves as a lubricant to smooth the rough surface of the pigment, as well as the adhesion between the pigment particles and the adhesion between the pigment particles and the specialty paper surface. It acts both as an intermediary binder.
  • a simple and clear way to address the lack of adhesion of inks using self-dispersed pigments is to add a binder resin to the ink composition.
  • the binder resin which functions as a gloss material By containing the binder resin which functions as a gloss material, the gloss of the printed image on the specially coated paper is also improved as compared with the printed image obtained with a pure self-dispersible pigment composition.
  • self-dispersed pigments / binders have a higher level of adhesion and gloss than can normally be obtained by using non-self-dispersed pigments, which require a dispersant to obtain a stable dispersion. The combination of that can be quite inferior.
  • the present inventors have now found that certain novel polyperonic acid derivatives are excellent as a dispersant-added polymer.
  • the present invention is based on such findings.
  • the present invention provides a pigment-dispersed ink composition capable of obtaining a reliable printing performance, especially on plain paper, and obtaining a printed image with excellent print quality, and a dispersant for realizing this ink composition. For that purpose.
  • the present invention provides a self-dispersion pigment capable of obtaining reliable printing performance on plain paper and specially coated paper, and obtaining a printed image having excellent print quality, particularly an image having excellent gloss and print fixability. It is intended to provide an ink composition and a polymer added thereto.
  • novel polyperonic acid derivative according to the present invention is obtained by binding polyuronic acid to glyceryl poly (oxypropylene) triamine via its reducing terminal by reductive amination.
  • the polyuronic acid derivative is obtained by binding one polyuronic acid to glycerylpoly (oxypropylene) triamine via its reducing end by reductive amination.
  • the glyceryl poly (oxypropylene) triamine is represented by the following general formula.
  • the average value of the sum of x + y + z is 10 to 150.
  • glyceryl poly (oxypropylene) triamine is represented by X + y in the above formula.
  • the average value of the sum of + z is 10 to 100.
  • the polyuronic acid derivative comprises 2 to 6
  • Polyuronic acid is bonded to glyceryl poly (oxypropylene) triamine via its reducing end by reductive amination
  • the glyceryl poly (oxypropylene) triamine is represented by the following general formula: It is represented by
  • glyceryl poly (oxypropylene) triamine is represented by the formula x + y + The average value of the sum of z is 101 0.
  • the aqueous ink composition according to the present invention comprises at least water as a main solvent, a pigment, and the above-mentioned polyperonic acid derivative as a dispersant for dispersing the pigment in the ink.
  • the aqueous ink composition according to the present invention comprises at least water as a main solvent, a self-dispersible pigment, and the above polyperonic acid derivative.
  • novel polyperonic acid derivatives according to the invention consist of two parts. That is, a hydrophilic polyperonic acid portion and a hydrophobic polymer portion derived from glyceryl poly (oxypropylene) triamine.
  • the novel polyperonic acid derivative according to the present invention functions as a dispersing agent for dispersing the facial component in the ink composition according to the present invention.
  • the pigment-dispersed aqueous ink composition thus obtained provides reliable printing performance and a printed image having excellent print quality, especially on plain paper.
  • the sparse Polyuric acid derivatives having both an aqueous part and a hydrophilic part are expected to perform better than the conventionally known two-part type dispersant. Therefore, a pigment having a stable dispersion can be obtained, and a printed image without fusing can be obtained.
  • the hydrophobic part of the polyuronic acid derivative adheres to the pigment surface, and the pigment particles are well dispersed in the ink composition.
  • pockets alternately arranged up and down in a size suitable for binding to a polyvalent cation, particularly a divalent calcium ion, are formed by a carboxyl group and a hydroxyl group. Formed.
  • a polyvalent cation particularly a divalent calcium ion
  • the polyuronic acid is selected from the group of polyuronic acids consisting of 1,4-linked poly ( ⁇ -D-galataturonic acid) and 1,4-linked poly (hi-L-guluronic acid).
  • Polyuronic acid can be obtained from natural substances and may contain small amounts of other non-peronic acid sugars.
  • 1, 4, conjoining poly shed one D- Garakurron acid
  • impurities generally non Uron acid saccharides, rhamnose.
  • the impurities are generally peronic acid sugars and mannuronic acid.
  • the D-galataturonic acid content of the 1,4-linked poly ( ⁇ -D-galatatu acid) used in the present invention is preferably more than 85% by weight, more preferably 90% by weight. Exceed. More preferably, the D-galataturonic acid content is greater than 95% by weight.
  • the L-guluronic acid content of the 1,4-linked poly (a-L-guluronic acid) used in the present invention is preferably more than 80% by weight, more preferably more than 85% by weight. More preferably, the L-guluronic acid content is greater than 90% by weight.
  • 1,4-Poly (a-D-galataturonic acid) hydrolyzes Pectin, a natural hydrocolloid obtained from fruits such as lemon, lime, grapefruit, orange, mango, apple, sunflower and sugar beet. And by deesterification.
  • 1,4-linked poly (hy-D-galatatronic acid) product hydrolysis reaction solution, (1) evaporate the solvent, (2) dissolve the product Promotes precipitation by the addition of a low solvent, or What is necessary is just to combine (1) and (2).
  • 1,4—Bound poly (Hi-I-L-Gluco acid) It can be obtained by partially hydrolyzing the resulting natural polysaccharide, alginic acid, and then selectively precipitating it. Selective precipitation can be performed by adding an appropriate amount of acetic acid to an aqueous solution of the 1,4-linked poly (1-D-guluronate) product.
  • the number average molecular weight of the polyperonic acid used in the present invention is from about 700 to 15,000 ', and more preferably from about 700 to about 10,000.
  • the hydrophobic polymer portion is derived from glyceryl poly (oxypropylene) triamine represented by the following general formula.
  • the average value of the sum of x + y + z is 10 or more and 150 or less, more preferably 10 or more and 100 or less.
  • the average of the sum of x + y + z is 30 or more and 250 or less, more preferably 30 or more and 120 or less.
  • Glyceryl poly (oxypropylene) triamine is commercially available from Huntsman Corporation (Performance Chemicals Division, Houston, Texas, USA). Such compounds are highly reactive in RIM and spray applications in polyurethane systems. Used as a responsive soft block. In the epoxy system, it is used as a thermoplasticity modifier and an adhesion promoter. It is also used as a modifier and curing agent in polyurethane elastomers and foams. At present, Huntsman Corporation sells two glyceryl poly (oxypropylene) triamines with different average molecular weight distributions, Jeff amine XJT-509 and Jeff amine T-5000. ing.
  • the average molecular weight of Jeff amine XJT-509 is about 3,000, and the average of the sum of X + y + ⁇ is about 50.
  • the average molecular weight of J efi amine T-5000 is about 5,000, and the average of the sum of x + y + z is about 80.
  • J eff amine XJT—509 and J ef ⁇ amine T—5000 are both hydrophobic polymers, the two products are insoluble in water, while alcoholic solvents Is extremely high.
  • the polyuronic acid derivative according to the present invention is one in which one polyuronic acid is bonded to glyceryl poly (oxypropylene) triamine via its reducing end by reductive amination.
  • the first consideration is to use at least three times more triamine molecules per polyuronic acid to bind only one polyuronic acid molecule per glyceryl poly (oxypropylene) triamine molecule. It is necessary. Triamines have three amine functions, two of which are on the poly (oxypropylene) branch attached to the oxygen atom of the terminal hydroxyl group of the glyceryl unit, and one is the same glyceryl. Hydroxyl acid in the center of the unit At the poly (oxypropylene) branch attached to the elementary atom. Preferably, a solution of polyuronic acid is added to a solution containing at least 5 equivalents or more of glyceryl poly (oxypropylene) triamine. By-products due to the binding of two or more small amounts of polyperonic acid to glyceryl poly (oxypropylene) triamine cannot be practically avoided, and mixtures containing these by-products are also included in the scope of the present invention.
  • the starting material, polyperonic acid itself is a complex mixture of polyperonic acid molecules with a relatively wide degree of polymerization.
  • the starting material, polyuronic acid it is possible to apply an expensive and time-consuming separation method to the starting material, polyuronic acid, in order to obtain a pure component containing polyperonic acid molecules with exactly the same degree of polymerization.
  • such a method is economically unsuitable and generally unnecessary in view of the performance required of the dispersant product.
  • the starting material glyceryl poly (oxypropylene) triamine
  • glyceryl poly (oxypropylene) triamine is itself a complex mixture of glyceryl poly (oxypropylene) triamine molecules with a relatively large number of propylene oxide units. is there. Also, the distribution of propylene oxide units among the three glyceryl hydroxyl groups is quite different.
  • the combination of one molecule of polyuronic acid and one molecule of glyceryl poly (oxypropylene) triamine under realistic reaction conditions, even if the two starting materials are structurally pure components Produces a mixture of three isomers. That is, about one-third is statistically one polyuronic acid attached to one of the two poly (oxypropylene) branches attached to the oxygen atom of the terminal hydroxyl group of the glyceryl unit. Approximately one-third, one of the two poly (oxypropylene) branches attached to the oxygen atom of the terminal hydroxyl group of the glyceryl unit contains one polyuronic acid.
  • a third consideration is that, although it is not absolutely necessary to combine only one polyperonic acid molecule per glyceryl poly (oxypropylene) triamine molecule, the reaction of the two reactants is performed in a homogeneous solution. It is desirable to do this at Performing the initial mixing of the two reactants under uniform conditions is desirable to achieve the condition that glyceryl poly (oxypropylene) triamine molecules are present in excess relative to polyuronic acid. In the case of heterogeneous mixing, mass transfer constraints make it difficult to achieve molecular excess conditions at the molecular scale.
  • the rate at which one reactant can move to a different phase containing one reactant will depend on the interfacial portion present between the reactants. It is limited by the size of the surface area. In the worst case, (1) the glyceryl poly (oxypropylene) triamine moves preferentially to the phase containing the polyuronic acid component as compared to the reverse transfer, or (2) the reactant reacts with respect to the phase transfer rate. Reaction may be faster.
  • phase transfer speed is limited, and after one molecule of glyceryl poly (oxypropylene) triamine moves to the phase containing polyuronic acid, three molecules of polyuronic acid become one of glyceryl poly (oxypropylene) triamine. The probability of binding to the molecule increases. Such a situation is contrary to the original purpose of using excess glyceryl poly (oxypropylene) triamine reactant.
  • the polyuronic acid component has a strong hydrophilic property
  • the glyceryl poly (oxypropylene) triamine component has a hydrophobic structure. Therefore, the selection of a compatible solvent is raised as a problem.
  • the inventor has found that aqueous solutions or slurries of polyperonic acid can be used in glyceryl poly (oxy Propylene)
  • a slow addition to a methanol solution containing triamine and a small amount of water produced a homogeneous solution.
  • the homogeneity of the final mixture is not lost if some of the methanol is replaced with higher alcohols such as ethanol, ⁇ ⁇ -propanol and isopropanol, methanol is considered to be the preferred component.
  • polyperonic acid derivative in the polyperonic acid derivative according to the second aspect of the present invention, two to six polyperonic acids are covalently bonded to glycerylpoly (oxypropylene) triamine via their reducing ends by reductive amination. It becomes.
  • the first consideration is that both the starting materials glyceryl poly (oxypropylene) triamine and polyperonic acid are complex mixtures of molecules.
  • the first factor that adds complexity to glyceryl poly (oxypropylene) triamines is the total number of propylene oxide units per molecule. Normally, a Gaussian distribution approximation centered around the peak value is taken.
  • a second factor contributing to complexity with a constant total number of propylene oxide units is that the propylene oxide units on the three poly (oxypropylene) chains extend from three different glyceryl hydroxyl groups in the structure. There is a number distribution of The only factor that adds complexity to polyuronic acid is the total number of peruronic acid units per molecule, ignoring the impurity saccharides.
  • the starting materials poly (oxypropylene) triamine and polyperonic acid are considered to be of an average structure having an average molecular weight.
  • (1) a combination of a high polymerization degree triamine and a low polymerization degree polyperonic acid, or (2) a combination of a low polymerization degree triamine and a high polymerization degree polyperonic acid The resulting product may differ significantly in its properties from the "average" product obtained by the combination of the two "average” starting materials.
  • the products of the extreme combinations are negligible in the overall product mixture, such products You don't have to discuss it.
  • the polyuronic acid derivative in the present invention is necessarily a complex mixture.
  • an expensive and time-consuming isolation method is applied to both starting materials to obtain the pure components, and then the product is expensive and time-consuming to obtain the pure components.
  • such a method is economically unsuitable and generally unnecessary when considering the required performance of the dispersant product.
  • glyceryl poly (oxypropylene) It has been found that it is effective to bind two or more polyuronic acids per triamine molecule.
  • the average molecular weight of the starting polyperonic acid is relatively small, and (2) the average molecular weight of glyceryl poly (oxypropylene) triamine. If is large, is considered.
  • the number average molecular weight of the polyuronic acid is at or near the lower limit of the specification in the present invention, it is preferable to improve the water solubility of the polyuronic acid derivative.
  • the present inventors have found that the value of x + y + z is about 80, such as Jefamine T-500, and that the number average molecular weight is near the upper limit of the specification.
  • (oxypropylene) triamine it has been found that it is preferable to covalently bind two or more polyperonic acids per triamine molecule in order to improve the water solubility of the polyuronic acid derivative.
  • reductive amination can covalently link up to 6% of polyuronic acid to one glyceryl poly (oxypropylene) triamine, but the preferred number of covalent bonds in the present invention is two It is.
  • the unmodified one of the three original amine moieties has the role of adsorbing the hydrophobic part of the dispersant on the pigment particle surface. Is also good.
  • a very important consideration in covalently binding two or more polyperonic acids per glyceryl poly (oxypropylene) triamine is that the reaction should be carried out in a homogeneous solution. That is. Since the polyperonic acid moiety is hydrophilic and the glyceryl poly (oxypropylene) triamine moiety is structurally hydrophobic, finding a suitable solvent is a potential problem. The present inventor We found that a homogeneous solution was formed by slowly adding an aqueous solution of polyperonic acid to an aqueous methanol solution containing excess glyceryl poly (oxypropylene) triamine.
  • a strong polar non-aqueous solvent In order to obtain a homogeneous reaction solution in which two or more polyuronic acids can be covalently bonded to one glyceryl poly (oxypropylene) triamine, a strong polar non-aqueous solvent must be effective.
  • Practical solvents of this type include dimethinolesulfoxide (DMSO), snoreholane, 1,3 dimethinolay 2-imidazolidinone (DMI) and N-methyl-2-pyrrolidine (NMP).
  • DMSO dimethinolesulfoxide
  • DI 1,3 dimethinolay 2-imidazolidinone
  • NMP N-methyl-2-pyrrolidine
  • glyceryl poly (oxypropylene) triamine in order to promote the dissolution of glyceryl poly (oxypropylene) triamine, it has been found that it is effective to add a low molecular weight alcohol as an auxiliary solvent.
  • a preferred method is to prepare separate solutions containing appropriate equivalents of the starting materials, polycarboxylic acid and glyceryl poly (oxypropylene) triamine. Then, mix the solution and stir well. After a time sufficient to complete or nearly complete glycosylation, the reductive amination reaction occurs.
  • the above-mentioned reductive amination reaction can be performed by a method known to those skilled in the art. As described above, this reaction is desirably performed in a solution in which the reactants are uniform.
  • the reductive amination is conveniently carried out by using a borane compound, a hydrogen hydride compound or a cyano hydrogen hydride compound.
  • borane compounds include: borane-ammonia compound, borane-tsr ⁇ -butylamine compound, porane ⁇ , ⁇ -getylayurin compound, borane- ⁇ , ⁇ -diisopropylethylamine compound, borane-dimethylamine compound, borane- ⁇ —Ethyl- ⁇ —isopropylaniline compounds, porane-41-ethylmorpholine compounds, porane-morpholine compounds, borane-pyridine compounds, borane-triethylamine compounds, borane-trimethylamine compounds, and the like.
  • Commonly used boron hydride compounds include sodium borohydride, potassium borohydride, lithium borohydride, tetramethylammonium borohydride and tetrabutylammonium borohydride.
  • Commonly used cyanoborohydride compounds are: Sodium cyanoborohydride, potassium cyanoborohydride, lithium borohydride and tetrabutylammonium borohydride.
  • Another convenient and selective method is catalytic hydrogenation using a metal catalyst.
  • Common metal catalysts include all Group 8 metals, but nickel, palladium, platinum and ruthenium are preferred. This metal catalyst may be used in a supported form or may be used without being supported. Hydrogen pressure is 10 O psi
  • the reaction temperature is between 10 and 100 ° C, but between 30 and 70. C is more preferred.
  • Reagents that can be used for reductive amination but have lower selectivity include 1) zinc and hydrochloric acid, 2) iron pentacarboel and alcoholic potassium hydroxide, and 3) formic acid.
  • the product is isolated by evaporating the reaction solvent and then selectively dissolving unreacted glycerylpoly (oxypropylene) triamine. It can be easily realized by washing the reaction product with a solvent that does not dissolve the product. Unreacted glyceryl poly (oxypropylene) triamine can be reused as a starting material after recovery. After washing, glyceryl poly
  • the product can be isolated by a method known to those skilled in the art. If the reductive amination is carried out using a soluble borane compound or borane salt, a preferred first step for the isolation of the product is complete distillation of the reaction solution under reduced pressure. Finally, in the same manner as described above, the unreacted glyceryl poly (oxypropylene) triamine is selectively dissolved, but the reaction product is washed with a solvent that does not dissolve the product to prepare a solution. If the reductive amination is carried out by heterogeneous catalytic hydrogenation, the product is isolated as above, after first removing the insoluble hydrogenation catalyst by filtration. Make an alkaline solution of the product using the appropriate base (examples are given below).
  • the reductive amination process may be performed by a patch process or a method known to those skilled in the art. It can be done by either continuous process.
  • the polyuronic acid derivative in the present invention is similar to the derivative described in US Pat. No. 6,242,529, but the derivative in the present invention is a low-cost hydrophobic polymer, namely, glyceryl poly (O).
  • the major difference is that it can be manufactured from triamine.
  • the polyuronic acid derivative in the present invention can be used as it is without modifying the low-cost hydrophobic polymer (glyceryl poly (oxypropylene) triamine), that is, one step at the reducing end of polyperonic acid. By carrying out the reductive amination reaction of only one, it can be produced in an extremely simple process.
  • the pigment-dispersed aqueous ink composition according to the third aspect of the present invention comprises: water as a main solvent; a pigment; and a pigment dispersant comprising the polyperonic acid derivative according to the first or second aspect. It comprises.
  • the content of the pigment dispersant composed of the polyperonic acid derivative is about 0.1 to 20% by weight, more preferably 0.1 to 10% by weight, based on the ink composition.
  • the pigment in the ink composition according to the present invention is at least one selected from the group consisting of organic and inorganic pigments. “Pigment” in the present invention refers to an insoluble colorant.
  • the size of the pigment particles must be small enough to allow the pigment-dispersed ink to fly freely through the ink jet printing device, especially a discharge nozzle typically having a diameter in the range of 10 to 50 microns. Nanare.
  • the particle size of the pigment is preferably 10 microns or less, more preferably 0.1 microns or less.
  • the selected pigment can be used in dry or wet form.
  • the pigment is produced in an aqueous medium, and the pigment is obtained as a water wet presscake.
  • the pigment does not agglomerate as in the dry form.
  • Pigments in the form of wet presscakes do not require as much deagglomeration as dry pigments in the manufacture of pigment dispersants.
  • Pigments that can be used in the present invention include the following: Rafers Toyello GF (Dai Nippon Ink & Chemicals, Inc .; CI Pigment Yellow 12), Shimla Firth Toyelo GR F (Dainippon Ink & Chemicals, Inc .; C.I. Pigment Yellow 13), Shimla Firth Toyello 5 GF (manufactured by Dainippon Ink and Chemicals, Inc .; C.I. Pigment Yellow 14), Irgalite Yellow CG (manufactured by Ciba-Geigy; C.I.
  • Pigment Yellow 16 Shimla Furst Yellow HGF (manufactured by Dainippon Ink and Chemicals, Inc .; C.I. Pigment Yellow 17), Shimla Furst Toyello 4 11 (manufactured by Dainippon Ink and Chemicals, Inc .; C.I. Yello 73), Shimla Firth Toyello 411 N (manufactured by Dainippon Ink and Chemicals, Inc .; C.I. Pigment Yellow 74), Shimla Firth Toyero 41 81 C. I. Pigment Yellow 83; N Chromomo phthal Yellow 3G (Ciba-Geigy; C. I.
  • Pigment Yellow 93 Chromo phthal Y ell ow GR (Ciba-Geigy; C.I. Pigment Yellow 95), Shimla Firth Toelow 4186 (Dainippon Inki Chemical Co., Ltd .; C.I. Pigment Yellow 97), Hansa Brilliant Yellow 10 GX (manufactured by Hoechst Celanese; C.I. Pigment Yellow 98), Permanent Yellow G3 R-0 1 (manufactured by Hoechst Celanese; C.I. Yellow 114), Chrome phtha 1 Yellow 8 G (Ciba-Geigy; C.I.
  • Pigment Yellow 128) Irgazin Yellow 5 GT (Ciba-Geigy; C. I. Pigment Yellow 1 29), Ho staperm Yellow H4G (manufactured by Hoechst Celanese; C. I. Pigment Yellow 15 1), Shimla Fast Yellow 4 192 (Dainippon Inki Chemical Industry) stock C. I. Pigment Yellow 154), Ho stape rm O range GR (Ho echst Celanese); C. I. Pigment Orange 43), P aliogen.
  • Pigment Darline 36 First Togen Super Red (manufactured by Dainippon Ink & Chemicals, Inc .; C.I. Pigment Violet 19), Firth Togen Super Biolet (manufactured by Dainippon Ink and Chemicals, Inc .; C.I. Pigment Violet 23); Monastral Maroon RT—229—D (manufactured by Ciba—Geigy; C.I. Pigment Bio Let 42), R av en 1 1 70
  • the amount of the pigment in the ink composition of the present invention ranges from about 0.1 to 30% by weight / 0 , more preferably from 0.1 to 20% by weight.
  • Water is the primary solvent for the pigment-dispersed aqueous ink composition of the present invention. Additional components that can be included in the ink composition are further described below.
  • aqueous carrier medium in the composition is between 70 and 99.8% by weight.
  • Suitable bases for this purpose include organic bases, alkanolamines, alkali metal hydroxides and mixtures thereof. Suitable bases include, for example: methinoleamine, dimethylamine, trimethylamine, morpholine, N-methylmonoreolin, monoethanolanolamine, diethanolamine, triethanolamine, N-methamine.
  • Rumonoethanolamine N, N-dimethyl-monoethanolamine, N-methyl-ethanolanolamine, triisopropanolamine, tetramethylammonium hydroxide, ammonia, lithium hydroxide, sodium hydroxide, potassium hydroxide, Rubidium hydroxide and cesium hydroxide.
  • the ink may optionally contain one or more water-soluble organic solvents.
  • Water-soluble organic solvents are well known.
  • Alcohols such as isopropyl alcohol and butyl alcohol;
  • Ketones such as acetone and methyl ethyl ketone;
  • Tetrahydrofuran and dioxane (4)
  • Ethyl acetate, esters such as propylene carbonate, (5) ethylene glycol, propylene glycol, butylene glycol, diethylene glycol / ethylene, triethylene glycol, polyethylene glycol, polyethylene glycol, etc.
  • the ink optionally contains one or more penetrating surfactants selected from the group consisting of anionic or nonionic surfactants.
  • anionic surfactant include a fatty acid salt, a higher alcohol sulfate salt, an alkylbenzene sulfonate and a higher alcohol phosphate salt.
  • Nonionic surfactants include, for example, ethylene oxide adducts of acetylene diol, ethylene oxide adducts of higher alcohols, ethylene oxide adducts of alkyl phenols, aliphatic ethylene oxide adducts, and fatty alcohol esters of higher alcohols.
  • Ethylene oxide addition Ethylene oxide addition of higher alkylamine, Ethylene oxide addition of fatty acid amide, Ethylene oxide addition of polypropylene glycol, Fatty acid ester of polyhydric alcohol, Alkanolamine fatty acid amide and Ethylene oxide propylene oxide Oxide copolymers and the like.
  • Acetylene-based diols or ethylene oxide-added acetylene-based diols marketed by Air Products and Chemicals, Inc., Allentown, PA, 18195, USA are preferably used. Examples of these include Surfynol 104 (Tet 2003/009681
  • Ethoxylated Z-propoxylated silicon-based surfactants sold by BYK Chemie GmbH in Germany are also preferably used.
  • the amount of the penetration-imparting surfactant in the ink is not particularly limited, preferably, 0. Range of 0 1-5 wt 0/0.
  • the ink may contain additives such as a pH buffer, a biocide, a viscosity modifier, an ultraviolet absorber, a corrosion inhibitor, and an antioxidant, in addition to the above-described surfactant for imparting permeability.
  • additives such as a pH buffer, a biocide, a viscosity modifier, an ultraviolet absorber, a corrosion inhibitor, and an antioxidant, in addition to the above-described surfactant for imparting permeability.
  • the amounts of all the compositions of the ink are selected such that the ink viscosity is less than 10 cps at 20 ° C.
  • the pigment-dispersed aqueous ink composition according to the present invention comprises water as a main solvent, a self-dispersible pigment, and the polyperonic acid derivative according to the first or second embodiment.
  • the amount of the polyperonic acid derivative is about 0.1 to 20% by weight, more preferably 0.1 to 1% by weight, based on the ink composition.
  • the self-dispersing pigment in the present invention is constituted by at least one pigment selected from the group consisting of self-dispersing organic pigments and inorganic pigments.
  • the carrier of the self-dispersion pigment is water.
  • the term “pigment” refers to a water-insoluble colorant, but as the particles of the self-dispersible pigment become smaller, it becomes difficult to distinguish it from water-soluble colorants, such as dyes. In particular, even if a large centrifugal force generated by an ultracentrifuge is applied to the dispersion of the self-dispersible pigment, a considerable amount of the self-dispersible pigment and the aqueous carrier may be incompletely separated from each other. There is.
  • the term “pigment” refers to a substantially water-insoluble colorant. Substantial means that the water-insoluble component is present in excess of 95% by weight.
  • the term "self-dispersed” is used to mean pigment modification and is used in the present invention. Further, it is defined as a pigment that does not require a dispersant, for example, a polymer dispersant or a surfactant, in order to obtain a stable dispersion of the pigment in an aqueous carrier.
  • a dispersant for example, a polymer dispersant or a surfactant
  • the stability of such dispersion is indicated by the steadiness of physical properties such as viscosity, surface tension, DH and particle size over time under actual or accelerated degradation conditions.
  • the density of pigments is higher than that of water, and it is inevitable that sedimentation occurs over time.
  • a high sedimentation rate indicates poor dispersion stability. Dispersions that exhibit high sedimentation rates can easily measure changes in physical properties associated with sedimentation.
  • the pigment used as a raw material of the self-dispersion pigment is selected from the following pigment groups, but is not limited thereto.
  • the black pigment and carbon black are produced by a known method, for example, a contact method, a carbonization method, a gas method, a thermal method and the like. Specifically, the following are listed.
  • Raven 1 170 Cold Chemicals; C.I. Pigment Black 7), Sushinore Black 4A (Degussa; C.I. Pigment Black 7), S CI 60 (Degussa; CI Pigment Black 7), S170 (Degussa; CI Pigment Plaque 7), FW18 (Degussa; CI Pigment Black) 7), FW200 (manufactured by Degussa; C.I.
  • Pigment Black 7 R aven 5000 (manufactured by Columbia Chemicals; C.I. Pigment Black 7), R aven 3500 (C ol C. I. Pigment Black 7), CD 7035 (Col umbian Ch. 1), CD 2038 (Colum bian Chemicals; C. I. Pigment Black 7), CD 7035 (Col umbian Ch. C. I. Pigment Black 7), CD 6026 (Columbian Chemicals; C.I. Pigment Black 7), CD 7004 (Columbian Chemicals) Company; C.I. Pigment Black 7), MA 1 00 (Mitsubishi Chemical Corporation; C.I. Pigment Black 7), No. 45 (Mitsubishi Chemical Corporation; C.I. Pigment Black 7), Vu1 can XC72R
  • the colored pigment other than black is not particularly limited, and a colored organic pigment can be used.
  • Colored organic pigments can be used as a raw material for self-dispersed pigments. Specifically, azo, phthalocyanine, quinatalidone, isoindolinone, dioxane, benzimidazolone, anthraquinone, and indane Includes tron and perylene pigments.
  • Pigments usable in the present invention include the following: Shimla First Yellow GF (manufactured by Dainippon Ink and Chemicals, Inc .; C.I. Pigment Yellow 12), and Shimla Firth Toyello GR F
  • Pigment Yellow 73 Shimla Firth Toelow 4 191 N (Dainippon Ink Chemical Co., Ltd .; C.I. Pigment Yellow 74), Shimura I-Firth Toyello 4 181 (manufactured by Dai-Honhon Ink Chemical Industry Co., Ltd .; C.I. Pigment Yellow 83), Chromo ophthal Yellow 3 G
  • Iant Yellow 10G X (manufactured by Hoechst Celanese; C.I. Pigment Yellow 98), Permanent Yellow G3R-01 (manufactured by Hoechst C1anese; C.I. I. Pigment Yero 1 14), Chr omo phthal Y ell ow 8 G (C iba— Pigment Yellow 1 28), Irgazin Ye 1 1 ow 5 GT (manufactured by Ciba-Geigy; CI Pigment Yellow 129), Ho stape rm Yellow H4G (Manufactured by Hoechst C e 1 anese; C.I.
  • Pigment Yellow 151 Shimla Firth Toy Yellow 41 92 (manufactured by Dainippon Ink and Chemicals, Inc .; C.I. Pigment Yellow—154), Tona 1 ⁇ ⁇ Yellow HG (C 1 ariant; C. I. Pigment Yellow 180), Ho staperm O range GR (Ho echst C e 1 anese; C. I. Pigment Orange 43), P a 1 iogen O range (manufactured by BAS F; C.I. Pigment Range 51), Shimura I. Brilliant Carmine (manufactured by Dainippon Ink and Chemicals, Inc .; C.I. Pigment Tread 57: 1), First Gen Super Magenta ( C. I.
  • Pigment Red 122 toner magenta EO (manufactured by C 1 ariant); Pigment Red 122), P a1 iogen Red L 3870 (BASF); CI Pigment Red 123), Ho staperm S carlet GO (Hoechst Celanese; C.I. Pigment Red 168), Permanent Rubine F6B (Hoechst Celanese); C.I. Pigment Red 184), Monastra 1 Magenta (Ciba-Geigy; C.I. Pigment Red 202), Monastral S carlet (Ciba-Geigy; C.I.
  • Pigment Red 207 First Togenbunore-GP-100 (manufactured by Dainippon Ink and Chemicals, Inc .; C.I. I. Pigment Blue 15: 2), First Togen Blue GN PR (Dai Nippon Ink Chemical Industry Co., Ltd .; C.I. Pigment Blue 15: 3), C ⁇ Ian B (C 1 ariant) C.I. Pigment Blue 15: 3), First Togen Blue GNP S (manufactured by Dainippon Ink and Chemicals, Inc .; C.I. Pigment Blue 15: 4), Micracet Blue R (manufactured by Ciba-Geigy; C.I.
  • Pigment Blue 60 First Togen Green S (manufactured by Dainippon Ink & Chemicals, Inc .; C.I. Pigment Green 7), First Togen Green 2 YK (manufactured by Dainippon Ink and Chemicals, Inc .; C.I. Pigment Green 36), First Gen Super Red (manufactured by Dainippon Ink and Chemicals, Inc .; C.I. Colelet 19), First Gen Super Violet (manufactured by Dainippon Ink and Chemicals, Inc .; C.I. Pigment Violet 23), Monastra 1 Maron RT—229—D (manufactured by Ciba—Geigy) C.I. pigment violet 42).
  • the self-dispersible pigment in the present invention can be produced by a known method of intentionally introducing a sufficient number of charged functional groups to the surface of pigment particles.
  • the method is not limited to the method of the present invention, and the method of introducing a charged functional group into the surface of the pigment particles includes the following: oxidation with hypochlorite, oxidation with permanganate Oxidation with chlorate, oxidation with persulfate, oxidation with nitric acid, oxidation with ozone, coupling reaction with aryldiazonium salts containing charged functional groups, and sulfonation with sulfonating agents.
  • Commercially available self-dispersed black pigments are sold by Cabot as two different products.
  • CABO-O-JET 200 (sulfonated carpump rack) and CABO-O-JET 300 (Ripoxylated black).
  • Other commercially available products of the black self-dispersion type pigment dispersion include Bonjet Black CW ⁇ 1 manufactured by Orient Chemical Industries, Ltd.
  • the self-dispersing pigment has an average particle size of 50 to 200 nanometers.
  • the amount of self-dispersing pigment in the ink composition according to the invention is about 0.1 to 30% by weight, more preferably 0.1 to 20% by weight.
  • the water, base, water-soluble auxiliary solvent, and other components are the same as those used in the ink composition according to the third embodiment of the present invention.
  • the ink composition according to the third embodiment of the present invention can be prepared in one step by dispersing and mixing the above-mentioned components using an appropriate method.
  • the ink composition can also be prepared in two steps by 1) dispersing and mixing a part of the above components, and 2) then adding and mixing the remaining components to the dispersion.
  • the dispersing process is performed using a ball mill, sand mill, attritor, mini mill, rhonore mill, agitator minole, Henshe 1 mixer, colloid mill, ultrasonic homogenizer, jet mill or ang mill to obtain a uniform dispersion. be able to.
  • it is desirable to filter the pigment-dispersed aqueous ink composition preferably using a metal mesh filter or a membrane filter. Filtration may be performed by applying pressure to the ink composition being filtered or by reducing the pressure at the receiving end of the filtration device. Centrifugation may be used to remove large particles that can clog nozzles in the printhead of an inkjet printer.
  • the ink composition according to the fourth aspect of the present invention can be prepared by simply mixing the above compounds using an acceptable method.
  • an ink having a constant viscosity is obtained by heating the ink composition at a temperature exceeding 50 ° C. with stirring for a short time after mixing the compounds.
  • an ink having a constant viscosity is obtained by subjecting the ink composition to ultrasonic treatment for a short time in an ultrasonic treatment bath after mixing the compounds.
  • filtration is performed using a metal mesh filter or a membrane filter. Filtration may be performed by applying pressure to the ink composition being filtered or by reducing the pressure at the receiving end of the filtration device. Prior to the filtration process, centrifugation may be used to remove those with too large a particle size.
  • the ink composition according to the present invention comprises a polyuronic acid in which polyuronic acid is bonded to glyceryl poly (oxypropylene) triamine via its reducing end by reductive amination.
  • the favorable interaction between the derivative and the self-dispersed pigment is expected to provide reliable printing performance and excellent printing quality.
  • the interaction between the two major compounds is apparent from the slight increase in viscosity upon heating or sonication of the freshly prepared ink composition described above as a preferred mode of ink preparation. is there.
  • Oligooxypropylene polymers are known to decrease water solubility as the temperature of the aqueous medium increases.
  • the glycerylpoly (oxypropylene) triamine moiety has a lower affinity for the aqueous medium and a higher affinity for the surrounding hydrophobic groups.
  • the self-dispersing pigment in the ink composition of the present invention exhibits hydrophobicity. Compared to unmodified pigments, self-dispersed pigments are more hydrophilic on the surface, but still have a relatively low degree of functional groups introduced on the surface, and most of the surface of the pigment is substantially hydrophobic It is. Therefore, it is not unreasonable to assume that an interaction occurs between the two main compounds when the ink composition is heated to barta or locally.
  • the poly (oxypropylene) triamine moiety has a relatively high molecular weight, the poly (oxypropylene) triamine moiety is less likely to dissociate from the pigment after being adsorbed with the pigment. Therefore, during the period of ink storage and ink use or ink use (several years), the ink maintains its state after the initial slight increase in viscosity, and ink with a constant viscosity can be obtained.
  • the self-dispersed pigment retains the useful properties of the unmodified self-dispersed pigment even after the polycarboxylic acid derivative of the present invention is adsorbed on the pigment surface. Therefore, the ink composition according to the present invention is expected to realize reliable printing performance.
  • the use of self-dispersed pigments is one of the most common methods for obtaining reliable printing performance using aqueous pigment-based inks. Since the polyuronic acid moiety exhibits excellent water solubility, it is expected that not only will the useful properties of the self-dispersible pigment be maintained, but also the stability of the combination of the self-dispersible pigment / polyperonic acid derivative will be improved. You.
  • the ink composition according to the present invention can be used on plain paper. It is expected that excellent print quality can be achieved.
  • the increase in viscosity of the ink composition is also slight due to the inclusion of the polyperonic acid derivative in which polyuronic acid is bonded to glyceryl poly (oxypropylene) triamine via its reducing terminal by reductive amination. It is.
  • the inks of the present invention can be prepared with relatively high pigment content, which is typical for inks containing unmodified self-dispersed pigments. It is.
  • a high pigment content means that the optical density is high on plain paper, which is a characteristic that should be observed to obtain excellent printing quality on plain paper.
  • self-dispersed pigments are polyuronic acids in which polyuronic acid is bonded to glycerylpoly (oxypropylene) triamine via its reducing end by reductive amination. It is expected that the ink composition of the present invention will achieve excellent print quality on glossy dedicated coated paper due to the good adsorption of the derivative to the surface of the self-dispersing pigment.
  • polyperonic acid is converted to glyceryl phosphate via its reducing end.
  • polypropylene The poly (carboxylic acid) derivative bonded to the triamine by reductive amination can be forcibly adsorbed on the surface of the self-dispersible pigment as described above.
  • the adsorbed polyuronic acid is converted to glyceryl poly via its reducing end.
  • the (polypropylene) polycarboxylic acid derivative bonded to triamine by reductive amination functions as a glossing agent for improving the gloss of a printed image on a specially coated paper.
  • the combination of the self-dispersed pigment / polyperonic acid derivative is similar to that of the non-self-dispersed pigment, so that the same gloss and adhesion as the non-self-dispersed pigment dispersion can be obtained.
  • a four-neck 1 L round bottom flask fitted with a thermometer, an overhead stirrer, and a cooler was placed in a heating mantle that could control the temperature.
  • 600 g of a 1% formic acid solution (prepared from deionized water and 88% reagent grade formic acid (Kanto Chemical Co., Japan)) was added to the flask.
  • the formic acid solution was heated to 9 ° C. with gentle stirring.
  • 45 g of Lingocectin (Classic AM 201, Herbstreith & Fox, Germany) was slowly added to the heated formic acid solution using a powder'funnel.
  • the fourth mouth of the flask was quickly purged with a stream of nitrogen and then capped with a glass stopper. After purging, connect the nitrogen inlet adapter connected to the oil bubbler to the top of the cooler. The nitrogen flow adjusted late was started to flow through the oil bubbler. ⁇ The Kuching was completely dissolved by vigorous stirring for 60 minutes. The solution was then heated to reflux while gently stirring the solution. The mixture was heated and refluxed continuously for 5 hours while stirring, and then the solution was naturally cooled to about 40 ° C. The warm solution was filtered through Pettman filter paper No. 1 to remove a small amount of brown insoluble impurities and the filtrate was transferred to a 1 L Erlenmeyer flask.
  • the collected filtrate was then transferred to a 1 L eggplant-shaped flask.
  • the temperature of the water bath was set to 60 ° C, and the solution was evaporated using a rotary evaporator equipped with a circulation type aspirator until a viscous light brown oily residue precipitated in the flask.
  • a yellowish white crystalline solid precipitated immediately.
  • the solids were collected by filtration through a fine porous glass filter (pore size 16-40 microns) using an aspirator to depressurize the receiving flask.
  • the solid was washed twice with about 400 mL of ethanol and air-dried. Finally, the solid was vacuum dried to constant weight.
  • the product yield was 14.5.
  • the degree of polymerization of the obtained product was determined by the method of PA Shaffer and M. Somogyi (J. Biol. Chem., 100, 695-713 (1933)) as described in 21.2. It was decided. The products were analyzed by 1 H NMR in dimethyl ci 5 sulfoxide ((CD 3 ) 2 SO) and trifluoroacetic acid in 1 ⁇ (CF 3 C0 2 D) solution and 13 C NMR in D 20 solution. Also determined the structure. Both spectra were identical to that of the mixture of high purity polygalatatu acid.
  • alginic acid (ultra-low viscosity alginic acid, Kibun Food Chemifa Inc., Tokyo, Japan) was added to form a slurry. While stirring the slurry with an overhead stirrer, 28 g of lithium hydroxide monohydrate was added to the slurry. Alginic acid was dissolved to obtain a solution having a pH value of about 4.15. Deionized water was added to bring the total volume to 600 mL. Next, 100 g of 31% by weight aqueous hydrogen peroxide and 2 mL of n-nonyl alcohol as an antifoaming agent were added with stirring.
  • the water bath temperature was set at 60 ° C, and the solution volume was concentrated to about 25 OmL using a rotary evaporator.
  • the solution was transferred to a 1 L beaker while washing with water, so that the total volume reached a maximum of 30 OmL.
  • glacial acetic acid was slowly added to 300 mL, and a solid precipitated.
  • the precipitated solid was collected by suction filtration through a fine porous glass filter (pore size 16-40 microns).
  • the wet solid was transferred to a 1 L beaker with about 10 OmL of deionized water.
  • the solid and water were stirred vigorously to obtain a uniform slurry. While stirring the slurry, 80 OmL of 95% ethanol was slowly added.
  • the polymerization degree of the obtained product was determined to be 1.3.2 by the method of PA Saffer and M. Somogyi described above.
  • the product was also obtained by 1 H NMR in dimethyl c 6 sulfoxide ((CD 3 ) 2 SO) and trifluoroacetic acid 1 c (CF 3 C 0 2 D) solution and 13 C NMR in D 2 ⁇ solution. The structure has been determined.
  • the eggplant-shaped flask was removed from the rotary evaporator, and the remaining one-third solution of glycerylpolygalactopoly (oxypropylene) triamine was transferred to the eggplant-shaped flask. Again, set the water bath temperature to 70 ° C, use a rotary evaporator to concentrate the solution until no more volatile solvent is collected, and remove the dark brown oily residue into a 1 L eggplant-shaped flask. I got it. The oily residue was washed 3 times with 75% methanol / 25% Etanoru solution 500 m L, it was discarded wash solution. The washing partially solidified the oily residue.
  • the sticky brown solid was dissolved in a mixed solution of 95 mL of methanol and 300 mL of a 98% formic acid solution, and transferred to a 2 L beaker. While stirring the solution with a magnetic stirrer and a foot-pole type magnetic stirrer, 20 g of a borane-dimethylamine compound was added. This compound dissolved rapidly and the mixture was stirred for a further 36 hours. At this time, the color of the solution became noticeably brighter. Next, as described above, the water bath temperature was set to 70 ° C., and the solution volume was concentrated to about 40 OmL using a rotary evaporator.
  • Deionized water / isopropanol Z formic acid solution was added periodically to the 2 L flask to make up for the permeate liquid removed.
  • the solution volume was concentrated to approximately 500 mL by ultrafiltration.
  • the total volume of the recovered permeate was about 5 L.
  • the solution purified by this operation was filtered under pressure through a 5-micron membrane filter to remove a small amount of solid impurities.
  • the water bath temperature was set to 70 ° C., and the volatile solvent was evaporated from the filtrate using a rotary evaporator. Dry using an oil-type vacuum pump until the light brown oily residue was constant weight.
  • the product yield was 57.5 g.
  • a 30 OmL flask was charged with 30.0 g of dry solid and 150 g of deionized water. The mixture was heated to about 40 ° with vigorous stirring, and solid lithium hydroxide was gradually added until the solid was almost dissolved. At this time, the H of the mixture was about 7.5. While monitoring the pH of the mixture, a lithium hydroxide monohydrate solution (5% by weight) was added dropwise with stirring until the pH of the mixture reached a constant value of 8.5. Water was added until the total weight of the solution was 200 g. The obtained solution was filtered through a 5-micron membrane filter, and the operation was completed.
  • the polyperonic acid derivative A1 thus obtained was used as a pigment dispersant A1.
  • the water bath temperature was set to 70 ° C, and the solution was concentrated using a rotary evaporator until no more volatile solvent was recovered, yielding a dark brown oily residue in a 1 L eggplant-shaped flask. .
  • the oily residue was washed three times with 50 OmL of 75% methanol / Z25% ethanol solution, and the washing solution was discarded. The washing partially solidified the oily residue.
  • the sticky brown solid was dissolved in a mixed solution of 950 mL of methanol and 300 mL of a 98% formic acid solution, and transferred to a 2 L beaker.
  • the solution was filtered by ultrafiltration using a Millipore Minitan system consisting of 12 polysulfone plates with a 10,000 molecular weight membrane pore size.
  • the purified liquid was recycled to the original container, while the permeate containing glyceryl poly (oxypropylene) triamine that had permeated the membrane was discarded after recovery.
  • a deionized water / isopropanol / formic acid solution was periodically added to the 2 L flask to make up for the permeate liquid removed.
  • the solution volume was concentrated to about 50 OmL by ultrafiltration.
  • the total volume of the recovered permeate was about 5 L.
  • the solution purified by this operation was filtered under pressure through a 5-micron membrane filter to remove a small amount of solid impurities.
  • the water path temperature was set at 70 ° C., and the volatile solvent was evaporated from the filtrate using a rotary evaporator. Use oil type vacuum pump until light brown oily residue is constant weight JP2003 / 00
  • the product yield was 52.8 g.
  • a 300 mL flask was charged with 30.0 g of dry solid and 150 g of deionized water. The mixture was heated to about 40 ° C. with vigorous stirring, and solid lithium hydroxide was gradually added until almost all of the solid was dissolved. At this time, the pH of the mixture was about 7.5. While monitoring the pH of the mixture, a lithium hydroxide monohydrate solution (5% by weight) was added dropwise with stirring until the pH of the mixture reached a constant value of 8.8. Water was added until the total weight of the solution was 200 g. The resulting solution was filtered through a 5-micron membrane filter, and the operation was completed.
  • the polyperonic acid derivative B1 thus obtained was used as a pigment dispersant B1.
  • a four-necked 1 L round-bottomed flask fitted with a thermometer, an overhead stirrer, and a cooler was placed in a heating mantle that could control temperature.
  • 60% Og of a 1% formic acid solution (prepared from deionized water and 88% reagent grade formic acid (Kanto Chemical Co., Ltd.)) was added to the flask.
  • the formic acid solution was heated to 90 ° C with slow stirring.
  • 45 g of apple-derived pectin (Classic AM 201, from Herbstreit & Fox, Germany) was slowly added to the heated formic acid solution using Powder'Funnel.
  • the fourth mouth of the flask was quickly purged with a stream of nitrogen and then stoppered with a glass stopper.
  • a nitrogen inlet adapter connected to the oil bubbler was attached to the top of the cooler, and the delayed nitrogen flow was started to flow through the oil bubbler.
  • Pectin was completely dissolved by vigorous stirring for 30 minutes.
  • the solution was heated to a reflux state while gently stirring the solution. Heating and refluxing was performed continuously for 90 minutes while stirring, and then the solution was naturally cooled to about 40 ° C.
  • the warm solution was filtered through Pettman filter paper No. 1 to remove a small amount of brown insoluble impurities and the filtrate was transferred to a 1 L Erlenmeyer flask.
  • the collected filtrate was then transferred to a 1 L eggplant-shaped flask.
  • the temperature of the water bath was set to 60 ° C, and the solution was evaporated using a rotary evaporator equipped with a circulation type aspirator until a viscous light brown oily residue precipitated in the flask (2). Ethanol in flask was added, and a yellowish white crystalline solid precipitated immediately.
  • the solids were collected by filtration through a fine porous glass filter (pore size 16-40 microns) using an aspirator to depressurize the receiving flask. The solid was washed twice with about 400 mL of ethanol and air-dried. Finally, the solid was vacuum dried to constant weight. The yield of the product was 32.7 g.
  • the sample concentration of the eluate was adjusted to 1% by weight, and the injection volume was 40 microliter.
  • the standard solutions maltotriose, ma / retotetrose, manoletopentose, dextran 1080 g / mol, dextran 4 440 gZ mol and dextran 98 90 gZ mol were used to establish the reference curve. From the reference curve, the average molecular weight of the polygalataturonic acid sample was about 7300 moles.
  • alginic acid (ultra-low viscosity alginic acid, manufactured by Kibun Food Chemifa Corporation) to form a slurry. While stirring the slurry with an overhead stirrer, 28. Og of lithium hydroxide monohydrate was added to the slurry. The alginic acid dissolved and a solution with a pH value of about 4.15 was obtained. Deionized water was added to bring the total volume to 60 OmL. Next, while stirring, 100 g of a 31% by weight aqueous hydrogen peroxide solution and 2 mL of n-nor alcohol as an antifoaming agent were added.
  • alginic acid ultra-low viscosity alginic acid, manufactured by Kibun Food Chemifa Corporation
  • the product yield was 18.5 g.
  • the product, dimethyl one d 6 sulfoxide ((CD 3) 2 SO) and Torifuruoro acetate - d! The structure was determined by 1 H NMR in (CF 3 CO 2 D) solution. These spectra were identical to those of a mixture of pure polydaluronic acid and polyperonic acid, most of which were polyguluronic acids, but contained a small amount of mannuronic acid as an impurity. The guluronic acid content in the mixture exceeded 85% by weight.
  • a gel permeation Mouta Draf analysis with reference to a malto-oligomer and a dextran standard was performed as described above. From the reference curve, the average molecular weight of the polyguluronic acid sample was about 6200 gZmol.
  • pigment dispersant A consisting of polyperonic acid derivative A2: Reductive amination of glyceryl poly (oxypropylene) triamine to two or more reducing terminals of polygalacturonic acid
  • glyceryl poly (oxypropylene) triamine (Jeff amine T—5000, x + y + z is about 80, Hunt sman Co orporation soil, Perf romance chemicals D ⁇ o vision, Houston, Texas, USA) was dissolved in 20 OmL of 1,3-dimethyl-12-imidazolidinone (DMI) in a 50 OmL beaker.
  • DMI 1,3-dimethyl-12-imidazolidinone
  • the glyceryl poly (oxypropylene) triamine solution was quickly added to the polygalatatu acid solution while vigorously stirring the polygalatatu acid solution.
  • the resulting homogeneous light brown solution was transferred to a 1 L polyethylene bottle with a large mouth.
  • Teflon tape was wrapped around the neck of the Sample ⁇ bottle, and the bottle was sealed with a cap.
  • Sample ⁇ The bottle was stored in a constant temperature oven at 40 ° C for 48 hours. The sample bottle was removed from the furnace and allowed to cool to room temperature. The cooled bottle was opened, 15 g of borane-dimethylamine complex was added, and the mixture was stirred until the borane compound was dissolved. The sample bottle was sealed as before and stored in the same constant temperature oven at 40 ° C for 22 hours. During this 22 hours, a significant amount of solid precipitated from solution. Sample. The bottle was removed from the furnace and allowed to cool to room temperature.
  • the sample bottle was sealed as before and stored in the same constant temperature oven at 40 ° C for 48 hours. Sample ⁇ The bottle was removed from the furnace and allowed to cool to room temperature. The cooled pot was opened, and the contents were poured into 4 L of isopropanol with vigorous stirring in a 5 L beaker. The pH of the mixture was monitored with a pH meter, and a 10% by weight solution of lithium hydroxide was added dropwise to the thoroughly stirred mixture until the pH of the mixture was greater than about 8. The stirred mixture was allowed to stand for about 15 hours.
  • the separated pale yellow supernatant was separated by decantation and discarded. After the total volume was adjusted to 4.5 by adding isopropanol to the mixture, the mixture was stirred vigorously for 2 hours and allowed to stand for 21 hours. A series of general processes of decantation of the supernatant, addition of isopropanol, stirring and standing was repeated three times. After standing, the almost colorless supernatant was separated and discarded as before. The remaining mixture was homogenized by treating the mixture in a 5 L beaker with an ultrasonic bath for about 30 minutes. The solid product was obtained by placing the mixture in a 5 OmL tube and centrifuging at 20,000 rpm for 8 minutes. Change the centrifuge tube sufficiently. It was left in the draft box for 24 hours.
  • the purified liquid was recycled to the original container, while the impurities, including the permeate solution, were discarded after recovery.
  • Deionized water was periodically added to the 1 L flask to make up for the removed permeate solution.
  • the solution volume was concentrated to about 40 ° mL by ultrafiltration.
  • the total volume of the recovered permeate was about 5 L.
  • the solution pH was monitored with a pH meter, and a 5% by weight lithium hydroxide solution was added dropwise while sufficiently stirring the solution until the pH reached 8.9.
  • the solution purified by this operation was filtered under pressure through a 0.2 micron membrane filter to remove a small amount of solid impurities. 2 g of the solution was measured accurately, and heated and dried in a constant temperature oven at 70 ° C. to obtain a constant weight.
  • the dry weight of the sample was accurately measured, and the solid concentration in the solution was calculated from the difference between the weight before drying and the dry weight.
  • a polyporic acid derivative A2 having a solid concentration of 14.
  • a block copolymer of butyl methacrylate / methyl methacrylate / methacrylic acid (BMA / MMA / MA) prepared according to US Pat. No. 5,085,698 was used as a pigment dispersant.
  • the block copolymer was neutralized with potassium hydroxide and diluted to a solution of 25% solids by weight. This solution was filtered through a 5-micron membrane filter to obtain a pigment dispersant D1.
  • the yield of the pigment dispersion was about 200 g.
  • Pigment dispersions shown in Table 1 were prepared. For all dispersions, the average particle size was between 100 and 120 nanometers. 9681
  • Tables 2 and 3 show the content of each component.
  • the abbreviations used in Tables 2 and 3 indicate the following.
  • TEG-mB E triethylene glycolone mono-n-butyrate
  • the ink composition thus obtained was evaluated based on the overall reliability and print quality on plain paper.
  • the reliability of the above ink under continuous printing conditions was evaluated as follows. First, the ink was degassed and sealed in a heat-sealable aluminum pack. Next, the ink was loaded on a black ink print head of a PM-900C printer (manufactured by Seiko Epson Corporation). First, a line pattern using all the nozzles was printed, and it was confirmed that the ink was ejected from all the nozzles in a favorable direction.
  • the printing pattern was changed to a 360-block dot-per-inch dot-block pattern so that printing could be performed on the entire surface of A4 size paper.
  • the printing speed at this time was relatively high, four sheets per minute.
  • the block pattern and line pattern are printed continuously on printing paper, and every 100 sheets are checked for flying skew, clogged nozzles, or reduced solid block optical density (less than 5%). evaluated.
  • no flying skew, clogged nozzles, or reduced solid block optical density was observed for the 100,000 printed sheets. This means that reliability is at an acceptable level.
  • flight bending occurred when the number of pieces was less than 50,000.
  • the reliability of the ink for long-term storage in a print head was evaluated as follows. First, the ink was defoamed and sealed in a heat-sealable aluminum pack. Next, the ink was loaded into the black ink print head of an MJ-5100C printer (manufactured by Seiko Epson Corporation). First, we printed a line pattern that uses all the nozzles, and confirmed that the ink was ejected from all the nozzles in a good direction. Next, the ink supply was disconnected from the printhead, and then the printhead was removed from the printer. The printheads were stored without caps in a constant temperature oven at 40 ° C for 4 days.
  • the printhead was reattached to the printer, and the ink supply was reattached to the printhead. After performing the cleaning operation of the printer, mark the line pattern that uses all of the nozzles. Printing was done. The cleaning operation and subsequent printing of the line pattern were repeated until all nozzles could print in a good direction. For all of the tested inks, except for Comparative Example 1, the number of cleanings required to fully recover is less than four, which means that the reliability is at an acceptable level. On the other hand, in Comparative Example 1, complete recovery of all nozzles could not be achieved even after performing the cleaning operation 10 times.
  • the reliability of the ink at two extreme temperatures (30 ° C. and 60 ° C.) was evaluated as follows. First, the ink was degassed and sealed in a 3 OmL glass sample bottle. The sample bottle was placed in a constant temperature oven at 60 ° C. and stored under this temperature condition for 24 hours. The sample was removed from the oven, transferred to a freezer at 30 ° C, and stored at this temperature for 24 hours. These two temperature cycles were repeated until a total of 10 cycles were completed. After the last cycle, the ink was thawed to room temperature, the glass vial was inverted without shaking, and the bottom of the vial was checked for precipitates. No precipitate was observed for all of the tested inks except Comparative Example 1. This means that the reliability is at an acceptable level. On the other hand, in Comparative Example 1, a precipitate was observed.
  • the drying time of the above-mentioned ink was evaluated by printing a betabular pattern and wiping the printed pattern at intervals of 5 seconds while increasing the interval. Printing was performed using a PM-930C printer (manufactured by Seiko Epson Corporation) and Xero X4024 paper. For all of the tested inks, the drying time was less than 5 seconds. This means that the drying time is of an acceptable level.
  • the print quality was evaluated as follows using a PM-930C printer (manufactured by Seiko Epson Corporation). 0 standard kanji were printed at 4 point size using Gothic and Mincho. Xerox 4024 paper was used as a representative of plain paper, and print samples were printed at 720 dpi. The printed samples were observed and evaluated using an optical microscope. The printing quality was evaluated according to the following criteria.
  • the black pigment dispersion was prepared in a manner similar to that described in Example 2 of WO 01/94476.
  • FW-18 carbon black obtained from Degussa was used as the starting material for the pigment.
  • Ozone is PC I O z
  • the pigment was effectively dispersed and mixed at the same time as oxidation with ozone.
  • the obtained dispersion liquid was purified by ultrafiltration using Pellico n La Labor t OrySyStem obtained from Mii 11 ipore Corporation.
  • the final concentration of the dispersion is 15% by weight. /. Met.
  • the average particle size of the dispersion was 98 nanometers as measured using a Honeywel llMicroTrac (R) UPA150 particle size analyzer.
  • the yellow pigment dispersion was prepared by the following general method, with modification of process 2 of EP 094835. Dispersion mixing was carried out simultaneously with the surface reaction with the pigment, as described in WO 01/94476 pamphlet. No voperm Yellow P—HG (obtained from C 1 ariant) 20 parts by weight were used as starting material for the pigment. The pigment was suspended and then dispersed in 0.550 parts by weight of the pyridine using a Microfluidizer from Microfid uidics. The mixture was then heated to reflux and the distillate containing the previously distilled water was discarded (about 10% of the total solvent volume). In a closed reaction system under a dry argon atmosphere, the mixture was heated at 110 ° C.
  • the dispersion was purified and concentrated by ultrafiltration using a Pe11 icon Laboratory System obtained from Mi11ipore. The final concentration of the dispersion was 13% by weight. The average particle size of the dispersion was 110 nanometers.
  • the magenta pigment dispersion was prepared by the same general method as the above-mentioned yellow pigment dispersion. 20 parts by weight of Fastogen Super Red (obtained from Dainippon Ink and Chemicals, Inc.) was used in place of the yellow pigment. The addition and dispersion mixing process was performed for a continuous 10 hours. The final concentration of the dispersion was 12% by weight and the average particle size of the c dispersion was 140 nanometers.
  • the cyan pigment dispersion was prepared in substantially the same general manner as the yellow pigment dispersion described above. Twenty parts by weight of ⁇ -Icyan B (obtained from C 1 aryant) was used instead of the yellow pigment. The addition and dispersion mixing process was run for a continuous 5 hours. The final concentration of the dispersion was 15% by weight. The average particle size of the dispersion was 95 nanometers.
  • composition ratio of each component is shown in Tables 5 and 6 (The amount of components is shown in g in parentheses) c Table 5
  • the reliability of the above ink under continuous printing conditions was evaluated as follows. First, the ink was defoamed and sealed in a heat sealable aluminum em pack. Next, the ink was loaded on a black ink print head of a PM-900C printer (manufactured by Seiko Epson Corporation). First, a line pattern using all the nozzles was printed, and it was confirmed that the ink was discharged from all the nozzles with good flying properties.
  • the printing pattern was changed to a solid block pattern of 360 dots per inch, and printing was performed on the entire surface of A4 size paper. The printing speed at this time was relatively high, four sheets per minute. Continuous printing of block and line patterns on print paper to evaluate every 100 prints for flying skew, clogged nozzles, or reduced solid block optical density (less than 5%) did. For all of the tested inks except Comparative Example 1, no flying skew, no clogged nozzles, or reduced solid block optical density was observed for the 100,000 printed sheets. This means that reliability is at an acceptable level.
  • the reliability of the ink for long-term storage in a print head was evaluated as follows. First, the ink was defoamed and sealed in a heat-sealable aluminum pack. Next, the ink was loaded into a black ink print head of an MJ-5100C printer (manufactured by Seiko Epson Corporation). First, we printed a line pattern that uses all of the nozzles and confirmed that the ink was ejected from all the nozzles in a good flight 1 ”raw. Removed and then removed the printhead from the printer, stored the printhead in a constant temperature oven at 40 ° C for 4 days without capping, reattached the printhead to the printer, and supplied ink.
  • the line pattern was printed using all of the nozzles, and the cleaning operation and the subsequent line pattern were printed. The operation was repeated until all nozzles could print with good flight performance. For all of the tested inks, the number of cleanings required to fully recover is less than four times, which means that the reliability is at an acceptable level.
  • the reliability of the ink at two extreme temperatures (30 ° C. and 60 ° C.) was evaluated as follows. First, the ink was degassed and sealed in a 3 OmL glass sample bottle. The sample bottle was placed in a constant temperature open at 60 ° C. and stored under this temperature condition for 24 hours. The sample was removed from the oven, transferred to a freezer at 30 ° C, and stored at this temperature for 24 hours. These two temperature cycles were repeated until a total of 10 cycles were completed. After the last cycle, the ink was thawed to room temperature, the glass vial was inverted without shaking, and the bottom of the vial was checked for precipitates. No precipitate was observed for all of the tested inks. This means that reliability is at an acceptable level.
  • the print quality was evaluated by the following method based on the optical density of plain paper. For all ink samples, use a Stylus Color 980 printer (manufactured by Seiko Epson Corporation) at 100 ° /. A standard color patch of Duty solid printing was created on Xero x 4024 paper at 72 Odi. The print samples were allowed to dry at ambient temperature for about 1 mm, and the optical density of the print patches was evaluated using a Gretag-MacbethSpectrOli ino apparatus with a Spectroscan table. For black ink, print quality, that is, optical density on plain paper, was evaluated using the following criteria.
  • optical density value is greater than 1 and less than 12
  • Tables 7 and 8 show the results of the print quality test.
  • the print quality was evaluated by the following method based on the sharpness of characters on plain paper. For all ink samples, standard Japanese kanji were printed in 6-point font size using both Gothic and Mincho. Using Xerox X4024 paper as a representative of plain paper, a print sample of 720 dpi was printed with a Sty1usColor 980 printer (manufactured by Seiko Epson Corporation). The printed samples were observed using an optical microscope and evaluated. Print quality was evaluated according to the following criteria. Evaluation (A): The kanji is clear, and there is no ink in the space inside the character.
  • Tables 7 and 8 show the results of the print quality test.
  • the print quality was evaluated by the following method based on the optical density of the special paper. For all ink samples, use a Stylus Color 980 printer (manufactured by Seiko Epson Corporation) to print a standard color patch of 100% Duty solid printing at the default setting on PM photo paper (Seiko Epson Corporation). Made). The printed samples were allowed to dry at ambient temperature for about 1 mm, and the optical density of the printed patches was evaluated using a jr ec t a g—Mac eb e t h 3 ⁇ 4 p e c t ro l ⁇ n o apparatus with a Spec t r o s c a n ap knore. Print quality, that is, optical density on specialty paper, was evaluated using the following criteria.
  • Evaluation (D) Optical density value is greater than 1.7 and less than 18 and Evaluation (F) Optical density value is less than 1.7.
  • the print quality was evaluated by the following method based on the gloss on the special paper. For all ink sample sumps, a single ink sample sum was evaluated on one of the four color (yellow, magenta, cyan and black) ink sets. Regarding the remaining three colors of the four-color evaluation set, three suitable inks were used, and appropriate inks from the ink sets of Comparative Examples 7 to 10 were used. All four inks of Comparative Examples 7 to 10 were used as reference samples for this print quality test. Portrait photos of models with brunette hair were printed on PM photo paper (Seiko Epson) with default settings using a Stylus Color 980 printer (Seiko Epson). All print samples were allowed to dry at ambient temperature for about 1 cm. Print quality, that is, gloss on specialty paper, was evaluated using the following criteria.
  • Tables 7 and 8 show the results of the print quality test.
  • the print quality was evaluated by the following method based on the adhesive force on the special paper. For all ink samples, use a Stylus Color 980 printer (manufactured by Seiko Epson Corporation) to print several lines of standard character samples at 14 point size and photo print paper (Seiko Epson) at the default settings. Printed by the company). The printed sample was dried for about 1 cm at ambient temperature, and a 3 cm long mark was placed on the character with a highlighter (Zebra Z azz 1 e highlighter, Zebra Corporation) at a pressure of 300 g. Black, cyan and magenta characters use yellow highlighter did. A yellow highlighter was used for the yellow text. The print quality, that is, the adhesive strength with special paper, was evaluated using the following criteria.
  • Tables 7 and 8 show the results of the print quality test.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Ink Jet (AREA)
  • Ink Jet Recording Methods And Recording Media Thereof (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)

