WO2004011375A1 - Method for the production of transition metal oxide nanotubes and nanotubes produced according to the method - Google Patents

Method for the production of transition metal oxide nanotubes and nanotubes produced according to the method Download PDF

Info

Publication number
WO2004011375A1
WO2004011375A1 PCT/CH2003/000506 CH0300506W WO2004011375A1 WO 2004011375 A1 WO2004011375 A1 WO 2004011375A1 CH 0300506 W CH0300506 W CH 0300506W WO 2004011375 A1 WO2004011375 A1 WO 2004011375A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanotubes
transition metal
metal oxide
production
layer structure
Prior art date
Application number
PCT/CH2003/000506
Other languages
German (de)
French (fr)
Inventor
Reinhard Nesper
Markus Niederberger
Hans-Joachim Muhr
Original Assignee
Eidgenössische Technische Hochschule Zürich
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eidgenössische Technische Hochschule Zürich filed Critical Eidgenössische Technische Hochschule Zürich
Priority to AU2003281674A priority Critical patent/AU2003281674A1/en
Publication of WO2004011375A1 publication Critical patent/WO2004011375A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/36Methods for preparing oxides or hydroxides in general by precipitation reactions in aqueous solutions
    • C01B13/366Methods for preparing oxides or hydroxides in general by precipitation reactions in aqueous solutions by hydrothermal processing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • C01G31/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • C01G39/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/13Nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Definitions

  • the invention relates to a method according to the preamble of claim 1.
  • Nanotubes are needle-shaped tubes with a length of, for example, 1000 ⁇ and a diameter of several 100 ⁇ . They are separated or separable and are not specifically aligned spatially.
  • the production of carbon nanotubes in an arc is known.
  • the indirect production of transition metal oxide nanotubes is also known.
  • Such a procedure is, for example, in the publication by SATISKUMAR, BC ET AL. : "Oxide nanotubes prepared using carbon nanotubes as templates" J. Mater. Res. 1997, 12, 604-606. With this method it should be possible to produce nanotubes from Si0 2 , Al 2 0 3 , V 2 0 5 and Mo0 3 . In this process, carbon nanotubes are used as templates.
  • the carbon nanotubes are coated with tetraethyl orthosilicate, aluminum isopropoxide or vanadium pentoxide gel and then heated in air in order to oxidize the carbon.
  • the process is very complex since carbon nanotubes have so far only been able to be produced in comparatively small quantities.
  • a process for producing titanium oxide nanotubes by treating TiO 2 with aqueous sodium hydroxide solution and then reacting with aqueous hydrochloric acid (Adv. Mater. 1999, 11, 1307).
  • a generic method that enables the direct production of transition metal oxide nanotubes results from the Applicant's WO 98/26871.
  • a solution is made from a neutral surfactant molecule and a metal alkoxide.
  • the solution is hydrolyzed and the precipitate aged.
  • the aged precipitate is then heated.
  • the neutral surfactant molecule is, for example, hexadecylamine and the metal alkoxide is a vanadium alkoxide.
  • the nanotubes produced by this process are significantly more stable to oxidation than carbon nanotubes and show clear redox activities. They are suitable, among other things, as an active material for catalytic reactions.
  • this process enables the production of large quantities of transition metal oxide nanotubes, since carbon nanotubes are not required as templates.
  • the invention is based on the object of providing a method of the type mentioned which enables an even more cost-effective production of transition metal oxide nanotubes.
  • an oxo acid of a transition metal oxide is used as a precursor.
  • Such oxo acids can be obtained very inexpensively.
  • a particularly suitable precursor is HV0 3 , which polymerizes spontaneously to V 2 O s .nH 2 0 and which can be produced very inexpensively. Its air stability enables easy work without special precautions.
  • V 2 O s .nH 2 0 shows a very diverse intercalation chemistry, ie in addition to amines, many other compounds such as metal cations and alkylammonium ions can be incorporated.
  • the method according to the invention makes it possible to further reduce the production costs by using inexpensive precursors that can be produced.
  • other templates enable an extended functionalization of the nanotubes.
  • the method enables the use of organic monomers such as, for example, aniline or 2,2 '-bithiophene as templates.
  • FIG. 1 shows a transmission electron microscope image of transition metal oxide nanotubes which were produced by the method according to the invention, HV0 3 being used as the precursor and dodecylamine as the template
  • FIG. 2 is an X-ray powder diagram of the nanotubes according to FIGS. 1 and FIG. 3 schematically shows the essential steps of the method according to the invention.
  • a transition metal salt is converted into the corresponding acid H x TO y by ion exchange, as shown in FIG. 3.
  • This acid polymerizes in water to the hydrated oxide 1, which according to FIG. 3 consists of several layers 2.
  • structure 3 is a lamellar composite of template 4 as surfactant and the layers 2 made of a transition metal oxide.
  • the regular layer spacings A are in the range of a few nanometers, for example in the case of vanadium oxide at 2.7 nm, the layer spacing A being dependent on the chain length of the template or of the amine RNH 2 .
  • the layer structure 3 is converted into the tubular structure 5 shown schematically in FIG. 3 by a hydrothermal treatment. A preferred production process is described below, in which HV0 3 is used as precursor and dodecylamine is used as template.
  • the product obtained by the hydrothermal reaction was filtered off, washed with ethanol and diethyl ether and air-dried. A black powder was obtained.
  • Dodecylamine can be replaced by another neutral amine molecule.
  • the quantitative ratio of the surfactant molecules with respect to vanadium is 1 to 2.
  • the vanadium oxide nanotubes produced by this method are shown in FIG. 1 as a transmission electron micrograph.
  • a typical X-ray powder diffractogram is shown in FIG. 2.
  • HV0 3 another oxo acid of a transition metal oxide, for example molybdenum, can be used.
  • organic monomers such as, for example, aniline or 2,2′-bithiophene are also possible as templates.
  • the nanotubes produced by the method according to the invention have a lamellar wall structure with embedded templates 4 according to structure 5.
  • the structure 5 shown is a single-layer spiral structure.
  • the structure can also be multi-layered like a leek.

Abstract

A pre-cursor of formula HxTOy is used for the production of transition metal oxide nanotubes, whereby T is a transition metal. The pre-cursor is HV03, for example. A template is used for the above, which is an amine, for example. The invention permits a particularly economical production of transition metal oxide nanotubes.

Description

Verfahren zur Herstellung von Übergangsmetalloxid-Nanotubes und nach diesem Verfahren hergestellte Nanotubes Process for the production of transition metal oxide nanotubes and nanotubes produced by this process
Die Erfindung betrifft ein Verfahren nach dem Oberbegriff des Anspruchs 1.The invention relates to a method according to the preamble of claim 1.
Nanotubes sind nadeiförmige Röhren mit einer Länge von beispielsweise 1000Ä und einem Durchmesser von einigen 100Ä. Sie sind separiert oder separierbar und räumlich nicht speziell ausgerichtet. Bekannt ist die Herstellung von Kohlenstoffnanotubes im Lichtbogen. Ebenfalls ist die indirekte Herstellung von Über- gangs etalloxid-Nanotubes bekannt . Ein solches Verfahren ist beispielsweise in der Publikation von SATISKUMAR, B. C. ET AL. : "Oxide nanotubes prepared using carbon nanotubes as templates" J. Mater. Res. 1997, 12, 604-606 offenbart. Mit diesem Verfahren soll es möglich sein, Nanotubes aus Si02, Al203, V205 und Mo03 herzustellen. Bei diesem Verfahren werden Kohlenstoffnanotubes als Template verwendet . Die Kohlenstoffnanotubes werden mit Tetra- ethylorthosilikat, Aluminiumisopropoxid oder Vanadiumpentoxidgel beschichtet und anschliessend in Luft erhitzt, um den Kohlen- Stoff zu oxidieren. Das Verfahren ist aber sehr aufwendig, da bisher Kohlenstoffnanotubes lediglich in vergleichsweise kleinen Mengen hergestellt werden können. Bekannt ist auch ein Verfahren zur Herstellung von Titanoxidnanotubes durch Behandlung von Ti02 mit wässriger Natronlauge und anschliessender Umsetzung mit wässriger Salzsäure (Adv. Mater. 1999, 11, 1307) .Nanotubes are needle-shaped tubes with a length of, for example, 1000 Å and a diameter of several 100 Å. They are separated or separable and are not specifically aligned spatially. The production of carbon nanotubes in an arc is known. The indirect production of transition metal oxide nanotubes is also known. Such a procedure is, for example, in the publication by SATISKUMAR, BC ET AL. : "Oxide nanotubes prepared using carbon nanotubes as templates" J. Mater. Res. 1997, 12, 604-606. With this method it should be possible to produce nanotubes from Si0 2 , Al 2 0 3 , V 2 0 5 and Mo0 3 . In this process, carbon nanotubes are used as templates. The carbon nanotubes are coated with tetraethyl orthosilicate, aluminum isopropoxide or vanadium pentoxide gel and then heated in air in order to oxidize the carbon. However, the process is very complex since carbon nanotubes have so far only been able to be produced in comparatively small quantities. Also known is a process for producing titanium oxide nanotubes by treating TiO 2 with aqueous sodium hydroxide solution and then reacting with aqueous hydrochloric acid (Adv. Mater. 1999, 11, 1307).
Ein, gattungsgemässes Verfahren, das die direkte Herstellung von Übergangsmetalloxid-Nanutubes ermöglicht, ergibt sich aus der WO 98/26871 des Anmelders. Bei diesem Verfahren wird eine Lösung aus einem neutralen Tensidmolekül und einem Metallalkoxid hergestellt. Die Lösung wird hydrolisiert und der Niederschlag gealtert. Anschliessend wird der gealterte Niederschlag erhitzt. Das neutrale Tensidmolekül ist beispielsweise Hexadecylamin und das Metallalkoxid ein Vanadiumalkoxid. Die nach diesem Verfahren hergestellten Nanotubes sind wesentlich oxidationsstabiler als Kohlenstoffnanotubes und zeigen deutliche Redoxaktivitäten. Sie eignen sich u.a. als aktives Material für katalytische Reaktio- nen. Zudem ermöglicht dieses Verfahren die Herstellung grosserer Mengen von Übergangsmetalloxid-Nanotubes , da Kohlensto fnanotubes als Template nicht erforderlich sind.A generic method that enables the direct production of transition metal oxide nanotubes results from the Applicant's WO 98/26871. In this process, a solution is made from a neutral surfactant molecule and a metal alkoxide. The solution is hydrolyzed and the precipitate aged. The aged precipitate is then heated. The neutral surfactant molecule is, for example, hexadecylamine and the metal alkoxide is a vanadium alkoxide. The nanotubes produced by this process are significantly more stable to oxidation than carbon nanotubes and show clear redox activities. They are suitable, among other things, as an active material for catalytic reactions. In addition, this process enables the production of large quantities of transition metal oxide nanotubes, since carbon nanotubes are not required as templates.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren der ge- nannten Art bereitzustellen, das eine noch kostengünstigere Herstellung von Übergangsmetalloxid-Nanotubes ermöglicht .The invention is based on the object of providing a method of the type mentioned which enables an even more cost-effective production of transition metal oxide nanotubes.
Die Aufgabe ist gemäss Anspruch 1 gelöst. Beim erfindungsgemäs- sen Verfahren wird eine Oxosäure eines Übergangmetalloxides als Prekursor verwendet. Solche Oxosäuren können sehr kostengünstig erhalten werden. Als Prekursor eignet sich insbesondere HV03, das spontan zu V2Os.nH20 polymerisiert und das sehr kostengünstig herstellbar ist. Seine Luftstabilität ermöglicht ein einfaches Arbeiten ohne spezielle Vorkehrungen. Nach der Polymerisation zum Xerogel V2Os.nH20 entsteht eine Schichtstruktur, die mit dem Templat aufgeweitet wird. Die aufgeweiteten Schichten werden hydrothermal zu Vanadiumoxidnanotubes umgewandelt . Im Gegensatz zu Prekursor nach dem Stand der Technik zeigt V2Os.nH20 eine sehr vielfältige Intercalationschemie, d.h. ausser Aminen können vie- le andere Verbindungen wie beispielsweise Metallkationen und Al- kylammoniumionen eingelagert werden. Das erfindungsgemässe Verfahren ermöglicht durch die Verwendung kostengünstiger herstellbarer Prekursor die Herstellungskosten weiter zu senken. Zudem ermöglichen weitere Template eine erweiterte Funktionalisierung der Nanotubes. Insbesondere ermöglicht das Verfahren die Verwendung von organischen Monomeren wie beispielsweise Anilin oder 2,2 ' -Bithiophen als Template.The object is achieved according to claim 1. In the method according to the invention, an oxo acid of a transition metal oxide is used as a precursor. Such oxo acids can be obtained very inexpensively. A particularly suitable precursor is HV0 3 , which polymerizes spontaneously to V 2 O s .nH 2 0 and which can be produced very inexpensively. Its air stability enables easy work without special precautions. After the polymerization to form Xerogel V 2 O s .nH 2 0, a layer structure is created which is expanded with the template. The expanded layers are converted hydrothermally to vanadium oxide nanotubes. In contrast to precursors according to the prior art, V 2 O s .nH 2 0 shows a very diverse intercalation chemistry, ie in addition to amines, many other compounds such as metal cations and alkylammonium ions can be incorporated. The method according to the invention makes it possible to further reduce the production costs by using inexpensive precursors that can be produced. In addition, other templates enable an extended functionalization of the nanotubes. In particular, the method enables the use of organic monomers such as, for example, aniline or 2,2 '-bithiophene as templates.
Nachfolgend wird die Erfindung anhand der Zeichnung näher erläutert. Es zeigen: Fig. 1 eine transmissionselektronenmikroskopische Aufnahme von Übergangsmetalloxid-Nanotubes, die nach dem erfindungsge- mässen Verfahren hergestellt wurden, wobei als Prekursor HV03 und als Templat Dodecylamin verwendet wurden, Fig. 2 ein Röntgenpulverdiagramm der Nanotubes gemäss Fig. 1 und Fig. 3 schematisch die wesentlichen Schritte des erfindungsge- mässen Verfahrens .The invention is explained in more detail below with reference to the drawing. 1 shows a transmission electron microscope image of transition metal oxide nanotubes which were produced by the method according to the invention, HV0 3 being used as the precursor and dodecylamine as the template, FIG. 2 is an X-ray powder diagram of the nanotubes according to FIGS. 1 and FIG. 3 schematically shows the essential steps of the method according to the invention.
Beim erfindungsgemässen Verfahren wird ein Übergangsmetallsalz durch lonenaustausch in die entsprechende Säure HxTOy überführt, wie dies in Fig. 3 gezeigt ist. Diese Säure polymerisiert in Wasser zum hydratisierten Oxid 1, das gemäss Fig 3 aus mehreren Schichten 2 besteht . Die Umsetzung dieses Oxides 1 mit einem Templat, beispielsweise einem Amin, führt nach dem Altern bei Raumtemperatur zu einer SchichtStruktur 3 aus Übergangsine- talloxid und eingebautem Templat 4. Die Struktur 3 ist wie ersichtlich ein lamellares Koposit aus dem Templat 4 als Surfac- tant und den Schichten 2 aus einem Übergangsmetalloxid. Die re- gelmässigen Schichtabstände A liegen im Bereich von wenigen Na- nometern, beispielsweise im Fall von Vanadiumoxid bei 2,7 nm, wobei der Schichtabstand A von der Kettenlänge des Templates bzw. des Amins RNH2 abhängig ist. Die Schichtstruktur 3 wird durch eine hydrothermale Behandlung in die in Fig. 3 schematisch gezeigte röhrenförmige Struktur 5 umgewandelt . Nachfolgend wird ein bevorzugtes Herstellungsverfahren beschrieben, bei dem als Prekursor HV03 und als Templat Dodecylamin verwendet wird.In the method according to the invention, a transition metal salt is converted into the corresponding acid H x TO y by ion exchange, as shown in FIG. 3. This acid polymerizes in water to the hydrated oxide 1, which according to FIG. 3 consists of several layers 2. The reaction of this oxide 1 with a template, for example an amine, leads, after aging at room temperature, to a layer structure 3 composed of transition metal oxide and built-in template 4. As can be seen, structure 3 is a lamellar composite of template 4 as surfactant and the layers 2 made of a transition metal oxide. The regular layer spacings A are in the range of a few nanometers, for example in the case of vanadium oxide at 2.7 nm, the layer spacing A being dependent on the chain length of the template or of the amine RNH 2 . The layer structure 3 is converted into the tubular structure 5 shown schematically in FIG. 3 by a hydrothermal treatment. A preferred production process is described below, in which HV0 3 is used as precursor and dodecylamine is used as template.
8 g NaV03 wurden in 250 ml destilliertem Wasser gelöst. Die Lösung wurde über einen H+-Ionenaustauscher, bepackt mit 100 g Do- wex 50 WX 2 resin, geführt und die gelbe HV03-Lösung wurde aufgefangen. Die gelbe Lösung wird mit der Zeit orange und rot. Nach etwa zwei Wochen ist alles Wasser verdunstet und zurück bleibt ein weinroter Feststoff der Zusammensetzung V205.nH20, der in einem geschlossenen Gefäss für lange Zeit aufbewahrt werden kann. 1 g V205.nH20 wurde zusammen mit 0,9 g Dodecylamin in 3 ml Etha- nol suspendiert, wobei sich das Amin löst und das violette Xero- gel olivgrün wird. Nach einer Stunde rühren wurden 10 ml Wasser dazugegeben und nochmals 12 Stunden gerührt. Die hydrothermale Umsetzung erfolgte in einem Autoklaven bei 180° C während 7 Tagen.8 g NaV0 3 were dissolved in 250 ml distilled water. The solution was passed over an H + ion exchanger, packed with 100 g Dowex 50 WX 2 resin, and the yellow HV0 3 solution was collected. The yellow solution turns orange and red over time. After about two weeks, all the water has evaporated, leaving a wine-red solid with the composition V 2 0 5 .nH 2 0, which can be stored in a closed container for a long time. 1 g of V 2 0 5 .nH 2 0 was suspended together with 0.9 g of dodecylamine in 3 ml of ethanol, the amine dissolving and the violet xerogel becoming olive green. After stirring for 1 hour, 10 ml of water were added and stirring was continued for 12 hours. The hydrothermal reaction was carried out in an autoclave at 180 ° C for 7 days.
Das durch die hydrothermale Umsetzung erhaltene Produkt wurde abfiltriert, mit Ethanol und Diethylether gewaschen und luftgetrocknet. Es wurde ein schwarzes Pulver erhalten.The product obtained by the hydrothermal reaction was filtered off, washed with ethanol and diethyl ether and air-dried. A black powder was obtained.
Dodecylamin kann durch ein anderes neutrales Aminmolekül ersetzt werden. Das Mengenverhältnis der Tensidmoleküle bezüglich Vanadium ist hierbei 1 zu 2.Dodecylamine can be replaced by another neutral amine molecule. The quantitative ratio of the surfactant molecules with respect to vanadium is 1 to 2.
Die nach diesem Verfahren hergestellten Vanadiumoxid-Nanotubes sind als transmissionselektronenmikroskopische Aufnahme in der Fig. 1 gezeigt. Ein typisches Röntgenpulverdiffraktograttim zeigt die Fig. 2. Anstelle von HV03 kann auch eine andere Oxosäure eines Übergangs- metalloxides, beispielsweise von Molybdän verwendet werden. Als Templat sind auch andere organische Monomere wie beispielsweise Anilin oder 2 , 2 ' -Bithiophen möglich.The vanadium oxide nanotubes produced by this method are shown in FIG. 1 as a transmission electron micrograph. A typical X-ray powder diffractogram is shown in FIG. 2. Instead of HV0 3 , another oxo acid of a transition metal oxide, for example molybdenum, can be used. Other organic monomers such as, for example, aniline or 2,2′-bithiophene are also possible as templates.
Die nach dem erfindungsgemässen Verfahren hergestellten Nanotubes weisen einen lamellaren Wandaufbau mit eingelagerten Templa- ten 4 gemäss der Struktur 5 auf. Die gezeigte Struktur 5 ist eine einschichtige spiralförmige Struktur. Die Struktur kann aber auch lauchartig mehrschichtig sein. The nanotubes produced by the method according to the invention have a lamellar wall structure with embedded templates 4 according to structure 5. The structure 5 shown is a single-layer spiral structure. The structure can also be multi-layered like a leek.

Claims

Patentansprüche claims
1. Verfahren zur Herstellung von Übergangsmetalloxid- Nanotubes unter Verwendung eines Templates, dadurch gekennzeichnet, dass ein Prekursor der Formel HxTOy verwendet wird, wobei T ein Übergangsmetall ist .1. A method for producing transition metal oxide nanotubes using a template, characterized in that a precursor of the formula H x TO y is used, where T is a transition metal.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Prekursor HV03 ist .2. The method according to claim 1, characterized in that the precursor is HV0 3 .
3. Verfahren nach Anspruch 1 oder 2 , dadurch gekennzeichnet, dass das Templat ein Amin ist .3. The method according to claim 1 or 2, characterized in that the template is an amine.
4. Verfahren nach Anspruch 3, dadurch gelcennzeichnet, dass das Amin ein neutrales min ist .4. The method according to claim 3, characterized in that the amine is a neutral min.
5. Verf hren nach einem der Ansprüche 1 bis 4 , dadurch gekennzeichnet, dass der Prekursor zu einer Schichtstruktur polymerisiert .5. The method according to any one of claims 1 to 4, characterized in that the precursor polymerizes to a layer structure.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Schichtstruktur ein Xerogel ist .6. The method according to claim 5, characterized in that the layer structure is a xerogel.
7. Verfahren nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass die SchichtStruktur mit dem Templat aufgeweitet wird.7. The method according to claim 5 or 6, characterized in that the layer structure is expanded with the template.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die aufgeweitete Schichtstruktur hydrothermal zu den Nanotubes umgewandelt wird.8. The method according to claim 7, characterized in that the expanded layer structure is converted hydrothermally to the nanotubes.
9. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass in die SchichtStruktur Metallkationen eingelagert werden.9. The method according to claim 5, characterized in that metal cations are embedded in the layer structure.
10. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass in die Schichtstruktur Alkylammoniumionen eingelagert werden.10. The method according to claim 5, characterized in that alkylammonium ions are incorporated into the layer structure.
11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass das Übergangsmetalloxid in ein Gel übergeführt und dieses durch Erhitzen zu den Nanotubes umgewandelt wird.11. The method according to any one of claims 1 to 10, characterized in that the transition metal oxide is converted into a gel and this is converted to the nanotubes by heating.
12. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass der Prekursor ein Monomer ist.12. The method according to any one of claims 1 to 11, characterized in that the precursor is a monomer.
13. Nanotubes hergestellt nach Anspruch 1, dadurch gekennzeichnet, dass sie einen lamellaren Wandaufbau mit eingelagerten Templaten aufweisen.13. Nanotubes produced according to claim 1, characterized in that they have a lamellar wall structure with embedded templates.
14. Nanotubes hergestellt nach Anspruch 1, dadurch gekennzeichnet, dass sie Vanadiumoxid-Nanotubes sind. 14. Nanotubes produced according to claim 1, characterized in that they are vanadium oxide nanotubes.
PCT/CH2003/000506 2002-07-26 2003-07-25 Method for the production of transition metal oxide nanotubes and nanotubes produced according to the method WO2004011375A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003281674A AU2003281674A1 (en) 2002-07-26 2003-07-25 Method for the production of transition metal oxide nanotubes and nanotubes produced according to the method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH13212002 2002-07-26
CH1321/02 2002-07-26

Publications (1)

Publication Number Publication Date
WO2004011375A1 true WO2004011375A1 (en) 2004-02-05

Family

ID=30774631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH2003/000506 WO2004011375A1 (en) 2002-07-26 2003-07-25 Method for the production of transition metal oxide nanotubes and nanotubes produced according to the method

Country Status (2)

Country Link
AU (1) AU2003281674A1 (en)
WO (1) WO2004011375A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7172747B2 (en) * 2002-05-24 2007-02-06 Japan Science And Technology Agency Metal oxide nanotube and process for production thereof
CN1304280C (en) * 2004-06-25 2007-03-14 中国科学院上海硅酸盐研究所 Cobaltosic oxide nano-crystalline coated carbon nano-tube composite powder and preparation method thereof
CN100402200C (en) * 2005-11-21 2008-07-16 谢广文 Method for preparing nano metal pipe by template chemical plating process
CN109678208A (en) * 2017-10-19 2019-04-26 深圳市寒暑科技新能源有限公司 A kind of hollow vanadic anhydride material and preparation method thereof for Zinc ion battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6210800B1 (en) * 1996-12-18 2001-04-03 Eidg. Technische Hochschule Zurich Use and production of nanotubes containing a mixed valence venadium
WO2001030690A2 (en) * 1999-10-27 2001-05-03 Eidgenössische Technische Hochschule Zürich Method for producing nanotubes consisting of transition metal oxides

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6210800B1 (en) * 1996-12-18 2001-04-03 Eidg. Technische Hochschule Zurich Use and production of nanotubes containing a mixed valence venadium
WO2001030690A2 (en) * 1999-10-27 2001-05-03 Eidgenössische Technische Hochschule Zürich Method for producing nanotubes consisting of transition metal oxides

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ALDEBERT P ET AL: "V2O5 GELS: A VERSATILE HOST STRUCTURE FOR INTERCALATION", REVUE DE CHIMIE MINERALE, GAUTHIER VILLARS, PARIS, FR, vol. 19, 1982, pages 485 - 495, XP002023910, ISSN: 0035-1032 *
KRUMEICH F ET AL: "VANADIUM OXIDE NANOTUBES WITH DIAMINE TEMPLATES", MATERIALS RESEARCH SOCIETY SYMPOSIUM PROCEEDINGS, MATERIALS RESEARCH SOCIETY, PITTSBURG, PA, US, vol. 581, 29 November 1999 (1999-11-29), pages 393 - 398, XP001000214, ISSN: 0272-9172 *
PILLAI K S ET AL: "The first oxide nanotubes with alternating inter-layer distances", SOLID STATE IONICS, NORTH HOLLAND PUB. COMPANY. AMSTERDAM, NL, vol. 141-142, 1 May 2001 (2001-05-01), pages 185 - 190, XP004248325, ISSN: 0167-2738 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7172747B2 (en) * 2002-05-24 2007-02-06 Japan Science And Technology Agency Metal oxide nanotube and process for production thereof
CN1304280C (en) * 2004-06-25 2007-03-14 中国科学院上海硅酸盐研究所 Cobaltosic oxide nano-crystalline coated carbon nano-tube composite powder and preparation method thereof
CN100402200C (en) * 2005-11-21 2008-07-16 谢广文 Method for preparing nano metal pipe by template chemical plating process
CN109678208A (en) * 2017-10-19 2019-04-26 深圳市寒暑科技新能源有限公司 A kind of hollow vanadic anhydride material and preparation method thereof for Zinc ion battery

Also Published As

Publication number Publication date
AU2003281674A1 (en) 2004-02-16

Similar Documents

Publication Publication Date Title
DE19841679C2 (en) Process for the production of ultrafine TiO¶2¶ powder
DE2813323C2 (en)
WO1998026871A1 (en) Nanotubes, use and manufacture of same
EP1438361B1 (en) Coated titanium dioxide particles
DE2531670A1 (en) ZEOLITE AND METHOD OF MANUFACTURING IT
DE3044071A1 (en) CATALYST FOR USE IN HYDROTREATING A HEAVY HYDROCARBON OIL, METHOD FOR THE PRODUCTION THEREOF, AND METHOD FOR USE THEREOF
DE3003361C2 (en) Catalyst and its use
EP0308646A2 (en) Aluminium-magnesium-hydroxy compounds
DE3211433A1 (en) CRYSTALLINE ALUMOSILICATE, METHOD FOR THE PRODUCTION AND USE THEREOF
DE1667538B2 (en) PROCESS FOR PREPARING PERMANENT ALKALINE SOLUTIONS
EP0280009A2 (en) Process for preparing titanium oxide catalysts
WO2004011375A1 (en) Method for the production of transition metal oxide nanotubes and nanotubes produced according to the method
DE2510700C2 (en) Process for the production of zeolites with improved resistance to high temperatures and acids
DE10394356T5 (en) Synthesis of ultrafine titania particles in rutile phase at low temperature
DE2814454C2 (en) Corrosion preventive molybdate pigment and process for making this pigment
DE102012211013B4 (en) Process for the preparation of anhydrous ammonium trivanadate and anhydrous ammonium trivanadate
DE2223524A1 (en) PROCESS FOR PRODUCING A TITANIUM DIOXIDE PIGMENT WITH INCREASED WEATHER RESISTANCE
WO2001030690A2 (en) Method for producing nanotubes consisting of transition metal oxides
DE1567706A1 (en) Process for the preparation of crystalline aluminosilicates
DE112021003979T5 (en) COLORED TITANIUM DIOXIDE PARTICLES AND PROCESS FOR THEIR PRODUCTION, AND TITANIUM DIOXIDE PARTICLE MIXTURE
EP2886612A1 (en) Method for coating the surface of inorganic particles, in particular titanium dioxide particles
DE102011081000A1 (en) Preparing titanium dioxide particle, useful e.g. as photo catalysts, comprises producing solution of glucose, titanium(III) chloride and aqueous ammonia in water and/or solvent, heating and cooling the solution, and filtering the particle
CH633777A5 (en) METHOD FOR PRODUCING PYRIDINE BASES.
DE2418281A1 (en) CATALYST, METHOD FOR ITS MANUFACTURING AND USES
DE102008040930B4 (en) Process for the preparation of doped vanadium oxide nanotubes

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP