WO2004006361A1 - Method for preparing slurry composition for electrode of secondary cell - Google Patents

Method for preparing slurry composition for electrode of secondary cell Download PDF

Info

Publication number
WO2004006361A1
WO2004006361A1 PCT/JP2003/008401 JP0308401W WO2004006361A1 WO 2004006361 A1 WO2004006361 A1 WO 2004006361A1 JP 0308401 W JP0308401 W JP 0308401W WO 2004006361 A1 WO2004006361 A1 WO 2004006361A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
slurry composition
solvent
producing
composition according
Prior art date
Application number
PCT/JP2003/008401
Other languages
French (fr)
Japanese (ja)
Inventor
Takao Suzuki
Masahiro Yamakawa
Katsuya Nakamura
Original Assignee
Zeon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corporation filed Critical Zeon Corporation
Priority to JP2004519231A priority Critical patent/JP4470735B2/en
Publication of WO2004006361A1 publication Critical patent/WO2004006361A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a slurry composition for a secondary battery electrode, and more particularly, to a secondary battery electrode that has a small change with time in viscosity and can be applied to a current collector to obtain an electrode with a smooth coating film surface.
  • the present invention relates to a method for producing a slurry composition for use. Background art
  • Portable terminals such as notebook computers, mobile phones, and PDAs have become widespread, and lithium-ion secondary batteries are frequently used for these power supplies.
  • the lithium ion secondary battery has a structure in which a positive electrode and a negative electrode are arranged via a separator, and are housed in a container together with an electrolytic solution.
  • Positive electrode and negative electrode both collectively
  • “Secondary battery electrode” may be abbreviated as “electrode”.
  • the electrode is usually prepared by dissolving or dispersing a binder in a liquid medium and mixing an active material, a conductivity imparting agent, and the like with the slurry composition for a secondary battery electrode (hereinafter, simply referred to as “slurry”).
  • slurry composition Is applied to a current collector, the liquid medium is removed by drying or the like, and the mixture is bound as a mixed layer. .
  • JP-A-8-195201 discloses a method in which a binder obtained by dispersing a binder in a thickener solution is mixed with an active material and a conductivity-imparting agent. There has been proposed a method of adding, kneading and dispersing. However, this production method had problems such as insufficient dispersion of the conductivity-imparting agent and insufficient smoothness of the electrode surface.
  • Japanese Patent Application Laid-Open No. 9-204917 discloses a method for producing a slurry composition, in which a kneading step of each component and a slurry composition obtained by kneading are allowed to stand for a predetermined time to increase the viscosity. There has been proposed a method having a step and a step of re-kneading the viscous slurry composition. However, in this method, there are problems that the steps are complicated, and that the production of the slurry composition requires a long time and the productivity is reduced.
  • Japanese Patent Application Laid-Open Publication No. 2000-348713 discloses that an active material and a conductivity-imparting agent are kneaded by adding a thickener at least twice or more and then kneading the binder.
  • a method for producing a slurry composition using water as a medium has been proposed.
  • this method depending on the type of the binder, there is a problem that the dispersion of the binder itself is not sufficient, so that the viscosity changes with time or the binding property is reduced. Disclosure of the invention
  • an object of the present invention is to provide a slurry composition for a secondary battery electrode, which provides an electrode having a mixed layer in which the change in viscosity with time is small, the binding property is good, and the surface is smooth. It is to provide a manufacturing method.
  • the present inventors have intensively studied a method for obtaining a slurry composition in which the active material and the conductivity-imparting agent are highly dispersed, and as a result, kneaded the active material with a dispersion liquid in which a polymer binder that is difficult to dissolve in a solvent is dispersed. Then, by taking a procedure of mixing a solution in which a polymer binder soluble in the solvent is dissolved with the kneading liquid, a highly dispersed slurry composition is obtained.
  • the present inventors have found that an electrode having a t-smooth mixed layer without agglomerates can be obtained when the electrode is manufactured, and further studies based on this finding have led to the completion of the present invention.
  • a solvent (SA) dispersion of the polymer (A) containing at least 50% by weight of an insoluble content in the solvent (SA) is kneaded with the electrode active material,
  • a method for producing a slurry composition for a secondary battery electrode comprising kneading the obtained kneading liquid and a solvent (SB) solution of a polymer (B).
  • a method for producing a secondary battery electrode which comprises applying the slurry composition produced as described above to a current collector and drying it.
  • a solvent (SA) dispersion of a polymer (A) containing 50% by weight or more of an insoluble content in a solvent (SA) is kneaded with an electrode active material. Then, the obtained kneading liquid is kneaded with a solution of the polymer (B) in a solvent (SB).
  • non-aqueous solvent having a boiling point of 80 to 350 ° C. under atmospheric pressure
  • non-aqueous solvents include: amides such as N-methylpyrrolidone, dimethylformamide, and dimethylacetamide; hydrocarbons such as toluene, xylene, n-dodecane, tetrauran; Alcohols such as 1-hexanol, 1-nonanol, and lauryl alcohol; ketones such as methylethyl ketone, cyclohexanone, holone, acetate phenone, and isophorone; benzyl acetate, isopentyl butyrate, and lactic acid Esters such as methyl, ethyl lactyl and butyl lactate; amines such as o-toluidine, m-toluidine, p-toluidine
  • solvents (SA) and (SB) can be used alone or in combination of two or more.
  • the solvent (SA) used for the dispersion of the polymer (A) and the solvent (SB) used for the solution of the polymer (B) preferably have the same composition.
  • the polymer should be used if the insoluble content of the polymer (A) is 50% by weight or more and the polymer (B) is soluble in the solvent composition after mixing the dispersion and the polymer-(B) solution. Can be.
  • two kinds of polymers are used as a binder.
  • the type of the polymer (A), which is one component of the polymer binder, is not particularly limited, but a polymer containing 50% by weight or more of a component insoluble in a solvent (SA) is used.
  • the component insoluble in the solvent (SA) of the polymer (A) is preferably at least 60% by weight, more preferably at least 70% by weight, and preferably 90% by weight or less, more preferably 87% by weight. % By weight or less.
  • the polymer (A) retains a particulate or fibrous state in the slurry composition, and as a result, the surface of the active material is covered with a film and the battery reaction is suppressed. Is assumed to be no longer hindered.
  • the polymer (A) may be formed into a film, and the binding durability of the active material may be reduced, which may cause a decrease in capacity due to repeated charge and discharge. is there. Conversely, if the polymer (A) having an excessively large amount of insolubles in the solvent (SA) is used, there is a possibility that the binding property of the binder may be reduced.
  • the amount of the insoluble component in the solvent was determined by immersing 0.2 g of the polymer in 20 ml of the solvent at a temperature of 60 ° C. for 72 hours, followed by filtration through an 80 mesh sieve. It is expressed as a percentage of the weight of the polymer determined by drying the above components relative to the weight of the polymer before immersion.
  • the polymer (A) containing a large amount of insolubles in the solvent (SA) as described above is a cross-linked copolymer of a monofunctional ethylenically unsaturated monomer and / or conjugated diene and a polyfunctional ethylenically unsaturated monomer. Preferably, there is.
  • polyfunctional ethylenically unsaturated monomers include divinyl compounds such as divinylbenzene; dimethacrylates such as diethylene daricol dimethacrylate and ethylene glycol dimethacrylate; trimethylolpropane trimethacrylate and the like.
  • non-conjugated dienes such as 1,4-hexadiene, ethylidene norpolene, and dicyclopentene can also be used.
  • polyfunctional ethylenically unsaturated monomers can be used alone or in combination of two or more.
  • the proportion of the polyfunctional ethylenically unsaturated monomer is usually from 0.3 to 5% by weight, preferably from 0.5 to 3% by weight, based on the total amount of the monomer for producing the polymer (A).
  • Monofunctional ethylenically unsaturated monomers used in the production of the polymer (A) include ⁇ -olefins such as ethylene, propylene, ⁇ -butene, isobutene and 3-methyl-1-butene; (meth) acrylonitrile ( Unsaturated nitrile compounds such as acrylonitrile or methacrylonitrile);
  • (Meth) methyl acrylate (Methyl acrylate or methyl methacrylate; the same applies hereinafter), (meth) ethyl acrylate, (meth) butyl acrylate, (meth) hexyl acrylate, (meth) acrylic acid (Meth) acrylic acid esters such as 2-ethylhexyl; crotonic acid esters such as methyl crotonate and 2-ethylhexyl crotonate and hydroxypropyl crotonate; (meth) acrylic acid ester (Meth) Acrylic esters containing alkoxy groups such as methoxyxyl and (meth) ethoxyxetyl acrylate; (meth) acrylic containing amino groups such as (meth) dimethylaminoethyl acrylate and (meth) getyl aminoethyl acrylate Acid esters; 2-hydroxypropyl (meth) acrylate, (meth) acrylic acid Hydroxy group
  • acrylic acid methacrylic acid, crotonic acid, isocrotonic acid
  • carboxyl group-containing vinyl compounds such as maleic acid and fumaric acid, and dicarboxylic anhydrides
  • aromatic vinyl compounds such as styrene and ⁇ -methylstyrene.
  • conjugated diene examples include 1,3-butadiene, 2-methyl-1,3-butadiene (isoprene), 2,3-dimethylamine, 3-butadiene, and 1,3-pentadiene. These monofunctional ethylenically unsaturated monomers and conjugated diene can be used alone or in combination of two or more.
  • a crosslinked polymer can be obtained by appropriately adjusting polymerization conditions such as polymerization temperature, polymerization conversion, and the amount of a molecular weight modifier even when a polyfunctional ethylenically unsaturated monomer is not used. .
  • the glass transition temperature (T g) of the polymer ( ⁇ ) is preferably ⁇ 80 to 0 ° C., and more preferably ⁇ 60 to 15 ° C. If T g is too high, the flexibility of the electrode decreases, When charge and discharge are repeated, the active material is easily separated from the current collector. If ⁇ g is too low, the battery capacity may decrease.
  • T g of a homopolymer is ⁇ 85 ° C.
  • acrylic acid Monomers such as n-butyl (54 ° C), n-decyl methacrylate (65 ° C), 1,3-butadiene, isoprene, etc.
  • Tg 0 ° C or less
  • Preferred examples of the polymer (A) include 2-ethylhexylnomethacrylate acrylate Zacrylonitrile / diethylene glycol dimethacrylate copolymer, butyl acrylate / acrylic acid / trimethylolpropane trimethacrylate copolymer. And acrylonitrile butadiene copolymer rubber.
  • the polymer (A) may be a mixture of polymers (A) having different monomer compositions. Further, the dispersion of the polymer (A) in the solvent (S A) may contain a small amount of a polymer having an insoluble content in the solvent (S A) of less than 50% by weight as long as the effects of the present invention are not impaired.
  • the average particle size of the polymer (A) is preferably from 0.005 to 1,000 m, more preferably from 0.01 to 100 m, particularly preferably from 0.05 to 10 m. If the average particle size is too large, the amount required for the binder will be too large, and the internal resistance of the electrode will increase. Conversely, if the average particle diameter is too small, the surface of the active material is covered and the battery reaction is hindered.
  • the average particle diameter is a number average particle diameter calculated by measuring the diameter of 100 polymer particles randomly selected in a transmission electron micrograph and calculating the arithmetic average value.
  • the method for producing the polymer (A) is not particularly limited.
  • the polymer (A) can be obtained by polymerization by a known polymerization method such as an emulsion polymerization method, a suspension polymerization method, a dispersion polymerization method, or a solution polymerization method. It is preferable to produce by the method described above because the particle diameter when dispersed in the solvent (SA) is easily controlled.
  • the other component of the polymer binder, polymer (B), is a polymer that is soluble in the solvent (SB) that is the medium of the slurry composition.
  • Polymer (B) is a solvent
  • the polymer binder is not limited as long as it does not contain a component insoluble in (SB). However, a polymer binder that increases the viscosity of the slurry so that a mixed layer is easily formed by applying the slurry composition to a current collector is preferable.
  • a monofunctional ethylenically unsaturated monomer and / or a conjugated diene are used, and specific examples thereof include those exemplified as those used in the production of the polymer (A). .
  • These monomers can be used alone or in combination of two or more.
  • Examples of the above polymer (B) include acrylonitrile butadiene copolymer and its hydride, ethylene / methyl acrylate copolymer, styrene / butadiene copolymer, butadiene rubber, ethylene / vinyl alcohol copolymer, acryloyl Examples thereof include nitrile / ethylene copolymer and acrylonitrile / methyl (meth) acrylate copolymer.
  • the polymer (B) may be a fluorine-containing polymer.
  • the fluorine-containing polymer is a polymer containing 50 mol% or more, preferably 70 mol% or more, more preferably 80 mol% or more of fluorine-containing monofunctional ethylenic monomer units.
  • Examples of the fluorine-containing monomer include vinylidene fluoride, tetrafluroethylene, hexafluene propylene, vinyl trifluoride, vinyl fluoride, and perfluoroalkyl vinyl ether. Is preferred.
  • the amount of vinylidene fluoride is preferably 30 mol% or less, more preferably 20 mol% or less of the total fluorine-containing monomer. Used in conjunction with.
  • the fluorine-containing polymer may have a fluorine-free monomer unit of 50 mol% or less, preferably 30 mol% or less, more preferably 20 mol% or less. If the content of the non-fluorine-containing monomer unit is too large, the solvent resistance to the electrolytic solution is reduced, and the active material may easily fall off the electrode.
  • Monomers that can be copolymerized with the fluorine-containing monofunctional ethylenic monomer include ethylene, propylene, 1-butene and other olefins; methyl (meth) acrylate, methyl (meth) acrylate, and (meth) acryl.
  • (Methyl) acrylates such as 2-ethylhexyl acid; styrene, ⁇ -methylstyrene, ⁇ -t-butyls
  • Aromatic vinyl compounds such as ethylene; unsaturated methyl compounds such as (meth) acrylonitrile; (meth) acrylamide, (meth) acrylamide, N-methylol (meth) acrylamide, N-butoxymethyl (meth) acrylamide, etc.
  • the polymer (B) may be a mixture of polymers (B) having different compositions.
  • the solvent (SB) solution of the polymer (B) may contain a small amount of a polymer insoluble in the solvent (SB) as long as the effect of the present invention is not impaired.
  • the method for producing the polymer (B) is not particularly limited.
  • it can be obtained by a known polymerization method such as an emulsion polymerization method, a suspension polymerization method, a dispersion polymerization method, and a solution polymerization method.
  • the total amount of the polymer binder obtained by combining the polymer (A) and the polymer (B) is preferably from 0.1 to 5 parts by weight, more preferably from 0.2 to 3 parts by weight, especially from 100 parts by weight of the active material. Preferably it is 0.5 to 2 parts by weight. If the total amount of the binder is too small, the active material may fall off the electrode, and if the total amount is too large, the active material may be covered by the binder and the battery reaction may be inhibited.
  • the weight ratio of the polymer (A) to the polymer (B) is preferably 5/1 to 1 Z5, more preferably 31 to 13, and particularly preferably 2 / "! To 12.
  • Polymer (A) If the ratio is too large, the binding property is improved, but the fluidity of the slurry composition is reduced, and the mixed layer obtained by coating the electrode may not be smooth. If the ratio is too small, the binder may obscure the surface of the active material and hinder the battery reaction.
  • the electrode active material used in the present invention varies depending on the type of the secondary battery.
  • any of a negative electrode active material and a positive electrode active material may be used as long as they are used for manufacturing a normal lithium ion secondary battery electrode.
  • Examples of the negative electrode active material of a lithium ion secondary battery include amorphous carbon, Daraphite, natural graphite, mesocarbon microbeads (MCM B), carbonaceous materials such as pitch-based carbon fibers, and conductive polymers such as polyacene. Is done.
  • polyacetylene poly
  • Organic compounds such as a conductive polymer such as P-phenylene can also be used.
  • a nickel-metal hydride secondary battery both the negative electrode active material and the positive electrode active material can be used as long as they are used in a normal nickel-metal hydride secondary battery.
  • the negative electrode active material is a hydrogen storage alloy. Can be used.
  • the positive electrode active material nickel oxyhydroxide, nickel hydroxide, or the like can be used.
  • the solution of the polymer (B) in the solvent (SB) is preferably one containing a conductivity-imparting agent.
  • Carbon is used as a conductivity-imparting agent in a lithium ion secondary battery.
  • Examples of the conductivity imparting agent used in the nickel-hydrogen secondary battery include cobalt oxide for the positive electrode, nickel powder, cobalt oxide, titanium oxide, and carbon for the negative electrode.
  • examples of the carbon as the conductivity-imparting agent include acetylene black, furnace black, graphite, carbon fiber, activated carbon, and fullerenes. Among them, acetylene black and furnace black are preferred.
  • the amount of the conductivity-imparting agent to be used is generally about 20 to 20 parts by weight, preferably about 2 to 10 parts by weight, per 100 parts by weight of the active material.
  • a solvent (SA) dispersion of a polymer (A) containing 50% by weight or more of an insoluble content in the solvent (SA) is kneaded with an electrode active material to prepare a mixed solution. It is important to separately prepare a solvent (SB) solution of the polymer (B) and then knead the two solutions.
  • SB solvent
  • the procedure of mixing the polymer (A) and the polymer (B) first, or the procedure of mixing the active material and the polymer (B) first the change with time of the viscosity becomes large. Or the binding property may be reduced.
  • the amount of the solvent (SA) for preparing a mixed solution of the polymer (A) and the active material varies depending on the type of the active material, and is preferably 80 to the “liquid absorption amount” at which the active material can be adsorbed. To 120% by weight, more preferably 85 to 110% by weight, and particularly preferably 90 to 1% by weight. It is an amount to be 00% by weight. If the amount of the solvent in the mixed solution is less than 80% by weight of the absorbed amount of the active material, the active material becomes powdery at the time of kneading, so that the shearing does not work and the mixing of the active material and the polymer (A) is performed. May be uneven, which may result in a slurry composition having poor fluidity.
  • the amount of the solvent in the mixed solution is more than 120% by weight of the absorbed amount of the active material, the viscosity of the mixed solution is low and the shearing does not work. As a result, the slurry composition having poor fluidity is obtained. There is a possibility of becoming a thing.
  • the liquid absorption of the active material can be measured by the following method according to ASTM D281. That is, while spinning 20 g of the active material collected in a petri dish with a spatula, add 0.5 ml of the solvent dropwise at a time, and determine the amount of the solvent in which the powder of the active material is collected into a hard cake. Convert to the weight of This measurement is performed three times, and the average value is taken as the liquid absorption.
  • a mixer and a kneading time for dispersing the polymer (A) in the solvent (S A) and for dissolving the polymer (B) in the solvent (S B) are not particularly limited.
  • a mixer for performing these for example, a mixing tank with a stirrer, a planetary mixer, and a repump blender are used.
  • the polymer (A) particles are dispersed in water by an ordinary method because of the high production efficiency and the like. It is preferable to prepare one aqueous dispersion and then replace the water in the aqueous dispersion of the polymer with a non-aqueous solvent.
  • the substitution method include a method in which a non-aqueous solvent is added to an aqueous dispersion of the polymer (A), and then water in the dispersion medium is removed by, for example, a distillation method or a dispersion medium phase conversion method.
  • the conductivity-imparting agent When using the conductivity-imparting agent, it is preferable to disperse the conductivity-imparting agent in the solution of the polymer (B) in advance and use the mixture as a mixture.
  • the solid content of the mixed solution is 30 to 40% by weight, particularly 33 to 38% by weight. It is preferable to adjust the amount of the solvent (SB) as described above and knead the mixture.
  • the solid content concentration is a ratio of the total amount of the polymer (B) and the conductivity-imparting agent to the total amount of the mixed solution. When the solid content is in this range, it becomes easy to mix the conductivity-imparting agent uniformly.
  • a slurry composition is prepared by kneading a mixture obtained by kneading the dispersion of the polymer (A) and the active material prepared as described above, and a solution of the polymer (B).
  • a solvent (SA) or (SB) may be added so as to have a viscosity suitable for coating, depending on the types of the binder, the electrode active material, and the conductivity imparting agent.
  • the optimum viscosity of the slurry composition depends on the type of coating machine applied to the current collector and the shape of the coating line, but at a temperature of 23 ° C, the rotor number is 4 using a Brookfie Id L-type viscometer.
  • the viscosity after rotation for 1 minute at a rotation speed of 30 rpm is usually 1500 to 8000 mPas, preferably 2000 to 6000 mPas. If the viscosity of the slurry composition is excessively low, sedimentation of the slurry may occur over time, or liquid dripping may occur during coating. Conversely, if the viscosity is excessively high, the thickness of the coating film may be mixed. There is a possibility that the smoothness of the layer surface is reduced.
  • the mixer and the kneading time for preparing the mixed solution by mixing and for dispersing the conductivity-imparting agent in the solution of the polymer (B) in the solvent (SB) are not particularly limited. It is preferable to uniformly mix the particles of the substance or the conductivity-imparting agent and the polymer of the binder.
  • Examples of the high shear mixer include a ball mill, a sand mill, a pigment disperser, a crusher, an ultrasonic disperser, a homogenizer, and a planetary mixer. Among them, a planetary mixer is preferable.
  • Mixing conditions in a high shear mixer are not particularly limited, but the mixing temperature is usually 15 to 50 ° C, and the mixing time is usually 60 to 180 minutes.
  • the degree of dispersion can be measured by a grain gauge, but it is preferable to mix and disperse such that at least aggregates larger than 100 m are eliminated.
  • the slurry composition obtained by the method of the present invention provides a secondary battery electrode mixed layer having little change over time in viscosity, good binding properties, a smooth surface and a uniform thickness.
  • the secondary battery electrode can be manufactured by a method in which the slurry composition for a secondary battery electrode obtained by the method of the present invention is applied to a current collector and dried. That is, the secondary battery The electrode is formed by binding a mixed layer containing a binder, an active material, and a conductive additive, a thickener, and the like added as needed to a current collector.
  • the secondary battery electrode obtained by the above method can be used for both a positive electrode and a negative electrode, but is preferably used for a positive electrode, and particularly preferably for a positive electrode of a lithium ion secondary battery.
  • the current collector is not particularly limited as long as it is made of a conductive material.
  • Lithium secondary batteries are made of metal such as iron, copper, aluminum, nickel, and stainless steel.In particular, when aluminum is used for the positive electrode and copper is used for the negative electrode, the lithium secondary battery is manufactured by the method of the present invention. The effect of the slurry composition appears best.
  • the nickel-metal hydride secondary battery include punched metal, expanded metal, wire mesh, foamed metal, reticulated metal fiber sintered body, and metal plating resin plate.
  • the shape of the current collector is not particularly limited, it is usually a sheet having a thickness of about 0.001 to 0.5 mm.
  • the method for applying the slurry composition to the current collector is not particularly limited.
  • methods such as a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, and an eight-coating method can be used.
  • the amount of the slurry composition to be applied is also not particularly limited, but the thickness of the dried mixed layer formed of the active material, the binder, and the like formed after drying and removing the liquid medium is usually 0.005 to 5 mm, preferably between 0.0 ° and 2 mm.
  • the method of drying the slurry composition applied to the current collector is not particularly limited. Examples of the method include drying with hot air, hot air, low-humidity air, vacuum drying, and irradiation with (far) infrared rays or electron beams. As an example.
  • the density of the active material of the electrode may be increased by pressing the dried electrode by a method such as a roll press.
  • the secondary battery can be manufactured by using components such as the secondary battery electrode, the electrolyte solution, and the separator obtained by the above-described method, and manufacturing the secondary battery according to a conventional method.
  • a negative electrode and a positive electrode are overlapped with each other via a separator, rolled or folded according to the shape of the battery, placed in a battery container, filled with an electrolyte, and sealed.
  • the shape of the battery may be any of a coin type, a button type, a sheet type, a cylindrical type, a square type, a flat type, and the like.
  • the electrolyte may be in a liquid or gel form as long as it is used for a normal secondary battery, and an electrolyte that exhibits a function as a battery may be selected according to the type of the negative electrode active material and the positive electrode active material. .
  • a lithium ion secondary battery also known lithium salt is any conventionally available, L i CI 0 4, L i BF 4, L i PF have L i CF 3 C0 2, etc. can be mentioned.
  • the solvent in which this electrolyte is dissolved is not particularly limited. Specific examples include: carbonates such as ethylene carbonate, ethyl methyl carbonate, and propylene carbonate; lactones such as r-butyrolactone; 1,2-dimethoxetane, getyl ether, tetrahydrofuran, Ethers such as 2-methyltetrahydrofuran; sulfoxides such as dimethyl sulfoxide; and the like, and these can be used alone or as a mixed solvent of two or more kinds.
  • a conventionally known aqueous solution of lithium hydroxide having a concentration of 5 mol / liter or more can be used.
  • the Tg of the polymer was measured by a differential scanning calorimeter (DSC) at a heating rate of 1 o ° cz.
  • NMP N-methylpyrrolidone
  • the amount of polymer insoluble in NMP was determined by immersing 0.2 g of polymer in 20 ml of NMP at 60 ° C for 72 hours, filtering through an 80-mesh sieve, and drying the components on the sieve. Expressed as a percentage of the previous weight.
  • the average particle diameter of the polymer is determined as the number average particle diameter calculated by measuring the diameter of 100 randomly selected polymer particles in a transmission electron micrograph and calculating the average value.
  • the unit is (m).
  • each repeating unit constituting the polymer was determined by 1 H— and 13 C—NMR measurements. The unit is (mol%).
  • NMP was added dropwise in 0.5 ml increments, and the amount of NMP in which the powder of the active material was formed into a hard cake was measured, and the amount of NMP per 100 g of the active material was measured. Convert to weight. The average value of three measurements is taken as the liquid absorption.
  • the viscosity of the slurry composition was measured at 23 ° C after the preparation of the slurry composition, and after 1 hour and 24 hours, measured with a Br 0 kfie Id L-type viscometer at a temperature of 23 ° C. The measurement was performed after rotation for 1 minute at data number 4, rotation speed 30 rpm. The unit is (m P a ⁇ s). Also, the percentage of the viscosity value at 24 hours to the viscosity value at 1 hour was defined as slurry-one-viscosity maintenance rate (%).
  • the slurry composition for a lithium secondary battery positive electrode prepared in Examples and Comparative Examples was uniformly applied to aluminum foil (20 m thick) by a doctor blade method, and dried at a temperature of 120 ° C by a dryer. For 15 minutes. After further dried under reduced pressure for 2 hours at 0. 6 k P a, 1 20 ° C using a vacuum dryer, lithium and compressed so that the electrode density by roll press biaxial becomes 3. 2 GZC m 3 ions A secondary battery positive electrode was obtained.
  • a rectangle having a length of 100 mm and a width of 25 mm is cut out so that the application direction is the long side, and is used as a test piece.
  • the aluminum positive electrode and the lithium metal negative electrode obtained by the method described in (7) above were cut into a circular shape having a diameter of 15 mm, and a circular polypropylene porous film having a diameter of 18 mm and a thickness of 25 Aim was formed on the electrode layer side of the positive electrode.
  • the lithium metal of the negative electrode is laminated in order, placed so that the aluminum foil of the positive electrode is in contact with the bottom of the outer container, expanded metal is placed on the negative electrode, and polypropylene packing is installed. It was housed in a stainless steel coin-shaped outer container (diameter 2 Omm, height 1.8 mm, stainless steel thickness 0.25 mm).
  • the battery capacity was measured at a charge / discharge rate of 0.1 C at 25 ° C, charged to 0.2 V by the constant current method (current density: 0.5 m AZg—active material), and charged to 3 V. Repeat charging and discharging 5 times each, and measure the battery capacity each time. The average value of the battery capacity measured repeatedly is used as the evaluation result.
  • the unit is [mA hZg: per active material (hereinafter, the same applies to battery capacity)].
  • Charge / discharge was performed by the constant current method in the same manner as in the measurement of the battery capacity, except that the measurement conditions were changed to a constant current of 1 C, and the discharge capacity at the third cycle (unit: mA hZg) was measured.
  • the ratio of the discharge capacity at 1 C to the discharge capacity at 0.1 C in the third cycle was calculated as a percentage. The larger the value, the faster the charge / discharge is possible.
  • Table 1 shows the composition (unit: mol%) of each polymer used as a binder in Examples and Comparative Examples.
  • Polymers A—1, 2 and B—1—3 are all milk It was produced by a chemical polymerization method. Commercially available polyvinylidene fluoride was used. Table 1
  • Polymer B-1 was obtained by hydrogenating the repeating unit derived from butadiene in an acrylonitrile / butadiene copolymer.
  • the mixed liquid a was added to the mixed liquid a using the planetary mixer, and kneaded for 30 minutes to obtain a slurry composition for a positive electrode of a lithium ion secondary battery.
  • the solids concentration of one composition was 81.4%.
  • the slurry viscosity was 2200 mPa ⁇ s at the first hour, 2270 mPa as at the 24th hour, and the slurry-viscosity change rate was 103%.
  • Table 2 shows the results of testing the characteristics of the secondary battery electrode and the secondary battery manufactured using the slurry composition after 24 hours.
  • a slurry composition was prepared in the same manner as in Example 1 with the components and amounts shown in Table 2.
  • NMP amounts indicated in the preparation of mixed solution b 6.3 parts were used for dissolving polymer (B), and the remaining amount was added after mixing the conductivity-imparting agent.
  • Example 3 all the indicated amounts were used for dissolving the polymer (B).
  • Table 2 shows the test results.
  • Table 3 shows the results of testing the characteristics of the secondary battery electrode and the secondary battery produced using the slurry composition after the elapse of 24 hours.
  • the slurry viscosity was 1800 mPa ⁇ s at the first hour, and 2120 mPa ⁇ s at the 24th hour, and the slurry-viscosity change rate was 17%.
  • Table 3 shows the results of testing the characteristics of the secondary battery electrode and the secondary battery produced using the slurry composition after the elapse of 24 hours.
  • NM P 16.1 Dissolve 0.1 part of polymer B-1 and 0.1 part of polymer B-3 in 6.1 parts, and add this solution, 3 parts of acetylene black and 100 parts of active material (i). Kneading with a planetary mixer having two pairs of spiral hook type stirring blades for 30 minutes, dissolving 0.1 part of polymer B-1 and 0.1 part of polymer B-3 in 3 parts of NMP The undulated solution was added and kneaded for another 30 minutes.
  • a dispersion liquid in which 0.4 part of polymer A-1 was dispersed in 4.6 parts of NMP was added and kneaded for 30 minutes to obtain a slurry composition for a positive electrode of a lithium ion secondary battery.
  • the solid content concentration of the slurry composition was 81.4%.
  • the slurry viscosity was 8400 mPa ⁇ s at the first hour and 2050 mPa as at the 24th hour, and the slurry-viscosity change rate was 11%.
  • Table 3 shows the results of testing the characteristics of the secondary battery electrode and the secondary battery produced using the slurry composition after 24 hours.
  • NM P 1 Dissolve 0.2 part of polymer B-1 and 0.2 part of polymer B-3 in 5.8 parts, and mix this solution with 100 parts of active material (i) in two pairs of spirals
  • the mixture was kneaded for 60 minutes with a planetary mixer having hook-type stirring blades to prepare a mixed solution c.
  • the solid content concentration of the mixed solution c was 86.4%.
  • the mixed solution d was added to the mixed solution c using the above-mentioned brine mixer, and the mixture was further kneaded for 30 minutes to obtain a slurry composition for a positive electrode of a lithium ion secondary battery.
  • the solid concentration of the slurry composition was 8.4%.
  • the slurry viscosity was 8950 mPa ⁇ s at the first hour and 1980 mPa ⁇ s at the 24th hour, and the slurry viscosity change rate was 22%.
  • Table 3 shows the results of testing the characteristics of the secondary battery electrode and the secondary battery produced using the slurry composition after 24 hours. Table 3
  • any of the slurry compositions produced by a procedure different from that of the present invention exhibited defects. That is, it is obtained by a method in which all components other than the solvent are sequentially added to the entire amount of the solvent and kneaded, or a method in which the remaining components are added to the remaining amount of the solvent by sequentially adding and kneading about 70% of the solvent.
  • the resulting slurry composition has a high initial value of viscosity and then drops rapidly and is not stable, and the electrode mixture layer has a rough surface and a remarkably low peel strength. Both capacity and rate characteristics were low (Comparative Examples 1 and 2).
  • the slurry composition prepared by a method of adding a liquid in which the polymer (A) is dispersed to a liquid mixture in which the polymer (B), the conductivity-imparting agent, and the active material are mixed first has an initial viscosity value. It was as high as 8 to 9 times and decreased sharply with time.
  • the electrode and the secondary battery obtained using this slurry composition exhibited the same defects as Comparative Examples 1 and 2 (Comparative Example 3).
  • the slurry composition obtained by the method of the present invention has little change in viscosity over time and good binding properties.
  • this composition is applied to a current collector and dried, the mixture has a smooth surface and a uniform thickness.
  • a secondary battery electrode having a layer is formed.
  • the above-mentioned secondary battery electrode can be used for both the positive electrode and the negative electrode, but is preferably used for the positive electrode, and is particularly preferably used for the positive electrode of the lithium ion secondary battery.

Abstract

A method for preparing a slurry composition for an electrode of a secondary cell, which comprises kneading an electrode active material and a dispersion in a solvent (SA) of a polymer (A) containing 50 wt % or more of a portion insoluble in the solvent (SA), and then kneading the above-kneaded fluid and a solution of a polymer (B) in a solvent (SB). A slurry composition prepared by the method is reduced in the change of the viscosity thereof due to the elapse of time and exhibits good sticking property, and provides an electrode of a secondary cell having a mixed layer of a flat surface and a uniform thickness through applying the composition on a collector followed by drying.

Description

明細書 二次電池電極用スラリ一組成物の製造方法 技術分野  Description Method for producing slurry composition for secondary battery electrode
本発明は、二次電池電極用スラリー組成物の製造方法に関し、 さらに詳しくは、 粘度の経時変化が少なく、 集電体に塗工して塗膜表面の平滑な電極が得られる二 次電池電極用スラリ一組成物の製造方法に関する。 背景技術  The present invention relates to a method for producing a slurry composition for a secondary battery electrode, and more particularly, to a secondary battery electrode that has a small change with time in viscosity and can be applied to a current collector to obtain an electrode with a smooth coating film surface. The present invention relates to a method for producing a slurry composition for use. Background art
ノート型パソコン、 携帯電話、 P D Aなどの携帯端末が広く普及しており、 こ れらの電源にリチウムイオン二次電池が多用されている。 最近、 携帯端末の使用 時間の延長や充電時間の短縮などの要望が高まり、 これに伴い電池の高性能化、 特に容量の増大と充電速度 (レー卜特性) の向上が強く求められている。  Portable terminals such as notebook computers, mobile phones, and PDAs have become widespread, and lithium-ion secondary batteries are frequently used for these power supplies. Recently, there has been an increasing demand for extending the use time of a mobile terminal and shortening a charging time, and accordingly, there is a strong demand for higher performance of a battery, particularly, an increase in capacity and an improvement in charging speed (rate characteristics).
リチウムイオン二次電池は、 正極と負極とをセパレー夕一を介して配置し、 電 解液とともに容器内に収納した構造を有する。 正極および負極 (両者を総称して The lithium ion secondary battery has a structure in which a positive electrode and a negative electrode are arranged via a separator, and are housed in a container together with an electrolytic solution. Positive electrode and negative electrode (both collectively
「二次電池電極」、 略称して 「電極」 と記すことがある。) は、 電極活物質 (以下、 単に 「活物質」 と記すことがある。) と、 必要に応じて使用される導電性付与剤 などとを二次電池電極用バインダーポリマ一 (以下、 単に 「バインダー」 と記す ことがある。) によりアルミニウムや銅などの集電体に結着させたものである。 電極は、 通常、 バインダーを液状媒体に溶解または分散させ、 これに活物質、 導 電性付与剤などを混合して得られる二次電池電極用スラリー組成物 (以下、 単に“Secondary battery electrode” may be abbreviated as “electrode”. ) Is a binder polymer for a secondary battery electrode (hereinafter, simply referred to as “active material”) and a conductivity-imparting agent used as necessary. It may be referred to as “binder”.) It is bound to a current collector such as aluminum or copper. The electrode is usually prepared by dissolving or dispersing a binder in a liquid medium and mixing an active material, a conductivity imparting agent, and the like with the slurry composition for a secondary battery electrode (hereinafter, simply referred to as “slurry”).
「スラリー組成物」 と記すことがある。) を集電体に塗布して、 該液状媒体を乾 燥などにより除去して、 混合層として結着させて形成される。 . It may be written as "slurry composition". ) Is applied to a current collector, the liquid medium is removed by drying or the like, and the mixture is bound as a mixed layer. .
ところが、 スラリー組成物中の各成分の分散が不十分であったり、 スラリー組 成物の粘度が経時変化したりしてスラリー組成物の分散状態が不均一になるとい う問題があった。 不均一なスラリー組成物を用いて電極を作成すると、 電極の表 面が平滑にならないで電池性能が低下したり、 活物質の結着性が低下して集電体 から活物質が剥離する問題が生じる。 高度に分散したスラリー組成物を得る方法として、 特開平 8 — 1 9 5 2 0 1号 公報には、 増粘剤溶液に結着剤を分散させた混合液に、 活物質および導電性付与 剤を添加して混練、 分散させる方法が提案されている。 しかしながらこの製造方 法では導電性付与剤の分散が不十分になつたり、 電極表面の平滑性が依然十分で ないなどの問題があった。 However, there has been a problem that the dispersion of each component in the slurry composition is insufficient, or the viscosity of the slurry composition changes with time, so that the dispersion state of the slurry composition becomes uneven. When an electrode is made using a non-uniform slurry composition, the surface of the electrode does not become smooth and the battery performance decreases, or the binding of the active material deteriorates and the active material peels off from the current collector. Occurs. As a method for obtaining a highly dispersed slurry composition, JP-A-8-195201 discloses a method in which a binder obtained by dispersing a binder in a thickener solution is mixed with an active material and a conductivity-imparting agent. There has been proposed a method of adding, kneading and dispersing. However, this production method had problems such as insufficient dispersion of the conductivity-imparting agent and insufficient smoothness of the electrode surface.
また、 特開平 9 — 2 0 4 9 1 7号公報にはスラリー組成物の製造方法として、 各成分を混練する工程と、 混練して得たスラリ一組成物を所定時間放置して増粘 させる工程と、 增粘したスラリ一組成物を再び混練する工程とを有する方法が提 案されている。 しかしこの方法では工程が煩雑であり、 またスラリー組成物の製 造に長時間を要して生産性が低下するなどの問題があった。  Japanese Patent Application Laid-Open No. 9-204917 discloses a method for producing a slurry composition, in which a kneading step of each component and a slurry composition obtained by kneading are allowed to stand for a predetermined time to increase the viscosity. There has been proposed a method having a step and a step of re-kneading the viscous slurry composition. However, in this method, there are problems that the steps are complicated, and that the production of the slurry composition requires a long time and the productivity is reduced.
さらに、特開 2 0 0 0 — 3 4 8 7 1 3号公報には、活物質と導電性付与剤とに、 増粘剤を少なくとも 2回以上に分割添加して混練し、 次いで結着剤を添加して混 練する、 水を媒体とするスラリー組成物の製造方法が提案されている。 しかし、 この方法でも、 結着剤の種類によっては、 結着剤自体の分散が十分でないため粘 度の経時変化が大きかったり、 結着性が低下したりする問題があった。 発明の開示  Further, Japanese Patent Application Laid-Open Publication No. 2000-348713 discloses that an active material and a conductivity-imparting agent are kneaded by adding a thickener at least twice or more and then kneading the binder. A method for producing a slurry composition using water as a medium has been proposed. However, even with this method, depending on the type of the binder, there is a problem that the dispersion of the binder itself is not sufficient, so that the viscosity changes with time or the binding property is reduced. Disclosure of the invention
かかる状況のもとで、 本発明の目的は、 粘度の経時変化が少なく、 結着性が良 好で、 かつ、 表面が平滑な混合層を有する電極を与える二次電池電極用スラリー 組成物の製造方法を提供することにある。  Under such circumstances, an object of the present invention is to provide a slurry composition for a secondary battery electrode, which provides an electrode having a mixed layer in which the change in viscosity with time is small, the binding property is good, and the surface is smooth. It is to provide a manufacturing method.
本発明者らは活物質や導電性付与剤が高度に分散したスラリー組成物を得る方 法を鋭意検討した結果、 溶媒に溶解し難いポリマーバインダーを分散させた分散 液と活物質とを混練し、 次いで、 この混練液に、 該溶媒に可溶なポリマーバイン ダーを溶解させた溶液を混合する手順を採ることにより、 高度に分散したスラリ —組成物が得られ、 このスラリー組成物を用いて電極を製造すると凝集塊のな tヽ 平滑な混合層を有する電極が得られることを見出し、 この知見に基づいて更に検 討を進め、 本発明を完成するに到った。  The present inventors have intensively studied a method for obtaining a slurry composition in which the active material and the conductivity-imparting agent are highly dispersed, and as a result, kneaded the active material with a dispersion liquid in which a polymer binder that is difficult to dissolve in a solvent is dispersed. Then, by taking a procedure of mixing a solution in which a polymer binder soluble in the solvent is dissolved with the kneading liquid, a highly dispersed slurry composition is obtained. The present inventors have found that an electrode having a t-smooth mixed layer without agglomerates can be obtained when the electrode is manufactured, and further studies based on this finding have led to the completion of the present invention.
かくして、 本発明によれば、 溶媒 (S A ) に対する不溶分を 5 0重量%以上含 有するポリマー (A ) の溶媒 (S A) 分散液と電極活物質とを混練し、 次いで、 得られた混練液と、 ポリマー (B) の溶媒 (S B) 溶液とを混練することよりな る二次電池電極用スラリ一組成物の製造方法が提供される。 Thus, according to the present invention, a solvent (SA) dispersion of the polymer (A) containing at least 50% by weight of an insoluble content in the solvent (SA) is kneaded with the electrode active material, There is provided a method for producing a slurry composition for a secondary battery electrode, comprising kneading the obtained kneading liquid and a solvent (SB) solution of a polymer (B).
さらに、 本発明によれば、 上記のように製造されたスラリー組成物を、 集電体 に塗布して乾燥することよりなる二次電池電極の製造方法が提供される。 発明を実施するための最良の形態  Further, according to the present invention, there is provided a method for producing a secondary battery electrode, which comprises applying the slurry composition produced as described above to a current collector and drying it. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の二次電池電極用スラリー組成物の製造方法は、 溶媒 (S A) に対する 不溶分を 5 0重量%以上含有するポリマー (A) の溶媒 (S A) 分散液と電極活 物質とを混練し、 次いで、 得られた混練液と、 ポリマー (B) の溶媒 (S B) 溶 液とを混練することよりなる。  In the method for producing a slurry composition for a secondary battery electrode according to the present invention, a solvent (SA) dispersion of a polymer (A) containing 50% by weight or more of an insoluble content in a solvent (SA) is kneaded with an electrode active material. Then, the obtained kneading liquid is kneaded with a solution of the polymer (B) in a solvent (SB).
先ず、 本発明で使用する材料について説明する。  First, the materials used in the present invention will be described.
本発明で用いる溶媒 (S A) および溶媒 (S B) としては、 水および、 大気圧 下での沸点が 8 0〜3 5 0°Cである非水系溶媒が好ましい。 このような非水系溶 媒としては、 例えば、 N—メチルピロリドン、 ジメチルホルムアミド、 ジメチル ァセ卜アミ ドなどのアミド類; トルエン、キシレン、 n—ドデカン、 テ卜ラリン などの炭化水素類; 2—ェチル一 1 —へキサノール、 1 —ノナノール、 ラウリル アルコールなどのアルコール類;メチルェチルケ卜ン、 シクロへキサノン、 ホロ ン、 ァセ卜フエノン、 イソホロンなどのケ卜ン類;酢酸ベンジル、 酪酸イソペン チル、 乳酸メチル、 乳酸ェチル、 乳酸ブチルなどのエステル類; o—卜ルイジン、 m—卜ルイジン、 p—卜ルイジンなどのアミン類; ァープチロラクトン、 δ—づ チロラク卜ンなどのラクトン類; ジメチルスルホキシド、 スルホランなどのスル ホキシド ·スルホン類などが挙げられる。 これらの中でも、 水およびアミド類が より好ましく、 Ν—メチルピロリドンが特に好ましい。  As the solvent (S A) and the solvent (S B) used in the present invention, water and a non-aqueous solvent having a boiling point of 80 to 350 ° C. under atmospheric pressure are preferable. Examples of such non-aqueous solvents include: amides such as N-methylpyrrolidone, dimethylformamide, and dimethylacetamide; hydrocarbons such as toluene, xylene, n-dodecane, tetrauran; Alcohols such as 1-hexanol, 1-nonanol, and lauryl alcohol; ketones such as methylethyl ketone, cyclohexanone, holone, acetate phenone, and isophorone; benzyl acetate, isopentyl butyrate, and lactic acid Esters such as methyl, ethyl lactyl and butyl lactate; amines such as o-toluidine, m-toluidine, p-toluidine; lactones such as arptyrolactone, δ-z-tyrolactone; dimethyl sulfoxide And sulfoxides such as sulfolane and sulfones. Among these, water and amides are more preferred, and Ν-methylpyrrolidone is particularly preferred.
これらの溶媒 (S A) および (S B) は、 それぞれ、 一種単独で、 または二種 以上を組合わせて用いることができる。 なお、 ポリマー (A) の分散液に用いる 溶媒 (S A) と、 ポリマー (B ) の溶液に用いる溶媒 (S B) は同じ組成である ことが好ましいが、 それぞれ異なっていても、 ポリマー (A) の分散液とポリマ ― (B) の溶液を混合した後の溶媒組成に対し、 ポリマー (A) の不溶分が 5 0 重量%以上であり、 かつポリマ一 (B) が可溶であれば用いることができる。 本発明では、 二種のポリマーをバインダーとして用いる。 ポリマーバインダー の一方の成分であるポリマー (A) としては、 種類は特に限定されないが、 溶媒 ( S A) に不溶な成分を 5 0重量%以上含有するポリマ一を用いる。 ポリマー (A) の溶媒 (S A) に不溶な成分は、 好ましくは 6 0重量%以上、 より好まし くは 7 0重量%以上であり、 かつ好ましくは 9 0重量%以下、 より好ましくは 8 7重量%以下である。 溶媒 (S A) に対する不溶分がこの範囲であると、 ポリマ 一 (A) がスラリー組成物中で粒子状または繊維状を保持し、 その結果、 活物質 の表面を膜状に覆い隠して電池反応を阻害することがなくなると推測される。 溶 媒 (S A) に対する不溶分が過度に少量であるとポリマー (A) が膜状化するこ とに加え、 活物質の結着持続性が低下して繰り返し充放電による容量減が起こる おそれがある。 逆に、 溶媒 (S A) に対する不溶分が過度に多量であるポリマー (A) を用いると、 バインダーの結着性低下などのおそれがある。 Each of these solvents (SA) and (SB) can be used alone or in combination of two or more. The solvent (SA) used for the dispersion of the polymer (A) and the solvent (SB) used for the solution of the polymer (B) preferably have the same composition. The polymer should be used if the insoluble content of the polymer (A) is 50% by weight or more and the polymer (B) is soluble in the solvent composition after mixing the dispersion and the polymer-(B) solution. Can be. In the present invention, two kinds of polymers are used as a binder. The type of the polymer (A), which is one component of the polymer binder, is not particularly limited, but a polymer containing 50% by weight or more of a component insoluble in a solvent (SA) is used. The component insoluble in the solvent (SA) of the polymer (A) is preferably at least 60% by weight, more preferably at least 70% by weight, and preferably 90% by weight or less, more preferably 87% by weight. % By weight or less. When the insoluble content in the solvent (SA) is in this range, the polymer (A) retains a particulate or fibrous state in the slurry composition, and as a result, the surface of the active material is covered with a film and the battery reaction is suppressed. Is assumed to be no longer hindered. If the amount of the insoluble component in the solvent (SA) is too small, the polymer (A) may be formed into a film, and the binding durability of the active material may be reduced, which may cause a decrease in capacity due to repeated charge and discharge. is there. Conversely, if the polymer (A) having an excessively large amount of insolubles in the solvent (SA) is used, there is a possibility that the binding property of the binder may be reduced.
ここで、 溶媒 (S A) に対する不溶分の量は、 溶媒 2 0ミリリットルにポリマ 一 0. 2 gを温度 6 0°Cで 7 2時間浸潰した後、 8 0メッシュの篩でろ過し、 篩 上の成分を乾燥して求めたポリマー重量の浸漬前のポリマー重量に対する百分率 として表わされる。  Here, the amount of the insoluble component in the solvent (SA) was determined by immersing 0.2 g of the polymer in 20 ml of the solvent at a temperature of 60 ° C. for 72 hours, followed by filtration through an 80 mesh sieve. It is expressed as a percentage of the weight of the polymer determined by drying the above components relative to the weight of the polymer before immersion.
溶媒 (S A) に対する不溶分を上記のように多量に含有するポリマー (A) は、 単官能エチレン性不飽和モノマーおよび/または共役ジェンと、 多官能エチレン 性不飽和モノマーとの架橋共重合体であることが好ましい。  The polymer (A) containing a large amount of insolubles in the solvent (SA) as described above is a cross-linked copolymer of a monofunctional ethylenically unsaturated monomer and / or conjugated diene and a polyfunctional ethylenically unsaturated monomer. Preferably, there is.
多官能ェチレン性不飽和モノマーとしては、 ジビニルベンゼンなどのジビニル 化合物; ジエチレンダリコールジメタクリレ一卜、 エチレングリコールジメタク リレー卜などのジメタクリル酸エステル類; 卜リメチロールプロパントリメタク リレートなどの卜リメタクリル酸エステル類; ジエチレングリコールジァクリレ 一卜、 1, 3—ブチレングリコールジァクリレー卜などのジアクリル酸エステル 類; 卜リメチロールプロパン卜リアクリレー卜などの卜リァクリル酸エステル類 などが好ましい。 また、 1, 4—へキサジェン、 ェチリデンノルポルネン、 ジシ クロペン夕ジェンなどの非共役ジェン類も用いることができる。 これらの多官能 ェチレン性不飽和モノマーは、 単独でまたは 2種以上を組合わせ用いることがで きる。 多官能エチレン性不飽和モノマーの割合は、 ポリマ一 (A ) 製造用モノマー全 量に対し、 通常、 0 . 3 ~ 5重量%、 好ましくは 0 . 5〜3重量%である。 Examples of the polyfunctional ethylenically unsaturated monomers include divinyl compounds such as divinylbenzene; dimethacrylates such as diethylene daricol dimethacrylate and ethylene glycol dimethacrylate; trimethylolpropane trimethacrylate and the like. Limethacrylic esters; diacrylic esters such as diethylene glycol diacrylate and 1,3-butylene glycol diacrylate; and triacrylic esters such as trimethylolpropane triacrylate. In addition, non-conjugated dienes such as 1,4-hexadiene, ethylidene norpolene, and dicyclopentene can also be used. These polyfunctional ethylenically unsaturated monomers can be used alone or in combination of two or more. The proportion of the polyfunctional ethylenically unsaturated monomer is usually from 0.3 to 5% by weight, preferably from 0.5 to 3% by weight, based on the total amount of the monomer for producing the polymer (A).
ポリマー (A ) の製造に用いる単官能エチレン性不飽和モノマーとしては、 ェ チレン、 プロピレン、 Ί —ブテン、 イソブテン、 3 —メチルー 1 ーブテンなどの α—才レフィン類; (メタ) ァクリロ二卜リル (ァクリロニ卜リルまたはメタク リロ二卜リルの意。) などの不飽和二卜リル化合物;  Monofunctional ethylenically unsaturated monomers used in the production of the polymer (A) include α-olefins such as ethylene, propylene, 、 -butene, isobutene and 3-methyl-1-butene; (meth) acrylonitrile ( Unsaturated nitrile compounds such as acrylonitrile or methacrylonitrile);
(メタ) アクリル酸メチル (アクリル酸メチルまたはメタクリル酸メチルを表 す。 以下同様。)、 (メタ) アクリル酸ェチル、 (メタ) アクリル酸プチル、 (メタ) アクリル酸へキシル、 (メタ) アクリル酸 2—ェチルへキシルなどの (メタ) ァ クリル酸エステル類; クロ卜ン酸メチル、 クロ卜ン酸 2—ェチルへキシル、 クロ トン酸ヒドロキシプロピルなどのクロトン酸エステル類;(メタ) ァクリル酸メ 卜キシェチル、 (メタ) アクリル酸エトキシェチルなどのアルコキシ基含有 (メ 夕) アクリル酸エステル類; (メタ) アクリル酸ジメチルアミノエチル、 (メタ) アクリル酸ジェチルアミノエチルなどのアミノ基含有 (メタ) アクリル酸エステ ル類; (メタ) アクリル酸 2—ヒドロキシプロピル、 (メタ) アクリル酸ヒドロキ シプロピルなどの水酸基含有 (メタ) アクリル酸エステル;アルキル基にリン酸 基、 スルホン酸基、 ホウ酸基などを有する (メタ) アクリル酸エステル;ァクリ ル酸、 メタクリル酸、 クロトン酸、 イソクロトン酸、 マレイン酸、 フマル酸など のカルボキシル基含有ビニル化合物およびジカルボン酸無水物;スチレン、 α— メチルスチレンなどの芳香族ビニル化合物;などが挙げられる。  (Meth) methyl acrylate (Methyl acrylate or methyl methacrylate; the same applies hereinafter), (meth) ethyl acrylate, (meth) butyl acrylate, (meth) hexyl acrylate, (meth) acrylic acid (Meth) acrylic acid esters such as 2-ethylhexyl; crotonic acid esters such as methyl crotonate and 2-ethylhexyl crotonate and hydroxypropyl crotonate; (meth) acrylic acid ester (Meth) Acrylic esters containing alkoxy groups such as methoxyxyl and (meth) ethoxyxetyl acrylate; (meth) acrylic containing amino groups such as (meth) dimethylaminoethyl acrylate and (meth) getyl aminoethyl acrylate Acid esters; 2-hydroxypropyl (meth) acrylate, (meth) acrylic acid Hydroxy group-containing (meth) acrylates such as hydroxypropyl acid; (meth) acrylates having a phosphoric acid group, a sulfonic acid group, a boric acid group, etc. in an alkyl group; acrylic acid, methacrylic acid, crotonic acid, isocrotonic acid And carboxyl group-containing vinyl compounds such as maleic acid and fumaric acid, and dicarboxylic anhydrides; and aromatic vinyl compounds such as styrene and α-methylstyrene.
共役ジェン類としては、 1, 3—ブタジエン、 2—メチルー 1 , 3—ブタジェ ン (イソプレン)、 2, 3—ジメチル一Ί, 3—ブタジエン、 1, 3—ペンタジ ェンなどが挙げられる。 これらの単官能ェチレン性不飽和モノマーおよび共役ジ ェンは、 単独でまたは 2種以上を組合わせ用いることができる。  Examples of the conjugated diene include 1,3-butadiene, 2-methyl-1,3-butadiene (isoprene), 2,3-dimethylamine, 3-butadiene, and 1,3-pentadiene. These monofunctional ethylenically unsaturated monomers and conjugated diene can be used alone or in combination of two or more.
共役ジェンを用いる場合は、 多官能エチレン性不飽和モノマーを用いない場合 でも、 重合温度、 重合転化率および分子量調整剤の量などの重合条件を適宜調整 することにより架橋重合体を得ることができる。  When a conjugated diene is used, a crosslinked polymer can be obtained by appropriately adjusting polymerization conditions such as polymerization temperature, polymerization conversion, and the amount of a molecular weight modifier even when a polyfunctional ethylenically unsaturated monomer is not used. .
ポリマー (Α ) のガラス転移温度 (T g ) は、 好ましくは— 8 0 ~ 0 °C、 より 好ましくは— 6 0〜一 5 °Cである。 T gが高すぎると、 電極の柔軟性が低下し、 充放電を繰り返した際に活物質の集電体からの剥離が起きやすくなる。 また、 τ gが低すぎると電池容量が低下する場合がある。 The glass transition temperature (T g) of the polymer (Α) is preferably −80 to 0 ° C., and more preferably −60 to 15 ° C. If T g is too high, the flexibility of the electrode decreases, When charge and discharge are repeated, the active material is easily separated from the current collector. If τ g is too low, the battery capacity may decrease.
ポリマー (A) が上記範囲の T gを有するようにするために、 ポリマー分子の 構成繰り返し単位として、 例えばアクリル酸 2—ェチルへキシル (単独重合体 の T gは— 85°C)、 ァクリル酸 n—ブチル (同— 54°C)、 メタクリル酸 n - デシル (同一 6 5°C)、 1 , 3—ブタジエン、 イソプレンなどの、 単独重合体の T gが 0 °C以下となる単量体の繰り返し単位を持つことが好ましい。  In order for the polymer (A) to have a T g in the above range, for example, 2-ethylhexyl acrylate (T g of a homopolymer is −85 ° C.), acrylic acid Monomers such as n-butyl (54 ° C), n-decyl methacrylate (65 ° C), 1,3-butadiene, isoprene, etc. whose homopolymer has a Tg of 0 ° C or less It is preferred to have a repeating unit of
ポリマー (A) の好ましい例としては、 アクリル酸 2—ェチルへキシルノメタ クリル酸 Zァクリロニ卜リル/ジエチレングリコールジメタクリレー卜共重合体、 アクリル酸ブチル /アクリル酸/卜リメチロールプロパン卜リメタクリレー卜共 重合体などのァクリルゴム、 ァクリロ二卜リル ブタジエン共重合ゴムなどが挙 げられる。  Preferred examples of the polymer (A) include 2-ethylhexylnomethacrylate acrylate Zacrylonitrile / diethylene glycol dimethacrylate copolymer, butyl acrylate / acrylic acid / trimethylolpropane trimethacrylate copolymer. And acrylonitrile butadiene copolymer rubber.
ポリマー (A) は、 異なる単量体組成のポリマー (A) の混合物であってもよ い。 また、 ポリマー (A) の溶媒 (S A) 分散液には、 本発明の効果が損なわれ ない限り、 溶媒 (S A) に対する不溶分が 5 0重量%未満のポリマーが少量含ま れてもよい。  The polymer (A) may be a mixture of polymers (A) having different monomer compositions. Further, the dispersion of the polymer (A) in the solvent (S A) may contain a small amount of a polymer having an insoluble content in the solvent (S A) of less than 50% by weight as long as the effects of the present invention are not impaired.
ポリマー (A) の平均粒径は、 好ましくは 0. 005〜 1 000 m、 より好 ましくは 0. 0 1 ~1 00 m、 特に好ましくは 0. 05〜1 0 mである。 平 均粒径が大きすぎるとバインダ一として必要な量が多くなりすぎ、 電極の内部抵 杭が増加する。 逆に、 平均粒径が小さすぎると活物質の表面を覆い隠して電池反 応を阻害してしまう。  The average particle size of the polymer (A) is preferably from 0.005 to 1,000 m, more preferably from 0.01 to 100 m, particularly preferably from 0.05 to 10 m. If the average particle size is too large, the amount required for the binder will be too large, and the internal resistance of the electrode will increase. Conversely, if the average particle diameter is too small, the surface of the active material is covered and the battery reaction is hindered.
ここで、 平均粒径は、 透過型電子顕微鏡写真で無作為に選んだポリマー粒子 1 00個の径を測定し、 その算術平均値として算出される個数平均粒子径である。 ポリマー (A) の製造方法は特に限定されず、 例えば、 乳化重合法、 懸濁重合 法、 分散重合法または溶液重合法などの公知の重合法により重合して得ることが できるが、 乳化重合法で製造することが、 溶媒 (SA) に分散したときの粒子径 の制御が容易であるので好ましい。  Here, the average particle diameter is a number average particle diameter calculated by measuring the diameter of 100 polymer particles randomly selected in a transmission electron micrograph and calculating the arithmetic average value. The method for producing the polymer (A) is not particularly limited. For example, the polymer (A) can be obtained by polymerization by a known polymerization method such as an emulsion polymerization method, a suspension polymerization method, a dispersion polymerization method, or a solution polymerization method. It is preferable to produce by the method described above because the particle diameter when dispersed in the solvent (SA) is easily controlled.
ポリマ一バインダーのもう一方の成分であるポリマー (B) は、 スラリー組成 物の媒体である溶媒 (S B) に可溶なポリマーである。 ポリマー (B) は、 溶媒 ( S B ) に不溶な成分を含まなければ限定されないが、 スラリー組成物を集電体 に塗布して混合層を形成しやすいようにスラリーの粘度を増加させるポリマーバ インダ一が好ましい。 The other component of the polymer binder, polymer (B), is a polymer that is soluble in the solvent (SB) that is the medium of the slurry composition. Polymer (B) is a solvent The polymer binder is not limited as long as it does not contain a component insoluble in (SB). However, a polymer binder that increases the viscosity of the slurry so that a mixed layer is easily formed by applying the slurry composition to a current collector is preferable.
ポリマ一 (B ) の製造には、 単官能エチレン性不飽和モノマーおよび または 共役ジェンが用いられ、 それらの具体例としては、 前記ポリマー (A ) の製造に 用いられるものとして例示したものが挙げられる。 これらのモノマーは単独でま たは 2種以上を組合わせ用いることができる。  In the production of the polymer (B), a monofunctional ethylenically unsaturated monomer and / or a conjugated diene are used, and specific examples thereof include those exemplified as those used in the production of the polymer (A). . These monomers can be used alone or in combination of two or more.
上記ポリマー (B ) の例としては、 アクリロニトリル ブタジエン共重合体お よびその水素化物、 エチレン/アクリル酸メチル共重合体、 スチレン/ブタジェ ン共重合体、 ブタジエンゴム、 エチレン/ビニルアルコール共重合体、 ァクリロ 二卜リル/エチレン共重合体、 アクリロニトリル/ (メタ) アクリル酸メチル共 重合体などが挙げられる。  Examples of the above polymer (B) include acrylonitrile butadiene copolymer and its hydride, ethylene / methyl acrylate copolymer, styrene / butadiene copolymer, butadiene rubber, ethylene / vinyl alcohol copolymer, acryloyl Examples thereof include nitrile / ethylene copolymer and acrylonitrile / methyl (meth) acrylate copolymer.
ポリマー (B ) は、 フッ素含有ポリマーであってもよい。 フッ素含有ポリマ一 は、 フッ素含有単官能エチレン性モノマー単位を 5 0モル%以上、 好ましくは 7 0モル%以上、 より好ましくは 8 0モル%以上含むポリマ一である。 フッ素含有 モノマーとしては、 フッ化ビニリデン、 テ卜ラフル才ロエチレン、 へキサフル才 口プロピレン、 三フッ化塩化ビニル、 フッ化ビニル、 パーフルォロアルキルビニ ルェ一テルなどが挙げられるが、 フッ化ビニリデンが好ましい。 フッ化ビニリデ ン以外のフッ素含有モノマーを使用する場合は、 その全量が全フッ素含有モノマ 一の好ましくは 3 0モル%以下、 より好ましくは 2 0モル%以下となるようにフ ッ化ビ二リデンと併せて使用する。  The polymer (B) may be a fluorine-containing polymer. The fluorine-containing polymer is a polymer containing 50 mol% or more, preferably 70 mol% or more, more preferably 80 mol% or more of fluorine-containing monofunctional ethylenic monomer units. Examples of the fluorine-containing monomer include vinylidene fluoride, tetrafluroethylene, hexafluene propylene, vinyl trifluoride, vinyl fluoride, and perfluoroalkyl vinyl ether. Is preferred. When a fluorine-containing monomer other than vinylidene fluoride is used, the amount of vinylidene fluoride is preferably 30 mol% or less, more preferably 20 mol% or less of the total fluorine-containing monomer. Used in conjunction with.
上記フッ素含有ポリマーは、 フッ素非含有モノマー単位を 5 0モル%以下、 好 ましくは 3 0モル%以下、 より好ましくは 2 0モル%以下有していてもよい。 フ ッ素非含有モノマー単位の含有量が多すぎると、 電解液に対する耐溶剤性が低下 して電極から活物質が脱落しやすくなるおそれがある。  The fluorine-containing polymer may have a fluorine-free monomer unit of 50 mol% or less, preferably 30 mol% or less, more preferably 20 mol% or less. If the content of the non-fluorine-containing monomer unit is too large, the solvent resistance to the electrolytic solution is reduced, and the active material may easily fall off the electrode.
フッ素含有単官能ェチレン性モノマーと共重合可能なモノマーとしては、 ェチ レン、 プロピレン、 1 ーブテンなどの 1 一才レフイン; (メタ) アクリル酸メチ ル、 (メタ)アクリル酸プチル、 (メタ)アクリル酸 2—ェチルへキシルなどの(メ 夕) アクリル酸エステル類;スチレン、 α—メチルスチレン、 ρ— t—プチルス チレンなどの芳香族ビニル化合物;(メタ) ァクリロ二卜リルなどの不飽和二卜 リル化合物;(メタ) ァクリルアミド、 N—メチロール (メタ) ァクリルアミド、 N—ブトキシメチル (メタ) アクリルアミドなどの (メタ) アクリルアミド化合 物;などのフッ素を含まない単官能エチレン性不飽和モノマーが挙げられる。 本発明において、 ポリマー (B) は、 異なる組成のポリマー (B) の混合物で あってもよい。 また、 ポリマー (B) の溶媒 (S B) 溶液には、 本発明の効果を 損なわない範囲において、 溶媒 (S B) に不溶なポリマーを少量含んでいてもよ い。 Monomers that can be copolymerized with the fluorine-containing monofunctional ethylenic monomer include ethylene, propylene, 1-butene and other olefins; methyl (meth) acrylate, methyl (meth) acrylate, and (meth) acryl. (Methyl) acrylates such as 2-ethylhexyl acid; styrene, α-methylstyrene, ρ-t-butyls Aromatic vinyl compounds such as ethylene; unsaturated methyl compounds such as (meth) acrylonitrile; (meth) acrylamide, (meth) acrylamide, N-methylol (meth) acrylamide, N-butoxymethyl (meth) acrylamide, etc. Monofunctional ethylenically unsaturated monomers containing no fluorine, such as acrylamide compounds; In the present invention, the polymer (B) may be a mixture of polymers (B) having different compositions. The solvent (SB) solution of the polymer (B) may contain a small amount of a polymer insoluble in the solvent (SB) as long as the effect of the present invention is not impaired.
上記ポリマー (B) の製造方法は特に限定されない。 例えば、 乳化重合法、 懸 濁重合法、分散重合法、溶液重合法などの公知の重合法により得ることができる。 ポリマー (A) およびポリマー (B) を合わせたポリマーバインダーの総量は、 活物質 1 00重量部に対して、好ましくは 0. 1〜 5重量部、 より好ましくは 0. 2〜 3重量部、 特に好ましくは 0. 5〜2重量部である。 バインダー総量が少な すぎると電極から活物質が脱落しゃすくなるおそれがあり、 逆に多すぎると活物 質がバインダーに覆い隠されて電池反応が阻害される可能性がある。  The method for producing the polymer (B) is not particularly limited. For example, it can be obtained by a known polymerization method such as an emulsion polymerization method, a suspension polymerization method, a dispersion polymerization method, and a solution polymerization method. The total amount of the polymer binder obtained by combining the polymer (A) and the polymer (B) is preferably from 0.1 to 5 parts by weight, more preferably from 0.2 to 3 parts by weight, especially from 100 parts by weight of the active material. Preferably it is 0.5 to 2 parts by weight. If the total amount of the binder is too small, the active material may fall off the electrode, and if the total amount is too large, the active material may be covered by the binder and the battery reaction may be inhibited.
ポリマー (A) とポリマー (B) の重量比は、 好ましくは 5/1 ~1 Z5、 よ り好ましくは 3 1 ~ 1 3、 特に好ましくは 2/"!〜 1 2である。 ポリマー (A) の割合を過度に大きくすると、 結着性は向上するものの、 スラリー組成物 の流動性が低下し、 電極に塗布して得られる混合層が平滑でなくなるおそれがあ る。 逆に、 ポリマー (A) の割合を過度に小さくするとバインダーが活物質の表 面を覆い隠して電池反応を阻害する可能性がある。  The weight ratio of the polymer (A) to the polymer (B) is preferably 5/1 to 1 Z5, more preferably 31 to 13, and particularly preferably 2 / "! To 12. Polymer (A) If the ratio is too large, the binding property is improved, but the fluidity of the slurry composition is reduced, and the mixed layer obtained by coating the electrode may not be smooth. If the ratio is too small, the binder may obscure the surface of the active material and hinder the battery reaction.
本発明で使用する電極活物質は、 二次電池の種類により異なる。  The electrode active material used in the present invention varies depending on the type of the secondary battery.
リチウムイオン二次電池の場合、 負極活物質、 正極活物質とも、 通常のリチウ 厶イオン二次電池電極の製造に使用されるものであればいずれであっても用いる ことができる。  In the case of a lithium ion secondary battery, any of a negative electrode active material and a positive electrode active material may be used as long as they are used for manufacturing a normal lithium ion secondary battery electrode.
リチウムイオン二次電池の負極活物質としては、 アモルファスカーボン、 ダラ ファイト、 天然黒鉛、 メソカーボンマイクロビーズ (MCM B)、 ピッチ系炭素 繊維などの炭素質材料、 ポリァセンなどの導電性高分子などが例示される。  Examples of the negative electrode active material of a lithium ion secondary battery include amorphous carbon, Daraphite, natural graphite, mesocarbon microbeads (MCM B), carbonaceous materials such as pitch-based carbon fibers, and conductive polymers such as polyacene. Is done.
正極活物質としては、 L i C o 02、 L i N i 02、 L i M n 02、 L i n 2 o4などのリチウム含有複合金属酸化物; τ i s 2、 τ i s 3、 非晶質 M o s 3な どの遷移金属硫化物; C u 2 V 203、 非晶質 V20— P 205、 M o03、 V 205、 ν6ο, 3などの遷移金属酸化物;が例示される。 さらに、 ポリアセチレン、 ポリAs the positive electrode active material, L i C o 0 2, L i N i 0 2, L i M n 0 2, L in 2 lithium-containing composite metal oxides such as o 4; τ is 2, τ is 3, amorphous M os 3 of any transition metal sulfide; C u 2 V 2 0 3 , amorphous V 2 0- P 2 0 5, M o0 3, V 2 0 5, ν 6 ο, transition metal oxides such as 3; and the like. Furthermore, polyacetylene, poly
P —フエ二レンなどの導電性高分子など有機系化合物を用いることもできる。 ニッケル水素二次電池の場合、 負極活物質、 正極活物質とも、 通常のニッケル 水素二次電池で使用されるものであれば、 いずれも用いることができ、 負極活物 質としては、 水素吸蔵合金を用いることができる。 また、 正極活物質としては、 才キシ水酸化二ッケル、 水酸化二ッケルなどを用いることができる。 Organic compounds such as a conductive polymer such as P-phenylene can also be used. In the case of a nickel-metal hydride secondary battery, both the negative electrode active material and the positive electrode active material can be used as long as they are used in a normal nickel-metal hydride secondary battery. The negative electrode active material is a hydrogen storage alloy. Can be used. In addition, as the positive electrode active material, nickel oxyhydroxide, nickel hydroxide, or the like can be used.
ポリマー (B ) の溶媒 (S B) 溶液は、 導電性付与剤を含有せしめたものであ ることが好ましい。 導電性付与剤としては、 リチウムイオン二次電池ではカーボ ンが用いられる。 ニッケル水素二次電池で用いられる導電性付与剤は、 正極では 酸化コバル卜、 負極ではニッケル粉末、 酸化コバル卜、 酸化チタン、 カーボンな どを挙げることができる。  The solution of the polymer (B) in the solvent (SB) is preferably one containing a conductivity-imparting agent. Carbon is used as a conductivity-imparting agent in a lithium ion secondary battery. Examples of the conductivity imparting agent used in the nickel-hydrogen secondary battery include cobalt oxide for the positive electrode, nickel powder, cobalt oxide, titanium oxide, and carbon for the negative electrode.
上記両電池において、 導電性付与剤であるカーボンとしては、 アセチレンブラ ック、 ファーネスブラック、 黒鉛、 炭素繊維、 活性炭、 フラーレン類を挙げるこ とができる。 中でも、 アセチレンブラック、 ファーネスブラックが好ましい。 導電性付与剤の使用量は、 活物質 1 0 0重量部あたり、 通常、 Ί ~ 2 0重量部、 好ましくは 2〜1 0重量部である。  In both of the above batteries, examples of the carbon as the conductivity-imparting agent include acetylene black, furnace black, graphite, carbon fiber, activated carbon, and fullerenes. Among them, acetylene black and furnace black are preferred. The amount of the conductivity-imparting agent to be used is generally about 20 to 20 parts by weight, preferably about 2 to 10 parts by weight, per 100 parts by weight of the active material.
次に、 スラリー組成物の製造プロセスについて説明する。 本発明においては、 溶媒 (S A) に対する不溶分を 5 0重量%以上含有するポリマ一 (A)の溶媒(S A) 分散液と電極活物質とを混練して混合液を調製し、 これとは別個に、 ポリマ 一 ( B ) の溶媒 (S B) 溶液を調製し、 次いで、 これら両液を混練するという手 順を採ることが肝要である。 これに対して、 ポリマー (A) とポリマー (B ) と を先に混合する手順を採ったり、 活物質とポリマー (B) とを先に混合する手順 を採ると、 粘度の経時変化が大きくなつたり、 結着性が低下したりするおそれが ある。  Next, the manufacturing process of the slurry composition will be described. In the present invention, a solvent (SA) dispersion of a polymer (A) containing 50% by weight or more of an insoluble content in the solvent (SA) is kneaded with an electrode active material to prepare a mixed solution. It is important to separately prepare a solvent (SB) solution of the polymer (B) and then knead the two solutions. On the other hand, if the procedure of mixing the polymer (A) and the polymer (B) first, or the procedure of mixing the active material and the polymer (B) first, the change with time of the viscosity becomes large. Or the binding property may be reduced.
ポリマ一 (A) と活物質との混合液を調製するための溶媒 (S A) 量は、 活物 質の種類により異なり、 活物質が吸着可能な 「吸液量」 に対して好ましくは 8 0 〜1 2 0重量%、 より好ましくは 8 5〜1 1 0重量%、 特に好ましくは 9 0 ~ 1 00重量%となる量である。 該混合液の溶媒量が活物質の吸液量の 80重量%ょ り少ないと、 混練時に活物質が粉体状になるため、 せん断が効かず、 活物質とポ リマー (A) との混合が不均一になり、 その結果、 流動性の劣ったスラリー組成 物となるおそれがある。 逆に、 該混合液の溶媒量が活物質の吸液量の 1 20重 量%より多いと、 混合液の粘度が低くて剪断が効かず、 その結果、 流動性の劣つ たスラリ一組成物となるおそれがある。 The amount of the solvent (SA) for preparing a mixed solution of the polymer (A) and the active material varies depending on the type of the active material, and is preferably 80 to the “liquid absorption amount” at which the active material can be adsorbed. To 120% by weight, more preferably 85 to 110% by weight, and particularly preferably 90 to 1% by weight. It is an amount to be 00% by weight. If the amount of the solvent in the mixed solution is less than 80% by weight of the absorbed amount of the active material, the active material becomes powdery at the time of kneading, so that the shearing does not work and the mixing of the active material and the polymer (A) is performed. May be uneven, which may result in a slurry composition having poor fluidity. Conversely, if the amount of the solvent in the mixed solution is more than 120% by weight of the absorbed amount of the active material, the viscosity of the mixed solution is low and the shearing does not work. As a result, the slurry composition having poor fluidity is obtained. There is a possibility of becoming a thing.
活物質の吸液量は、 A S TM D 28 1 に準じて次の方法で測定することがで きる。 すなわち、 シャーレに採取した活物質 20 gをスパチュラ一で搔き回しな がら溶媒を 0. 5 m lづっ滴下し、 活物質の粉末が固いケーキ状にまとまる溶媒 量を求め、 活物質 1 00 g当りの重量に換算する。 この測定を 3回行い、 平均値 を吸液量とする。  The liquid absorption of the active material can be measured by the following method according to ASTM D281. That is, while spinning 20 g of the active material collected in a petri dish with a spatula, add 0.5 ml of the solvent dropwise at a time, and determine the amount of the solvent in which the powder of the active material is collected into a hard cake. Convert to the weight of This measurement is performed three times, and the average value is taken as the liquid absorption.
本発明方法において、 ポリマー (A) を溶媒 (S A) に分散させるための、 お よび、 ポリマー (B) を溶媒 (S B) に溶解させるための混合機や混練時間は特 に限定されない。 これらを行う場合の混合機としては、 例えば、 攪拌機付き混合 槽、 プラネタリ一ミキサー、 リポンプレンダーが用いられる。  In the method of the present invention, a mixer and a kneading time for dispersing the polymer (A) in the solvent (S A) and for dissolving the polymer (B) in the solvent (S B) are not particularly limited. As a mixer for performing these, for example, a mixing tank with a stirrer, a planetary mixer, and a repump blender are used.
また、 ポリマー (A) を分散させる方法としては、 溶媒 (S A) が非水系溶媒 である場合は、 製造効率の良さなどから、 通常の方法によってポリマー (A) の 粒子が水に分散されたポリマ一の水分散体を製造した後、 ポリマ一の水分散体中 の水を非水系溶媒に置換する方法が好ましい。置換方法としては、 ポリマー (A) の水分散体に非水系溶媒を加えた後、 分散媒中の水分を、 例えば蒸留法または分 散媒相転換法により除去する方法などが挙げられる。  As a method for dispersing the polymer (A), when the solvent (SA) is a non-aqueous solvent, the polymer (A) particles are dispersed in water by an ordinary method because of the high production efficiency and the like. It is preferable to prepare one aqueous dispersion and then replace the water in the aqueous dispersion of the polymer with a non-aqueous solvent. Examples of the substitution method include a method in which a non-aqueous solvent is added to an aqueous dispersion of the polymer (A), and then water in the dispersion medium is removed by, for example, a distillation method or a dispersion medium phase conversion method.
導電性付与剤を使用する場合は、 予めポリマー (B) の溶液に導電性付与剤を 分散させ、 混合液として用いるのが好ましい。  When using the conductivity-imparting agent, it is preferable to disperse the conductivity-imparting agent in the solution of the polymer (B) in advance and use the mixture as a mixture.
ポリマー (B ) の溶媒 (S B) 溶液に導電性付与剤を含有せしめた混合液を調 製する際は、 混合液の固形分濃度が 30〜40重量%、 特には 33〜38重量% となるように溶媒 (S B) 量を調節して混練するのが好ましい。 なお、 ここで固 形分濃度とは、 ポリマー (B) と導電性付与剤との合計量の混合液全量に対する 割合である。 固形分濃度がこの範囲であると導電性付与剤を均一に混合すること が容易になる。 本発明の製造方法では、 上記のようにして調製したポリマ一 (A) の分散液と 活物質とを混練してなる混合液と、 ポリマー (B ) の溶液とを混練してスラリー 組成物を製造する。 混練に際し、 バインダーや電極活物質および導電性付与剤の 種類に応じ、 塗工に好適な粘度になるように溶媒 (S A) または (S B) を追加 してもよい。 When preparing a mixed solution prepared by adding a conductivity-imparting agent to a solvent (SB) solution of the polymer (B), the solid content of the mixed solution is 30 to 40% by weight, particularly 33 to 38% by weight. It is preferable to adjust the amount of the solvent (SB) as described above and knead the mixture. Here, the solid content concentration is a ratio of the total amount of the polymer (B) and the conductivity-imparting agent to the total amount of the mixed solution. When the solid content is in this range, it becomes easy to mix the conductivity-imparting agent uniformly. In the production method of the present invention, a slurry composition is prepared by kneading a mixture obtained by kneading the dispersion of the polymer (A) and the active material prepared as described above, and a solution of the polymer (B). To manufacture. At the time of kneading, a solvent (SA) or (SB) may be added so as to have a viscosity suitable for coating, depending on the types of the binder, the electrode active material, and the conductivity imparting agent.
スラリ一組成物の最適な粘度は、 集電体に塗布する塗工機の種類や塗工ライン の形状によっても異なるが、 温度 23°Cにおいて B r o o k f i e I d L型粘 度計でローター番号 4、 回転数 30 r pmで 1分間回転後の粘度が、 通常、 1 5 00〜8000m P a ■ s、 好ましくは 2000〜6000mP a ■ sである。 スラリー組成物の粘度が過度に低いと、 経時に伴ってスラリーに沈降が生じたり 塗工時に液ダレを起こすおそれがあり、 逆に、 粘度が過度に高いと、 塗膜の厚み 厶ラゃ混合層表面の平滑性低下を起こす可能性がある。  The optimum viscosity of the slurry composition depends on the type of coating machine applied to the current collector and the shape of the coating line, but at a temperature of 23 ° C, the rotor number is 4 using a Brookfie Id L-type viscometer. The viscosity after rotation for 1 minute at a rotation speed of 30 rpm is usually 1500 to 8000 mPas, preferably 2000 to 6000 mPas. If the viscosity of the slurry composition is excessively low, sedimentation of the slurry may occur over time, or liquid dripping may occur during coating. Conversely, if the viscosity is excessively high, the thickness of the coating film may be mixed. There is a possibility that the smoothness of the layer surface is reduced.
ポリマ一 (A) の分散液と活物質とを混練してなる混合液とポリマー (B ) の 溶液とを混練するとき、 ならびにポリマー (A) の溶媒 (S A) 分散液と活物質 とを混練して混合液を調製するとき、 およびポリマー (B ) の溶媒 (S B) 溶液 に導電性付与剤を分散させるときの混合機や混練時間は特に限定されないが、 高 剪断の混合機を用いて活物質や導電性付与剤の粒子とバインダーのポリマーとを 均一に混合させることが好ましい。  When kneading a mixed solution obtained by kneading a dispersion of the polymer (A) and the active material and a solution of the polymer (B), and kneading a dispersion of the solvent (SA) of the polymer (A) and the active material The mixer and the kneading time for preparing the mixed solution by mixing and for dispersing the conductivity-imparting agent in the solution of the polymer (B) in the solvent (SB) are not particularly limited. It is preferable to uniformly mix the particles of the substance or the conductivity-imparting agent and the polymer of the binder.
高剪断の混合機としては、 ボールミル、 サンドミル、 顔料分散機、 攉潰機、 超 音波分散機、 ホモジナイザー、 プラネタリーミキサーなどが例示されるが、 この 中でもプラネ夕リーミキサーが好ましい。  Examples of the high shear mixer include a ball mill, a sand mill, a pigment disperser, a crusher, an ultrasonic disperser, a homogenizer, and a planetary mixer. Among them, a planetary mixer is preferable.
高剪断の混合機での混合条件は特に限定されないが、 混合温度は、 通常、 1 5 〜50°C、 混合時間は、 通常、 60~1 80分である。 分散の程度は粒ゲージに より測定可能であるが、 少なくとも 1 00 mより大きい凝集物が無くなるよう に混合し、 分散させることが好ましい。  Mixing conditions in a high shear mixer are not particularly limited, but the mixing temperature is usually 15 to 50 ° C, and the mixing time is usually 60 to 180 minutes. The degree of dispersion can be measured by a grain gauge, but it is preferable to mix and disperse such that at least aggregates larger than 100 m are eliminated.
本発明方法によって得られたスラリー組成物は、 粘度の経時変化が少なく、 結 着性が良好であリ、 表面が平滑で厚さが均一な二次電池電極混合層を与える。 二次電池電極は、 本発明方法で得られた二次電池電極用スラリー組成物を、 集 電体に塗布して乾燥する方法により製造することができる。 すなわち、 二次電池 電極は、 集電体に、 バインダー、 活物質、 および必要により加えられた導電性付 与剤、 増粘剤などを均一に含有する混合層を結着させて形成される。 The slurry composition obtained by the method of the present invention provides a secondary battery electrode mixed layer having little change over time in viscosity, good binding properties, a smooth surface and a uniform thickness. The secondary battery electrode can be manufactured by a method in which the slurry composition for a secondary battery electrode obtained by the method of the present invention is applied to a current collector and dried. That is, the secondary battery The electrode is formed by binding a mixed layer containing a binder, an active material, and a conductive additive, a thickener, and the like added as needed to a current collector.
上記方法で得られる二次電池電極は、 正極、 負極のいずれにも使用することが できるが、 正極に使用するのが好ましく、 リチウムイオン二次電池の正極に用い るのが特に好ましい。  The secondary battery electrode obtained by the above method can be used for both a positive electrode and a negative electrode, but is preferably used for a positive electrode, and particularly preferably for a positive electrode of a lithium ion secondary battery.
集電体は、 導電性材料からなるものであれば特に制限されない。 リチウムィ才 ン二次電池では、 鉄、 銅、 アルミニウム、 ニッケル、 ステンレスなどの金属製の ものであるが、 特に正極にアルミニウムを、 負極に銅を用いた場合、 本発明の方 法により製造されたスラリ一組成物の効果が最もよく現れる。 ニッケル水素二次 電池では、 パンチングメタル、 エキスパンドメタル、 金網、 発泡金属、 網状金属 繊維焼結体、 金属メツキ樹脂板などを挙げることができる。  The current collector is not particularly limited as long as it is made of a conductive material. Lithium secondary batteries are made of metal such as iron, copper, aluminum, nickel, and stainless steel.In particular, when aluminum is used for the positive electrode and copper is used for the negative electrode, the lithium secondary battery is manufactured by the method of the present invention. The effect of the slurry composition appears best. Examples of the nickel-metal hydride secondary battery include punched metal, expanded metal, wire mesh, foamed metal, reticulated metal fiber sintered body, and metal plating resin plate.
集電体の形状は特に制限されないが、 通常、 厚さ 0 . 0 0 1 〜0 . 5 m m程度 のシー卜状のものである。  Although the shape of the current collector is not particularly limited, it is usually a sheet having a thickness of about 0.001 to 0.5 mm.
スラリー組成物の集電体への塗布方法は特に制限されない。 例えば、 ドクター ブレード法、 ディップ法、 リバースロール法、 ダイレク卜ロール法、 グラビア法、 ェクストルージョン法、 八ケ塗り法などの方法が挙げられる。 塗布するスラリー 組成物量も特に制限されないが、 液状媒体を乾燥して除去した後に形成される、 活物質、 バインダーなどからなる乾燥後の混合層の厚さが、 通常、 0 . 0 0 5〜 5 m m、 好ましくは 0 . 0 Ί 〜 2 m mになる量が一般的である。  The method for applying the slurry composition to the current collector is not particularly limited. For example, methods such as a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, and an eight-coating method can be used. The amount of the slurry composition to be applied is also not particularly limited, but the thickness of the dried mixed layer formed of the active material, the binder, and the like formed after drying and removing the liquid medium is usually 0.005 to 5 mm, preferably between 0.0 ° and 2 mm.
集電体に塗布されたスラリー組成物の乾燥方法も特に制限されず、 例えば、 温 風、 熱風、 低湿風による乾燥、 真空乾燥、 (遠) 赤外線や電子線などの照射によ る乾燥方法が例として挙げられる。  The method of drying the slurry composition applied to the current collector is not particularly limited. Examples of the method include drying with hot air, hot air, low-humidity air, vacuum drying, and irradiation with (far) infrared rays or electron beams. As an example.
さらに、 乾燥後の電極をロールプレスなどの方法でプレスすることにより電極 の活物質の密度を高めてもよい。  Further, the density of the active material of the electrode may be increased by pressing the dried electrode by a method such as a roll press.
二次電池は、 上記方法で得られた二次電池電極、 電解液、 セパレーターなどの 部品を用いて、 常法に従って製造して製造することができる。 例えば、 負極と正 極とをセパレー夕一を介して重ね合わせ、 これを電池形状に応じて巻く、 折るな どして電池容器に入れ、 電池容器に電解液を注入して封口する。 電池の形状は、 コイン型、 ポタン型、 シート型、 円筒型、 角形、 扁平型など何れであってもよい。 電解液は、 通常の二次電池に用いられるものであれば、 液状でもゲル状でもよ く、 負極活物質、 正極活物質の種類に応じて電池としての機能を発揮するものを 選択すればよい。 The secondary battery can be manufactured by using components such as the secondary battery electrode, the electrolyte solution, and the separator obtained by the above-described method, and manufacturing the secondary battery according to a conventional method. For example, a negative electrode and a positive electrode are overlapped with each other via a separator, rolled or folded according to the shape of the battery, placed in a battery container, filled with an electrolyte, and sealed. The shape of the battery may be any of a coin type, a button type, a sheet type, a cylindrical type, a square type, a flat type, and the like. The electrolyte may be in a liquid or gel form as long as it is used for a normal secondary battery, and an electrolyte that exhibits a function as a battery may be selected according to the type of the negative electrode active material and the positive electrode active material. .
電解質としては、 リチウムイオン二次電池では、 従来より公知のリチウム塩が いずれも使用でき、 L i C I 04、 L i B F4、 L i P Fい L i C F3C02な どが挙げられる。 As the electrolyte, a lithium ion secondary battery, also known lithium salt is any conventionally available, L i CI 0 4, L i BF 4, L i PF have L i CF 3 C0 2, etc. can be mentioned.
この電解質を溶解させる溶媒は特に限定されるものではない。 具体例としては エチレンカーボネー卜、 ェチルメチルカーボネー卜、 プロピレンカーボネー卜な どのカーボネ一卜類; r一プチロラクトンなどのラクトン類; 1, 2—ジメトキ シェタン、 ジェチルエーテル、 テ卜ラヒドロフラン、 2—メチルテ卜ラヒドロフ ランなどのエーテル類; ジメチルスルホキシドなどのスルホキシド類などが挙げ られ、 これらは単独もしくは二種以上の混合溶媒として使用することができる。 また、 ニッケル水素二次電池では、 例えば、 従来公知の濃度が 5モル/リット ル以上の水酸化力リウ厶水溶液を使用することができる。  The solvent in which this electrolyte is dissolved is not particularly limited. Specific examples include: carbonates such as ethylene carbonate, ethyl methyl carbonate, and propylene carbonate; lactones such as r-butyrolactone; 1,2-dimethoxetane, getyl ether, tetrahydrofuran, Ethers such as 2-methyltetrahydrofuran; sulfoxides such as dimethyl sulfoxide; and the like, and these can be used alone or as a mixed solvent of two or more kinds. In the nickel-metal hydride secondary battery, for example, a conventionally known aqueous solution of lithium hydroxide having a concentration of 5 mol / liter or more can be used.
実施例  Example
以下に、 実施例を挙げて本発明を説明するが、本発明はこれらに限定されない。 なお、 以下で記す 「部」 および 「%J は、 特記しない限り重量基準である。 実施例および比較例における操作および試験は以下の方法によった。  Hereinafter, the present invention will be described with reference to Examples, but the present invention is not limited thereto. The “parts” and “% J” described below are based on weight unless otherwise specified. The operations and tests in Examples and Comparative Examples were performed by the following methods.
〔スラリ一構成成分およびスラリ一組成物の特性〕  (Characteristics of slurry component and slurry composition)
( 1 ) ガラス転移温度 (T g)  (1) Glass transition temperature (T g)
ポリマーの T gは、 示差走査型熱量計 (DS C) により、 昇温速度 1 o°cz分 で測定した。  The Tg of the polymer was measured by a differential scanning calorimeter (DSC) at a heating rate of 1 o ° cz.
(2) N—メチルピロリ ドン ( N M P ) 不溶分量  (2) N-methylpyrrolidone (NMP) insoluble content
ポリマーの N M P不溶分量は、 ポリマー 0. 2 gを N M P 20ミリリットルに 60°Cで 72時間浸潰した後、 80メッシュの篩でろ過し、 篩上の成分を乾燥し て求めた重量の、 浸漬前の重量に対する百分率で示した。  The amount of polymer insoluble in NMP was determined by immersing 0.2 g of polymer in 20 ml of NMP at 60 ° C for 72 hours, filtering through an 80-mesh sieve, and drying the components on the sieve. Expressed as a percentage of the previous weight.
(3) 平均粒径  (3) Average particle size
ポリマーの平均粒径は、 透過型電子顕微鏡写真で無作為に選んだポリマー粒子 1 00個の径を測定し、 その平均値として算出される個数平均粒子径として求め た。 単位は ( m) である。 The average particle diameter of the polymer is determined as the number average particle diameter calculated by measuring the diameter of 100 randomly selected polymer particles in a transmission electron micrograph and calculating the average value. Was. The unit is (m).
(4) ポリマー組成  (4) Polymer composition
ポリマ一を構成する各繰り返し単位の含有量は、 1 H—および1 3 C— N M R測 定により求めた。 単位は (モル%) である。 The content of each repeating unit constituting the polymer was determined by 1 H— and 13 C—NMR measurements. The unit is (mol%).
(5) 活物質の吸液量  (5) Liquid absorption of active material
シャーレに採取した活物質 20 gをスパチュラ一で搔き回しながら N M Pを 0. 5 m Iづっ滴下し、 活物質の粉末が固いケーキ状にまとまる N M P量を測定し、 活物質 1 00 g当りの重量に換算する。 3回の測定の平均値を吸液量とする。 While spinning 20 g of the active material collected in a Petri dish with a spatula, NMP was added dropwise in 0.5 ml increments, and the amount of NMP in which the powder of the active material was formed into a hard cake was measured, and the amount of NMP per 100 g of the active material was measured. Convert to weight. The average value of three measurements is taken as the liquid absorption.
(6) スラリー組成物粘度、 スラリー粘度維持率 (6) Slurry composition viscosity, slurry viscosity maintenance rate
スラリ一組成物の粘度は、 スラリ一組成物の調製後 23 °Cに貯蔵し、 1時間後 と 24時間後に、 温度 2 3°Cにおいて B r 0 0 k f i e I d L 型粘度計で口一 タ一番号 4、 回転数 30 r pmで 1分間回転後に測定した。 単位は (m P a ■ s ) である。 また、 24時間目の粘度値の 1時間目の粘度値に対する百分率をスラリ 一粘度維持率 (%) とした。  The viscosity of the slurry composition was measured at 23 ° C after the preparation of the slurry composition, and after 1 hour and 24 hours, measured with a Br 0 kfie Id L-type viscometer at a temperature of 23 ° C. The measurement was performed after rotation for 1 minute at data number 4, rotation speed 30 rpm. The unit is (m P a ■ s). Also, the percentage of the viscosity value at 24 hours to the viscosity value at 1 hour was defined as slurry-one-viscosity maintenance rate (%).
〔二次電池電極の特性〕  [Characteristics of secondary battery electrode]
(7) リチウムイオン二次電池正極の作製  (7) Preparation of positive electrode for lithium ion secondary battery
実施例、 比較例において調製したリチウムィ才ン二次電池正極用スラリー組成 物をアルミ二ゥ厶箔 (厚さ 20 m) にドクターブレード法によって均一に塗布 し、 乾燥機にて温度 1 20°Cで 1 5分間乾燥した。 さらに真空乾燥機にて 0. 6 k P a、 1 20°Cで 2時間減圧乾燥した後、 2軸のロールプレスによって電極密 度が 3. 2 gZc m 3となるように圧縮してリチウムイオン二次電池正極を得た。The slurry composition for a lithium secondary battery positive electrode prepared in Examples and Comparative Examples was uniformly applied to aluminum foil (20 m thick) by a doctor blade method, and dried at a temperature of 120 ° C by a dryer. For 15 minutes. After further dried under reduced pressure for 2 hours at 0. 6 k P a, 1 20 ° C using a vacuum dryer, lithium and compressed so that the electrode density by roll press biaxial becomes 3. 2 GZC m 3 ions A secondary battery positive electrode was obtained.
(8) 算術平均粗さ (R a) (8) Arithmetic mean roughness (Ra)
J I S B 0 6 0 1 に基づいて、 電極混合層の表面の 2 0 μ m四方の算術平均 粗さ (R a) を、 原子間力顕微鏡で観測した。  The arithmetic average roughness (R a) of 20 μm square on the surface of the electrode mixed layer was observed with an atomic force microscope based on JIS B 0601.
(9) 剥離強度  (9) Peel strength
上記 (7) に記す方法で得たリチウムイオン二次電池正極から、 長さ 1 00 m m、幅 25 mmの長方形を塗布方向が長辺となるように切り出して試験片とする。 試験片の混合層全面にセロハンテープを貼り付けた後、 試験片の一端のセロハン テープ端と集電体箔端を垂直方向に引張り速度 50mm/分で引っ張って剥がし たときの応力 (NZcm) を測定する。 応力が大きいほど混合層の剥離強度が大 きいと判断する。 From the positive electrode of the lithium ion secondary battery obtained by the method described in (7) above, a rectangle having a length of 100 mm and a width of 25 mm is cut out so that the application direction is the long side, and is used as a test piece. After attaching cellophane tape to the entire mixed layer of the test piece, peel off the cellophane tape end of one end of the test piece and the current collector foil end in a vertical direction at a pulling speed of 50 mm / min. Measure the stress (NZcm) at the time of contact. The larger the stress, the higher the peel strength of the mixed layer.
〔二次電池の特性〕  [Characteristics of secondary battery]
(1 0) リチウムイオン二次電池の製造  (10) Manufacture of lithium ion secondary batteries
負極としては金属リチウムを使用した。 上記 (7) に記す方法で得たアルミ二 ゥ厶正極および金属リチウム負極を直径 1 5 mmの円形に切抜き、 正極の電極層 面側に直径 1 8mm、 厚さ 25 Aimの円形ポリプロピレン製多孔膜からなるセパ レー夕一、 負極の金属リチウムを順に積層し、 外装容器底面に正極のアルミニゥ 厶箔が接触するように配置し、 さらに負極の上にエキスパンドメタルを入れ、 ポ リプロピレン製パッキンを設置したステンレス鋼製のコイン型外装容器 (直径 2 Omm, 高さ 1. 8mm、 ステンレス鋼厚さ 0. 25mm) 中に収納した。 この 容器中に下記の電解液を空気が残らないように注入し、 ポリプロピレン製パッキ ンを介して外装容器に厚さ 0.2 mmのステンレス鋼のキヤップを被せて固定し、 電池缶を封止して直径 20 mm、 厚さ約 2 mmのコイン型電池を製造した。 電解 液はエチレンカーボネー卜/ェチルメチルカーボネー卜 =33/67 ( 20°Cで の体積比) に L i P Fsを 1モル/リットルの濃度で溶解した溶液を用いた。Metallic lithium was used as the negative electrode. The aluminum positive electrode and the lithium metal negative electrode obtained by the method described in (7) above were cut into a circular shape having a diameter of 15 mm, and a circular polypropylene porous film having a diameter of 18 mm and a thickness of 25 Aim was formed on the electrode layer side of the positive electrode. The lithium metal of the negative electrode is laminated in order, placed so that the aluminum foil of the positive electrode is in contact with the bottom of the outer container, expanded metal is placed on the negative electrode, and polypropylene packing is installed. It was housed in a stainless steel coin-shaped outer container (diameter 2 Omm, height 1.8 mm, stainless steel thickness 0.25 mm). The following electrolyte solution was injected into this container so that no air remained, and a 0.2 mm-thick stainless steel cap was placed over the outer container via polypropylene packing, and the battery can was sealed. A coin-type battery with a diameter of 20 mm and a thickness of about 2 mm was manufactured. Electrolytic solution was used a solution of ethylene carbonate Natick Bok / E chill methyl carbonate Natick Bok = 33/67 (volume ratio at 20 ° C) L i PF s at a concentration of 1 mole / liter.
(1 1 ) 電池容量 (1 1) Battery capacity
電池容量の測定は、 25°Cで充放電レー卜を 0. 1 Cとし、 定電流法 (電流密 度: 0. 5 m AZg—活物質) で Ί . 2 Vに充電し、 3 Vまで放電する充放電を 各 5回繰り返し、 その都度電池容量を測定する。 繰り返し測定した電池容量の平 均値を評価結果とする。 単位は 〔mA hZg :活物質当たり (以下、 電池容量に 関しては同じ)〕 である。  The battery capacity was measured at a charge / discharge rate of 0.1 C at 25 ° C, charged to 0.2 V by the constant current method (current density: 0.5 m AZg—active material), and charged to 3 V. Repeat charging and discharging 5 times each, and measure the battery capacity each time. The average value of the battery capacity measured repeatedly is used as the evaluation result. The unit is [mA hZg: per active material (hereinafter, the same applies to battery capacity)].
(1 2) レー卜特性  (1 2) Rate characteristics
測定条件を、 定電流量を 1 Cに変更したほかは、 電池容量の測定と同様に定電 流法で充放電を行い、 3サイクル目の放電容量〔単位 = mA hZg〕を測定した。 3サイクル目における 0. 1 Cでの放電容量に対する 1 Cでの放電容量の割合を 百分率で算出した。 この値が大きいほど、 高速充放電が可能なことを示す。  Charge / discharge was performed by the constant current method in the same manner as in the measurement of the battery capacity, except that the measurement conditions were changed to a constant current of 1 C, and the discharge capacity at the third cycle (unit: mA hZg) was measured. The ratio of the discharge capacity at 1 C to the discharge capacity at 0.1 C in the third cycle was calculated as a percentage. The larger the value, the faster the charge / discharge is possible.
実施例および比較例においてバインダーとして用いた各ポリマーの組成 (単 位:モル%) を表 1 に示す。 ポリマー A— 1, 2および B— 1 - 3はいずれも乳 化重合法により製造した。 ポリフッ化ビ二リデンは市販品を使用した 表 1 Table 1 shows the composition (unit: mol%) of each polymer used as a binder in Examples and Comparative Examples. Polymers A—1, 2 and B—1—3 are all milk It was produced by a chemical polymerization method. Commercially available polyvinylidene fluoride was used. Table 1
Figure imgf000017_0001
注 * 1 : ポリマー B— 1 は、 アクリロニトリル/ブタジエン共重合体のブタジェ ン由来の繰り返し単位部分を水素化して用いた。 実施例 1
Figure imgf000017_0001
Note * 1: Polymer B-1 was obtained by hydrogenating the repeating unit derived from butadiene in an acrylonitrile / butadiene copolymer. Example 1
0. 4部のポリマー A— 1を NM P 1 5. 6部に分散させた分散液とコバルト 酸リチウム (L i C o 02、 活物質 (り、 吸液量 1 5. 6 g) 1 00部とを 2対の スパイラルフック型攪拌翼を有するプラネタリーミキサーで 60分間混練して混 合液 aを調製した。 混合液 aの固形分濃度は 86. 6 %であった。 別途、 6. 3 部の NM Pに 0. 2部のポリマー B— 1 と 0. 2部のポリマー B— 3を溶解させ た溶液に導電性付与剤のアセチレンブラック (電気化学工業社製、 デンカブラッ ク粒状) 3部を添加して固形分濃度 35. 1 %で前記と同種のプラネタリーミキ サ一で混練し、 N M P 1. 8部を加えて固形分濃度 29. 6 %の混合液 bを作製 した。 前記プラネタリ一ミキサーを用いて混合液 aに混合液 bを加えて、 さらに 30分間混練してリチウムイオン二次電池正極用スラリー組成物を得た。 スラリ 一組成物の固形分濃度は 8 1. 4%であった。 スラリー粘度は、 1時間目 220 0 m P a■ s、 24時間目 2270mP a ' sで、スラリ一粘度変化率は 1 03 % であった。 0.4 parts of polymer A- 1 to NM P 1 5. dispersion and lithium cobalt oxide dispersed in 6 parts (L i C o 0 2, the active material (is, liquid absorption amount 1 5. 6 g) 1 The mixture (100 parts) was kneaded with a planetary mixer having two pairs of spiral hook type stirring blades for 60 minutes to prepare a mixture a.The solid content concentration of the mixture a was 86.6%. Acetylene black, a conductivity-imparting agent, in a solution prepared by dissolving 0.2 part of polymer B-1 and 0.2 part of polymer B-3 in 3 parts of NMP (Denka Black granules, manufactured by Denki Kagaku Kogyo KK) 3 parts were added and kneaded with a planetary mixer of the same type as above at a solid content concentration of 35.1%, and 1.8 parts of NMP was added to prepare a mixed solution b having a solid content concentration of 29.6%. The mixed liquid a was added to the mixed liquid a using the planetary mixer, and kneaded for 30 minutes to obtain a slurry composition for a positive electrode of a lithium ion secondary battery. The solids concentration of one composition was 81.4%. The slurry viscosity was 2200 mPa ■ s at the first hour, 2270 mPa as at the 24th hour, and the slurry-viscosity change rate was 103%.
この 24時間経過後のスラリ一組成物を用いて作製した二次電池電極および二 次電池の特性を試験した結果を表 2に記す。  Table 2 shows the results of testing the characteristics of the secondary battery electrode and the secondary battery manufactured using the slurry composition after 24 hours.
実施例 2 ~ 6  Examples 2 to 6
表 2に示す成分および量の配合で実施例 1 と同様にしてスラリ一組成物を調製 した。 混合液 bの調製における表記の NM P量の内、 ポリマー (B) 溶解に 6. 3部を用い、 導電性付与剤混合後に残量を添加した。 ただし、 実施例 3において はポリマ一 (B) の溶解に表記量をすベて用いた。 スラリー組成物、 スラリー組 成物を用いて作製した二次電池電極および二次電池の特性を試験した。 試験結果 を表 2に記す。 A slurry composition was prepared in the same manner as in Example 1 with the components and amounts shown in Table 2. Of the NMP amounts indicated in the preparation of mixed solution b, 6.3 parts were used for dissolving polymer (B), and the remaining amount was added after mixing the conductivity-imparting agent. However, in Example 3, all the indicated amounts were used for dissolving the polymer (B). The characteristics of the slurry composition and the secondary battery electrode and the secondary battery produced using the slurry composition were tested. Table 2 shows the test results.
1 1
18  18
表 2  Table 2
Figure imgf000019_0001
Figure imgf000019_0001
* 1 i C o 02 、 吸液量 1 5. 6 g * 1 i C o 0 2, liquid-absorbing amount of 1 5. 6 g
11 ■ i C o 02 、 吸液量 1 3 · 1 g 11 ■ i C o 0 2, the liquid-absorbent amount of 1 3 · 1 g
111 . i C o O 2 、 吸液量 1 7 · 9 g * 2 P V D F :ポリフッ化ビニリデン 111. I C o O 2, liquid absorption amount 1 7 · 9 g * 2 PVDF: polyvinylidene fluoride
(# 1 1 00、 呉羽化学社製、 NMP不溶分量0. 1 %未満) 表 2に見られるように、 吸液量の異なる 3種の活物質に対して溶媒に難溶なポ リマーと可溶なポリマーの両者をバインダ一に用い、 本発明の方法に則って製造 したスラリー組成物は、 製造 1時間後および 24時間後共に低くて安定した粘度 (経時変化が少) を示し、 これらのスラリー組成物を塗布して作製した電極混合 層は表面が平滑で、 剥離強度は十分大きくて結着性は良好であった。 また、 これ らの電擠を用いたリチウムイオン二次電池は高容量で、 かつ、 高レート特性であ つた (実施例 1〜6)。 比較例 1  (# 1100, manufactured by Kureha Chemical Co., Ltd., NMP insoluble content less than 0.1%) As shown in Table 2, it is possible to use a polymer that is hardly soluble in a solvent with respect to three types of active materials with different liquid absorptions. The slurry composition produced according to the method of the present invention using both the soluble polymer and the binder exhibited a low and stable viscosity (small change with time) both 1 hour and 24 hours after production. The electrode mixed layer produced by applying the slurry composition had a smooth surface, a sufficiently high peel strength, and good binding properties. In addition, lithium ion secondary batteries using these batteries had high capacity and high rate characteristics (Examples 1 to 6). Comparative Example 1
23. 7部の N M Pに 0. 2部のポリマー B— Ί と 0. 2部のポリマー B— 3 を溶解させ、 さらに、 0. 4部のポリマー A— 1を分散させ、 さらに、 ァセチレ ンブラック 3部ならびに活物質 (i) 1 00部を添加し、 2対のスパイラルフック 型攪拌翼を有するプラネ夕リーミキサーで 90分間混練してリチウムィ才ン二次 電池正極用スラリ一組成物を得た。 スラリ一組成物の固形分濃度は 81. 4 %で あった。スラリ一粘度は、 1時間目 Ί 3400 m P a · s、 24時間目 20 Ί 0 m P a - sで、 スラリー粘度変化率は 1 5%であった。  23. Dissolve 0.2 part of polymer B-Ί and 0.2 part of polymer B-3 in 7 parts of NMP, disperse 0.4 part of polymer A-1 and further disperse acetylene black 3 parts and 100 parts of the active material (i) were added, and the mixture was kneaded with a planetary mixer having two pairs of spiral hook-type stirring blades for 90 minutes to obtain a lithium secondary battery positive electrode slurry composition. . The solid content of the slurry composition was 81.4%. The slurry viscosity was 3400 mPa · s at the first hour and 20Ί0 mPa-s at the 24th hour, and the slurry viscosity change rate was 15%.
この 24時間経過後のスラリー組成物を用いて作製した二次電池電極および二 次電池の特性を試験した結果を表 3に記す。  Table 3 shows the results of testing the characteristics of the secondary battery electrode and the secondary battery produced using the slurry composition after the elapse of 24 hours.
比較例 2  Comparative Example 2
1 6. 9部の N M Pに 0. 2部のポリマー B— 1 と 0. 2部のポリマー B— 3 を溶解させ、 次いで 0. 4部のポリマー A— 1を添加して分散させ、 この分散液 とアセチレンブラック 3部と活物質 (i) 1 00部とを 2対のスパイラルフック型 攪拌翼を有するプラネタリ一ミキサーで 60分間混練し、 NM Pを 6. 8部加え て、 さらに 30分間混練してリチウムイオン二次電池正極用スラリー組成物を得 た。 スラリー組成物の固形分濃度は 8 1. 4%であった。 スラリー粘度は、 1時 間目 1 2800 m P a · s、 24時間目 2 1 20 m P a · sで、 スラリ一粘度 変化率は 1 7 %であった。 この 24時間経過後のスラリー組成物を用いて作製した二次電池電極および二 次電池の特性を試験した結果を表 3に記す。 1. Dissolve 0.2 part of polymer B-1 and 0.2 part of polymer B-3 in 6.9 parts of NMP, and then add and disperse 0.4 part of polymer A-1. The liquid, 3 parts of acetylene black and 100 parts of the active material (i) are kneaded for 60 minutes with a planetary mixer having two pairs of spiral hook-type stirring blades, 6.8 parts of NMP are added, and the mixture is further kneaded for 30 minutes Thus, a slurry composition for a lithium ion secondary battery positive electrode was obtained. The solid concentration of the slurry composition was 81.4%. The slurry viscosity was 1800 mPa · s at the first hour, and 2120 mPa · s at the 24th hour, and the slurry-viscosity change rate was 17%. Table 3 shows the results of testing the characteristics of the secondary battery electrode and the secondary battery produced using the slurry composition after the elapse of 24 hours.
比較例 3  Comparative Example 3
NM P 1 6. 1部に 0. Ί部のポリマー B— 1 と 0. 1部のポリマ一 B— 3を 溶解させ、 この溶液とアセチレンブラック 3部と活物質 (i) 1 00部とを 2対の スパイラルフック型攪拌翼を有するブラネタリーミキサーで 30分間混練し、 こ れに、 0. 1部のポリマー B— 1 と 0. 1部のポリマー B— 3を NM P 3部に溶 解した溶液を加えて、 さらに 30分間混練した。 ここに、 NM P 4. 6部に 0. 4部のポリマー A— 1を分散させた分散液を添加して、 さらに 30分間混練して リチウムイオン二次電池正極用スラリー組成物を得た。 スラリー組成物の固形分 濃度は 81. 4 %であった。 スラリー粘度は、 1時間目 Ί 8400 m P a ■ s、 24時間目 2050 m P a ■ sで、 スラリ一粘度変化率は 1 1 %であつた。 この 24時間経過後のスラリ一組成物を用いて作製した二次電池電極および二 次電池の特性を試験した結果を表 3に記す。  NM P 16.1 Dissolve 0.1 part of polymer B-1 and 0.1 part of polymer B-3 in 6.1 parts, and add this solution, 3 parts of acetylene black and 100 parts of active material (i). Kneading with a planetary mixer having two pairs of spiral hook type stirring blades for 30 minutes, dissolving 0.1 part of polymer B-1 and 0.1 part of polymer B-3 in 3 parts of NMP The undulated solution was added and kneaded for another 30 minutes. Here, a dispersion liquid in which 0.4 part of polymer A-1 was dispersed in 4.6 parts of NMP was added and kneaded for 30 minutes to obtain a slurry composition for a positive electrode of a lithium ion secondary battery. The solid content concentration of the slurry composition was 81.4%. The slurry viscosity was 8400 mPa ■ s at the first hour and 2050 mPa as at the 24th hour, and the slurry-viscosity change rate was 11%. Table 3 shows the results of testing the characteristics of the secondary battery electrode and the secondary battery produced using the slurry composition after 24 hours.
比較例 4  Comparative Example 4
NM P 1 5. 8部に 0. 2部のポリマ一 B— 1をと 0. 2部のポリマー B— 3 を溶解させ、 この溶液と活物質 (i) 1 00部とを 2対のスパイラルフック型攪拌 翼を有するプラネタリーミキサーで 60分間混練して混合液 cを調製した。 混合 液 cの固形分濃度は 86. 4%であった。 別途、 NM P 7. 9部に 0. 4部のポ リマー A— 1 を分散させた分散液にアセチレンブラック 3部を添加してブラネタ リーミキサーで分散し、 固形分濃度 30. 0 %の混合液 dを作製した。 前記ブラ ネ夕リーミキサーを用いて混合液 cに混合液 dを加えて、 さらに 30分間混練し てリチウムイオン二次電池正極用スラリー組成物を得た。 スラリー組成物の固形 分濃度は 8 Ί . 4 %であった。 スラリ一粘度は、 1時間目 8950 m P a · s、 24時間目 1 980 m P a · sで、 スラリ一粘度変化率は 22 %であった。 この 24時間経過後のスラリ一組成物を用いて作製した二次電池電極および二 次電池の特性を試験した結果を表 3に記す。 表 3 NM P 1 Dissolve 0.2 part of polymer B-1 and 0.2 part of polymer B-3 in 5.8 parts, and mix this solution with 100 parts of active material (i) in two pairs of spirals The mixture was kneaded for 60 minutes with a planetary mixer having hook-type stirring blades to prepare a mixed solution c. The solid content concentration of the mixed solution c was 86.4%. Separately, add 3 parts of acetylene black to a dispersion of 0.4 parts of Polymer A-1 dispersed in 7.9 parts of NMP, and disperse with a planetary mixer to mix at a solids concentration of 30.0%. Liquid d was prepared. The mixed solution d was added to the mixed solution c using the above-mentioned brine mixer, and the mixture was further kneaded for 30 minutes to obtain a slurry composition for a positive electrode of a lithium ion secondary battery. The solid concentration of the slurry composition was 8.4%. The slurry viscosity was 8950 mPa · s at the first hour and 1980 mPa · s at the 24th hour, and the slurry viscosity change rate was 22%. Table 3 shows the results of testing the characteristics of the secondary battery electrode and the secondary battery produced using the slurry composition after 24 hours. Table 3
Figure imgf000022_0001
表 3に示すように、 上記発明例 (実施例 1〜6 ) と同じ成分を同じ量使用して も、 本発明と異なる手順で製造したスラリー組成物はいずれも不具合を呈した。 すなわち、 溶媒以外の全成分を全量の溶媒に順次添加して混練する方法で、 ある いは、 約 7割量の溶媒に順次添加して混練してから残量の溶媒を加える方法で得 られたスラリー組成物は、 粘度の初期値が高い上にその後急激に低下して安定せ ず、 電極混合層は表面が粗く、 剥離強度が著しく小さく、 これらの電極を用いた 二次電池は、 電池容量、 レー卜特性ともに低かった (比較例 1、 2 )。
Figure imgf000022_0001
As shown in Table 3, even when the same components were used in the same amounts as in the above invention examples (Examples 1 to 6), any of the slurry compositions produced by a procedure different from that of the present invention exhibited defects. That is, it is obtained by a method in which all components other than the solvent are sequentially added to the entire amount of the solvent and kneaded, or a method in which the remaining components are added to the remaining amount of the solvent by sequentially adding and kneading about 70% of the solvent. The resulting slurry composition has a high initial value of viscosity and then drops rapidly and is not stable, and the electrode mixture layer has a rough surface and a remarkably low peel strength. Both capacity and rate characteristics were low (Comparative Examples 1 and 2).
また、 ポリマー (B ) と導電性付与剤と活物質とを先に混合した混合液にポリ マー (A ) を分散させた液を加える方法で調製したスラリー組成物は、 粘度の初 期値が 8 ~ 9倍と高く、 経時で激しく低下した。 このスラリー組成物を用いて得 られた電極および二次電池は、 比較例 1および 2と同様な欠陥を呈した (比較例 3 )。  The slurry composition prepared by a method of adding a liquid in which the polymer (A) is dispersed to a liquid mixture in which the polymer (B), the conductivity-imparting agent, and the active material are mixed first has an initial viscosity value. It was as high as 8 to 9 times and decreased sharply with time. The electrode and the secondary battery obtained using this slurry composition exhibited the same defects as Comparative Examples 1 and 2 (Comparative Example 3).
さらに、 ポリマー (B ) を溶解して活物質を分散させた混合液に、 別途調製し たポリマー (A ) および導電性付与剤を分散させた液を添加して混練する、 本発 明とは逆の配合手順を採ると、 スラリ一組成物の粘度は本発明例の約 4倍の初期 値を示した後に大きく低下し、 電極および二次電池は比較例 1 ~ 3と同様な欠点 を有するものであった (比較例 4 )。 産業上の利用可能性  Furthermore, a separately prepared solution in which the polymer (A) and the conductivity-imparting agent are dispersed is added to a mixed solution in which the active material is dispersed by dissolving the polymer (B), and the mixture is kneaded. When the reverse blending procedure is adopted, the viscosity of the slurry composition shows an initial value about four times as large as that of the present invention, and then drops significantly, and the electrodes and the secondary batteries have the same disadvantages as Comparative Examples 1 to 3. (Comparative Example 4). Industrial applicability
本発明方法によって得られるスラリー組成物は、 粘度の経時変化が少なく、 結 着性が良好であり、 この組成物を集電体に塗布して乾燥すると、 表面が平滑で厚 さが均一な混合層を有する二次電池電極が形成される。  The slurry composition obtained by the method of the present invention has little change in viscosity over time and good binding properties. When this composition is applied to a current collector and dried, the mixture has a smooth surface and a uniform thickness. A secondary battery electrode having a layer is formed.
上記の二次電池電極は、 正極、 負極のいずれにも使用することができるが、 正 極に使用するのが好ましく、 リチウムイオン二次電池の正極に用いるのが特に好 ましい。  The above-mentioned secondary battery electrode can be used for both the positive electrode and the negative electrode, but is preferably used for the positive electrode, and is particularly preferably used for the positive electrode of the lithium ion secondary battery.

Claims

請求の範囲 The scope of the claims
1 . 溶媒 (S A) に対する不溶分を 5 0重量%以上含有するポリマー (A) の溶媒 (S A) 分散液と電極活物質とを混練し、 次いで、 得られた混練液と、 ポ リマ一 (B ) の溶媒 (S B) 溶液とを混練することよりなる二次電池電極用スラ リー組成物の製造方法。 1. A solvent (SA) dispersion of a polymer (A) containing 50% by weight or more of an insoluble content in a solvent (SA) is kneaded with an electrode active material, and then the obtained kneaded liquid is mixed with a polymer (A). A method for producing a slurry composition for a secondary battery electrode, which comprises kneading a solvent (B) solution of B).
2. ポリマ一 (A) の溶媒 (S A) に対する不溶分が 5 0重量%以上 9 0重 量%以下である請求の範囲 1 に記載のスラリ一組成物の製造方法。  2. The method for producing a slurry composition according to claim 1, wherein an insoluble content of the polymer (A) in the solvent (S A) is 50% by weight or more and 90% by weight or less.
3. ポリマー (A) の溶媒 (S A) に対する不溶分が 5 0重量%以上 8 7重 量%以下である請求の範囲 1 に記載のスラリ一組成物の製造方法。  3. The method for producing a slurry composition according to claim 1, wherein an insoluble content of the polymer (A) in the solvent (S A) is 50% by weight or more and 87% by weight or less.
4. ポリマ一 (A) が単官能エチレン性不飽和モノマーおよび共役ジェンの 中から選ばれた少なくとも一種のモノマーと多官能エチレン性不飽和モノマーと の架橋共重合体である請求の範囲 1 ~ 3のいずれかに記載のスラリー組成物の製 造方法。  4. The polymer according to claims 1 to 3, wherein the polymer (A) is a crosslinked copolymer of at least one monomer selected from a monofunctional ethylenically unsaturated monomer and a conjugated diene and a polyfunctional ethylenically unsaturated monomer. The method for producing a slurry composition according to any one of the above.
5. ポリマ一 (A) のガラス転移温度 (T g) が— 8 0°C〜0°Cの範囲であ る請求の範囲 1 ~ 4のいずれかに記載のスラリー組成物の製造方法。  5. The method for producing a slurry composition according to any one of claims 1 to 4, wherein the glass transition temperature (T g) of the polymer (A) is in the range of −80 ° C. to 0 ° C.
6. ポリマ一 (A) の平均粒径が 0. 0 0 5 xm〜 1 , Ο Ο Ο Ι の範囲で ある請求の範囲 1 ~ 5のいずれかに記載のスラリー組成物の製造方法。  6. The method for producing a slurry composition according to any one of claims 1 to 5, wherein the average particle size of the polymer (A) is in the range of 0.05 xm to 1 and Ο Ο Ι.
7. ポリマー (Β) が単官能エチレン性不飽和モノマ一および共役ジェンの 中から選ばれた少なくとも一種のモノマーの重合体である請求の範囲 Ί ~ 6のい ずれかに記載のスラリ一組成物の製造方法。  7. The slurry composition according to any one of claims 1 to 6, wherein the polymer (Β) is a polymer of at least one monomer selected from a monofunctional ethylenically unsaturated monomer and a conjugated diene. Manufacturing method.
8. ポリマー (Β) が、 フッ素含有単官能エチレン性モノマ一単位を 5 0モ ル%以上含有するフッ素含有ポリマ一を含む請求の範囲 1〜 7のいずれかに記載 のスラリ一組成物の製造方法。  8. The production of the slurry composition according to any one of claims 1 to 7, wherein the polymer (Β) contains a fluorine-containing polymer containing 50 mol% or more of one unit of a fluorine-containing monofunctional ethylenic monomer. Method.
9. ポリマ一 (Α) とポリマー (Β) との総量が、 活物質 Ί 0 0重量部に対 して、 0. 1 〜5重量部の範囲である請求の範囲 1 〜 8のいずれかに記載のスラ リ一組成物の製造方法。  9. The method according to any one of claims 1 to 8, wherein the total amount of the polymer (Α) and the polymer (Β) is in the range of 0.1 to 5 parts by weight based on 100 parts by weight of the active material. A method for producing the slurry composition according to the above.
1 0. ポリマー (Α) とポリマー (Β) の重量比 [(A) / (Β)] が 5 1 - 1 / 5の範囲である請求の範囲 1 〜 9のいずれかに記載のスラリー組成物の製 造方法。 10. The slurry composition according to any one of claims 1 to 9, wherein the weight ratio of the polymer (Α) to the polymer (ポ リ マ ー) [(A) / (Β)] is in the range of 51-1/5. Made of Construction method.
1 1 . 溶媒 (S A) および溶媒 (S B) が、 水および、 大気圧下での沸点が 8 0°C〜 3 5 0 °Cである非水系溶媒の中から選ばれる請求の範囲 1 〜 1 0のいず れかに記載のスラリ一組成物の製造方法。  11. The solvent according to claim 1, wherein the solvent (SA) and the solvent (SB) are selected from water and a non-aqueous solvent having a boiling point of 80 ° C. to 350 ° C. under atmospheric pressure. 0. The method for producing a slurry composition according to any one of [0].
1 2. 溶媒 (S A) と溶媒 (S B) が同一の組成を有するものである請求の 範囲 1 〜 1 1のいずれかに記載のスラリー組成物の製造方法。  1 2. The method for producing a slurry composition according to any one of claims 1 to 11, wherein the solvent (S A) and the solvent (S B) have the same composition.
1 3. ポリマー (B ) の溶媒 (S B) 溶液が、 さらに導電性付与剤を含有せ しめたものである請求の範囲 1〜 1 2のいずれかに記載のスラリー組成物の製造 方法。  1 3. The method for producing a slurry composition according to any one of claims 1 to 12, wherein the solvent (SB) solution of the polymer (B) further contains a conductivity-imparting agent.
1 4. 導電性付与剤を含有せしめた、 ポリマー (B ) の溶媒 (S B) 溶液が、 固形分濃度 3 0-4 0重量%で混練を行って得られたものである請求の範囲 1 3 に記載のスラリ一組成物の製造方法。  1 4. The solvent (SB) solution of the polymer (B) containing the conductivity-imparting agent is obtained by kneading at a solids concentration of 30 to 40% by weight. A method for producing a slurry composition according to the above item.
1 5. 導電性付与剤の量が活物質 1 0 0重量部当たり 1 〜 20重量部である 請求の範囲 1 3または 1 4に記載のスラリー組成物の製造方法。  1 5. The method for producing a slurry composition according to claim 13 or 14, wherein the amount of the conductivity-imparting agent is 1 to 20 parts by weight per 100 parts by weight of the active material.
1 6. ポリマー (A) の溶媒 (SA) 分散液と電極活物質との混練における 溶媒 (S A)の量が、 電極活物質の吸液量の 8 0〜 1 2 0重量%である請求の範 囲 1 ~ 1 5のいずれかに記載のスラリ一組成物の製造方法。  1 6. The amount of the solvent (SA) in the kneading of the solvent (SA) dispersion of the polymer (A) and the electrode active material is 80 to 120% by weight of the absorbed amount of the electrode active material. 16. The method for producing a slurry composition according to any one of ranges 1 to 15.
1 7. 請求の範囲 1 〜 1 6のいずれかに記載の製造方法で製造された二次電 池電極用スラリー組成物。  1 7. A slurry composition for a secondary battery electrode produced by the production method according to any one of claims 1 to 16.
1 8. 請求の範囲 1 7に記載のスラリー組成物を、 集電体に塗布して乾燥す ることよりなる二次電池電極の製造方法。  1 8. A method for producing a secondary battery electrode, comprising applying the slurry composition according to claim 17 to a current collector and drying.
1 9. 集電体上に、 該スラリー組成物に由来する厚さ 0. 005 mm〜5 m mの混合層を形成せしめる請求の範囲 1 8に記載の二次電池電極の製造方法。  19. The method for producing a secondary battery electrode according to claim 18, wherein a mixed layer derived from the slurry composition and having a thickness of 0.005 mm to 5 mm is formed on the current collector.
PCT/JP2003/008401 2002-07-02 2003-07-02 Method for preparing slurry composition for electrode of secondary cell WO2004006361A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004519231A JP4470735B2 (en) 2002-07-02 2003-07-02 Method for producing slurry composition for secondary battery electrode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002193952 2002-07-02
JP2002-193952 2002-07-02

Publications (1)

Publication Number Publication Date
WO2004006361A1 true WO2004006361A1 (en) 2004-01-15

Family

ID=30112293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/008401 WO2004006361A1 (en) 2002-07-02 2003-07-02 Method for preparing slurry composition for electrode of secondary cell

Country Status (4)

Country Link
JP (1) JP4470735B2 (en)
KR (1) KR101083129B1 (en)
CN (1) CN1290211C (en)
WO (1) WO2004006361A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004273444A (en) * 2003-02-20 2004-09-30 Mitsubishi Chemicals Corp Lithium secondary battery, active substance for negative electrode thereof and negative electrode thereof
US11542382B2 (en) 2017-03-21 2023-01-03 Kureha Corporation Gel-like electrolyte having vinylidene fluoride copolymer

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8722244B2 (en) * 2009-11-18 2014-05-13 Toyota Jidosha Kabushiki Kaisha Lithium secondary battery and method of manufacturing same
WO2011077500A1 (en) * 2009-12-25 2011-06-30 日本エイアンドエル株式会社 Binder for secondary battery electrode

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1154113A (en) * 1997-08-07 1999-02-26 Toray Ind Inc Manufacture of mix for electrode of nonaqueous secondary battery
JPH11162453A (en) * 1997-12-01 1999-06-18 Tdk Corp Manufacture of battery electrode
JPH11213989A (en) * 1998-01-20 1999-08-06 Toyota Central Res & Dev Lab Inc Manufacture of positive electrode material for lithium secondary battery
WO2001029917A1 (en) * 1999-10-18 2001-04-26 Zeon Corporation Binder composition for electrodes of lithium ion secondary batteries and use thereof
JP2002141060A (en) * 2000-11-02 2002-05-17 Matsushita Electric Ind Co Ltd Manufacturing method of negative electrode mixture and non-aqueous system secondary battery using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100824330B1 (en) 2000-11-13 2008-04-22 제온 코포레이션 Slurry composition for secondary cell positive electrode, secondary cell positive electrode and secondary cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1154113A (en) * 1997-08-07 1999-02-26 Toray Ind Inc Manufacture of mix for electrode of nonaqueous secondary battery
JPH11162453A (en) * 1997-12-01 1999-06-18 Tdk Corp Manufacture of battery electrode
JPH11213989A (en) * 1998-01-20 1999-08-06 Toyota Central Res & Dev Lab Inc Manufacture of positive electrode material for lithium secondary battery
WO2001029917A1 (en) * 1999-10-18 2001-04-26 Zeon Corporation Binder composition for electrodes of lithium ion secondary batteries and use thereof
JP2002141060A (en) * 2000-11-02 2002-05-17 Matsushita Electric Ind Co Ltd Manufacturing method of negative electrode mixture and non-aqueous system secondary battery using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004273444A (en) * 2003-02-20 2004-09-30 Mitsubishi Chemicals Corp Lithium secondary battery, active substance for negative electrode thereof and negative electrode thereof
US11542382B2 (en) 2017-03-21 2023-01-03 Kureha Corporation Gel-like electrolyte having vinylidene fluoride copolymer

Also Published As

Publication number Publication date
CN1290211C (en) 2006-12-13
JP4470735B2 (en) 2010-06-02
JPWO2004006361A1 (en) 2005-12-15
KR20050016713A (en) 2005-02-21
KR101083129B1 (en) 2011-11-11
CN1666360A (en) 2005-09-07

Similar Documents

Publication Publication Date Title
US8802289B2 (en) Composition for electrode comprising an iron compound with carbon and a (meth)acrylate-nitrile copolymer
JP4218244B2 (en) Slurry composition for secondary battery electrode, secondary battery electrode and secondary battery
US6770397B1 (en) Binder composition for lithium ion secondary battery electrodes and use thereof
CN100435391C (en) Slurry composition for electrode, electrode and secondary cell
JP6090213B2 (en) Binder composition, electrode slurry, electrode and non-aqueous electrolyte secondary battery
WO2011096463A1 (en) Slurry composition for negative electrode of lithium ion secondary battery, negative electrode of lithium ion secondary battery, and lithium ion secondary battery
WO2004095613A1 (en) Binder for electrode of lithium ion secondary battery
JP4311002B2 (en) Slurry composition for electrode, electrode and secondary battery
TW201244234A (en) Binder composition for positive electrodes
JP6109525B2 (en) Emulsion binder for forming nickel-metal hydride secondary battery electrode and composite ink for forming nickel-hydrogen secondary battery electrode
JP2000299109A (en) Binder composition for electrode for lithium ion secondary battery and its utilization
JP5499951B2 (en) Secondary battery binder, production method, secondary battery negative electrode composition, and secondary battery
JPWO2008123143A1 (en) Method for producing slurry for lithium ion secondary battery electrode
EP2804243A1 (en) Binder resin composition for secondary battery electrodes, slurry for secondary battery electrodes, electrode for secondary batteries, and lithium ion secondary battery
JP2003100298A (en) Secondary battery and binder composition for electrode thereof
JP4207443B2 (en) Slurry composition for secondary battery electrode, secondary battery electrode and secondary battery
JP4412443B2 (en) Thickener for lithium ion secondary battery negative electrode and lithium ion secondary battery
JP7298592B2 (en) Slurry composition for lithium ion secondary battery and electrode for lithium ion secondary battery
JP3067544B2 (en) Positive electrode for lithium secondary battery and method for producing the same
WO2004006361A1 (en) Method for preparing slurry composition for electrode of secondary cell
JPWO2020137591A1 (en) Binder composition for secondary battery electrode, conductive material paste composition for secondary battery electrode, slurry composition for secondary battery electrode, electrode for secondary battery, and secondary battery
WO2012043763A1 (en) Electrode mixture for electricity-storage device, method for manufacturing said electrode mixture, and electricity-storage-device electrode and lithium-ion secondary battery using said electrode mixture
JP6145638B2 (en) Water-soluble binder composition for secondary battery, mixture for secondary battery electrode, electrode for secondary battery, lithium ion secondary battery
EP4024534A1 (en) Binder composition for electricity storage devices, slurry for electricity storage device electrodes, electricity storage device electrode, and electricity storage device
JP2006107959A (en) Electrode and its manufacturing method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

WWE Wipo information: entry into national phase

Ref document number: 1020047021692

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20038157314

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020047021692

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004519231

Country of ref document: JP