WO2004011375A1 - Procede de production de nanotubes en oxyde de metal de transition et nanotubes produits selon ce procede - Google Patents

Procede de production de nanotubes en oxyde de metal de transition et nanotubes produits selon ce procede Download PDF

Info

Publication number
WO2004011375A1
WO2004011375A1 PCT/CH2003/000506 CH0300506W WO2004011375A1 WO 2004011375 A1 WO2004011375 A1 WO 2004011375A1 CH 0300506 W CH0300506 W CH 0300506W WO 2004011375 A1 WO2004011375 A1 WO 2004011375A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanotubes
transition metal
metal oxide
production
layer structure
Prior art date
Application number
PCT/CH2003/000506
Other languages
German (de)
English (en)
Inventor
Reinhard Nesper
Markus Niederberger
Hans-Joachim Muhr
Original Assignee
Eidgenössische Technische Hochschule Zürich
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eidgenössische Technische Hochschule Zürich filed Critical Eidgenössische Technische Hochschule Zürich
Priority to AU2003281674A priority Critical patent/AU2003281674A1/en
Publication of WO2004011375A1 publication Critical patent/WO2004011375A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/36Methods for preparing oxides or hydroxides in general by precipitation reactions in aqueous solutions
    • C01B13/366Methods for preparing oxides or hydroxides in general by precipitation reactions in aqueous solutions by hydrothermal processing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • C01G31/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • C01G39/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/13Nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Definitions

  • the invention relates to a method according to the preamble of claim 1.
  • Nanotubes are needle-shaped tubes with a length of, for example, 1000 ⁇ and a diameter of several 100 ⁇ . They are separated or separable and are not specifically aligned spatially.
  • the production of carbon nanotubes in an arc is known.
  • the indirect production of transition metal oxide nanotubes is also known.
  • Such a procedure is, for example, in the publication by SATISKUMAR, BC ET AL. : "Oxide nanotubes prepared using carbon nanotubes as templates" J. Mater. Res. 1997, 12, 604-606. With this method it should be possible to produce nanotubes from Si0 2 , Al 2 0 3 , V 2 0 5 and Mo0 3 . In this process, carbon nanotubes are used as templates.
  • the carbon nanotubes are coated with tetraethyl orthosilicate, aluminum isopropoxide or vanadium pentoxide gel and then heated in air in order to oxidize the carbon.
  • the process is very complex since carbon nanotubes have so far only been able to be produced in comparatively small quantities.
  • a process for producing titanium oxide nanotubes by treating TiO 2 with aqueous sodium hydroxide solution and then reacting with aqueous hydrochloric acid (Adv. Mater. 1999, 11, 1307).
  • a generic method that enables the direct production of transition metal oxide nanotubes results from the Applicant's WO 98/26871.
  • a solution is made from a neutral surfactant molecule and a metal alkoxide.
  • the solution is hydrolyzed and the precipitate aged.
  • the aged precipitate is then heated.
  • the neutral surfactant molecule is, for example, hexadecylamine and the metal alkoxide is a vanadium alkoxide.
  • the nanotubes produced by this process are significantly more stable to oxidation than carbon nanotubes and show clear redox activities. They are suitable, among other things, as an active material for catalytic reactions.
  • this process enables the production of large quantities of transition metal oxide nanotubes, since carbon nanotubes are not required as templates.
  • the invention is based on the object of providing a method of the type mentioned which enables an even more cost-effective production of transition metal oxide nanotubes.
  • an oxo acid of a transition metal oxide is used as a precursor.
  • Such oxo acids can be obtained very inexpensively.
  • a particularly suitable precursor is HV0 3 , which polymerizes spontaneously to V 2 O s .nH 2 0 and which can be produced very inexpensively. Its air stability enables easy work without special precautions.
  • V 2 O s .nH 2 0 shows a very diverse intercalation chemistry, ie in addition to amines, many other compounds such as metal cations and alkylammonium ions can be incorporated.
  • the method according to the invention makes it possible to further reduce the production costs by using inexpensive precursors that can be produced.
  • other templates enable an extended functionalization of the nanotubes.
  • the method enables the use of organic monomers such as, for example, aniline or 2,2 '-bithiophene as templates.
  • FIG. 1 shows a transmission electron microscope image of transition metal oxide nanotubes which were produced by the method according to the invention, HV0 3 being used as the precursor and dodecylamine as the template
  • FIG. 2 is an X-ray powder diagram of the nanotubes according to FIGS. 1 and FIG. 3 schematically shows the essential steps of the method according to the invention.
  • a transition metal salt is converted into the corresponding acid H x TO y by ion exchange, as shown in FIG. 3.
  • This acid polymerizes in water to the hydrated oxide 1, which according to FIG. 3 consists of several layers 2.
  • structure 3 is a lamellar composite of template 4 as surfactant and the layers 2 made of a transition metal oxide.
  • the regular layer spacings A are in the range of a few nanometers, for example in the case of vanadium oxide at 2.7 nm, the layer spacing A being dependent on the chain length of the template or of the amine RNH 2 .
  • the layer structure 3 is converted into the tubular structure 5 shown schematically in FIG. 3 by a hydrothermal treatment. A preferred production process is described below, in which HV0 3 is used as precursor and dodecylamine is used as template.
  • the product obtained by the hydrothermal reaction was filtered off, washed with ethanol and diethyl ether and air-dried. A black powder was obtained.
  • Dodecylamine can be replaced by another neutral amine molecule.
  • the quantitative ratio of the surfactant molecules with respect to vanadium is 1 to 2.
  • the vanadium oxide nanotubes produced by this method are shown in FIG. 1 as a transmission electron micrograph.
  • a typical X-ray powder diffractogram is shown in FIG. 2.
  • HV0 3 another oxo acid of a transition metal oxide, for example molybdenum, can be used.
  • organic monomers such as, for example, aniline or 2,2′-bithiophene are also possible as templates.
  • the nanotubes produced by the method according to the invention have a lamellar wall structure with embedded templates 4 according to structure 5.
  • the structure 5 shown is a single-layer spiral structure.
  • the structure can also be multi-layered like a leek.

Abstract

Dans ce procédé de production de nanotubes en oxyde de métal de transition, on utilise un précurseur de formule HxTOy dans laquelle T représente un métal de transition. Ce précurseur peut, par exemple, être du HV03. Le procédé utilise une matrice sous forme, par exemple, d'une amine. Cette invention permet de mettre en oeuvre une production particulièrement économique de nanotubes en oxyde de métal de transition.
PCT/CH2003/000506 2002-07-26 2003-07-25 Procede de production de nanotubes en oxyde de metal de transition et nanotubes produits selon ce procede WO2004011375A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003281674A AU2003281674A1 (en) 2002-07-26 2003-07-25 Method for the production of transition metal oxide nanotubes and nanotubes produced according to the method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH1321/02 2002-07-26
CH13212002 2002-07-26

Publications (1)

Publication Number Publication Date
WO2004011375A1 true WO2004011375A1 (fr) 2004-02-05

Family

ID=30774631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH2003/000506 WO2004011375A1 (fr) 2002-07-26 2003-07-25 Procede de production de nanotubes en oxyde de metal de transition et nanotubes produits selon ce procede

Country Status (2)

Country Link
AU (1) AU2003281674A1 (fr)
WO (1) WO2004011375A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7172747B2 (en) * 2002-05-24 2007-02-06 Japan Science And Technology Agency Metal oxide nanotube and process for production thereof
CN1304280C (zh) * 2004-06-25 2007-03-14 中国科学院上海硅酸盐研究所 四氧化三钴纳米晶包裹碳纳米管复合粉体及制备方法
CN100402200C (zh) * 2005-11-21 2008-07-16 谢广文 模板化学镀纳米金属管的制备方法
CN109678208A (zh) * 2017-10-19 2019-04-26 深圳市寒暑科技新能源有限公司 一种用于锌离子电池的空心五氧化二钒材料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6210800B1 (en) * 1996-12-18 2001-04-03 Eidg. Technische Hochschule Zurich Use and production of nanotubes containing a mixed valence venadium
WO2001030690A2 (fr) * 1999-10-27 2001-05-03 Eidgenössische Technische Hochschule Zürich Procede de production de nanotubes constitues d'oxydes de metaux de transition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6210800B1 (en) * 1996-12-18 2001-04-03 Eidg. Technische Hochschule Zurich Use and production of nanotubes containing a mixed valence venadium
WO2001030690A2 (fr) * 1999-10-27 2001-05-03 Eidgenössische Technische Hochschule Zürich Procede de production de nanotubes constitues d'oxydes de metaux de transition

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ALDEBERT P ET AL: "V2O5 GELS: A VERSATILE HOST STRUCTURE FOR INTERCALATION", REVUE DE CHIMIE MINERALE, GAUTHIER VILLARS, PARIS, FR, vol. 19, 1982, pages 485 - 495, XP002023910, ISSN: 0035-1032 *
KRUMEICH F ET AL: "VANADIUM OXIDE NANOTUBES WITH DIAMINE TEMPLATES", MATERIALS RESEARCH SOCIETY SYMPOSIUM PROCEEDINGS, MATERIALS RESEARCH SOCIETY, PITTSBURG, PA, US, vol. 581, 29 November 1999 (1999-11-29), pages 393 - 398, XP001000214, ISSN: 0272-9172 *
PILLAI K S ET AL: "The first oxide nanotubes with alternating inter-layer distances", SOLID STATE IONICS, NORTH HOLLAND PUB. COMPANY. AMSTERDAM, NL, vol. 141-142, 1 May 2001 (2001-05-01), pages 185 - 190, XP004248325, ISSN: 0167-2738 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7172747B2 (en) * 2002-05-24 2007-02-06 Japan Science And Technology Agency Metal oxide nanotube and process for production thereof
CN1304280C (zh) * 2004-06-25 2007-03-14 中国科学院上海硅酸盐研究所 四氧化三钴纳米晶包裹碳纳米管复合粉体及制备方法
CN100402200C (zh) * 2005-11-21 2008-07-16 谢广文 模板化学镀纳米金属管的制备方法
CN109678208A (zh) * 2017-10-19 2019-04-26 深圳市寒暑科技新能源有限公司 一种用于锌离子电池的空心五氧化二钒材料及其制备方法

Also Published As

Publication number Publication date
AU2003281674A1 (en) 2004-02-16

Similar Documents

Publication Publication Date Title
DE19841679C2 (de) Verfahren zur Herstellung ultrafeiner TiO¶2¶-Pulver
DE2813323C2 (fr)
WO1998026871A1 (fr) Nanotubes, utilisation et mode de fabrication
EP1438361B1 (fr) Particules de dioxyde de titane revetues
DE2531670A1 (de) Zeolith und verfahren zu dessen herstellung
DE3044071A1 (de) Katalysator zur verwendung bei der hydrobehandlung eines schweren kohlenwasserstoffoels, verfahren zu dessen herstellung und verfahren zu dessen verwendung
DE3003361C2 (de) Katalysator und dessen Verwendung
EP0308646A2 (fr) Composés aluminium-magnésium-hydroxy
DE3211433A1 (de) Kristallines alumosilikat, verfahren zu seiner herstellung und verwendung
DE1667538B2 (de) Verfahren zur herstellung bestaendiger alkalisilikatloesungen
EP0280009A2 (fr) Procédé de fabrication de catalyseurs contenant de l'oxyde de titane
WO2004011375A1 (fr) Procede de production de nanotubes en oxyde de metal de transition et nanotubes produits selon ce procede
DE102012211013B4 (de) Verfahren zur Herstellung von wasserfreiem Ammoniumtrivanadat und wasserfreiesAmmoniumtrivanadat
DE2510700C2 (de) Verfahren zur Herstellung von Zeolithen mit verbesserter Hochtemperatur- und Säurebeständigkeit
DE2814454C2 (de) Korrosionsverhinderndes Molybdat- Pigment und Verfahren zur Herstellung dieses Pigments
DE2223524A1 (de) Verfahren zur herstellung eines titandioxid-pigmentes mit erhoehter witterungsbestaendigkeit
WO2001030690A2 (fr) Procede de production de nanotubes constitues d'oxydes de metaux de transition
DE1567706A1 (de) Verfahren zur Herstellung von kristallinen Aluminosilicaten
DE112021003979T5 (de) Gefärbte titandioxidpartikel und verfahren zu deren herstellung, sowie titandioxidpartikelmischung
EP2886612A1 (fr) Procédé de revêtement de surface de particules anorganiques, notamment de particules d'oxyde de titane
DE102011081000A1 (de) Verfahren zur herstellung von titaniumdioxidpartikeln
CH633777A5 (de) Verfahren zur herstellung von pyridinbasen.
DE2418281A1 (de) Katalysator, verfahren zu seiner herstellung und seine verwendung
DE102008040930B4 (de) Verfahren zur Herstellung von dotierten Vanadiumoxid-Nanoröhren
DE102007049742A1 (de) Verfahren zur Herstellung einer Titan-Silicium-Mischoxid enthaltenden Dispersion

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP