WO2004010524A1 - 燃料電池用セパレータの製造方法及び該セパレータと電極拡散層の接合方法 - Google Patents

燃料電池用セパレータの製造方法及び該セパレータと電極拡散層の接合方法 Download PDF

Info

Publication number
WO2004010524A1
WO2004010524A1 PCT/JP2003/009083 JP0309083W WO2004010524A1 WO 2004010524 A1 WO2004010524 A1 WO 2004010524A1 JP 0309083 W JP0309083 W JP 0309083W WO 2004010524 A1 WO2004010524 A1 WO 2004010524A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
diffusion layer
separators
cooling water
fuel cell
Prior art date
Application number
PCT/JP2003/009083
Other languages
English (en)
French (fr)
Inventor
Yoshitsugu Nishi
Kenichi Ishiguro
Original Assignee
Honda Giken Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002209585A external-priority patent/JP2004055273A/ja
Priority claimed from JP2002209571A external-priority patent/JP2004055271A/ja
Application filed by Honda Giken Kogyo Kabushiki Kaisha filed Critical Honda Giken Kogyo Kabushiki Kaisha
Priority to US10/517,013 priority Critical patent/US20060054269A1/en
Priority to CA002492264A priority patent/CA2492264A1/en
Priority to AU2003252659A priority patent/AU2003252659A1/en
Publication of WO2004010524A1 publication Critical patent/WO2004010524A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0226Composites in the form of mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0221Organic resins; Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0234Carbonaceous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0263Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant having meandering or serpentine paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method of manufacturing a fuel cell separator in which an anode and a force sword are overlapped on an electrolyte membrane and sandwiched between both sides via a diffusion layer, and a method of joining the separator and the electrode diffusion layer.
  • a fuel cell is a cell that uses the reverse principle of water electrolysis to produce electricity in the process of reacting hydrogen and oxygen to obtain water.
  • fuel gas, air, and oxidizer gas are often used because fuel gas is replaced by hydrogen and air and oxidizer gas are replaced by oxygen.
  • the following figure shows an exploded perspective view of a general fuel cell.
  • the anode 202 and the power source 203 are overlapped on the facing surface of the electrolyte membrane 201, and these electrodes 202, 2 are formed.
  • a cell module is constructed by sandwiching 03 between the first separator 206 and the second separator 207 via the diffusion layers 204 and 205.
  • a fuel cell 200 is obtained by stacking a large number of the cell modules.
  • the anode 202 must be in effective contact with the fuel gas. Therefore, a number of grooves (not shown) are provided on the surface 206 a of the first separator 206, and the diffusion layer 204 is overlaid on the surface 206 a to close the groove. A first flow path (not shown) serving as a fuel gas flow path is formed.
  • the first separator 206 has a cooling water flow through the surface 206 b on the back side of the surface 206 a.
  • the mixture is heated and mixed in a state where the conductive particles are contained in the thermoplastic resin, the mixture obtained by heating and mixing is extruded and formed into a long sheet by a rolling roll, and the long sheet is formed.
  • the sheet is cut into a predetermined size to form a blank material, and the first and second separators 206 are formed by forming grooves for gas passages and cooling water passages on both surfaces or one surface of the blank material. , 2 0 7.
  • the first and second separators are used. It is necessary to overlap the diffusion layers 204 and 205 on the respective surfaces 206a and 207a of the layers 206 and 207 in close contact.
  • first and second separators 206 and 207 are formed of a thermoplastic resin
  • the first and second separators 206 and 200 are formed by the reaction heat generated when the fuel cell is used.
  • the respective surfaces 206a and 207a of 7 are softened.
  • the surfaces 206a and 207a of the first and second separators 206 and 207 are located between the diffusion layers 204 and 205, respectively.
  • a sealing material is applied so that the surfaces 206a and 207a of the first and second separators 206 and 207 are kept in close contact with the diffusion layers 204 and 205, respectively. I have to.
  • a sealing material is applied between the overlapping surfaces of the first separator 206 and the second separator 200 to keep the first separator 206 and the second separator 207 in close contact with each other.
  • an anode 302 and a force sword 303 are attached to an electrolyte membrane 301, and these are sandwiched between a first separator 306 and a second separator 307 via gaskets 304 and 305. This forms a cell module.
  • a first channel 308 serving as a fuel gas channel is formed on the surface 306 a of the first separator 306, and an oxidizing gas channel is provided on the surface 307 a of the second separator 307.
  • Second flow paths 309 are formed, and each has a structure in which a fuel gas and an oxidizing gas are allowed to face the central electrolyte membrane 301.
  • the first ⁇ second separators 306 and 307 are called “separators" because they are separation members for preventing fuel gas and oxidizing gas from leaking to the adjacent cells.
  • the first separator 306 has a flow path 308 for fuel gas on the surface 306a
  • the second separator 307 has a flow path 309 for oxidant gas on the surface 307a. It is necessary to make contact with the power source 302 and the force sword 303. For this purpose, the flow paths 308 and 309 need to have a large number of very shallow grooves.
  • the first ⁇ second separators 306 and 307 are provided with fuel gas supply holes 310 a and oxidant gas supply holes 3, respectively, at the upper portions thereof to supply fuel gas or oxidizing gas to the flow paths 308 and 309. 1 1 a, fuel gas exhaust holes 3 1 Ob and oxidant gas exhaust holes 3 1 1 b at the bottom, and cooling water supply holes 3 1 2 a for passing cooling water At the top of each, and the cooling water discharge holes 3 1 2b at the bottom of each
  • the above-described fuel cell 300 usually includes an anode diffusion layer (not shown) between the anode 302 and the first separator 300, and also includes a power source 03 and a second separator 300. And a force sword diffusion layer (not shown) between them.
  • a sealing material (not shown) is interposed between the first separator 310 and the anode diffusion layer.
  • a sealing material (not shown) is interposed between the second separator 307 and the cathode diffusion layer, for example, in order to match the force sword diffusion layer to the second separator 307.
  • the electrical contact resistance between the first separator 306 and the anode diffusion layer increases, and the electrical contact resistance between the second separator 307 and the cathode diffusion layer increases.
  • the output may be reduced.
  • a sealing material is assembled (applied, for example) between the first separator 303 and the anode diffusion layer, and a seal is formed between the second separator 307 and the force sword diffusion layer.
  • Man-hours for assembling the material were required, which hindered a reduction in the man-hour for assembling.
  • cooling water supply hole 312a and cooling water discharge hole 312b are respectively connected to a cooling water passage (not shown).
  • the cooling water passages are formed, for example, in a cooling water passage groove on each of the surface on the back side of the surface 303 a of the first separator 303 and the surface on the back side of the surface 310 a of the second separator 300.
  • the cooling water passage groove is formed by combining the cooling water passage groove with the cooling water passage groove provided in the separator of an adjacent cell.
  • the first and second separators 306 and 307 are combined to form a cooling water passage, the first and second separators 306 and 307 are integrated. Therefore, the electrical contact resistance between the first and second separators 306 and 307 may increase, and the output of the fuel cell may decrease.
  • first and second separators 306 and 307 are combined to form a cooling water passage.
  • a sealing material for preventing leakage of cooling water is required at the joint of the first and second separators 306 and 307, which hinders the reduction of the number of constituent members.
  • a man-hour for assembling (as an example, applying) a seal material between the first and second separators 306 and 307 was required, which hindered a reduction in the assembling man-hour.
  • thermoplastic resin and a conductive material are mixed. Forming a separator material having a gas flow channel on a contact surface with the diffusion layer by using the mixture material; and irradiating an electron beam to the contact surface of the separator material.
  • the contact surface provided with the gas flow grooves can be cured to some extent. Therefore, even when the reaction heat of the fuel cell is generated, the elasticity of the contact surface of the separator can be ensured, and the state in which the contact surface of the separator is in close contact with the diffusion layer can be maintained.
  • the output of the fuel cell can be increased by suppressing the contact resistance of the contact surface of the separator and the contact resistance between the diffusion layers.
  • the contact surface of the separator for a fuel cell can be changed to a portion having excellent sealing properties by a simple process of irradiating the contact surface of the separator material with an electron beam. As a result, it becomes possible to efficiently produce a fuel cell separator having excellent sealing properties, and to reduce the cost of the separator.
  • the thermoplastic resin is ethylene copolymer of ethylene-vinyl acetate and ethylene copolymer of ethyl acrylate.
  • the resin is selected from a polymer, a linear low-density polyethylene, a polyphenylene sulfide, and a modified polyphenylene oxide
  • the conductive material is preferably carbon particles selected from at least one of graphite, Ketjen black, and acetylene black. .
  • Ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, linear low-density polyethylene, polyphenylene sulfide, and modified polyphenylene oxide have particularly excellent flexibility among thermoplastic resins. It is a resin, and by forming the separator with these resins, the contact surface of the separator can be more closely contacted with the diffusion layer. Therefore, the gap between the contact surface of the separator and the diffusion layer can be more suitably sealed.
  • thermoplastic resin has excellent conductivity, so that the conductivity can be secured with a relatively small amount. This makes it possible to make the proportion of the thermoplastic resin relatively small, thereby suppressing the effect on the physical properties of the thermoplastic resin.
  • an electrode diffusion layer of carbon fiber is superimposed on a thermoplastic resin separator, pressure is applied to the electrode diffusion layer and the separator, and one of the electrode diffusion layer and the separator is vibrated.
  • the present invention provides a method for joining a fuel cell separator and an electrode diffusion layer by welding the electrode diffusion layer to a separator by generating frictional heat.
  • the electrical contact resistance between the separator and the electrode diffusion layer can be suppressed by welding and integrating the thermoplastic resin separator and the electrode diffusion layer with frictional heat.
  • thermoplastic resin separator and the electrode diffusion layer it is possible to eliminate the sealing material conventionally required for combining the separator with the electrode diffusion layer.
  • the number of constituent members can be reduced.
  • a first separator of a thermoplastic resin A second separator made of a thermoplastic resin having a cooling water passage groove provided on a surface to be joined to the parator is prepared.After the first separator is overlaid on the second separator, a pressing force is applied to the first and second separators. By vibrating one of the first and second separators to generate frictional heat, the second separator is welded to the first separator, and the cooling water passage groove is closed by the first separator to cool the cooling water.
  • a method for manufacturing a fuel cell separator comprising forming a passage.
  • the first and second separators made of thermoplastic resin are welded together by frictional heat and integrated, and the first separator closes the cooling water passage groove to form a cooling water passage.
  • the sealing material can be removed from between the first and second separators by welding and integrating the first and second separators with frictional heat.
  • the number of constituent members can be reduced by removing the sealing material from between the first and second separators.
  • the number of assembling steps for assembling the sealing material between the first and second separators can be reduced.
  • the cost of the separator can be reduced by reducing the number of components and the number of assembling steps.
  • the applied pressure be 10 to 50 kgf Zcm 2 (about 980 to 4903 kPa) and the vibration frequency be 240 Hz.
  • All pressures in the present invention are gauge pressures.
  • the applied pressure is less than 10 kgf Zcm 2 , it is difficult to generate sufficient frictional heat on the joining surfaces of the first and second separators, so that the first and second separators cannot be welded. Therefore, the first and second separators are welded by setting the applied pressure to 10 kgf Zcm 2 or more. On the other hand, if the pressure exceeds 50 kgf ZCM 2, first, first if a large frictional heat on the joining surface of the second separator is generated, the second separator will melt in excess, first, of the second separator Burrs are generated from the periphery.
  • FIG. 1 is an exploded perspective view showing a fuel cell of a fuel cell separator manufactured by the method for manufacturing a fuel cell separator according to the first embodiment of the present invention.
  • FIG. 2 is a sectional view taken along line AA of FIG.
  • FIG. 3 is a sectional view taken along line BB of FIG.
  • FIG. 4 is a cross-sectional view of the fuel cell separator of FIG.
  • FIG. 5 is a flowchart of a method for manufacturing a fuel cell separator according to the first embodiment of the present invention.
  • 6A and 6B are explanatory views showing a step of forming a mixed material into a pellet in the manufacturing method.
  • FIG. 7 is an explanatory diagram of a pressing step in the manufacturing method.
  • FIG. 8 is an explanatory view showing a step of irradiating an electron beam in the manufacturing method.
  • FIG. 9 is an exploded perspective view of a fuel cell joined by a joining method of a fuel cell separator and an electrode diffusion layer according to a second embodiment of the present invention.
  • FIG. 10 is a cross-sectional view taken along line C-C of FIG.
  • FIG. 11 is a cross-sectional view of a vibration welding apparatus for performing the joining method according to the second embodiment of the present invention.
  • FIGS. 12A and 12B are explanatory views showing a step of setting the first separator and the anode diffusion layer in the bonding method according to the second embodiment of the present invention.
  • FIGS. 13A and 13B are explanatory views showing a step of applying a pressure to the first separator and the anode diffusion layer in the bonding method according to the second embodiment of the present invention.
  • FIGS. 14A and 14B are explanatory views showing a step of vibration welding an anode diffusion layer to a first separator in a bonding method according to a second embodiment of the present invention.
  • FIG. 15 is an explanatory view showing a step of taking out the vibration-welded first separator and the anode diffusion layer in the bonding method according to the second embodiment of the present invention.
  • FIG. 16A and FIG. 16 are explanatory views showing a step of setting the second separator and the force sword diffusion layer in the bonding method according to the second embodiment of the present invention.
  • FIGS. 17A and 17B are explanatory views showing a step of vibration welding a cathode diffusion layer to a second separator in the bonding method according to the second embodiment of the present invention.
  • FIGS. 18A and 18B are explanatory views showing an example of setting a separator obtained by the bonding method according to the second embodiment of the present invention.
  • FIG. 19A and FIG. 19B are explanatory diagrams showing an example of vibration welding of separators obtained by the joining method according to the second embodiment of the present invention.
  • FIG. 20 is a cross-sectional view showing a fuel cell separator obtained by the method for manufacturing a fuel cell separator according to the third embodiment of the present invention.
  • FIG. 21A and FIG. 21B are explanatory diagrams showing steps of setting the first and second separators in the manufacturing method according to the third embodiment of the present invention.
  • FIG. 22A and FIG. 22B are explanatory views showing a step of applying a pressing force to the first and second separators in the manufacturing method according to the third embodiment of the present invention.
  • FIG. 23A and FIG. 23B are explanatory diagrams showing a step of vibration-welding the first and second separators in the manufacturing method according to the third embodiment of the present invention.
  • FIG. 24 is an explanatory view showing a step of removing the vibration-welded first and second separators in the manufacturing method according to the third embodiment of the present invention.
  • FIG. 25 is an exploded perspective view showing a conventional fuel cell.
  • FIG. 26 is an exploded perspective view of another conventional fuel cell.
  • the fuel cell 10 uses a solid polymer electrolyte for the electrolyte membrane 12 as an example, and attaches an anode 13 and a force sword 14 to the electrolyte membrane 12 to form an anode 1
  • the separator 18 on the 3 side via the anode diffusion layer 15 the separator (fuel cell separator) 18 on the force side 14 via the force diffusion layer 16
  • the separator 18 is composed of a first separator 20 and a second separator 30, and is a joining surface 3 O between the cooling water passage forming surface 20 a of the first separator 20 and the second separator 30. a is joined by vibration welding as an example.
  • first and second separators 20 and 30 are vibration-welded to cover the cooling water passage grooves 2 1 ⁇ of the first separator 20 with the second separator 30, and the cooling water passage is formed. 2 2 ⁇ ⁇ ⁇ ⁇ (see Figure 4).
  • the cooling water passages 22 ⁇ communicate with the cooling water supply holes 23a, 33a at the center of the upper ends of the first and second separators 20, 30, and the first and second separators 20, 30 also communicate with each other.
  • the cooling water discharge holes 23b and 33b at the center of the lower end of the are connected.
  • the first separator 20 has a fuel gas passage forming groove 24 ′ (see FIG. 2) on the fuel gas passage forming surface (contact surface) 2 Ob side, and the anode diffuses on the fuel gas passage forming surface 20 b.
  • the fuel gas passage grooves 24 are closed with the anode diffusion layer 15 to form the fuel gas passages 25 (see FIG. 4).
  • the fuel gas passage 25 ⁇ communicates with the fuel gas supply holes 26a, 36a on the upper left side of the first and second separators 20, 30, and the first and second separators 20, 30, Connect the fuel gas discharge holes 26b and 36b on the lower right side.
  • the second separator 30 is provided with an oxidizing gas passage groove 37 on the oxidizing gas passage forming surface (contact surface) 3 Ob side, and the force sword diffusion layer 16 is superimposed on the oxidizing gas passage forming surface 30 b. By combining them, the oxidizing gas passage groove 37 ⁇ is closed with the force sword diffusion layer 16 to form the oxidizing gas passage 38 ⁇ (see FIG. 4).
  • the oxidizing gas passages 38 ⁇ communicate with the oxidizing gas supply holes 29 a, 39 a on the upper right side of the first and second separators 20, 30, and the first and second separators 20, 30.
  • the oxidant gas discharge holes 29b and 39b on the left side of the lower end are connected to each other.
  • the first separator 20 is a member formed in a substantially rectangular shape (see FIG. 1) using a resin obtained by mixing a conductive material with a thermoplastic resin.
  • the fuel gas passage forming surface 20b is provided with a number of grooves 24 ⁇ ' ⁇ for fuel gas passages.
  • thermoplastic resin examples include ethylene-vinyl acetate (vinyl acetate) copolymer, ethylene-ethyl acrylate copolymer, linear low-density polyethylene, polyphenylene sulfide, and modified polyphenylene oxycite. Yes, but not limited to.
  • the conductive material includes, but is not limited to, carbon particles selected from at least one of Ketjen black, graphite, and acetylene black.
  • Ketjen Black is a carbon black with excellent conductivity. Te Ketjen 'Black ⁇ Made by International Corporation (Distributor; Mitsubishi Chemical Corporation), but not limited to this.
  • Ethylene-vinyl acetate (vinyl acetate) copolymer, ethylene-ethyl acrylate copolymer, linear low-density polyethylene, polyphenylene sulfide, and modified polyphenylene oxite are flexible resins among thermoplastic resins. By using this resin, the first separator 20 can be a member having excellent flexibility.
  • the fuel gas passage forming surface 20b is a surface that is cured to some extent by irradiating an electron beam and has a three-dimensional cross-linked structure.
  • the first separator 20 is made of a member having excellent flexibility, and the fuel gas passage forming surface 20 b is irradiated with an electron beam, so that the fuel gas passage forming surface 20 b has excellent elasticity. Surface.
  • Ketjen black, graphite, and acetylene black are highly conductive materials.
  • carbon particles selected from at least one of Ketjen black, graphite, and acetylene black as the conductive material (carbon material)
  • the conductivity of the first separator 20 can be secured with a relatively small amount.
  • the ratio contained in the thermoplastic resin can be suppressed to a relatively small amount, so that the moldability of the thermoplastic resin can be maintained and the first separator 20 can be easily molded.
  • the second separator 30 is, like the first separator 20, a portion formed in a substantially rectangular shape (see FIG. 1) using a resin obtained by mixing a conductive material with a thermoplastic resin.
  • the joining surface 30a is formed flat with a material, and a large number of oxidizing gas passage grooves 37 are provided on the oxidizing gas passage forming surface 30b.
  • thermoplastic resin examples include ethylene vinyl acetate (vinyl acetate) copolymer, ethylene ethyl acrylate copolymer, linear low-density polyethylene, polyphenylene sulfide, and modified polyphenylene oxite. Yes, but not limited to.
  • the conductive material includes, but is not limited to, carbon particles selected from at least one of Ketjen black, graphite, and acetylene black. Not something.
  • Ethylene-vinyl acetate (vinyl acetate) copolymer, ethylene-ethyl acrylate copolymer, linear low-density polyethylene, polyphenylene sulfide, and modified polyphenylene oxite are the most flexible thermoplastic resins.
  • the second separator 30 can be a member having excellent flexibility.
  • the oxidizing gas passage forming surface 30b is a surface that is cured to some extent by irradiating an electron beam and has a three-dimensional cross-linked structure.
  • the oxidizing gas passage forming surface 30b is made elastic. Surface can be excellent.
  • Ketjen black, graphite, and acetylene black are highly conductive materials.
  • carbon particles selected from at least one of Ketjen black, graphite, and acetylene black as the conductive material (carbon material)
  • the conductivity of the second separator 30 can be secured with a relatively small amount.
  • thermoplastic resin can be suppressed to a relatively small amount, so that the moldability of the thermoplastic resin can be maintained and the second separator 30 can be easily molded.
  • FIG. 4 shows a state where the electrode diffusion layers 15 and 16 are superimposed on the separator 18.
  • the separator 18 applies a pressing force to the first and second separators 20 and 30 to form the first and second separators 20 and 30.
  • And 30 are vibrated to generate frictional heat, so that the cooling water passage forming surface 20a of the first separator 20 and the joining surface 30a of the second separator 30 are vibration-welded.
  • the cooling water passage 22 is formed by closing the cooling water passage groove 21 of the first separator 20 with the second separator 30.
  • the joining of the first and second separators 20 and 30 is not limited to vibration welding, but may be done by other methods.
  • the first separator 20 is molded from a resin having excellent flexibility, and the fuel gas passage formation surface 20b is irradiated with an electron beam to harden the fuel gas passage formation surface 2 Ob to a certain extent. A three-dimensional crosslinked structure was obtained by advancing the crosslinking reaction.
  • the polymer chains are connected to each other at any position other than the terminal, and the heat resistance of the fuel gas passage forming surface 20b is improved. And rigidity can be increased.
  • the oxidizing gas passage groove 38 and the cathode diffusion layer 16 form an oxidizing gas passage 38 ′ ′ by aligning the force sword diffusion layer 16 with the oxidizing gas passage forming surface 30b. .
  • the second separator 30 is molded from a resin having excellent flexibility, and the oxidizing gas passage forming surface 30b is irradiated with an electron beam to cure the oxidizing gas passage forming surface 30b to a certain extent and to reduce the hardness.
  • a dimensional cross-linked structure was used. Thereby, when the reaction heat of the fuel cell is generated, the elasticity of the oxidizing gas passage forming surface 30b can be ensured. 6 can be kept in close contact.
  • FIG. 5 is a flowchart of a method for manufacturing a separator for a fuel cell according to a first embodiment of the present invention.
  • STXX represents a step number.
  • ST 10 A mixed material is obtained by mixing a thermoplastic resin and a conductive material.
  • ST11 A strip-shaped sheet is formed by extruding the mixed material.
  • the grooves for the cooling water passages are press-formed on one surface of the band-shaped sheet, that is, the surface corresponding to the cooling water passage forming surface, and the other surface of the band-shaped sheet, ie, the fuel gas passage.
  • the separator material is obtained by press-forming the fuel gas passage groove on the surface corresponding to the formation surface.
  • the first separator is obtained by cutting the separator material to a predetermined size.
  • FIG. 6A and FIG. 6B are explanatory diagrams of a step of forming a mixed material into a pellet in the manufacturing method according to the first embodiment of the present invention. Specifically, FIG. 6A shows ST10, and FIG. 6B shows the first half of ST11.
  • thermoplastic resin 46 selected from ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, linear low-density polyethylene, polyphenylene sulfide, and modified polyphenylene oxide is used.
  • a thermoplastic resin 46 selected from ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, linear low-density polyethylene, polyphenylene sulfide, and modified polyphenylene oxide is used.
  • a conductive material 45 at least one of which is selected from carbon particles of graphite, Ketjen black, and acetylene black is prepared.
  • the prepared thermoplastic resin 46 and conductive material 45 are charged into a container 48 of a mixing device 47 as shown by an arrow.
  • the injected thermoplastic resin 46 and conductive material 45 are mixed in the container 48 by rotating the mixing blade (or screw) 49 as shown by the arrow.
  • a mixed material 50 obtained by mixing a thermoplastic resin 46 and a conductive material 45 is charged into a hopper 52 of a first extrusion molding device 51, and the charged mixed material 50 is subjected to a first extrusion.
  • Extrusion molding is performed with a molding device 51.
  • the extruded molding material 53 is passed through a water tank 54 to cool the molding material 53 with water 55 in the water tank 54.
  • the cooled molded material 53 is cut into a predetermined length by the cutter 57 of the cutter device 56, and the cut pellet 58 ⁇ -is stocked in the stock basket 59.
  • FIG. 7 is an explanatory diagram of a pressing step in the above-described manufacturing method, and specifically shows the latter half of ST11 to ST12.
  • the pellet 58 ⁇ obtained in the previous step is put into the hopper 61 of the second extrusion molding device 60 as indicated by an arrow, and the pellet 58- that is put is extruded and formed by the second extrusion molding device 60. .
  • the extruded molding material 62 is rolled by a rolling roll 63 to form a belt-like sheet 64.
  • a pressing device 65 is provided downstream of the rolling roll 63.
  • the pressing device 65 includes upper and lower press dies 66 and 67 above and below a belt-like sheet 64.
  • the upper press die 66 has an uneven portion (not shown) on the press surface 66a facing the other surface 64b of the belt-shaped sheet 64.
  • the uneven portions are formed by press-forming grooves 24 for twisting material gas passages (see FIG. 4) on the other surface 64b of the belt-shaped sheet 64.
  • the lower press die 67 has an uneven portion (not shown) on a press surface 67 a facing one surface 64 a of the belt-shaped sheet 64.
  • the concave and convex portions are for press-forming cooling water passage grooves 21 1 ⁇ (see FIG. 4) on one surface 64 a of the belt-shaped sheet 64.
  • the upper and lower press dies 66 and 67 are arranged at the press start position P1, and the upper and lower press dies 66 and 67 press both sides 64a and 64b of the strip-shaped sheet 64, and the upper and lower press dies are maintained while maintaining this state.
  • the press dies 66 and 67 are linked in accordance with the extrusion speed of the belt-shaped sheet 64 as indicated by arrows a and b.
  • the cooling water passage grooves 2 1 are formed on one surface 64 a of the belt-shaped sheet 64, that is, the surface corresponding to the cooling water passage forming surface 20 a (see FIG. 4).
  • the other surface 64 b of the belt-shaped sheet 64 that is, the surface corresponding to the fuel gas passage forming surface 2 O b (see FIG. 4), is press-molded with the fuel gas passage groove 24 ⁇ ′-to form a belt-like sheet.
  • the mold 64 is formed into a separator material 68.
  • the upper and lower press dies 66, 67 When the upper and lower press dies 66, 67 reach the press release position P2, the upper and lower press dies 66, 67 move in a direction away from the strip-shaped sheet 64 as indicated by arrows c and d, and the upper and lower press dies 66, 67 After reaching the predetermined position on the release side, the upper and lower press dies 66 and 67 are moved toward the upstream side as indicated by arrows e and f. Upper and lower press dies 66, 67 After reaching the predetermined position on the press start side, the upper and lower press dies 66 and 67 are moved to the press start position P 1 as shown by arrows g and h.
  • the cooling water passage groove 21 and the twist material gas passage groove 24 shown in FIG. 4 are formed on both sides 6 4 a and 64 b of the belt-shaped sheet 64. Each is press-formed.
  • FIG. 7 an example in which one upper and lower press dies 66 and 67 are provided for ease of understanding has been described. Provide multiple.
  • cooling water passage grooves 21 and fuel gas passage grooves 2 4 are provided on both sides 64 a and 64 b of the belt-shaped sheet 64. (See Fig. 4) can be continuously press-formed.
  • the upper and lower press dies 66 and 67 are provided with portions for forming the fuel gas supply holes 26a and the fuel gas discharge holes 26b shown in FIG.
  • the upper and lower press dies 66 and 67 are provided with portions for forming the oxidizing gas supply holes 29a and the oxidizing gas discharge holes 29b shown in FIG.
  • the upper and lower press dies 66 and 67 are provided with portions for forming a cooling water supply hole 23a and a cooling water discharge hole 23b shown in FIG.
  • the upper and lower press dies 6 6, 6 7, on both sides 6 4 a, 6 4 b of the belt-shaped sheet 6 4, are provided with cooling water passage grooves 2 1...
  • Each of these is continuously press-molded, and the cooling water supply holes 23a, gas supply holes 26a, 29a, cooling water discharge holes 23b, and gas discharge shown in Fig. 1 are formed. Form holes 26b and 29b simultaneously.
  • FIG. 8 is an explanatory view of an electron beam irradiation step and a sheet cutting step in the first embodiment, and specifically shows ST13 to ST14.
  • the upper surface of the separator material 68 obtained in the previous process that is, the other surface on which the fuel gas passage groove 24 ⁇ (see FIG. 4) is press-formed.
  • An electron beam irradiation device 70 is provided above 68 b.
  • the electron gun 71 of the electron beam irradiation device 70 emits an electron beam 72.
  • the fuel gas passage groove 24 ⁇ ′ is press-formed above the other surface 68 b. Is irradiated.
  • the other surface 68b on which the fuel gas passage grooves 24 are formed by pressing is hardened to some extent and has a three-dimensional bridge structure.
  • a cutter device 73 is provided above the separator material 68 obtained in the previous step.
  • the separator material 68 is cut into a predetermined size to obtain the first separator 20.
  • the manufacturing process of the first separator 20 is completed.
  • the fuel gas passage forming surface 20 b (see FIG. 4) is hardened to a certain degree by a simple method of irradiating the electron beam 72. And a three-dimensional cross-linked structure.
  • the elasticity of the fuel gas passage forming surface 20b can be suitably maintained, and the sealing performance can be maintained well. Therefore, the first separator 20 having excellent sealing properties can be efficiently produced.
  • Ethylene, vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, linear low-density polyethylene, polyphenylene sulfide, and modified polyphenylene oxide are particularly flexible among thermoplastic resins.
  • the flexibility of the fuel gas passage forming surface 2 Ob (see FIG. 4) of the first separator 20 is improved. It can be suitably secured.
  • the method of manufacturing the first separator 20 has been described with reference to FIGS. 5 to 8, but the second separator 30 may be manufactured by a similar method.
  • the second separator 30 does not include the cooling water passage groove 21 1 ′ ′ unlike the first separator 20 and has a flat joining surface 30 a, and thus is shown in FIG.
  • the lower press die 67 includes a concave / convex portion for press-molding the cooling water passage groove 2 1 ′ ⁇ on one surface of the belt-shaped sheet 64 on a surface opposite to one surface of the belt-shaped sheet 64. No need.
  • FIG. 9 is an exploded perspective view of a fuel cell joined by a method of joining a fuel cell separator and an electrode diffusion layer according to a second embodiment of the present invention.
  • the fuel cell 110 is, for example, a solid Using a polymer electrolyte, attach an anode 1 13 and a power source 1 1 4 to this electrolyte membrane 1 1 2, and a separator 1 1 8 on the anode 1 13 side via an anode diffusion layer 1 1 5
  • a resell module 111 is constructed by combining a separator 118 with a force sword diffusion layer 111 on the side of the force sword 114, and a solid height is formed by stacking a large number of the cell modules 111. It is a molecular fuel cell.
  • the separator 118 includes a first separator 120 and a second separator 130, and the cooling water passage forming surface 120a of the first separator 120 and the second separator 130 are formed.
  • the joining surface 130a is joined by vibration welding as an example.
  • first and second separators 120 and 130 are subjected to vibration welding to cover the cooling water passage grooves 1 2 1 ⁇ ′ of the first separator 120 with the second separator 130.
  • Cooling water passages 122 are formed.
  • This cooling water passage 122 is connected to the cooling water supply holes 123a, 133a at the upper ends of the first and second separators 120, 130.
  • the first separator 120 includes a fuel gas passage groove 124 on the fuel gas passage forming surface 120 b side (see FIG. 10), and an anode diffusion layer 120 f on the fuel gas passage forming surface 120 b.
  • the fuel gas passage grooves 124- '' are closed by the anode diffusion layer 115, and the fuel gas passages 125- See).
  • the fuel gas passage 125 is connected to the upper left fuel gas supply holes 126a, 136a of the first and second separators 120, 130 through the first and second separators.
  • the fuel gas discharge holes 126b and 136b on the lower right side of the separators 120 and 130 are connected.
  • the second separator 130 includes an oxidizing gas passage groove 1 37 on the oxidizing gas passage forming surface 1 30 b side, and a force sword diffusion layer 1 on the oxidizing gas passage forming surface 13 Ob.
  • the oxidizing gas passage groove 137 '' is closed by the cathode diffusion layer 116 by vibrating welding in a state where the oxidizing gas passage 16 is overlapped with the oxidizing gas passage 138 '(Fig. 0) is formed.
  • the oxidizing gas passageway 13 ⁇ '' is communicated with the oxidizing gas supply holes 12 29 a and 139 a on the upper right side of the first and second separators 120 and 130.
  • the oxidizing gas discharge holes 129b and 139b on the lower left side of the first and second separators 120 and 130 communicate with each other.
  • Examples of the resin constituting the first and second separators 120 and 130 include, as an example, an acid-resistant thermoplastic resin, natural graphite, artificial graphite, Ketjen black, acetylene black, or a mixture thereof. However, a resin composition containing 60 to 95 wt% of a carbon material is applicable, but is not limited thereto.
  • Ketjen Black is a carbon black with excellent conductivity, such as, but not limited to, Ketjen 'Black' International Co., Ltd. (seller: Mitsubishi Chemical Corporation). .
  • the first and second separators 120 and 130 are carbon mold separators obtained by molding the above resin composition by injection molding, heating press molding or roll molding.
  • thermoplastic resins having acid resistance include ethylene-vinyl acetate (vinyl acetate) copolymer, ethylene-ethyl acrylate copolymer, linear low-density polyethylene, polyphenylene sulfide, and modified polyphenylene sulfide. Lenoxide is applicable, but not limited to.
  • Examples of the anode diffusion layer 115 include, but are not limited to, carbon woven fabric, carbon nonwoven fabric, carbon mat, and carbon paper carbon fiber.
  • the force sword diffusion layer 116 includes, for example, but is not limited to, carbon woven fabric, carbon nonwoven fabric, carbon matte, and carbon paper.
  • the first separator 120 is a member formed in a substantially rectangular shape as is clear from FIG. 9, and the fuel gas passage forming surface 120 b has a fuel gas passage groove 124 ′ ′.
  • the anode diffusion layer 1 15 is vibration-welded to the fuel gas passage forming surface 12 Ob to form a fuel gas passage groove 124 and an anode diffusion layer 1 15.
  • a fuel gas passage 1 25 ⁇ ⁇ ⁇ is formed, and a number of cooling water passage grooves 1 2 1 ⁇ are provided on the cooling water passage forming surface 120a.
  • the second separator 130 is also a substantially rectangular member as is clear from FIG.
  • the oxidizing gas passage forming surface 13b has a large number of oxidizing gas passage grooves 13 7 on the oxidizing gas passage forming surface 13b.
  • the oxidizing gas passage grooves 13 7... ′ and the force sword diffusion layer 1 16 form the oxidizing gas passages 13 8.
  • the separator 1 18 is formed by vibration welding the cooling water passage forming surface 120 a of the first separator 120 and the joining surface 130 a of the second separator 130, and forming the first separator 120.
  • the cooling water passages 122 are formed by closing the cooling water passage grooves 121 with the joining surfaces 130a of the second separators 130.
  • the electrical connection between the first separator 120 and the anode diffusion layer 115 is made. Contact resistance can be suppressed. Also, by integrating the first separator 120 of thermoplastic resin and the anode diffusion layer 115, it is conventionally necessary to match the first separator 120 with the anode diffusion layer 115. It is possible to eliminate the sealing material, which was previously described.
  • the second separator 130 of the thermoplastic resin and the force sword diffusion layer 1 16 are integrated by vibration welding to integrate the second separator 130 with the force sword diffusion layer 1 1 1 6 can reduce the electrical contact resistance.
  • the second separator 130 of thermoplastic resin and the cathode diffusion layer 116 it is conventionally necessary to match the second separator 130 with the force sword diffusion layer 116.
  • the sealing material which was supposed to be used, can be eliminated.
  • first and second separators 120 and 130 made of thermoplastic resin are vibration-welded to integrate the separators 118 into one, and the cooling water passage grooves of the first separators 120 are formed.
  • the cooling water passage 122 was formed by closing the sealing member 121 with the bonding surface 30a of the second separator 130.
  • first and second separators 120 and 130 are vibration-welded and the separator 118 is integrated to form an electrical connection between the first and second separators 120 and 130. Contact resistance can be suppressed.
  • first and second separators 120 and 130 are vibration-welded to integrate the separator 118 into one piece, so that the sealing material conventionally required can be removed from the first and second separators. Data can be eliminated from between 120 and 130.
  • FIG. 11 showing, in section, a vibration welding apparatus for carrying out a method for joining a fuel cell separator and an electrode diffusion layer according to a second embodiment of the present invention.
  • the vibration welding device 140 is composed of left and right supports 144, 2 at a fixed interval on the base 144.
  • Stand 4 2 connect the upper ends of the left and right columns 14 2, 14 2 to the left and right beams 14 3, 14 3, and guide them to the left and right columns 14 2, 14 2.
  • the upper support part 151 is attached to the lower part of the vibration generating mechanism 150 so as to face the lower support part 149.
  • the vibration generating mechanism 150 has frame members 15 2 and 15 2 fixed to the left and right beams 14 3, respectively, and fixed electromagnet sections 15 3 and 15 5 to the left and right frame members 15 2 and 15 2, respectively.
  • the cross member 154 is passed to the left and right frame members 15 2, 15 2, the support member 15 5 is attached to the cross member 15, and the support portion 15 5 Left and right fixed Electromagnet sections 15 3, 15 3 Placed between the electromagnet sections 15 3 and 15 3, the slide member 15 6 is attached to the support section 15 5 movably in the left and right direction.
  • the lower support portion 149 can be moved up and down together with the elevating member 144 by moving the piston rod 148 of the air cylinder 144 back and forth.
  • the upper support portion 151 can be vibrated leftward together with the slider member 156.
  • FIGS. 12A and 12B are explanatory diagrams of a step of setting the first separator and the anode diffusion layer in the bonding method according to the second embodiment.
  • the first separator 120 and the anode diffusion layer 115 are disposed between the lower support part 149 and the upper support part 151, and the first separator 120 and the anode diffusion layer 115 are arranged. Is lowered toward the set concave portion 158 of the lower support portion 149 as shown by the arrow j.
  • FIGS. 13A and 13B are explanatory diagrams of a step of applying a pressing force to the first separator and the anode diffusion layer in the bonding method according to the second embodiment.
  • the cooling water passage forming surface 120 a of the first separator 120 is accommodated in the set concave portion 158 of the lower support portion 149, and the fuel gas passage forming surface 1 of the first separator 120 is accommodated.
  • the anode diffusion layer 1 15 is superimposed on 2 O b.
  • the piston rod 148 of the air cylinder 146 provided in the vibration welding device 140 is advanced, so that the lower support portion 149 can be moved together with the lifting member 145. Is raised as shown by the arrow k.
  • the anode diffusion layer 1 15 is stored in the set recess 159 of the upper support section 15 1 by raising the lower support section 1 49 to the pressurized position H 2, and A pressure F 1 can be applied to the separator 120 and the anode diffusion layer 115.
  • Pressure F 1 is set to 1 0 ⁇ 50 kgf cm 2 as an example.
  • the reason for the pressure F 1 and 1 0 to 50 kgf ZCM 2 is as follows.
  • the pressure F 1 is set to 50 kgf Z cm 2 or less to prevent burrs from being generated from the periphery of the first separator 120 and the periphery of the anode diffusion layer 115.
  • FIGS. 14A and 14B are explanatory views of a step of vibration welding an anode diffusion layer to a first separator in the bonding method according to the second embodiment.
  • the slider members 15 6 are connected to each other by energizing the left and right fixed electromagnets 15 3, 15 3 and the left and right moving electromagnets 15 7, 15 7 of the vibration welding device 140.
  • the upper support part 15 1 vibrates in the left-right direction as indicated by arrow I.
  • the vibration frequency (frequency) at this time is 240 Hz.
  • the vibration frequency of 240 Hz is suitable for the vibration welding of relatively small items. Therefore, by setting the vibration frequency to 240 Hz, the first separator 120 and the anode diffusion layer 115, which are relatively small members, can be suitably vibration-welded.
  • the anode diffusion layer 115 is vibrated as indicated by the arrow I by vibrating the upper support part 151 leftward as indicated by the arrow I. Thereby, frictional heat is generated between the fuel gas passage forming surface 120b of the first separator 120 and the anode diffusion layer 115.
  • the first separator 120 is formed of a thermoplastic resin, by generating frictional heat between the fuel gas passage forming surface 120 b of the first separator 120 and the anode diffusion layer 115, The fuel gas passage forming surface 120b of the first separator 120 and the anode diffusion layer 115 can be welded.
  • the fuel gas passage groove 1 2 4... Formed on the fuel gas passage formation surface 120 b of the first separator 120 is closed with the anode diffusion layer 1 15 and the fuel gas passage 1 2 5-can be formed.
  • Fig. 1 shows an example of vibration welding of the force sword diffusion layer 1 16 to the second separator 130.
  • FIGS. 16A and 16B are explanatory diagrams of a step of setting the second separator and the force sword diffusion layer in the bonding method according to the second embodiment.
  • FIG. 16A after the integrated first separator 20 and anode diffusion layer 115 (see FIG. 15) are taken out from the vibration welding device 140, the lower support part 1449 and the upper support are removed.
  • a second separator 130 and a force sword diffusion layer 116 are arranged between the first support 150 and the first support 150, and these members 130, 116 are set to the lower support 150, respectively. It descends as shown by arrow m toward 8.
  • the joint recess 130 of the second separator 130 is accommodated in the set recess 158 of the lower support portion 149, and the oxidant gas passage of the second separator 130 is formed.
  • the cathode diffusion layer 1 16 is superimposed on the surface 130 b.
  • FIGS. 17A and 17B are explanatory diagrams of a step of vibration welding a cathode diffusion layer to a second separator in the bonding method according to the second embodiment.
  • the cathode diffusion layer 1 16 is housed in the set recess 15 9 of the upper support section 15 by raising the lower support section 14 9 to the pressurized position H 3. Apply a pressing force F2 to the second separator 130 and the force sword diffusion layer 116. Can be.
  • the pressing force F2 was set to, for example, 10 to 50 kgf Zcm 2 similarly to the pressing force F1.
  • the reason for the pressure F 2 and 1 0 to 50 kgf ZCM 2 is as described under a pressure F 1 in FIG. 1 3 B.
  • the applied pressure F 2 when the applied pressure F 2 is less than 1 O kgf Z cm 2 , sufficient frictional heat is generated between the oxidizing gas passage forming surface 130 b of the second separator 130 and the cathode diffusion layer 1 16. Therefore, the second separator 130 and the force sword diffusion layer 116 cannot be welded. Therefore, the applied pressure F 2 was set to 1 O kgf Zcm 2 or more so that the second separator 130 and the force sword diffusion layer 1 16 were welded.
  • the applied pressure F 2 exceeds 50 kgf Zcm 2 , a large amount of frictional heat is generated on the oxidizing gas passage forming surface 13 Ob of the second separator 130 and the force sword diffusion layer 1 16 to oxidize.
  • the agent gas passage forming surface 13 Ob and the force sword diffusion layer 1 16 are excessively melted, and burrs are generated from the periphery of the second separator 130 and the periphery of the force sword diffusion layer 1 16 . Therefore, an extra step of removing burrs generated on the periphery of the second separator 130 and the periphery of the cathode diffusion layer 116 is required. Therefore, the pressure F 2 was set to 50 kgf Zcm 2 or less to prevent burrs from being generated from the periphery of the second separator 130 and the periphery of the cathode diffusion layer 116.
  • the vibration frequency (frequency) is 240 Hz.
  • the reason for setting the vibration frequency to 240 Hz is as described in relation to Fig. 14A. That is, a vibration frequency of 240 Hz is suitable for the vibration welding of relatively small items. Therefore, by setting the vibration frequency to 240 Hz, the second separator 130 and the force sword diffusion layer 116, which are relatively small members, can be suitably vibration-welded. By vibrating the upper support part 15 1 in the left-right direction as indicated by an arrow o, the force sword diffusion layer 116 is vibrated as indicated by an arrow o. Thereby, frictional heat is generated between the oxidizing gas passage forming surface 130 b of the second separator 130 and the cathode diffusion layer 116.
  • the second separator 130 is formed of a thermoplastic resin, frictional heat is generated between the oxidant gas passage forming surface 130 b of the second separator 130 and the cathode diffusion layer 116, and The oxidant gas passage forming surface 130b of the separator 130 and the force sword diffusion layer 116 can be welded.
  • the oxidizing gas passage groove 1 3 7 ′′ ′′ ′′ formed on the oxidizing gas passage forming surface 130 b of the second separator 130 is closed with the cathode diffusion layer 1 16, and the oxidizing gas passage 1 3 8 ⁇ '-can be configured.
  • the 30 and force sword diffusion layers 1 16 are removed from the vibration welding apparatus 140.
  • FIGS. 18A and 18B are diagrams for explaining the procedure for setting the separator obtained in the second embodiment.
  • Fig. 18A after the second separator 130 and the force sword diffusion layer 1 16 integrated by vibration welding are removed from the vibration welding device 140, the lower support part 14 9 and the upper support part 15 are removed. Between the first separator 120 and the anode diffusion layer 1 15 integrated by vibration welding, and the second separator 130 and the force diffusion layer 1 16 integrated by vibration welding. Then, these members are lowered toward the set concave portion 158 of the lower support portion 149 as shown by the arrow p.
  • the force-sword diffusion layer 1 16 is accommodated in the set recess 1 58 of the lower support 1 49, and the first separator 1 is provided on the joining surface 130 a of the second separator 130.
  • the 20 cooling water passage forming surfaces 120 a are overlapped.
  • FIG. 19A and FIG. 19B are diagrams for explaining the procedure of vibration welding the separators obtained in the second embodiment.
  • the pressing force F 3 similarly to the pressure F 1, and a 1 0 ⁇ 50 kgf Z cm 2 as an example.
  • the reason for the pressure F 3 and 1 0 ⁇ 50 kgf Zcm 2 is as described under a pressure F 1 in FIG. 1 3 B.
  • pressure F 3 to 1 O kgf / cm 2 by setting more than the first separators one data 1 2 coolant passage formation surface 1 0 20 a and dissolved the joint surface 1 30 a of the second separator 1 30 I tried to wear it.
  • pressurizing the pressure F 3 is more than 50 k g f Zcm 2, a large frictional heat on the joining surface 1 30 a cooling water passage forming surface 1 20 a and the second separator 1 30 of the first separator 1 20 occurs As a result, the cooling water passage forming surface 120a and the joining surface 130a are excessively melted, and burrs are generated from the peripheral edge of the first separator 120 and the peripheral edge of the second separator 130.
  • the pressing force F3 is set to 50 kgfcm 2 or less to prevent occurrence of paris from the periphery of the first separator 120 and the periphery of the second separator 130.
  • the left and right fixed electromagnets 153, 153 and left and right moving electromagnets 157, 157 of the vibration welding device 140 shown in FIG. Then, the upper support part 15 1 vibrates in the left-right direction as indicated by the arrow r.
  • this vibration frequency (frequency) is 240 H Z.
  • the reason for setting the vibration frequency to 240 Hz is as described in FIG. 14A. Ie, the vibration frequency of 2 4 OH Z is relatively suitable for vibration welding accessories. Therefore, by setting the vibration frequency to 24 OHz, the first and second separators 120 and 130, which are relatively small members, can be suitably subjected to vibration welding.
  • first and second separators 120 and 130 are formed of a thermoplastic resin, frictional heat is generated between the cooling water passage forming surface 120a and the joining surface 130a, and the first separator is formed.
  • the separator 120 can be formed by welding the cooling water passage forming surface 120a of the separator 120 and the joining surface 130a of the second separator 130.
  • cooling water passage groove 1 21 formed in the cooling water passage forming surface 120 a of the first separator 120 is closed with the joining surface 130 a of the second separator 130 for cooling.
  • Water passages 122 can be formed.
  • the carbon fiber anode diffusion layer 115 is superposed on the thermoplastic resin first separator 120, and the anode diffusion layer 111 is formed.
  • a pressure F 1 is applied to the first separator 120 and the first separator 120 to vibrate the anode diffusion layer 115 to generate frictional heat, so that the anode diffusion layer 1 150 is applied to the first separator 120.
  • the first separator 120 and the anode diffusion layer 115 are integrated by vibration welding. Thus, the electrical contact resistance between the first separator 120 and the anode diffusion layer 115 can be suppressed. Further, since the first separator one data 1 2 0 and the anode diffusion layer 1 1 5 integrated by vibration welding, is required prior to combining the first separator 1 2 0 and the anode diffusion layer 1 1 5 The conventional sealing material can be eliminated. Furthermore, the number of constituent members can be reduced by eliminating the sealing material from between the first separator 120 and the anode diffusion layer 115. In addition, it is possible to reduce the number of assembling steps of assembling (as an example, applying) a sealing material between the first separator 120 and the anode diffusion layer 115.
  • a carbon fiber force diffusion layer 1 16 is superimposed on the thermoplastic resin second separator 130, and a pressing force F 2 is applied between the cathode diffusion layer 1 16 and the second separator 130.
  • a pressing force F 2 is applied between the cathode diffusion layer 1 16 and the second separator 130.
  • the electrical contact resistance between the second separator 130 and the force sword diffusion layer 1 16 is increased. Can be suppressed. Further, by integrating the second separator 130 and the force sword diffusion layer 1 16 by vibration welding, it is conventionally required to match the second separator 130 with the force sword diffusion layer 1 16.
  • the conventional sealing material can be eliminated. Also, by eliminating the sealing material from between the second separator 130 and the force sword diffusion layer 116, the number of constituent members can be reduced. In addition, the number of assembly steps for assembling (as an example, applying) a sealing material between the second separator 130 and the force-sword diffusion layer 116 can be reduced.
  • first and second separators 120 and 130 made of thermoplastic resin are superimposed, and a pressing force F3 is applied to the first and second separators 120 and 130 to form the first separator 120 By vibrating to generate frictional heat, the first and second separators 120 and 130 can be welded.
  • first and second separators 20 and 30 By integrating the first and second separators 20 and 30 by vibration welding, electrical contact resistance between the first separator 20 and the second separator 30 can be suppressed.
  • first and second separators 120 and 130 by vibration welding, it has been conventionally required to match the first and second separators 120 and 130. Shi —Eliminates lumber.
  • the number of constituent members can be reduced.
  • Test Example 1 the first separator 120 and the anode diffusion layer 1 15 were integrated by vibration welding in the manner shown in FIG. 12A to FIG. In this way, the second separator 130 and the force sword diffusion layer 116 are integrated by vibration welding, and a normal sealing material is interposed between the first and second separators 120 and 130. is there.
  • Comparative Example 1 a normal separator was interposed between the first separator 120 and the anode diffusion layer 115, and a normal separator was formed between the second separator 130 and the force source diffusion layer 116. A separator is interposed, and a normal sealing material is interposed between the first and second separators 120 and 130.
  • the temperature of the cell module is set at 80 ° C, pure H 2 is supplied as anode gas (fuel gas), and air is supplied as power gas (oxidant gas). Paid.
  • the fuel gas temperature on the anode side is 80 ° C
  • the oxidant gas temperature on the power side is 80 ° C
  • the fuel gas pressure on the anode side is 50 kPa
  • the oxidant gas pressure on the cathode side is 1 OO k Pa. Under these conditions, a current having a current density of 0.883 AZcm 2 was passed.
  • Test Example 1 As a result, the resistance overvoltage of Test Example 1 was reduced by 0.014 V per cell module compared to the resistance overvoltage of Comparative Example 1.
  • the first separator 120 and the anode diffusion layer 115 are integrated by vibration welding, and the second separator 130 and the force-sword diffusion layer 116 are integrated by vibration welding. This shows that the resistance overvoltage can be reduced and the output of the fuel cell can be prevented from lowering.
  • Test Example 2 the first separator 120 and the anode diffusion layer 1 15 were integrated by vibration welding in the manner shown in FIGS. 12A to 15, and FIGS. 16A to 17 B, the second separator 130 and the force sword diffusion layer 1 16 are integrated by vibration welding, and furthermore, the first separator 120 and the second separator 120 are combined as shown in FIGS. 18A to 19B. 2 Separator 1 and 30 are integrated by vibration welding.
  • Comparative Example 1 As described in Table 1, the first separator 120 and the anode diffusion layer A normal separator is interposed between the first and second separators, and a normal separator between the second separator 130 and the force source diffusion layer 116 is further interposed between the first and second separators. A normal sealing material is interposed between 120 and 130.
  • the temperature of the cell module was set at 80 ° C, pure H 2 was supplied as the anode gas (fuel gas), and air was supplied as the force gas (oxidant gas).
  • the fuel gas temperature on the anode side is 80 ° C
  • the oxidant gas temperature on the cathode side is 80 ° C
  • the fuel gas pressure on the anode side is 50 kPa
  • the oxidant gas pressure on the cathode side is 100 k Pa. Under these conditions, a current having a current density of 0.883 AZcm 2 was passed.
  • the first separator 120 and the anode diffusion layer 115 are integrated by vibration welding, and the second separator 130 and the force sword diffusion layer 116 are welded by vibration. It can be seen that by integrating and further integrating the first separator 120 and the second separator 130 by vibration welding, it is possible to reduce the resistance overvoltage and prevent the output of the fuel cell from lowering.
  • the first separator 120 and the anode diffusion layer 115 are welded using a vibration welding device 140, and the second separator 130 and the force sword diffusion layer 116 are joined together.
  • a vibration welding device 140 was welded using the vibration welding device 140, and the first and second separators 120, 130 were welded using the vibration welding device 140.
  • the same effect can be obtained by welding, for example, by ultrasonic welding.
  • the ultrasonic welding means welding using the vibration energy generated by the ultrasonic vibrator.
  • the ultrasonic welding of this modified example after the first separator 120 and the anode diffusion layer 115 are overlapped, a pressure is applied to the first separator 120 and the anode diffusion layer 115. In this state, the vibration energy generated by the ultrasonic vibrator is passed through the horn. To the first separator 120 and the anode diffusion layer 115 to obtain the first separator.
  • the first separator 120 and the anode diffusion layer 115 can be welded by generating frictional heat on the superposed surface of the 120 and the anode diffusion layer 115. Further, according to the ultrasonic welding of the above-described modified example, after the second separator 130 and the force sword diffusion layer 1 16 are overlapped, the second separator 130 and the force sword diffusion layer 1 16 In this state, vibration energy generated by the ultrasonic vibrator is applied to the second separator 130 and the force sword diffusion layer 116 via the horn, and the second separator 13 is applied. By generating frictional heat on the superposed surface of the zero and force sword diffusion layers 116, the second separator 130 and the force sword diffusion layer 116 can be welded.
  • the pressing force is applied to the first and second separators 120 and 130.
  • the vibration energy generated by the ultrasonic vibrator is given to the first and second separators 120 and 130 via a horn, and the first and second separators 120 and 1 are applied.
  • the first and second separators 120 By generating frictional heat on the 30 superimposed surface, the first and second separators 120,
  • FIG. 10 differs from FIG. 10 in that the anode diffusion layer and the force sword diffusion layer are shown by imaginary lines.
  • the first separator 120 has a large number of fuel gas passage grooves 124 on the fuel gas passage forming surface 120 b.
  • the fuel gas passage groove 1 2 4 ⁇ ⁇ and the fuel gas passage 1 2 5 There are many cooling water passage grooves 121 on the water passage formation surface 120a.
  • the second separator 130 has a large number of oxidizing gas passage grooves 1 37 ⁇ on the oxidizing gas passage forming surface 130 b.
  • the oxidant gas passage groove 1 3 7 ... and the oxidant gas passage 1 13 1 3 8 ⁇ ⁇ ⁇ is formed.
  • the separators 118 overlap the first and second separators 120, 130, and then apply pressure to the first and second separators 120, 130, By vibrating one of the first and second separators 120 and 130 to generate frictional heat, the cooling water passage forming surface 120 a of the first separator 120 and the second separator Vibration welding of the 30 joint surface 130a and the cooling water passage groove 122 of the first separator 120 closed with the second separator 130 to form the cooling water passage 122 It was done.
  • first and second separators 120 and 130 made of thermoplastic resin are vibration-welded by frictional heat to integrate the separator 118 with the cooling water of the first separator 120.
  • the sealing material conventionally required can be replaced with the first and second separators 120, 1 It can be eliminated from between 30.
  • FIGS. 21A and 21B are explanatory diagrams of a step of setting the first and second separators in the manufacturing method according to the third embodiment.
  • the first and second separators 120 and 130 are arranged between the lower support part 149 and the upper support part 151, and these separators 120, 130 are arranged. Is lowered toward the set recess 1 58 of the lower support 1 4 9 as shown by the arrow s.
  • FIGS. 22A and 22B are explanatory diagrams of a step of applying a pressing force to the first and second separators in the manufacturing method according to the third embodiment.
  • the oxidizing gas passage forming surface 130 b side of the second separator 130 is accommodated in the set concave portion 158 of the lower support portion 149, and the second separator 130.
  • the cooling water passage forming surface 120a of the first separator 120 is superimposed on the joining surface 130a of the first separator 120a.
  • Pressure F 4 like the pressure F 1, and a 1 0 ⁇ 50 kgf / cm 2 as an example.
  • the reason for the pressure F 4 and 1 0 to 50 kgf ZCM 2 are the same as described under a pressure F 1 in FIG. 1 3 B.
  • FIG. 23A and FIG. 23B are explanatory views of a step of vibration welding the first and second separators in the manufacturing method according to the third embodiment.
  • the vibration frequency (frequency) at this time is 240 Hz.
  • 240Hz z shake The dynamic frequency is suitable for vibration welding of relatively small objects. Therefore, by setting the vibration frequency to 240 Hz, the first and second separators 120, 130, which are relatively small members, can be suitably vibration-welded.
  • the first separator 120 is vibrated as indicated by an arrow u by oscillating the upper support portion 151 in the left-right direction as indicated by an arrow u. Thereby, frictional heat is generated between the cooling water passage forming surface 120a of the first separator 120 and the joining surface 130a of the second separator 130.
  • first and second separators 120 and 130 are formed of a thermoplastic resin, the cooling water passage forming surface 120a of the first separator 120 and the bonding surface 1 of the second separator 130 are formed.
  • the first and second separators 120, 130 can be welded on the cooling water passage forming surface 120a and the joining surface 130a.
  • the cooling water passage groove 1 2 1 formed on the cooling water passage forming surface 120 a of the first separator 120 is closed by the joining surface 130 a of the second separator 130 for cooling.
  • a water passage 1 22 can be formed.
  • FIG. 24 is an explanatory diagram of a step of taking out the vibration-welded first and second separators in the manufacturing method according to the third embodiment.
  • the first and second separators 120, 130 are vibrated by frictional heat.
  • the cooling water passage 22 can be formed by welding and integrating, and closing the cooling water passage groove 21 of the first separator 120 with the second separator 130.
  • the electrical contact resistance between the first and second separators 120 and 130 can be suppressed by integrating the first and second separators 120 and 130 by vibration welding.
  • the sealing material which was conventionally required, is removed from between the first and second separators 120, 130. be able to.
  • the number of constituent members can be reduced by removing the sealing material from between the first and second separators 120, 130.
  • first, second separator 1 20 assembling the sealing member between 1 30 (applied) to reduce the assembling man-hours Degiru.
  • Comparative Example 2 is a separator in which the first separator and the second separator are not welded but are joined with a sealing material.
  • Test Example 3 is a separator 118 according to the third embodiment in which the first separator 120 and the second separator 130 are vibration-welded.
  • the temperature of the cell module was set to 80 ° C, pure H 2 was supplied as anode gas (fuel gas), and air was supplied as cathodic gas (oxidant gas).
  • the fuel gas temperature on the anode side is 80 ° C
  • the oxidant gas temperature on the cathode side is 80 ° C
  • the fuel gas pressure on the anode side is 50 kPa
  • the oxidant gas pressure on the power side is 1 OO k Pa. Under these conditions, a current having a current density of 0.883 AZcm 2 was passed.
  • Test Example 3 it can be seen that by vibrating welding the first separator 120 and the second separator 130, it is possible to reduce the resistance overvoltage and prevent the output of the fuel cell from lowering.
  • the present invention is not limited thereto. The same effect can be obtained by welding the first and second separators 120 and 130.
  • the ultrasonic welding means welding using the vibration energy generated by the ultrasonic vibrator.
  • the first separator 120 and the first separator 120 are welded by welding the first and second separators 120 and 130 in the same manner as the vibration welding of the manufacturing method according to the third embodiment.
  • the cooling water passage 122 can be formed by closing the cooling water passage groove 122 formed in the above with the second separator 130.
  • the polymer electrolyte fuel cells 10 and 110 using the solid polymer electrolyte as the electrolyte membranes 12 and 112 have been described.
  • the present invention is not limited to this. It is also possible to apply to.
  • the force described in the example where the first and second separators 20 and 40 are continuously formed by extrusion molding or press molding is not limited thereto. It is also possible to mold by other manufacturing methods such as a hot press method, an injection molding method and a transfer molding method.
  • the transfer molding method is a method in which one shot of the molding material is put into a pot portion separate from the cavity, and the molten material is transferred to the cavity by a plunger to be molded.
  • the present invention is not limited to this, and the cooling water passage forming surface of the first separator 20 is not limited thereto. Irradiating electron beam to 20a and irradiating joint surface 30a of second separator 30 with electron beam to increase elasticity of cooling water passage forming surface 20a and joint surface 30a Accordingly, the first and second separators 20 and 30 can be overlapped to suitably seal the cooling water passage forming surface 20a and the joining surface 30a.
  • the example in which the anode diffusion layer 115 is vibrated when the anode diffusion layer 115 is welded to the first separator 120 has been described.
  • the same effect can be obtained by vibrating the first separator 120 instead of the layer 115.
  • the cooling water passage groove 121 is formed in the first separator 120, and the joining surface 130a of the second separator 130 is made flat.
  • the example described above has been described, it is also possible to form the cooling water passage groove in the second separator 130 with the first separator 120 as a flat surface.
  • a cooling water passage groove is formed in each of the first and second separators 120 and 130, and the first and second separators 120 and 130 are attached for vibration so that It is also possible to form the cooling water passages with the cooling water passage grooves respectively.
  • thermoplastic resin and a conductive material are mixed to form a mixed material, and the mixed material is used to form a separator material having a gas channel groove on a contact surface with a diffusion layer.
  • the trouble of applying the sealing material can be saved. Therefore, since the productivity can be increased and the cost can be suppressed, the present invention can be effectively used by applying the invention to a relatively mass-produced product such as an automobile fuel cell.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)

Abstract

電解質膜(12)に沿わせたアノード(13)及びカソード(14)を拡散層(15,16)を介して両側から挟み込む燃料電池用セパレータ(18)の製造方法である。この製造方法は、熱可塑性樹脂(46)及び導電性材料(45)を混合して混合材(50)とし、この混合材でセパレータ素材(68)を形成し、このセパレータ素材の接触面(20b,30b)に電子線(72)を照射することから成り、セパレータの接触面を硬化させる。燃料電池(10)に反応熱が発生した場合でも、セパレータ接触面の弾力性が確保される。

Description

明 細 書 燃料電池用セパレータの製造方法及び
該セパレータと電極拡散層の接合方法 技術分野
本発明は、 電解質膜にアノード及び力ソードを重ね合わせ、 これらを拡散層を 介して両側から挟持する燃料電池用セパレータの製造方法及び該セパレータと電 極拡散層の接合方法に関する。
背景技術
燃料電池は、 水の電気分解の逆の原理を利用し、 水素と酸素とを反応させて水 を得る過程で電気を得ることができる電池である。 一般に、 水素に燃料ガスを置 き換え、 酸素に空気や酸化剤ガスを置き換えるので、 燃料ガス、 空気、 酸化剤ガ スの用語を使用することが多い。 以下に、 一般的な燃料電池を分解斜視で示す図
2 5を参照してその基本構成を説明する。
図 2 5に示されるように、 燃料電池 2 0 0は、 電解質膜 2 0 1の対向面にァノ ード 2 0 2及び力ソード 2 0 3を重ね合わせ、 これらの電極 2 0 2, 2 0 3を拡 散層 2 0 4, 2 0 5を介して第 1セパレータ 2 0 6及び第 2セパレータ 2 0 7で 挟むことでセルモジュールを構成する。 このセルモジュールを多数個積層するこ とで燃料電池 2 0 0を得る。
アノード 2 0 2には燃料ガスを効果的に接触させる必要がある。 このため、 第 1セパレ一タ 2 0 6の面 2 0 6 aに溝 (図示せず) を多数本条設し、 その面 2 0 6 aに拡散層 2 0 4を重ねて溝を塞ぐことにより、 燃料ガスの流路となる第 1流 路 (図示せず) を形成する。
一方、 力ソード 2 0 3には酸化剤ガスを効果的に接触させる必要がある。 この ため、 第 2セパレータ 2 0 7の面 2 0 7 aに溝 2 0 8 を多数本条設し、 第 2 セパレータ 2 0 7の面 2 0 7 aに拡散層 2 0 5を重ねて溝 2 0 8 · "を塞ぐこと により、 酸化剤ガスの流路となる第 2流路 (図示せず) を形成する。
また、 第 1セパレータ 2 0 6には、 面 2 0 6 aの裏側の面 2 0 6 bに冷却水通 路用溝 2 0 9 ' · ·を多数本条設し、 第 2セパレータ 2 0 7には、 面 2 0 7 aの裏 側の面 2 0 7 bに冷却水通路用溝 (図示せず) を多数本条設する。
第 1、 第 2セパレータ 2 0 6, 2 0 7を重ね合わせることで、 それぞれの冷却 水通路用溝 2 0 9 · ·■を合わせて冷却水通路 (図示せず) を形成する。
この第 1、 第 2のセパレータ 2 0 6, 2 0 7を製造する方法としては、 例えば 日本国特許公開公報 J P— A— 2 0 0 1 — 1 2 6 7 4 4 「燃料電池用セパレータ およびその製造方法」 が知られている。
この製造方法によれば、熱可塑性樹脂に導電性粒子を含めた状態で加熱混鍊し、 この加熱混鰊した混合物を押出し成形し、 圧延ロールで長尺シートに成形し、 こ の長尺シ一トを所定寸法に切断してブランク材とした後、このブランク材の両面、 或いは片面にガス通路や冷却水通路用の溝を成形することにより第 1、 第 2セパ レ一タ 2 0 6 , 2 0 7を得る。
第 1、 第 2セパレータ 2 0 6, 2 0 7にそれぞれ拡散層 2 0 4, 2 0 5を重ね 合わせて第 1、 第 2流路を形成するためには、 第 1、 第 2セパレ一タ 2 0 6, 2 0 7のそれぞれの面 2 0 6 a , 2 0 7 aに拡散層 2 0 4, 2 0 5を密着状態に重 ね合わせる必要がある。
しかしながら、 第 1、 第 2セパレータ 2 0 6, 2 0 7を熱可塑性樹脂で成形し たので、 燃料電池を使用する際に発生する反応熱で、 第 1、 第 2セパレータ 2 0 6, 2 0 7のそれぞれの面 2 0 6 a , 2 0 7 aが軟化する。
このため、 第 1、 第 2セパレータ 2 0 6, 2 0 7のそれぞれの面 2 0 6 a , 2 0 7 aと拡散層 2 0 4, 2 0 5とを密着状態に保つことが難しい。
この不具合を解消するために、 第 1、 第 2セパレータ 2 0 6 , 2 0 7のそれぞ れの面 2 0 6 a, 2 0 7 aと拡散層 2 0 4, 2 0 5との間にシール材を塗布して、 第 1、 第 2セパレータ 2 0 6, 2 0 7のそれぞれの面 2 0 6 a , 2 0 7 aと拡散 層 2 0 4, 2 0 5との密着状態に保つようにしている。
同様に、 第 1セパレータ 2 0 6と第 2セパレータ 2 0 7との重ね合わせ面間に シール材を塗布して、 第 1セパレータ 2 0 6と第 2セパレータ 2 0 7とを密着状 態に保つようにしている。 このため、 第 1セパレータの面 2 0 6 aと拡散層 2 0 4との間や、 第 2セパレータの面 2 0 7 aと拡散層 2 0 5との間に塗布するシー ル材が必要になり、 部品点数が増える。 加えて、 第 1セパレータ 206の面 20 6 aと拡散層 204との間や、 第 2セパレ一タ 207の面 207 aと拡散層 20 5との間にシール材を塗布する手間がかかり、 そのことが生産性を上げる妨げに なっていた。
燃料電池としては、 例えば、 日本国特許公開公報 J P— A— 2000— 1 23 848 「燃料電池」 に開示された技術が知られている。 この電池を分解斜視で示 す図 26を参照して、 その要部を説明する。
図 26に示されるように、 燃料電池 300は、 電解質膜 30 1にアノード 30 2及び力ソード 303を添わせ、 これらをガスケット 304, 305を介して第 1セパレータ 306及び第 2セパレータ 3 07で挟むことでセルモジュールを形 成する。
詳細には、 第 1セパレ一タ 306の面 306 aに燃料ガスの流路となる第 1流 路 308が形成され、 第 2セパレ一タ 307の面 307 aに酸化剤ガスの流路と なる第 2流路 309が形成され、 各々中央の電解質膜 30 1に燃料ガスと酸化剤 ガスとを臨ませるように構造である。
このセルモジュール 1個で得る電気出力は比較的小さいので、 このようなセル モジュールを多数個積層することで、 所望の電気出力を得る。 従って、 第 1 ■第 2セパレータ 306, 307は隣のセルに燃料ガスや酸化剤ガスが洩れないよう にする分離部材であることから Γセパレ一タ」 と呼ばれる。
第 1セパレ一タ 306は面 306 aに燃料ガスのための流路 308を備え、 第 2セパレータ 307は面 307 aに酸化剤ガスのための流路 309を備えるが、 ガスを効果的にアノード 302及び力ソード 303に接触させる必要があり、 そ のために、 流路 308, 309はごく浅い溝を多数本条設する必要がある。 そして、 第 1 ■第 2セパレータ 306, 307は、 流路 308, 309に燃料 ガス又は酸化剤ガスを供給するために上部にそれぞれ燃料ガス供給孔部 3 1 0 a、 酸化剤ガス供給孔部 3 1 1 aを備え、 下部にそれぞれ燃料ガス排出孔部 3 1 O b、 酸化剤ガス排出孔部 3 1 1 bを備え、 また、 冷却水を通すための冷却水供 給孔部 3 1 2 aをそれぞれの上部に、 冷却水排出孔部 3 1 2 bをそれぞれの下部
(こ 1照 o 上述した燃料電池 3 0 0は、 通常アノード 3 0 2と第 1セパレータ 3 0 6との 間にアノード拡散層 (図示せず) を備えるとともに、 力ソード 0 3と第 2セパレ ータ 3 0 7との間に力ソード拡散層 (図示せず) を備える。
そして、 第 1セパレータ 3 0 6にアノード拡散層を合わせるために、 一例とし て第 1セパレータ 3 0 6とアノード拡散層との間にシール材 (図示せず) を介在 させている。 また、 第 2セパレータ 3 0 7に力ソード拡散層を合わせるために、 一例として第 2セパレータ 3 0 7とカソード拡散層との間にシール材(図示せず) を介在させている。
よって、 第 1セパレ一タ 3 0 6及びァノ―ド拡散層間の電気的な接触抵抗が増 すとともに、 第 2セパレータ 3 0 7及びカソード拡散層間の電気的な接触抵抗が 増し、 燃料電池の出力が小さくなる虞がある。
また、 第 1セパレータ 3 0 6とアノード拡散層との間にシール材を介在させる とともに、 第 2セパレータ 3 0 7とカソード拡散層との間シール材を介在させる 必要があるので、 そのことが構成部材を減らす妨げになっていた。
加えて、 第 1セパレ一タ 3 0 6とアノード拡散層との間にシール材を組み付け る (一例として、 塗布する) 工数や、 第 2セパレータ 3 0 7と力ソード拡散層と の間にシール材を組み付ける (一例として、 塗布する) 工数が必要になり、 その ことが組付け工数を減らす妨げになつていた。
—方、 上記した冷却水供給孔部 3 1 2 a及び冷却水排出孔部 3 1 2 bは、 それ ぞれ図示せぬ冷却水通路に連結したものである。
冷却水通路は、 例えば、 第 1セパレ一タ 3 0 6の面 3 0 6 aの裏側の面及び第 2セパレータ 3 0 7の面 3 0 7 aの裏側の面のそれぞれに冷却水通路用溝を形成 し、 この冷却水通路用溝と、 隣り合うセルのセパレータに設けた冷却水通路用溝 とを合わせることによリ形成するものである。
このように、 第 1、 第 2セパレ一タ 3 0 6, 3 0 7同士を合わせて冷却水通路 を形成する場合、 第 1、 第 2セパレ一タ 3 0 6, 3 0 7は一体化されていないの で、 第 1、 第 2セパレータ 3 0 6, 3 0 7間の電気的な接触抵抗が増して燃料電 池の出力が小さくなる虞がある。
さらに、 第 1、 第 2セパレータ 3 0 6 , 3 0 7同士を合わせて冷却水通路を形 成した場合、 第 1、 第 2セパレータ 3 0 6, 3 0 7の合わせ部に冷却水の洩れを 防止するシール材が必要になり、そのことが構成部材を減らす妨げになっていた。 加えて、 第 1、 第 2セパレータ 3 0 6, 3 0 7間にシール材を組み付ける (一例 として、 塗布する) 工数が必要になり、 そのことが組付け工数を減らす妨げにな つていた。
発明の開示
本発明は、 第 1の面において、 電解質膜に沿わせたアノード及び力ソードを拡 散層を介して両側から挟み込む燃料電池用セパレータの製造方法において、 熱可 塑性樹脂及び導電性材料を混合して混合材を得る工程と、 この混合材で前記拡散 層との接触面にガス流路溝を備えたセパレータ素材を形成する工程と、 このセパ レータ素材の接触面に電子線を照射する工程と、 から成る燃料電池用セパレータ の製造方法を提供する。
セパレータ素材を熱可塑性樹脂で成形し、 ガス流路溝を備えた接触面に電子線 を照射することにより、 ガス流路溝を備えた接触面を、 ある程度硬化させること ができる。 よって、 燃料電池の反応熱が発生した場合でも、 セパレータの接触面 の弾力性を確保することができ、 セパレータの接触面を拡散層に密に接触させた 状態を保つことができる。
したがって、 セパレータの接触面と拡散層との間にシール材を塗布する必要が ないので、 部品点数を減らしてコストを下げることができる。 セパレータの接触 面と拡散層との間にシール材を塗布する手間をも省くことができるので生産性を 高めることができる。
また、 セパレータの接触面と拡散層との間にシール材を塗布する必要がないの で、 セパレータの接触面及び拡散層間接触抵抗を抑えて燃料電池の出力を高める ことができる。
さらに、 セパレ一タ素材の接触面に電子線を照射するだけの簡単な工程で、 燃 料電池用セパレータの接触面をシール性に優れた部位に変えることができる。 そ の結果、 シール性に優れた燃料電池用セパレータを効率よく生産することが可能 になり、 セパレ一タのコスト化を図ることができる。
熱可塑性樹脂は、 エチレン '酢ビ共重合体、 エチレン 'ェチルァクリレート共 重合体、 直鎖状低密度ポリエチレン、 ポリフエ二レンサルフアイ ド、 変性ポリフ ェニレンォキサイ ドから選択した樹脂とし、 導電性材料は、 黒鉛、 ケッチェンブ ラック、 アセチレンブラックの少なくとも一種から選択した炭素粒子とするのが 好ましい。
エチレン '酢ビ共重合体、 エチレン 'ェチルァクリレート共重合体、 直鎖状低 密度ポリエチレン、 ポリフエ二レンサルファイ ド、 変性ポリフエ二レンォキサイ ドは熱可塑性樹脂のなかで特に柔軟性に優れた樹脂であり、 これらの樹脂でセパ レータを成型することにより、 セパレータの接触面を拡散層によリ一層密に接触 させることができる。 よって、 セパレータの接触面と拡散層との間の隙間をより 一層好適にシールすることができる。
一方、 黒鉛、 ケッチェンブラック、 アセチレンブラックは導電性に優れている ため、 比較的少量で導電性を確保することができる。 これにより、 熱可塑性樹脂 に含む割合を比較的少量にして、 熱可塑性樹脂の物性への影響を抑えることがで さる。
本発明は、 第 2の面において、 熱可塑性樹脂のセパレータに炭素繊維の電極拡 散層を重ね合わせ、 この電極拡散層とセパレータとに加圧力をかけ、 電極拡散層 及ぴセパレータの一方を振動させて摩擦熱を発生させることによリ、 セパレ一タ に電極拡散層を溶着することから成る燃料電池用セパレータと電極拡散層との接 合方法を提供する。
熱可塑性樹脂のセパレータと電極拡散層とを摩擦熱で溶着して一体化すること により、セパレータと電極拡散層との間の電気的接触抵抗を抑えることができる。 また、 熱可塑性樹脂のセパレー夕と電極拡散層とを一体化することで、 セパレー タと電極拡散層とを合わせるために従来必要とされていたシール材を排除するこ とができる。 セパレータと電極拡散層との間からシール材を排除することで、 構 成部材を減らすことができる。 加えて、 セパレ一タと電極拡散層との間にシール 材を組み付ける (一例として、 塗布する) 組付け工数を減らすことができる。 こ のように、 構成部材を減らすとともに組付け工数を減らすことで、 セパレータの コストを抑えることができる。
本発明は、 第 3の面において、 熱可塑性樹脂の第 1セパレータと、 この第 1セ パレータに接合する面に冷却水通路用溝を設けた熱可塑性樹脂の第 2セパレータ とを準備し、 この第 2セパレータに第 1セパレータを重ね合わせた後に第 1、 第 2セパレータに加圧力をかけ、 第 1、 第 2セパレ一タの一方を振動させて摩擦熱 を発生させることにより、 第 2セパレータを第 1セパレータに溶着し、 この第 1 セパレータで前記冷却水通路用溝を塞いで冷却水通路を形成することから成る燃 料電池用セパレータの製造方法を提供する。
熱可塑性樹脂の第 1、第 2セパレータを摩擦熱で溶着して一体化するとともに、 第 1セパレータで冷却水通路用溝を塞いで冷却水通路を形成する。 このように、 第 1、 第 2セパレータを摩擦熱で溶着して一体化することで、 第 1、 第 2セパレ ータ間の電気的な接触抵抗を抑えることができる。 また、 第 1、 第 2セパレータ を摩擦熱で溶着して一体化することで、 第 1、 第 2セパレータ間からシール材を 除去することができる。 このように、 第 1、 第 2セパレ一タ間からシール材を除 去することで構成部材を減らすことができる。 加えて、 第 1、 第 2セパレータ間 にシール材を組み付ける組付け工数を減らすことができる。 このように、 構成部 材を減らすとともに組付け工数を減らすことで、 セパレ一タのコストを抑えるこ とができる。
加圧力は 1 0〜 5 0 k g f Zcm2 (約 980〜4903 k P a) とし、 振動 の周波数は 240 H zとするのが望ましい。
本発明における圧力は、 全てゲージ圧力である。
加圧力が 1 0 k g f Zcm2未満では、 第 1、 第 2セパレ一タの接合面に十分 な摩擦熱を発生させることが難しく、 第 1、 第 2セパレータを溶着させることが できない。 そこで、 加圧力を 1 0 k g f Zcm2以上に設定して第 1、 第 2セパ レータを溶着させるようにした。一方、加圧力が 50 k g f Zcm2を超えると、 第 1、 第 2セパレータの接合面に大きな摩擦熱が発生して第 1、 第 2セパレータ が過大に溶けてしまい、 第 1、 第 2セパレータの周縁からバリが発生する。
このため、 第 1、 第 2セパレータの周縁に発生したバリを除去する余分な工程 が必要になる。 そこで、 加圧力を 50 k g f Zc m2以下に設定して第 1、 第 2 セパレ一タの周縁からバリが発生することを防止するようにした。 これにより、 バリの除去作業を除去することができるので、 生産性を高めることができる。 図面の簡単な説明
図 1は、 本発明の第 1実施例による燃料電池用セパレータ製造方法で製造し た燃料電池用セパレータの燃料電池を示す分解斜視図である。
図 2は、 図 1の A— A線断面図である。
図 3は、 図 1の B— B線断面図である。
図 4は、 図 1の燃料電池用セパレータの断面図である。
図 5は、 本発明の第 1実施例による燃料電池用セパレータ製造方法のフロー チヤ一トである。
図 6 A及び 6 Bは、 該製造方法において混合材をペレツト状に形成する工程 を示す説明図である。
図 7は、 該製造方法におけるプレス工程の説明図である。
図 8は、 該製造方法において電子線を照射する工程を示す説明図である。 図 9は、 本発明の第 2実施例による、 燃料電池用セパレータと電極拡散層と の接合方法で接合した燃料電池の分解斜視図である。
図 1 0は、 図 9の C一 C線断面図である。
図 1 1は、 本発明の第 2実施例による接合方法を実施する振動溶着装置の断 面図である。
図 1 2 A及び図 1 2 Bは、 本発明の第 2実施例による接合方法における、 第 1セパレータ及びアノード拡散層をセッ卜する工程を示す説明図である。
図 1 3 A及び図 1 3 Bは、 本発明の第 2実施例による接合方法における、 第 1セパレ一タ及びアノード拡散層に加圧力をかける工程を示す説明図である。
図 1 4 A及び図 1 4 Bは、 本発明の第 2実施例による接合方法における、 第 1セパレータにアノード拡散層を振動溶着する工程を示す説明図である。
図 1 5は、 本発明の第 2実施例による接合方法における、 振動溶着した第 1 セパレータ及びアノード拡散層を取り出す工程を示す説明図である。
図 1 6 A及び図 1 6は、 本発明の第 2実施例による接合方法における、 第 2 セパレータ及び力ソード拡散層をセッ卜する工程を示す説明図である。
図 1 7 A及び図 1 7 Bは、 本発明の第 2実施例による接合方法における、 第 2セパレータにカソード拡散層を振動溶着する工程を示す説明図である。 図 1 8 A及び図 1 8 Bは、 本発明の第 2実施例による接合方法で得たセパレ ータをセッ卜する例を示す説明図である。
図 1 9 A及び図 1 9 Bは、 本発明の第 2実施例による接合方法で得たセパレ ータ同士を振動溶着する例を示す説明図である。
図 2 0は、 本発明の第 3実施例による燃料電池用セパレータ製造方法で得た 燃料電池用セパレータを示す断面図である。
図 2 1 A及び図 2 1 Bは、 本発明の第 3実施例による製造方法における、 第 1、 第 2セパレータをセッ卜する工程を示す説明図ある。
図 2 2 A及び図 2 2 Bは、 本発明の第 3実施例による製造方法における、 第 1、 第 2セパレータに加圧力をかける工程を示す説明図である。
図 2 3 A及び図 2 3 Bは、 本発明の第 3実施例による製造方法における、 第 1、 第 2セパレータを振動溶着する工程を示す説明図である。
図 2 4は、本発明の第 3実施例による製造方法における、振動溶着した第 1 、 第 2セパレータを取り出す工程を示す説明図である。
図 2 5は、 従来の燃料電池を示す分解斜視図である。
図 2 6は、 他の従来の燃料電池の分解斜視図である。
発明を実施するための最良の形態
図 1に示されるように、 燃料電池 1 0は、 一例として電解質膜 1 2に固体高分 子電解質を使用し、この電解質膜 1 2にアノード 1 3及び力ソード 1 4を添わせ、 アノード 1 3側にアノード拡散層 1 5を介してセパレ一タ 1 8を合わせるととも に、 力ソード 1 4側に力ソード拡散層 1 6を介してセパレータ (燃料電池用セパ レータ) 1 8を合わせることによリセルモジュール 1 1を構成し、 このセルモジ ユール 1 1を多数個積層した固体高分子型燃料電池である。
セパレータ 1 8は、 第 1セパレータ 2 0と、 第 2セパレータ 3 0とからなり、 第 1セパレ一タ 2 0の冷却水通路形成面 2 0 aと第 2セパレ一タ 3 0の接合面 3 O aを、 一例として振動溶着で接合したものである。
このように、 第 1、 第 2セパレータ 2 0, 3 0を振動溶着することにより、 第 1セパレータ 2 0の冷却水通路用溝 2 1 ■■■を第 2セパレータ 3 0で覆い、 冷却 水通路 2 2 · · · (図 4参照) を形成する。 この冷却水通路 22■··には、 第 1、 第 2セパレータ 20, 30の上端中央の 冷却水供給孔部 23 a, 33 aが連通するとともに、第 1、第 2セパレ一タ 20, 30の下端中央の冷却水排出孔部 23 b, 3 3 bが連通する。
第 1セパレ一タ 20は、 燃料ガス通路形成面 (接触面) 2 O b側に燃料ガス通 路用溝 24 '·· (図 2参照) を備え、 燃料ガス通路形成面 20 bにアノード拡散 層 1 5を重ね合わせることで、 燃料ガス通路用溝 24 ·-·をアノード拡散層 1 5 で塞いで燃料ガス通路 25 (図 4参照) を形成する。
この燃料ガス通路 25■■·に、 第 1、 第 2セパレータ 20, 30の上端左側の 燃料ガス供給孔部 26 a, 3 6 aを連通するとともに、 第 1、 第 2セパレータ 2 0, 30の下端右側の燃料ガス排出孔部 26 b, 36 bを連通する。
第 2セパレータ 30は、 酸化剤ガス通路形成面 (接触面) 3 O b側に酸化剤ガ ス通路用溝 3 7 を備え、 酸化剤ガス通路形成面 30 bに力ソード拡散層 1 6 を重ね合わせることで、 酸化剤ガス通路用溝 37■··を力ソード拡散層 1 6で塞 いで酸化剤ガス通路 38■■■ (図 4参照) を形成する。
この酸化剤ガス通路 38■·■に、 第 1、 第 2セパレータ 20, 30の上端右側 の酸化剤ガス供給孔部 29 a , 39 aを連通するとともに、 第 1、 第 2セパレー タ 20, 30の下端左側の酸化剤ガス排出孔部 2 9 b, 39 bを連通する。 次に図 2を参照するに、 第 1セパレ一タ 20は、 熱可塑性樹脂に導電性材料を 混合した樹脂で略矩形状 (図 1参照) に形成した部材で、 冷却水通路形成面 20 aに冷却水通路用溝 2 1 を多数本条備え、 燃料ガス通路形成面 20 bに燃料 ガス通路用溝 24■'·を多数本条備える。
熱可塑性樹脂としては、 一例としてエチレン '酢ビ (酢酸ビニル) 共重合体、 エチレン■ェチルァクリレート共重合体、 直鎖状低密度ポリエチレン、 ポリフエ 二レンサルファイ ド、 変性ポリフエ二レンォキサイ 卜が該当するが、 これに限定 するものではない。
導電性材料 (炭素材料) としては、 ケッチェンブラック、 黒鉛、 アセチレンブ ラックのうち少なくとも一種から選択した炭素粒子が該当するが、 これに限定す るものではない。
なお、 ケッチェンブラックは、 導電性に優れたカーボンブラックで、 一例とし てケッチェン ' ブラック ■インターナショナル株式会社製 (販売元; 三菱化学株 式会社) のものが該当するが、 これに限るものではない。
エチレン■酢ビ (酢酸ビニル) 共重合体、 エチレン ' ェチルァクリレー卜共重 合体、 直鎖状低密度ポリエチレン、 ポリフヱニレンサルファイド、 変性ポリフエ 二レンォキサイ トは、 熱可塑性樹脂のなかで柔軟性のある樹脂であり、 この樹脂 を使用することで、 第 1セパレータ 2 0を柔軟性に優れた部材とすることができ る。
加えて、 燃料ガス通路形成面 2 0 bは、 電子線を照射することで、 ある程度硬 化させるとともに、 3次元架橋構造とした面である。
このように、 第 1セパレータ 2 0を柔軟性に優れた部材とするとともに、 燃料 ガス通路形成面 2 0 bを電子線を照射することで、 燃料ガス通路形成面 2 0 bを 弾力性に優れた面にすることができる。
またケッチェンブラック、 黒鉛、 アセチレンブラックは導電性に優れた材料で あり、 導電性材料 (炭素材料) としてケッチェンブラック、 黒鉛、 アセチレンブ ラックのうち少なくとも一種から選択した炭素粒子を使用することにより、 比較 的少量で第 1セパレータ 2 0の導電性を確保することができる。
このため、 熱可塑性樹脂に含む割合を比較的少量に抑えることができるので、 熱可塑性樹脂の成形性を維持して、 第 1セパレータ 2 0を容易に成形することが できる。
図 3に示されるように、第 2セパレータ 3 0は、第 1セパレ一タ 2 0と同様に、 熱可塑性樹脂に導電性材料を混合した樹脂で略矩形状 (図 1参照) に形成した部 材で、 接合面 3 0 aを平坦に形成し、 酸化剤ガス通路形成面 3 0 bに酸化剤ガス 通路用溝 3 7 を多数本条備える。
熱可塑性樹脂としては、 一例としてエチレン '酢ビ (酢酸ビニル) 共重合体、 エチレン ' ェチルァクリレート共重合体、 直鎖状低密度ポリエチレン、 ポリフエ 二レンサルファイ ド、 変性ポリフエ二レンォキサイ 卜が該当するが、 これに限定 するものではない。
導電性材料 (炭素材料) としては、 ケッチェンブラック、 黒鉛、 アセチレンブ ラックのうち少なくとも一種から選択した炭素粒子が該当するが、 これに限定す るものではない。
エチレン '酢ビ (酢酸ビニル) 共重合体、 エチレン■ェチルァクリレート共重 合体、 直鎖状低密度ポリエチレン、 ポリフエ二レンサルファイド、 変性ポリフエ 二レンォキサイ トは、 熱可塑性樹脂のなかで柔軟性のある樹脂あり、 この樹脂を 使用することで、第 2セパレータ 3 0を柔軟性に優れた部材とすることができる。 加えて、 酸化剤ガス通路形成面 3 0 bは、 電子線を照射することで、 ある程度 硬化させるとともに、 3次元架橋構造とした面である。
このように、 第 2セパレータ 3 0を柔軟性に優れた部材とするとともに、 酸化 剤ガス通路形成面 3 0 bを電子線を照射することで、 酸化剤ガス通路形成面 3 0 bを弾力性に優れた面にすることができる。
またケッチェンブラック、 黒鉛、 アセチレンブラックは導電性に優れた材料で あり、 導電性材料 (炭素材料) としてケッチェンブラック、 黒鉛、 アセチレンブ ラックのうち少なくとも一種から選択した炭素粒子を使用することにより、 比較 的少量で第 2セパレータ 3 0の導電性を確保することができる。
このため、 熱可塑性樹脂に含む割合を比較的少量に抑えることができるので、 熱可塑性樹脂の成形性を維持して、 第 2セパレータ 3 0を容易に成形することが できる。
次に、 セパレータ 1 8に電極拡散層 1 5, 1 6を重ね合わせた状態を示す図 4 る。
セパレータ 1 8は、第 1、第 2セパレ一タ 2 0 , 3 0を重ね合わせた後に第 1 、 第 2セパレータ 2 0, 3 0に加圧力をかけ、 第 1、 第 2セパレ一タ 2 0, 3 0の 一方を振動させて摩擦熱を発生させることによリ、 第 1セパレータ 2 0の冷却水 通路形成面 2 0 aと、 第 2セパレータ 3 0の接合面 3 0 aとを振動溶着し、 第 1 セパレータ 2 0の冷却水通路用溝 2 1 を第 2セパレータ 3 0で塞いで冷却水通路 2 2を形成したものである。
なお、 第 1、 第 2セパレ一タ 2 0, 3 0の接合は振動溶着に限らないで、 その 他の方法で接合することも可能である。
燃料ガス通路形成面 2 0 bにアノード拡散層 1 5を合わせることで、 燃料ガス 通路用溝 2 4■ - '及びァノード拡散層 1 5で燃料ガス通路 2 5■■ 'を形成する。 第 1セパレータ 2 0を柔軟性に優れた樹脂で成形し、 さらに燃料ガス通路形成 面 2 0 bに電子線を照射することで、 燃料ガス通路形成面 2 O bを、 ある程度硬 化させるとともに、 架橋反応を進めることにより 3次元架橋構造とした。
このように、 燃料ガス通路形成面 2 0 bを 3次元架橋構造とすることで、 高分 子鎖が末端以外の任意の位置で互いに連結して、 燃料ガス通路形成面 2 0 bの耐 熱性や剛性を高めることができる。
これにより、 燃料電池の反応熱が発生した場合に、 燃料ガス通路形成面 2 O b の弾性力を確保することができるので、 燃料ガス通路形成面 2 0 bをアノード拡 散層 1 5に密に接触させた状態を保つことができる。
よって、 燃料ガス通路形成面 2 O bとアノード拡散層 1 5との間にシール材を 塗布する必要がない。 したがって、 部品点数を減らすことができるとともにシー ル材を塗布する手間を省くことができ、 さらに燃料ガス通路形成面 2 0 b及びァ ノード拡散層 1 5間の接触抵抗を抑えて燃料電池の出力を高めることができる。 また、 酸化剤ガス通路形成面 3 0 bに力ソード拡散層 1 6を合わせることで、 酸化剤ガス通路用溝 3 7 及びカソード拡散層 1 6で酸化剤ガス通路 3 8■' -を 形成する。
第 2セパレータ 3 0を柔軟性に優れた樹脂で成形し、 酸化剤ガス通路形成面 3 0 bに電子線を照射することで、 酸化剤ガス通路形成面 3 0 bをある程度硬化さ せるとともに 3次元架橋構造とした。 これにより、 燃料電池の反応熱が発生した 場合に、 酸化剤ガス通路形成面 3 0 bの弾性力を確保することができるので、 酸 化剤ガス通路形成面 3 0 bを力ソード拡散層 1 6に密に接触させた状態を保つこ とができる。
よって、 酸化剤ガス通路形成面 3 0 bとカソード拡散層 1 6との間にシール材 を塗布する必要がない。 したがって、 部品点数を減らすことができるとともにシ —ル材を塗布する手間を省くことができ、 さらに酸化剤ガス通路形成面 3 0 b及 び力ソード拡散層 1 6間の接触抵抗を抑えて燃料電池の出力を高めることができ る。
次に、 本発明に係る燃料電池用セパレ一タの製造方法 (第 1実施例) で第 1セ パレータ 2 0を成形する例を図 5〜図 8に基づいて説明する。 図 5は本発明の第 1実施例による燃料電池用セパレ一タ製造方法のフローチヤ ートである。 図中、 S T X Xはステップ番号を表す。
S T 1 0 :熱可塑性樹脂と導電性材料とを混鍊することにより混合材を得る。 S T 1 1 :混鰊した混合材を押出し成形することにより帯状のシートを成形す る。
S T 1 2 : この帯状のシートの一方の面、 すなわち冷却水通路形成面に相当す る面に冷却水通路用溝をプレス成形するとともに、 帯状のシートの他方の面、 す なわち燃料ガス通路形成面に相当する面に燃料ガス通路用溝をプレス成形するこ とにより、 セパレータ素材を得る。
S T 1 3 :燃料ガス通路用溝をプレス成形した面に電子線を照射する。
S T 1 4 :セパレータ素材を所定寸法に切断することによリ第 1セパレータを 得る。
以下に、 図 6 A乃至図 8を参照して、 上記製造方法の S T 1 0〜S T 1 4を詳 しく説明する。
図 6 A及び図 6 Bは、 本発明の第 1実施例による製造方法における、 混合材を ペレット状に形成する工程の説明図である。 具体的には、 図 6 Aは S T 1 0を示 し、 図 6 Bは S T 1 1の前半を示す。
図 6 Aにおいて、 先ず、 エチレン '酢ビ共重合体、 エチレン■ェチルァクリレ ート共重合体、 直鎖状低密度ポリエチレン、 ポリフヱニレンサルファイド、 変性 ポリフヱ二レンォキサイ ドから選択した熱可塑性樹脂 4 6を準備する。
次に、 黒鉛、 ケッチェンブラック、 アセチレンブラックの炭素粒子から少なく とも一種を選択した導電性材料 4 5を準備する。
準備した熱可塑性樹脂 4 6及び導電性材料 4 5を混鍊装置 4 7の容器 4 8に矢 印の如く投入する。 投入した熱可塑性樹脂 4 6及び導電性材料 4 5を、 混鍊羽根 (又はスクリュー) 4 9を矢印の如く回転することによリ容器 4 8内で混鰊する。 図 6 Bにおいて、 熱可塑性樹脂 4 6及び導電性材料 4 5を混鍊した混合材 5 0 を第 1押出し成形装置 5 1のホッパー 5 2に投入し、 投入した混合材 5 0を第 1 押出し成形装置 5 1で押出し成形する。 押出し成形した成形材 5 3を水槽 5 4に 通すことで、 水槽 5 4内の水 5 5で成形材 5 3を冷却する。 冷却した成形材 53をカッター装置 5 6のカッター 5 7で所定の長さに切断し て、 切断したペレツト 58■·-をストック籠 59にストックする。
図 7は、 上記製造方法におけるプレス工程の説明図であり、 詳しくは、 S T 1 1の後半〜 S T 1 2を示す。
前工程で得たペレツト 5 8■■·を第 2押出し成形装置 60のホッパー 6 1に矢 印の如く投入し、 投入したペレツ卜 5 8■■-を第 2押出し成形装置 60で押出し 成形する。 押出し成形した成形材 62を圧延ロール 63で圧延して帯状のシー卜 64を成形する。
圧延ロール 63の下流側にはプレス装置 65を備え、 このプレス装置 6 5は、 帯状のシー卜 64の上下にそれぞれ上下のプレス型 66, 67を備える。
上プレス型 66は、 帯状のシート 64の他方の面 64 bに対向するプレス面 6 6 aに凹凸部 (図示せず) を備える。 この凹凸部は、 帯状のシート 64の他方の 面 64 bに撚料ガス通路用溝 24 ··· (図 4参照) をプレス成形するものである。 一方、 下プレス型 67は、 帯状のシート 64の一方の面 64 aに対向するプレ ス面 6 7 aに凹凸部 (図示せず) を備える。 この凹凸部は、 帯状のシート 64の 一方の面 64 aに冷却水通路用溝 2 1 ■■■ (図 4参照) をプレス成形するための ものである。
上下のプレス型 66, 67をプレス開始位置 P 1に配置し、 上下のプレス型 6 6, 6 7で帯状のシート 64の両面 64 a, 64 bを押圧し、 この状態を維持し ながら上下のプレス型 66, 67を帯状のシー卜 64の押出速度に合わせて矢印 a, bの如く連動する。 かく して、 帯状のシート 64の一方の面 64 a、 すなわ ち冷却水通路形成面 20 a (図 4参照) に相当する面に冷却水通路用溝 2 1 ■·· をプレス成形するとともに、 帯状のシート 64の他方の面 64 b、 すなわち燃料 ガス通路形成面 2 O b (図 4参照) に相当する面に燃料ガス通路用溝 2 4 ·'-を プレス成形して、 帯状のシー卜 64をセパレータ素材 68に成形する。
上下のプレス型 66, 67がプレス解除位置 P 2に到達すると、 上下のプレス 型 66, 67を矢印 c, dの如く帯状のシート 64から離れる方向に移動し、 上 下のプレス型 66, 67が解除側の所定位置に到達した後、上下のプレス型 66, 67を矢印 e, f の如く上流側に向けて移動する。 上下のプレス型 66, 67が プレス開始側の所定位置に到達した後、 上下のプレス型 6 6, 6 7を矢印 g, h の如くプレス開始位置 P 1まで移動する。
上述の工程を順次繰り返すことにより、 帯状のシート 6 4の両面 6 4 a , 6 4 bに、 図 4に示す冷却水通路用溝 2 1 及ぴ撚料ガス通路用溝 2 4 · '■をそれぞ れプレス成形する。
図 7においては、 理解を容易にするために上下のプレス型 6 6, 6 7をそれぞ れ 1個づっ備えた例について説明したが、 実際には上下のプレス型 6 6, 6 7を それぞれ複数個備える。
上下のプレス型 6 6 , 6 7をそれぞれ複数個備えることで、 帯状のシート 6 4 の両面 6 4 a , 6 4 bに冷却水通路用溝 2 1 及び燃料ガス通路用溝 2 4 · · · (図 4参照) をそれぞれ連続的にプレス成形することができる。
なお、 上下のプレス型 6 6, 6 7には、 図 1に示す燃料ガス供給孔部 2 6 a及 び燃料ガス排出孔部 2 6 bを成形する部位を備える。また、上下のプレス型 6 6, 6 7には、 図 1に示す酸化剤ガス供給孔部 2 9 a及び酸化剤ガス排出孔部 2 9 b を成形する部位を備える。
さらに、 上下のプレス型 6 6, 6 7には、 図 1に示す冷却水供給孔部 2 3 a及 び冷却水排出孔部 2 3 bを成形する部位を備える。
よって、 上下のプレス型 6 6 , 6 7で帯状のシート 6 4の両面 6 4 a , 6 4 b に、 図 4に示す冷却水通路用溝 2 1■· ·及び燃料ガス通路用溝 2 4 · · 'をそれぞれ 連続的にプレス成形するとともに、 図 1に示す冷却水供給孔部 2 3 a及びガス供 給孔部 2 6 a, 2 9 aや冷却水排出孔部 2 3 b及びガス排出孔部 2 6 b, 2 9 b を同時に成形する。
図 8は、 第 1実施例における、 電子線照射工程およびシ一卜切断工程の説明図 であり、 詳しくは S T 1 3〜S T 1 4を示す。
プレス装置 6 5 (図 7参照) の下流側には、 前工程で得たセパレータ素材 6 8 の上方、 すなわち燃料ガス通路用溝 2 4■■■ (図 4参照) をプレス形成した他方 の面 6 8 bの上方に電子線照射装置 7 0を備える。
この電子線照射装置 7 0の電子銃 7 1から電子線 7 2■■·を放射する。 この電 子線 7 2で、 燃料ガス通路用溝 2 4■■'をプレス形成した他方の面 6 8 bの上方 を照射する。 これにより、 燃料ガス通路用溝 2 4 · · ·をプレス形成した他方の面 6 8 bを、 ある程度硬化させるとともに、 3次元架橋構造とする。
電子線照射装置 7 0の下流側には、 前工程で得たセパレータ素材 6 8の上方に カッター装置 7 3を備える。 このカッター装置 7 3のカッター 7 4を矢印 iの如 く下降することにより、 セパレータ素材 6 8を所定寸法に切断して第 1セパレー タ 2 0 · · ·を得る。 これにより、 第 1セパレータ 2 0の製造工程を完了する。 このように、 本発明に係る燃料電池用セパレータの製造方法によれば電子線 7 2を照射するだけの簡単な方法で、 燃料ガス通路形成面 2 0 b (図 4参照) をあ る程度硬化させるとともに、 3次元架橋構造とすることができる。
よって、 燃料ガス通路形成面 2 0 bの弾力性を好適に保つことができ、 シール 性を良好に保つことができる。 このため、 シール性に優れた第 1セパレータ 2 0 を効率よく生産することができる。
また、 エチレン,酢ビ共重合体、 エチレン■ェチルァクリレート共重合体、 直 鎖状低密度ポリエチレン、 ポリフエ二レンサルファイ ド、 変性ポリフエ二レンォ キサイ ドは熱可塑性樹脂のなかで特に柔軟性に優れた樹脂であり、 これらの樹脂 4 5で第 1セパレ一タ 2 0を成形することにより、 第 1セパレータ 2 0の燃料ガ ス通路形成面 2 O b (図 4参照) の柔軟性を好適に確保することができる。
図 5〜図 8に関連して、 第 1セパレータ 2 0の製造方法を説明したが、 同様の 方法で第 2セパレータ 3 0を製造してもよい。 但し、 第 2セパレータ 3 0は、 第 1セパレータ 2 0のように冷却水通路用溝 2 1 ■' ·を備えておらず、 平坦な接合 面 3 0 aを備えているため、 図 7に示す下プレス型 6 7は、 帯状のシート 6 4の 一方の面に対向する面に、 帯状のシート 6 4の一方の面に冷却水通路用溝 2 1 ' - -をプレス成形する凹凸部を備える必要はない。
次に、 本発明の第 2および第 3実施例を図 9乃至図 2 4に基づいて説明する。 なお、 第 2〜第 3実施例において、 第 1実施例と同一部材については同一符号を 付してその説明を省略する。
まず、 本発明の第 2実施例による、 燃料電池用セパレ一タと電極拡散層の接合 方法によって接合した燃料電池を分解斜視で示す図 9を参照する。
図 9に示されるように、 燃料電池 1 1 0は、 一例として電解質膜 1 1 2に固体 高分子電解質を使用し、 この電解質膜 1 1 2にアノード 1 1 3及び力ソード 1 1 4を添わせ、 アノード 1 1 3側にアノード拡散層 1 1 5を介してセパレータ 1 1 8を合わせるとともに、 力ソード 1 1 4側に力ソード拡散層 1 1 6を介してセパ レータ 1 1 8を合わせることによリセルモジュール 1 1 1 を構成し、 このセルモ ジュール 1 1 1 を多数個積層した固体高分子型燃料電池である。
セパレ一タ 1 1 8は、 第 1セパレ一タ 1 20と、 第 2セパレ一タ 1 30とから なり、 第 1セパレータ 1 20の冷却水通路形成面 1 20 aと第 2セパレータ 1 3 0の接合面 1 3 0 aを、 一例として振動溶着で接合したものである。
このように、第 1、第 2セパレータ 1 20, 1 30を振動溶着することにより、 第 1セパレータ 1 20の冷却水通路用溝 1 2 1 ■■'を第 2セパレータ 1 3 0で覆 い、 冷却水通路 1 22 ··· (図 1 0参照) を形成する。
この冷却水通路 1 22 ·· ·【こは、 第 1、 第 2セパレータ 1 20, 1 30の上端 中央の冷却水供給孔部 1 23 a, 1 3 3 aが連通するとともに、 第 1、 第 2セパ レータ 1 20, 1 30の下端中央の冷却水排出孔部 1 23 b, 1 33 bが連通す る。
第 1セパレ一タ 1 20は、 燃料ガス通路形成面 1 20 b側に燃料ガス通路用溝 1 24■■■ (図 1 0参照) を備え、 燃料ガス通路形成面 1 20 bにアノード拡散 層 1 1 5を重ね合わせた状態で、 一例として振動溶着することで、 燃料ガス通路 用溝 1 24 -' 'をアノード拡散層 1 1 5で塞いで燃料ガス通路 1 25 ··· (図 1 0 参照) を形成する。
この燃料ガス通路 1 25■■■に、 第 1、 第 2セパレ一タ 1 20, 1 30の上端 左側の燃料ガス供給孔部 1 26 a, 1 36 aを連通するとともに、 第 1、 第 2セ パレータ 1 20 , 1 30の下端右側の燃料ガス排出孔部 1 26 b, 1 36 bを連 通する。
第 2セパレ一タ 1 30は、 酸化剤ガス通路形成面 1 30 b側に酸化剤ガス通路 用溝 1 37 ···を備え、 酸化剤ガス通路形成面 1 3 O bに力ソード拡散層 1 1 6 を重ね合わせた状態で、 一例として振動溶着することで、 酸化剤ガス通路用溝 1 37.''をカソ一ド拡散層1 1 6で塞いで酸化剤ガス通路 1 38 '(図 1 0参照) を形成する。 この酸化剤ガス通路 1 3 8■''に、 第 1、 第 2セパレ一タ 1 20, 1 3 0の上 端右側の酸化剤ガス供給孔部 1 2 9 a, 1 39 aを連通するとともに、 第 1、 第 2セパレータ 1 20, 1 30の下端左側の酸化剤ガス排出孔部 1 29 b, 1 39 bを連通する。
第 1、 第 2セパレータ 1 20, 1 30を構成する樹脂としては、 一例として耐 酸性を備えた熱可塑性樹脂に、 天然黒鉛、 人造黒鉛、 ケッチェンブラック、 ァセ チレンブラックなどを単独或いは混合配合し、 炭素材料を 60〜95 w t %含ん だ樹脂組成物が該当するがこれに限定するものではない。
なお、 ケッチェンブラックは、 導電性に優れたカーボンブラックで、 一例とし てケッチェン ' ブラック 'インターナショナル株式会社製 (販売元;三菱化学株 式会社) のものが該当するが、 これに限るものではない。
第 1、.第 2セパレータ 1 20, 1 30は、 上記樹脂組成物を射出成形、 加熱プ レス成形又はロール成形などで成形したカーボンモールドセパレータである。 耐酸性を備えた熱可塑性樹脂としては、 例えばエチレン■酢ビ (酢酸ビニル) 共重合体、エチレン■ェチルァクリレート共重合体、直鎖状低密度ポリエチレン、 ポリフエ二レンサルフアイ ド、変性ポリフエ二レンォキサイドなどが該当するが、 これに限定するものではない。
アノード拡散層 1 1 5は、 例えばカーボン織布、 カーボン不織布、 カーボンマ ット、 カーボンぺーパの炭素繊維が該当するが、 これに限定するものではない。 力ソード拡散層 1 1 6は、 アノード拡散層 1 1 5と同様に、 例えばカーボン織 布、カーボン不織布、カーボンマツト、カーボンぺ一パの炭素繊維が該当するが、 これに限定するものではない。
図 1 0を参照するに、 第 1セパレータ 1 20は、 図 9から明らかなように略矩 形状に形成した部材であり、 燃料ガス通路形成面 1 20 bに燃料ガス通路用溝 1 24■'■を多数本条有し、 この燃料ガス通路形成面 1 2 O bにアノード拡散層 1 1 5を振動溶着することで、 燃料ガス通路用溝 1 2 4 ···及びアノード拡散層 1 1 5で燃料ガス通路 1 25■ · ·を形成し、 冷却水通路形成面 1 20 aに冷却水通 路用溝 1 2 1 ■■■を多数本条有する。
第 2セパレータ 1 30も、 図 9から明らかなように略矩形状の部材であり、 酸 化剤ガス通路形成面 1 3 0 bに酸化剤ガス通路用溝 1 3 7 を多数本条有し、 この酸化剤ガス通路形成面 1 3 O bに力ソード拡散層 1 1 6を振動溶着すること で、 酸化剤ガス通路用溝 1 3 7…'及び力ソード拡散層 1 1 6で酸化剤ガス通路 1 3 8 を形成するものである。
セパレータ 1 1 8は、 第 1セパレータ 1 2 0の冷却水通路形成面 1 2 0 aと、 第 2セパレータ 1 3 0の接合面 1 3 0 aとを振動溶着し、 第 1セパレータ 1 2 0 の冷却水通路用溝 1 2 1を第 2セパレータ 1 3 0の接合面 1 3 0 aで塞いで冷却 水通路 1 2 2を形成したものである。
このように、 熱可塑性樹脂の第 1セパレータ 1 2 0とアノード拡散層 1 1 5と を振動溶着で一体化することで、 第 1セパレータ 1 2 0とアノード拡散層 1 1 5 との間の電気的な接触抵抗を抑えることができる。 また、 熱可塑性樹脂の第 1セ パレータ 1 2 0とアノード拡散層 1 1 5とを一体化することで、 第 1セパレ一タ 1 2 0とアノード拡散層 1 1 5とを合わせるために従来必要とされていたシール 材を排除することができる。
同様に、 熱可塑性樹脂の第 2セパレ一タ 1 3 0と力ソード拡散層 1 1 6とを振 動溶着で一体化することで、 第 2セパレ一タ 1 3 0と力ソード拡散層 1 1 6との 間の電気的な接触抵抗を抑えることができる。 また、 熱可塑性樹脂の第 2セパレ ータ 1 3 0とカソード拡散層 1 1 6とを一体化することで、 第 2セパレータ 1 3 0と力ソード拡散層 1 1 6とを合わせるために従来必要とされていたシール材を 排除することができる。
さらに、 熱可塑性樹脂の第 1、 第 2セパレ一タ 1 2 0, 1 3 0を振動溶着して セパレ一タ 1 1 8を一体化するとともに、 第 1セパレータ 1 2 0の冷却水通路用 溝 1 2 1を第 2セパレータ 1 3 0の接合面 3 0 aで塞いで冷却水通路 1 2 2を形 成した。
このように、 第 1、 第 2セパレータ 1 2 0 , 1 3 0を振動溶着してセパレータ 1 1 8を一体化することで、 第 1、 第 2セパレータ 1 2 0, 1 3 0間の電気的な 接触抵抗を抑えることができる。 また、 第 1、 第 2セパレータ 1 2 0 , 1 3 0を 振動溶着してセパレ一タ 1 1 8を一体化することで、 従来必要とされていたシー ル材を第 1、 第 2セパレ一タ 1 2 0, 1 3 0間から排除することができる。 次に、 本発明の第 2実施例による、 燃料電池用セパレータと電極拡散層の接合 方法を実施するための振動溶着装置を断面で示す図 1 1を参照する。
振動溶着装置 1 4 0は、 基台 1 4 1に一定間隔をおいて左右の支柱 1 4 2, 1
4 2を立て、 左右の支柱 1 4 2, 1 4 2の上端を左右の梁 1 4 3, 1 4 3に連結 し、 左右の支柱 1 4 2, 1 4 2にガイ ド 1 4 4 , 1 4 4を介して昇降部材 1 4 5 を昇降自在に取り付け、 昇降部材 1 4 5と基台 1 4 1 との間にエアシリンダ 1 4 6を配置し、 シリンダ部 1 4 7を基台 1 4 1に連結するととともにピストンロッ ド 1 4 8を昇降部材 1 4 5に連結し、 昇降部材 1 4 5に下サポー卜部 1 4 9を取 リ付け、 左右の梁 1 4 3に振動発生機構 1 5 0を取り付け、 振動発生機構 1 5 0 の下部に下サポート部 1 4 9に対向するように上サポート部 1 5 1を取り付けた ものである。
振動発生機構 1 5 0は、 左右の梁 1 4 3にそれぞれ枠部材 1 5 2, 1 5 2を固 定し、 左右の枠部材 1 5 2, 1 5 2にそれぞれ固定電磁石部 1 5 3, 1 5 3を備 え、 左右の枠部材 1 5 2 , 1 5 2にクロスメンパー 1 5 4を渡し、 クロスメンバ - 1 5 4に支持部 1 5 5を取り付けるとともに、 この支持部 1 5 5を左右の固定 電磁石部 1 5 3, 1 5 3間に配置し、 支持部 1 5 5にスライ ド部材 1 5 6を左右 方向に移動自在に取り付け、 スライド部材 1 5 6の左右端にそれぞれ左右の移動 電磁石部 1 5 7, 1 5 7を取り付けることにより、 左移動電磁石部 1 5 7を左固 定電磁石部 1 5 3に対向させるとともに、 右移動電磁石部 1 5 7を右固定電磁石 部 1 5 3に対向させたものである。
この振動溶着装置 1 4 0によれば、 エアシリンダ 1 4 6のピストンロッド 1 4 8を進退することにより、 昇降部材 1 4 5と一緒に下サポート部 1 4 9を昇降す ることができる。
一方、 左右の固定電磁石部 1 5 3, 1 5 3及び左右の移動電磁石部 1 5 7, 1
5 7を通電することにより、 スライダ部材 1 5 6と一緒に上サポート部 1 5 1 を 左お方向に振動することができる。
次に、 図 1 2 A乃至〜図 1 9を参照して、 第 2実施例による、 燃料電池用セパ レータと電極拡散層の接合方法を説明する。
先ず、 第 1セパレ一タ 1 2 0にアノード拡散層 1 1 5を振動溶着する例を図 1 2 A乃至図 1 5に基づいて説明する。
図 1 2 A及び図 1 2 Bは、 第 2実施例による接合方法における、 第 1セパレー タ及びアノード拡散層をセッ卜する工程の説明図である。
図 1 2 Aにおいて、 振動溶着装置 1 40に備えたエアシリンダ 1 46のピスト ンロッド 1 48を後退させることにより、 昇降部材 1 45と一緒に下サポート部 1 49をセット位置 H 1まで下降させる。 これにより、 下サポー卜部 1 49を上 サポート部 1 5 1から離すことができる。
図 1 2 Bにおいて、 下サポー卜部 1 49と上サポート部 1 51 との間に第 1セ パレータ 1 20及びアノード拡散層 1 1 5を配置し、 第 1セパレータ 1 20及び アノード拡散層 1 1 5を下サポー卜部 1 49のセット凹部 1 58に向けて矢印 j の如く下降する。
図 1 3 A及び図 1 3 Bは、 第 2実施例による接合方法における、 第 1セパレ一 タ及びアノード拡散層に加圧力をかける工程の説明図である。
図 1 3 Aにおいて、 下サポー卜部 1 49のセット凹部 1 58に第 1セパレータ 1 20の冷却水通路形成面 1 20 a側を収容するとともに、 第 1セパレータ 1 2 0の燃料ガス通路形成面 1 2 O bにアノード拡散層 1 1 5を重ね合わせる。 次に、 振動溶着装置 1 40 (図 1 2 A参照) に備えたエアシリンダ 1 46のピ ス卜ンロッド 1 48を進出させることによリ、 昇降部材 1 45と一緒に下サポー ト部 1 49を矢印 kの如く上昇させる。
図 1 3 Bにおいて、 下サポート部 1 49を加圧位置 H 2まで上昇することで、 アノード拡散層 1 1 5を上サポート部 1 5 1のセット凹部 1 59に収納するとと もに、 第 1セパレータ 1 20及びアノード拡散層 1 1 5に加圧力 F 1 をかけるこ とができる。
加圧力 F 1は、 一例として 1 0〜 50 k g f cm2とした。 加圧力 F 1 を 1 0〜50 k g f Zcm2とした理由は以下の通りである。
すなわち、 加圧力 F 1力 1 0 k g cm2未満では、 第 1セパレータ 1 20 の燃料ガス通路形成面 1 2 O bとアノード拡散層 1 1 5に十分な摩擦熱を発生さ せることが難しく、 第 1セパレータ 1 20及びアノード拡散層 1 1 5を溶着させ ることができない。 そこで、 加圧力 F 1を 1 0 k g f Zcm2以上に設定して第 1セパレ一タ 1 2 0及びアノード拡散層 1 1 5を溶着させるようにした。
—方、 加圧力 F 1が 5 0 k g f Z c m 2を超えると、 第 1セパレータ 1 2 0の 燃料ガス通路形成面 1 2 O bとアノード拡散層 1 1 5に大きな摩擦熱が発生して 燃料ガス通路形成面 1 2 O bとアノード拡散層 1 1 5とが過大に溶けてしまい、 第 1セパレータ 1 2 0の周縁やアノード拡散層 1 1 5の周縁からバリが発生す る。
このため、 第 1セパレータ 1 2 0の周縁やアノード拡散層 1 1 5の周縁に発生 したパリを除去する余分な工程が必要になる。 そこで、 加圧力 F 1を 5 0 k g f Z c m 2以下に設定して第 1セパレータ 1 2 0の周縁やアノード拡散層 1 1 5の 周縁からバリが発生することを防止するようにした。
図 1 4 A及び図 1 4 Bは、 第 2実施例による接合方法における、 第 1セパレー タにアノード拡散層を振動溶着する工程の説明図である。
図 1 4 Aにおいて、 振動溶着装置 1 4 0の左右の固定電磁石部 1 5 3, 1 5 3 及び左右の移動電磁石部 1 5 7 , 1 5 7を通電することにより、 スライダ部材 1 5 6と一緒に上サポート部 1 5 1を矢印 Iの如く左右方向に振動する。
なお、 このときの振動周波数 (周波数) は 2 4 0 H zである。 2 4 0 H zの振 動周波数は比較的小物の振動溶着に適している。 よって、 振動周波数を 2 4 0 H zとすることで、 比較的小物の部材である第 1セパレータ 1 2 0及びアノード拡 散層 1 1 5を好適に振動溶着することができる。
図 1 4 Bにおいて、 上サポート部 1 5 1を矢印 Iの如く左お方向に振動するこ とにより、 アノード拡散層 1 1 5を矢印 Iの如く振動させる。 これにより、 第 1 セパレ一タ 1 2 0の燃料ガス通路形成面 1 2 0 bとアノード拡散層 1 1 5とに摩 擦熱を発生させる。
第 1セパレータ 1 2 0を熱可塑性樹脂で形成したので、 第 1セパレ一タ 1 2 0 の燃料ガス通路形成面 1 2 0 bとアノード拡散層 1 1 5とに摩擦熱を発生させる ことにより、 第 1セパレータ 1 2 0の燃料ガス通路形成面 1 2 0 bとアノード拡 散層 1 1 5とを溶着することができる。
これにより、 第 1セパレ一タ 1 2 0の燃料ガス通路形成面 1 2 0 bに形成した 燃料ガス通路用溝 1 2 4 · "をアノード拡散層 1 1 5で塞いで燃料ガス通路 1 2 5 - を形成することができる。
次に、 図 1 5を参照して、 第 2実施例による接合方法における、 振動溶着した 第 1セパレ一タ及ぴアノード拡散層を取り出す工程を説明する。
振動溶着装置 1 4 0に備えたエアシリンダ 1 4 6のピストンロッド 1 4 8 (図 4 ( a ) 参照) を後退させることにより、 昇降部材 1 4 5と一緒に下サポート部 1 4 9を下降する。
下サボ一ト部 1 4 9をセット位置 H 1まで下降させて、 下サポー卜部 1 4 9を 上サポート部 1 5 1から離し、 振動溶着で一体化された第 1セパレ一タ 1 2 0及 ぴアノード拡散層 1 1 5を振動溶着装置 1 4 0から取り出す。
次に、 第 2セパレータ 1 3 0に力ソード拡散層 1 1 6を振動溶着する例を図 1
6 A乃至図 1 7 Bに基づいて説明する。
図 1 6 A及び図 1 6 Bは、 第 2実施例による接合方法における、 第 2セパレー タ及び力ソード拡散層をセッ卜する工程の説明図である。
図 1 6 Aにおいて、 一体化した第 1セパレ一タ 2 0及びアノード拡散層 1 1 5 (図 1 5参照) を振動溶着装置 1 4 0から取り出した後、 下サポート部 1 4 9と 上サポート部 1 5 1 との間に第 2セパレ一タ 1 3 0及び力ソード拡散層 1 1 6を 配置し、 これらの部材 1 3 0, 1 1 6を下サポート部 1 4 9のセット凹部 1 5 8 に向けて矢印 mの如く下降する。
図 1 6 Bにおいて、 下サポート部 1 4 9のセット凹部 1 5 8に第 2セパレータ 1 3 0の接合面 1 3 0 a側を収容するとともに、 第 2セパレータ 1 3 0の酸化剤 ガス通路形成面 1 3 0 bにカソード拡散層 1 1 6を重ね合わせる。
次に、 振動溶着装置 1 4 0 (図 1 2 A参照) に備えたエアシリンダ 1 4 6のピ ストンロッド 1 4 8を進出させることにより、 昇降部材 1 4 5と一緒に下サポー ト部 1 4 9を矢印 nの如く上昇させる。
図 1 7 A及び図 1 7 Bは、 第 2実施例による接合方法における、 第 2セパレ一 タにカソード拡散層を振動溶着する工程の説明図である。
図 1 7 Aにおいて、 下サポート部 1 4 9を加圧位置 H 3まで上昇することで、 カソード拡散層 1 1 6を上サポー卜部 1 5 1のセット凹部 1 5 9に収納するとと もに、 第 2セパレータ 1 3 0及び力ソード拡散層 1 1 6に加圧力 F 2をかけるこ とができる。
加圧力 F 2は、 加圧力 F 1 と同様に、 一例として 1 0〜 50 k g f Zcm2と した。 加圧力 F 2を 1 0〜50 k g f Zcm2とした理由は、 図 1 3 Bの加圧力 F 1で説明した通りである。
すなわち、 加圧力 F 2力 1 O k g f Z cm2未満では、 第 2セパレ一タ 1 30 の酸化剤ガス通路形成面 1 30 bとカソ一ド拡散層 1 1 6に十分な摩擦熱を発生 させることが難しく、 第 2セパレータ 1 30及び力ソード拡散層 1 1 6を溶着さ せることができない。 そこで、 加圧力 F 2を 1 O k g f Zcm2以上に設定して 第 2セパレータ 1 30及び力ソード拡散層 1 1 6を溶着させるようにした。
—方、 加圧力 F 2が 50 k g f Zc m2を超えると、 第 2セパレータ 1 30の 酸化剤ガス通路形成面 1 3 O bと力ソード拡散層 1 1 6に大きな摩擦熱が発生し て酸化剤ガス通路形成面 1 3 O bと力ソード拡散層 1 1 6とが過大に溶けてしま い、 第 2セパレ一タ 1 30の周縁や力ソード拡散層 1 1 6の周縁からバリが発生 する。 このため、 第 2セパレータ 1 3 0の周縁やカソード拡散層 1 1 6との周縁 に発生したバリを除去する余分な工程が必要になる。 そこで、 加圧力 F 2を 50 k g f Zcm2以下に設定して第 2セパレータ 1 30の周縁やカソード拡散層 1 1 6の周縁からバリが発生することを防止するようにした。
この状態で、図 1 2 Aに示す振動溶着装置 1 40の左右の固定電磁石部 1 53. 1 5 3及び左右の移動電磁石部 1 57, 1 57を通電することにより、 スライダ 部材 1 5 6と一緒に上サポート部 1 5 1を矢印 oの如く左右方向に振動する。 このときの、 振動周波数 (周波数) は 240 H zである。
振動周波数を 240 H zとした理由は、 図 1 4 Aに関連して説明した通りであ る。 すなわち、 240 H zの振動周波数は比較的小物の振動溶着に適している。 よって、 振動周波数を 240 H zとすることで、 比較的小物の部材である第 2セ パレータ 1 30及び力ソード拡散層 1 1 6を好適に振動溶着することができる。 上サポート部 1 5 1 を矢印 oの如く左右方向に振動することにより、 力ソード 拡散層 1 1 6を矢印 oの如く振動させる。 これにより、 第 2セパレータ 1 30の 酸化剤ガス通路形成面 1 3 0 bとカソード拡散層 1 1 6とに摩擦熱を発生させ る。 第 2セパレータ 1 3 0を熱可塑性樹脂で形成したので、 第 2セパレータ 1 3 0 の酸化剤ガス通路形成面 1 3 0 bとカソード拡散層 1 1 6とに摩擦熱を発生さ せ、 第 2セパレータ 1 3 0の酸化剤ガス通路形成面 1 3 0 bと力ソード拡散層 1 1 6とを溶着することができる。
かくして、 第 2セパレータ 1 3 0の酸化剤ガス通路形成面 1 3 0 bに形成した 酸化剤ガス通路用溝 1 3 7 ' " 'をカソード拡散層1 1 6で塞いで酸化剤ガス通路 1 3 8 · ' -を形成することができる。
図 1 7 Bにおいて、 振動溶着装置 1 4 0に備えたエアシリンダ 1 4 6のピスト ンロッド 1 4 8 (図 1 2 A参照) を後退させることにより、 昇降部材 1 4 5と一 緒に下サポート部 1 4 9を下降する。
これによリ、 下サポート部 1 4 9をセット位置 H 1まで下降させて、 下サポー 卜部 1 4 9を上サポート部 1 5 1から離し、 振動溶着で一体化された第 2セパレ —タ 1 3 0及び力ソード拡散層 1 1 6を振動溶着装置 1 4 0から取り出す。
次に、 図 1 8 A乃至図 1 9 Bを参照して、 第 1、 第 2セパレータを振動溶着す る要領を説明する。
図 1 8 Aおよび図 1 8 Bは、 第 2実施例で得たセパレ一タをセットする要領を 説明する図である。
図 1 8 Aにおいて、 振動溶着で一体化した第 2セパレータ 1 3 0及び力ソード 拡散層 1 1 6を振動溶着装置 1 4 0から取り出した後、 下サポート部 1 4 9と上 サポー卜部 1 5 1 との間に、 振動溶着で一体化された第 1セパレータ 1 2 0及び アノード拡散層 1 1 5と、 振動溶着で一体化された第 2セパレータ 1 3 0及び力 ソード拡散層 1 1 6とを配置し、 これらの部材を下サポート部 1 4 9のセット凹 部 1 5 8に向けて矢印 pの如く下降する。
図 1 8 Bにおいて、 下サポート部 1 4 9のセット凹部 1 5 8に力ソード拡散層 1 1 6を収容するとともに、 第 2セパレータ 1 3 0の接合面 1 3 0 aに第 1セパ レータ 1 2 0の冷却水通路形成面 1 2 0 aを重ね合わせる。
次に、 振動溶着装置 4 0 (図 1 2 A参照) に備えたエアシリンダ 1 4 6のビス トンロッド 1 4 8を進出させることにより、 昇降部材 1 4 5と一緒に下サポート 部 1 4 9を矢印 qの如く上昇させる。 図 1 9 A及び図 1 9 Bは、 第 2実施例で得たセパレータ同士を振動溶着する要 領を説明する図である。
図 1 9 Aにおいて、 下サポート部 1 49を加圧位置 H 4まで上昇することで、 アノード拡散層 1 1 5を上サポート部 1 5 1のセット凹部 1 59に収納するとと もに、 第 1セパレータ 1 20の冷却水通路形成面 1 20 aと第 2セパレータ 1 3 0の接合面 1 30 aとの合わせ面に加圧力 F 3をかけることができる。
ここで、 加圧力 F 3を、 加圧力 F 1 と同様に、 一例として 1 0〜50 k g f Z c m2とした。 加圧力 F 3を 1 0〜 50 k g f Zcm2とした理由は、 図 1 3 B の加圧力 F 1で説明した通りである。
すなわち、 加圧力 F 3が 1 O k g f cm2未満では、 第 1セパレータ 1 20 の冷却水通路形成面 1 20 aと第 2セパレータ 1 30の接合面 1 30 aとに十分 な摩擦熱を発生させることが難しく、 冷却水通路形成面 1 20 aと接合面 1 30 aとを溶着させることができない。
そこで、 加圧力 F 3を 1 O k g f /cm2以上に設定して第 1セパレ一タ 1 2 0の冷却水通路形成面 1 20 aと第 2セパレータ 1 30の接合面 1 30 aとを溶 着させるようにした。
一方、 加圧力 F 3が 50 k g f Zcm2を超えると、 第 1セパレータ 1 20の 冷却水通路形成面 1 20 aと第 2セパレータ 1 30の接合面 1 30 aとに大きな 摩擦熱が発生して冷却水通路形成面 1 20 aと接合面 1 30 aとが過大に溶けて しまい、 第 1セパレータ 1 20の周縁や第 2セパレータ 1 30の周縁からバリが 発生する。
このため、 第 1セパレータ 1 20の周縁や第 2セパレータ 1 30の周縁に発生 したバリを除去する余分な工程が必要になる。 そこで、 加圧力 F 3を 50 k g f c m2以下に設定して第 1セパレ一タ 1 20の周縁や第 2セパレータ 1 30の 周縁からパリが発生することを防止するようにした。
この状態で、図 1 2 Aに示す振動溶着装置 1 40の左右の固定電磁石部 1 53, 1 5 3及び左右の移動電磁石部 1 57, 1 57を通電することにより、 スライダ 部材 1 56と一緒に上サポート部 1 5 1を矢印 rの如く左右方向に振動する。 こ のときの、 振動周波数 (周波数) は 240 H Zである。 振動周波数を 2 4 0 H zとした理由は、 図 1 4 Aで説明した通りである。 すな わち、 2 4 O H Zの振動周波数は比較的小物の振動溶着に適している。 よって、 振動周波数を 2 4 O H zとすることで、 比較的小物の部材である第 1、 第 2セパ レータ 1 2 0, 1 3 0を好適に振動溶着することができる。
上サポート部 1 5 1 を矢印 rの如く左右方向に振動することにより、 アノード 拡散層 1 1 5及び第 1セパレータ 1 2 0を矢印 rの如く振動させる。これにより、 第 1セパレータ 1 2 0の冷却水通路形成面 1 2 0 aと第 2セパレータ 1 3 0の接 合面 1 3 0 aとに摩擦熱を発生させる。
第 1、 第 2セパレータ 1 2 0, 1 3 0を熱可塑性樹脂で形成したので、 冷却水 通路形成面 1 2 0 aと接合面 1 3 0 aとに摩擦熱を発生させ、 第 1セパレ一タ 1 2 0の冷却水通路形成面 1 2 0 aと第 2セパレータ 1 3 0の接合面 1 3 0 aとを 溶着することによリセパレータ 1 1 8を形成することができる。
この際、 第 1セパレータ 1 2 0の冷却水通路形成面 1 2 0 aに形成した冷却水 通路用溝 1 2 1 を第 2セパレ一タ 1 3 0の接合面 1 3 0 aで塞いで冷却水通路 1 2 2を形成することができる。
図 1 9 Bにおいて、 振動溶着装置 1 4 0に備えたエアシリンダ 1 4 6のピスト ンロッド 1 4 8 (図 1 2 A参照) を後退させることにより、 昇降部材 1 4 5と一 緒に下サポート部 1 4 9を下降する。
下サボ一卜部 1 4 9をセット位置 H 1まで下降させて、 下サポート部 1 4 9を 上サポー卜部 1 5 1から離し、 セパレ一タ 1 1 8と、 このセパレータ 1 1 8に振 動溶着で一体化されたアノード拡散層 1 1 5及び力ソード拡散層 1 1 6とを振動 溶着装置 1 4 0から取り出す。 これにより、 セパレータ 1 1 8の製造工程を完了 する。
以上説明したように、 第 2実施例の燃料電池用セパレータ製造方法により、 熱 可塑性樹脂の第 1セパレータ 1 2 0に炭素繊維のアノード拡散層 1 1 5を重ね合 わせ、このアノード拡散層 1 1 5と第 1セパレータ 1 2 0とに加圧力 F 1をかけ、 アノード拡散層 1 1 5を振動させて摩擦熱を発生させることにより、 第 1セパレ ータ 1 2 0にアノード拡散層 1 1 5を溶着することができる。
第 1セパレータ 1 2 0とアノード拡散層 1 1 5とを振動溶着で一体化すること で、 第 1セパレータ 1 2 0とアノード拡散層 1 1 5との間の電気的な接触抵抗を 抑えることができる。 また、 第 1セパレ一タ 1 2 0とアノード拡散層 1 1 5とを 振動溶着で一体化することで、 第 1セパレータ 1 2 0とアノード拡散層 1 1 5と を合わせるために従来必要とされていたシール材を排除することができる。 さら に、 第 1セパレータ 1 2 0とアノード拡散層 1 1 5との間からシール材を排除す ることで、 構成部材を減らすことができる。 加えて、 第 1セパレータ 1 2 0とァ ノード拡散層 1 1 5との間にシール材を組み付ける (一例として、 塗布する) 組 付け工数を減らすことができる。
また、 熱可塑性樹脂の第 2セパレータ 1 3 0に炭素繊維の力ソード拡散層 1 1 6を重ね合わせ、 このカソード拡散層 1 1 6と第 2セパレータ 1 3 0とに加圧力 F 2を力、け、力ソード拡散層 1 1 6を振動させて摩擦熱を発生させることにより、 第 2セパレータ 1 3 0に力ソード拡散層 1 1 6を溶着することができる。
第 2セパレ一タ 1 3 0と力ソード拡散層 1 1 6とを振動溶着で一体化すること で、 第 2セパレータ 1 3 0と力ソード拡散層 1 1 6との間の電気的な接触抵抗を 抑えることができる。 さらに、 第 2セパレータ 1 3 0と力ソード拡散層 1 1 6と を振動溶着で一体化することで、 第 2セパレータ 1 3 0と力ソード拡散層 1 1 6 とを合わせるために従来必要とされていたシール材を排除することができる。 ま た、 第 2セパレ一タ 1 3 0と力ソード拡散層 1 1 6との間からシール材を排除す ることで、 構成部材を減らすことができる。 加えて、 第 2セパレ一タ 1 3 0と力 ソード拡散層 1 1 6との間にシール材を組み付ける (一例として、 塗布する) 組 付け工数を減らすことができる。
さらに、 熱可塑性樹脂の第 1、 第 2セパレータ 1 2 0, 1 3 0を重ね合わせ、 第 1、 第 2セパレータ 1 2 0 , 1 3 0に加圧力 F 3をかけ、 第 1セパレータ 1 2 0を振動させて摩擦熱を発生させることにより、 第 1、 第 2セパレ一タ 1 2 0 , 1 3 0を溶着することができる。
第 1、 第 2セパレータ 2 0, 3 0を振動溶着で一体化することで、 第 1セパレ ータ 2 0と第 2セパレータ 3 0との間の電気的な接触抵抗を抑えることができ る。 また、第 1、第 2セパレ一タ 1 2 0, 1 3 0を振動溶着で一体化することで、 第 1、 第 2セパレータ 1 2 0, 1 3 0を合わせるために従来必要とされていたシ —ル材を排除することができる。 さらに、 第 1、 第 2セパレータ 1 2 0, 1 3 0 間からシ一ル材を排除することで構成部材を減らすことができる。加えて、第 1 、 第 2セパレータ 1 2 0, 1 3 0間にシール材を組み付ける (一例として、 塗布す る) 組付け工数を減らすことができる。
本発明の第 2実施例による方法得たセパレータ (試験例 1及び 2 ) の抵抗過電 圧について試験した。 その結果を以下の表 1及び表 2に基づいて説明する。
表 1
Figure imgf000032_0001
試験例 1は、 図 1 2 A乃至図 1 5に示される要領で第 1セパレータ 1 2 0とァ ノード拡散層 1 1 5とを振動溶着で一体化し、 さらに図 1 6 〜図1 7 Bの要領 で第 2セパレータ 1 3 0と力ソード拡散層 1 1 6とを振動溶着で一体化し、第 1 、 第 2セパレータ 1 2 0, 1 3 0間に、 通常のシール材を介在させたものである。 比較例 1は、 第 1セパレータ 1 2 0とアノード拡散層 1 1 5との間に、 通常の セパレータを介在させ、また第 2セパレータ 1 3 0と力ソード拡散層 1 1 6との、 通常のセパレータを介在させ、 さらに第 1、第 2セパレータ 1 2 0 , 1 3 0間に、 通常のシール材を介在させたものである。
比較例 1 と試験例 1の抵抗過電圧は以下の条件で測定した。
すなわち、セルモジュールの温度を 8 0 °Cに設定し、アノードガス(燃料ガス) として純 H 2を供給するとともに、 力ソードガス (酸化剤ガス) として空気を供 給した。
ァノ一ド側の燃料ガス温度を 80°C、 力ソード側の酸化剤ガス温度を 80°Cと し、 アノード側の燃料ガス圧力を 50 k P a、 カソード側の酸化剤ガス圧力を 1 O O k P aとした。 この条件下において、 電流密度が 0. 883 AZ cm2の電 流を流した。
この結果、 試験例 1の抵抗過電圧を、 比較例 1の抵抗過電圧と比較して、 1セ ルモジュール当たり 0. 0 1 4 V減らすことができた。
よって、 試験例 1のように、 第 1セパレータ 1 20及びアノード拡散層 1 1 5 を振動溶着で一体化し、 さらに第 2セパレータ 1 30と力ソード拡散層 1 1 6と を振動溶着で一体化することにより、 抵抗過電圧を減らして燃料電池の出力低下 を防ぐことができることが分かる。
次いで、 表 2を参照する。
表 2
Figure imgf000033_0001
試験例 2は、 図 1 2 A乃至図 1 5に示される要領で第 1セパレ一タ 1 20とァ ノード拡散層 1 1 5とを振動溶着で一体化し、 また図 1 6 A乃至図 1 7 Bに示さ れる要領で第 2セパレータ 1 30と力ソード拡散層 1 1 6とを振動溶着で一体化 し、 さらに図 1 8 A乃至図 1 9 Bに示される要領で第 1セパレータ 1 20と第 2 セパレータ 1 30とを振動溶着で一体化したものである。
比較例 1は、 表 1で説明したように、 第 1セパレータ 1 20とアノード拡散層 1 1 5との間に、 通常のセパレータを介在させ、 また第 2セパレータ 1 3 0と力 ソード拡散層 1 1 6との、 通常のセパレ一タを介在させ、 さらに第 1、 第 2セパ レータ 1 2 0, 1 3 0間に、 通常のシール材を介在させたものである。
比較例 1 と試験例 2との抵抗過電圧を以下の条件で測定した。
すなわち、セルモジュールの温度を 8 0 °Cに設定し、アノードガス (燃料ガス) として純 H 2を供給するとともに、 力ソードガス (酸化剤ガス) として空気を供 給した。
ァノード側の燃料ガス温度を 8 0 °C、 カソード側の酸化剤ガス温度を 8 0 °Cと し、 ァノード側の燃料ガス圧力を 5 0 k P a、 カソード側の酸化剤ガス圧力を 1 O O k P aとした。 この条件下において、 電流密度が 0 . 8 8 3 A Z c m 2の電 流を流した。
この結果、 試験例 2の抵抗過電圧を、 比較例 1の抵抗過電圧と比較して、 1セ ルモジュール当たり 0 . 0 4 1 V減らすことができた。
よって、 試験例 2のように、 第 1セパレータ 1 2 0とアノード拡散層 1 1 5と を振動溶着で一体化し、 また第 2セパレータ 1 3 0と力ソード拡散層 1 1 6とを 振動溶着で一体化し、 さらに第 1セパレータ 1 2 0と第 2セパレータ 1 3 0とを 振動溶着で一体化することにより、 抵抗過電圧を減らして燃料電池の出力低下を 防ぐことができることが分かる。
次に、 本発明の第 2実施例の変形例について説明する。
第 2実施例では、 第 1セパレータ 1 2 0とアノード拡散層 1 1 5とを振動溶着 装置 1 4 0を使用して溶着し、 また第 2セパレータ 1 3 0と力ソード拡散層 1 1 6とを振動溶着装置 1 4 0を使用して溶着し、 さらに第 1、 第 2セパレータ 1 2 0 , 1 3 0を振動溶着装置 1 4 0を使用して溶着した例について説明したが、 こ れに限らず、 例えば超音波溶着で溶着しても同様の効果を得ることができる。 ここで、超音波溶着とは、超音波振動子で発生した振動エネルギーを利用して、 溶着することをいう。
この変形例の超音波溶着によれば、 第 1セパレ一タ 1 2 0とアノード拡散層 1 1 5とを重ね合わせた後に第 1セパレータ 1 2 0とアノード拡散層 1 1 5とに加 圧力をかけ、 この状態で、 超音波振動子で発生した振動エネルギーをホーンを介 して第 1セパレ一タ 1 2 0及びアノード拡散層 1 1 5に与えて、 第 1セパレ一タ
1 2 0及びアノード拡散層 1 1 5の重ね合わせ面に摩擦熱を発生させることによ リ、 第 1セパレータ 1 2 0及びアノード拡散層 1 1 5を溶着することができる。 また、 上記変形例の超音波溶着によれば、 第 2セパレータ 1 3 0と力ソード拡 散層 1 1 6とを重ね合わせた後に第 2セパレ一タ 1 3 0と力ソード拡散層 1 1 6 とに加圧力をかけ、 この状態で、 超音波振動子で発生した振動エネルギーをホー ンを介して第 2セパレータ 1 3 0及び力ソード拡散層 1 1 6に与えて、 第 2セパ レータ 1 3 0及び力ソード拡散層 1 1 6の重ね合わせ面に摩擦熱を発生させるこ とにより、 第 2セパレータ 1 3 0及び力ソード拡散層 1 1 6を溶着することがで きる。
さらに、 上記変形例の超音波溶着によれば、 第 1、 第 2セパレータ 1 2 0, 1 3 0を重ね合わせた後に第 1、 第 2セパレ一タ 1 2 0, 1 3 0に加圧力をかけ、 この状態で、 超音波振動子で発生した振動エネルギーをホーンを介して第 1、 第 2セパレータ 1 2 0 , 1 3 0に与えて、 第 1、 第 2セパレ一タ 1 2 0, 1 3 0の 重ね合わせ面に摩擦熱を発生させることにより、 第 1、 第 2セパレータ 1 2 0,
1 3 0を溶着することができる。
次に、 図 2 0を参照して、 本発明の第 3実施例による燃料電池用セパレータ製 造方法で得た燃料電池用セパレータを説明する。 この図は、 アノード拡散層及び 力ソード拡散層を想像線で示した点で図 1 0と異なる。
第 1セパレータ 1 2 0は、 図 1 0に関連して説明したように、 燃料ガス通路形 成面 1 2 0 bに燃料ガス通路用溝 1 2 4 を多数本条有し、 この燃料ガス通路 形成面 1 2 O bにアノード拡散層 1 1 5を合わせることで、 燃料ガス通路用溝 1 2 4■·■及びアノード拡散層 1 1 5で燃料ガス通路 1 2 5 · -■を形成し、 冷却水通 路形成面 1 2 0 aに冷却水通路用溝 1 2 1 を多数本条有する。
第 2セパレータ 1 3 0は、 図 1 0に関連して説明したように、 酸化剤ガス通路 形成面 1 3 0 bに酸化剤ガス通路用溝 1 3 7■■■を多数本条有し、 この酸化剤ガ ス通路形成面 1 3 O bに力ソード拡散層 1 1 6を合わせることで、 酸化剤ガス通 路用溝 1 3 7 · · ·及び力ソード拡散層 1 1 6で酸化剤ガス通路 1 3 8 · · ·を形成す るものである。 セパレ一タ 1 1 8は、 第 1、 第 2セパレ一タ 1 2 0, 1 3 0を重ね合わせた後 に第 1、 第 2セパレ一タ 1 2 0, 1 3 0に加圧力をかけ、 第 1、 第 2セパレータ 1 2 0, 1 3 0の一方を振動させて摩擦熱を発生させることにより、 第 1セパレ ータ 1 2 0の冷却水通路形成面 1 2 0 aと、 第 2セパレータ 3 0の接合面 1 3 0 aとを振動溶着し、 第 1セパレータ 1 2 0の冷却水通路用溝 1 2 1を第 2セパレ ータ 1 3 0で塞いで冷却水通路 1 2 2を形成したものである。
このように、 熱可塑性樹脂の第 1、 第 2セパレータ 1 2 0, 1 3 0を摩擦熱で 振動溶着してセパレ一タ 1 1 8を一体化するとともに、 第 1セパレータ 1 2 0の 冷却水通路用溝 1 2 1 を第 2セパレータ 1 3 0で塞いで冷却水通路 1 2 2を形成 することで、 従来必要とされていたシール材を第 1、 第 2セパレ一タ 1 2 0 , 1 3 0間から排除することができる。
次に、 図 2 1 A乃至図 2 4を参照して、 第 3実施例による燃料電池用セパレ一 タ製造方法を説明する。
図 2 1 A及び図 2 1 Bは、 第 3実施例による製造方法における、 第 1、 第 2セ パレータをセッ卜する工程の説明図ある。
図 2 1 Aにおいて、 振動溶着装置 1 4 0に備えたエアシリンダ 1 4 6のピスト ンロッド 1 4 8を後退させることにより、 昇降部材 1 4 5と一緒に下サポート部 1 4 9をセッ卜位置 H 1まで下降させる。 これによリ、 下サポート部 1 4 9を上 サポート部 1 5 1から離すことができる。
図 2 1 Bにおいて、 下サポート部 1 4 9と上サポート部 1 5 1 との間に第 1 、 第 2セパレータ 1 2 0 , 1 3 0を配置し、 これらのセパレータ 1 2 0, 1 3 0を 下サポート部 1 4 9のセット凹部 1 5 8に向けて矢印 sの如く下降する。
図 2 2 A及び図 2 2 Bは、 第 3実施例による製造方法における、 第 1、 第 2セ パレータに加圧力をかける工程の説明図である。
図 2 2 Aにおいて、 下サポート部 1 4 9のセット凹部 1 5 8に第 2セパレ一タ 1 3 0の酸化剤ガス通路形成面 1 3 0 b側を収容するとともに、 第 2セパレータ 1 3 0の接合面 1 3 0 aに第 1セパレータ 1 2 0の冷却水通路形成面 1 2 0 aを 重ね合わせる。
次に、 振動溶着装置 1 4 0 (図 2 1 A参照) に備えたエアシリンダ 1 4 6のピ ストンロッド 1 48を進出させることにより、 昇降部材 1 45と一緒に下サポー 卜部 1 49を矢印 tの如く上昇させる。
図 22 Bにおいて、 下サポート部 1 49を加圧位置 H 5まで上昇することで、 第 1セパレータ 1 20の燃料ガス通路形成面 1 20 b側を上サポート部 1 51の セット凹部 1 59に収納するとともに、 第 1、 第 2セパレータ 1 20, 1 30に 加圧力 F 4をかけることができる。
加圧力 F 4は、 加圧力 F 1 と同様に、 一例として 1 0〜50 k g f /cm2と した。 加圧力 F 4を 1 0〜50 k g f Zcm2とした理由は図 1 3 Bの加圧力 F 1で説明した通りである。
すなわち、 加圧力 F 4が 1 O k g f /cm2未満では、 第 1セパレータ 1 20 の冷却水通路形成面 1 20 aと第 2セパレータ 1 30の接合面 1 30 aに十分な 摩擦熱を発生させることが難しく、 第 1、 第 2セパレータ 1 20, 1 30を溶着 させることができない。
そこで、 加圧力 F 4を 1 O k g f Zc m2以上に設定して第 1、 第 2セパレー タ 1 20, 1 30を溶着させるようにした。
一方、 加圧力 F 4が 50 k g f Zcm2を超えると、 第 1セパレータ 1 20の 冷却水通路形成面 1 20 aと第 2セパレ一タ 1 30の接合面 1 30 aに大きな摩 擦熱が発生して冷却水通路形成面 1 20 aと接合面 1 30 aとが過大に溶けてし まい、 第 1、 第 2セパレータ 1 20, 1 30の周縁からバリが発生する。
このため、 第 1、 第 2セパレータ 1 20, 1 30の周縁に発生したバリを除去 する余分な工程が必要になる。 そこで、 加圧力 F 4を 50 k g f /cm2以下に 設定して第 1、 第 2セパレータ 1 20, 1 30の周縁からバリが発生することを 防止するようにした。
図 23 A及び図 23 Bは、 第 3実施例による製造方法における、 第 1、 第 2セ パレ一タを振動溶着する工程の説明図である。
図 23 Aにおいて、 振動溶着装置 1 40の左右の固定電磁石部 1 53, 1 53 及び左右の移動電磁石部 1 57, 1 57を通電することにより、 スライダ部材 1 56と一緒に上サポート部 1 5 1を矢印 uの如く左右方向に振動する。
なお、 このときの振動周波数 (周波数) は 240H zである。 240H zの振 動周波数は比較的小物の振動溶着に適している。 よって、 振動周波数を 240 H zとすることで、 比較的小物の部材である第 1、 第 2セパレータ 1 20, 1 30 を好適に振動溶着することができる。
図 23 Bにおいて、 上サポート部 1 5 1を矢印 uの如く左右方向に振動するこ とにより、 第 1セパレ一タ 1 20を矢印 uの如く振動させる。 これにより、 第 1 セパレ一タ 1 20の冷却水通路形成面 1 20 aと第 2セパレータ 1 3 0の接合面 1 3 0 aとに摩擦熱を発生させる。
第 1、 第 2セパレータ 1 20, 1 30を熱可塑性樹脂で形成したので、 第 1セ パレータ 1 20の冷却水通路形成面 1 20 aと第 2セパレータ 1 30の接合面 1
30 aとに摩擦熱を発生させることにより、 第 1、 第 2セパレータ 1 20, 1 3 0を冷却水通路形成面 1 20 aと接合面 1 30 aとで溶着することができる。 これにより、 第 1セパレ一タ 1 20の冷却水通路形成面 1 20 aに形成した冷 却水通路用溝 1 2 1 ■■■を第 2セパレータ 1 30の接合面 1 30 aで塞いで冷却 水通路 1 22 ·-·を形成することができる。
図 24は、 第 3実施例による製造方法における、 振動溶着した第 1、 第 2セパ レータを取り出す工程の説明図である。
振動溶着装置 1 40に備えたエアシリンダ 1 46のピストンロッド 1 48 (図 2 1 A参照) を後退させることにより、 昇降部材 1 45と一緒に下サポート部 1
49を下降する。
下サポート部 1 49をセット位置 H 1まで下降させて、 下サポート部 1 49を 上サポート部 1 5 1から離し、 振動溶着で第 1、 第 2セパレータ 1 20, 1 30 を一体化したセパレータ 1 1 8を振動溶着装置 1 40から取り出す。これにより、 セパレータ 1 1 8の製造工程を完了する。
以上説明したように、第 3実施例の燃料電池用セパレータの製造方法によれば、 セパレ一タ 1 1 8を形成する際に、 第 1、 第 2セパレータ 1 20, 1 30を摩擦 熱で振動溶着して一体化するとともに、 第 1セパレータ 1 20の冷却水通路用溝 2 1 を第 2セパレータ 1 30で塞いで冷却水通路 22を形成することができる。 第 1、 第 2セパレータ 1 20, 1 30を振動溶着で一体化することで、 第 1 、 第 2セパレータ 1 20, 1 30間の電気的な接触抵抗を抑えることができる。 また、 第 1、 第 2セパレータ 1 20, 1 30を振動溶着で一体化することで、 従来必要とされていたシール材を第 1、 第 2セパレ一タ 1 20, 1 30間から除 去することができる。 第 1、 第 2セパレータ 1 20, 1 30間からシール材を除 去することで構成部材を減らすことができる。 加えて、 第1、 第 2セパレータ 1 20, 1 30間にシール材を組み付ける (塗布する) 組付け工数を減らすことが でぎる。
第 3実施例による方法で得たセパレータ 1 1 8 (図 20参照;試験例 3) の抵 抗過電圧を試験した。 その結果を以下の表 3に基づいて説明する。
表 3
Figure imgf000039_0001
比較例 2は、 第 1セパレータと第 2セパレ一タとを溶着しないで、 シール材で 接合させたセパレータである。
試験例 3は、 第 1セパレータ 1 20と第 2セパレータ 1 30とを振動溶着した 第 3実施例に係るセパレータ 1 1 8である。
比較例 2と試験例 3の抵抗過電圧は以下の条件で測定した。
すなわち、セルモジュールの温度を 80°Cに設定し、ァノードガス (燃料ガス) として純 H 2を供給するとともに、 カゾードガス (酸化剤ガス) として空気を供 給した。
アノード側の燃料ガス温度を 80°C、 カソ一ド側の酸化剤ガス温度を 80°Cと し、 アノード側の燃料ガス圧力を 50 kP a、 力ソード側の酸化剤ガス圧力を 1 O O k P aとした。 この条件下において、 電流密度が 0. 883AZcm2の電 流を流した。
この結果、 試験例 3の抵抗過電圧を、 比較例 2の抵抗過電圧と比較して、 1セ ルモジュール当たリ 0. 027 V減らすことができた。
よって、 試験例 3のように、 第 1セパレータ 1 20と第 2セパレータ 1 30と を振動溶着させることにより、 抵抗過電圧を減らして燃料電池の出力低下を防ぐ ことができることが分かる。
次に、 第 3実施例による製造方法の変形例について説明する。
第 3実施例による製造方法では、 第 1、 第 2セパレータ 1 20, 1 30を振動 溶着装置 1 40を使用して溶着した例について説明したが、 これに限らないで、 例えば超音波溶着で第 1、 第 2セパレータ 1 20, 1 30を溶着しても同様の効 果を得ることができる。
ここで、超音波溶着とは、超音波振動子で発生した振動エネルギーを利用して、 溶着することをいう。
この変形例の超音波溶着は、 第 1、 第 2セパレ一タ 1 20, 1 30を重ね合わ せた後に第 1、 第 2セパレータ 1 20, 1 30に加圧力をかけ、 この状態で、 超 音波振動子で発生した振動エネルギーをホーンを介して第 1、 第 2セパレータ 1 20, 1 30に与えて、 第 1、 第 2セパレータ 1 20, 1 30の重ね合わせ面に 摩擦熱を発生させることによリ、 第 1、 第 2セパレータ 1 20, 1 30を溶着す ることができる。
上記変形例の超音波溶着によれば、 第 3実施例による製造方法の振動溶着と同 様に、 第 1、 第 2セパレ一タ 1 20, 1 30を溶着することで、 第 1セパレータ 1 20に形成した冷却水通路用溝 1 2 1を第 2セパレータ 1 30で塞いで冷却水 通路 1 22を形成することができる。
なお、 上記実施例では、 電解質膜 1 2, 1 1 2として固体高分子電解質を使用 した固体高分子型燃料電池 1 0, 1 1 0について説明したが、これに限らないで、 その他の燃料電池に適用することも可能である。
また、 第 1実施例による方法では、 第 1、 第 2セパレータ 20, 40を押出し 成形やプレス成形で連続的に成形した例について説明した力 これに限らないで、 加熱プレス方法、 射出成形方法やトランスファ一成形方法などのその他の製造方 法で成形することも可能である。
トランスファ一成形方法とは、 成形材料をキヤビティとは別のポッ卜部に 1 シ ョッ卜分入れ、 プランジャーによって溶融状態の材料をキヤビティに移送して成 形する方法である。
さらに、 第 1実施例による方法では、 第 1、 第 2セパレータ 2 0, 3 0を振動 溶着で接合した例について説明したが、 これに限らないで、 第 1セパレータ 2 0 の冷却水通路形成面 2 0 aに電子線を照射するとともに、 第 2セパレータ 3 0の 接合面 3 0 aに電子線を照射して、 冷却水通路形成面 2 0 a及び接合面 3 0 aの 弾力性を高めることにより、 第 1、 第 2セパレータ 2 0, 3 0を重ね合わせて冷 却水通路形成面 2 0 aと接合面 3 0 aとを好適にシールすることも可能である。 また、 第 2、 第 3実施例による方法では、 第 1セパレータ 1 2 0にアノード拡 散層 1 1 5を溶着する際に、 アノード拡散層 1 1 5を振動させる例について説明 したが、 アノード拡散層 1 1 5に代えて第 1セパレータ 1 2 0を振動させても同 様の効果を得ることができる。
さらに、 第 2、 第 3実施例による方法では、 第 2セパレータ 1 3 0にカソード 拡散層 1 1 6を溶着する際に、 力ソード拡散層 1 1 6を振動させる例について説 明したが、 力ソード拡散層 1 1 6に代えて第 2セパレ一タ 1 3 0を振動させても 同様の効果を得ることができる。
加えて、 第 2及び第 3実施例による方法では、 第 1、 第 2セパレータ 1 2 0, 1 3 0を溶着する際に、 第 1セパレータ 1 2 0を振動させる例について説明した が、 第 1セパレータ 1 2 0に代えて第 2セパレータ 1 3 0を振動させても同様の 効果を得ることができる。
また、 第 2及び第 3実施例による方法では、 第 1セパレータ 1 2 0に冷却水通 路用溝 1 2 1を形成し、 第 2セパレータ 1 3 0の接合面 1 3 0 aを平坦面とした 例について説明したが、 第 1セパレ一タ 1 2 0を平坦面として第 2セパレ一タ 1 3 0に冷却水通路用溝を形成することも可能である。
加えて、 第 1、 第 2セパレータ 1 2 0 , 1 3 0のそれぞれに冷却水通路用溝を 形成し、 第 1、 第 2セパレータ 1 2 0 , 1 3 0を振動用着することにより、 それ ぞれに冷却水通路用溝で冷却水通路を形成することも可能である。
産業上の利用可能性
以上説明したように本発明は、 熱可塑性樹脂及び導電性材料を混合して混合材 とし、 この混合材で拡散層との接触面にガス流路溝を備えたセパレータ素材を形 成し、 このセパレータ素材の接触面に電子線を照射することで、 シール材を塗布 する手間を省くことができる。 従って、 生産性を高めるとともにコストを抑える ことがきるので、 例えば、 自動車の燃料電池のように比較的大量生産品に適用す ることで本発明を有効に利用することができる。

Claims

請 求 の 範 囲
1 . 電解質膜に沿わせたアノード及び力ソードを拡散層を介して両側から挟み 込む燃料電池用セパレータの製造方法において、
熱可塑性樹脂及び導電性材料を混合して混合材を得る工程と、
この混合材で前記拡散層との接触面にガス流路溝を備えたセパレータ素材を形 成する工程と、
このセパレータ素材の接触面に電子線を照射する工程と、 からなる燃料電池用 セパレータの製造方法。
2 . 前記熱可塑性樹脂は、 エチレン '酢ビ共重合体、 エチレン 'ェチルァクリ レー卜共重合体、 直鎖状低密度ポリエチレン、 ポリフ: π二レンサルファイ ド、 変 性ポリフエ二レンォキサイ ドから選択した樹脂であり、
前記導電性材料は、 黒鉛、 ケッチェンブラック、 アセチレンブラックの少なく とも一種から選択した炭素粒子であることを特徴とする請求項 1記載の燃料電池 用セパレータの製造方法。
3 . 熱可塑性樹脂のセパレータに炭素繊維の電極拡散層を重ね合わせ、 この電極拡散層とセパレータとに加圧力をかけ、
電極拡散層及びセパレータの一方を振動させて摩擦熱を発生させることによ リ、 セパレータに電極拡散層を溶着することを特徴とする燃料電池用セパレータ と電極拡散層との接合方法。
4 , 前記加圧力を 1 0〜 5 0 k g f Z c m 2 (約 9 8 0〜4 9 0 3 k P a )、 前記振動の周波数を 2 4 0 H zとしたことを特徴とする請求項 3に記載の燃料電 池用セパレータと電極拡散層との接合方法。
5 . 熱可塑性樹脂の第 1セパレータ及び第 2セパレータを準備し、
これら第 1、 第 2セパレ一タを重ね合わせた後に第 1、 第 2セパレータに加圧 力をかけ、
第 1、 第 2セパレータの一方を振動させて摩擦熱を発生させることにより、 第 2セパレータを第 1セパレータに溶着し、
第 1、 第 2セパレータの少なくとも一方に形成した冷却水通路用溝を他方のセ パレータで塞いで冷却水通路を形成することを特徴とする燃料電池用セパレータ の製造方法。
6. 前記加圧力を 1 0〜 50 k g f c m2 (約 9 80〜4903 k P a)、 前記振動の周波数を 240 H Zとしたことを特徴とする請求項 5に記載の燃料電 池用セパレータの製造方法。
PCT/JP2003/009083 2002-07-18 2003-07-17 燃料電池用セパレータの製造方法及び該セパレータと電極拡散層の接合方法 WO2004010524A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/517,013 US20060054269A1 (en) 2002-07-18 2003-07-17 Method of manufacturing separator for fuel cell, and method of connecting the separator to electrode diffusion layer
CA002492264A CA2492264A1 (en) 2002-07-18 2003-07-17 Method of manufacturing separator for fuel cell, and method of connecting the separator to electrode diffusion layer
AU2003252659A AU2003252659A1 (en) 2002-07-18 2003-07-17 Method of manufacturing separator for fuel cell, and method of connecting the separator to electrode diffusion layer

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2002209585A JP2004055273A (ja) 2002-07-18 2002-07-18 燃料電池用セパレータの製造方法
JP2002-209571 2002-07-18
JP2002-209585 2002-07-18
JP2002209571A JP2004055271A (ja) 2002-07-18 2002-07-18 燃料電池用セパレータと電極拡散層との接合方法
JP2002-244311 2002-08-23
JP2002244311 2002-08-23

Publications (1)

Publication Number Publication Date
WO2004010524A1 true WO2004010524A1 (ja) 2004-01-29

Family

ID=30773334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/009083 WO2004010524A1 (ja) 2002-07-18 2003-07-17 燃料電池用セパレータの製造方法及び該セパレータと電極拡散層の接合方法

Country Status (5)

Country Link
US (1) US20060054269A1 (ja)
CN (1) CN1293660C (ja)
AU (1) AU2003252659A1 (ja)
CA (1) CA2492264A1 (ja)
WO (1) WO2004010524A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060188773A1 (en) * 2003-03-25 2006-08-24 Peter Andrin Process for joining a gas diffusion layer to a separator plate
KR20080066046A (ko) * 2005-11-09 2008-07-15 디아이씨 가부시끼가이샤 연료 전지용 세퍼레이터의 제조 방법 및 연료 전지
JP5332092B2 (ja) * 2006-09-11 2013-11-06 トヨタ自動車株式会社 燃料電池
US20080194724A1 (en) * 2007-02-12 2008-08-14 Pankaj Singh Gautam Method of forming a crosslinked poly(arylene ether) film, and film formed thereby
JP5217230B2 (ja) * 2007-04-27 2013-06-19 トヨタ自動車株式会社 燃料電池用スタックおよび燃料電池搭載車両
CN104321904B (zh) * 2012-01-05 2017-04-19 奥迪股份公司 制造多个燃料电池分隔器板组件的方法
US10109870B2 (en) 2013-04-11 2018-10-23 Showa Denko K.K. Carbon member, carbon member manufacturing method, redox flow battery and fuel cell
JP6277169B2 (ja) * 2014-11-10 2018-02-07 フタムラ化学株式会社 燃料電池用流路部材の製造方法
JP7062728B2 (ja) * 2020-08-06 2022-05-06 本田技研工業株式会社 発電セル積層体の製造方法及び製造装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06290796A (ja) * 1993-03-30 1994-10-18 Shin Etsu Polymer Co Ltd 2次電池用反応電極層付双極板
JP2000012067A (ja) * 1998-06-18 2000-01-14 Fuji Electric Co Ltd 固体高分子電解質型燃料電池
EP1010492A2 (en) * 1998-12-10 2000-06-21 Ultex Corporation Ultrasonic vibration bonding method
EP1029893A2 (en) * 1999-02-16 2000-08-23 Nichias Corporation Resin composition
JP2002184420A (ja) * 2000-10-03 2002-06-28 Mitsubishi Chemicals Corp 燃料電池用セパレータ及びその製造方法
JP2002198063A (ja) * 2000-10-18 2002-07-12 Mitsubishi Chemicals Corp 燃料電池用セパレータの製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1010632B (zh) * 1987-02-14 1990-11-28 中国科学院长春应用化学研究所 软质塑料袋式隔板的制造方法
US20020197523A1 (en) * 2001-06-13 2002-12-26 Matsushita Electric Industrial Co., Ltd Method of producing fuel cell and fuel cell
US6828055B2 (en) * 2001-07-27 2004-12-07 Hewlett-Packard Development Company, L.P. Bipolar plates and end plates for fuel cells and methods for making the same
US6532275B1 (en) * 2001-11-30 2003-03-11 Pitney Bowes Inc. Method and system for safe mail transmission

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06290796A (ja) * 1993-03-30 1994-10-18 Shin Etsu Polymer Co Ltd 2次電池用反応電極層付双極板
JP2000012067A (ja) * 1998-06-18 2000-01-14 Fuji Electric Co Ltd 固体高分子電解質型燃料電池
EP1010492A2 (en) * 1998-12-10 2000-06-21 Ultex Corporation Ultrasonic vibration bonding method
EP1029893A2 (en) * 1999-02-16 2000-08-23 Nichias Corporation Resin composition
JP2002184420A (ja) * 2000-10-03 2002-06-28 Mitsubishi Chemicals Corp 燃料電池用セパレータ及びその製造方法
JP2002198063A (ja) * 2000-10-18 2002-07-12 Mitsubishi Chemicals Corp 燃料電池用セパレータの製造方法

Also Published As

Publication number Publication date
AU2003252659A1 (en) 2004-02-09
CA2492264A1 (en) 2004-01-29
US20060054269A1 (en) 2006-03-16
CN1669167A (zh) 2005-09-14
CN1293660C (zh) 2007-01-03

Similar Documents

Publication Publication Date Title
JP6245194B2 (ja) 燃料電池単セル及び燃料電池単セルの製造方法
JP6237675B2 (ja) 燃料電池単セル及び燃料電池単セルの製造方法
JP4799866B2 (ja) 膜ベース電気化学電池スタック
US11133514B2 (en) Resin frame equipped membrane electrode assembly and method of producing the same
US20060188773A1 (en) Process for joining a gas diffusion layer to a separator plate
JP2007172929A (ja) 固体高分子形燃料電池における膜電極接合体および補強型電解質膜の製造方法とその製造方法で得られる膜電極接合体および補強型電解質膜
WO2004010524A1 (ja) 燃料電池用セパレータの製造方法及び該セパレータと電極拡散層の接合方法
US8568943B2 (en) Method of preparing a fuel cell unitized electrode assembly by ultrasonic welding
JP4880995B2 (ja) 燃料電池モジュール及び燃料電池スタック
KR101124327B1 (ko) 리튬전지 및 그 제조방법
JP6432398B2 (ja) 燃料電池単セル
JP4887597B2 (ja) 固体高分子型燃料電池、ガス拡散層用部材およびその製造方法
JP2004055271A (ja) 燃料電池用セパレータと電極拡散層との接合方法
JP4237128B2 (ja) 燃料電池セパレータ用金型、燃料電池セパレータの製造方法、燃料電池セパレータ、燃料電池セパレータの製造装置、及び燃料電池
JP7306324B2 (ja) 燃料電池用セパレータ及び燃料電池用セパレータの製造方法
JP4269550B2 (ja) 燃料電池用セパレータの製造方法
JP3828522B2 (ja) 燃料電池用セパレータの製造方法
JP2004055273A (ja) 燃料電池用セパレータの製造方法
JP3828521B2 (ja) 燃料電池用セパレータ
JP2021170524A (ja) 燃料電池用セパレータ及び燃料電池用セパレータの製造方法
JP2005060748A (ja) 複合多孔質体の製造方法
JP6442393B2 (ja) 燃料電池用樹脂枠付き電解質膜・電極構造体
JP2005228703A (ja) 燃料電池
JP6133241B2 (ja) ホットメルト接着剤の製造方法及び製造装置
JP2022072699A (ja) 燃料電池用セパレータの製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2006054269

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2492264

Country of ref document: CA

Ref document number: 10517013

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20038171090

Country of ref document: CN

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10517013

Country of ref document: US