Abstract

とりわけ普通紙において、信頼性のある印刷性能を得られるとともに、印字品質の優れた印刷画像が得られる顔料分散型インク組成物およびこのインク組成物を実現する分散剤を提供する。本発明による分散剤として用いる新規ポリウロン酸誘導体は、ポリウロン酸が、その還元末端を介して、グリセリルポリ(オキシプロピレン)トリアミンに、還元的アミノ化により結合してなるものである。

Description

明 細 書 ポリゥロン酸誘導体およびポリゥロン酸誘導体を含んでなる水性インク組成物
[技術分野]
本発明は、 新規なポリウロン酸誘導体と、 それを分散剤または添加ポリマー として含んでなるインク組成物、 とりわけインクジエツト記録方式に用いられる ィンク組成物に関する。
[背景技術]
インクジェット印刷は、 コンピュータにより発生するデジタル信号にプリンタ が応答してインク滴を生成する非インパク ト印刷法である。 インク滴は、 紙や透 明フィルム等の基材に付着する。 インクジェットプリンタは、 印字品質、 低コス ト、 比較的静かな動作音、 グラフィック形成能により、 広く普及している。 インクジエツトプリンタに使用されるインクは、 染料系インクまたは顔料系ィ ンクに分類できる。 染料系インクは、 ほとんどの用途において満足できるもので ある.が、 一般的に耐光性および耐水性に劣ることがある。 印刷物にはある程度の 耐久性が期待されるため、 染料系インクにより得た印刷画像が、 耐光性および耐 水性において劣ることは問題となる。 一方、 顔料系インクは、 耐光性および耐水 性に優れている。 したがって、 耐久性が求められる印刷物においては、 染料系ィ ンクよりも顔料系ィンクが一般的に好ましい。
インクジェット記録において重要なことは、 エッジが鋭く、 または画像が鮮鋭 で、 かつできるだけフエザリングと呼ばれるにじみの少ない印刷物を、 「普通 紙」 において得ることができるかどう力 ということである。 最近、 普通紙に優 れた印刷物品質を実現できるインクジエツトプリンタが、 益々求められている。 本発明における主な焦点は、 普通紙における、 印刷画像のエッジの鋭さまたは鮮 鋭度により定義される印刷物品質である。 普通紙に良好な品質の印刷物を得られ るように適切に構成された顔料系インクが特に求められている。
インク滴が、 インクジェット印刷により吐出され、 紙面に接触すると、 インク が接触点から広がり、 紙に浸透する。 ほとんどの普通紙に存在するセルロース繊 維は、 毛管作用により、 個々の繊維の長さの方向に沿って液体を吸い込む芯の役 割を果たす。 着色剤を溶剤に均一に溶解した染料系インクの場合、 着色剤は広が り、 浸透し、 セルロース繊維の長さ方向に沿って、 着色剤は溶剤と全く同じ程度 に吸い込まれる。 染料系インクを用いた場合、 得られる着色ドットのエッジの明 瞭性が悪くフエザリングを伴うことがある。
着色剤を溶剤に均一に分散した顔料系ィンクの場合、 着色剤の分散安定性が紙 との接触により失われない限り、 着色剤は広がり、 浸透し、 セルロース繊維の長 さ方向に沿って、 溶剤とほぼ同じ程度にまで吸い込まれる。 通常の顔料系インク を用いた場合、 得られる着色ドットのエッジの明瞭性が悪くフエザリングを伴う ことがある。
これに対して、 着色剤の分散安定性が紙との接触により失われてしまうように 構成された顔料系インクでは、 着色剤は広がったり浸透せず、 すなわちセルロー ス繊維の長さ方向に沿って吸い込まれない。 この種のインクでは、 着色剤は溶剤 キャリアから効果的に分離する。 その結果、 エッジの境界が鮮明で、 フエザリン グは無視できる程度の着色ドットが得られる。
水に顔料を分散させる分散剤は、 当業者に公知であり、 塗料等の被膜を種々の 基材に適用するのに使用されてきた。 ポリゥロン酸を用いた分散剤の提案もなさ れている。 例えば、 米国特許第 6, 2 4 2 , 5 2 9号には、 疎水性ポリマーがポ リゥロン酸の還元末端に共有結合的に結合したポリゥロン酸誘導体である分散剤 が記載されている。 この疎水性ポリマーは、 スチレンまたは置換スチレン、 ビニ ルビリジンまたは置換ピリジン、 メタクリル酸エステル、 アクリル酸エステル、 アタリ口エトリル、 メタクリル口エトリル、 ブタジェンぉよびイソプレンからな る群から選択された少なくとも一つのモノマーから生成されたホモポリマーまた はコポリマーである。 疎水性ポリマーには、 また、 ポリ (ジメチルシロキサン) 、 疎水性ポリアミ ドぉよび疎水性ポリアミンも含まれる。
一方、 信頼性のある水性顔料系インクを得るための一般的な一つの方法として、 インク組成に自己分散型顔料を使用することが挙げられる。 「自己分散型」 とい う表現が一般的に示すように、 このような顔料は、 水性キャリア中で顔料分散を 安定させるための分散剤、 例えばポリマー分散剤や界面活性剤、 を必要としない。 顔料を自己分散型にするために、 顔料粒子の表面に電荷を有する官能基を十分な 数ほど意図的に導入させる方法を取る。 この方法は、 カーボンブラックに基づく ブラック顔科に広く適用されている。
普通紙での印刷品質に関して、 インク組成に自己分散型顔料を使用する水性顔 料系インクには優位な点がある。 とりわけ、 印刷品質における優位性は、 自己分 散型顔料を使用した場合、 顔料成分の比率が比較的高いィンクを生成できるとい う事実に基づく。 普通紙にインクが印刷される場合、 一般的に、 顔料成分比率が 高いと、 光学濃度が高くなる。 上記の通り、 光学濃度が低いことで 「鈍い」 と認 識される画像と比較して、 光学濃度が高くなると、 一般的に、 消費者に好まれる 画像が得られる。
しかし、 自己分散型顔料を含む水性顔料系ィンクを専用コ一ト紙に印刷したと き、 光沢不良や付着力不足を伴うことがある。 この不具合は、 一般に、 インク中 にポリマー分散剤が含有されていないことに起因する。 一般に樹脂で、 顔料表面 に部分的に吸着されているポリマ一分散剤は、 顔料の粗い表面を滑らかにする光 沢材としての役割および顔料粒子間の接着ならびに顔料粒子と専用紙表面の接着 を仲介するバインダ一としての役割の両方を果たす。
自己分散型顔料を使用するインクの付着力不足を解決する単純かつ明確な方法 は、 インク組成にバインダー樹脂を添加することである。 光沢材として機能する パインダー榭脂を含有することで、 純粋な自己分散型顔料組成物により得られる 印刷画像に比較して、 専用コート紙での印刷画像の光沢も向上する。 しかし本発 明者の知る限りでは、 安定な分散を得るために分散剤が必要な非自己分散型顔料 の使用により通常得られる付着力および光沢に比較して、 自己分散型顔料/バイ ンダ一の組合せのそれは相当に劣ることがある。
信頼性のある印刷性能を得られるとともに、 印字品質の優れた印刷画像が得られ る、 顔料分散水性ィンク組成物が求められている。
また、 信頼性のある印刷性能およびとりわけ普通紙上で優れた印刷品質を得ら れる自己分散型水性顔料ィンク組成物が依然として求められている。
さらに、 光沢のある専用コート紙で優れた印刷品質が得られる自己分散型水性 顔料インク組成物が求められている。 特に、 専用コート紙での良好な光沢おょぴ 付着力という印刷品質が得られる自己分散型水性顔料ィンク組成物の希求がある といえる。 [発明の概要]
本発明者らは、 今般、 ある種の新規ポリゥロン酸誘導体が、 分散剤おょぴ添加 ポリマーとして優れたものであることを見出した。 本発明はかかる知見に基づく ものである。
したがって、 本発明は、 とりわけ普通紙において、 信頼性のある印刷性能を得 られるとともに、 印字品質の優れた印刷画像が得られる顔料分散型インク組成物 およびこのインク組成物を実現する分散剤の提供をその目的としている。
また、 本発明は、 普通紙および専用コート紙において、 信頼性のある印刷性能 を得られるとともに、 印刷品質の優れた印刷画像、 とりわけ光沢および印字定着 性に優れた画像が得られる自己分散型顔料ィンク組成物およびこれに添加される ポリマーの提供をその目的としている。
そして、 本発明による新規ポリゥロン酸誘導体は、 ポリウロン酸が、 その還元 末端を介して、 グリセリルポリ (ォキシプロピレン) トリアミンに、 還元的アミ ノ化により結合してなるものである。
本発明の第一の好ましい態様によれば、 ポリウロン酸誘導体は、 1個のポリゥ ロン酸が、 その還元末端を介して、 グリセリルポリ (ォキシプロピレン) トリア ミンに、 還元的ァミノ化により結合してなるものであり、 このとき前記グリセリ ルポリ (ォキシプロピレン) トリアミンは、 下記一般式で表わされるものである。
Figure imgf000005_0001
(式中、 x + y + zの総和の平均値は、 1 0〜1 5 0である。 ) また、 より好ま しくは、 グリセリルポリ (ォキシプロピレン) トリアミンは、 上記式中の X + y + zの総和の平均値が、 1 0〜1 0 0である。
本発明の第二の好ましい態様によれば、 ポリウロン酸誘導体は、 2個〜 6個の ポリウロン酸が、 その還元末端を介して、 グリセリルポリ (ォキシプロピレン) トリアミンに、 還元的ァミノ化により結合してなるものであり、 このとき前記グ リセリルポリ (ォキシプロピレン) トリアミンは、 下記一般式で表わされるもの である。
Figure imgf000006_0001
(式中、 x + y + zの総和の平均値は、 3 0 2 5 0である。 ) また、 より好ま しくは、 グリセリルポリ (ォキシプロピレン) トリアミンは、 上記式中の x + y + zの総和の平均値が、 1 0 1 2 0である。
また、 本発明による水性インク組成物は、 主溶媒としての水と、 顔料と、 該顔 料をインクに分散させる分散剤としての上記ポリゥロン酸誘導体とを少なくとも 含んでなるものである。
また、 本発明による水性インク組成物は、 主溶媒としての水と、 自己分散型顔 料と、 上記ポリゥロン酸誘導体とを少なく とも含んでなるものである。
[発明の具体的説明]
ポリゥロン酸誘導体
本発明による新規ポリゥロン酸誘導体は、 二つの部分からなる。 すなわち、 親 水性ポリゥロン酸部分と、 グリセリルポリ (ォキシプロピレン) トリアミンより 誘導された疎水性ポリマー部分、 とである。
本発明による新規ポリゥロン酸誘導体は、 本発明によるインク組成物中の顔科 を分散させる分散剤として機能する。 このようにして得られる顔料分散水性ィン ク組成物は、 信頼性のある印刷性能と、 優れた印字品質を有する印刷画像とを、 とりわけ普通紙において、 提供する。 その理由は定かではないが、 本発明の、 疎 水性部分と親水性部分とを併せ持つポリウ口ン酸誘導体は、 従来知られた二つの 部分を有するタイプの分散剤より、 良好に機能すると予測される。 したがって、 分散が安定した顔料が得られ、 フユザリングのない印刷画像が得られる。 具体的 には、 ポリウロン酸誘導体の疎水性部分が顔料表面に付着し、 顔料粒子をインク 組成物中に良好に分散させる。 また、 ポリウロン酸誘導体のポリウロン酸部分に は、 多価カチオン、 とりわけ二価のカルシウムイオン、 との結合に適したサイズ である、 上下交互に並んだポケットが、 カルボキシル基とヒ ドロキシル基とによ り形成される。 ポリウロン酸誘導体のポリウロン酸部分が、 典型的な普通紙の表 面に存在している多価カチオンに結合すると、 顔料分散の安定性が破壌される。 したがって、 紙上で顔料は広がらず、 フエザリングのない印刷画像が得られる。
<ポリゥロン酸部分 >
ポリウロン酸は、 1 , 4一結合ポリ (α— D—ガラタツロン酸) および 1, 4 一結合ポリ (ひ一 L—グルロン酸) からなるポリウロン酸の群より選択される。 ポリウロン酸は、 天然物質から得ることができ、 少量の他のゥロン酸糖類ノ非 ゥロン酸糖類を含有することがある。 1, 4一結合ポリ (ひ一 D—ガラクッロン 酸) では、 不純物は一般的に非ゥロン酸糖類、 ラムノースである。 1, 4一結合 ポリ (ひ — L—グルロン酸) では、 不純物は一般的にゥロン酸糖類、 マンヌロン 酸である。 本発明において使用される、 1 , 4一結合ポリ (α—D—ガラタツ口 ン酸) の D—ガラタツロン酸含量は、 8 5重量%を超えることが好ましく、 より 好ましくは、 9 0重量%を超える。 さらに好ましくは、 D—ガラタツロン酸含量 は 9 5重量%を超える。 本発明において使用される、 1 , 4一結合ポリ (a— L ーグルロン酸) の L—グルロン酸含量は、 8 0重量%を超えることが好ましく、 より好ましくは、 8 5重量%を超える。 さらに好ましくは、 Lーグルロン酸含量 は 9 0重量%を超える。
1 , 4一結合ポリ (a—D—ガラタツロン酸) は、 レモン、 ライム、 グレープ フルーツ、 オレンジ、 マンゴ、 リンゴ、 サンフラワーおよびサトゥダイコン等の 果実から得られる天然ヒ ドロコロイドであるぺクチンの加水分解および脱エステ ル化により得ることができる。 高水溶性の 1 , 4一結合ポリ (ひ—D—ガラタツ ロン酸) 生成物を加水分解反応溶液より分離するためには、 (1 ) 溶媒を蒸発さ せる、 (2 ) 生成物の溶解性が低い溶媒の添加により沈殿を促進する、 または (1) と (2) との組み合わせを行えばよい。 1, 4—結合ポリ (ひ一 Lーグル 口ン酸) 【ま、 ジャイアントケノレプ (Ma c r o c y s t i s p y r i f e r a ) 、 ホーステーノレケノレプ L am i n a r i a d i g i t a t a) およぴシ ュガーケノレプ L am i n a r i a s a c ch a r i n a) 等の海草から得ら れる天然多糖類であるアルギン酸を部分加水分解した後、 選択的に沈殿させるこ とにより得ることができる。 選択的沈殿は、 1, 4一結合ポリ (ひ一 D—グルロ ン酸) 生成物の水性溶液に酢酸を適量添加することにより実施できる。
本発明において使用されるポリゥロン酸の数平均分子量は、 約 700〜1 5, 000であり'、 より好ましくは、 約 700〜約 1 0, 000である。
<疎水性ポリマー部分 >
疎水性ポリマー部分は、 下記一般式で表わされるグリセリルポリ (ォキシプロ ピレン) トリアミンから誘導される。
GH3 H^
H2C-0— [-CH2CHO-]— CH2CHNH2
CH3 CH,
HC-O— (-CH2CHoJ— CH2CHNH2
CH3 CH3
H2C-0— {-CH2CHO-|— CH2CHNH2
ここで、 本発明の第一の態様におけるポリウロン酸誘導体にあっては、 x + y + zの総和の平均値は、 1 0以上 150以下、 より好ましくは 10以上 100以 下である。
また、 本発明の第二の態様におけるポリウロン酸誘導体にあっては、 x + y + zの総和の平均 は、 30以上 2 50以下、 より好ましくは 30以上 1 20以下 である。
グリセリルポリ (ォキシプロピレン) トリアミンは、 Hu n t sma n C o r p 'o r a t i o n社 (P e r f o r ma n c e C h em i c a l s D i v i s i o n、 ヒユーストン、 テキサス州、 米国) より市販されている。 このよう な化合物は、 ポリウレァ系においては、 R I Mおよびスプレー用途において高反 応性ソフ トプロックとして使用されている。 また、 エポキシ系においては、 熱可 塑性改質剤および接着増進剤として使用されている。 また、 ポリウレタンのエラ ストマ一およびフォームにおいては、 改質剤おょぴ硬化剤として使用されている。 現時点では、 Hu n t sma n Co r p o r a t i o n社より、 平均分子量分 布が異なる 2種類のグリセリルポリ (ォキシプロピレン) トリアミン、 J e f f am i n e X J T— 509および J e f f am i n e T— 5000が巿販さ れている。 J e f f am i n e X J T— 509の平均分子量は約 3, 000で、 X + y + ζの総和の平均値は約 50である。 J e f i am i n e T— 5000 の平均分子量は約 5, 000で、 x + y + zの総和の平均値は約 80である。 J e f f am i n e X J T— 50 9および J e f ί a m i n e T— 5000が 両方とも疎水性ポリマーである性質から予測されるように、 この 2種類の製品は 水に不溶であるが、 一方、 アルコール性溶媒に対する溶解性は極めて高い。
本発明の第一の態様におけるポリゥロン酸誘導体にあっては、 x + y + zの総 和が下限値である 1 0に近づくと、 このようなグリセリルポリ (ォキシプロピレ ン) トリアミンが、 ほんのわずか水に溶解するようになると予測される。
また、 本発明の第二の態様におけるポリウロン酸誘導体にあっては、 x + y + zの総和が下限値である 30に近づいても、 このようなグリセリルポリ (ォキシ プロピレン) トリアミンは、 水に溶解しないと予測される。
第一の態様におけるポリゥロン酸誘導体
本発明によるポリゥロン酸誘導体は、 一個のポリウロン酸がその還元末端を介 して、 グリセリルポリ (ォキシプロピレン) トリアミンに還元的ァミノ化により 結合してなるものである。
以下に説明するように、 還元的ァミノ化による共有結合に関しては、 考慮すベ き重要な事項がいくつかある。
第一に考慮すべきことは、 グリセリルポリ (ォキシプロピレン) トリアミンの 1分子当たりに、 ポリウロン酸分子を一つだけ結合させるために、 ポリウロン酸 に対して少なくとも 3倍以上のトリアミン分子を使用する必要があるということ である。 トリアミンには、 ァミン官能基が 3つあり、 その内の二つは、 グリセリ ル単位の末端ヒ ドロキシル基の酸素原子に結合しているポリ (ォキシプロピレ ン) 分岐にあり、 あと一つは同じグリセリル単位の中央部のヒ ドロキシル基の酸 素原子に結合しているポリ (ォキシプロピレン) 分岐にある。 好ましくは、 少な くとも 5当量以上のグリセリルポリ (ォキシプロピレン) トリアミンを含有する 溶液に、 ポリウロン酸の溶液を加える。 グリセリルポリ (ォキシプロピレン) ト リアミンに、 少量のポリゥロン酸が二つ以上結合することによる副生成物が実際 上回避できず、 この副生成物を含む混合物も本発明の範囲に含まれる。
第二に考慮すべきこととして、 グリセリルポリ (ォキシプロピレン) トリアミ ン 1分子当たりに、 ポリウロン酸分子を一つだけ結合させるにあたり、 前項に記 載した回避不可能な少量の副生成物を無視したとしても、 得られる生成物が複雑 な混合物であることが挙げられる。 まず、 第一に出発物質であるポリゥロン酸自 体が、 重合度が比較的広範であるポリゥロン酸分子の複雑な混合物である。 理論 的には、 重合度が全く同じポリゥロン酸分子を含む純粋な成分を得るために、 出 発物質であるポリウ口ン酸に高価かつ時間のかかる分離方法を適用することは可 能であるが、 このような方法は、 経済的に不適当であり、 分散剤生成物に求めら れる性能を考慮した場合には一般的に不必要である。 第二に、 出発物質であるグ リセリルポリ (ォキシプロピレン) トリアミン自体も、 比較的に広範な数のプロ ピレンォキシド単位を有するグリセリルポリ (ォキシプロピレン) トリアミン分 子の複雑な混合物であるということである。 また、 3つのグリセリルヒドロキシ ル基間のプロピレンォキシド単位の分布も相当に異なる。 第三に、 広範な分布を 有するポリゥロン酸分子と広範な分布を有するグリセリルポリ (ォキシプロピレ ン) トリアミン分子を組み合わせることにより、 生成される生成物の分子量分布 は、 さらに広範な分布となる。 第四に、 たとえ二つの出発物質が構造的に純粋な 成分であっても、 現実的な反応条件下では、 1種類のポリウロン酸分子と 1種類 のグリセリルポリ (ォキシプロピレン) トリアミン分子の組み合わせからは、 3 種類の異性体の混合物が生成される。 すなわち、 統計的に約三分の一は、 グリセ リル単位の末端ヒドロキシル基の酸素原子に結合しているポリ (ォキシプロピレ ン) 分岐の二つのうちの一つにポリウロン酸が一つ結合したもので、 統計的に約 三分の一は、 グリセリル単位の末端ヒ ドロキシル基の酸素原子に結合しているポ リ (ォキシプロピレン) 分岐の二つのうちの他の一つの分岐にポリウロン酸が一 つ結合したもので、 統計的に約三分の一は、 グリセリル単位の中央部のヒドロキ シル基の酸素原子に結合しているポリ (ォキシプロピレン) 分岐にポリウロン酸 がーつ結合したものである。 このような位置異性体を考慮すると、 広範な分布を 有するポリゥロン酸分子と広範な分布を有するグリセリルポリ (ォキシプロピレ ン) トリアミン分子の組み合わせによる、 3つの結合位置を有する生成物の分子 量の分布は、 位置異性体がないと仮定した場合より、 さらに広範となる。 上記の いずれの場合も構造的に純粋な成分に分離しようとすることは、 経済的に不適当 であり、 分散剤生成物に求められる性能を考慮した場合には一般的に不必要であ る。
第三に考慮すべきことは、 グリセリルポリ (ォキシプロピレン) トリアミン 1 分子当たりにポリゥロン酸分子を一つだけ結合させるにあたり、 絶対に必要では ないが、 二つの反応物質の反応を均一な溶液中で行なうことが望ましいことであ る。 二つの反応物質の初期の混合を均一な条件下で行なうことは、 グリセリルポ リ (ォキシプロピレン) トリアミン分子がポリウロン酸に対して過剰に存在する という条件を実現する上で、 望ましい。 不均一な混合の場合、 物質移動の制約に より、 分子スケールでの分子過剰条件の実現が困難になる。 換言すると、 たとえ グリセリルポリ (ォキシプロピレン) トリアミンが極度に過剰に存在したとして も、 一つの反応物質が一方の反応物質を含む異なる相に移動できる速度は、 反応 物質間に存在する界面部分の表面積の広さによって、 制限されるということであ る。 最悪の場合、 (1 )逆移動に比べて、 グリセリルポリ (ォキシプロピレン) ト リアミンが、 優先的にポリウロン酸成分を含む相に移動したり、 (2 ) 相間移動 速度に対して反応物質間の反応が速くなるということがある。 この場合、 相間移 動速度が制限され、 グリセリルポリ (ォキシプロピレン) トリアミンの 1分子が、 ポリウロン酸を含む相に移動後、 ポリウロン酸の 3分子がグリセリルポリ (ォキ シプロピレン) トリアミンの 1分子と結合する確率が高くなる。 このような状態 は、 グリセリルポリ (ォキシプロピレン) トリアミン反応物質を過剰に使用する 本来の目的に反する。
したがって、 この第三の考慮すべきことについては、 均一な溶液中で還元的ァ ミノ化反応を行なうことが望ましいといえる。 ここで、 ポリウロン酸成分は親水 性が強く、 グリセリルポリ (ォキシプロピレン) トリアミン成分はその構造上疎 水性なので、 適合性のある溶媒の選択が問題として浮上してくる。 しかしながら、 本発明者は、 ポリゥロン酸の水性溶液またはスラリーをグリセリルポリ (ォキシ プロピレン) トリアミンと少量の水を含むメタノール溶液に、 ゆっくりと加える ことにより均一な溶液が生成されることを見出した。 メタノールの一部をェタノ ール、 Λ—プロパノールおよびイソプロパノール等の高級アルコールに代えても 最終混合物の均一性は失われないが、 メタノールが好ましい成分であると考えら れる。
第二の態様におけるポリゥロン酸誘導体
本発明の第二の態様によるポリゥロン酸誘導体は、 2個〜 6個のポリゥロン酸 が、 その還元末端を介して、 グリセリルポリ (ォキシプロピレン) トリアミンに、 還元的ァミノ'化により共有結合してなるものである。
以下に説明するように、 第一の態様におけるポリゥロン酸の場合と同様にまた はそれに加えて、 還元的ァミノ化による共有結合に関しては、 考慮すべき重要な 事項がいくつかある。
第一に考慮すべきこととして、 出発物質であるグリセリルポリ (ォキシプロピ レン) トリアミンおよびポリゥロン酸の両方とも分子の複雑な混合物であること が挙げられる。 グリセリルポリ (ォキシプロピレン) トリアミンに複雑さをもた らす第一の要因は、 1分子当たりのプロピレンォキシド単位の合計数である。 通 常は、 ピーク値付近を中心とするガウス分布近似を取る。 プロピレンォキシド単 位の合計数を一定にした条件で複雑さをもたらす第二の要因としては、 3つの構 造の異なるグリセリルヒドロキシル基から延びる三つのポリ (ォキシプロピレ ン) 鎮上のプロピレンォキシド単位の数分布がある。 ポリウロン酸に複雑さをも たらす唯一の要因は、 不純物である糖類を無視すれば、 1分子当たりのゥロン酸 単位の合計数である。 本明細書においては、 単純化して、 出発物質であるポリ (ォキシプロピレン) トリアミンおよびポリゥロン酸は平均分子量を有す平均構 造であるとみなす。 しかし、 本発明においては複雑な混合物同士を反応させてい ることに留意しておく必要がある。 つまり、 極端な組合せ条件として、 (1 ) 高 重合度のトリァミンと低重合度のポリゥロン酸とを組合せた場合、 または (2 ) 低重合度のトリアミンと高重合度のポリゥロン酸とを組み合わせた場合に得られ る生成物は、 二つの 「平均的」 出発物質の組合せにより得られた 「平均的」 生成 物とはその特性が著しく異なる場合もある。 しカゝし、 極端な組合せによる生成物 が全体の生成物の混合物において無視できるものであれば、 そのような生成物に ついての議論をしなくてもよい。
上記議論より、 本発明におけるポリウロン酸誘導体は、 必然的に複雑な混合物 となる。 理論的には、 純粋な成分を得るために両方の出発物質に高価かつ時間の かかる単離方法を適用し、 その後、 純粋な成分を得るために生成物に高価かつ時 間のかかる単離方法を適用することは可能であるが、 このような方法は、 経済的 に不適当であり、 分散剤生成物に求められる性能を考慮した場合には一般的には 不必要である。
分散剤生成物の水溶性の観点から考慮すると、 ポリゥロン酸を 1個だけ共有結 合的に結合させた 1対 1生成物の水溶性をより向上させたい場合には、 グリセリ ルポリ (ォキシプロピレン) トリアミン 1分子当たりに 2個以上のポリウロン酸 を結合させることが有効であることが判明した。 ここで、 二つの極端な場合、 す なわち (1 ) 出発物質であるポリゥロン酸の平均分子量が相対的に小さい場合、 および (2 ) グリセリルポリ (ォキシプロピレン) トリアミンの平均分子量が相 対的に大きい場合、 が考慮される。 ポリウロン酸の数平均分子量が本発明におけ る仕様下限またはその付近にある場合には、 ポリゥロン酸誘導体の水溶性を向上 させることが好ましい。 また同様に、 本発明者らは、 例えば、 J e f ί a m i n e T一 5 0 0 0のように x + y + zの値が約 8 0であり、 数平均分子量が仕様 上限付近にあるグリセリルポリ (ォキシプロピレン) トリアミンを用いる場合に は、 ポリウロン酸誘導体の水溶性を向上させるために、 トリアミン 1分子当たり に 2個以上のポリゥロン酸を共有結合させることが好ましいことを見出した。 理 論的には、 還元的ァミノ化により、 最大 6偁のポリウロン酸を 1個のグリセリル ポリ (ォキシプロピレン) トリアミンに共有結合させることができるが、 本発明 における共有結合の好ましい数は 2個である。 このように 2個結合されることで、 元々のァミン部分の 3個のうち残された非改質の 1個に、 分散剤の疎水性部分を 顔料粒子表面上に吸着させる役割を持たせてもよい。
グリセリルポリ (ォキシプロピレン) ト'リアミン 1個当たりに 2個以上のポリ ゥロン酸を共有結合的に結合させる上で非常に重要な考慮事項は、 反応を均一な 溶液中で行うことが好ましいということである。 ポリゥロン酸部分は親水性であ り、 グリセリ'ルポリ (ォキシプロピレン) トリアミン部分は構造上疎水性である ので、 適切な溶媒を見つけ出すことが潜在的な問題となる。 本発明者は、 大量に 過剰なグリセリルポリ (ォキシプロピレン) トリアミンを含むメタノール水溶液 にポリゥロン酸の水溶液をゆつくりと加えることにより均一な溶液が生成される ことを見出した。
2個以上のポリウロン酸を、 1個のグリセリルポリ (ォキシプロピレン) トリ ァミンに共有結合させることができる均一な反応溶液を得るためには、 極性が強 い非水溶性溶媒が有効であることを発明者は見出した。 この種の実用的な溶媒と しては、 ジメチノレスルホキシド ( D M S O ) 、 スノレホラン、 1 , 3ージメチノレー 2—イミダゾリジノン (D M I ) および N—メチルー 2—ピロリジン (NM P ) が挙げられる。 これらの極性が強い溶媒へのポリゥロン酸の溶解を促進するため には、 相対的に少量の非水溶性の強酸であるトリフルォロ酢酸を加えることが有 効であることを見出した。 同様にグリセリルポリ (ォキシプロピレン) トリアミ ンの溶解を促進するためには、 補助溶媒である低分子量アルコールを添加するこ とが有効であることを見出した。 好ましい方法としては、 出発物質であるポリゥ ロン酸とグリセリルポリ (ォキシプロピレン) トリアミンとを適切な当量ほど含 む別々の溶液を調整する。 その後、 溶液を混合して十分に攪拌する。 グリコシル ァミノ化が完了またはほぼ完了するのに十分な時間が経過後、 還元的アミノ化反 応が行わ る。
上記の還元的ァミノ化反応は、 当業者に公知の方法により行うことができる。 上記したように、 この反応は、 反応物資が均一な溶液中で行なうことが望ましい。 還元的ァミノ化は、 ボラン化合物、 水素化ホゥ素化合物またはシァノ水素化ホゥ 素化合物を使用することによって、 簡便に行われる。 一般的に使用されるボラン 化合物は、 ポラン一アンモニア化合物、 ボラン一 t s r ί—ブチルァミン化合物、 ポラン一 Ν , Ν—ジェチルァユリン化合物、 ボランー Ν , Ν—ジイソプロピルェ チルァミン化合物、 ボランージメチルアミン化合物、 ボランー Ν—ェチルー Ν— イソプロピルァニリン化合物、 ポラン一 4一ェチルモルホリン化合物、 ポラン一 モルホリン化合物、 ボラン一ピリジン化合物、 ボラン一トリェチルァミン化合物、 およびボラン一トリメチルァミン化合物等である。 一般的に使用される水素化ホ ゥ素化合物は、 水素化ホウ素ナトリウム、 水素化ホウ素カリウム、 水素化ホウ素 リチウム、 水素化ホウ素テトラメチルアンモユウムおよび水素化ホウ素テトラブ チルァンモニゥム等である。 一般的に使用されるシァノ水素化ホウ素化合物は、 シァノ水素化ホウ素ナトリウム、 シァノ水素化ホウ素カリウム、 シァノ水素化ホ ゥ素リチウムおよびシァノ水素化ホウ素テトラブチ アンモニゥム等である。 簡便かつ選択的な別の方法としては、 金属触媒を使用する接触水素化がある。 一般的な金属触媒としては、 すべての第 8族金属が対象となるが、 ニッケル、 パ ラジウム、 白金およびルテニウムが好ましい。 この金属触媒は、 担持させた形で 使用してもよいし、 担持させないで使用してもよい。 水素圧力は 1 0 O p s i
(6. 8 9 5 X 1 05 P a) を超えるが、 7 O 0 p s i (4. 8 27 X 1 06 P a) を超える圧力がより好ましい。 反応温度は 1 0〜 1 00° Cであるが、 30 〜 70。 Cがさらに好ましい。 還元的ァミノ化に使用できるが、 選択性のより低 い試薬としては、 1) 亜鉛と塩酸、 2) 鉄ペンタカルポエルとアルコール性水酸 化カリウム、 および 3) ギ酸などがある。
本発明の第一の態様によるポリゥロン酸誘導体にあっては、 生成物の単離は、 反応溶媒を蒸発させてから、 未反応のグリセリルポリ (ォキシプロピレン) トリ ァミンを選択的に溶解するが、 生成物を溶解しない溶媒で反応生成物を洗浄する ことにより簡便に実現できる。 未反応のグリセリルポリ (ォキシプロピレン) ト リアミンは回収後、 出発物質として再利用可能である。 洗浄後、 グリセリルポリ
(ォキシプロピレン) トリアミンが除去された生成物は、 中性またはアル力リ性 の水溶液に溶解する。
本発明の第二の態様によるポリゥロン酸誘導体にあっては、 生成物の単離は、 当業者に公知の方法により行うことができる。 還元的ァミノ化を溶解性ボラン化 合物またはボラン塩を使用して行った場合、 生成物の単離に好ましい第 1のステ ップは、 反応溶液を減圧下で完全蒸留することである。 最後に、 上記と同様にし て、 未反応のグリセリルポリ (ォキシプロピレン) トリアミンを選択的に溶解す るが、 生成物を溶解しない溶媒で反応生成物を洗浄し溶液を作製する。 還元的ァ ミノ化が不均一接触水素化で行われた場合、 不溶性の水素化触媒を濾過により最 初に除去した後で、 上記と同様に生成物を単離する。 適切な塩基 (例を以下に示 す) を使用して、 生成物のアルカリ性溶液を作製する。
生成物の純度が重大事項である場合は、 限外濾過によりさらに精製を行なうこ とが好ましい。
還元的ァミノ化プロセスは、 当業者に公知の方法であるパッチプロセスまたは 連続プロセスのどちらによっても行うことができる。
本発明におけるポリウロン酸誘導体は、 米国特許第 6 , 2 4 2 , 5 2 9号に記 載される誘導体に類似するが、 本発明における誘導体が低コストの疎水性ポリマ 一、 即ちグリセリルポリ (ォキシプロピレン) トリアミンより製造可能であるこ とが、 大きな相違点である。 さらに、 本発明におけるポリウロン酸誘導体は、 上 記低コス トの疎水性ポリマー (グリセリルポリ (ォキシプロピレン) トリアミ ン) を改質することなくそのまま用いることによって、 即ちポリゥロン酸の還元 末端において一工程のみの還元的ァミノ化反応を行うことによって、 至極単純な 工程で製造することができる。
顔料分散水性ィンク組成物
本発明の第三の態様における顔料分散水性インク組成物は、 主溶媒としての 水と、 顔料と、 上記の第一の態様または第二の態様のポリゥロン酸誘導体からな る顔料分散剤、 とを含んでなるものである。
ポリゥロン酸誘導体からなる顔料分散剤の含有量は、 インク組成物に対し約 0 . 1〜2 0重量%、 より好ましくは 0 . 1〜: 1 0重量%である。
以下、 上記ポリゥロン酸誘導体以外の構成成分について説明する。
<顔料 > '
本発明によるインク組成物における顔料には、 有機または無機顔料からなる群 から少なくとも 1種類が選択される。 本発明における 「顔料」 とは、 不溶性着色 剤のことである。
顔料粒子の大きさは、 顔料分散インクがインクジェット印刷装置、 とりわけ典 型的に直径が 1 0〜5 0ミクロンの範囲にある吐出ノズルを通って自由に飛翔す るに十分な程度に小さくなければならなレ、。 顔料の粒径は、 好ましくは 1 0ミク ロン以下、 より好ましくは 0 . 1ミクロン以下である。
選択された顔料は、 乾燥または湿潤の形態で使用できる。 通常、 顔料は水性媒 体中で製造され、 この顔料は水湿潤プレスケーキとして得られる。 このプレスケ ーキの形態では、 顔料は、 乾燥形態ほどの凝集はしない。 顔料分散剤の製造にあ たり、 湿潤プレスケーキの形態での顔料は、 乾燥顔料ほどの解凝集を必要としな い。
本発明において利用可能な顔料としては、 以下のものなどが挙げられる:シム ラーファース トイェロー GF (大日本インキ化学工業株式会社製; C. I. ビグ メントイエロー 1 2) 、 シムラーファース トイェロー GR F (大日本インキ化学 工業株式会社製; C. I . ビグメントイエロー 1 3) 、 シムラーファース トイエ ロー 5 GF (大日本インキ化学工業株式会社製; C. I . ビグメントイエロー 1 4) 、 I r g a l i t e Ye l l o w CG (C i b a -G e i g y社製; C . I . ビグメントイエロー 1 6) 、 シムラーファース トイエロー HGF (大日本ィ ンキ化学工業株式会社製; C. I . ビグメントイエロー 1 7) 、 シムラーファー ス トイェロー 4 1 1 7 (大日本インキ化学工業株式会社製; C. I . ビグメント イェロー 73) 、 シムラーファース トイェロー 4 1 9 1 N (大日本インキ化学ェ 業株式会社製; C. I . ビグメントイエロー 74) 、 シムラーファース トイエロ 一 41 81 (大日本インキ化学工業株式会社製; C. I . ビグメントイエロー 8 3; N Ch r omo p h t h a l Y e l l ow 3 G (C i b a— G e i g y 社製; C. I . ピグメントイエロー 9 3) 、 Ch r omo p h t h a l Y e l l ow GR (C i b a— G e i g y社製; C. I . ビグメントイエロー 9 5) 、 シムラーファース トイェロー 41 86 (大日本ィンキ化学工業株式会社製; C. I . ピグメントイエロー 9 7) 、 Ha n s a B r i l l i a n t Ye l l o w 1 0 GX (Ho e c h s t C e l a n e s e社製; C . I . ビグメントイ エロー 98) 、 P e rma n e n t Ye l l ow G3 R-0 1 (Ho e c h s t C e l a n e s e社製; C. I . ビグメントイエロー 1 14) 、 Ch r o mo p h t h a 1 Ye l l ow 8 G (C i b a— G e i g y社製; C . I . ピグメントイェロー 1 28) 、 I r g a z i n Ye l l ow 5 G T (C i b a -G e i g y社製 ; C. I . ビグメントイエロー 1 29) 、 Ho s t a p e r m Y e l l ow H4G (Ho e c h s t C e l a n e s e社製; C . I . ピグメントイェロー 1 5 1) 、 シムラーファース トイエロー 4 1 92 (大日本ィ ンキ化学工業株式会社製; C. I . ビグメントイエロー 1 54) 、 Ho s t a p e rm O r a n g e GR (Ho e c h s t C e l a n e s e社製; C . I . ピグメントオレンジ 43) 、 P a l i o g e n. O r a.n g e (B A S F社製; C. I . ビグメントオレンジ 5 1) 、 シムラーブリ リアントカーミン (大日本ィ ンキ化学工業株式会社製; C . I . ビグメントレッ ド 57 : 1 ) 、 ファース トゲ ンスーパーマゼンタ (大日本インキ化学工業株式会社製; C. I . ビグメントレ 9681
17
ッド 1 22) 、 P a l i o g e n R e d L 3 870 (BA S F社製; C . I . ピグメントレッ ド 1 23) 、 Ho s t a p e rm S c a r l e t GO (Ho e c h s t C e l a n e s e社製; C . I . ビグメントレッ ド 1 68 ) 、 P e r m a n e n t R b i n e F 6 B (Ho e c h s t C e l a n e s e i 製; C. I . ピグメントレッ ド 1 84) 、 Mo n a s t r a I Ma g e n t a
(C i b a— G e i g y社製; C . I . ビグメントレッ ド 202 ) 、 M o n a s t r a 1 S c a r l e t (C i b a— G e i g y社製; C . I . ビグメントレ ッド 207) 、 ファース トゲンブルー G P— 100 (大日本インキ化学工業株式 会社製; C . I . ピグメントブル一 1 5 : 2) 、 ファース トゲンブルー GN PR
(大日本インキ化学工業株式会社製; C. I . ビグメントブルー 1 5 : 3) 、 フ アーストゲンブルー GNP S (大日本インキ化学工業株式会社製; C. I . ビグ メントプノレー 1 5 : 4) M i c r a c e t B l u e R (C i b a— G e i g y社製; C . I . ピグメントブルー 60) 、 ファース トゲングリーン S (大日 本ィンキ化学工業株式会社製; C. I . ピグメントグリーン 7) 、 ファース トゲ ングリーン 2 YK (大日本インキ化学工業株式会社製; C. I · ビグメントダリ ーン 36) 、 ファース トゲンスーパーレッド (大日本ィンキ化学工業株式会社 製; C. I . ピグメントバイオレッ ト 1 9) 、 ファース トゲンスーパーバイオレ ッ ト (大日本インキ化学工業株式会社製 ; C. I . ビグメントバイオレッ ト 2 3) 、 Mo n a s t r a l Ma r o o n RT— 229— D (C i b a— G e i g y社製; C. I . ビグメントバイオレッ ト 42) 、 R a v e n 1 1 70
(C o l umb i a n Ch em i c a l s社製; C . I . ビグメントブラック 7) 、 スペシャルブラック 4 A (D e g u s s a社製; C. I . ビグメントブラ ック 7) 、 S 1 60 (D e g u s s a社製; C . I . ビグメントブラック 7 ) 、 S 1 70 (D e g u s s a社製; C. I . ビグメントブラック 7 ) 、 および FW 1 8 (D e g u s s a社製; C . I . ビグメントブラック 7 ) 。
本発明のインク組成物中における顔料の量は、 約 0. 1〜30重量°/0、 より好 ましくは 0. 1〜20重量%でぁる。
<水>
水は、 本発明の顔料分散水性インク組成物のための主要溶媒である。 インク組 成物に含ませることができる追加成分をさらに以下に示す。 本発明によるインク 組成物中の水性キャリア媒体の量は、 7 0〜9 9 . 8重量%である。
<塩基 > '
ポリゥロン酸部分を水性媒体に可溶化させるために、 カルボン酸官能基の一部 または全ての中和を必要とすることがある。 このための適切な塩基としては、 有 機塩基、 アルカノールァミン、 アルカリ金属水酸化物およびそれらの混合物など が挙げられる。 適切な塩基としては、 例えば、 以下のものが挙げられる :メチノレ ァミン、 ジメチルァミン、 トリメチルァミン、 モルホリン、 N—メチルモノレホリ ン、 モノエタノーノレアミン、 ジエタノールァミン、 トリエタノールァミン、 N— メチルーモノエタノールアミン、 N , N—ジメチルーモノエタノールァミン、 N ーメチルージェタノールァミン、 トリイソプロパノールァミン、 水酸化テ トラメ チルアンモニゥム、 アンモニア、 水酸化リチウム、 水酸化ナトリウム、 水酸化力 リウム、 水酸化ルビジゥムおよぴ水酸化セシゥム。
ぐ水溶性補助溶媒 >
上記した成分の他に、 インクは、 任意に 1種以上の水溶性有機溶媒を含有でき る。 水溶性有機溶媒は、 よく知られており、 .(1 ) イソプロピルアルコール、 ブ チルアルコール等のアルコール類、 ( 2 ) アセトン、 メチルェチルケトン等のケ トン類、 ( 3 ) テ トラヒ ドロフラン、 ジォキサン等のエーテル類、 ( 4 ) ェチル アセテート、 プロピレンカルボネート等のエステル類、 (5 ) エチレングリ コー ル、 プロピレングリ コーノレ、 ブチレングリ コーノレ、 ジエチレングリ コー/レ、 ト リ エチレングリコーノレ、 ポリエチレングリコーノレ、 ポリプロピレングリ コーノレ、 1 , 5一ペンタンジォ一ノレ、 1 , 2一ペンタンジ才ーノレ、 1 , 2—へキサンジオール、 1 , 2 , 6一へキサントリオール、 1 , 2—ヘプタンジォーノレ、 チォジグリ コー ル、 グリセロール等の多価ァノレコール類、 (6 ) エチレングリ コールモノメチル エーテノレ、 エチレングリ コーノレモノェチノレエーテノレ、 エチレングリ コーノレモノー n一プロピノレエーテノレ、 エチレングリ コーノレモノーイソプロピノレエーテノレ、 ェチ レングリコースレモノ一 nーブチノレエーテノレ、 ェチレングリ コーゾレモノー s e c— プチ/レエーテノレ、 エチレングリ コーノレモノ一イソプチノレエーテノレ、 エチレングリ コ一/レモノー t e r t—ブチノレエーテノレ、 エチレングリコーノレモノ一 n—アミノレ エーテノレ、 エチレングリ コーノレモノ一 n—へキシノレエーテノレ、 プロピレングリ コ ールモノメチルエーテル、 プロピレングリ コ一ルモノェチルエーテノレ、 プロピレ ングリ コーノレモノ一 n—プロピノレエーテノレ、 プロピレンダリ コーノレモノーィソプ ロピノレエーテル、 プロピレングリ コーノレモノー n—ブチルエーテノレ、 プロピレン グリコーノレモノー s e c—ブチルエーテノレ、 プロピレングリコーノレモノーイソブ チノレエーテノレ、 プロピレングリ コーノレモノー t e r tーブチノレエーテノレ、 ジェチ レングリ コーノレモノメチノレエーテノレ、 ジエチレングリコーノレモノエチノレエーテノレ、 ジェチレングリコーノレモノ― n—プロピノレエーテノレ、 ジェチレングリコーノレモノ ーィソプロピルエーテル、 ジエチレングリ コーノレモノ一 n—ブチノレエーテノレ、 ジ プロピレンダリ コールモノメチルエーテル、. ジプロピレンダリ コーノレモノェチノレ エーテル、 ジプロピレングリ コールモノー n—プロピルエーテルおよびジプロピ レングリコールモノー n—ブチルエーテル等の多価アルコール類の低級アルキル エーテル、 (7 ) 尿素、 ピロリ ドン、 N—メチルー 2—ピロリ ドン等の窒素含有 化合物、 (8 ) ジメチルスルホキシド、 テ トラメチレンスルホキシド等のィォゥ 含有化合物がある。 インクに使用される補助溶媒の総量は特に限定されないが、 好ましくは、 補助溶媒は 0 . 5〜4 0重量 °/0の範囲で存在する。
<その他の成分〉 - 上記で記載した成分の他に、 インクは、 ァニオン性または非イオン性界面活性 剤からなる群から選択される 1種以上の浸透性付与界面活性剤を任意に含有して よい。 ァニオン界面活性剤としては、 例えば、 脂肪酸塩、 高級アルコール硫酸ェ ステル塩、 アルキルベンゼンスルホネートおよび高級アルコールリン酸エステル 塩等が挙げられる。 非イオン界面活性剤としては、 例えば、 アセチレンジオール のエチレンォキシド付加物、 高級アルコールのエチレンォキシド付加物、 アルキ ルフエノールのエチレンォキシド付加物、 脂肪族エチレンォキシド付加物、 高級 アルコール脂肪酸エステルのエチレンォキシド付加、 高級アルキルァミンのェチ レンォキシド付加、 脂肪酸アミ ドのエチレンォキシド付加、 ポリプロピレングリ コールのエチレンォキシド付加、 多価アルコールの脂肪酸エステル、 アルカノー ルアミン脂肪酸アミ ドおよびエチレンォキシドープロピレンォキシドコポリマー 等が挙げられる。 米国、 1 8 1 9 5、 ペンシルベニア州アレンタウンにある A i r P r o d u c t s a n d C h e m i c a l s I n c . 社より市 ¾され ているアセチレン系ジオールまたはアセチレン系ジオールのエチレンォキシド付 加物が好ましく使用される。 これらの例としては、 サーフィノール 1 0 4 (テト 2003/009681
20
ラメチルデシンジオール)、 サーフィノール 4 6 5 (エトキシル化テトラメチル デシンジオール)、 サーフィノ一ノレ C T一 1 3 6 (アセチレン系ジォーノレとァニ オン界面活性剤との配合物) 、 サーフィノール G A (アセチレン系ジオール配合 物) およびサーフィノーノレ T G (エチレングリ コーノレへのアセチレン系ジォーノレ 配合物) が挙げられる。 ドイツの B Y K C h e m i e G m b H社より巿販さ れているェトキシル化 Zプロボキシル化シリコン系界面活性剤も好ましく使用さ れる。 インクにおける浸透性付与界面活性剤の使用量は、 特に限定されないが、 好ましくは、 0 . 0 1〜 5重量0 /0の範囲である。 インクは、 上記の浸透性付与界 面活性剤の他、 p H緩衝剤、 殺生剤、 粘度調整剤、 紫外線吸収剤、 腐蝕防止剤お よび酸化防止剤などの添加剤を含有してもよい。 ィンクの全ての組成物の量は、 ィンク粘度が 2 0 °Cで 1 0 c p s未満であるように選択される。
自己分散型水性顔料ィンク組成物
本発明による顔料分散水性インク組成物は、 主溶媒としての水と、 自己分散型 顔料と、 上記の第一の態様または第二の態様のポリゥロン酸誘導体、 とを含んで なるものである。
上記ポリゥロン酸誘導体の量は、 インク組成物に対して約 0 . 1〜2 0重量%、 より好ましくは、 0 , 1〜: L 0重量%である。
以下、 上記ポリゥロン酸誘導体以外の構成成分について説明する。
ぐ自己分散型顔料 >
本発明における自己分散型顔料は、 自己分散型の有機顔料または無機顔料で構 成される群から選択される少なくとも一つの顔料により構成される。 ここで、 自 己分散型顔料のキャリアは水である。 一般的に 「顔料」 という用語は水不溶性着 色剤を意味するが、 自己分散型顔料の粒子がより小さくなると、 水溶性着色剤、 例えば染料、 と識別することは困難になる。 とりわけ、 自己分散型顔料の分散液 に超遠心機で発生する大きな遠心力を作用させても、 無視できないほどの量の自 己分散型顔料と水性キヤリアとが不完全な分離状態になる可能性がある。 本明細 書においては、 「顔料」 という用語を実質的に水不溶性である着色剤とする。 な お、 実質的とは、 水不溶性成分が重量比で 9 5 %を超えて存在するということを 意味するものとする。
「自己分散型」 という用語は、 顔料の改質という意味で使用され、 本発明にお いては、 水性キャリア中で顔料が安定した分散を得るために、 分散剤、 例えばポ リマー分散剤や界面活性剤等を必要としない顔料と定義される。 このような分散 の安定性は、 実際の条件または劣化加速条件での時間の変化に対する粘度、 表面 張力、 D Hおよび粒子径等の物理的特性の定常性により示される。 一般に顔料の 密度は、 水より高いので、 時間の経過とともに、 沈降が発生することは避けられ ない。 高沈降率は、 分散安定性が悪いことを示す。 高沈降率を示す分散では、 沈 降に伴なう物理的特性の変化を容易に測定できる。 十分なほどの低沈降率、 例え ば 1年当たり 10%未満、 は分散安定性が高いことを示す。 自己分散型顔料の注 視すべき特性は、 自己分散型顔料を含む分散水溶液の表面張力が水 (7 2 d y n e s/cm, 2 5°C) に近いことである。 ポリマー分散剤および界面活性剤は、 純粋な顔料分散溶液の表面張力を低下させる (6 0 d y n e s Z c m未満、 2 5°C) 傾向がある。
自己分散型顔料の原料となる顔料は、 以下に挙げた顔料群より選択されるがこ れらに限定されるものではない。
ブラック顔料、 カーボンブラックは、 公知の方法、 例えばコンタクト法、 乾留 法、 ガス法およびサーマル法等により生産される。 具体的には、 以下のものが挙 けられる。 R a v e n 1 1 70 (C o l umb i a n Ch em i c a l s社 製; C. I . ビグメントブラック 7) 、 スぺシヤノレブラック 4 A (D e g u s s a社製; C . I . ビグメントブラック 7 ) 、 S 1 60 (D e g u s s a社製; C . I . ビグメントブラック 7 ) 、 S 1 70 (D e g u s s a社製; C . I . ピグメ ントプラック 7) 、 FW18 (D e g u s s a社製; C . I . ピグメントブラッ ク 7) 、 FW200 (D e g u s s a社製; C · I . ピグメントブラック 7 ) 、 R a v e n 5000 (C o l umb i a n C h em i c a l s社製; C. I . ピグメントブラック 7) 、 R a v e n 3 500 (C o l umb i a n C h e m i c a 1 s社製; C . I . ビグメントブラック 7 ) 、 CD 2038 (C o l um b i a n Ch em i c a l s社製; C . I . ピグメントブラック 7 ) 、 C D 703 5 (C o l umb i a n Ch em i c a l s社製; C . I . ピグメ ントブラック 7) 、 CD 6026 (C o l umb i a n C h em i c a l s 社製; C. I . ビグメントブラック 7) 、 CD 7004 (C o l umb i a n C h em i c a l s社製; C . I . ビグメントブラック 7 ) 、 MA 1 00 (三菱化学株式会社製; C. I . ビグメントブラック 7) 、 N o. 45 (三菱化 学株式会社製; C . I . ビグメントブラック 7 ) 、 V u 1 c a n XC 7 2 R
(C a b o t社製; C. I . ビグメントブラック 7) 、 Mo n a r c h 1 00 0 (C a b o t社製; C . I . ビグメントブラック 7 ) 、 および M o n a r c h 880 (C a b o t社製; C. I . ピグメントブラック 7) 。
ブラック以外の有色顔料には、 特に制限も無く、 有色有機顔料が利用できる。 有色有機顔料は、 自己分散型顔料の原料として利用可能であり、 具体的には、 ァ ゾ系、 フタロシアニン系、 キナタリ ドン系、 イソインドリノン系、 ジォキサン系、 ベンゾイミダゾロン系、 アントラキノン系、 インダントロン系およびペリレン系 の顔料が含まれる。 本発明において利用可能な顔料としては、 以下のものなどが 挙げられる:シムラーファーストイエロー GF (大日本インキ化学工業株式会社 製; C. I . ビグメントイエロー 1 2) 、 シムラーファース トイェロー GR F
(大日本ィンキ化学工業株式会社製; C. I . ビグメントイエロー 1 3) 、 シム ラーファーストイェロー 5GF (大日本インキ化学工業株式会社製; C. I . ピ グメントイエロー 1 4) 、 I r g a l i t e Y e l l ow CG (C i b a - 06 1 § 社製; 〇. I . ビグメントイエロー 1 6) 、 シムラーファーストイエ ロー HGF (大日本インキ化学工業株式会社製; C. I . ビグメントイエロー 1 7) 、 シムラーファーストイエロー 4 1 1 7 (大日本ィンキ化学工業株式会社 製; C. I . ビグメントイエロー 73) 、 シムラーファース トイェロー 4 1 9 1 N (大日本インキ化学工業株式会社製; C. I . ビグメントイエロー 74) 、 シ ムラ一ファース トイェロー 4 1 8 1 (大曰本インキ化学工業株式会社製; C. I . ピグメントイエロー 83) 、 Ch r om o p h t h a l Y e l l o w 3 G
(C i b a一 G e i g y社製; C. I . ピグメントイエロー 9 3) 、 C h r o m o p h t h a 1 Y e l l o w GR (C i b a -G e i g y社製; C . I . ピ グメントイエロー 9 5) 、 シムラーファーストイェロー 4 1 8 6 (大日本インキ 化学工業株式会社製; C. I . ビグメントイエロー 97) 、 H a n s a B r i
1 1 i a n t Ye l l ow 1 0G X (Ho e c h s t C e l a n e s e社 製; C. I . ピグメントイエロー 98) 、 P e r ma n e n t Y e l l ow G 3 R— 01 (Ho e c h s t C e 1 a n e s e社製; C . I . ピグメントイ エロ一 1 14) 、 C h r omo p h t h a l Y e l l ow 8 G (C i b a— G e i g y社製; C. I . ピグメントイエロー 1 28) 、 I r g a z i n Ye 1 1 o w 5 GT (C i b a -G e i g y社製; C . I . ビグメントイエロー 1 29) 、 Ho s t a p e rm Y e l l ow H4G (Ho e c h s t C e 1 a n e s e社製; C. I . ピグメントイェロー 1 51) 、 シムラーファース トイ エロー 41 92 (大日本インキ化学工業株式会社製; C. I . ビグメントイエロ — 1 54) 、 トナ1 ~^ エロー HG (C 1 a r i a n t社製; C. I . ピグメント イェロー 1 80) 、 Ho s t a p e r m O r a n g e G R (Ho e c h s t C e 1 a n e s e社製; C. I . ピグメントオレンジ 43) 、 P a 1 i o g e n O r a n g e (BAS F社製; C . I . ピグメントォレンジ 5 1) 、 シムラ 一ブリ リアントカーミン (大日本インキ化学工業株式会社製; C. I . ビグメン トレッ ド 5 7 : 1) 、 ファース トゲンスーパーマゼンタ (大日本インキ化学工業 株式会社製; C. I . ビグメントレッド 1 22) 、 トナーマゼンタ EO (C 1 a r i a n t社製; C . I . ビグメントレッ ド 1 22 ) 、 P a 1 i o g e n R e d L 38 70 (BAS F社製; C . I . ピグメントレッド 1 23) 、 Ho s t a p e r m S c a r l e t GO (Ho e c h s t C e l a n e s e社製; C. I . ピグメントレッ ド 1 68) 、 P e rma n e n t Ru b i n e F 6 B (Ho e c h s t C e l a n e s e社製; C . I . ビグメントレッ ド 1 8 4) 、 Mo n a s t r a 1 Ma g e n t a (C i b a—G e i g y社製; C . I . ピグメントレッド 202) 、 Mo n a s t r a l S c a r l e t (C i b a— G e i g y社製; C . I . ビグメントレッ ド 207 ) 、 ファース トゲンブノレ 一 GP— 1 00 (大日本インキ化学工業株式会社製; C. I . ビグメントブルー 1 5 : 2) 、 ファース トゲンブルー GN PR (大日本インキ化学工業株式会社 製; C. I . ピグメントブルー 1 5 : 3) 、 ト^ "一シアン B (C 1 a r i a n t 社製 ; C. I . ビグメントプル一 1 5 : 3) 、 ファース トゲンブルー GNP S (大日本インキ化学工業株式会社製; C. I . ビグメントブルー 1 5 : 4) 、 M i c r a c e t B l u e R (C i b a -G e i g y社製; C. I . ピグメン トブルー 60) 、 ファース トゲングリーン S (大日本インキ化学工業株式会社 製; C. I . ピグメントグリーン 7) 、 ファース トゲングリーン 2 YK (大日本 インキ化学工業株式会社製; C. I . ビグメントグリーン 36) 、 ファース トゲ ンスーパーレッド (大日本インキ化学工業株式会社製; C. I . ビグメントバイ ォレッ ト 1 9) 、 ファース トゲンスーパーバイオレッ ト (大日本インキ化学工業 株式会社製; C. I . ビグメントバイオレット 23) 、 Mo n a s t r a 1 M a r o o n RT— 229— D (C i b a— G e i g y社製; C. I . ピグメン トバイオレツト 42) 。
本発明における自己分散型顔料は、 電荷を有する官能基を意図的に十分な数ほ ど顔料粒子の表面に導入するという公知の方法により製造可能である。 その方法 は、 本発明における方法のみ限るものではなく、 顔料粒子の表面に電荷を有する 官能基を導入させる方法には以下も含まれる :次亜塩素酸塩による酸化、 過マン ガン酸塩による酸化、 塩素酸塩による酸化、 過硫酸塩による酸化、 硝酸による酸 化、 オゾンによる酸化、 電荷を有する官能基群を含むァリールジァゾニゥム塩と のカツプリング反応およびスルホン化剤によるスルホン化。 市販の自己分散型の ブラック顔料は、 C a b o t社より異なる 2種類の製品として販売されている。 CABO-O- J ET 200 (スルホン化カーポンプラック) および CABO— O— J E T 300 (力ルポキシル化力一ボンブラック) である。 ブラック自己分 散型顔料分散液の他の市販製品には、 オリエント化学工業株式会社製の B o n j e t B l a c k CW~ 1がある。
本発明の好ましい態様によると、 自己分散型顔料の平均粒子径は、 5 0〜20 0ナノメートルである。 本発明によるィンク組成物中の自己分散型顔料の量は、 約 0. 1〜30重量%、 より好ましくは 0. 1〜20重量%である。
く水、 塩基、 水溶性補助溶媒、 およびその他の成分 >
水、 塩基、 水溶性捕助溶媒、 およびその他の成分に関しては、 本発明の第三の 態様におけるインク組成物で用いられるものと同様である。
<ィンク組成物の調製 >
本発明の第三の態様におけるインク組成物は、 適当な方法を用いて、 上記した 成分を分散 '混合することにより一工程で調製できる。 また、 インク組成物は、 1) 上記した成分の一部を分散 ·混合し、 2) その後、 残りの成分を分散液に添 加 '混合することにより、 二工程で調製することもできる。 分散工程は、 ボール ミル、 サンドミル、 アトリツター、 ミニミル、 ローノレミル、 アジテータミノレ、 H e n s h e 1 ミキサ一、 コロイドミル、 超音波ホモジナイザー、 ジエツトミルま たはオングミルを用いて、 均一な分散液が得られるように行なうことができる。 まず着色ィンクを濃縮形態で調製した後、 この濃縮分散液を希釈してインクジ エツトプリンタに使用するのに適切な濃度にするのが望ましい。 また、 一般的に、 顔料分散水性ィンク組成物を、 好ましくは金属メ ッシュフィルタまたはメンブレ ンフィルタを用いて、 濾過することが望ましい。 濾過は、 濾過されているインク 組成物に圧力を加えるか、 濾過装置の受容端の圧力を減少することによつて行な つてもよい。 遠心分離を使用して、 インクジェットプリンタのプリントヘッドの ノズルを詰まらせる原因となる大きな粒子を除去してもよい。
本発明の第四の態様におけるインク組成物は、 本発明のインク組成物は、 許容 される方法を使用して、 単純に上記化合物を混合することで調製できる。 好まし い態様では、 化合物を混合後、 5 0 °Cを超える温度でインク組成物を短時間ほど 攪拌しながら加熱すると、 粘度が一定のインクが得られる。 他の好ましい態様で は、 化合物を混合後、 インク組成物に超音波処理浴槽中で短時間ほど超音波処理 を行なうと、 粘度が一定のインクが得られる。 上記の安定化処理または同様の処 理を完了後、 濾過によりインクの大きい粒子を除去することが望ましい。 好まし くは金属製メッシュフィルタまたはメンブレンフィルタを用いて、 濾過すること が望ましい。 濾過は、 濾過されているインク組成物に圧力を加えるか、 濾過装置 の受容端の圧力を減少させることによって行なってもよい。 濾過処理の前に、 遠 心分離を使用して、 粒子径が大き過ぎるものを除去してもよい。
理論的な理由は定かではないが、 本宪明によるインク組成物は、 ポリウロン酸 がその還元末端を介して、 グリセリルポリ (ォキシプロピレン) トリアミンに、 還元的ァミノ化により結合してなるポリゥロン酸誘導体と自己分散型顔料との間 の好ましい相互反応により、 信頼性のある印刷性能おょぴ優れた印刷品質を実現 すると予測される。 この二つの主要な化合物で相互反応が起こっていることは、 インク調製の好ましい態様として上記した、 新しく調製したインク組成物の加熱 または超音波処理の際に粘度上昇がわずかであることから明らかである。 オリゴ ォキシプロピレンポリマーは、 水性媒体の温度上昇につれて、 水溶性を低下させ ることが知られている。 ポリウロン酸がその還元末端を介して、 グリセリルポリ (ォキシプロピレン) トリアミンに、 還元的ァミノ化により結合してなるポリゥ ロン酸誘導体のグリセリルポリ (ォキシプロピレン) トリアミン部分も、 同様の 挙動を示すと予測される。 インク組成物の加熱処理 (バルタ温度上昇) または超 JP2003/009681
26
音波処理 (局所的温度上昇) により、 グリセリルポリ (ォキシプロピレン) トリ ァミン部分は、 水性媒体との親和性がより低下し、 周囲に存在する疎水性基との 親和性がより高くなる。 本発明のインク組成物における自己分散型顔料は、 疎水 性を示す。 非改質の顔料と比較すると、 自己分散型顔料の表面の親水性は強いが、 表面に官能基が導入される度合いは依然として比較的少なく、 顔料の大部分の表 面は、 相当に疎水性である。 したがって、 インク組成物をバルタまたは局所的に 加熱したときに上記二つの主要な化合物間で相互反応が起こると考えることは非 合理的ではない。 ポリ (ォキシプロピレン) トリアミン部分は、 分子量が比較的 大きいため、 顔料と吸着した後、 ポリ (ォキシプロピレン) トリアミン部分の顔 料からの解離が起こりにくい。 したがって、 インク保存およびノまたはインク使 用期間 (数年) において、 初期のわずかな粘度上昇後はそのままの状態を保ち、 粘度が一定のィンクが得られる。
理論的な理由は定かではないが、 自己分散型顔料は、 本発明におけるポリゥロ ン酸誘導体が顔料表面へ吸着した後も、 非改質の自己分散型顔料の有する有用な 特性を保持しているので、 本発明によるインク組成物は、 信頼性のある印刷性能 を実現すると予測される。 上記の通り、 自己分散型顔料の使用は、 水性顔料系ィ ンクを使用して信頼性のある印刷性能を得るための最も一般的な方法の一つであ る。 このようにポリウロン酸部分には優れた水溶性を示すので、 自己分散型顔料 の有用な特性が保持されるのみでなく、 自己分散型顔料/ポリゥロン酸誘導体の 組合せの安定性が向上すると予測される。
理論的な理由は定かではないが、 自己分散型顔料は、 上記の通り非改質の自己 分散型顔料の有する有用な特性を保持しているので、 本発明によるインク組成物 は、 普通紙で優れた印刷品質を実現できると予測される。 ポリウロン酸がその還 元末端を介して、 グリセリルポリ (ォキシプロピレン) トリアミンに還元的アミ ノ化により結合してなるポリゥロン酸誘導体の含有によっても、 上記の通り、 ィ ンク組成の粘度上昇はわずかである。 粘度上昇がわずかであることの結果として、 本発明のインクは、 顔料の含有量を相対的に多く した調製が可能であり、 これは 非改質の自己分散型顔料を含有するィンクでは一般的である。 顔料の含有量が多 いことは、 普通紙上で光学濃度が高いことを意味し、 普通紙上での優れた印刷品 質を得るための注視すベき特性となる。 3009681
27
さらに、 理論的な理由は定かではないが、 自已分散型顔料は、 ポリウロン酸が その還元末端を介して、 グリセリルポリ (ォキシプロピレン) トリアミンに還元 的ァミノ化により結合してなるポリウ口ン酸誘導体が自己分散型顔料の表面へ良 好に吸着することにより、 本発明のインク組成物は、 光沢のある専用コート紙で 優れた印刷品質を実現すると予測される。 先行技術の例である水性樹脂、 ェマル ジョン、 水溶性ェマルジョン、 水溶性および/または分散ポリマーおょぴアタリ ル系樹脂とは対照的に、 ポリゥロン酸がその還元末端を介して、 グリセリルホ °リ
(ォキシプロピレン) トリアミンに還元的ァミノ化により結合してなるポリゥロ ン酸誘導体は、 上記の通り、 自己分散型顔料の表面に強制的に吸着させることが できる。 吸着された、 ポリウロン酸がその還元末端を介して、 グリセリルポリ
(ォキシプロピレン) トリアミンに還元的ァミノ化により結合してなるポリゥロ ン酸誘導体は、 専用コート紙上での印刷画像の光沢を向上させるための光沢材と して機能する。 自己分散型顔料/ポリゥロン酸誘導体の組合せは、 非自己分散型 顔料のそれと同様であるので、 非自己分散型顔料分散液と同等の光沢および付着 力が得られる。
[実施例]
以下、 本発明を具体的な実施例によってさらに詳細に説明するが、 本発明はこ れら実施例に何ら制限されるものではない。
1. 第一の態様におけるポリゥロン酸誘導体からなる顔料分散剤の製造
(1) ポリガラタツロン酸の製造
温度計、 オーバーへッドスターラおよび冷却器を取り付けた四つ口 1 L丸底フ ラスコを温度調節ができる加熱用マントルにぴったりと入れた。 8 1%のギ酸溶 液 600g (脱イオン水と 8 8%試薬級のギ酸 (関東化学株式会社、 日本) より 調製した) をフラスコに加えた。 次に、 ゆっく りと攪拌しながらギ酸溶液を 9 ◦ °Cまでに加熱した。 激しく攪拌しながら、 パウダー 'ファンネルを使用してリ ンゴぺクチン 45 g (C l a s s i c AM 201、 He r b s t r e i t h &F o x社製、 ドイツ) を加熱したギ酸溶液にゆっく りと加えた。 フラスコの四 つ目の口は、 窒素流でシステム内を急速にパージした後、 ガラス栓で栓をした。 パージ後、 オイルバブラ一に接続した窒素インレツトアダプターを冷却器の頂部 に取り付け、 遅目に調整した窒素流をオイルバブラ一を通して、 流し始めた。 ぺ クチンは、 60分間激しく攪拌することにより、 完全に溶解した。 次に、 溶液を 穏やかに攪拌しながら、 溶液を加熱還流の状態まで加熱した。 攪拌しながら加熱 還流を連続 5時間行ない、 その後、 溶液を約 40°Cまでに自然冷却した。 少量の 茶色の不溶性不純物を除去するために、 この温かい溶液をヮットマン濾紙 No. 1で濾過して、 1 Lの三角フラスコに濾液を移した。 それから、 集めた濾液を 1 Lのナス型フラスコに移した。 ウォーターバス温度を 60°Cに設定し、 循環型ァ スピレータ装備のロータリーエバポレータを使用して、 フラスコ内に粘度のある 薄茶色の油性残留物が析出するまで、 溶液を蒸発させた。 フラスコにエタノール を 700mL加えると、 黄色がかった白色結晶固体の沈殿が直ちに発生した。 受 容フラスコ内を減圧するためにァスピレータを使用し、 固体を微細な多孔質ガラ ス濾過器 (孔径 1 6〜40ミクロン) で濾過して集めた。 固体を約 400mLの エタノールで 2回洗浄し、 自然乾燥させた。 最後に、 恒量となるまで、 固体を真 空乾燥させた。 生成物の収量は 14. 5 であった。 得られた生成物の重合度を、 P. A. S h a f f e rおよび M. S omo g y i (J. B i o l . C h e m. , 100, 69 5 - 71 3 (1 9 33) ) の方法によって、 21. 2と決定した。 また、 生成物は、 ジメチルー ci5スルホキシド ( (CD 3) 2 S O) およびトリフ ルォロ酢酸一 £^ (CF3C02D) 溶液中での1 H NMRならびに D20溶液 中での13 C NMRによっても構造が決定された。 この両方のスペク トルは、 高純度のポリガラタツ口ン酸の混合物のものと同一であった。
(2) ポリグルロン酸の製造
1 0 0 OmLビーカーに入れた脱イオン水 45 OmLにアルギン酸 1 5 0 g (超低粘度アルギン酸、 株式会社紀文フードケミファ、 東京、 日本) を加え、 ス ラリー状にした。 オーバーヘッドスターラでスラリーを攪拌しながら、 このスラ リーに水酸化リチウム一水和物 28 gを加えた。 アルギン酸が溶解して、 p H値 が約 4. 1 5の溶液が得られた。 脱ィオン水を加えて全体の体積を 600 m Lに した。 次に、 攪拌しながら、 3 1重量%の過酸化水素水 1 00 gおよび消泡剤と して n—ノニルアルコール 2 mLを加えた。 硫酸第一鉄七水和物 0. 6 5 gを含 む溶液 40mLを新しく作り、 攪拌しながらそれをアルギン酸/過酸化水素溶液 に加えた。 この溶液を 4時間激しく攪拌した。 この間、 顕著な発熱が観察され、 その後鎮まった。 まだこの溶液が暖かい間 (約 40°C) に、 攪拌しながら、 さら に 3 1重量%の過酸化水素水 20 gを加えた。 さらに 2時間、 この溶液を激しく 攪拌した。 この間は、 穏やかな発熱が観察された。 次に、 この混合物を 60°Cで 30分間加熱し、 熱い状態のままワットマン濾紙 No. 1で濾過した。 室温まで 冷却してから、 濾液を 1 Lのナス型フラスコに移した。 ウォーターバス温度を 6 0°Cに設定し、 ロータリーエバポレータを使用して、 溶液体積を約 25 OmLに まで濃縮した。 次に、 水洗しながら溶液を 1 Lビーカーに移し、 全体積が最大で 30 OmLとなるようにした。 この溶液を激しく攪拌しながら、 氷酢酸を 300 mLゆっく りと加えると、 固体が沈殿した。 沈殿した固体を微細な多孔質ガラス フィルター (孔径 1 6〜40ミクロン) で吸引濾過して集めた。 湿った固体を脱 イオン水約 10 OmLと共に 1 Lビーカーに移した。 固体と水を激しく攪拌して、 均一なスラリーが得られるようにした。 スラリーを攪拌しながら、 95%ェタノ ール 80 OmLをゆつく り加えた。 1時間攪拌後、 固体を微細な多孔質ガラスフ ィルター (孔径 1 6〜40ミクロン) で吸引濾過して集めた。 固体を 9 5%エタ ノールで数回洗浄し、 それから自然乾燥させた。 最後に、 恒量となるまで、 固体 を真空乾燥させた。 生成物の収量は 1 8. 5 gであった。 得られた生成物の重合 度を、 上記に記載した P. A. S h a f f e rおよび M. S omo g y iの方法 によって、 1 3. 2と決定した。 また、 生成物は、 ジメチルー c 6スルホキシド ( (CD 3) 2 S O) およびトリフルォロ酢酸一 c (C F 3C02D) 溶液中で の1 H NMRならびに D 2〇溶液中での13 C NMRによっても構造が決定さ れた。 これらのスペク トルは、 そのほとんどがポリグルロン酸である、 純粋なポ リグルロン酸の混合物'とポリゥロン酸の混合物のものと同一であつたが、 少量の マンヌロン酸を不純物として含んでいた。 混合物中のグルロン酸含量は、 85重 量%を超えた。
(3) ポリゥロン酸誘導体 A 1の製造: グリセリルポリ (ォキシプロピレン) トリアミンのポリガラタツロン酸への還元的アミノ化
20 OmLビーカーに入れた脱イオン水 20 OmLに、 上記の通り製造したポ リガラクッロン酸 40 gを加え、 スラリー状にした。 磁気攪拌子で攪拌しながら、 混合物を約 50°Cにまで加熱し、 ポリガラクッロン酸のほとんどを溶解した。 2 00 gのグリセリルポリ (ォキシプロピレン) 'トリアミン (J e f f am i n e X J T— 50 9 N x + y+ zが約 50、 Hu n t sma n C o r p o r a t i o n社製、 P e r f o rma n c e Ch em i c a l s D i v i s i o n、 ヒュース トン、 テキサス州、 米国) 、 フットポール型の磁気攪拌子、 1, 200 gのメタノールおよび 200 gの脱イオン水を 2 Lビーカーに加えた。 磁気攪拌 子で溶液を攪拌して、 均一な溶液を得た。 グリセリルポリ (ォキシプロピレン) トリアミンのメタノール溶液を攪拌しながら、 水性スラリ一状の温かいポリガラ タツロン酸を、 グリセリルポリ (ォキシプロピレン) トリアミンのメタノール溶 液に素早く加えた。 混合物を 2時間連続攪拌して、 均一な茶色の溶液を得た。 ビ 一力一にプラスチックカバーをして 60時間放置した。 次に、 ポリガラクッロン 酸 Zグリセリルポリ (ォキシプロピレン) トリアミンの溶液の約三分の二を 1 L のナス型フラスコに移した。 ウォーターバス温度を 70°Cに設定し、 ロータリー エバポレータを使用して、 溶液体積を約 3 5 OmLにまで濃縮した。 ナス型フラ スコをロータリ一エバポレータから取り外して、 残りの三分の一のポリガラクッ ロン酸 グリセリルポリ (ォキシプロピレン) トリアミンの溶液をナス型フラス コに移した。 再度、 ウォーターバス温度を 70°Cに設定し、 ロータリーエバポレ ータを使用して、 揮発性溶媒が回収されなくなるまで溶液を濃縮して、 濃褐色の 油性残留物を 1 Lのナス型フラスコに得た。 油性残留物を 75%メタノール/2 5 %ェタノール溶液 500 m Lで 3回洗浄し、 洗浄溶液を捨てた。 洗浄したこと で、 油性残留物が部分的に固化した。 粘着性の茶色の固体をメタノール 9 5 Om Lと 9 8 %ギ酸溶液 300 m Lの混合溶液で溶解し、 2 Lビーカーに移した。 磁 気撹拌機とフットポール型の磁気攪拌子で溶液を攪拌しながら、 ボラン一ジメチ ルァミン化合物 20 gを加えた。 この化合物は速やかに溶解し、 混合溶液をさら に 36時間攪拌した。 この時、 溶液の色が顕著に明るくなつた。 次に、 上記した ように、 ウォーターバス温度を 70°Cに設定し、 ロータリーエバポレータを使用 して、 溶液体積を約 40 OmLにまで濃縮した。 次に、 脱イオン水 600mL、 イソプロパノール 60 OmL、 98%ギ酸溶液 20 OmLを溶液に加え、 混合物 溶液を 2 Lのフラスコに移した。 溶液を攪拌しながら、 分子量 10, 000等級 のメンプレン孔径である 1 2のポリスルホンプレートで構成された M i 1 1 i p o r e M i n i t a nシステムを使用した限外濾過により、 溶液を濾過した。 精製された液体はもとの容器に再循環され、 一方、 メンブレンを透過したグリセ リルポリ (ォキシプロピレン) トリアミン含有の浸透液体は、 回収後に捨てた。 除去された浸透液体を補うために、 2 Lのフラスコに、 脱イオン水/イソプロパ ノール Zギ酸溶液を定期的に加えた。 限外濾過により、 溶液体積を約 500 m L にまで濃縮した。 回収した浸透液体の全体積は、 約 5 Lであった。 この操作によ り精製した溶液を、 加圧下で 5ミクロンのメンブレンフィルタにより濾過して、 少量の固体不純物を除去した。 上記の通り、 ウォーターバス温度を 70°Cに設定 し、 ロータリーエバポレータを使用して、 濾液から揮発性溶媒を蒸発させた。 薄 茶色の油性残留物が恒量となるまで、 オイルタィプ真空ポンプを使用して乾燥さ せた。 生成物の収量は 5 7. 5 gであった。 30 OmLフラスコに、 乾燥固体 3 0. 0 gと脱イオン水 1 50 gを入れた。 激しく攪拌しながら約 40°じにまで 加温し、 固体がほとんど溶解するまで固体水酸化リチウムを徐々に加えた。 この 時、 混合物の; Hは約 7. 5であった。 混合物の pHを監視しながら、 混合物の pHが 8. 5の一定値に達するまで水酸化リチウム一水和物溶液 (5重量%) を 攪拌下で滴下した。 溶液の総重量が 200 gになるまで水を追加した。 得られた 溶液を 5ミクロンのメンブレンフィルタで濾過し、 操作を終了した。
このようにして得られたポリゥロン酸誘導体 A 1を顔料分散剤 A 1として用い た。
(4) ポリウロン酸誘導体 B 1の製造: グリセリルポリ (ォキシプロピレン) トリアミンのポリグルロン酸への還元的ァミノ化
20 OmLビーカーに入れた脱イオン水 200 mLに、 上記の通り製造したポ リグルロン酸 40 gを加え、 スラリー状にした。 200 gのグリセリルポリ (ォ キシプロピレン) トリアミン (J e i f am i n e X J T— 509、 x + y + z力、約 50、 Hu n t sma n C o r p o r a t i o n社製、 P e r f o rm a n c e Ch em i c a l s D i v i s i o n、 ヒユーストン、 テキサス州、 米国) 、 フッ トボール型の磁気攪拌子、 1, 000 gのメタノールおよび 200 gの脱イオン水を 2 Lビーカーに加えた。 磁気攪拌子で溶液を攪拌して、 均一な 溶液を得た。 グリセリルポリ (ォキシプロピレン) トリアミンのメタノール溶液 を攪样しながら、 水性スラリー状のポリグルロン酸を、 グリセリルポリ (ォキシ プロピレン) トリアミンのメタノール溶液に素早く加えた。 混合物を 2時間連続 攪拌して、 均一な茶色の溶液を得た。 ビーカーにプラスチックカバーをして 60 3009681
32
時間放置した。 次に、 ポリグルロン酸/グリセリルポリ (ォキシプロピレン) ト リアミンの溶液の約三分の二を 1 Lのチス型フラスコに移した。 ウォーターバス 温度を 70°Cに設定し、 ロータリーエバポレータを使用して、 溶液体積を約 30 OmLにまで濃縮した。 ナス型: ラスコをロータリーエバポレータから取り外し て、 残りの三分の一のポリグルロン酸 Zグリセリルポリ (ォキシプロピレン) ト リアミンの溶液をナス型フラスコに移した。 再度、 ウォーターバス温度を 70°C に設定し、 ロータリーエバポレータを使用して、 揮発性溶媒が回収されなくなる まで溶液を濃縮して、 濃褐色の油性残留物を 1 Lのナス型フラスコに得た。 油性 残留物を 75%メタノール Z25%エタノール溶液 50 OmLで 3回洗浄し、 洗 浄溶液を捨てた。 洗浄したことで、 油性残留物が部分的に固化した。 粘着性の茶 色の固体をメタノール 9 50mLと 98%ギ酸溶液 300 m Lの混合溶液で溶解 し、 2 Lビーカーに移した。 磁気撹拌機とフットボール型の磁気攪拌子で溶液を 攪拌しながら、 ポランージメチルァミン化合物 20 gを加えた。 この化合物は速 やかに溶解し、 混合溶液をさらに 36時間攪拌した。 この時、 溶液の色が顕著に 明るくなつた。 次に、 上記したように、 ウォーターバス温度を 70°Cに設定し、 ロータリーエバポレータを使用して、 揮発性溶媒が回収されなくなるまで溶液を 濃縮して、 濃褐色の油性残留物を 1 Lのナス型フラスコに得た。 次に、 脱イオン 水 800mL、 イソプロパノール 60 OmL、 98 %ギ酸溶液 200 m Lを溶液 に加え、 混合溶液を 2 Lのフラスコに移した。 溶液を攪拌しながら、 分子量 10, 000等級のメンブレン孔径である 1 2のポリスルホンプレートで構成された M i l l i p o r e Mi n i t a nシステムを使用した限外濾過により、 溶液を 濾過した。 精製された液体はもとの容器に再循環され、 一方、 メンプレンを透過 したグリセリルポリ (ォキシプロピレン) トリアミン含有の浸透液体は、 回収後 に捨てた。 除去された浸透液体を補うために、 2 Lのフラスコに、 脱イオン水/ イソプロパノール Ζギ酸溶液を定期的に加えた。 限外濾過により、 溶液体積を約 50 OmLにまで濃縮した。 回収した浸透液体の全体積は、 約 5 Lであった。 こ の操作により精製した溶液を、 加圧下で 5ミクロンのメンプレンフィルタにより 濾過して、 少量の固体不純物を除去した。 上記の通り、 ウォーターパス温度を 7 0°Cに設定し、 ロータリーエバポレータを使用して、 濾液から揮発性溶媒を蒸発 させた。 薄茶色の油性残留物が恒量となるまで、 オイルタイプ真空ポンプを使用 JP2003/009681
33
して乾燥させた。 生成物の収量は 5 2. 8gであった。 3 00mLフラスコに、 乾燥固体 30. 0 gと脱イオン水 1 50 gを入れた。 激しく攪拌しながら約 4 0° Cにまで加温し、 固体がほとんど溶解するまで固体水酸化リチウムを徐々に 加えた。 この時、 混合物の p Hは約 7. 5であった。 混合物の; p Hを監視しなが ら、 混合物の p Hが 8. 8の一定値に達するまで水酸化リチウム一水和物溶液 (5重量%) を攪拌下で滴下した。 溶液の総重量が 200 gになるまで水を追加 した。 得られた溶液を 5ミクロンのメンプレンフィルタで濾過し、 操作を終了し た。
このようにして得られたポリゥロン酸誘導体 B 1を顔料分散剤 B 1として用い た。
2. 第二の態様におけるポリゥロン酸誘導体からなる顏料分散剤の製造
(1) ポリガラタツロン酸の製造
温度計、 オーバーへッ ドスターラおよび冷却器を取り付けた四口 1 L丸底フラ スコを温度調節ができる加熱用マントルにぴったりと入れた。 8 1%のギ酸溶液 60 Og (脱イオン水と 8 8%試薬級のギ酸 (関東化学株式会社製) より調製し た) をフラスコに加えた。 次に、 ゆっくりと攪拌しながらギ酸溶液を 90°Cまで に加熱した。 激しく攪拌しながら、 パウダー 'ファンネルを使用してリンゴ由来 のぺクチン 45 g (C l a s s i c AM 20 1、 He r b s t r e i t h& F o x社製、 ドイツ) を加熱したギ酸溶液にゆっくりと加えた。 フラスコの四つ 目の口は、 窒素流でシステム內を急速にパージした後、 ガラス栓で栓をした。 パ ージ後、 オイルバブラ一に接続した窒素インレツトアダプターを冷却器の頂部に 取り付け、 遅目に調整した窒素流をオイルバブラ一を通して、 流し始めた。 ぺク チンは、 30分間激しく攪拌することにより、 完全に溶解した。 次に、 溶液を穏 やかに攪拌しながら、 溶液を加熱.還流の状態まで加熱した。 攪拌しながら加熱還 流を連続 90分間行ない、 その後、 溶液を約 40°Cまでに自然冷却した。 少量の 茶色の不溶性不純物を除去するために、 この温かい溶液をヮットマン濾紙 No. 1で濾過して、 1 Lの三角フラスコに濾液を移した。 それから、 集めた濾液を 1 Lのナス型フラスコに移した。 ウォーターバス温度を 60°Cに設定し、 循環型ァ スピレータ装備のロータリーエバポレータを使用して、 フラスコ內に粘度のある 薄茶色の油性残留物が析出するまで、 溶液を蒸発させた。 フラスコにエタノール を 700mL加えると、 黄色がかった白色結晶固体の沈殿が直ちに発生した。 受 容フラスコ内を減圧するためにァスピレータを使用し、.固体を微細な多孔質ガラ ス瀘過器 (孔径 16〜40ミクロン) で濾過して集めた。 固体を約 400mLの エタノールで 2回洗浄し、 自然乾燥させた。 最後に、 恒量となるまで、 固体を真 空乾燥させた。 生成物の収量は 3 2. 7gであった。 また、 生成物は、 ジメチル 一 d 6スルホキシド ( (CD 3) 2 S O) およびトリフルォロ酢酸一 d (C F 3 C02D) 溶液中での1 H NMRによっても構造が決定された。 この両方のス ぺクトルは、 高純度のポリガラクッロン酸の混合物のものと同一であった。 生成 物の平均分子量の粗い測定として、 マルトオリゴマーおよびデキストラン標準を 参照したゲル浸透クロマトグラフ分析を行った。 日立モデル L一 6000ポンプ をガスクロ工業モデル 5 56恒温炉、 S h o d e Xモデル R I S E— 52示差 屈折率検出器おょぴ日立モデル D 2520 GPCインテグレータと共に使用した c T S K PWXLガード ' コラム (内径 6 mm X 4 c m) を装着した T SK— G EL G 30 00 PWXLコラム (内径 7. 8 mmX 3 0 c m) を使用して分析 を行った。 溶出液には、 りん酸二水素ナトリウム二水和物 0. 06モルと水酸化 ナトリウム 0. 036モルを含むリン酸緩衝液 ( p H 7 ) を使用した。 流量は 0. 8mlZ分で、 コラム温度 2 5 °Cを維持した。 溶出液の試料濃度が 1重量%とな るように調整し、 注入量は 40マイクロリットルとした。 標準溶液であるマルト トリオース、 マ/レトテトロース、 マノレトペントース、 デキス トラン 1080 g/ モル、 デキス トラン4440 gZモルおょぴデキス トラン 98 90 gZモルを参 照曲線の確立のために使用した。 参照曲線から、 ポリガラタツロン酸試料の平均 分子量は約 7300 モルとなった。
(2) ポリグルロン酸の製造
1 0 0 OmLビーカーに入れた脱イオン水 4 5 OmLにアルギン酸 1 5 0 g (超低粘度アルギン酸、 株式会社紀文フードケミファ製) を加え、 スラリー状に した。 オーバーヘッ ドスターラでスラリーを攪拌しながら、 このスラリーに水酸 化リチウム一水和物 28. O gを加えた。 アルギン酸が溶解して、 pH値が約 4. 1 5の溶液が得られた。 .脱イオン水を加えて全体の体積を 60 OmLにした。 次 に、 攪拌しながら、 3 1重量%の過酸化水素水 100 gおよび消泡剤として n— ノ-ルアルコール 2mLを加えた。 硫酸第一鉄七水和物 0. 6 5 gを含む溶液 4 OmLを新しく作り、 攪拌しながらそれをアルギン酸ノ過酸化水素溶液に加えた。 この溶液を 4時間激しく'攪拌した。 この間、 顕著な発熱が観察され、 その後鎮ま つた。 まだこの溶液が暖かい間 (約 40°C) に、 ワッ トマン濾紙 No. 1で濾過 した。 室温まで冷却してから、 濾液を 1 Lのナス型フラスコに移した。 ウォータ 一バス温度を 60°Cに設定し、 ロータリーエバポレータを使用して、 溶液体積を 約 25 OmLにまで濃縮した。 次に、 水洗しながら溶液を 1 Lビーカーに移し、。 全体積が最大で 30 OmLとなるようにした。 この溶液を激しく攪拌しながら、 氷酢酸を 30 OmLゆっくりと加えると、 固体が沈殿した。 沈殿した固体を微細 な多孔質ガラスフィルター (孔径 1 6〜40ミクロン) で吸引濾過して集めた。 湿った固体を脱イオン水約 1 0 OmLと共に 1 Lビーカーに移した。 固体と水を 激しく攪拌して、 均一なスラリーが得られるようにした。 スラリーを攪拌しなが ら、 9 5%エタノール 80 OmLをゆっく り加えた。 1時間攪拌後、 固体を微細 な多孔質ガラスフィルター (孔径 1 6〜40ミクロン) で吸引濾過して集めた。 固体を 9 5%エタノールで数回洗浄し、 それから自然乾燥させた。 最後に、 恒量 となるまで、 固体を真空乾燥させた。 生成物の収量は 1 8. 5 gであった。 生成 物は、 ジメチル一 d 6スルホキシド ( (CD3) 2 S O) およびトリフルォロ酢酸 - d! (CF3C02D) 溶液中での1 H NMRにによって構造が決定された。 これらのスペクトルは、 そのほとんどがポリグルロン酸である、 純粋なポリダル ロン酸の混合物とポリゥロン酸の混合物のものと同一であったが、 少量のマンヌ ロン酸を不純物として含んでいた。 混合物中のグルロン酸含量は、 8 5重量%を 超えた。 生成物の平均分子量の粗い測定として、 上記と同様にマルトオリゴマー およびデキストラン標準を参照したゲル浸透ク口マトダラフ分析を行った。 参照 曲線から、 ポリグルロン酸試料の平均分子量は約 6 200 gZモルとなった。
(3) ポリゥロン酸誘導体 A 2からなる顔料分散剤 Aの製造:グリセリルポリ (ォキシプロピレン) トリアミンの 2個以上のポリガラクッロン酸還元末端への 還元的ァミノ化
1 Lビーカーに入れた 1, 3—ジメチノレー 2—イミダゾリジノン (DMI ) 4 5 OmLとトリフルォロ酢酸 6 gの溶液に、 上記の通り製造したポリガラタツ口 ン酸 60 gを加え、 スラリー状にした。 磁気攪拌子で攪拌しながら、 混合物を約 50 °Cにまで加熱し、 ポリガラタツロン酸のほとんどを溶解した。 磁気攪拌子で 攪拌しながら、 40 gのグリセリルポリ (ォキシプロピレン) トリアミン (J e f f am i n e T— 5000、 x + y+ zが約 80、 Hu n t sma n C o r p o r a t i o n个土 、 P e r f o rma n c e ch em i c a l s D ι v i s i o n, ヒユーストン、 テキサス州、 米国) を 50 OmLビーカーに入れ. た 1, 3—ジメチル一 2—イミダゾリジノン (DM I ) 20 OmLに溶解した。 ポリガラタツ口ン酸溶液を激しく攪拌しながら、 ポリガラタツ口ン酸溶液にグリ セリルポリ (ォキシプロピレン) トリアミン溶液を素早く加えた。 得られた均一 な薄茶色溶液を口の大きいポリエチレン製の 1 Lサンプル ·ボトルに移した。 サ ンプル■ボトルのネック部分にテフロン製テープを卷き、 ボトルにキヤップを被 せて密封した。 サンプル ·ボトルを 40°Cの恒温炉内で 48時間保存した。 サン プル ·ボトルを炉から取り出し室温になるまで自然冷却した。 冷めたボトルを開 けて、 1 5 gのボランージメチルァミン錯体を加えて、 ボラン化合物が溶解する まで混合物をかき混ぜた。 サンプル ·ボトルを前と同様に密封し、 同じ 40°Cの 恒温炉で 22時間保存した。 この 22時間の間に溶液から著しい量の固体が沈殿 した。 サンプル .ボトルを炉から取り出し室温になるまで自然冷却した。 冷めた ボトルを開けて、 トリフルォロ酢酸を少量ほど加え、 均一溶液となるまで混合物 をかき混ぜた。 加えたトリフルォロ酢酸の量は約 10 gであった。 サンプル ·ボ トルを前と同様に密封し、. 同じ 40°Cの恒温炉で 48時間保存した。 サンプル · ボトルを炉から取り出し室温になるまで自然冷却した。 冷めたポトルを開けて、 5 Lビーカーに入れ激しく攪拌したィソプロパノール 4 Lに内容物を注いだ。 p Hメーターで混合物の p Hをモニタし、 混合物の pHが約 8より大きくなるまで 水酸化リチウム 1 0重量%の溶液を十分に攪拌した混合物に滴下した。 攪拌した 混合物を 1 5時間ほど静置した。 分離された薄黄色の上澄み液をデカンテーショ ンで分離し、 捨てた。 混合物にイソプロパノールを加えて全体積を 4. 5 とし てから、 混合物を 2時間激しく攪拌し、 2 1時間ほど静置した。 上澄み液のデカ ンテーシヨン、 イソプロパノールの添加、 攪拌、 静置という一連の一般的なプロ セスを 3回繰り返した。 静置後、 ほとんど無色の上澄み液を前と同様に分離して 捨てた。 5 Lビーカーに入れた混合物を 30分間ほど超音波浴で処理することで、 残った混合物を均質化した。 固体生成物は、 混合物を 5 OmLチューブに入れて 8分間 20、 000 r p mで遠心分離することで得た。 遠心チューブを十分に換 気されたドラフトボックスに 24時間静置した。 この短い乾燥時間で、 固体が遠 心チューブの側壁から単離された。 半乾燥状態の固体をサンプル ·ボトルに移し、 減圧下で乾燥し恒量とした。 粗生成物の収量は 8 8 gであった。 粗生成物を脱ィ オン水 80 OmLに溶角早し、 0. 2ミクロンのメンブレンフィルタで濾過した。 濾液を 1 Lフラスコに移した。 溶液を攪拌しながら、 分子量 10, 000等級の メンブレン孔径である再生セルロースプレート (部品番号 P 2 C 01 0 C 0 1) 1枚で構成された M i 1 1 i p o r e P e 1 1 i c o n 2 M i n iシステム を使用した限外濾過により、 溶液を精製した。 精製された液体は元の容器に再循 環され、 一方、 浸透溶液を含む不純物を回収後に捨てた。 除去された浸透溶液を 補うために、 1 Lのフラスコに脱イオン水を定期的に加えた。 限外濾過により溶 液体積を約 40◦ m Lにまで濃縮した。 回収した浸透溶液の全体積は約 5 Lであ つた。 p Hメーターで溶液 p Hをモニタし、 pHが 8. 9になるまで、 溶液を十 分に攪拌しながら水酸化リチウム 5重量%溶液を滴下した。 この操作により精製 した溶液を、 加圧下で 0. 2ミクロンのメンプレンフィルタにより濾過して、 少 量の固体不純物を除去した。 溶液 2 gを正確に測定し、 70°Cの恒温炉中で加熱 乾燥させ、 恒量とした。 試料の乾燥重量を正確に測定し、 乾燥前の重量と乾燥重 量の差から溶液中の固体濃度を計算した。 溶液中の固体濃度 14. 6重量%のポ リウ口ン酸誘導体 A 2を得た。
このようにして得られたポリゥロン酸誘導体 A 2を顔料分散剤 Aとして用いた c (4) ポリゥロン酸誘導体 B 2からなる顔料分散剤 Bの製造 ··グリセリルポリ (ォキシプロピレン) トリアミンの 2個以上のポリグルロン酸還元末端への還元 的ァミノ化
1 Lビーカ一に入れた 1, 3—ジメチルー 2—イミダゾリジノン (DM I ) 4 5 OmLと トリフルォロ酢酸 6 gの溶液に、 上記の通り製造したポリグルロン酸 5 6 gを加え、 スラリー状にした。 磁気攪拌子で攪拌しながら、 混合物を約 5 0°Cにまで加熱し、 ポリグルロン酸のほとんどを溶解した。 磁気攪拌子で攪拌し ながら、 44 gのグリセリルポリ (ォキシプロピレン) トリアミン (J e f f a m i n e T一 5000、 χ + y + ζ力 S約 80、 Hu n t sma n C o r p o r a t i o n社製、 P e r f o r ma n c e C h em i c a l s D i v i s i o n, ヒュース トン、 テキサス州、 米国) を 500 mLビーカーに入れた 1, 3—ジメチルー 2—イミダゾリジノン (DM I ) 20 OmLに溶解した。 ポリグ ル口ン酸溶液を激しく攪拌しながら、 ポリダル口ン酸溶液にグリセリルポリ (ォ キシプロピレン) トリアミン溶液を素早く加えた。 得られた均一な薄茶色溶液は、 上記のポリウ口ン酸誘導体 A 2の調整と同様に処理した。 ポリゥロン酸誘導体 B 2の粗収量は 84. 5 gであった。 最終溶液中の固体顔料分散剤 Bの濃度は 14. 3重量%と計算された。
このようにして得られたポリゥロン酸誘導体 B 2を顔料分散剤 Bとして用いた c
(5) 顔料分散剤 C 1 (比較例)
J o n c r y l 62 (SC J o h n s o n P o l yme r社製;アクリル 樹脂溶液; 34重量%固体) を顔料分散剤の調製用に使用した。
(6) 顔料分散剤 D 1 (比較例)
本比較例において、 米国特許第 5, 08 5, 69 8号に従って製造されたプ チルメタクリレート /メチルメタクリレート /メタクリル酸のブロックコポリマ 一 (BMA/MMA/MA) を顔料分散剤として使用した。 該プロックコポリマ 一を水酸化カリウムで中和し、 2 5重量%固体の溶液になるように希釈した。 こ の溶液を 5ミクロンのメンプレンフィルタで濾過することにより、 顔料分散剤 D 1を得た。
3. 顔料分散液の調製
表 1に示す割合で、 顔料 30 gと、 上記顔料分散剤と、 脱イオン水とを混合し、 混合物を E i g e r Mo t o r m i 1 1 M250 VSE-EX J (E i g e r J a p a n社製) を使用して分散させた。 ミリングに使用したガラス球 (直径: 1. Omm) の全体積は、 1 75m Lであった。 ミリングは、 4500 r pmで 30時間行った。
顔料分散液の収量は約 200 gであった。 表 1に示す顔料分散液を調製した。 すべての分散液について、 平均粒径は 100〜 1 20ナノメートルであった。 9681
39
Figure imgf000040_0001
4. インク組成物の調製
上記で得られた顔料分散液と、 脱イオン水と、 補助溶媒と、 サーフィノール 4 6 5 (アセチレンジォーノレのエチレンォキシド付加体: A r P r o d u c t s 社製) l gとを、 攪拌しながら順番にビーカーに入れ、 混合物を 3時間攪拌した c 次に、 インクジェットプリンタに適合するインク組成物を得るため、 混合物を 8ミクロンのメンブレンフィルタで濾過した。
各成分の含有量を表 2およぴ表 3に示す。 なお、 表 2および表 3において使用 した略号は以下のものを示す。
g y ク、'リセ口 ^"ノレ、
DEG ジェチレングリコーノレ、
TEG トリエチレングリコ一ル、
T e EG テトラエチレンク、'リコール、
DEG-mB E ジェチレングリ コーノレモノ一 n—プチノレエーテノレ、
TEG-mB E トリエチレングリコーノレモノ一 n—ブチズレエーテズレ、
HD 1 , 2—へキサンジォーノレ 表 2
Figure imgf000041_0001
3009681
41
表 3
Figure imgf000042_0001
5 . 評価
このようにして得られたインク組成物を、 普通紙での全体的信頼性および印字 品質に基づいて評価した。
( 1 ) 連続印刷試験
上記ィンクの連続印刷条件下における信頼性は、 以下のようにして評価した。 まず、 インクを脱泡し、 熱シール性アルミニウムパックにシールした。 次に、 ィ ンクを P M— 9 0 0 Cプリンタ (セイコーエプソン社製) の黒インクプリントへ ッドに装填した。 最初に、 ノズル全部を使用するラインパターンを印刷して、 ィ ンクが全てのノズルから良好な方向性で吐出される状態であることを確認した。
(ノズルから吐出されるィンク液滴の角偏差は、 正常状態のノズル面に対して約 ± 0 . 5 ° 以内) 。 印刷パターンを、 1インチ当たり 3 6 0 ドットのベタブロッ クパターンに変え、 A 4サイズの用紙全面に印刷するようにした。 この時の印刷 速度は、 比較的に高速で、 1分当たり 4枚であった。 ブロックパターンおよぴラ インパターンを印刷用紙に連続印刷して、 1 0 0枚ごとに、 飛行曲がり、 ノズル の詰まり、 またはべタブロックの光学濃度の減少 (5 %未満) がないかどうかを 評価した。 比較例 1を除く試験したインクの全てについて、 印刷した 1 0 , 0 0 0枚の用紙に関して、 飛行曲がり、 ノズルの詰まり、 またはべタブロックの光学 濃度の減少が観察されなかった。 これは、 信頼性が許容レベルにあることを意味 する。 一方、 比較例 1については、 5 , 0 0 0枚未満で飛行曲がりが生じた。
( 2 ) 長期保存試験
上記インクのプリントへッドにおける長期間保存についての信頼性は、 以下の ようにして評価した。 まず、 インクを脱泡し、 熱シール性アルミニウムパックに シールした。 次に、 インクを M J — 5 1 0 Cプリンタ (セイコーエプソン社 製) の黒インクプリントヘッドに装填した。 最初に、 ノズル全部を使用するライ ンパターンを印刷して、 インクが全てのノズルから良好な方向性で吐出される状 態であることを確認した。 次に、 インク供給源をプリントヘッドから外し、 それ からプリントヘッドをプリンタから取り外した。 プリントヘッドを、 キャップを せずに、 恒温オーブン中 4 0 ° Cに 4日間保存した。 プリントヘッドをプリンタ に再び取り付け、 インク供給源をプリントヘッドに再び取り付けした。 プリンタ のクリ一二ング操作を実施した後、 ノズルの全てを使用するラインパターンの印 刷を行なった。 クリーニング操作とそれに続くラインパターンの印刷を、 全ての ノズルにより良好な方向性で印刷できるまで、 繰り返した。 比較例 1を除く試験 したィンクの全てについて、 完全に回復するのに必要とするクリーエング回数は、 4回以下であり、 これは信頼性が許容レベルにあることを意味する。 一方、 比較 例 1については、 クリーニング操作を 10回行なった後でも、 全てのノズルの完 全回復は達成できなかった。
(3) 熱サイクル試験
上記インクの二つの極端な温度 (一 30° Cおよび 60° C) での信頼性は、 以 下のようにして評価した。 まず、 インクを脱泡し、 3 OmLのガラス製試料瓶に 密封した。 試料瓶を 60° Cの恒温オーブンに入れ、 この温度条件下で 24時間 保存した。 試料を恒温オーブンから取り出し、 一 30°Cの冷凍庫に移し、 この温 度条件下で 24時間保存した。 この二温度サイクルを合計 10サイクルが完了す るまで繰り返した。 最後のサイクルの後、 インクを解凍して室温に戻し、 ガラス 製試料瓶を震盪することなく逆さまにし、 試料瓶の底に析出物がないか調べた。 比較例 1を除く試験したインクの全てについて、 析出物は観察されなかった。 こ れは、 信頼性が許容レベルにあることを意味する。 一方、 比較例 1については、 析出物が観察された。
(4) 乾燥時間試験
ベタブ口ックパターンを印刷し、 印刷したパターンを 5秒づっ間隔を増やしな がら拭き取ることにより、 上記のインクの乾燥時間を評価した。 印刷は、 PM— 9 30 Cプリンタ (セイコーエプソン社製) と X e r o X 4024紙を使用して 実施した。 試験したインクの全てについて、 乾燥時間は 5秒未満であった。 これ は、 乾燥時間が許容レベルの速さであることを意味する。
(5) 印字品質試験
印字品質は、 PM— 9 30 Cプリンタ (セイコーエプソン社製) を使用して、 以下のように評価した。 標準的な 0本の漢字を、 ゴシックおよび明朝を用いて 4 ポイントの文字の大きさで印刷した。 普通紙の代表として X e r o x 4024紙 を使用し、 印字サンプルを 720 d p iで印刷した。 印字サンプルを光学顕微鏡 を使用して観察し、 評価した。 印字品質は、 以下の基準に従って評価した。
評価 (A) :漠字が鮮明であり、 かつ文字の内部空白にインクの入り込みがない。 評価 (B) :漠字は鮮明であるが、 画数が約 1 5を超える漢字において文字の内 部空白にィンクの入り込みが見られる。
評価 (C) :漢字が鮮明でなく、 画数が約 10を超える漢字において内部空白に 顕著なィンクの入り込みが見られる。
印字品質試験の結果を、 以下の表 4に示す。
表 4
Figure imgf000045_0001
上記の表 4の結果から、 本発明におけるインク組成物の全てが、 普通紙での印 刷試験において優れた結果を示した。
6. 第四の態様におけるインク組成物の製造
(1) 自己分散型顔料
ブラック顔料分散液 A
CAB— O— J ET 300 (1 5重量%分散液) を C A B O T社より入手した c ブラック顔料分散液 B B o n j e t B l a c k CW- 1 ( 1 5重量%分散液) をオリエント化学 工業株式会社より入手した。 '
ブラック顔料分散液 C
ブラック顔料分散液は、 国際公開第 0 1 / 94476号パンフレットの例 2に 記載の方法に類似した方法で調製した。 FW— 1 8カーボンブラック (D e g u s s a社より入手) を顔料の出発物質として使用した。 オゾンは、 PC I O z
0 n e社製の G L— 1オゾン発生器を使用して、 発生させた。 M i c r o f 1 u
1 d i c s社の M i c r o f l u i d i z e r装置を使用して、 オゾンによる酸 化と同時に顔料の分散混合を有効に行なった。 得られた分散液を M i 1 1 i p o r e社力 ら入手した P e l l i c o n L a b o r a t o r y S y s t emに よる限外濾過で、 精製した。 分散液の最終濃度は、 1 5重量。 /。であった。 Ho n e yw e l l M i c r o T r a c (登録商標) U P A 1 50粒子径分析機を使 用して測定した分散液の平均粒子径は、 98ナノメートルであった。
イエロ一顔料分散液
イェロー顔料分散液は、 欧州特許第◦ 8948 35号明細書の処理 2を修正し た以下の一般的な方法で調製した。 分散混合は、 国際公開第 0 1ノ94476号 パンフレッ トに記載の通り、 顔料での表面反応と同時に行なった。 No v o p e r m Ye l l ow P— HG (C 1 a r i a n t社より入手) 20重量部を顔 料の出発物質として使用した。 顔料を縣濁し、 それから M i c r o f 1 u i d i c s社製の M i c r o f l u i d i z e r装置を使用して、.5 50重量部のピリ ジンに分散した。 次に、 混合物を加熱還流して、 先に蒸留された水を含む蒸留物 を廃棄した (全溶媒容積の約 10%) 。 乾燥アルゴン雰囲気下での閉鎖反応シス テムで、 1 10°Cで加熱し、 10重量部の三酸化硫黄の液体をピリジン中の顔料 分散液にゆつく りと加えた。 三酸化硫黄を添加中、 M i c r o f l u i d i z e r装置を通して混合物を循環させて、 スルホン化とともに顔料の分散混合を有効 に行なった。 添加および分散混合プロセスは、 連続 6時間行なった。 室温まで冷 却し、 混合物を激しく攪拌しながら、 5、 000重量部のアイススラリーにゆつ くり注いだ。 混合物をロータリーエバポレータに移して、 ほとんどのピリジンを 水性の共沸混合物として除去することで、 水性分散液を得た。 水性分散液を攪拌 しながら、 5 ¾量%の水酸化カリウム溶液を一滴ずつ加えて、 分散液の Hを約 9にした。 次に、 分散液を M i 1 1 i p o r e社から入手した P e 1 1 i c o n L a b o r a t o r y S y s t e mを使用した限外濾過で、 精製、 濃縮した。 分散液の最終濃度は、 1 3重量%であった。 分散液の平均粒子径は、 1 10ナノ メ一トルであった。
マゼンタ顔料分散液
マゼンタ顔料分散液は、 上記のイェロー顔料分散液とほぼ同様の一般的な方法 で調製した。 20重量部のファース トゲンスーパーレッ ド (大日本インキ化学ェ 業株式会社より入手) をイェロー顔料の代わりに使用した。 添加および分散混合 プロセスは、 連続 10時間行なった。 分散液の最終濃度は、 1 2重量%であった c 分散液の平均粒子径は、 140ナノメートルであった。
シアン顔料分散液
シアン顔料分散液は、 上記のイェロー顔料分散液とほぼ同様の一般的な方法で 調製した。 20重量部のト ^ ~一シアン B (C 1 a r i a n t社より入手) をイエ ロー顔料の代わりに使用した。 添加および分散混合プロセスは、 連続 5時間行な つた。 分散液の最終濃度は、 1 5重量%であった。 分散液の平均粒子径は、 9 5 ナノメートルであった。
(2) インク組成物の調製 .
上記顔料分散液、 脱イオン水、 上記で得られたポリウロン酸誘導体 (A 1〜B 2) 、 補助溶剤、 およぴサーフィノール 465 (アセチレンジオールのエチレン ォキシド付加体: A i r P r o du c t s社製) 2 gを、 攪拌しながら、 ガラ スビーカーに順次添加した。 混合物は、 1時間攪拌した。 オーバーヘッドスター ラを使用して混合物をゆつく りと攪拌しながら、 混合物に超音波浴槽で 30分間 ほど超音波処理を行なった。 次に、 混合物を 8ミクロンのメンブレンフィルタで 濾過し、 インクジェット印刷に適したインク組成物を得た。
各成分の組成比を表 5および表 6に示す (成分量は括弧の中に g単位で表示) c 表 5
Figure imgf000048_0001
2003/009681
48
表 5 (つづき)
Figure imgf000049_0001
2003/009681
49
表 6
Figure imgf000050_0001
表 6 (つづき)
Figure imgf000051_0001
上記ィンク組成に加えて、 従来の顔料分散液を基にした 4種類のインクを比較 評価した。
比較例 7には、 ブラックインク (エプソン社製 部品番号 TO 341 20) を、 比較例 8には、 イェローインク (エプソン社製 部品番号 T034420) を、 比較例 9には、 マゼンタインク (エプソン社製 部品番号 T 034320) を、 比較例 10には、 シアンィンク (エプソン社製 部品番号 T 034220) を使 用した。 ( 3 ) 評価
これらのインクを、 下記の方法で評価した。 '
( i ) 連続印刷試験
上記ィンクの連続印刷条件下における信頼性は、 以下のようにして評価した。 まず、 インクを脱泡し、 熱シール性アルミエゥムパックにシールした。 次に、 ィ ンクを P M— 9 0 0 Cプリンタ (セイコーエプソン社製) の黒インクプリントへ ッドに装填した。 最初に、 ノズル全部を使用するラインパターンを印刷して、 ィ ンクが全てのノズルから良好な飛翔性で吐出される状態であることを確認した。
(ノズルから吐出されるインク液滴の角偏差は、 正常状態のノズル面に対して約 ± 0 . 5。 以内) 。 印刷パターンを、 1インチ当たり 3 6 0 ドッ トのベタプロッ クパターンに変え、 A 4サイズの用紙全面に印刷するようにした。 この時の印刷 速度は、 比較的に高速で、 1分当たり 4枚であった。 ブロックパターンおよびラ インパターンを印刷用紙に連続印刷して、 1 0 0枚ごとに、 飛行曲がり、 ノズル の目詰まり、 またはべタブロックの光学濃度の減少 (5 %未満) がないかどうか を評価した。 比較例 1を除く試験したインクの全てについて、 印刷した 1 0, 0 0 0枚の用紙に関して、 飛行曲がり、 ノズルの目詰まり、 またはべタブロックの 光学濃度の減少が観察されなかった。 これは、 信頼性が許容レベルにあることを 意味する。
( i i ) 長期保存試験
上記インクのプリ ントへッドにおける長期間保存についての信頼性は、 以下の ようにして評価した。 まず、 インクを脱泡し、 熱シール性アルミユウムパックに シールした。 次に、 インクを M J— 5 1 0 Cプリンタ (セイコーエプソン社 製) のブラックインクプリントヘッドに装填した。 最初に、 ノズル全部を使用す るラインパターンを印刷して、 ィンクが全てのノズルから良好な飛翔 1"生で吐出さ れる状態であることを確認した。 次に、 インク供給源をプリントヘッドから外し、 それからプリントへッドをプリンタから取り外した。 プリントへッドを、 キヤッ プをせずに、 恒温オーブン中 4 0 ° Cに 4日間保存した。 プリントヘッドをプリ ンタに再び取り付け、 インク供給源をプリントヘッドに再び取り付けした。 プリ ンタのクリ一ニング操作を実施した後、 ノズルの全てを使用するラインパターン の印刷を行なつ.た。 クリーニング操作とそれに続くラインパターンの印刷を、 全 てのノズルにより良好な飛翔性で印刷できるまで、 操り返した。 試験したインク の全てについて、 完全に回復するのに必要とするクリーニング回数は、 4回以下 であり、 これは信頼性が許容レベルにあることを意味する。
( i i i ) 熱サイクル試験
上記インクの二つの極端な温度 (一 30° Cおよび 60° C) での信頼性は、 以 下のようにして評価した。 まず、 インクを脱泡し、 3 OmLのガラス製試料瓶に 密封した。 試料瓶を 6 0° Cの恒温オープンに入れ、 この温度条件下で 24時間 保存した。 試料を恒温オーブンから取り出し、 一 30°Cの冷凍庫に移し、 この温 度条件下で 24時間保存した。 この二温度サイクルを合計 1 0サイクルが完了す るまで繰り返した。 最後のサイクルの後、 インクを解凍して室温に戻し、 ガラス 製試料瓶を震盪することなく逆さまにし、 試料瓶の底に析出物がないか調べた。 試験したインクの全てについて、 析出物は観察されなかった。 これは、 信頼性が 許容レベルにあることを意味する。
( i v) 印刷品質:普通紙での光学濃度試験
普通紙での光学濃度に基づいて印刷品質を以下の方法で評価した。 全てのイン クのサンプルについて、 S t y l u s C o l o r 980プリンタ (セイコーェ プソン社製) を使用して、 1 00°/。D u t yベタ印字の標準カラーパッチを 72 O d iで X e r o X 4024紙に作成した。 印刷サンプルを 1晚ほど周囲温度 で乾燥させ、 印刷パッチの光学濃度を、 S p e c t r o s c a nテーブル付の G r e t a g一 M a c b e t h S p e c t r o l i n o装置を使用して評価した。 ブラックインクに関しては、 印刷品質、 つまり普通紙での光学濃度を以下の基準 を使用して評価した。
評価 (A) 光学濃度値が 3より大きい、
評価 (B) 光学濃度値が 2より大きく 1 3未満、
評価 (C) 光学濃度値が 1より大きく 1 2未満、
評価 (D) 光学濃度値が 0より大きく 1 1未満、 および、
評価 (F) 光学濃度値が 0未満。
イェロー、 関しては、 印刷品質、 つまり普通紙 での光学濃度を以下の基準を使用して評価した:
評価 (A) :光学濃度値が 1. 2より大きい、 評価 (B) 光学濃度値が 1 1より大きく 未満、
評価 (C) 光学濃度値が 1 0より大きく 1未満、
評価 (D) 光学濃度値が 0 9より大きく 0未満、 および、
評価 (F) 光学濃度値が 0 9未満。
この印刷品質試験の結果を表 7および表 8に示す。
(v) 印刷品質:普通紙での文字の鮮鋭度
普通紙での文字の鮮鋭度に基づいて印刷品質を以下の方法で評価した。 全ての インクのサンプルについて、 標準的な日本の漢字を、 ゴシックおよび明朝の両方 を用いて 6ポィントの文字の大きさで印刷した。 普通紙の代表として X e r o X 4024紙を使用し、 720 d p iの印字サンプルを S t y 1 u s C o l o r 980プリンタ (セイコーエプソン社製) で印刷した。 印字サンプルを光学顕微 鏡を使用して観察し、 評価した。 印刷品質は、 以下の基準に従って評価した。 評価 (A) :漢字が鮮明であり、 かつ文字の内部空白にインクの入り込みがな レ、。
評価 (B) :漢字は鮮明であるが、 画数が約 1 5を超える漢字において文字の 内部空白にインクの入り込みが見られる。
評価 (C) :漢字が鮮明でなく、 画数が約 1 0を超える漠字において内部空白 に顕著なィンクの入り込みが見られる。
印刷品質試験の結果を表 7およぴ表 8に示す。
表 7
普通紙 専用紙
試料
兀子辰 乂^子 z概キ1½反 i*= : i :子展メス 1i¾ ィ vi尝 ~hJ 宝倫 1 - A. Ά. r\ 夫施 j a Λ. A 夫舰 Uoa A. Ά. A. A
A. . 八 Ά. Λ, 夫"旭 ίώ 【 u1 a "一9 A Λ. Λ. A A 夫施 ! Jt>a— A A A A A 失她 1」, a— A A A A A 失施^1」 sa— A A A A A 夫她 1 jya A A A A A 夫施 1」丄 A A A A A J 1^!J丄丄 a— A A A A A 关她 ϋ丄 a— A A A A A 卜 ; δί Uΐ上 1 a 9 ID し し
A Β Β c c 比較例 3a-2 A Β Β c c 比較例 4a-2 A Β Β c c 比較例 5a-2 A Β Β c c 比較例 6a-2 A Β Β c c 比較例 7a - 2 F C A A A 比較例 8a- 2 D C A A A 比較例 9a - 2 F C A A A 比較例 10a-2 D C A A A
表 8
Figure imgf000056_0001
(v i ) 印刷品質:専用紙での光学濃度試験
専用紙での光学濃度に基づいて印刷品質を以下の方法で評価した。 全てのイン クのサンプルについて、 S t y l u s C o l o r 9 80プリンタ (セイコーェ プソン社製) を使用して、 1 00%Du t yベタ印字の標準カラーパッチをデフ オールト設定値で PM写真用紙 (セイコーエプソン社製) に作成した。 印刷サン プルを 1晚ほど周囲温度で乾燥させ、 印刷パッチの光学濃度を、 S p e c t r o s c a nァープノレ付の j r e t a g— Ma c b e t h ¾ p e c t r o l ι n o 装置を使用して評価した。 印刷品質、 つまり専用紙での光学濃度を以下の基準を 使用して評価した。
評価 (A) 光学濃度値が 2. 0より大きい、
評価 (B) 光学濃度値が 1. 9より大きく 2 0未満、
評価 (C) 光学濃度値が 1. 8より大きく 1 9未満、
評価 (D) 光学濃度値が 1. 7より大きく 1 8未満、 および、 評価 (F) 光学濃度値が 1. 7未満。
の印刷品質試験の結果を表 7および表 8に示す c (v i i ) 印刷品質:専用紙での光沢試験
専用紙での光沢に基づいて印刷品質を以下の方法で評価した。 全てのインクの サンプノレについて、 単一のインクのサンプノレを、 4色 (イエロー、 マゼンタ、 シ アンおよびブラック) のインクセットの一糸且で評価した。 4色の評価セットの残 りの 3色に関して、 適切なインクを 3色、 比較例 7〜10のインクセッ トから適 切なインクを使用した。 この印刷品質試験用の参照サンプルとして、 比較例 7〜 10のインク 4色全てを使用した。 髪の色がブルネットのモデルの肖像写真を、 S t y l u s C o l o r 980プリンタ (セイコーエプソン社製) を使用して、 デフォールト設定値で PM写真用紙 (セイコーエプソン社製) に印刷した。 全て の印刷サンプルを 1晚ほど周囲温度で乾燥させた。 印刷品質、 つまり専用紙での 光沢を以下の基準を使用して評価した。
評価 (A) :参照サンプルと比較して、 写真画像全体に著しい光沢の差異がな い
評価 (B) :参照サンプルと比較して、 写真画像全体にわずかに光沢の差異が ある。 (評価したブラックおよびシアンのインクでは、 この差異はモデルの髪の 部分において最も顕著であり、 評価したマゼンタおよびイェローのインクでは、 この差異はモデルの顔の部分において最も顕著であった。 )
評価 (C) :参照サンプルと比較して、 写真画像全体に大きな光沢の差異があ る (評価したブラックおよびシアンのインクでは、 この差異はモデルの髪の部分 において最も顕著であり、 評価したマゼンタおよぴィエローのインクでは、 モデ ルの顔の部分において最も顕著であった。 )
この印刷品質試験の結果を表 7および表 8に示す。
(v i i i ) 印刷品質:専用紙での付着力試験
専用紙での付着力に基づいて印刷品質を以下の方法で評価した。 全てのィンク のサンプルについて、 S t y l u s C o l o r 980プリンタ (セィコーェプ ソン社製) を使用して、 14ポイントの大きさで標準的な文字サンプルを複数行 ほど、 デフアールト設定値でフォトプリント紙 (セイコーエプソン社製) に印刷 した。 印刷サンプルを 1晚ほど周囲温度で乾燥させ、 蛍光ペン (ゼブラ Z a z z 1 e蛍光ペン、 ゼブラ株式会社) で文字上に 300 gの圧力で 3 c m長のマーク をした。 ブラック、 シアンおよびマゼンタの文字には、 イェロー蛍光ペンを使用 した。 イェローの文字には、 ピンク蛍光ペンを使用した。 印刷品質、 つまり専用 紙での付着力を以下の基準を使用して評価した。
評価 (A) 蛍光ペンインクに印刷文字が全然にじまない
評価 (B ) :蛍光ペンインクに印刷文字がわずかににじむ
評価 (C ) :蛍光ペンインクに印刷文字が相当ににじむ
この印刷品質試験の結果を表 7および表 8に示す。
表 7および表 8から分かるように、 本発明の全てのインクは、 全ての印刷品質 試験で優れた結果を示した。 ,

Claims

請 求 の 範 囲
1 . ポリウロン酸が、 その還元末端を介して、 グリセリルポリ (ォキシプロ ピレン) トリアミンに、 還元的ァミノ化により結合してなるものである、 ポリウ 口ン酸誘導体。
2 . 1個のポリゥロン酸が、 その還元末端を介して、 グリセリルポリ (ォキ シプロピレン) トリアミンに、 還元的ァミノ化により結合してなるものであり、 このとき前記グリセリルポリ (ォキシプロピレン) トリアミンは、 下記一般式で 表わされるものである、 請求項 1に記載のポリゥロン酸誘導体:
Figure imgf000059_0001
(式中、 x + y + zの総和の平均値は、 1 0〜1 5 0である。 ) 。
3 . 前記一般式で表されるグリセリルポリ (ォキシプロピレン) トリアミンの、 x + y + zの総和の平均値が、 1 0〜 1 0 0である、 請求項 2に記載のポリゥロ ン酸誘導体。
4 . 2個〜 6個のポリゥロン酸が、 その還元末端を介して、 グリセリルポリ (ォキシプロピレン) トリアミンに、 還元的ァミノ化により結合してなるもので あり、 このとき前記グリセリルポリ (ォキシプロピレン) トリアミンは、 下記一 般式で表わされるものである、 請求項 1に記載のポリゥロン酸誘導体:
Figure imgf000060_0001
(式中、 x + y + zの総和の平均値は、 30~250である。 ) 。
5. 前記一般式で表されるグリセリルポリ (ォキシプロピレン) トリアミン の、 X + y + zの総和の平均値が、 30〜 1 20である、 請求項 4に記載のポリ ゥ口ン酸誘導体。
6. 前記ポリゥロン酸が、 1, 4一結合ポリ (ひ一 D—ガラクッロン酸) ま たは 1, 4一結合ポリ (ひ一 Lーグルロン酸) を主成分とするものである、 請求 項 1〜 5のいずれか一項に記載のポリウ口ン酸誘導体。
7. 前記ポリゥロン酸部分の数平均分子量が、 700以上である、 請求項 1 〜 6のいずれか一項に記載のポリウ口ン酸誘導体。
8. 請求項 1~ 7のいずれか一項に記載のポリゥロン酸誘導体を含んでなる、 顔料分散剤。
9. 顔料分散水性インク組成物であって、 主溶媒としての水と、 顔料と、 請 求項 8に記載の顔料分散剤、 とを含んでなる、 水性インク組成物。
1 0. 前記顔料 0. 1〜20重量。/。と、 前記顔料分散剤 0. 1~1 0重量% と、 水性キヤリァ媒体 70〜 99. 8重量%とを含有してなる、 請求項 9に記載 の水性ィンク組成物。
1 1 . 主溶媒としての水と、 自己分散型顔料と、 請求項 1〜7のいずれか一 項に記載のポリウロン酸誘導体、 とを含んでなる、 水性インク組成物。
1 2 . 前記自己分散型顔料を 0 . 1〜2 0重量%と、 前記ポリウロン酸誘導 体を 0 . 1〜1 0重量%と、 水性キャリア媒体を 7 0〜9 9 . 8重量%とを含有 してなる、 請求項 1 1に記載の水性インク組成物。
1 3 . 前記ポリウ口ン酸誘導体のポリウ口ン酸部分が、 有機塩基、 アル力ノ ールァミン、 アルカリ金属水酸化物、 およびそれらの混合物からなる群から選択 される中和剤により中和されたものである、 請求項 1 0〜1 2のいずれか一項に 記載のインク組成物。
1 4 . 請求項 9〜 1 3のいずれか一項に記載のィンク組成物を記録媒体に付 着させることを特徴とする記録方法。
1 5 . 請求項 9〜1 3のいずれか一項に記載のインク組成物の液滴を吐出さ せて、 記録媒体上に付着させることを特徴とするインクジエツト記録方法。
1 6 . 請求項 1 4また 1 5に記載の記録方法によって記録された記録物。
PCT/JP2003/009681 2002-07-30 2003-07-30 ポリウロン酸誘導体およびポリウロン酸誘導体を含んでなる水性インク組成物 WO2004011502A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2003252735A AU2003252735A1 (en) 2002-07-30 2003-07-30 Polyuronic acid derivative and aqueous ink composition comprising polyuronic acid derivative
CNB038184346A CN100338097C (zh) 2002-07-30 2003-07-30 多糖醛酸衍生物和含有多糖醛酸衍生物的水性油墨组合物
JP2005505582A JP4059269B2 (ja) 2002-07-30 2003-07-30 ポリウロン酸誘導体およびポリウロン酸誘導体を含んでなる水性インク組成物
EP03771432A EP1548034A4 (en) 2002-07-30 2003-07-30 POLYURONIC ACID DERIVATIVE AND POLYURONIC ACID DERIVATIVE AQUEOUS PRINTING INK COMPOSITION
US10/523,455 US7195666B2 (en) 2002-07-30 2003-07-30 Polyuronic acid derivative and aqueous ink composition polyuronic acid derivative

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2002-221995 2002-07-30
JP2002221995 2002-07-30
JP2003055956 2003-03-03
JP2003-055956 2003-03-03
JP2003-103463 2003-04-07
JP2003-103462 2003-04-07
JP2003103463 2003-04-07
JP2003103462 2003-04-07

Publications (1)

Publication Number Publication Date
WO2004011502A1 true WO2004011502A1 (ja) 2004-02-05

Family

ID=31192283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/009681 WO2004011502A1 (ja) 2002-07-30 2003-07-30 ポリウロン酸誘導体およびポリウロン酸誘導体を含んでなる水性インク組成物

Country Status (6)

Country Link
US (1) US7195666B2 (ja)
EP (1) EP1548034A4 (ja)
JP (1) JP4059269B2 (ja)
CN (1) CN100338097C (ja)
AU (1) AU2003252735A1 (ja)
WO (1) WO2004011502A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012121963A (ja) * 2010-12-07 2012-06-28 Meiji Univ ポリグルロン酸の製造方法、ポリマンヌロン酸の製造方法、ポリグルロン酸、及びポリマンヌロン酸

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8657944B2 (en) 2007-04-20 2014-02-25 E I Du Pont De Nemours And Company Inkjet ink
JP2009263626A (ja) * 2008-03-31 2009-11-12 Fujifilm Corp 水不溶性色材分散体及びこの製造方法、これを用いた記録液、画像形成方法、及び画像形成装置
CN102234455B (zh) * 2010-04-21 2013-12-11 株式会社东芝 水性喷墨油墨和喷墨打印方法
CN102234454A (zh) * 2010-04-21 2011-11-09 株式会社东芝 水性颜料油墨
JP2013060570A (ja) * 2010-10-28 2013-04-04 Kao Corp 変性ポリウロン酸又はその塩
DE102013005184A1 (de) * 2013-03-20 2014-09-25 fzmb GmbH, Forschungszentrum für Medizintechnik und Biotechnologie Verfahren zur Funktionalisierung einer Oberfläche
EP3914073A1 (en) * 2019-01-24 2021-12-01 Antwas ApS Method for eradicating insect nests or animal underground channels

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1038929A1 (en) * 1999-03-19 2000-09-27 Seiko Epson Corporation Aqueous ink composition and printing method using same
US6242529B1 (en) * 1997-09-26 2001-06-05 Seiko Epson Corporation Aqueous ink jet compositions comprising a hydrophobic polymer functionalized polyuronic acid dispersent, and method of using
EP1153933A1 (en) * 2000-05-12 2001-11-14 Seiko Epson Corporation Process for the manufacture of polyuronic acids

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6852156B2 (en) 2000-06-05 2005-02-08 E.I. Du Pont De Nemours And Company Self-dispersing pigment and process of making and use of same
US5928419A (en) 1996-10-07 1999-07-27 Toyo Ink Manufacturing Co., Ltd. Surface-treated organic pigment and process for the production thereof
JP3121290B2 (ja) * 1996-10-25 2000-12-25 セイコーエプソン株式会社 インクジェット記録に好ましく用いられる水性インク組成物
US6132502A (en) 1996-11-13 2000-10-17 Seiko Epson Corporation Pigment-base ink composition capable of forming images excellent in resistance to scuffing
US6051057A (en) 1997-05-16 2000-04-18 Seiko Epson Corporation Ink jet recording ink
US6033651A (en) * 1998-06-10 2000-03-07 Revlon Consumer Products Corporation Gel cosmetic compositions
JP3932679B2 (ja) * 1998-07-21 2007-06-20 セイコーエプソン株式会社 ポリグルロン酸の製造法
JP2000169769A (ja) 1998-12-07 2000-06-20 Toyo Ink Mfg Co Ltd インクジェット用記録液およびそれを用いたインクジェット記録方法
JP4186294B2 (ja) * 1999-02-26 2008-11-26 セイコーエプソン株式会社 ポリグルロン酸の製造方法
US6776830B2 (en) * 2001-04-17 2004-08-17 Seiko Epson Corporation Aqueous ink composition for use in an ink-jet printer
JP2005088330A (ja) * 2003-09-17 2005-04-07 Konica Minolta Medical & Graphic Inc 印刷版材料及び印刷方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6242529B1 (en) * 1997-09-26 2001-06-05 Seiko Epson Corporation Aqueous ink jet compositions comprising a hydrophobic polymer functionalized polyuronic acid dispersent, and method of using
EP1038929A1 (en) * 1999-03-19 2000-09-27 Seiko Epson Corporation Aqueous ink composition and printing method using same
EP1153933A1 (en) * 2000-05-12 2001-11-14 Seiko Epson Corporation Process for the manufacture of polyuronic acids

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1548034A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012121963A (ja) * 2010-12-07 2012-06-28 Meiji Univ ポリグルロン酸の製造方法、ポリマンヌロン酸の製造方法、ポリグルロン酸、及びポリマンヌロン酸

Also Published As

Publication number Publication date
JP4059269B2 (ja) 2008-03-12
CN1671746A (zh) 2005-09-21
US7195666B2 (en) 2007-03-27
AU2003252735A1 (en) 2004-02-16
CN100338097C (zh) 2007-09-19
EP1548034A1 (en) 2005-06-29
US20060155060A1 (en) 2006-07-13
EP1548034A4 (en) 2007-04-18
JPWO2004011502A1 (ja) 2006-03-30

Similar Documents

Publication Publication Date Title
JP3565104B2 (ja) インクジェット記録に好ましく用いられる水性インク組成物
JP2010506027A (ja) 方法、組成物及びインク
JP4886498B2 (ja) インクジェット記録用水系インク
JP4976838B2 (ja) インクジェット記録用水系インク
JP4059269B2 (ja) ポリウロン酸誘導体およびポリウロン酸誘導体を含んでなる水性インク組成物
KR20120112481A (ko) 가교결합된 착색제 분산물의 제조 방법
JP2009155572A (ja) インクジェット記録用水系インク
WO2004029165A1 (ja) 水性インク組成物及びそれを用いたインクジェット記録方法、並びに、記録物
JP2000053902A (ja) インクジェット印刷のための求核置換反応による巨大分子発色団へのポリマ―類の共有結合形付着
JP4543295B2 (ja) 印刷方法
JP2002194263A (ja) 顔料分散液の製造方法
JP2003138170A (ja) インクジェット用水性インク
JP2007231074A (ja) 水性顔料分散液およびそれを用いたインク組成物
JP2011127064A (ja) インクジェット記録用水系インク
JP2005163017A (ja) 水性インク組成物
JP2004277450A (ja) 水性インク
JP4718770B2 (ja) インクジェット記録用インク組成物
JP2004131645A (ja) インク組成物
JP2004277449A (ja) 水性インク及びこれを用いた印刷物
JP4019335B2 (ja) 顔料分散水性インク組成物
JP2004143386A (ja) 水性インク
JP2004131644A (ja) インク組成物
JP2008150530A (ja) インクジェット記録用水系インク
JP2007169359A (ja) 水性顔料分散液およびそれを用いたインク組成物
JP2953466B2 (ja) 顔料分散水性インク組成物

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2005505582

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2006155060

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10523455

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20038184346

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2003771432

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003771432

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10523455

Country of ref document: US