WO2004005596A1 - Fine carbon fiber having specific interlaminar structure and method for preparation thereof - Google Patents

Fine carbon fiber having specific interlaminar structure and method for preparation thereof Download PDF

Info

Publication number
WO2004005596A1
WO2004005596A1 PCT/JP2003/008495 JP0308495W WO2004005596A1 WO 2004005596 A1 WO2004005596 A1 WO 2004005596A1 JP 0308495 W JP0308495 W JP 0308495W WO 2004005596 A1 WO2004005596 A1 WO 2004005596A1
Authority
WO
WIPO (PCT)
Prior art keywords
fine carbon
carbon fiber
fine
layers
fiber according
Prior art date
Application number
PCT/JP2003/008495
Other languages
French (fr)
Japanese (ja)
Inventor
Morinobu Endo
Kunio Nishimura
Shuji Tsuruoka
Takayuki Tsukada
Original Assignee
Carbon Nanotech Research Institute Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carbon Nanotech Research Institute Inc. filed Critical Carbon Nanotech Research Institute Inc.
Priority to AU2003281306A priority Critical patent/AU2003281306A1/en
Publication of WO2004005596A1 publication Critical patent/WO2004005596A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols

Definitions

  • Fine carbon fiber having a unique structure between layers and manufacturing method thereof
  • the present invention relates to a fine carbon fiber having a unique structure between layers and a method for producing the same.
  • Carbon fiber is a well-known fibrous carbon, but in recent years fine carbon fiber has attracted attention.
  • fine carbon fiber There are several types of fine carbon fiber depending on the fiber diameter, and are called vapor-grown carbon fiber, carbon nanofiber, carbon nanotube, and so on.
  • carbon nanotubes are the finest and have a fiber diameter of 100 nm or less, and due to their unique physical properties, they are expected to be widely applied to nanoelectronic materials, composite materials, catalyst support for fuel cells, etc., and gas absorption. Have been.
  • a carbon nanotube is a sheet (graphene sheet) in which carbon atoms are connected in a net-like fashion.
  • Stacked multi-layer carbon nanotubes (MWNT) are known. The geometry of the diameter and winding of the sheet is determined by the chiral index, which indicates the properties of the metal or semiconductor.
  • These carbon nanotubes can be obtained by the arc discharge method using a carbon electrode, the laser oven method, or the method of chemically pyrolyzing hydrocarbon gas using transition metal fine particles as a catalyst (C VD method, CC VD method). Synthesized.
  • fibrous carbon that grows specifically in the C-axis direction that is, carbon nanotubes disclosed by Hyperion, etc., has a highly crystalline graphite structure.
  • the fine carbon fiber of the present invention has a regular structure and a firmly bonded layer structure such as a graphite structure, because graphite sheets having different chirality levels are randomly combined. Unlikely, it is expected that the degree of freedom between layers will increase and exhibit unique properties.
  • the present invention basically provides a fine carbon fiber having no graphite-like structure and having a turbostratic structure or a new structure different from the turbostratic structure, unlike the prior patent, and a method for producing the same. . Disclosure of the invention
  • a graph ensheet composed of carbon atoms is rectangular, and sheets having a long side of at least 100 nm or more are laminated in multiple layers, and the long side of each layer is substantially the same. Sheets with different short sides are wound into a hollow tube shape, and are multi-layered fine carbon fibers having a structure in which a plurality of tubes are stacked in a nested manner.
  • the hollow portion has a cross section perpendicular to the fiber axis.
  • each layer has a different chirality.
  • the graph ensheets are randomly combined, and the carbons constituting the layers have a coordination relationship with no crystallinity in the C0 direction, forming adjacent layers
  • the layers are connected with a bonding force weaker than the van der Waals force required to form the graphite structure.
  • Graphitization factor g a standard index that indicates the physical state of graphite.
  • d Q. 2 is greater than 0 ⁇ 344 nm
  • d M2 is a distance expressed in angstroms between (002) planes of the crystal structure of the graph ensheet, and is an interlayer distance in the fine carbon fiber of the present invention.
  • g takes a positive value of 0 or more, but it cannot be said that graphite is graphite only based on these physical properties.
  • the interlayer distance seems to have a graphite structure, apparently from the analysis results of the electron microscope.
  • the fine carbon fiber of the present invention satisfying the above conditions does not have a graphite structure.
  • turbostratic structure It cannot be said that the elementary fiber has a turbostratic structure, and this fine carbon fiber has neither a graphite structure nor a turbostratic structure.
  • the fine carbon fiber having a structure other than graphite of the present invention has a uniform fibrous structure, is basically a plurality of graphene sheets laminated in a nested manner, and the graphene sheets are mutually Relationships are random, characterized by having a mutual structure.
  • the aspect ratio of the fine carbon fiber of the present invention is not limited, but it is mainly 10 or more, especially 100 or more.
  • Fine carbon fibers having such a structure exhibit surprisingly significant industrial-use properties when compared to conventional graphite-like carbon nanotubes.
  • each dalaphen sheet is fixed by a loose bonding force, so that each graph ensheet behaves as a single graph ensheet.
  • the graphene sheet itself is rigidly connected (Rigid) between CCs due to SP 2 hybrid orbitals, and the Phonon phenomenon occurs. That is, the CC bond, which is harder than the bond between metal atoms, makes the conductivity of heat, that is, physical vibration, very high.
  • the thermal conductivity of the CC bond is 2000 WZm ° K, which is several times that of the metal bond.
  • the outermost daraphen layer constituting the layer mainly has a negative graphitization factor, the daraphen layer can vibrate without receiving mutual interference, and It is possible to have a higher thermal conductivity as compared with.
  • the outermost layer of the graph ensheet is less susceptible to electronic interference from inside the tube, and the electrons on the graph ensheet are volume It easily reacts with the substance outside the tube.
  • the dalaphen layer is wide, other substances can be easily introduced between the layers. That is, since the graph ensheet layer interval is wider than that of conventional carbon nanotubes, fullerene, metal-encapsulated fullerene, metal atoms having a large atomic number, and their ions, which are relatively large and have a high degree of freedom between layers, can be finely divided. It can be introduced not only in the hollow part (about 10 nm) in the center of the carbon fiber, but also between layers. If the interlayer is at least larger than 0.4 nm, a space comparable to this hollow part can be secured.
  • FIG. 1 is a diagram schematically showing a reaction apparatus of Example 1.
  • FIG. 2 is a diagram schematically showing a reaction apparatus of Example 2.
  • FIG. 3 is a diagram schematically showing a reaction apparatus of Example 3.
  • FIG. 4 is a diagram schematically showing a reaction apparatus of Example 5.
  • FIG. 5 is a transmission electron micrograph of the fine carbon fiber obtained in Example 1.
  • FIG. 6 is a transmission electron micrograph of the fine carbon fiber obtained in Example 2.
  • FIG. 7 is a transmission electron micrograph of the fine carbon fiber obtained in Example 3.
  • FIG. 8 is a transmission electron micrograph of the fine carbon fiber obtained in Example 4.
  • FIG. 9 is a transmission electron micrograph of the fine carbon fiber obtained in Example 5.
  • the fine carbon fiber of the present invention mainly has an interlayer distance larger than 0.344 nm.
  • the characterization of the chirality of such fine carbon fiber is determined by the molecular dynamics method. A simulation was performed using the method described above (for the molecular dynamics calculation method, see Shigeo Maruyama, "Carbon Nanotubes (2002) Chapter 7: Generation and Mechanism of Single-Walled Carbon Nanotubes”). .
  • the relationship between the chirality of the outer layer and the chirality of the inner layer of the basal plane constituting the fine carbon fiber having such a large interlayer distance is shown in Table 1.
  • the chirality of the outer layer and the inner layer of the fine carbon fiber of the present invention is stochastically determined, and it is clear that in the case of a multilayer tube, it is probable that all layers have the same chirality. In this simulation, the chirality is calculated only at the extremes of metallic or semiconducting, but in reality, there is an intermediate chirality, so it is very unlikely that all layers will have the same chirality. This indicates that the chirality of the fine carbon fiber of the present invention is random.
  • the fine carbon fiber of the present invention can be manufactured by the following method.
  • the transition metal catalyst can be used by being supported on a carrier (CCVD method).
  • the transition metal include iron, cobalt, nickel, yttrium, titanium, vanadium, manganese, chromium, copper, niobium, molybdenum, palladium, tungsten, platinum, and the like.
  • these acid oxidants, nitrates, sulfates, acetates, chlorides and the like can be used.
  • iron, nickel, cobalt, etc. are used as transition metals of Group VIII of the periodic table. Can be used.
  • the fine carbon fiber of the present invention has the significant features described above as compared with the conventional carbon nanotube, its application range is wide.
  • the method of use is broadly classified into a method of using as fiber and a method of using as powder.
  • a 0-dimensional composite material such as a slurry
  • a linearly processed 1-dimensional composite material 3D composite materials
  • 2D composite materials fabric, film, paper
  • a conductive resin and a conductive resin molded product by being mixed with a resin, for example, for a packaging material, a gasket, a container, a resistor, a conductive fiber, an adhesive, an ink, a paint, and the like.
  • the reactor was manufactured by the CVD method using the reactor shown in Fig. 1.
  • the raw material liquid was converted into minute droplets using an ultrasonic atomizer, and the droplets were carried into the system from the upper part of the reactor with the use of the Helium gas.
  • Helium gas was flowed from the upper part to the lower part of the reactor as an atmospheric gas, and pyrolyzed under the following reaction conditions.
  • Raw material liquid ethanol containing 0.15 g of iron acetate 100 m 1
  • Reactor temperature 1200 ° C
  • Atmosphere gas helium (200 m1 / min) + hydrogen (400 m1 / min)
  • TEM transmission electron microscope
  • Example 2 It was manufactured by the CC VD method using a horizontal reactor and the reactor shown in Fig. 2.
  • Catalyst preparation Cobalt nitrate hexahydrate 1.68 g was dissolved in about 10 ml of water.
  • Reactor Horizontal tubular furnace with quartz reaction tube, catalyst particles were placed on a quartz plate and set near the center of the reaction tube.
  • Catalyst activation and reaction heated to 800 ° C under argon flow, after 30 minutes
  • Argon was bubbled into ethanol heated to 50 ° C., and ethanol vapor was introduced into the reactor to react on the catalyst. After introducing steam for 30 minutes, cooling was performed while flowing only argon gas, and then the product was taken out.
  • FIG. 6 shows a TEM photograph of the obtained fine carbon fiber.
  • the reactor is a furnace in which a SiC core tube with an inner diameter of 76 mm and a length of 1500 mm is heated from outside the core tube.
  • the reaction raw materials were introduced from the top of the tower, and the reaction products were recovered from the lower recovery can.
  • Atmospheric hydrogen was supplied half with the raw materials. The other half was supplied from the top.
  • the catalyst is mixed in advance with benzene so that the catalyst becomes 2% and thiophene becomes 2%, and this raw material liquid is sent into the above hydrogen gas at a rate of 40 m 1 / h, vaporized at 400 ° C., and At the top of the tower.
  • the reaction temperature in the reactor was 1150 ° C.
  • the total amount of hydrogen in the atmosphere was set at 12.5 L / min so as to flow through the reaction tube.
  • Figure 7 shows a TEM photograph Shown in
  • the fiber diameter of this fiber was about 20 nm, and the interlayer distance was 0.358 nm.
  • the gap between carbon electrodes with a diameter of 6 mm was 1.5 mm, the helium pressure was 400 torr, and the arc current was 60 mA.
  • the cathode deposit was ultrasonically dispersed in ethanol to obtain a fibrous material.
  • Fig. 8 shows a TEM photograph of the obtained fine carbon fiber.
  • a graphite rod is heated to 950 ° C in a horizontal tubular furnace (quartz tube) under argon flow, and 50 kPa of argon is passed through the tube at 0.1 LZ min. The reaction was continued for 3 hours with pulse irradiation of 15 ns. The generated fine particles were collected by a water-cooled copper collector.
  • FIG. 9 shows the TEM of the obtained fine carbon fiber.
  • this fiber is multilayered and the layer spacing is 0.363 nm or more.
  • the fine carbon fiber of the present invention is suitable as a conductive resin mixed with a resin, an electromagnetic wave shielding paint, and a molded conductive resin molded article, an electromagnetic wave shielding material or the like.
  • rolls, brake parts It can be used for wires, home appliances, vehicles, airplanes and other bodies, and machine housings by taking advantage of its light weight and tough characteristics for gears, bearings, gears, etc.

Abstract

A fine carbon fiber having a structure wherein a plurality of rectangular graphene sheets consisting of carbon atoms and having a long side of a length of 100 nm or more are laminated, respective groups of carbon atoms constituting two adjacent layers coordinate with each other in a relationship exhibiting no crystallinity in the C0 direction, two layers are bonded with each other with a bonding force weaker than the van der Waals force for a graphite structure, the graphene sheets are wound into the form of a hollow tube having a perimeter constituted by the short side thereof, and a plurality of such tubes are laminated in the state of a nest, and wherein the cross section orthogonal to the axis of the fiber has a perimeter of its hollow portion of 3 nm or more, the outermost layer of the tubes has a diameter of 100 nm or less, the distance between two adjacent layers is 0.344 nm or more, and chiralities of respective layers are combined at random; and a method for preparing the fine carbon fiber.

Description

明 細 書 層間相互が特異な構造を持つ微細炭素繊維及びその製造方法 技術分野  Description: Fine carbon fiber having a unique structure between layers and manufacturing method thereof
本発明は、 層間相互が特異な構造を持つ微細な炭素繊維及びその製造方法に関 する。 背景技術  The present invention relates to a fine carbon fiber having a unique structure between layers and a method for producing the same. Background art
炭素繊維は良く知られた繊維状の炭素であるが、 近年微細炭素繊維が注目され ている。 微細炭素繊維は、 繊維径によっていくつかの種類があり、 気相法炭素繊 維、 カーボンナノファイバ一、 力一ボンナノチューブなどと呼ばれている。 なか でも、 カーボンナノチューブは最も微細な、 繊維径が 1 0 0 n m以下のもので、 その特異な物性から、 ナノ電子材料、 複合材料、 燃料電池などの触媒担持、 ガス 吸収などの広い応用が期待されている。  Carbon fiber is a well-known fibrous carbon, but in recent years fine carbon fiber has attracted attention. There are several types of fine carbon fiber depending on the fiber diameter, and are called vapor-grown carbon fiber, carbon nanofiber, carbon nanotube, and so on. Among them, carbon nanotubes are the finest and have a fiber diameter of 100 nm or less, and due to their unique physical properties, they are expected to be widely applied to nanoelectronic materials, composite materials, catalyst support for fuel cells, etc., and gas absorption. Have been.
力一ボンナノチューブには、 炭素原子が網状に結合したシ一ト (グラフェンシ —ト) 一層が筒状になったシングルカーボンナノチューブ (S WN T) やグラフ エンシートの筒が何層も入れ子状に積層した多層力一ボンナノチューブ (MWN T) が知られている。 直径とシートの巻き方の幾何学形状がカイラル指数によつ て決定され、 カイラル指数によって金属や半導体の性質を示す。  A carbon nanotube is a sheet (graphene sheet) in which carbon atoms are connected in a net-like fashion. Single-walled carbon nanotubes (SWNT), each of which has a single-layered tube, and several layers of graph-ensheet tubes are nested. Stacked multi-layer carbon nanotubes (MWNT) are known. The geometry of the diameter and winding of the sheet is determined by the chiral index, which indicates the properties of the metal or semiconductor.
これらの力一ボンナノチューブは、 炭素電極を用いたアーク放電法やレーザー オーブン法、 遷移金属微粒子を触媒として用いて炭化水素ガス等を化学熱分解す る方法 (C VD法、 C C VD法) で合成される。  These carbon nanotubes can be obtained by the arc discharge method using a carbon electrode, the laser oven method, or the method of chemically pyrolyzing hydrocarbon gas using transition metal fine particles as a catalyst (C VD method, CC VD method). Synthesized.
ところで、 従来知られている力一ボンナノチューブとして、  By the way, as conventionally known carbon nanotubes,
1 ) ハイペリオン (Hyper ion) 社特許 U S 4 6 6 3 2 3 0、 特開平 3— 1 7 4 0 1 8等に記載のカーボンナノチューブは、 実質的にグラフアイト構造を持つ炭素 原子の連続的な多重層からなるフィプリルであり、 規則的に配列した炭素原子の 層の多層からなり、 各層とコアがフィブリルの円柱軸に実質的に同心円状に配置 されていて、 炭素原子の各層は C軸がフィブリルの円柱軸に実質的に直交してい る黒鉛質からなるフィブリルである。 ここで、 ハイペリオン社の使う 「実質的」 とは、 ハイペリオン社の特公表 2000— 511864によれば、 「構造体の軸 に沿って、 または平面内で、 又は体積で測定した時の物理的性質の値の 95%が 平均値の +/- 10%以内に入ること」 を意味する。 1) The carbon nanotubes described in Hyperion patent US Pat. No. 4,663,320, Japanese Patent Application Laid-Open No. 3-174804, etc. A fibril consisting of a continuous multi-layer of atoms, consisting of multiple layers of regularly arranged layers of carbon atoms, each layer and core being arranged substantially concentrically on the cylindrical axis of the fibrils, Each layer is a graphite fibril whose C-axis is substantially perpendicular to the fibril cylinder axis. The term “substantially” used by Hyperion here means, according to Hyperion's special publication 2000-511864, “Physical properties measured along the axis of a structure, in a plane, or by volume. 95% of values within +/- 10% of the average. "
2) ハイペリオン社の特許を含め、 現在までに多くのカーボンナノチューブに関 する特許出願、 例えば特開平 05— 179514 (日機装) 、 06— 15701 6 (NEC) 、 06-280116 (NEC) 、 07— 150419 (昭和電工 ) 、 08- 100328 (キャノン) 、 10— 273308 (三菱化学) 、 11 - 1 16218 (大阪瓦斯) 、 11— 180707 (NEC) , 11— 2636 10 (トヨタ) 、 2000— 95509 (昭和電工) 、 2000— 203819 (大阪瓦斯) 、 2000— 319783 (日進ナノテック) 、 2001— 809 13 (日機装) 、 2001— 115342 (ェ技院) 等が出願されているが、 こ れらは全て、 黒鉛又は黒鉛的構造を持つものと規定されている。 すなわち、 各層 間は黒鉛的にタイ卜に固定されている。 さらに炭素技術の標準的な物性値の表現 方法である (1) 式で示される Graphitizaiion Factor (黒鉛化指数) gが正の 値をとるとされている。  2) To date, many patent applications relating to carbon nanotubes, including Hyperion's patents, have been filed, for example, in JP-A Nos. 05-179514 (Nikkiso), 06-157016 (NEC), 06-280116 (NEC), 07-150419. (Showa Denko), 08-100328 (Canon), 10-273308 (Mitsubishi Chemical), 11-1 16218 (Osaka Gas), 11-180707 (NEC), 11-2636 10 (Toyota), 2000-95509 (Showa Denko) ), 2000—203819 (Osaka Gas), 2000—319783 (Nissin Nanotec), 2001—80913 (Nikkiso), 2001—115342 (E-Giin), etc., all of which are graphite or It is defined as having a graphite-like structure. That is, the layers are fixed to the tile in a graphitic manner. In addition, the graphitization index (g) shown in Eq. (1), which is a standard method for expressing physical properties of carbon technology, is assumed to be a positive value.
g= (3.44-d002) / (3.44-3.354) (1) g = (3.44-d 002 ) / (3.44-3.354) (1)
3) 曽根田 ( 「カーボンナノファイバ一による水素吸蔵」 、 NIRE ニュース (資 源環境技術総合研究所) 、 1998年 12月) は、 一酸化炭素から金属表面に析出す るカーボンナノチューブを電子顕微鏡 (SEM、 TEM) 等で観察している。 そ れによると、 1つのカーボンナノチューブは 「炭素質の積層構造が繊維軸に対し て一定の角度を持って発達し、円錐型構造 (conical structure) を形成している 」 もので、 乱層構造を持つことを観察している。 また、 別のグラフエンシートが3) Soneda (“Hydrogen Absorption by Carbon Nanofiber”, NIRE News (National Institute for Environmental Studies), December 1998) reported that an electron microscope (SEM) , TEM). According to the report, one carbon nanotube is "a carbonaceous laminated structure develops at a certain angle to the fiber axis, forming a conical structure. It has been observed that it has a turbostratic structure. Also, another graph en-sheet
C軸方向に特異的に成長している繊維状炭素、 すなわち、 ハイペリオン社等が開 示しているカーボンナノチューブは、 結晶性の高い黒鉛構造を持っていると、 報 告している。 It is reported that fibrous carbon that grows specifically in the C-axis direction, that is, carbon nanotubes disclosed by Hyperion, etc., has a highly crystalline graphite structure.
4 ) 特開 2 0 0 1 _ 3 4 2 0 1 4の微小な針状物質の周囲に炭素結晶構造物を析 出させる方法ゃ特開 2 0 0 2— 2 9 7 1 9の溶融紡糸法のような方法は、 明らか に黒鉛的な炭素結晶構造のカーボンナノチュ一ブを生成する方法を開示するもの である。 したがって、 各層のカイラリティーが同一であり、 黒鉛的に一定の規則 的な構造を持つものである。 4) A method of depositing a carbon crystal structure around the fine needle-like substance disclosed in Japanese Patent Application Laid-Open No. 200-34-214 ゃ The melt spinning method described in Japanese Patent Application Laid-Open No. 200-2997 Such a method discloses a method for producing carbon nanotubes having a clearly graphitic carbon crystal structure. Therefore, the chirality of each layer is the same, and it has a graphite-like regular structure.
これらに対して、 本発明の微細炭素繊維は、 カイラリティ一が異なるグラフェ ンシー卜が無作為に組み合わされているので、 黒鉛構造のような規則性があって 強固に結合されている層構造とは異なり、 層間の自由度が増し、 特異な性質を現 すものと期待される。  On the other hand, the fine carbon fiber of the present invention has a regular structure and a firmly bonded layer structure such as a graphite structure, because graphite sheets having different chirality levels are randomly combined. Unlikely, it is expected that the degree of freedom between layers will increase and exhibit unique properties.
本発明は、 基本的に先行特許と異なり、 黒鉛的構造を持たず、 かつ乱層構造を 持つか、 または乱層構造とも異なる新しい構造を持つ微細炭素繊維及びその製造 方法を提供するものである。 発明の開示  The present invention basically provides a fine carbon fiber having no graphite-like structure and having a turbostratic structure or a new structure different from the turbostratic structure, unlike the prior patent, and a method for producing the same. . Disclosure of the invention
本発明の微細炭素繊維は、 炭素原子から構成きれるグラフエンシートが矩形で あって、 その長辺が少なくとも 1 0 0 n m以上のシ一卜が多層に積層し、 各層の 長辺がほぼ同一で、 短辺の長さがそれぞれ異なるシー卜が中空チューブ状に卷か れ、 複数のチューブが入れ子状に積層した構造を持つ多層の微細炭素繊維で、 繊 維軸と直交する断面の中空部の外周が 3 n m以上、 最外層の直径が 1 0 0 nm以 下の中空の微細な炭素繊維、 特に該グラフェンシートが形成する隣接する 2つの 層の層間距離が 0 . 3 4 4 n mより大きい、 より好ましくは 0 . 4 nm以上の微 細炭素繊維である。 中空チューブは、 各層がカイラリティー (Chiral i ty) の異 なるグラフエンシートが無作為に組み合わされて構成されているために、 従来の 黒鉛と異なり、 層を構成する炭素同士が C 0方向に結晶性のない配位関係にあり 、 隣り合う層を構成する炭素原子が 1 : 1に対応しておらず、 一定の規則性を持 たない特異な構造の微細炭素繊維である。 そして、 層間は黒鉛構造を構成するた めに必要なファンデルワールス力より弱い結合力で結合している。 In the fine carbon fiber of the present invention, a graph ensheet composed of carbon atoms is rectangular, and sheets having a long side of at least 100 nm or more are laminated in multiple layers, and the long side of each layer is substantially the same. Sheets with different short sides are wound into a hollow tube shape, and are multi-layered fine carbon fibers having a structure in which a plurality of tubes are stacked in a nested manner. The hollow portion has a cross section perpendicular to the fiber axis. A hollow fine carbon fiber having an outer circumference of 3 nm or more and an outermost layer diameter of 100 nm or less, particularly, an interlayer distance between two adjacent layers formed by the graphene sheet is greater than 0.344 nm; More preferably, it is a fine carbon fiber of 0.4 nm or more. In the hollow tube, each layer has a different chirality. Unlike conventional graphite, the graph ensheets are randomly combined, and the carbons constituting the layers have a coordination relationship with no crystallinity in the C0 direction, forming adjacent layers This is a fine carbon fiber with a unique structure that does not correspond to 1: 1 carbon atoms and does not have a certain regularity. The layers are connected with a bonding force weaker than the van der Waals force required to form the graphite structure.
これらの微細炭素繊維は、 1つは黒鉛の物理的状態を示す標準的な指数である Graphitization factor g (黒鉛化指数)  One of these fine carbon fibers is Graphitization factor g, a standard index that indicates the physical state of graphite.
g= (3.44-d002) / (3.44-3.354) (1) が負の値になる (dQ2が 0· 344nmより大きい) 、 グラフエンシートの相互 構造を持つものである。 ここで、 dM2はグラフエンシートの結晶構造 (002) 面間のオングストロームで表した距離で、 本発明の微細炭素繊維においては層間 距離になる。 g = (3.44-d 002) / (3.44-3.354) (1) is a negative value (d Q. 2 is greater than 0 · 344 nm), those having a mutual structure of the graph ene sheet. Here, d M2 is a distance expressed in angstroms between (002) planes of the crystal structure of the graph ensheet, and is an interlayer distance in the fine carbon fiber of the present invention.
また、 gが 0以上の正の値をとる場合もあるが、 この物性値のみによって黒鉛 であるとは言いがたい。 層間距離は、 電子顕微鏡の解析結果から見かけ上、 黒鉛 構造を取っているように見られるが、  In some cases, g takes a positive value of 0 or more, but it cannot be said that graphite is graphite only based on these physical properties. The interlayer distance seems to have a graphite structure, apparently from the analysis results of the electron microscope.
1) 繊維を繊維軸に沿って開いた場合、 繊維軸に直角の方向の各層の幅 (チュー ブの周の長さ) が異なる。 従って、 開いた状態で平板にすると平面的に余りが生 じる。  1) When the fiber is opened along the fiber axis, the width of each layer in the direction perpendicular to the fiber axis (the length of the circumference of the tube) differs. Therefore, if a flat plate is opened, there is a surplus in the plane.
2) カイラリティーが一定でないので、 平板にした場合、 炭素の位置が各層ごと に異なる。 従って、 チューブを構成する各グラフエンシートの炭素原子同士は 1 2) Since the chirality is not constant, the position of carbon is different for each layer when it is made flat. Therefore, the carbon atoms of each graph ensheet that constitutes the tube are 1
: 1に対応できない。 : Cannot respond to 1.
3) 本微細繊維を構成するグラフエンシートは、 完璧な構造のものばかりでなく 欠陥を含んでいるものも多い。 従って、 隣り合ったチューブを構成する各グラフ エンシートの炭素原子同士は 1 : 1に対応できない。  3) The graph ensheets that make up the fine fibers are not only of perfect structure but also often contain defects. Therefore, the carbon atoms of each graph ensheet that constitutes an adjacent tube cannot correspond to 1: 1.
よって、 上記の条件を満たす本発明の微細炭素繊維は黒鉛構造にはならない。 一方、 乱層構造の定義により、 長さ方向に長く、 完璧に構成されている微細炭 素繊維は乱層構造であるともいえず、 この微細炭素繊維は黒鉛構造でも、 乱層構 造でもない。 ' Therefore, the fine carbon fiber of the present invention satisfying the above conditions does not have a graphite structure. On the other hand, according to the definition of turbostratic structure, It cannot be said that the elementary fiber has a turbostratic structure, and this fine carbon fiber has neither a graphite structure nor a turbostratic structure. '
すなわち、 本発明の上記黒鉛でない構造を持つ微細炭素繊維は、 均一な繊維状 の構造を持ち、 基本的に複数のグラフエンシートが入れ子状に積層したものであ り、 かつグラフエンシートの相互関係は無作為である、 相互構造を持つことを特 徵としている。  That is, the fine carbon fiber having a structure other than graphite of the present invention has a uniform fibrous structure, is basically a plurality of graphene sheets laminated in a nested manner, and the graphene sheets are mutually Relationships are random, characterized by having a mutual structure.
また、 本発明の微細炭素繊維のアスペクト比は制限はないが、 主として 1 0以 上、 特に 1 0 0 0以上である。  Further, the aspect ratio of the fine carbon fiber of the present invention is not limited, but it is mainly 10 or more, especially 100 or more.
こうような構造を持つ微細炭素繊維は、 従来の黒鉛的構造の力一ボンナノチュ ーブと比較して、 驚くべきほどの工業利用上の有意な特性を発現する。  Fine carbon fibers having such a structure exhibit surprisingly significant industrial-use properties when compared to conventional graphite-like carbon nanotubes.
第一に、 各ダラフェンシートが相互にゆるい結合力によって固定されているの で、 各グラフエンシートが各々単独のグラフエンシート的に挙動する。 グラフェ ンシートそのものは S P 2混成軌道により、 C-C間が堅く (Rigid) 結合されて いて、 Phonon現象が起こる。 すなわち、 金属原子間の結合よりも堅い C-C結合 により、 熱、 すなわち物理的振動の伝導度が非常に高くなる。 C-C結合の熱伝 導度は、 2 0 0 0 WZm° Kで、 金属結合の数倍である。 本発明の微細炭素繊維 は構成する最外層のダラフェン層が、 主に負の Graphi t izat ion Factorを持つの で、 ダラフェン層が相互の干渉を受けることなく、 振動することが可能であり、 金属に比べて高い熱伝導度を持つことが可能である。 First, each dalaphen sheet is fixed by a loose bonding force, so that each graph ensheet behaves as a single graph ensheet. The graphene sheet itself is rigidly connected (Rigid) between CCs due to SP 2 hybrid orbitals, and the Phonon phenomenon occurs. That is, the CC bond, which is harder than the bond between metal atoms, makes the conductivity of heat, that is, physical vibration, very high. The thermal conductivity of the CC bond is 2000 WZm ° K, which is several times that of the metal bond. In the fine carbon fiber of the present invention, since the outermost daraphen layer constituting the layer mainly has a negative graphitization factor, the daraphen layer can vibrate without receiving mutual interference, and It is possible to have a higher thermal conductivity as compared with.
第二に、 上記の同じ理由により、 ダラフェン層間の干渉が無いので、 電子の移 動が容易であり、 すなわち電気伝導度が高くなる。  Secondly, for the same reason as above, there is no interference between the dalaphen layers, so that electrons can easily move, that is, the electric conductivity increases.
第三に、 黒鉛と異なる相互構造であることにより、 磁場をかけると抵抗が増え る。 この効果は具体的には電磁波遮蔽性として発現し、 吸収した電磁波を熱に変 換することにより高いステルス性を示す。  Third, due to the mutual structure different from graphite, resistance increases when a magnetic field is applied. This effect is manifested specifically as an electromagnetic wave shielding property, and exhibits high stealth properties by converting absorbed electromagnetic waves into heat.
第四に、 黒鉛と異なる相互構造であることにより、 最外層のグラフエンシート はチューブ内部からの電子的干渉を受けにくく、 グラフエンシート上の電子は容 易にチューブ外側の物質と反応しやすくなる。 Fourth, because of the mutual structure different from graphite, the outermost layer of the graph ensheet is less susceptible to electronic interference from inside the tube, and the electrons on the graph ensheet are volume It easily reacts with the substance outside the tube.
また、 本発明の微細炭素繊維は、 ダラフェン層間が広いことにより、 層間に他 の物質を導入しやすい。 すなわち、 従来のカーボンナノチューブに比べてグラフ エンシート層間隔が広いので、 層間の自由度が高く比較的大きな物質であるフラ 一レン、 金属内包フラーレン、原子番号の大きな金属原子及びそのイオンを、 微 細炭素繊維の中心の中空部分 (約 l〜1 0 n m) ばかりではなく、 層間にも導入 可能である。 層間を少なくとも 0 . 4 n mより大きくすれば、 この中空部分に匹 敵する空間を確保することができることになる。 図面の簡単な説明  Further, in the fine carbon fiber of the present invention, since the dalaphen layer is wide, other substances can be easily introduced between the layers. That is, since the graph ensheet layer interval is wider than that of conventional carbon nanotubes, fullerene, metal-encapsulated fullerene, metal atoms having a large atomic number, and their ions, which are relatively large and have a high degree of freedom between layers, can be finely divided. It can be introduced not only in the hollow part (about 10 nm) in the center of the carbon fiber, but also between layers. If the interlayer is at least larger than 0.4 nm, a space comparable to this hollow part can be secured. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 実施例 1の反応装置を模式的に示す図である。  FIG. 1 is a diagram schematically showing a reaction apparatus of Example 1.
図 2は、 実施例 2の反応装置を模式的に示す図である。  FIG. 2 is a diagram schematically showing a reaction apparatus of Example 2.
図 3は、 実施例 3の反応装置を模式的に示す図である。  FIG. 3 is a diagram schematically showing a reaction apparatus of Example 3.
図 4は、 実施例 5の反応装置を模式的に示す図である。  FIG. 4 is a diagram schematically showing a reaction apparatus of Example 5.
図 5は、 実施例 1で得られた微細炭素繊維の透過電子顕微鏡写真である。 図 6は、 実施例 2で得られた微細炭素繊維の透過電子顕微鏡写真である。 図 7は、 実施例 3で得られた微細炭素繊維の透過電子顕微鏡写真である。 図 8は、 実施例 4で得られた微細炭素繊維の透過電子顕微鏡写真である。 図 9は、 実施例 5で得られた微細炭素繊維の透過電子顕微鏡写真である。 発明を実施するための最良の形態  FIG. 5 is a transmission electron micrograph of the fine carbon fiber obtained in Example 1. FIG. 6 is a transmission electron micrograph of the fine carbon fiber obtained in Example 2. FIG. 7 is a transmission electron micrograph of the fine carbon fiber obtained in Example 3. FIG. 8 is a transmission electron micrograph of the fine carbon fiber obtained in Example 4. FIG. 9 is a transmission electron micrograph of the fine carbon fiber obtained in Example 5. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の微細炭素繊維は、 主に層間距離が 0 . 3 4 4 n mよりも大きいが、 こ のような微細炭素繊維のカイラリティー (Chiral i ty) の Characterizat i onを分 子動力学法を用いてシミュレーションを行った (分子動力学計算方法については 、 丸山茂夫 「カーボンナノチューブ (2 0 0 2 ) 第 7章:単層カーボンナ ノチューブの生成とメカニズム」 を参照) 。 . その結果、 このように層間距離の大きい微細炭素繊維を構成するべーサルプレ ーンの外層と内層のカイラリティーの関係は表 1に示される。 本発明の微細炭素 繊維の外層及び内層のカイラリティーは確率的に定まり、 多層のチューブの場合 、 全層が同一のカイラリティ一であることは確率的に低いことが明らかである。 このシミュレーションはカイラリティ一が金属的か半導体的かの両極端のみで計 算しているが、 実際には、 この中間のカイラリティーが存在するので、 全層が同 一のカイラリティ一になることは非常に低い確率になり、 本発明の微細炭素繊維 はカイラリティーが無作為であることが示される。 The fine carbon fiber of the present invention mainly has an interlayer distance larger than 0.344 nm. However, the characterization of the chirality of such fine carbon fiber is determined by the molecular dynamics method. A simulation was performed using the method described above (for the molecular dynamics calculation method, see Shigeo Maruyama, "Carbon Nanotubes (2002) Chapter 7: Generation and Mechanism of Single-Walled Carbon Nanotubes"). . As a result, the relationship between the chirality of the outer layer and the chirality of the inner layer of the basal plane constituting the fine carbon fiber having such a large interlayer distance is shown in Table 1. The chirality of the outer layer and the inner layer of the fine carbon fiber of the present invention is stochastically determined, and it is clear that in the case of a multilayer tube, it is probable that all layers have the same chirality. In this simulation, the chirality is calculated only at the extremes of metallic or semiconducting, but in reality, there is an intermediate chirality, so it is very unlikely that all layers will have the same chirality. This indicates that the chirality of the fine carbon fiber of the present invention is random.
外層と内層のカイラリティ一の関係 Chirality between outer and inner layers
層間距離 [nm] 層のカイラリティ一 存在する確率 [%] 外層 内層  Interlayer distance [nm] Chirality of layer 1 Probability of existence [%] Outer layer Inner layer
0. 376 メタリック メタリック 22. 4 メタリック 半導体 16. 8 半導体 メタリック 15. 0 半導体 半導体 45. 8 0. 376 Metallic Metallic 22.4 Metallic semiconductor 16.8 Semiconductor Metallic 15.0 Semiconductor Semiconductor 45.8
0. 400 メタリック メタリック 12. 2 メタリック 半導体 15. 7 半導体 メタリック 26. 1 半導体 半導体 46. 10.400 Metallic Metallic 12.2 Metallic semiconductor 15.7 Semiconductor Metallic 26.1 Semiconductor Semiconductor 46.1
0. 431 メタリック メタリック 18. 7 メタリック 半導体 15. 4 半導体 メタリック 21. 1 半導体 半導体 44. 7 本発明の微細炭素繊維は、 次のような方法によって製造することができる。 0.431 Metallic Metallic 18.7 Metallic semiconductor 15.4 Semiconductor Metallic 21.1 Semiconductor Semiconductor 44.7 The fine carbon fiber of the present invention can be manufactured by the following method.
1 . 少なくとも 1種以上の遷移金属またはその化合物の超微粒子を触媒として、 周期律表の第 VI 族元素を含有するィ匕合物と炭素源となる有機化合物または周期 律表の第 VI 族元素を含有する有機化合物を水素、 メタン又は不活性ガスからな るキャリアガスとともに反応炉に導入し、 2 X 1 0 5 P a以下の圧力、 反応炉の 温度 6 0 0 °C〜 1 2 5 0 °Cで化学熱分解 (C VD法) する方法。 1. Using at least one transition metal or ultrafine particles of a compound thereof as a catalyst, a compound containing a Group VI element of the Periodic Table and an organic compound serving as a carbon source or a Group VI element of the Periodic Table hydrogen organic compound containing, introduced into the reactor together with the name Ru carrier gas from methane or an inert gas, 2 X 1 0 5 P a less pressure, temperature 6 0 0 ° C~ 1 2 5 0 of the reactor Chemical pyrolysis (C VD method) at ° C.
また、 遷移金属触媒は担体に担持させて用いることもできる (C C V D法) 。 遷移金属としては、 例えば鉄、 コバルト、 ニッケル、 イットリウム、 チタン、 バナジウム、 マンガン、 クロム、 銅、 ニオブ、 モリブデン、 パラジウム、 タンダ ステン、 白金等が挙げられる。 遷移金属化合物としては、 これらの酸ィ匕物、 硝酸 塩、 硫酸塩、 酢酸塩、 塩化物等が使用できる。  Further, the transition metal catalyst can be used by being supported on a carrier (CCVD method). Examples of the transition metal include iron, cobalt, nickel, yttrium, titanium, vanadium, manganese, chromium, copper, niobium, molybdenum, palladium, tungsten, platinum, and the like. As the transition metal compound, these acid oxidants, nitrates, sulfates, acetates, chlorides and the like can be used.
周期律表の第 VI 族元素を含有する化合物としては、 酸素を含むものとして C o、 c〇2、 有機化合物としてメタノール、 エタノール等のアルコール類、 ァセ トン、 メチルェチルケ卜ン等のケトン類、 フエノール、 クレゾール等のフエノ一 ル類、 ジェチルエーテル等のエーテル類、 ホルムアルデヒド、 ァセトアルデヒド 等のアルデヒド類、 酢酸、 プロピオン酸、 コハク酸、 アジピン酸等の有機酸およ び酢酸メチル, 酢酸ェチル等のエステル類が使用できる。 また、 硫黄を含む化合 物としては、 単体の硫黄、 並びに H 2 S、 C S 2、 S 02、 チオール、 チォェ一テ ル、 チォフェン類が挙げられる。 The compounds containing group VI elements of the periodic table, alcohols C o, C_〇 2, methanol, ethanol or the like as the organic compound to include oxygen, § seton, ketones such as Mechiruechiruke Bokun, Phenols such as phenol and cresol; ethers such as getyl ether; aldehydes such as formaldehyde and acetoaldehyde; organic acids such as acetic acid, propionic acid, succinic acid and adipic acid; and methyl acetate and ethyl acetate And the like. The compound containing sulfur, elemental sulfur, as well as H 2 S, CS 2, S 0 2, thiol, Chioe Ichite Le, Chiofen acids and the like.
2 . 容器内に配置された炭素電極からなる陽極と該陽極に対抗配置された炭素電 極からなる陰極との間にァ一ク放電させ、 容器内壁及び電極に生成された堆積物 を集める方法。 2. A method in which arc discharge is caused between an anode composed of a carbon electrode disposed in a container and a cathode composed of a carbon electrode disposed opposite the anode to collect deposits generated on the inner wall of the container and the electrode. .
3 . レーザーパルスによって炭素及び 1種類以上の周期律表第 VI I I 族遷移金属 の混合物を気化させ、 該混合気体を装置内に凝集させることによって製造する方 法。  3. A method in which a mixture of carbon and one or more transition metals of group VIII of the periodic table is vaporized by a laser pulse, and the mixed gas is agglomerated in an apparatus to produce the mixture.
周期律表第 VI I I 族遷移金属としては、 例えば鉄、 ニッケル、 コバルト等が使 用できる。 For example, iron, nickel, cobalt, etc. are used as transition metals of Group VIII of the periodic table. Can be used.
次に、 本発明の微細炭素繊維の利用分野について説明する。  Next, the field of use of the fine carbon fiber of the present invention will be described.
本発明の微細炭素繊維は従来のカーボンナノチューブに比べ、上記説明の有意 な特徴を有するので、 その応用範囲は広い。  Since the fine carbon fiber of the present invention has the significant features described above as compared with the conventional carbon nanotube, its application range is wide.
利用方法としては、 繊維として利用する方法と、 粉体として利用する方法に大 別される。  The method of use is broadly classified into a method of using as fiber and a method of using as powder.
単繊維として利用する場合には、 電子顕微鏡素子がある。 繊維または粉体とし て利用する場合には、 F E D、 半導体素子、 他に電子放出能、 導電性、 超伝導性 等の特性を利用する分野がある。  When used as a single fiber, there is an electron microscope element. When used as fibers or powders, there are fields in which characteristics such as electron emission, conductivity, superconductivity, etc. are used.
粉体として利用する方法には、 その利用形態によって、 1 ) 粉体を分散し、 ス ラリ一状のような 0次元の複合材、 2 ) 線状に加工した 1次元の複合材、 3 ) シ ート状に加工した 2次元の複合材 (布、 フィルム、 紙) 、 4 ) 複雑な成形体、 ブ ロック等の 3次元複合材に利用できる。  Depending on the form of use, 1) a 0-dimensional composite material, such as a slurry, 2) a linearly processed 1-dimensional composite material, 3) It can be used for 3D composite materials such as 2D composite materials (fabric, film, paper) processed into a sheet, and 4) complex molded products and blocks.
これらの形態と目的とする機能を組み合わせることによって、 極めて広い適用 が可能になる。 これを機能別に具体例を示すと、 次のようなものが例示される。 1 ) 導電性を利用するもの  By combining these forms with the desired functions, an extremely wide range of applications is possible. The following are examples when this is shown for each function. 1) Use of conductivity
樹脂に混合することによる導電性樹脂及び導電性樹脂成型体として, 例えば包 装材、 ガスケット、容器、 抵抗体、 導電性繊維、 接着剤、 インク、塗料等に好適に 用いられる。  It is suitably used as a conductive resin and a conductive resin molded product by being mixed with a resin, for example, for a packaging material, a gasket, a container, a resistor, a conductive fiber, an adhesive, an ink, a paint, and the like.
2 ) 熱伝導性を利用するもの 2) Using thermal conductivity
上記導電性の利用の場合と同様な使い方ができる。  The same usage can be performed as in the case of using the conductivity.
3 ) 電磁波遮蔽性を利用するもの  3) Devices that use electromagnetic wave shielding
樹脂に混合することにより、 電磁波遮蔽性塗料や成形して電磁波遮蔽材等とし て好適である。  When mixed with resin, it is suitable as an electromagnetic wave shielding paint or an electromagnetic wave shielding material formed by molding.
4 ) 物理的特性を利用するもの 4) Those that use physical characteristics
摺動性を高めるために樹脂、 金属に混合してロール、 ブレーキ部品、 タイヤ、 ベアリング、歯車、パンタグラフ等に利用する。 Rolls, brake parts, tires, mixed with resin and metal to improve slidability Used for bearings, gears, pantographs, etc.
また、 軽量で強靭な特性を活かして電線、 家電 ·車輛 ·飛行機等のボディ、 機 械のハウジングに利用できる。  In addition, it can be used for electric wires, home appliances, vehicles, airplanes, etc. bodies, and machine housings by taking advantage of its lightweight and tough characteristics.
これらの多くはフイラ一としての利用であり、 従来の炭素繊維、 ビーズの代替 としても使用でき、 例えば電池の極材、スィツチ、防振材に応用する。 実施例  Many of these are used as fillers and can be used as substitutes for conventional carbon fibers and beads. For example, they are applied to battery pole materials, switches, and vibration-proof materials. Example
以下、 実施例により本発明を更に詳しく説明するが、 本発明は下記の実施例に 何ら限定されるものではない。  Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples.
実施例 1 Example 1
縦型反応炉を使用し、 図 1に示す反応装置により C VD法で製造した。  Using a vertical reactor, the reactor was manufactured by the CVD method using the reactor shown in Fig. 1.
超音波噴霧器で原料液を微小な液滴とし、 これをヘリゥムガスで反応炉上部よ り系内へキャリーした。 また、 雰囲気ガスとしてヘリウムガスを反応炉上部より 下部へ流し、 下記の反応条件により熱分解した。  The raw material liquid was converted into minute droplets using an ultrasonic atomizer, and the droplets were carried into the system from the upper part of the reactor with the use of the Helium gas. Helium gas was flowed from the upper part to the lower part of the reactor as an atmospheric gas, and pyrolyzed under the following reaction conditions.
生成物は自重により落下し反応炉下部の回収箱およびフィルターで回収した。 原料液:酢酸鉄 0 . 1 5 gを溶解したエタノール 1 0 0 m 1  The product dropped by its own weight and was collected by a collection box and a filter at the bottom of the reactor. Raw material liquid: ethanol containing 0.15 g of iron acetate 100 m 1
反応装置:内径 7 6 φの S i Cチューブ  Reactor: SiC tube with inner diameter of 76φ
反応炉温度: 1 2 0 0 °C  Reactor temperature: 1200 ° C
雰囲気ガス:ヘリウム ( 2 0 0 m 1 /m i n ) +水素 ( 4 0 m 1 /m i n ) 得られた微細炭素繊維の透過電子顕微鏡 (T E M) 写真を図 5として示す。 この図から、 層間距離は細い部分で 0 . 3 6 1 n m、 さらに太い部分では 0 . Atmosphere gas: helium (200 m1 / min) + hydrogen (400 m1 / min) A transmission electron microscope (TEM) photograph of the obtained fine carbon fiber is shown in FIG. From this figure, the interlayer distance is 0.361 nm in the thin part and 0.3 in the thicker part.
4 4 4 n m以上あることが分かる。 It turns out that there is more than 4 4 4 nm.
また、 シートの網目が完璧ではなく、 欠陥の多いグラフエンシートであること が示される。 実施例 2 横型反応炉を用い、 図 2に示す反応装置により C C VD法で製造した。 It also indicates that the mesh of the sheet is not perfect and that it is a graph ensheet with many defects. Example 2 It was manufactured by the CC VD method using a horizontal reactor and the reactor shown in Fig. 2.
触媒調製:硝酸コバルト六水和物 1. 68 gを約 10 m 1の水に溶解後、 0 - Catalyst preparation: Cobalt nitrate hexahydrate 1.68 g was dissolved in about 10 ml of water.
14 Mのモリブデン酸アンモニゥム水溶液を 41ml添加混合し、 この液と Mg41 ml of 14 M aqueous solution of ammonium molybdate was added and mixed.
0粉末 8. 75 gを蒸発皿でよく混合してスラリー状とした。 120°Cの乾燥機 で 1晚乾燥後乳鉢にて粉碎して触媒を調製した。 8.75 g of 0 powder was mixed well in an evaporating dish to form a slurry. After drying in a dryer at 120 ° C for 1 晚, the mixture was ground in a mortar to prepare a catalyst.
反応装置:石英反応管の横型管状炉、 触媒粒子は石英製の板の上に乗せ、 反応 管中央付近にセットした。  Reactor: Horizontal tubular furnace with quartz reaction tube, catalyst particles were placed on a quartz plate and set near the center of the reaction tube.
触媒の賦活および反応:アルゴン流通下、 800°Cまで加熱し、 30分保持後 Catalyst activation and reaction: heated to 800 ° C under argon flow, after 30 minutes
、 50°Cに加温したエタノールにアルゴンをバブリングして、 エタノール蒸気を 反応炉内へ導入して触媒上で反応させた。 30分蒸気を導入後、 アルゴンガスの みを流通しつつ冷却してから、 生成物を取り出した。 Argon was bubbled into ethanol heated to 50 ° C., and ethanol vapor was introduced into the reactor to react on the catalyst. After introducing steam for 30 minutes, cooling was performed while flowing only argon gas, and then the product was taken out.
得られた微細炭素繊維の T E Mによる写真を図 6に示す。  FIG. 6 shows a TEM photograph of the obtained fine carbon fiber.
この図からこの繊維は多層で、 層間隔は 0. 368 nm以上であった。 実施例 3  From this figure, it was found that this fiber was multilayered and the spacing between layers was 0.368 nm or more. Example 3
図 3に示す縦型反応炉を用いて、 水素 Zハイドロカーボン系で合成反応を行つ た。  Using the vertical reactor shown in Fig. 3, a synthesis reaction was carried out in a hydrogen Z-hydrocarbon system.
反応炉は内径 76 mm 、 長さ 1500mmの S i C製炉心管をこの炉心管外 部から加熱した炉である。 反応原料は塔頂から投入し、 反応生成物は下部の回収 缶から回収した。 雰囲気水素はその半分を原料と共に供給した。 残り半分は塔頂 から供給した。 予め、 触媒を 2%、 チォフェンを 2%となるようにベンゼンに混 合し、 この原料液を 40m 1 /hの速度で上記水素ガス中に送液し、 400°Cで 気化させて反応炉の塔頂より投入した。 反応炉内の反応温度は、 1150°Cとし た。 上記雰囲気水素の総量は 12. 5 L/m i nで反応管内を流通するように設 定した。  The reactor is a furnace in which a SiC core tube with an inner diameter of 76 mm and a length of 1500 mm is heated from outside the core tube. The reaction raw materials were introduced from the top of the tower, and the reaction products were recovered from the lower recovery can. Atmospheric hydrogen was supplied half with the raw materials. The other half was supplied from the top. The catalyst is mixed in advance with benzene so that the catalyst becomes 2% and thiophene becomes 2%, and this raw material liquid is sent into the above hydrogen gas at a rate of 40 m 1 / h, vaporized at 400 ° C., and At the top of the tower. The reaction temperature in the reactor was 1150 ° C. The total amount of hydrogen in the atmosphere was set at 12.5 L / min so as to flow through the reaction tube.
得られた微細炭素繊維を TEMを使って構造解析を行った。 TEM写真を図 7 に示す。 The obtained fine carbon fiber was subjected to structural analysis using TEM. Figure 7 shows a TEM photograph Shown in
その結果、 この繊維の繊維径は約 20 nmで、 層間距離は 0. 358 nmであ っ卞。 実施例 4  As a result, the fiber diameter of this fiber was about 20 nm, and the interlayer distance was 0.358 nm. Example 4
アーク法により製造した。  Manufactured by the arc method.
直径 6 mmの炭素電極間ギャップを 1. 5 mmとし、 ヘリウム圧を 400 torr としてアーク電流を 60mA流した。 陰極堆積物をエタノール中で超音波分散し て繊維状物質を得た。  The gap between carbon electrodes with a diameter of 6 mm was 1.5 mm, the helium pressure was 400 torr, and the arc current was 60 mA. The cathode deposit was ultrasonically dispersed in ethanol to obtain a fibrous material.
得られた微細炭素繊維の TEMによる写真を図 8に示す。  Fig. 8 shows a TEM photograph of the obtained fine carbon fiber.
この図からこの繊維は多層で、 層間隔は 0. 351nm以上であった。 実施例 5  From this figure, it was found that this fiber was multilayered, and the layer interval was 0.351 nm or more. Example 5
図 4に示す装置によりレーザ一アブレーション法で製造した。  It was manufactured by the laser-ablation method using the apparatus shown in FIG.
黒鉛製ロッドを横型管状炉 (石英管) でアルゴン流通下 950°Cまで加熱して 50 kPa のアルゴンを 0. lLZm i n流しながら、 Nd:YAGレーザー (5 32 nm) で夕一ゲットのロッドに 15n sのパルス照射をして 3時間反応を続 けた。 生成した微粒子は水冷した銅コレクタ一にて捕集した。  A graphite rod is heated to 950 ° C in a horizontal tubular furnace (quartz tube) under argon flow, and 50 kPa of argon is passed through the tube at 0.1 LZ min. The reaction was continued for 3 hours with pulse irradiation of 15 ns. The generated fine particles were collected by a water-cooled copper collector.
得られた微細炭素繊維の T E Mを図 9に示す。  FIG. 9 shows the TEM of the obtained fine carbon fiber.
この図からこの繊維は多層で、 層間隔は 0. 363 nm以上であることが分か る。 産業上の利用可能性  From this figure, it can be seen that this fiber is multilayered and the layer spacing is 0.363 nm or more. Industrial applicability
本発明の微細炭素繊維は、 樹脂に混合することによる導電性樹脂、 電磁波遮蔽 性塗料及び成形して導電性樹脂成型体、 電磁波遮蔽材等として好適である。  The fine carbon fiber of the present invention is suitable as a conductive resin mixed with a resin, an electromagnetic wave shielding paint, and a molded conductive resin molded article, an electromagnetic wave shielding material or the like.
また、 摺動性を高めるために樹脂、 金属に混合してロール、 ブレーキ部品、 夕 ィャ、 ベアリング、歯車 °ンタグラフ等に、 さらに軽量で強靭な特性を活かして 電線、 家電 ·車輛 ·飛行機等のボディ、 機械のハウジングに利用できる。 In addition, rolls, brake parts, It can be used for wires, home appliances, vehicles, airplanes and other bodies, and machine housings by taking advantage of its light weight and tough characteristics for gears, bearings, gears, etc.

Claims

請 求 の 範 囲 The scope of the claims
1. 炭素原子から構成される長辺が少なくとも 100 nm以上である矩形のダラ フェンシートが多層に積層して、 各層の長辺の長さがほぼ同一で、 短辺の長さが それぞれ異なった、 隣りあった層を構成する炭素原子同士が CO方向に結晶性の ない配位関係にあり、 層間が黒鉛構造を構成するために必要なファンデルワール スカ (Van der Waals 力) より弱い結合力で結合しているダラフェンシートが、 短辺を周として中空チューブに巻かれ、 複数のチューブが入れ子状に積層した構 造を持つ多層からなる微細炭素繊維。 1. A rectangular Dalaphen sheet composed of carbon atoms and having a long side of at least 100 nm or more is laminated in multiple layers, and the length of the long side of each layer is almost the same and the length of the short side is different However, the carbon atoms constituting the adjacent layers have a coordination relationship without crystallinity in the CO direction, and the bonding force between the layers is weaker than the Van der Waals force required to form a graphite structure. Dalafene sheets are wound around a hollow tube around the short side, and a multi-layered fine carbon fiber with a structure in which multiple tubes are nested.
2. 繊維の軸と直交する断面の中空部の外周が 3 nm以上である請求の範囲 1記 載の微細炭素繊維。 2. The fine carbon fiber according to claim 1, wherein the outer periphery of the hollow portion having a cross section orthogonal to the fiber axis has an outer diameter of 3 nm or more.
3. 請求の範囲 1又は 2記載の多層からなる微細炭素繊維で、 最外層の直径が 1 O O nm以下であって、 各層のカイラリティー (Chirality) が無作為に組み合 わされていることを特徴とする微細炭素繊維。  3. The multi-layer fine carbon fiber according to claim 1 or 2, wherein the outermost layer has a diameter of 100 nm or less and the chirality of each layer is randomly combined. Characteristic fine carbon fiber.
4. グラフエンシー卜は、 網目構造が完璧で欠陥がなく構成されているが、 積層 構造における隣りあった層の網目を構成する炭素原子が 1 : 1に規則的に対応し ていない請求の範囲 1ないし 3記載の微細炭素繊維。 4. In the graph enclosure, the network structure is perfect and has no defects, but the carbon atoms constituting the network of the adjacent layers in the laminated structure do not correspond to 1: 1 regularly. Fine carbon fiber according to the range 1 to 3.
5. グラフエンシー卜は、 網目構造が完璧でなく、 欠陥構造を多く含むグラフェ ンシートであり、 積層構造における隣りあった層の網目を構成する炭素原子が 1 : 1に規則的に対応していない請求の範囲 1ないし 3記載の微細炭素繊維。 5. Graphite is a graphene sheet that has an imperfect network structure and contains many defect structures, and the carbon atoms that make up the network of adjacent layers in the laminated structure correspond regularly to 1: 1. 4. The fine carbon fiber according to any one of claims 1 to 3.
6. 隣接する 2つの層の層間距離が 0. 344nmより大きく、 黒鉛的でない構 造を持つ請求の範囲 1ないし 5記載の微細炭素繊維。 6. The fine carbon fiber according to any one of claims 1 to 5, wherein an interlayer distance between two adjacent layers is larger than 0.344 nm and has a non-graphitic structure.
7. Graphitization factor g (黒鉛化指数)  7. Graphitization factor g (graphitization index)
g= (3.44-d0fl2) / (3.44-3.354) (1) g = (3.44-d 0fl2 ) / (3.44-3.354) (1)
(ただし、 d。。2は X線回折法によるパラメータである格子面間隔 (002) を オングストロームで表した面間の距離) が負の値になる、 グラフエンシートの相互構造を持つ請求の範囲 6記載の微細炭 (However, d. 2 is the distance between planes in Angstroms representing the lattice spacing (002), which is a parameter determined by X-ray diffraction.) 7. The fine coal according to claim 6, which has a mutual structure of graph ensheet, wherein
8. 層間距離が 0. 344nmより大きく、 0. 40 nmより小さい請求の範囲8. The interlayer distance is greater than 0.344 nm and less than 0.40 nm
6または 7記載の微細炭素繊維。 Fine carbon fiber according to 6 or 7.
9. 層間距離が 0. 40 nm以上である請求の範囲 6または 7記載の微細炭素繊 維。  9. The fine carbon fiber according to claim 6, wherein an interlayer distance is 0.40 nm or more.
10. 直径が 100 nm以下の単層のグラフエンシートからなる微細炭素繊維及 び請求の範囲 1ないし 9のいずれかに記載の微細炭素繊維が混合されている微細 10. Fine carbon fiber comprising a single-layer graphene sheet having a diameter of 100 nm or less and fine carbon mixed with the fine carbon fiber according to any one of claims 1 to 9
11. 微細炭素繊維のァスぺクト比が 10以上である請求の範囲 1ないし 10の いずれかに記載の微細炭素繊維。 11. The fine carbon fiber according to any one of claims 1 to 10, wherein an aspect ratio of the fine carbon fiber is 10 or more.
12. 微細炭素繊維のァスぺクト比が 1000以上である請求の範囲 11に記載 の微細炭素繊維。  12. The fine carbon fiber according to claim 11, wherein an aspect ratio of the fine carbon fiber is 1000 or more.
13. グラフエンシートからなる微細炭素繊維の最内層の内側に形成される中空 部分および Zまたは層間に形成される中空部分にフラーレン、 金属内包フラーレ ン、 金属原子及び Z又は金属原子イオンを充填した構造を持つ請求の範囲 1ない し 12のいずれかに記載の微細炭素繊維。  13. The hollow part formed inside the innermost layer and Z or the hollow part formed between layers of the fine carbon fiber composed of graphene sheet is filled with fullerene, metal-encapsulated fullerene, metal atom and Z or metal atom ion. The fine carbon fiber according to any one of claims 1 to 12, having a structure.
14. グラフエンシートからなる微細炭素繊維を製造する方法において、 少なく とも 1種類以上の遷移金属又はその化合物の超微粒子を触媒として、 周期律表の VI族元素を含有する化合物と有機化合物または周期律表の VI族元素を含有する 有機化合物を 2X 105P a以下の圧力下で化学熱分解 (CVD) する請求の範 囲 1ないし 13のいずれかに記載の微細炭素繊維の製造方法。 14. In a method for producing fine carbon fibers comprising graphene sheet, at least one kind of transition metal or ultrafine particles of the compound is used as a catalyst, and a compound containing a Group VI element of the periodic table and an organic compound or a periodic compound are used. 14. The method for producing fine carbon fibers according to any one of claims 1 to 13, wherein the organic compound containing a Group VI element in the table is chemically pyrolyzed (CVD) under a pressure of 2 × 10 5 Pa or less.
15. グラフエンシートからなる微細炭素繊維を製造する方法において、 少なく とも 1種類以上の遷移金属またはその化合物の超微粒子触媒を担体に担持させて 、 周期律表の VI族元素を含有する化合物と有機化合物または周期律表の VI族元 素を含有する有機化合物を 2 X 105P a以下の圧力下で熱分解する触媒化学気 相合成法 (C C V D法) による請求の範囲 1ないし 1 3のいずれかに記載の微細 炭素繊維の製造方法。 15. In a method for producing fine carbon fibers composed of graphene sheet, at least one transition metal or an ultrafine particle catalyst of the compound is supported on a carrier, and a compound containing a Group VI element of the periodic table is used. thermally decomposing catalytic chemical vapor of an organic compound 2 X 10 5 P a pressure equal to or smaller than that containing group VI elemental organic compound or the periodic table The method for producing fine carbon fibers according to any one of claims 1 to 13, using a phase synthesis method (CCVD method).
1 6 . グラフヱンシートからなる微細炭素繊維を製造する方法において、 容器内 に配置された炭素電極からなる陽極と該陽極に対抗配置された炭素電極からなる 陰極との間にアーク放電させる工程と、 容器内内壁及び該電極に生成された堆積 物を回収する工程とを備えた請求の範囲 1ないし 1 3のいずれかに記載の微細炭 素繊維の製造方法。  16. A method for producing fine carbon fibers composed of graphene sheet, comprising the step of causing an arc discharge between an anode composed of a carbon electrode arranged in a container and a cathode composed of a carbon electrode arranged opposite to the anode. The method for producing fine carbon fibers according to any one of claims 1 to 13, further comprising: a step of collecting deposits formed on the inner wall of the container and the electrode.
1 7 . レ一ザ一パルスによって炭素及び 1種類以上の VI I I 族遷移金属の混合物 を気化させ、 該混合気体を装置内に凝集させることによって製造する請求の範囲 1ないし 1 3のいずれかに記載の微細炭素繊維の製造方法。  17. The method according to any one of claims 1 to 13, wherein the mixture is produced by vaporizing a mixture of carbon and one or more kinds of Group VIII transition metals by a laser pulse, and coagulating the mixture in an apparatus. A method for producing the fine carbon fiber as described above.
PCT/JP2003/008495 2002-07-04 2003-07-03 Fine carbon fiber having specific interlaminar structure and method for preparation thereof WO2004005596A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003281306A AU2003281306A1 (en) 2002-07-04 2003-07-03 Fine carbon fiber having specific interlaminar structure and method for preparation thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002196259 2002-07-04
JP2002-196259 2002-07-04
JP2002-206457 2002-07-16
JP2002206457 2002-07-16

Publications (1)

Publication Number Publication Date
WO2004005596A1 true WO2004005596A1 (en) 2004-01-15

Family

ID=30117384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/008495 WO2004005596A1 (en) 2002-07-04 2003-07-03 Fine carbon fiber having specific interlaminar structure and method for preparation thereof

Country Status (2)

Country Link
AU (1) AU2003281306A1 (en)
WO (1) WO2004005596A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7790242B1 (en) 2007-10-09 2010-09-07 University Of Louisville Research Foundation, Inc. Method for electrostatic deposition of graphene on a substrate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4663230A (en) * 1984-12-06 1987-05-05 Hyperion Catalysis International, Inc. Carbon fibrils, method for producing same and compositions containing same
US5830326A (en) * 1991-10-31 1998-11-03 Nec Corporation Graphite filaments having tubular structure and method of forming the same
WO2001016414A1 (en) * 1999-09-01 2001-03-08 Nikkiso Company Limited Carbon fibrous matter, production device of carbon fibrous matter, production method of carbon fibrous matter and deposit prevention device for carbon fibrous matter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4663230A (en) * 1984-12-06 1987-05-05 Hyperion Catalysis International, Inc. Carbon fibrils, method for producing same and compositions containing same
US5830326A (en) * 1991-10-31 1998-11-03 Nec Corporation Graphite filaments having tubular structure and method of forming the same
WO2001016414A1 (en) * 1999-09-01 2001-03-08 Nikkiso Company Limited Carbon fibrous matter, production device of carbon fibrous matter, production method of carbon fibrous matter and deposit prevention device for carbon fibrous matter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YUDASAKA M. ET AL.: "Pressure dependence of the structures of carbonaceous of deposits formed by laser ablation on targets composed carbon, nickel and cobalt", JOURNAL OF PHYSICAL CHEMISTRY B, vol. 102, no. 25, pages 4892 - 4896, XP002973937 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7790242B1 (en) 2007-10-09 2010-09-07 University Of Louisville Research Foundation, Inc. Method for electrostatic deposition of graphene on a substrate

Also Published As

Publication number Publication date
AU2003281306A1 (en) 2004-01-23

Similar Documents

Publication Publication Date Title
Shoukat et al. Carbon nanotubes: a review on properties, synthesis methods and applications in micro and nanotechnology
Jia et al. Advances in production and applications of carbon nanotubes
JP4004502B2 (en) Method for producing ultrafine fibrous nanocarbon
JP3761561B1 (en) Fine carbon fiber with various structures
Zhao et al. Growth of carbon nanocoils by porous α-Fe 2 O 3/SnO 2 catalyst and its buckypaper for high efficient adsorption
Ma et al. Syntheses and properties of B–C–N and BN nanostructures
Awasthi et al. Synthesis of carbon nanotubes
US20060008408A1 (en) Fibrous nano-carbon and preparation method thereof
Liu et al. Thermal and chemical durability of nitrogen-doped carbon nanotubes
JP5831966B2 (en) Method for producing a carbon nanotube aggregate in which single-walled carbon nanotubes and double-walled carbon nanotubes are mixed at an arbitrary ratio
JPH11116218A (en) Production of single layered nanotube
Zhu et al. Direct fabrication of single-walled carbon nanotube macro-films on flexible substrates
Fathy et al. Novel trends for synthesis of carbon nanostructures from agricultural wastes
Dhand et al. Synthesis and comparison of different spinel ferrites and their catalytic activity during chemical vapor deposition of polymorphic nanocarbons
Zhou et al. Multi-directional growth of aligned carbon nanotubes over catalyst film prepared by atomic layer deposition
Kichambare et al. Thin film metallic catalyst coatings for the growth of multiwalled carbon nanotubes by pyrolysis of xylene
Shende et al. Chemical simultaneous synthesis strategy of two nitrogen-rich carbon nanomaterials for all-solid-state symmetric supercapacitor
WO2004005596A1 (en) Fine carbon fiber having specific interlaminar structure and method for preparation thereof
KR100514186B1 (en) Hairy nano carbon material
KR100483803B1 (en) Preparation method for fibrous nano-carbon
WO2004007363A1 (en) Fine carbon sheet laminate having structure of week interlaminar bonding force and method for preparation thereof
Wang et al. Composites of amorphous carbon nanotube-modified reduced graphene oxide synthesized by ethanol decomposition and electrochemical evaluation of their lithium storage properties
KR100472123B1 (en) Preparation methode for fibrous nano cabon with hollow
Ismael Mechanical properties of nanotubes
KR100713609B1 (en) Fibrous carbon composed of two carbon nano-fibils

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase