WO2004000551A1 - アクリル樹脂組成物、オルガノシロキサン樹脂組成物およびそれからなる積層体 - Google Patents

アクリル樹脂組成物、オルガノシロキサン樹脂組成物およびそれからなる積層体 Download PDF

Info

Publication number
WO2004000551A1
WO2004000551A1 PCT/JP2003/007883 JP0307883W WO2004000551A1 WO 2004000551 A1 WO2004000551 A1 WO 2004000551A1 JP 0307883 W JP0307883 W JP 0307883W WO 2004000551 A1 WO2004000551 A1 WO 2004000551A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
component
parts
resin composition
layer
Prior art date
Application number
PCT/JP2003/007883
Other languages
English (en)
French (fr)
Inventor
Yoshihiko Imanaka
Shunsuke Kajiwara
Tatsuya Ekinaka
Toshio Kita
Takehiro Suga
Ryou Niimi
Isao Sogou
Original Assignee
Teijin Chemicals, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002181142A external-priority patent/JP4046156B2/ja
Priority claimed from JP2002184229A external-priority patent/JP2004026979A/ja
Priority claimed from JP2002187969A external-priority patent/JP4065728B2/ja
Application filed by Teijin Chemicals, Ltd. filed Critical Teijin Chemicals, Ltd.
Priority to AU2003244100A priority Critical patent/AU2003244100A1/en
Priority to US10/487,218 priority patent/US7070859B2/en
Priority to KR1020047002490A priority patent/KR100984993B1/ko
Priority to EP03760926.0A priority patent/EP1516722B1/en
Priority to CA 2460387 priority patent/CA2460387C/en
Publication of WO2004000551A1 publication Critical patent/WO2004000551A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2369/00Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/26Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2369/00Characterised by the use of polycarbonates; Derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0041Optical brightening agents, organic pigments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24364Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.] with transparent or protective coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31507Of polycarbonate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31598Next to silicon-containing [silicone, cement, etc.] layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane

Definitions

  • the present invention relates to an acrylic resin composition, an organosiloxane resin composition, and a laminate comprising the same.
  • the present invention relates to a laminate comprising a polycarbonate substrate, a first layer and a second layer. More specifically, the present invention relates to a laminate comprising a polycarbonate substrate, a first layer and a second layer, wherein the first layer is a crosslinked acrylic copolymer, and the second layer is an organosiloxane polymer. And a laminate having excellent weather resistance, abrasion resistance and durability.
  • the present invention also relates to an acrylic resin composition used for the first layer and an organosiloxane resin composition used for the second layer of the laminate.
  • Polycarbonate resins are used in a variety of applications, taking advantage of their characteristics such as impact resistance, transparency, light weight, and processability. In particular, it is used as a substitute for glass because of its transparency.
  • polycarbonate resins do not have sufficient weather resistance and are degraded and deteriorated during long-term outdoor use, resulting in impaired physical properties and appearance.
  • Polycarbonate resins also have disadvantages such as poor abrasion resistance, easy surface damage, and susceptibility to solvent attack.
  • thermosetting acrylic resin layer is conventionally provided on the surface of the polycarbonate substrate, and a siloxane-based hard coating is further coated thereon to provide weather resistance, durability, and durability.
  • siloxane-based hard coating is further coated thereon to provide weather resistance, durability, and durability.
  • the present inventors have proposed improving the weather resistance by adding an ultraviolet absorber having a specific structure to a thermosetting acrylic resin layer (see Patent Document 1).
  • an ultraviolet absorber having a specific structure to a thermosetting acrylic resin layer
  • Patent Document 1 See Patent Document 1
  • sufficient weather resistance to withstand long-term outdoor use has not been obtained.
  • Patent Document 2 a proposal has been made to improve the durability against environmental changes.
  • the storage stability of the paint is low, there is a disadvantage that the paint is thickened during storage or use and cannot be used stably.
  • the reactivity of the isocyanate group is high, there is also a disadvantage that a side reaction easily occurs at the time of heating and curing, and a molded article having stable coating film properties cannot be obtained.
  • a coating composition comprising a trihydroxysilane partial condensate and colloidal silica has been proposed (see Patent Documents 3 and 4). Further, a coating composition containing a partial condensate of an alkyl trialkoxysilane and a tetraalkoxysilane as a main component has been proposed (see Patent Documents 5 and 6). A coating composition in which colloidal silica is added has been proposed (see Patent Documents 7 and 8).
  • a laminate obtained by laminating a cured film obtained from these coating compositions on a poly-ponate substrate has a certain degree of excellent abrasion resistance, but has a high degree of environmental resistance and durability in a high temperature environment. Sex is not enough.
  • the layer formed by thermally curing the organosiloxane resin is pulled under a high temperature environment due to the difference in the coefficient of thermal expansion between the layer obtained by thermally curing the polycarbonate substrate and the organosiloxane resin, thereby forming a coating layer. Cracks may occur.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2000-31018
  • Patent Document 2 Japanese Patent Application Laid-Open No. Sho 62-1696932
  • Patent Document 3 Japanese Patent Application Laid-Open No. 51-27336
  • Patent Document 4 Japanese Patent Application Laid-Open No. 55-949497
  • Patent Document 5 JP-A-48-26882
  • Patent Document 6 Japanese Patent Application Laid-Open No. Sho 51-31312
  • Patent Document 7 Japanese Patent Application Laid-Open No. Sho 63-2797897
  • Patent Document 8 Japanese Patent Application Laid-Open No. 1_3064776
  • An object of the present invention is to provide a laminate using a polycarbonate as a base material having excellent weather resistance, durability, abrasion resistance, and hot water resistance.
  • Another object of the present invention is to provide an acrylic resin composition and an organosiloxane shelf composition which are excellent in storage stability for lamination on a polycarbonate base material.
  • a first layer mainly composed of a thermosetting acryl resin having a specific composition and a colloidal silica, trialkoxy
  • a second layer formed by thermally curing an organosiloxane resin containing a silane hydrolysis-condensate from the first layer, a high level of weather resistance and abrasion resistance is imparted, and environmental protection is achieved.
  • the present inventors have found that a laminated molded article whose surface is protected by a cured film having a change in the thickness and a sufficient durability in a high-temperature environment can be obtained, and have reached the present invention. Disclosure of the invention
  • the first embodiment of the present invention comprises a poly-carbonate substrate, a first layer and a second layer, wherein the first layer is formed on the surface of the polycarbonate substrate, and the second layer is formed on the surface of the first layer.
  • the first layer is composed of a crosslinked acrylic copolymer and an ultraviolet absorber
  • the second layer is composed of a crosslinked organosiloxane polymer
  • the crosslinked acrylic copolymer has 50 mol% or more of the following formula (A-1) CH,
  • R 1 is a methyl group or an ethyl group.
  • R 2 is at least part of R a is a single bond in the repetition unit represented by an alkylene group having 2 to 5 carbon atoms.
  • Formula (A- 2) the remainder is a hydrogen atom t
  • Ra is a single bond, it is bonded to another repeating unit represented by the formula (A-2) via a urethane bond.
  • R 3 is at least one group selected from the group consisting of a hydrogen atom, an alkyl group having 2 to 5 carbon atoms, and an ultraviolet-absorbing residue. Is a methyl group, and R 3 is not a methyl group or an ethyl group.
  • a urethane bond and a compound represented by the formulas (A-1) to (A-3) A cross-linked acrylic copolymer having a molar ratio to the total amount of repeating units to be in the range of 4Z100 to 30/100,
  • the crosslinked organosiloxane polymer has the following formulas (b-4) to (b-6) Q 1 Si-(-0—)-(b-4)
  • QQ 2 is at least one group selected from the group consisting of alkyl groups having 1 to 4 carbon atoms, vinyl groups, or methacryloxy groups, amino groups, glycidoxy groups, and 3,4-epoxycyclohexyl groups, respectively) Is an alkyl group having 1 to 3 carbon atoms substituted with
  • the laminate is an organosiloxane polymer.
  • the crosslinked acrylic copolymer is composed of 70 to 95 mol% of the repeating unit represented by the formula (A-1) and 5 to 30 mol% of the repeating unit represented by the formula (A-2). It is preferably a crosslinked acrylic copolymer.
  • R 1 in the formula (A-1) is preferably an ethyl group
  • R 2 in the formula (A-2) is preferably an ethylene group
  • the thickness of the poly-carbonate base material is 1 to 10 mm
  • the thickness of the first layer is 1 to 12 zm
  • the thickness of the second layer is 2 to 10 m.
  • the first layer contains a UV-absorbent whose absorbance at a wavelength of 300 nm is 0.25 or more, measured at an optical path length of 1.0 cm, at a concentration of 1 Omg / L. ⁇ (Iii)
  • a second aspect of the present invention comprises a polycarbonate substrate, a first layer and a second layer, wherein the first layer is formed on the surface of the polycarbonate substrate, and the second layer is formed on the surface of the first layer.
  • a laminate comprising:
  • the first layer is a layer obtained by laminating an acrylic resin composition containing the components (A) to (E) on the surface of a polycarbonate substrate and then curing the second layer.
  • the second layer is composed of the components (a) to
  • Component (A) is an acrylic copolymer, and 50% by mole or more of the following formula (A-1)
  • R 1 is a methyl group or an ethyl group.
  • R 2 is an alkylene group having 2 to 5 carbon atoms.
  • Y is a hydrogen atom or a methyl group
  • R 3 is at least one group selected from the group consisting of a hydrogen atom, an alkyl group having 2 to 5 carbon atoms, and an ultraviolet absorbing residue. Is a methyl group and R 3 is a methyl group or an ethyl group.
  • Component ( ⁇ ) is a polyisocyanate compound and / or a blocked polyisocyanate compound having an isocyanate group content of 7 to 5 equivalents to 1 equivalent of the hydroxy group of component ( ⁇ ).
  • Component (C) is a curing catalyst in an amount of 0 to 0.4 part by weight based on 100 parts by weight of the total of the component ( ⁇ ) and the component ( ⁇ );
  • Component (D) is 10 to 50 parts by weight of an ultraviolet absorber based on 100 parts by weight of the total of the component ( ⁇ ) and the component ( ⁇ ),
  • the component ( ⁇ ) is a silane coupling agent in an amount of 0 to 5 parts by weight based on 100 parts by weight of the total of the component ( ⁇ ) and the component ( ⁇ ),
  • Component (a) is colloidal silica
  • the component (b) is represented by the following formulas (b-1) to (b-3)
  • Q 1 and Q 2 are each selected from the group consisting of alkyl groups having 1 to 4 carbon atoms, vinyl groups, or methacryloxy groups, amino groups, glycidoxy groups, and 3,4-epoxycyclohexyl groups. It is an alkyl group having 1 to 3 carbon atoms substituted with at least one group, and Q 3 is an alkyl group having 1 to 4 carbon atoms.
  • the molar ratio of each component b-1) / (b-2) / (b-3) ⁇ is 80 to: L00 / 0 to 20Z0 to 20; a hydrolyzate of alkoxysilane and / or condensation thereof object,
  • Component (c) is a curing catalyst
  • Component (d) is a solvent
  • the molar ratio of S i derived from the component) from the S i and the component (b) is 2 8-4 6,
  • Component (B) is preferably a blocked polyisocyanate compound.
  • Component (C) has the following formula
  • R x is the same or different and may be a hydrocarbon group having 1 to 8 carbon atoms
  • R y may be the same or different and is a substituted or unsubstituted hydrocarbon group having 1 to 17 carbon atoms.
  • M is an integer of 0 to 3.
  • Component (A) is an acrylic copolymer comprising 70 to 95 mol% of the repeating unit represented by the formula (A-1) and 5 to 30 mol% of the repeating unit represented by the formula (A-4). It is preferred that they are united.
  • R 1 in the formula (A-1) is preferably an ethyl group
  • R 2 in the formula (A-4) is preferably an ethylene group
  • a third aspect of the present invention is an acrylic resin composition containing components (A) to (E),
  • the component (A) is an acrylic copolymer, and has at least 50 mol% of the following formula (A-1)
  • R 1 is a methyl group or an ethyl group.
  • R 2 is an alkylene group having 2 to 5 carbon atoms.
  • R 3 is at least one group selected from the group consisting of a hydrogen atom, an alkyl group having 2 to 5 carbon atoms, and an ultraviolet-absorbing residue. Is a methyl group; and excluding the case where R 3 is a methyl group or an ethyl group.
  • Component (B) is a polyisocyanate compound or Z or blocked polyisocyanate having an isocyanate group content of 0.7 to 5 equivalents to 1 equivalent of the hydroxy group of component (A).
  • Component (C) is a curing catalyst in an amount of 0 to 0.4 part by weight based on 100 parts by weight of the total of component (A) and component (B);
  • Component (D) is a UV absorber in an amount of 10 to 50 parts by weight based on 100 parts by weight of the total of the components (A) and (B);
  • Component (E) is a silane coupling agent in an amount of 0 to 5 parts by weight based on 100 parts by weight of the total of component (A) and component (B);
  • Component (B) is preferably a blocked polyisocyanate compound.
  • Component (C) is an organotin compound and is preferably contained in an amount of 0.01 to 0.4 part by weight based on 100 parts by weight of the total of (A) and (B).
  • Component (A) is an acrylic copolymer comprising 70 to 95 mol% of the repeating unit represented by the formula (A-1) and 5 to 30 mol% of the repeating unit represented by the formula (A-4). It is preferred that they are united.
  • R 1 in the formula (A-1) is preferably an ethyl group
  • R 2 in the formula (A-4) is preferably an ethylene group
  • Component (C) has the following formula
  • R x is the same or different and may be a hydrocarbon group having 1 to 8 carbon atoms
  • R y may be the same or different and is a substituted or unsubstituted hydrocarbon group having 1 to 17 carbon atoms.
  • M is an integer of 0 to 3.
  • organic tin compound is represented by the following formula.
  • a fourth aspect of the present invention is an organosiloxane resin composition containing components (a) to (d),
  • Component (a) is colloidal silica
  • the component (b) is represented by the following formulas (b-1) to (b-3)
  • Q 1 Q 2 is selected from the group consisting of alkyl groups having 1 to 4 carbon atoms, vinyl groups, methacryloxy groups, amino groups, glycidoxy groups and 3,4-epoxycyclohexyl groups. It is an alkyl group having 1 to 3 carbon atoms substituted by the above groups, and Q 3 is an alkyl group having 1 to 4 carbon atoms.
  • each component, (b-1) / (b-2) / (b-3) is 80-: L 00 / 0-20Z0-20, Orchid hydrolyzate and Z or condensate thereof,
  • Component (c) is a curing catalyst
  • Component (d) is a solvent
  • the molar ratio (SiVSib) of Si from component (a) to Si from component ( b ) is 2/8 to 4/6
  • organosiloxane resin composition is
  • the organosiloxane resin composition used as a measurement solvent, observation frequency 79MH Z, observed pulse 6. 0 zs, repetition time 30 seconds, silicon nuclear magnetic resonance condition of broadening factor 5 H z when spectrum (29 S i -NM R) measurements, Kemikarushifu Bok silicon atoms of the organosiloxane resin composition, the silicon atoms of tetramethylsilane as 0 p pm, one 46. 5 p pm one to 70.
  • the organosiloxane tree composition further comprises, as component (e):
  • An acrylic copolymer having 50 to 90 mol% or more of the following formula (A-1).
  • R 2 is an alkylene group having 2 to 5 carbon atoms.
  • the content is preferably 0.1 to 20 parts by weight based on 100 parts by weight of the organosiloxane resin composition.
  • a first embodiment of the present invention comprises a polyphenylene carbonate substrate, a first layer and a second layer, wherein a first layer is formed on a surface of a polycarbonate substrate, and a second layer is formed on a surface of the first layer. This is a laminated body.
  • the polyproponate base material used in the present invention comprises a polyproponate resin obtained by reacting a divalent phenol with a force-ponate precursor by an interfacial polycondensation method or a melting method. .
  • divalent phenols include 2,2_bis (4-hydroxyphenyl) propane (commonly known as bisphenol A), 2,2-bis (3-methyl-14-hydroxyphenyl) propane, 2,2 —Bis (3,5-dimethyl-1-hydroxyphenyl) propane, 1,1-bis (4-hydroxyphenyl) ethane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 2,2- Bis (4-hydroxyphenyl) butane, 2,2-bis (4-hydroxyphenyl) -1-methylbutane, 9,9-bis (4-hydroxy_3-methyl) phenylfluorene, 2,2-bis ( 4-hydroxyphenyl) 1,3,3-dimethylbutane, 2,2-bis (4-hydroxyphenyl) 1,4-methylpentane, 1,1 bis (4-hydroxyphenyl) 1,3,3,5-trimethylcyclo Hexane and ⁇ , ⁇ ' Bis (4-hydroxyphenyl) Single m- diisopropylbenzene, bis (4-hydro K
  • divalent phenols can be used alone or in combination of two or more.
  • carbonate precursor carbonyl halide, carbonate ester or haloformate is used, and specific examples include phosgene, diphenyl carbonate, dihaloformate of divalent phenol, and the like.
  • Polycarbonate tree J means that even if it is a branched polycarbonate resin obtained by copolymerizing a trifunctional or higher polyfunctional aromatic compound, it can be obtained by copolymerizing an aromatic or aliphatic bifunctional carboxylic acid. It may be a ponate resin, or may be a mixture of two or more of the obtained polyphenol resins.
  • the reaction is carried out in the presence of an acid binder and an organic solvent.
  • an acid binder for example, an alkali metal hydroxide such as sodium hydroxide or a hydroxylating power or an amine compound such as pyridine is used, and as the solvent, for example, a halogenated solvent such as methylene chloride or chlorobenzene. Charcoal hydrogen is used.
  • a catalyst such as a tertiary amine or a quaternary ammonium salt can be used to promote the reaction.
  • the reaction temperature is usually 0 to 40 ° C, and the reaction time is several minutes to 5 hours.
  • a predetermined ratio of a divalent phenol component and a diphenol ponate are heated and stirred under an inert gas atmosphere to distill off the alcohol or phenols formed. It is performed by the method of causing.
  • the reaction temperature varies depending on the boiling point of the alcohol or phenols to be formed, but is usually in the range of 120 to 300 ° C.
  • the reaction is completed at a reduced pressure from the beginning while distilling off the alcohol or phenols formed.
  • a usual ester exchange reaction catalyst can be used to promote the reaction.
  • the molecular weight of the polycarbonate resin is preferably 100,000 to 500,000 in terms of viscosity average molecular weight (M), and more preferably 150,000 to 350,000. preferable.
  • M viscosity average molecular weight
  • a polycarbonate resin having such a viscosity average molecular weight is preferable because sufficient strength is obtained and the melt fluidity during molding is good.
  • the viscosity average molecular weight is The specific viscosity (7? Sp) obtained from a solution of 0.7 g of poly-carbonate resin in 20 ml of styrene at 20 ° C was calculated by entering the following formula.
  • stabilizers such as phosphites, phosphates, and phosphonates, tetrabromobisphenol A, a low-molecular-weight polycarbonate of tetrabromobisphenol A, and decap Flame retardants such as modiphenol, coloring agents, lubricants and the like can be added.
  • the haze value of the polycarbonate base material is 10% or less.
  • the thickness of the substrate is 1 to 1 Omm, preferably 2 to 8 mm.
  • the first layer comprises a cross-linked acryl copolymer and an ultraviolet absorber.
  • Such a crosslinked acrylic copolymer has at least 50 mol% of the following formula (A-1)
  • R 1 is a methyl group or an ethyl group.
  • R 2 is an alkylene group having 2 to 5 carbon atoms.
  • R a is a single bond, and the remainder is a hydrogen atom.
  • Ra is a single bond, it is bonded to another repeating unit represented by the other formula (A-2) via a urethane bond.
  • R 3 is at least one group selected from the group consisting of a hydrogen atom, an alkyl group having 2 to 5 carbon atoms, and an ultraviolet-absorbing residue. Is a methyl group, except when R 3 is a methyl group or an ethyl group.
  • the molar ratio of the urethane bond to the total amount of the repeating units represented by the formulas (A-1) to (A-3) is in the range of 4/100 to 30/100. It is a cross-linked acrylyl copolymer.
  • the methacrylate monomer corresponding to the repeating unit represented by the formula (A-1) is methyl methacrylate or ethyl methacrylate.
  • the methacrylate monomer corresponding to the repeating unit represented by the formula (A-2) includes, specifically, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 3-hydroxypropyl methacrylate, and 4-hydroxypropyl methacrylate.
  • Hydroxybutyl methacrylate can be used, and these can be used alone or in combination of two or more. Among them, 2-hydroxyethyl methacrylate is preferably employed.
  • Ra is a single bond, and the rest is a hydrogen atom.
  • Ra is a single bond, it is bonded to another repeating unit represented by the formula (A-2) via a urethane bond.
  • the degree of crosslinking is ⁇
  • the molar ratio of the Lein bond to the total amount of the repeating units represented by the formulas (A-1) to (A-3) is in the range of 4Z100 to 30/100. Preferably such a molar ratio is in the range of 10/100 to 20/100.
  • R 3 in the repeating unit represented by the formula (A-3) is an alkyl group having 2 to 5 carbon atoms
  • R 3 in the repeating unit represented by the formula (A-3) is an alkyl group having 2 to 5 carbon atoms
  • R 3 in the repeating unit represented by the formula (A-3) is an alkyl group having 2 to 5 carbon atoms
  • R 3 in the repeating unit represented by (A-3) is an alkyl group having 2 to 5 simple primes
  • specific examples of (meth) acrylate monomers include methyl acrylate, ethyl acrylate, and propyl acrylate. And butyl acrylate, pentyl acrylate, propyl methacrylate, butyl methacrylate, and pentyl methyl acrylate. These can be used alone or in combination of two or more.
  • R 3 in the repeating unit represented by (A_ 3) is an ultraviolet-absorbing residue
  • a (meth) acrylate polymer is a 1-mg / L solution in a clog-mouth form, an optical path length of 1.0 cm. And those whose absorbance at a wavelength of 300 nm is 0.25 or more, as measured in the above.
  • Such a monomer examples include 2- (2,1-hydroxy-15'-acryloxyshethylphenyl) benzotriazole, 2_ (2'-hydroxy-5,1-acryloxyethoxyphenyl) benzotriazole, 2- (2 '—Hydroxy-5,1-acryloxypropylphenyl) benzotriazole, 2- (2,1-hydroxy-oxy-5)' 1-Acryloxypropoxyphenyl) benzotriazole, 2- (2, -hydroxy-5'-acryl) Loxoshetylphenyl) _5_Chlorobenzoyl triazole, 2- (2'-hydroxy-3'-acryloxyxethyl-1 5'-t-butylphenyl) benzotriazole, 2- (2'-hydroxy- 3'-Acryloxicetyl-5'-t_butylphenyl) _5-chlorobenzototriazole, 2-hydroxy-41- (acryloxyethoxy) benzofu Non, 2-hydroxy-1- (acryloxy
  • the proportion of the repeating unit represented by the formula (A-1) in the acrylic copolymer is at least 50 mol%, preferably at least 60 mol%, more preferably at least 70 mol%.
  • the proportion of the repeating unit represented by (A-2) in the acrylic copolymer is 5 to 30 mol%, preferably 8 to 20 mol%, and more preferably 10 to 20 mol%. .
  • the proportion of the repeating unit represented by (A-3) in the acrylic copolymer is 0 to 30 mol%.
  • Component (A) is an acrylic copolymer composed of 70 to 95 mol% of the repeating unit represented by the formula (A-1) and 5 to 30 mol% of the repeating unit represented by the formula (A-2). It is preferred that they are united.
  • R 1 in the formula (A-1) is preferably an ethyl group
  • R 2 in the formula (A-2) is preferably an ethylene group
  • the molecular weight of the crosslinked acrylic copolymer is preferably 20,000 or more, more preferably 50,000 or more in weight average molecular weight, and 10,000,000 or more in weight average molecular weight.
  • the following are preferably used:
  • the acrylic resin having a strong molecular weight range is preferable because the performance as the first layer such as adhesion and strength is sufficiently exhibited.
  • the first layer contains an ultraviolet absorber having an absorbance of 0.25 or more at a wavelength of 30 Onm, measured at an optical path length of 1. Ocm, and a form-cloth solution having a concentration of 1 OmgZL.
  • an ultraviolet absorber having an absorbance of 0.25 or more at a wavelength of 30 Onm, measured at an optical path length of 1. Ocm, and a form-cloth solution having a concentration of 1 OmgZL.
  • the first layer can be formed by laminating an acryl resin composition according to a third embodiment of the present invention described later on a polycarbonate base material, and then curing the acryl resin composition.
  • the thickness of the first layer is between 1 and 12 m, preferably between 2 and 10 m.
  • the second layer is composed of a crosslinked organosiloxane polymer.
  • the crosslinked organosiloxane polymer has the following formulas (b-4) to (b-6)
  • QQ 2 is at least one group selected from the group consisting of alkyl groups having 1 to 4 carbon atoms, vinyl groups, or methacryloxy groups, amino groups, glycidoxy groups, and 3,4-epoxycyclohexyl groups, respectively) Is an alkyl group having 1 to 3 carbon atoms substituted with
  • Consisting of a repeating unit represented by It is a crosslinked organosiloxane polymer in which the molar ratio of each repeating unit b-4) (b-5) / (b-6) ⁇ is 80 to 100/0 to 20Z0 to 20.
  • Examples of the alkyl group for Q 1 and Q 2 include a methyl group and an ethyl group.
  • the molar ratio Kb—4) / (b-5) / (b-6) ⁇ is preferably 85-100 Z0-15Z0-15, more preferably 85-100 / 0-10 / 0-10 .
  • the second layer can be formed by laminating an organosiloxane resin composition according to a fourth aspect of the present invention described later on the first layer, and then curing the composition.
  • Window materials include those for automobiles and houses.
  • a second embodiment of the present invention comprises a polycarbonate substrate, a first layer and a second layer, wherein a first layer is formed on a surface of a polystyrene polycarbonate substrate, and a second layer is formed on a surface of the first layer.
  • a laminate comprising:
  • the first layer is a layer obtained by laminating an acryl resin composition according to a third embodiment of the present invention described later on the surface of a polycarbonate base material, and then hardening the second layer.
  • a laminate comprising a layer obtained by laminating the organosiloxane resin composition according to the fourth aspect of the present invention on the surface of the first layer and then curing the layer.
  • the acrylic resin composition of the present invention contains components (A) to (E). Hereinafter, each component will be described.
  • the acrylic copolymer (A) is a copolymer comprising repeating units represented by the following formulas (A-1), (A-4) and (A-3).
  • the repeating unit represented by the formula (A-1) has the following structure.
  • R 1 is a methyl group or an ethyl group.
  • the methacrylate monomer corresponding to the repeating unit represented by the formula (A-1) is methyl methacrylate or ethyl methacrylate.
  • the repeating unit represented by the formula (A-4) has the following structure.
  • R 2 is an alkylene group having 2 to 5 carbon atoms.
  • the alkylene group having 2 to 5 carbon atoms include ethylene and propylene groups.
  • the methacrylate monomer corresponding to the repeating unit represented by the formula (A-4) is, specifically, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 3-hydroxypropyl methacrylate, 4-hydroxybutyl methacrylate. These can be used alone or in combination of two or more. Of these, 2-hydroxyethylmethacrylate is preferably used.
  • the repeating unit represented by the formula (A-3) has the following structure.
  • R 3 is at least one group selected from the group consisting of a hydrogen atom, an alkyl group having 2 to 5 carbon atoms, and an ultraviolet-absorbing residue. Is a methyl group and R 3 is a methyl group or an ethyl group.
  • Specific examples of the case where R 3 is an alkyl group having 2 to 5 carbon atoms include ethylene and propylene groups.
  • R 3 in the repeating unit represented by (A-3) is an ultraviolet-absorbing residue
  • (meth) acrylate monomer is used as a (1) OmgZL solution in black-mouthed form solution at an optical path length of 1.0 cm.
  • Examples include those whose measured absorbance at a wavelength of 300 nm is 0.25 or more.
  • Such monomers include 2- (2, -hydroxy-5'-acryloxyshetylphenyl) benzotriazole, 2- (2, -hydroxy-1 5'-acryloxyethoxyphenyl) benzotriazole, 2_ (2'-hydroxy One 5'-acryloxypropylphenyl) benzotriazole, 2- (2,1-hydroxy 5'-acryloxypropoxyphenyl) benzotriazole, 21- (2'-hydroxy-5'-acryl Loxyshetyl phenyl) 1-5-Chlorobenzoyl triazole, 2- (2, -Hydroxy-3'-acryloxyxethyl-5,1-t-butylphenyl) benzotriazole, 2_ (2,1-Hydroxy-3, 1-acryloxyshethyl_5, 1-t_butylphenyl) 1-5-chlorobenzotriazole, 2-hydroxy-14-acryloxyshethoxyben Zofenone, 2-hydroxy-1-acryloxypropoxybenzophenone
  • (meth) acrylate monomer corresponding to the repeating unit represented by the formula (A-3) include methyl acrylate, ethyl acrylate, methyl methacrylate and ethyl methacrylate. These can be used alone or in combination of two or more.
  • the molecular weight of the acryl copolymer is preferably at least 200,000, more preferably at least 500,000 in terms of weight average molecular weight, and those having a weight average molecular weight of not more than 10,000,000 are preferably used. .
  • the acrylic resin having such a molecular weight range is preferable because the performance as the first layer such as adhesion and strength is sufficiently exhibited.
  • the proportion of the repeating unit represented by the formula (A-1) in the acrylic copolymer is at least 50 mol%, preferably at least 60 mol%, more preferably at least 70 mol%.
  • the proportion of the repeating unit represented by (A-2) in the acrylic copolymer is from 5 to 30 mol%, preferably from 8 to 20 mol%, more preferably from 10 to 20 mol%. .
  • the proportion of the repeating unit represented by (A-3) in the acrylic copolymer is 0 to 30 mol%.
  • the component (A) is composed of 70 to 95 mol% of the repeating unit represented by the formula (A-1) and 5 to 30 mol% of the repeating unit represented by the formula (A-2). It is preferably an acrylic copolymer.
  • R 1 in the formula (A-1) is preferably an ethyl group
  • R 2 in the formula (A-2) is preferably an ethylene group.
  • Component (B) comprises a polyisocyanate compound and Z or a blocked polyisocyanate, wherein the content of the isocyanate group is 0.7 to 5 equivalents to 1 equivalent of the hydroxy group of the component (A). Nate compound.
  • Polyisocyanate compounds include polyisocyanate and polyisocyanate. And polyhydric alcohols, polyisocyanates and low molecular weight polyester resins, polyisocyanate-containing polymers, and isocyanates and puret bodies.
  • polyisocyanates examples include tolylene diisocyanate, 4,4-diphenyl methane diisocyanate, 1,5-naphthylene diisocyanate, triphenyl methane triisocyanate, and triazine diisocyanate.
  • Xylene diisocyanate dimer acid diisocyanate, hexamethylene diisocyanate, and dicyclohexablocked polyisocyanate compound include acetoxime, methyl acetate, isocyanate group of polyisocyanate compound.
  • Oximes such as tilketoxime; active methylene compounds such as dimethyl malonate, getyl malonate, methyl acetoacetate, ethyl acetoacetate, acetylacetone; methanol, ethanol,
  • polysocyanate compound and the blocked polysocyanate compound can be used alone or in combination of two or more.
  • aliphatic and / or alicyclic polyisocyanate compounds are particularly preferred because of their excellent weather resistance.
  • An example of such a polyisocyanate compound is an adduct-type polyisocyanate compound obtained by blocking an adduct-type polyisocyanate compound represented by the following formula (B-1) with a blocking agent. (B-1)
  • R 5 , R 6 , and R 7 are the same or different and represent a group obtained by removing an isocyanate group from an aliphatic and Z or alicyclic diisocyanate compound; and R 8 represents a hydroxy compound Represents a group excluding a hydroxy group, and n 1 represents 0 or an integer of 2 or less.
  • Examples of the aliphatic diisocyanate compound include, and examples of the cyclic diisocyanate compound include cyclohexyldisocyanate.
  • an isocyanurate-type polyisocyanate compound obtained by blocking an isocyanurate-type polyisocyanate compound represented by the following formula (B-2) with a blocking agent is also included.
  • n 2 represents the number of nuclei in the isocyanurate prepolymer, the statistical average value is 1.0 to 4.0, and R 9 to Rn are the same or different, and aliphatic and Z or a group obtained by removing the isocyanate group from the alicyclic diisocyanate compound.
  • cyclic diisocyanate compound examples include cyclohexyl diisocyanate.
  • the blocking agent is preferably used because oximes and active methylene compounds can be thermoset at a lower temperature, though depending on the heat resistance of the transparent plastic substrate.
  • the content of the isocyanate group in the polyisocyanate compound and the blocked polyisocyanate compound is 560% by weight, preferably 6555% by weight, and most preferably 650% by weight. If the isocyanate group content is less than 5% by weight, the blending amount of the polyisocyanate compound and the blocked polyisocyanate compound with respect to the acryl resin increases, which is represented by the above formula (A-1) in the coating resin. The ratio of the repeating unit decreases, and the adhesion to the plastic substrate becomes poor. On the other hand, if the content is more than 60% by weight, the flexibility of the coating layer is reduced, and the coating layer is cracked when the second layer is heat-hardened, or the durability against environmental change is impaired. Not preferred.
  • the mixing ratio of component (A) to component (B) is such that the isocyanate group generated by component (B) is 0.75 with respect to 1 equivalent of the acryl of component (A) ′; Equivalents, preferably 0.753 equivalents, most preferably 0.82 equivalents.
  • the first layer can maintain good adhesion to the poly-carbonate base material and the thermosetting organosiloxane resin layer of the second layer. Since it has a high level of crosslink density, it is unlikely to cause a decrease in crosslink density due to ultraviolet rays, water, or oxygen, and can maintain long-term adhesion, environmental resistance and durability in high-temperature environments, and has excellent weather resistance.
  • the isocyanate group is less than 0.7 equivalents, the crosslinking inadequately results in insufficient durability in a high-temperature environment, and the unreacted hydroxy group has a high affinity for water molecules, so that the coating film Absorbs moisture, and as a result, the weather resistance and the hot water resistance are lowered. If the isocyanate group is more than 5 equivalents, the coating layer will be very crosslinked with aromatic bonds. High density, hard and brittle layer, poor follow-up to environmental changes, poor adhesion to environmental changes, not preferred.
  • the component (C) is a curing catalyst in an amount of from 0 to 0.4 part by weight based on 100 parts by weight of the total of the component (A) and the component (B).
  • a curing catalyst an organotin compound and a Z or quaternary ammonium salt compound are mainly used.
  • R x is the same or different and may be a hydrocarbon group having 1 to 8 carbon atoms
  • R y may be the same or different and is a substituted or unsubstituted hydrocarbon group having 1 to 17 carbon atoms.
  • m is an integer from 0 to 3.
  • a hydrocarbon group having 1 to 8 carbon atoms for R x includes an alkyl group having 1 to 8 carbon atoms, and specific examples include a methyl group, an ethyl group, and a propyl group.
  • hydrocarbon group having 1 to 17 examples include an alkyl group having 1 to 17 carbon atoms, such as ethyl, heptyl, hexyl, octyl, decyl, decyl, dodecyl, and heptanyl. Decyl group and the like. Examples of the substituent include a methyl group.
  • organotin compounds include monobutyltin tris (2-ethylhexanoate), dimethyltin dinedecanoate, dioctyltin dinedecanoate, and dimethylhydroxytin oleate.
  • quaternary ammonium salt compounds include, for example, 2-hydroxyethyl'tri-n-butylammonium ⁇ 2,2-dimethylpropionate, 2-hydroxyl-tri-n-butylammonium ⁇ 2, 2-dimethylbutanoate, 2-hydroxypropyl-tri-n-butylammonium ⁇ 2,2-dimethylpropionate, 2-hydroxypropyl-tri-n-butylammonium ⁇ 2,2-dimethylbutanoate 2-hydroxypropyl-tri-n-butylammonium 2,2-dimethylpentanoate, 2-hydroxypropyl-tri- ⁇ -butylammonium '2-ethyl-2-methylpropionate, 2-hydroxypropyl-tri- ⁇ _Butyl ammonium ⁇ 2-Ethyl-2-methylbutanoate, 2-Hydroxypropyl 'tri ⁇ -butyla Monmonium 2-Ethyl-2-methylpentanoate, 2-Hydroxy
  • Such a curing catalyst is used in an amount of 0 to 0.4 part by weight based on 100 parts by weight of the total of the component (A) and the component (B). It is preferably used in an amount of 0.01 to 0.4 part by weight, more preferably 0.02 to 0.3 part by weight. If the curing catalyst exceeds 0.1 parts by weight, the adhesion between the acrylic resin layer and the second layer is undesirably reduced.
  • Component (D) is an ultraviolet absorber in an amount of 10 to 50 parts by weight based on a total of 100 parts by weight of component (A) and component (B).
  • Examples of the ultraviolet absorber include 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-14-hydroxybenzophenone, 2,2, dihydroxy-4,4, dimethoxy.
  • Benzophenones such as benzophenone; 2- (5,1-methyl-1,2-hydroxyphenyl) benzotriazole, 2- (3, _t-butyl-5,1-methyl-1,2-hydroxyphenyl) benzotol Riazoles, benzotriazoles such as 2- (3,5'-di-t-butyl-2, -hydroxyphenyl) -1-chlorobenzotriazole, etc .; ethyl-12-cyano-3,3-diphenyl Acrylates, cyanoacrylates such as 2-ethylhexyl-2-cyano-3,3-diphenylacrylate; phenylsalicylate, p-octylphenyl Salicylates such as lysylates; benzyliden
  • an ultraviolet absorber for adding a coating agent for example, Tinuvin 405, Tinuvin 411 L, CGL777 MPA, and the like are commercially available from Ciba Specialty Chemicals Co., Ltd. and can be preferably used for this purpose. .
  • the total amount of the components (A) and (B) is 100 to 100 parts by weight, preferably 10 to 50 parts by weight, more preferably 15 to 4 parts by weight. Used by 5 parts by weight. If the amount of the ultraviolet absorbent is less than 10 parts by weight, the transmittance of ultraviolet light becomes high, and yellowing of the substrate occurs or the adhesion is reduced, so that the weather resistance is poor. On the other hand, if it exceeds 50 parts by weight, the adhesion is undesirably reduced.
  • the component (E) is a silane coupling agent in an amount of 0 to 5 parts by weight based on 100 parts by weight of the total of the components (A) and (B).
  • silane coupling agents include r- (2-aminoethyl) aminoprobitritrimethoxysilane, er (2-aminoethyl) aminopropylmethyldimethoxysilane, methacryloxypropyltrimethoxysilane, and N-j3- ( N-vinylpentylaminoethyl) 1-aminopropyl trimethoxysilane hydrochloride, acrylicidoxypropyltrimethoxysilane, ⁇ -mercaptopropyltrimethyl Toxoxysilane, vinyltriacetoxysilane, arnilinopropyl trimethoxysilane, vinyletrimethoxysilane, octyl decyl dimethyl [3- (trimethoxysilyl) propyl] ammonium chloride, T-peridopropyl triethoxysilane, etc. Further, a partially hydrolyzed condensate of the silane coupling
  • the adhesion between the transparent plastic substrate and the first layer and between the first layer and the second layer is maintained for a long time.
  • These agents may be used alone or in combination of two or more.
  • the silane coupling agent is used in an amount of 0 to 5 parts by weight, preferably 0.2 to 5 parts by weight, based on 100 parts by weight of the total of the components (A) and (B).
  • the acryl resin composition used in the first layer may contain a light stabilizer if necessary.
  • the light stabilizer include bis (2,2,6,6-tetramethyl-4-piperidyl) carbonate, bis (2,2,6,6-tetramethyl-4-piperidyl) succinate, bis (2,2,6 6-Tetramethyl-4-piberidyl) Sebaceto, 4_benzoyloxy-2,2,6,6-tetramethylpiperidine, 4-octanoyloxy 2,2,6,6-tetramethylpiperidine , Bis (2,2,6,6-tetramethyl-4-piperidyl) diphenylmethane, p, p, dicarbamate, bis (2,2,6,6-tetramethyl-4-piberidyl) benzene, 1,3_disulfonate, bis ( Hindamines such as 2,2,6,6-tetramethyl-4-piperidyl) phenylphosphite, nickel bis (octylpheny
  • the light stabilizers are those of component (A) and component (B).
  • the amount is preferably 0.01 to 50 parts by weight, more preferably 0.05 to 10 parts by weight, based on 100 parts by weight in total.
  • the first layer is a layer obtained by laminating an acrylic resin composition containing the components (A) to (E) on the surface of a polycarbonate substrate and then curing the composition.
  • the thickness of the acrylic resin layer is 1 to 12 m, preferably 2 to 10 mm, and more preferably 2 to 8 im.
  • the components (A) to (E) are dissolved in a volatile solvent that does not react with or dissolve the substrate to form a coating composition.
  • the composition is applied to the surface of the substrate, the solvent is removed by heating or the like, and the mixture is further heated to react and crosslink the hydroxy group in component (A) with the isocyanate group in component (B).
  • the isocyanate group which reacts is formed by heating the isocyanate group of the polyisocyanate compound in the component (B) or the blocked polyisocyanate compound in the component (B). Group.
  • Solvents in the coating composition include ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, ethers such as tetrahydrofuran, 1,4-dioxane and 1,2-dimethoxyethane, and acetic acid.
  • Esters such as ethyl, acetic acid X toxityl, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 2-methyl-2-propanol, 2-ethoxy Alcohols such as ethanol, 1-methoxy-2-propanol, and 2-butoxyethanol; n-hexane, n-heptane, isooctane, benzene, toluene, xylene, gasoline, light oil, kerosene, and other hydrocarbons , Acetonitrile, nitromethane, water, etc., which are used alone It may be may be used by mixing two or more kinds.
  • the concentration of the solid content of the coating resin in the coating composition containing (A) to (E) is preferably from 1 to 50% by weight, more preferably from 3 to 30% by weight.
  • the coating composition containing the above (A) to (E) is applied to a plastic substrate by a vacuum coating method, a dip coating method, a flow coating method, a spray coating method, a spin coating method, a roller coating method or the like. Depending on the shape of the substrate to be painted It can be selected as appropriate.
  • the substrate on which the coating composition is applied is dried and removed from the solvent at a temperature from normal temperature to a temperature equal to or lower than the thermal deformation temperature of the substrate, and is cured by heating. It is preferable to carry out such thermal curing at a high temperature within a range in which there is no problem with the heat resistance of the substrate because curing can be completed more quickly.
  • thermosetting does not proceed completely, and the coating layer does not have a sufficient crosslink density required for the first layer.
  • the crosslinkable group in the thermosetting acryl resin composition reacts to increase the crosslink density of the coating layer, and is excellent in adhesion, hot water resistance, and durability in a high temperature environment. It becomes a coat layer.
  • Thermal curing is preferably in the range of 80 to 160 ° C, more preferably in the range of 100 to 140 ° C, most preferably in the range of 110 to 130 ° C, preferably 1 to 100 ° C. 0 minutes to 3 hours, more preferably 20 minutes to 2 hours, most preferably 30 minutes to 1 hour 30 minutes to crosslink the crosslinkable group, and the above-mentioned coating resin was laminated as the first layer. A transparent plastic substrate is obtained. If the heat curing time is less than 10 minutes, the crosslinking reaction does not proceed sufficiently, and a coating layer having poor durability and weather resistance in a high temperature environment may be formed. In addition, a heat curing time of 3 hours or less is sufficient for the performance of the coating film.
  • the organosiloxane resin composition of the present invention contains components (a) to (d). Hereinafter, each component will be described.
  • Component (a) Colloidal silica>,
  • the colloidal silica used as the component (a) in the present invention is a colloidal dispersion of silica fine particles having a diameter of 5 to 200 nm, preferably 5 to 40 nm, in water or an organic solvent.
  • the colloidal silica can be used in either a water dispersion type or an organic solvent dispersion type, but it is preferable to use a water dispersion type.
  • a large number of hydroxyl groups are present on the surface of the silica fine particles. Is strongly bonded to the alkoxysilane hydrolyzed condensate, and it is considered that a plastic laminate having more excellent abrasion resistance can be obtained.
  • the water-dispersed colloidal silica is further divided into an acidic aqueous solution-dispersed type and a basic aqueous solution-dispersed type.
  • the water-dispersed colloidal silicic acid can be used in either an acidic aqueous solution-dispersed type or a basic aqueous solution-dispersed type.
  • colloidal silica dispersed in an acidic aqueous solution is preferably used.
  • colloidal silica examples include a product dispersed in an acidic aqueous solution, such as Snowtex 0 from Nissan Chemical Industry Co., Ltd., a cataloid SN from Catalysis Chemical Industry Co., Ltd., and a product dispersed in a basic aqueous solution.
  • Snowtex 0 from Nissan Chemical Industry Co., Ltd.
  • a cataloid SN from Catalysis Chemical Industry Co., Ltd.
  • a product dispersed in a basic aqueous solution examples include Nissan Chemical Industry Co., Ltd. Snowtex 30, Snowtex 40, Catalyst Kasei Kogyo Co., Ltd. Rikiyu Lloyd S30, Rikiyu Lloyd S40, Nissan Chemical Co., Ltd.
  • Component (b) hydrolyzate of alkoxysilane and / or condensate thereof> Component (b) is represented by the following formulas (b-1) to (b-3)
  • QQ 2 is one or more groups selected from the group consisting of alkyl groups having 1 to 4 carbon atoms, vinyl groups, methacryloxy groups, amino groups, glycidoxy groups, and 3,4-epoxycyclohexyl groups. Is an alkyl group having 1 to 3 carbon atoms, and Q 3 is an alkyl group having 1 to 4 carbon atoms.
  • the ratio of each component, (b-1) / (b-2) / (b-3), is from 80 to: L 00/0 to 20Z0 to 20. Orchid hydrolyzate and z or condensate thereof.
  • alkyl group of Q 1 , Q 2 and Q 3 include a methyl group and an ethyl group.
  • alkoxysilane of the formula (b-1) examples include methyltrimethoxysilane, methylsilane, vinyltrimethoxysilane, vinyltriethoxysilane, and methacryloxy.
  • Minopropyltrimethoxysilane, r-aminopropyltriethoxysilane, N- ⁇ (aminoethyl) -1- ⁇ -aminopropyltrimethoxysilane, N-i3 (aminoethyl) -aminopropyltriethoxysilane, etc. Can be
  • alkoxysilane of the formula (b-2) dimethyldimethoxysilane, vinyl
  • alkoxysilane of the formula (b-3) examples include tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetraisopropoxysilane, tetra_n-butoxysilane, and tetraisobutoxysilane.
  • the ratio of each component ⁇ (b-l) / (b-2) / (b-3) ⁇ is preferably 85-100 / 0-15 / 0-15, more preferably 85-95 / 5- 15Z5 ⁇ 15.
  • the organosiloxane resin composition of the present invention further contains a curing catalyst.
  • a curing catalyst examples include alkali metal salts such as lithium, sodium, and potassium salts of aliphatic carboxylic acids such as formic acid, propionic acid, butyric acid, lactic acid, tartaric acid, and succinic acid; Quaternary ammonium salts such as zirtrimethylammonium salt, choline salt, tetramethylammonium salt and tetraethylammonium salt.
  • alkali metal salts such as lithium, sodium, and potassium salts of aliphatic carboxylic acids
  • Quaternary ammonium salts such as zirtrimethylammonium salt, choline salt, tetramethylammonium salt and tetraethylammonium salt.
  • sodium acetate, potassium acetate, choline acetate, and benzyltrimethylammonium acetate are preferably used.
  • the organosiloxane resin composition When a basic water-dispersed colloidal silica is used as the colloidal silica and an aliphatic carboxylic acid is used as an acid during hydrolysis of the alkoxysilane, the organosiloxane resin composition already contains a hardened catalyst. It will be contained. The required content varies depending on the composition of the organosiloxane resin, the degree of progress of the hydrolysis and condensation reactions, and the thermosetting conditions.
  • the curing catalyst is used in a total of 100 parts by weight of the components (a) and (b). The content is 0.01 to 10 parts by weight, preferably 0.1 to 5 parts by weight.
  • the solvent used in the organosiloxane resin composition of the present invention it is necessary that the component (a) and the component (b) are stably dissolved.
  • at least 20% by weight or more, preferably 50% by weight is used.
  • the above is desirably alcohol.
  • examples of such alcohols include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 2-ethoxyethanol, 4-methyl-2-pentanol, 2- Butoxyethanol and the like, and a low-boiling alcohol having 1 to 4 carbon atoms is preferable, and 2-propanol is particularly preferable in terms of solubility, stability and coating properties.
  • the solvent when water in the water-dispersed colloidal silica does not participate in the hydrolysis reaction, lower alcohol generated by the hydrolysis of the alkoxysilane, and colloidal silica in the organic solvent dispersion type are used.
  • the organic solvent of the dispersion medium and the acid added for adjusting the pH of the organosiloxane resin composition are also included.
  • Acids used for pH adjustment include hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, nitrous acid, Inorganic acids such as perchloric acid and sulfamic acid, and organic acids such as formic acid, acetic acid, propionic acid, butyric acid, oxalic acid, succinic acid, maleic acid, lactic acid, and paratoluenesulfonic acid. From the viewpoint of the stability, organic carboxylic acids such as formic acid, acetic acid, propionic acid, butyric acid, oxalic acid, succinic acid and maleic acid are preferred.
  • solvents must be miscible with water Z alcohol, for example ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, tetrahydrofuran, 1,4-dioxane, 1,2-dimethoxy Ethers such as tan, and esters such as ethyl acetate and ethoxyxyl acetate;
  • ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, tetrahydrofuran, 1,4-dioxane, 1,2-dimethoxy Ethers such as tan, and esters such as ethyl acetate and ethoxyxyl acetate
  • the solvent is used in an amount of 50 to 900 parts by weight, preferably 150 to 700 parts by weight, based on 100 parts by weight of the solid content of the organosiloxane resin.
  • the pH of the organosiloxane resin composition of the present invention is desirably adjusted to 3.0 to 6.0, preferably 4.0 to 5.5 by adjusting the contents of the acid and the curing catalyst. Thereby, gelation of the organosiloxane resin composition at normal temperature can be prevented, and storage stability can be increased.
  • the organosiloxane resin composition usually becomes a stable composition when further aged for several hours to several days.
  • a known repelling agent can be blended with the organosiloxane resin composition of the present invention for the purpose of improving coatability and smoothness of the obtained coating film.
  • the compounding amount is preferably in the range of 0.01 to 2 parts by weight based on 100 parts of the organosiloxane resin composition.
  • an ultraviolet absorber, a dye, a pigment, a filler, and the like may be added as long as the object of the present invention is not impaired.
  • the organosiloxane resin composition thus prepared can be applied to a molded article having a transparent appearance such as a polycarbonate shelf.
  • a molded article having a transparent appearance such as a polycarbonate shelf.
  • it can be preferably applied to a molded article in which an acryl resin layer is formed as a primer layer on a polycarbonate shelf.
  • the organosiloxane resin composition of the present invention is prepared, for example, through the following process.
  • the alkoxides of the formulas (b-1), (b-2) and (b-3) are subjected to a hydrolytic condensation reaction under acidic conditions.
  • the water required for the alkoxysilane hydrolysis reaction is water-dispersed colloidal When a silica dispersion is used, it is supplied from this dispersion, and if necessary, water may be added. Usually, 1 to 10 equivalents, preferably 1.5 to 7 equivalents, more preferably 3 to 5 equivalents of water is used per 1 equivalent of alkoxysilane.
  • the hydrolysis-condensation reaction of alkoxysilane must be performed under acidic conditions.
  • an acid is generally used as a hydrolyzing agent.
  • Such an acid may be added after mixing both the force previously added to the alkoxysilane or the colloidal silica dispersion. Further, the addition can be divided into one time or two or more times.
  • an acidic aqueous solution-dispersed colloidal sily force is used, the acid in the colloidal silica keeps the reaction solution under acidic conditions, so the use of an acid is not necessarily required.
  • acids examples include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, nitrous acid, perchloric acid, and sulfamic acid, formic acid, acetic acid, propionic acid, butyric acid, oxalic acid, succinic acid, maleic acid, lactic acid, and paralic acid.
  • Organic acids such as toluenesulfonic acid can be used.
  • an inorganic acid When an inorganic acid is used as the acid, it is usually used at a concentration of 0.0001 to 2 mol / l, preferably at a concentration of 0.001 to 0.1 mo 1Z1, and when an organic acid is used, methyltrialkoxysilane is used. It is used in the range of 0.1 to 50 parts by weight, preferably 1 to 30 parts by weight, per 100 parts by weight.
  • the conditions for the hydrolysis and condensation of the alkoxysilane vary depending on the type of the alkoxysilane used, the type and amount of colloidal silica coexisting in the system, and therefore cannot be unconditionally determined, but usually the system temperature is 20 to 40 °. C, Reaction time is 1 hour to several days. Although the hydrolysis reaction of alkoxysilane is exothermic, it is desirable that the system temperature does not exceed 60 ° C at the maximum. After the hydrolysis reaction is sufficiently advanced under such conditions, it is also preferable to carry out the condensation reaction at 40 to 80 ° C for 1 hour to several days in order to stabilize the coating agent.
  • the resulting Si- ⁇ H undergoes a condensation reaction with the Si- ⁇ H in colloidal silica and the Si- ⁇ H of another trialkoxysilane hydrolyzate molecule other than this molecule.
  • a condensation reaction with the Si- ⁇ H in colloidal silica and the Si- ⁇ H of another trialkoxysilane hydrolyzate molecule other than this molecule.
  • the resulting condensate also undergoes a condensation reaction with another Si-OH to form a Si-OSi bond.
  • the hydrolysis and condensation reactions proceed partially, but not completely.
  • One of the oligomers derived from trialkoxysilane, and a peak based on a silicon group in which three hydroxyl groups have undergone condensation reaction, and a bond to colloidal silica
  • peaks based on silicon atoms of tetraalkoxysilane and dialkoxysilane appear outside the above-mentioned region.
  • the organosiloxane resin composition has a favorable hydrolysis and condensation ratio. If the hydrolysis reaction is insufficient, evaporation of the starting trialkoxysilane during thermosetting and a rapid progress of the stiffening reaction may be caused. May cause hair cracks. Further, if the condensation reaction proceeds too much, the particle size in the sol becomes too large, and an appropriate crosslinking reaction becomes impossible, so that the abrasion resistance may decrease.
  • Organosiloxane resin composition of the present invention 'heavy water (D 2 0) used as a measurement solvent, observation frequency 7 9MH Z, observed pulse 6.
  • OS repetition time 30 seconds, blanking opening one de training factor one 5 H z Nuclear magnetic resonance spectrum ( 29 S i — NMR)
  • the chemical shift of the silicon atoms of the organosiloxane resin composition was from 16.5 ppm, with the silicon atom of tetramethylsilane being 0 ppm, and all peaks in the range of 70.0 ⁇ pm
  • the integrated value of [S] the peak integrated value [X] in the range of 46.5 ppm to 18.5 ppm in the peak integrated value, and the peak integrated value of 52.5 ppm to 61.0 ppm in the peak integrated value
  • the peak integrated value in the range is expressed as [Y] and the peak value in the range from -61.0 ppm to 17.0 ppm is expressed as [Z], 0.002 ⁇ [X] / [S] ⁇ 0
  • each integral value is preferably 0.003 ⁇ [X] / [S] ⁇ 0.150, and 0.75 ⁇ [Y] / [Z] ⁇ 2.25, most preferably 0.003. ⁇ [X] / [S] ⁇ 0.150 and 0. ⁇ 5 ⁇ [Y] / [Z] ⁇ 2.00.
  • colloidal silica is not used in the organosiloxane resin composition, scratch resistance and the like may be insufficient even in the range of the silicon nuclear magnetic resonance spectrum of the present invention.
  • the mixing ratio of the components (a) and (b) depends on the stability of the organosiloxane resin composition, the transparency of the obtained cured film, the abrasion resistance, the abrasion resistance, the adhesion, and the occurrence of cracks.
  • component (a) and component (b) When the total of component (a) and component (b) is 100% by weight, the preferred mixing ratio of these two components is 10 to 60% by weight for component (a) and component (b) ) Is 40 to 90% by weight in terms of Q ⁇ Q ⁇ S i O ( 4 — m — n ) / 2 , preferably component (a) is 10 to 40% by weight, and component (b) is Q ⁇ Q ⁇ in terms of S i O (4 _ m _ n) / 2 from 60 to 90 wt%.
  • the pH of the organosiloxane resin composition is adjusted to 3.0 to 6.0, preferably 4.0 to 5.5 by adjusting the contents of the acid and the curing catalyst. Thereby, gelation of the organosiloxane resin composition at normal temperature can be prevented, and storage stability can be increased.
  • the organosiloxane resin composition usually becomes a stable composition when further aged for several hours to several days.
  • the organosiloxane resin composition further comprises, as component (e): An acrylic copolymer having 50 to 90 mol% or more of the following formula (A-1)
  • R 1 is a methyl group or an ethyl group
  • A-4 10 to 50 mol% of the following formula (A-4)
  • R 2 is an alkylene group having 2 to 5 carbon atoms.
  • the organosiloxane resin composition of the present invention may be blended with a known leveling agent for the purpose of improving coatability and smoothness of a coating film obtained.
  • the compounding amount is preferably in the range of 0.01 to 2 parts by weight based on 100 parts by weight of the organosiloxane resin composition.
  • an ultraviolet absorber, a dye, a pigment, a filler, and the like may be added within a range that does not impair the object of the present invention.
  • the organosiloxane resin composition prepared in this manner can be applied to a transparent resin molded body such as a polycarbonate resin.
  • a transparent resin molded body such as a polycarbonate resin.
  • it can be preferably applied to a molded article in which an acryl resin layer is formed as a primer layer on a polycarbonate resin.
  • the obtained laminate was evaluated by the following method. Parts and% in the examples mean parts by weight and% by weight.
  • Paint storage stability After storing the acryl resin composition at 23 ° C for 3 months, the condition of the paint was visually evaluated. In addition, those in which no gelation of the paint was observed were evaluated as good.
  • Adhesion Make 100 grids at lmm intervals on the coat layer with a cutter knife, apply Nichiban adhesive tape (product name "Cellotape”), and peel it off strongly on the substrate. The evaluation was based on the number of crosses remaining (based on JIS K5400).
  • Abrasion resistance In accordance with JISK 6735, a taper abrasion test was performed using a Calibrase CS_10F abrasion wheel on one side of the double-sided coating layer at a load of 500 g for 1000 rotations. The difference ⁇ between the haze after the Taber abrasion test and the haze before the Taber abrasion test was measured and evaluated. However, the wear wheel was refurbished at 25 revolutions using abrasive paper S-11 instead of abrasive paper A A-400.
  • Hot water resistance The test piece was immersed in boiling water for 3 hours and 10 hours, and the appearance change and adhesion of the coat layer were evaluated.
  • the cycle of leaving for 1 hour in the H environment was defined as one cycle, and after repeating such a cycle 20 times, the test piece was taken out and the appearance and adhesion were evaluated.
  • MMA methyl methacrylate
  • HEMA 2-hydroxyethyl methacrylate
  • AIBN azobisisobutyronitrile
  • the obtained reaction solution was added to n-hexane and purified by reprecipitation to obtain 81 parts of a copolymer (acrylic resin (1)) of MMAZHEMA having a composition ratio of 90 to 10 (molar ratio).
  • the hydroxyl value of the copolymer was 54.3 mgKOH / g, and the weight average molecular weight was 180,000 in terms of polystyrene from the measurement of GPC (column: Shod GPCA-804, eluent: THF).
  • Reference Example 2 Synthesis of acrylic resin (II))
  • Ethyl methacrylate (hereinafter abbreviated as EMA) 102. 7 parts, HEMA 13 parts, AIBN 0.18 parts, except that a copolymer having an EMA / HEMA composition ratio of 90/10 (molar ratio) was prepared in the same manner as in Reference Example 1.
  • Acrylic resin (II 1)) 98 parts was obtained.
  • the hydroxyl value of the copolymer was 48.7 mgK ⁇ H / g, and the weight average molecular weight was 90,000 in terms of polystyrene.
  • Reference Example 4 Synthesis of acrylic resin (IV))
  • MEBT 2- (2,1-hydroxy-5,1-methacryloxyshethylphenyl) benzotriazole
  • Table 1 shows the monomer compositions of the acrylic resins (I) to (V).
  • Example 1 Preparation of acryl resin composition
  • the acrylic resin (I) 10.0 parts and 2- (2'-hydroxy-5'-t-octylphenyl) benzotriazole 2.88 parts were converted to 33 parts of methyl isobutyl ketone, 13 parts of methyl ethyl ketone and 13 parts of 2-butane.
  • the acrylic resin (I) in a mixed solvent consisting of 26 parts of ethanol. 4.39 parts of Takenet XB-72-H6 (precursor of Mitsui Takeda Chemical Co., Ltd., a polyisocyanate compound) is added so that the isocyanate group becomes 1.0 equivalent to the amount, and then dibutyltin is added. 0.0003 parts of dilaurate was added and stirred at 25 ° C. for 30 minutes to prepare an acryl resin composition (i-11).
  • the acrylic resin (V) 10.0 parts and 2- (2'-hydroxy-5'-t-octylphenyl) benzotriazole 1.88 parts were converted from methyl isobutyl ketone 42 parts and 2-butanol 28.
  • the acrylic resin (V) and 2.50 parts of VEST AN AT B 1358/100 so that the isocyanate group is 1.0 equivalent to 1 equivalent of the hydroxy group of the acrylic resin (V).
  • 0.005 parts of dibutyltin dilaurate was added, and the mixture was stirred at 25 ° C. for 30 minutes to prepare an acrylic resin composition (i-8).
  • the acrylic resin (I) consists of 10.0 parts and 2_ (2'-hydroxy-5,1-t-octylphenyl) benzotriazole 2.52 parts consisting of 46 parts of methylisobutyl ketone and 23 parts of 2-butanol. Dissolve in a mixed solvent, and add 2.66 parts of VESTANAT B 1358/100 to this solution such that the isocyanate group is 0.8 equivalent to 1 equivalent of the hydroxy group of the acrylic resin (I). Tinyl laurate (0.001 part) was added and stirred at 25 ° C. for 30 minutes to prepare an acrylic resin composition (i-19).
  • Acrylic resin (I) 10.0 parts and 2_ (2'-hydroxy-5'-t octylphenyl) benzotriazole 2.80 parts mixed with 50 parts of methyl isobutyl ketone and 25 parts of 2-butanol The resin was dissolved in a solvent, and 3.99 parts of VESTANAT B 1358/100 was added to the solution so that the isocyanate group was 1.2 equivalents to 1 equivalent of the hydroxy group of the acrylic resin (I). Hydroxyethyl tri-n-butylammonium 2,2-dimethylpropionate (hereinafter abbreviated as HEBAP) Add 0.01 part, stir at 25 ° C for 30 minutes, and prepare acrylic resin composition (I_ll) was prepared.
  • Table 2 shows the compositions of the acrylic essence compositions (i_l) to (i-13).
  • Example 2 Preparation of organosiloxane resin composition
  • organosiloxane resin composition (ii-18) 3 parts of the acryl resin (III) were dissolved in 432 parts of the organosiloxane resin composition (ii-5) to prepare an organosiloxane resin composition (ii-18).
  • Acrylic resin composition U-1) is applied to both sides of a 5 mm thick PC resin sheet by dip coating so that the film thickness after thermosetting becomes 4.0 m. After the placement, it was thermally cured at 130 ° C. for 1 hour. Next, the organosiloxane resin composition (ii-11) was applied on the surface of the sheet by a dip coating method so that the film thickness after thermal curing became 5.O nm, and was applied at 25 ° C for 20 minutes. After standing still for 1 minute, it was heat-cured at 120 for 1 hour. Table 5 shows the evaluation results of the obtained laminate 1.
  • Takenate Takenet: Polyisocyanate compound precursor, Takenate XB—72—H6 manufactured by Mitsui Takeda Chemical Co., Ltd.
  • Duranate Polyurethane compound precursor, Duranate MF 20-B manufactured by Asahi Kasei Kogyo Co., Ltd.
  • VES TANAT polyisosinate compound precursor manufactured by Degussa Japan, VESTANAT B 1358/100
  • UV-1 2- (2, -Hydroxy-5, t-butyl benzoyl) benzotriazole
  • SN30 A water-dispersed colloidal silica dispersion (solid concentration 30% by weight, average particle diameter 10 nm, manufactured by Catalysis Kagaku Co., Ltd.), and the weight part of trialkoxysilane is RS i ⁇ 3 / 2, and the weight part of tetraalkoxysilane is Si ⁇ . The value converted to is shown.
  • Adhesion degree of yellowing Adhesion degree of yellowing
  • Laminate 18 Mounted on actual car, but good without practically harmful drawbacks.
  • MMA Methyl methacrylate
  • AIBN 2-hydroxyethylmethyl 13 parts of azotoisobutyronitrile
  • Acrylic resin (G-1) 8. 9 parts and 2- (2'-hydroxy_5, -t-octylphenyl) benzotriazole 1.5 parts were used for 20 parts of methylethylketone, 30 parts of methylisobutylketone and Dissolve in a mixed solvent consisting of 30 parts of 2-propanol, and further add hexanemethylenediene to this solution so that the isocyanate group is 1.5 equivalent to 1 equivalent of the hydroxy group of the acrylic resin (G-1).
  • C. Soynet 1.1 part was added and stirred at 25.degree. C. for 5 minutes to prepare an acrylic resin composition (g-1).
  • Preparation of organosiloxane resin composition (h-1) Preparation of organosiloxane resin composition (h-1)
  • the organosiloxane resin composition (h-1) was used under the conditions of an observation frequency of 79 MHz, an observation pulse of 6.0 S, a repetition time of 30 seconds, and a broad Ninda factor of 5 Hz using heavy water (D 2 O) as a measurement solvent.
  • Silicon nuclear magnetic resonance spectrum (29S i -NMR) was measured.
  • silicon nuclear magnetic resonance spectra (29 Si-NMR) of each coating agent were measured under the same conditions.
  • the chemical shift of silicon atoms in the organosiloxane resin composition converts the silicon atoms in tetramethylsilane.
  • the integrated value of all peaks in the range of 16.5 ppm to 17.0 ppm as Oppm is [S], and peaks in the range of 16.5 ppm to 48.5 ppm are included in the peak integrated value.
  • the integrated value is [X], the peak integrated value in the range from -52.5 ppm to -61.
  • Oppm is [Y], and the peak integrated value in the range from -61.
  • Acrylic resin composition (g-1) was applied in advance on both sides with a dip coat to a cured film thickness of 4 m, and heat-cured at 120 ° C for 1 hour to form a transparent 2 mm thick polycarbonate sheet.
  • the organosiloxane resin composition (h-1) was applied on both sides by dip coating so as to have a cured film thickness of 5 m, and thermally cured at 120 ° C. for 1 hour to obtain a laminate 19.
  • Table 6 shows the results of the evaluation of the laminate 19.
  • Acrylic resin composition (g-1) was previously applied to both sides with a dip coat so that the cured film thickness was 4 m.
  • 1201 Heat-cured for 1 hour into a transparent 2 mm thick poly-polypropylene sheet. Apply the organosiloxane resin composition (h-2) to a cured film thickness of 5 m. As described above, both sides were applied by dip coating, and heat-cured at 120 ° C. for 1 hour to obtain a laminate 20 having a coat layer. Table 6 shows the results of evaluating the obtained laminate 20.
  • a composition for the first layer having a known concentration (c Q : unit g / cm 3 ) of the compound having an ultraviolet absorbing ability described above was used as a transparent polycarbonate manufactured by Teijin Chemicals Ltd.
  • Resin plate (PC-1151: no UV absorber added) Apply 5.0 mm by dip coating to the thickness described in each example, and leave it at room temperature for 20 minutes at room temperature to absorb 380 nm (1 Measured (measurement before curing).
  • the measurement values of I i and I 2 are compensated by separately measuring the 380 nm absorbance of P C-1 151 alone.
  • Adhesion Make 100 grids at lmm intervals with a cutter knife on one side of the double-sided coating layer, and pressure-bond Nichiban adhesive tape (product name "Cellotape"), and peel off vertically strongly on the substrate. The evaluation was based on the number of grids remaining in the test (based on JIS K5400).
  • Ethyl methacrylate 91.3 parts, HEMA 19.5 parts, 2- (2'-hydroxy-1-5, -methacryloxyshetyl phenyl) in a nitrogen-purged flask equipped with a reflux condenser and a stirrer.
  • Benzotriazole hereinafter abbreviated as MEBT. Absorbance at a wavelength of 300 nm, measured at a light path length of 1.0 cm, with a concentration of 1 OmgZL, 0.43) 16.2 parts, AI B NO. 25 parts, 100 parts of methyl isobutyl ketone and 50 parts of 2-butanol were added, mixed and dissolved.
  • Acrylic resin (J-1) 8.9 parts and 2- (2'-hydroxy-5'-t-octylphenyl) benzotriazole (1 OmgZL concentration in a mouth-form solution, measured with an optical path length of 1.0 cm) was dissolved in a mixed solvent consisting of 20 parts of methyl ethyl ketone, 30 parts of methyl isobutyl ketone and 30 parts of 2-propanol. And 1.1 parts of hexamethylene diisocyanate so that the isocyanate group is 1.5 equivalents to 1 equivalent of the hydroxy group of the acrylic resin (J-1), and the mixture is added at 25 ° C. The mixture was stirred for 5 minutes to obtain an acryl resin composition (j-1).
  • This acrylic resin composition (j-1) was coated on a PC-151 having a thickness of 5 mm by a dip method, allowed to stand at 25 ° C for 20 minutes, and then cured by heating at 130 ° C for 1 hour. At this time, the first layer has a film thickness of 3.2 and the remaining 2— (2′-hydroxy) in the film.
  • One 5 '- t-old Kuchirufueniru) benzotriazole Ichiru concentration was 0. 20 gZcm 3.
  • the organosiloxane resin composition (t-1) was coated by a dip coating method, allowed to stand at 25 for 20 minutes, and then thermoset at 120 at 1 hour.
  • the thickness of the second layer was 5.1 xm.
  • Table 7 shows the evaluation results of the obtained laminate 21.
  • is the absorbance of a compound having an ultraviolet absorbing ability at a wavelength of 300 nm, which was measured at a light-path length of 1.0 cm with a 10 mg / L concentration of a black-mouthed form solution.
  • Example 10 production of laminate 22
  • Example 9 The compound having an added ultraviolet absorbing group of Example 9 was replaced with 2- (2-hydroxy-
  • the acrylic resin composition (j-12) was coated on a PC-1151 having a thickness of 5 mm by a dip method, allowed to stand at 25 ° C for 20 minutes, and then heat-cured at 130 ° C for 1 hour. At this time, the first layer had a film thickness of 7.2 m, and the concentration of 2- (2'-hydroxy-1 5'-t-octylphenyl) benzotriazole in the film was 0.40 g / cm 3 . .
  • organosiloxane resin composition (t-11) was coated by a dip coating method, allowed to stand at 25 ° C. for 20 minutes, and thermally cured at 120 ° C. for 1 hour.
  • the thickness of the second layer was 5.1.
  • Table 7 shows the evaluation results of the obtained laminate 22.
  • Example 11 production of laminate 23
  • Example 9 The compound having an added ultraviolet absorbing group of Example 9 was replaced with 3.0 parts of 2- (2′-hydroxy-5,1-tert-octylphenyl) benzotriazole and 2_ (2H-benzotriazolyl-2-yl) 1-4 , 6-bis (1-methyl-11-phenylene) phenol (concentration of 1 OmgZL in form-mouth solution, measured with an optical path length of 1 Ocm)
  • the acrylic resin composition (j-3) had the same composition as that of Example 9 except that the absorbance at a wavelength of 30 Onm was 0.38).
  • the acryl resin composition was coated on a PC-1151 having a thickness of 5 mm by a dip method, allowed to stand at 25 ° C for 20 minutes, and then heat-cured at 130 ° C for 1 hour.
  • the first layer had a film thickness of 2.3 m
  • the concentration of 2- (2-hydroxy-1,5, -t-octylphenyl) benzotriazole remaining in the film was 0.13 g / cm 3
  • the 2- (2H-benzotriazole-2-yl) -1,4-bis (1-methyl-1-phenylphenyl) phenol concentration was 0.16 gZcm 3 .
  • organosiloxane resin composition (t-1) was coated by a dip coating method, allowed to stand at 25 ° C. for 20 minutes, and then subjected to thermosetting at 120 ° C. for 1 hour.
  • the thickness of the second layer was 4.9 / im.
  • Table 7 shows the evaluation results of the obtained laminate 23.
  • Example 12 production of laminate 24
  • This acrylic resin composition (j-4) was coated on a PC-5151 having a thickness of 5 mm by a dip method, allowed to stand at 25 for 20 minutes, and then heat-cured at 130 ° C for 1 hour. At this time, the first layer had a thickness of 6.0 m and a concentration of 0.1 g / cm corresponding to the 2_ (2'-hydroxy-5'-methacryloxyshethylphenyl) benzotriazole remaining in the film.
  • the first layer had a thickness of 6.0 m and a concentration of 0.1 g / cm corresponding to the 2_ (2'-hydroxy-5'-methacryloxyshethylphenyl) benzotriazole remaining in the film.
  • organosiloxane resin composition (t-1) was coated by a dip coating method, allowed to stand at 25 ° C for 20 minutes, and thermally cured at 120 for 1 hour. No. 2 The layer thickness was 4.9 m. Table 7 shows the evaluation results of the obtained laminate 24.
  • Example 13 (Production of laminate 25)
  • This acrylic resin composition (j-15) was coated on a PC-5151 having a thickness of 5 mm by a dip method, allowed to stand at 25 ° C for 20 minutes, and then heat-cured at 130 for 1 hour. At this time, the first layer had a thickness of 3.5 m, and the concentration corresponding to the remaining 2- (2'-hydroxy-1 5'-methylacryloxyshethylphenyl) benzotriazole in the film was 0. llg cm 3 , The concentration of 2- (2′-hydroxy-15,1t-octylphenyl) benzotriazole was 0.13 g / cm 3 .
  • organosiloxane resin composition (t-1) was coated by a dip coating method, allowed to stand at 25: for 20 minutes, and thermally cured at 120 ° C for 1 hour.
  • the thickness of the second layer was 4.2 m. Table 7 shows the evaluation results of the obtained laminate 25.
  • Example 9 Laminate 21 3.2 0.20 0.64 ⁇ 100 3.2 ⁇ 1.1 ⁇ 2.0
  • Example 10 Laminate Body 22 7.2 0.40 2.88 ⁇ 100 4.2 ⁇ 0.8 ⁇ 1.5
  • VESTANAT B1358 / 100 Block isocyanate manufactured by Dedasa Japan
  • Acrylic resin composition (s-1) is applied to both sides of a 5 mm thick PC resin sheet by dip coating so that the film thickness after thermosetting is 4.0 m, and is applied at 25 ° C for 20 minutes. After standing, it was thermally cured at 130 ° C for 1 hour. Then, the organosiloxane resin composition (ii-1) was applied on the surface of the sheet by a dip coating method so that the film thickness after thermosetting was 5.0 zm, and was applied at 25 ° C for 20 minutes. After standing, it was thermally cured at 120 ° C for 1 hour. Table 9 shows the evaluation results of the obtained laminated body 26. The evaluation was performed in the same manner as in Example 4. '' Example 15
  • the acrylic resin composition (s-4) was applied to both sides of a 5 mm thick PC resin sheet by dip coating so that the film thickness after thermosetting was 4.0 m. After standing for one minute, the mixture was thermally cured at 130 ° C for 1 hour. Next, the organosiloxane resin composition (ii-14) was applied on the surface of the coating of the sheet by a dip coating method so that the film thickness after thermosetting became 5. Oum, and was allowed to stand at 25 ° C for 20 minutes. Thereafter, heat curing was performed at 120 ° C for 1 hour. Table 9 shows the evaluation results of the obtained laminated body 27. The evaluation was performed in the same manner as in Example 4.
  • a laminate having good appearance, adhesion, scratch resistance, abrasion resistance, hot water resistance, high level of weather resistance, and excellent durability against environmental changes and high temperature environments. Provided.
  • an acryl resin composition and an organosiloxane resin composition having excellent storage stability which can be used for producing the laminate.
  • the laminate of the present invention can be suitably used for automobile window glasses and sunroofs by utilizing its transparency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本発明は、外観、密着性、耐擦傷性、耐摩耗性、耐熱水性が良好で、高いレベルの耐候性を有し、耐久性に優れた積層体および該積層体の製造に用いることのできる貯蔵安定性に優れたアクリル樹脂組成物、オルガノシロキサン樹脂組成物を提供することを目的とする。本発明は、ポリカーボネート基材、第1層および第2層からなり、ポリカーボネート基材の表面に第1層が形成され、第1層の表面に第2層が形成されてなる積層体であって、第1層は、架橋したアクリル共重合体および紫外線吸収剤からなり、第2層は、架橋したオルガノシロキサン重合体からなり、該架橋したアクリル共重合体は、特定の繰り返し単位により構成され、ウレタン結合を特定の割合で含有する共重合体であり、該オルガノシロキサン重合体は、コロイダルシリカ、アルコキシシランから形成される特定の構造を有する重合体であることを特徴とする。

Description

明 細 ァクリル樹脂組成物、 オルガノシロキサン樹脂組成物およびそれからなる積層体 技術分野
本発明は、 ポリカーボネート基材、 第 1層および第 2層からなる積層体に関す る。 さらに詳しくは、 本発明は、 ポリカーボネート基材、 第 1層および第 2層か らなる積層体であって、 第 1層は架橋したアクリル共重合体であり、 第 2層はォ ルガノシロキサン重合体である耐候性、 耐摩耗性、 耐久性に優れた積層体に関す る。 また本発明は、 該積層体の第 1層に用いられるアクリル樹脂組成物および第 2層に用いられるオルガノシロキサン樹脂組成物に関する。 背景技術
ポリ力一ポネート樹脂は、 耐衝撃性、 透明性、 軽量性、 加工性等の特徴を生か して、 多方面の用途で使用されている。 特に、 その透明性を生かしてガラスの代 替として利用されている。 しかし、 ポリカーボネート樹脂は耐候性が十分ではな く、 長期の屋外の使用において分解 '劣化するため物性、 外観が損われることが 知られている。 またポリカーボネート樹脂は耐摩耗性も乏しく表面が傷つきやす く、 また溶剤に侵されやすい等の欠点を有している。
近年、 ポリカーボネートの軽量性、 安全性を活かして窓ガラス、 殊に自動車の 窓ガラスに有機ガラスとして適用しょうとする動きがある。 このような用途にポ リカーボネートシートを適用する場合、 ガラス並の高度な耐候性が要求される。 また、 前面ガラスではワイパー作動時のすり傷発生を防止する必要があり、 サ ィドウインドーではウィンド一昇降時のすり傷発生を防止する必要があり、 高い レベルの耐摩耗性が要求される。
さらに、 サンルーフは真夏の炎天下ではかなりの高温になることが予想され、 この用途に使用されるポリカーボネート成形体は、 環境の変ィ匕および高温環境下 においてより強い耐久性が要求されている。 これらの欠点を改良する目的で、 従来からポリカーボネ一ト基材表面に熱硬化 型アクリル樹脂層を設け、 さらにその上にシロキサン系の硬ィ匕被膜を被覆し、 耐 候性、 耐久性、 耐摩耗性を改良した積層体に関する数多くの提案がなされてきて いる。
例えば、 本発明者らは、 熱硬化型アクリル樹脂層に特定構造の紫外線吸収剤を 添加することで耐候性を改良することを提案した (特許文献 1参照)。 しかし、 屋外での長期の使用に耐えうる十分な耐候性が得られていない。
また、 環境の変ィ匕に対する耐久性を改善する提案がなされている (特許文献 2 参照)。 しかし、 塗料の貯蔵安定性が低いため貯蔵中や使用中に塗料の増粘が生 じ安定して使用することができないという欠点がある。 またイソシァネ一ト基の 反応性が高いため加熱硬化時に副反応が起こりやすく安定した塗膜物性を有する 成形体が得られないという欠点もある。
一方で、 耐摩耗性の改良を目的として、 トリヒドロキシシラン部分縮合物とコ ロイダルシリカからなるコーティング用組成物が提案されている (特許文献 3お よび 4参照)。 また、 アルキルトリアルコキシシランとテトラアルコキシシラン との部分縮合物を主成分とするコーティング用組成物が提案されている (特許文 献 5および 6参照)。 にコロイド状シリカを添加したコ一ティング用組成物が提案されている (特許文 献 7および 8参照)。
しかしながら、 これらのコーティング用組成物から得られる硬化被膜をポリ力 —ポネート基材に積層した積層体は、 ある程度の優れた耐摩耗性を有するが、 環 境変ィ匕および高温環境下での耐久性が十分ではない。
また前記積層体は、 ボリカーボネート基材とオルガノシロキサン樹脂を熱硬化 してなる層の熱膨張率の違いにより、 高温環境下で、 オルガノシロキサン樹脂を 熱硬化してなる層が引張られコート層にクラックが生じる場合がある。
(特許文献 1 ) 特開 2 0 0 0 - 3 1 8 1 0 6号公報
(特許文献 2 ) 特開昭 6 2 - 1 6 9 8 3 2号公報 (特許文献 3 ) 特開昭 5 1 - 2 7 3 6号公報
(特許文献 4) 特開昭 5 5— 9 4 9 7 1号公報
(特許文献 5 ) 特開昭 4 8 - 2 6 8 2 2号公報
(特許文献 6 ) 特開昭 5 1 - 3 3 1 2 8号公報
(特許文献 7 ) 特開昭 6 3 - 2 7 8 9 7 9号公報
(特許文献 8 ) 特開平 1 _ 3 0 6 4 7 6号公報
本発明は、 耐候性、 耐久性、 耐摩耗性、 耐熱水性に優れたポリカーボネートを 基材とする積層体を提供することを目的とする。
また、 本発明は、 ポリ力一ポネ一ト基材上に積層するための貯蔵安定性に優れ た、 アクリル樹脂組成物、 オルガノシロキサン棚旨組成物を提供することを目的 とする。
本発明者らは、 この目的を達成するために鋭意研究を重ねた結果、 ポリカーボ ネート基材表面に特定組成の熱硬ィ匕型アクリル榭脂を主とする第 1層とコロイダ ルシリカ、 トリアルコキシシラン加水分解縮合物を含有してなるオルガノシロキ サン樹脂を熱硬化してなる第 2層を第 1層から順次積層することにより、 高いレ ベルの耐候性、 耐摩耗性を付与し、 かつ環境の変化や高温環境下での十分な耐久 性をも併せ持つ硬化被膜で表面を保護された積層成形体が得られることを見出し、 本発明に到達した。 発明の開示
すなわち本発明の第 1の態様は、 ポリ力一ポネート基材、 第 1層および第 2層 からなり、 ポリカーボネー卜基材の表面に第 1層が形成され、 第 1層の表面に第 2層が形成されてなる積層体であって、
第 1層は、 架橋したアクリル共重合体および紫外線吸収剤からなり、 第 2層は、 架橋したオルガノシロキサン重合体からなり、
該架橋したアクリル共重合体は、 5 0モル%以上の下記式 (A— 1 ) CH,
Figure imgf000005_0001
COOR1
(式中 R1はメチル基またはェチル基である。)
で表される繰り返し単位、
5〜30モル%の下記式 (A— 2)
Figure imgf000005_0002
(式中 R2は炭素数 2〜5のアルキレン基である。 式 (A— 2) で表される繰り 返し単位において少なくとも一部の Raは単結合であり、 残りが水素原子である t R aが単結合の場合はウレタン結合を介して、 他の式 (A— 2) で表される繰り 返し単位と結合している。)
で表される繰り返し単位、 および
0〜30モル%の下記式 (A— 3)
Y
Figure imgf000005_0003
(但し、 式中 Yは水素原子またはメチル基であり、 R 3は水素原子、 炭素数 2〜 5のアルキル基、 紫外線吸収残基からなる群より選ばれる少なくとも一種の基で ある。 但し、 Yがメチル基であり、 かつ R 3がメチル基またはェチル基である場 合を除く。) で表される繰り返し単位からなり、 ウレタン結合と、 式 (A— 1) 〜 (A— 3) で表される繰り返し単位の合計量とのモル比が 4Z100〜30/ 100の範囲にある架橋したアクリル共重合体であり、
該架橋したオルガノシロキサン重合体は、 下記式 (b— 4) 〜 (b— 6) Q1Si-(-0— )- (b-4)
3
Q1Q2Si+0+ (b-5)
2
Si - o^— (b-6)
4
(式中、 Q Q2は、 それぞれ炭素数 1〜4のアルキル基、 ビニル基、 または メタクリロキシ基、 アミノ基、 グリシドキシ基および 3, 4—エポキシシクロへ キシル基からなる群より選ばれる少なくとも一種の基で置換された炭素数 1〜3 のアルキル基である。)
で表される繰り返し単位からなり、 各繰り返し単位のモル比 {(b_4) Z (b — 5) / (b-6)} が、 80〜; L O O/0〜 20/0〜 20である架橋したォ ルガノシロキサン重合体である、 前記積層体である。
該架橋したアクリル共重合体は、 70〜95モル%の式 (A— 1) で表される 繰り返し単位、 および 5〜30モル%の式 (A— 2) で表される繰り返し単位か らなる架橋したアクリル共重合体であることが好ましい。
該架橋したアクリル共重合体は、 式 (A— 1) の R1がェチル基、 かつ式 (A -2) の R 2がエチレン基であることが好ましい。
ポリ力一ポネ一ト基材の厚さが 1〜10mm、 第 1層の厚さが 1〜12 zm、 第 2層の厚さが 2〜10 mであることが好ましい。
第 1層は、 濃度 1 Omg/Lのクロ口ホルム溶液、 光路長 1. 0cmで測定し た、 波長 300 nmにおける吸光度が 0. 25以上である紫外線吸収剤を含有し、 下 式 ( i ) 〜 ( i i i )
2≤d≤8 (i)
0. l≤c≤0. 5 (i i)
0. 6≤dX c≤3 ( i i i)
(伹し、 式中 dは mで表された第 1層の厚さであり、 cは第 1層中の gZcm 3で表された紫外線吸収剤の濃度である) を満足することが好ましい。
また本発明の第 2の態様は、 ポリカーボネート基材、 第 1層および第 2層から なり、 ポリカーボネート基材の表面に第 1層が形成され、 第 1層の表面に第 2層 が形成されてなる積層体であって、
第 1層は、 成分 (A) 〜 (E) を含有するアクリル樹脂組成物をポリカーポネ 一ト基材の表面に積層した後、 硬化した層であって、 第 2層は、 成分 (a ) 〜
( d ) を含有するオルガノシロキサン樹脂組成物を第 1層の表面に積層した後、 硬化した層であって、
成分 (A) は、 アクリル共重合体であって、 5 0モル%以上の下記式 (A— 1 )
Figure imgf000007_0001
COOR1
(式中 R 1はメチル基またはェチル基である。)
で表される繰り返し単位、
5〜3 0モル%の下記式 (A— 4 )
Figure imgf000007_0002
COO― R2— OH
(式中 R 2は炭素数 2〜 5のアルキレン基である。)
で表される繰り返し単位、 および
0〜3 0モル%の下記式 (A- 3 )
Y
Figure imgf000007_0003
(式中 Yは水素原子またはメチル基であり、 R3は水素原子、 炭素数 2〜5のァ ルキル基、 紫外線吸収残基からなる群より選ばれる少なくとも一種の基である。 伹し、 Υがメチル基であり、 かつ R3がメチル基またはェチル基である場合を除 く。)
で表される繰り返し単位からなるァクリル共重合体、
成分 (Β) は、 イソシァネート基の含有量が成分 (Α) のヒドロキシ基 1当量 に対して 7〜 5当量である、 ポリイソシァネート化合物および/またはプロ ック化されたポリィソシァネート化合物、
成分 (C) は、 成分 (Α) および成分 (Β) の合計 100重量部に対して 0〜 0. 4重量部の硬化触媒、
成分 (D) は、 成分 (Α) および成分 (Β) の合計 100重量部に対して 10 〜 50重量部の紫外線吸収剤、
成分 (Ε) は、 成分 (Α) および成分 (Β) の合計 100重量部に対して 0〜 5重量部のシランカップリング剤であり、
成分 (a) は、 コロイダルシリカ、
成分 (b) は、 下記式 (b— 1) 〜 (b— 3)
QXS i (OQ3) 3 (b - 1)
Q^'S i (OQ3) 2 (b-2)
S i (OQ3) 4 (b - 3)
(式中、 Q1 Q 2はそれぞれ、 炭素数 1〜4のアルキル基、 ビニル基、 または メ夕クリロキシ基、 アミノ基、 グリシドキシ基および 3, 4 _エポキシシクロへ キシル基からなる群より選ばれる少なくとも一種の基で置換された炭素数 1〜 3 のアルキル基であり、 Q 3は炭素数 1〜 4のアルキル基である。)
で表されるアルコキシシランから形成され、
各成分のモル比 b— 1) / (b-2) / (b— 3)} が、 80〜: L 00/0 〜20Z0〜20である、 アルコキシシランの加水分解物および/またはそれら の縮合物、
成分 (c) は硬化触媒、 成分 (d) は溶媒であり、
成分 ) 由来の S iと成分 (b) 由来の S iとのモル比 (S i a/S i b) が 2 8〜4 6である、
前記積層体である。
成分 (B) は、 ブロック化されたポリイソシァネート化合物であることが好ま しい。
成分 (C) は、 下記式
Rx mSn (OCORy) 4一 m
(式中、 Rxは同一または異なっていてもよく炭素数 1〜8の炭化水素基、 Ry は同一または異なっていてもよく炭素数 1〜17の置換または非置換の炭化水素 基であり、 mは 0〜3の整数である。)
で表される有機錫化合物であり、 (A) および (B) の合計 100重量部に対し て 0. 01〜0. 4重量部含有することが好ましい。
成分 (A) は、 70〜95モル%の式 (A— 1) で表される繰り返し単位およ び 5〜30モル%の式 (A— 4) で表される繰り返し単位からなるアクリル共重 合体であることが好ましい。
成分 (A) は、 式 (A— 1) の R1がェチル基、 かつ式 (A— 4) の R2がェ チレン基であることが好ましい。
本発明の第 3の態様は、 成分 (A) 〜 (E) を含有するアクリル樹脂組成物で あって、
成分 (A) は、 アクリル共重合体であって、 50モル%以上の下記式 (A— 1)
Figure imgf000009_0001
COOR1
(式中 R1はメチル基またはェチル基である。)
で表される繰り返し単位、 5〜3 0モル%の下記式 (A- 4 )
Figure imgf000010_0001
COO― R2— OH
(式中 R 2は炭素数 2〜 5のアルキレン基である。)
で表される繰り返し単位、 および
0〜3 0モル%の下記式 (A— 3 )
Y
Figure imgf000010_0002
(但し、 式中 Yは水素原子またはメチル基であり、 R 3は水素原子、 炭素数 2〜 5のアルキル基、 紫外線吸収残基からなる群より選ばれる少なくとも一種の基で ある。 但し、 Yがメチル基であり、 かつ; R 3がメチル基またはェチル基である場 合を除く。)
で表される繰り返し単位からなるァクリル共重合体、
成分 (B ) は、 イソシァネート基の含有量が成分 (A) のヒドロキシ基 1当量 に対して 0 . 7〜5当量である、 ポリイソシァネート化合物および Zまたはプロ ック化されたポリイソシァネート化合物、
成分 (C) は、 成分 (A) および成分 (B ) の合計 1 0 0重量部に対して 0〜 0 . 4重量部の硬化触媒、
成分 (D) は、 成分 (A) および成分 (B) の合計 1 0 0重量部に対して 1 0 〜 5 0重量部の紫外線吸収剤、
成分 (E) は、 成分 (A) および成分 (B) の合計 1 0 0重量部に対して 0〜 5重量部のシランカップリング剤、
である前記ァクリル樹脂組成物を包含する。
成分 (B ) は、 ブロック化されたポリイソシァネート化合物であることが好ま しい。
成分 (C) は、 有機錫化合物であり、 (A) および (B) の合計 100重量部 に対して 0. 01〜0. 4重量部含有することが好ましい。
成分 (A) は、 70〜95モル%の式 (A— 1) で表される繰り返し単位およ び 5〜30モル%の式 (A— 4) で表される繰り返し単位からなるアクリル共重 合体であることが好ましい。
成分 (A) は、 式 (A— 1) の R1がェチル基、 かつ式 (A— 4) の R2がェ チレン基であることが好ましい。
成分 (C) は、 下記式
Rx mSn (〇CORy) 4_m
(式中、 Rxは同一または異なっていてもよく炭素数 1〜8の炭化水素基、 Ry は同一または異なっていてもよく炭素数 1〜 17の置換または非置換の炭化水素 基であり、 mは 0〜3の整数である。)
で表される有機錫化合物であることが好ましい。
また本発明の第 4の態様は、 成分 (a) 〜 (d) を含有するオルガノシロキサ ン樹脂組成物であって、
成分 (a) は、 コロイダルシリカ、
成分 (b) は、 下記式 (b— 1) 〜 (b— 3)
Q2S i (OQ3) 3 (b - 1)
i (OQ3) 2 (b-2)
S i (OQ3) 4 (b - 3)
(式中、 Q1 Q2は、 炭素数 1〜4のアルキル基、 ビニル基、 またはメタクリ ロキシ基、 アミノ基、 グリシドキシ基および 3, 4一エポキシシクロへキシル基 力らなる群より選ばれる 1以上の基で置換された炭素数 1〜 3のアルキル基であ り、 Q3は炭素数 1〜4のアルキル基である。)
で表されるアルコキシシランから形成され、 各成分の割合、 (b— 1) / (b— 2) / (b-3) が、 80〜: L 00/0〜20Z0〜20である、 アルコキシシ ランの加水分解物および Zまたはそれらの縮合物であつて、 成分 (c) は硬化触媒、
成分 (d) は溶媒であり、
樹脂組成物中の、 成分 (a) 由来の S iと成分 (b) 由来の S iとのモル比 (S i VS i b) が 2/8〜4/6、
である前記オルガノシロキサン樹脂組成物である。
該オルガノシロキサン樹脂組成物は、 測定溶媒として重水 (D2〇) を用い、 観測周波数 79MHZ、 観測パルス 6. 0 z s、 繰り返し時間 30秒、 ブロード ニングファクター 5 Hzの条件でシリコン核磁気共鳴スペクトル (29S i -NM R) 測定した時、 オルガノシロキサン樹脂組成物のシリコン原子のケミカルシフ 卜が、 テトラメチルシランのシリコン原子を 0 p pmとして、 一46. 5 p pm から一 70. 0 ρ pmの範囲のすべてのピークの積分値を [S]、 該ピーク積分 値中で— 46. 5 ppmから一 48. 5 p pmの範囲のピーク積分値 [X]、 一 52. 5 ppmから一 61. 0 p pmの範囲のピーク積分値を [Y]、 一 61. O ppmから一70. 0 p pmの範囲のピーク値を [Z] と表したとき、 0. 0 02≤ [X] / [S] ≤ . 2であり、 かつ 0. 6≤ [Y] / [Z] ≤3である ことが好ましい。
該オルガノシロキサン樹旨組成物はさらに、 成分 (e) として、
アクリル共重合体であって、 50〜90モル%以上の下記式 (A— 1) .
Figure imgf000012_0001
COOR1
(但し、 式中 R1はメチル基またはェチル基である。) で表される繰り返し単位、 および 10〜50モル%の下記式 (A— 4)
Figure imgf000012_0002
CQO一 R2一 OH (伹し、 式中 R2は炭素数 2〜5のアルキレン基である。)
で表される繰り返し単位からなるァクリル共重合体を、
オルガノシロキサン樹脂組成物 100重量部に対して 0. 1〜 20重量部含有す ることが好ましい。 発明を実施するための最良の形態
<積層体 >
本発明の第 1の態様は、 ポリ力一ポネート基材、 第 1層および第 2層からなり、 ポリカーボネート基材の表面に第 1層が形成され、 第 1層の表面に第 2層が形成 されてなる積層体である。
<ポリカーポネー卜基材>
本発明で使用するポリ力一ポネート基材は、 二価フエノールと力一ポネート前 駆体とを界面重縮合法または溶融法等で反応させて得られるポリ力一ポネ一ト樹 脂からなる。
二価フエノールの代表的な例としては、 2, 2_ビス (4ーヒドロキシフエ二 ル) プロパン (通称ビスフエノール A)、 2, 2 -ビス (3—メチル一4—ヒド ロキシフエニル) プロパン、 2, 2—ビス (3, 5—ジメチル一 4—ヒドロキシ フエニル) プロパン、 1, 1一ビス (4—ヒドロキシフエニル) ェタン、 1, 1 一ビス (4—ヒドロキシフエニル) シクロへキサン、 2, 2—ビス (4—ヒドロ キシフエニル) ブタン、 2, 2—ビス (4ーヒドロキシフエニル) 一3—メチル ブタン、 9, 9一ビス (4ーヒドロキシ _ 3—メチル) フエニルフルオレン、 2, 2—ビス (4ーヒドロキシフエニル) 一3, 3—ジメチルブタン、 2, 2—ビス (4—ヒドロキシフエニル) 一 4ーメチルペンタン、 1, 1一ビス (4—ヒドロ キシフエニル) 一 3, 3, 5—トリメチルシクロへキサンおよび α, α '—ビス (4—ヒドロキシフエニル) 一m—ジイソプロピルベンゼン、 ビス (4—ヒドロ キシフエニル) サルファイド、 ビス (4—ヒドロキシフエニル) スルホン等を挙 げられ、 なかでもビスフエノール Aが好ましい。 これらの二価フエノールは単独 または 2種以上を混合して使用できる。 カーボネート前駆体としてはカルボニルハライド、 カーボネートエステルまた はハロホルメート等が使用され、 具体的にはホスゲン、 ジフエ二ルカーポネート または二価フエノールのジハロホルメート等が挙げられる。
上記二価フエノールとカーボネート前駆体を界面重縮合法または溶融法によつ て反応させてポリ力一ポネート樹脂を製造するに当っては、 必要に応じて触媒、 末端停止剤、 二価フエノールの酸ィ匕防止剤等を使用してもよい。 またポリカーボ ネート樹 J旨は三官能以上の多官能性芳香族化合物を共重合した分岐ポリカーポネ ―ト樹脂であっても、 芳香族または脂肪族の二官能性カルボン酸を共重合したポ リエステル力一ポネート樹脂であってもよく、 また、 得られたポリ力一ポネート 樹脂の 2種以上を混合した混合物であってもよい。
ホスゲンを使用する界面重縮合法は、 酸結合剤および有機溶媒の存在下で反応 させる。 酸結合剤としては例えば水酸化ナトリゥムゃ水酸化力リゥム等のアル力 リ金属水酸ィ匕物またはピリジン等のアミン化合物が用いられ、 溶媒としては例え ば塩化メチレン、 クロ口ベンゼン等のハロゲン化炭ィ匕水素が用いられる。 また反 応促進のために例えば第三級アミンまたは第四級アンモニゥム塩等の触媒を用い ることもできる。 反応温度は通常 0〜 4 0 °Cであり、 反応時間は数分〜 5時間で ある。
また、 ジフエ二ルカ一ボネートを用いる溶融法は、 不活性ガス雰囲気下所定割 合の二価フエノール成分とジフエ二ルカ一ポネートとを加熱しながら攪拌して、 生成するアルコールまたはフエノール類を留出させる方法により行われる。 反応 温度は生成するアルコールまたはフエノール類の沸点等により異なるが、 通常 1 2 0〜3 0 0 °Cの範囲である。 反応はその初期から減圧にして生成するアルコー ルまたはフエノール類を留出させながら完結させる。 また、 反応を促進するため に通常のエステル交換反応用触媒を使用することもできる。
ポリ力一ポネ一ト樹脂の分子量は、 粘度平均分子量 (M) で 1 0 , 0 0 0〜 5 0 , 0 0 0が好ましく、 1 5 , 0 0 0〜3 5, 0 0 0がより好ましい。 かかる粘 度平均分子量を有するポリカーボネート樹脂は、 十分な強度が得られ、 また、 成 形時の溶融流動性も良好であり好ましい。 本発明でいう粘度平均分子量は塩化メ チレン 100mlにポリ力一ポネート樹脂 0. 7 gを 20°Cで溶解した溶液から 求めた比粘度 (7? s p) を次式に揷入して求めたものである。
7? s p/c = ivl +0. 45 X [77] 2 c
[τ?] =1. 23X 10- 4Μ0.83
(但し c = 0. 7、 [77] は極限粘度)
かかるポリカーボネー卜樹脂を製造する際に、 必要に応じて亜燐酸エステル、 燐酸エステル、 ホスホン酸エステル等の安定剤、 テトラブロムビスフエノール A、 テトラブロムビスフエノール Aの低分子量ポリカ一ポネート、 デカブ口モジフエ ノール等の難燃剤、 着色剤、 滑剤等を添加することができる。
ポリ力一ポネート基材は、 ヘーズ値が 10%以下であることが好ましい。 基材 の厚さは、 1〜1 Omm、 好ましくは 2〜8mmである。
<第 1層 >
第 1層は、 架橋したァクリル共重合体および紫外線吸収剤からなる。
かかる架橋したアクリル共重合体は、 50モル%以上の下記式 (A— 1)
Figure imgf000015_0001
COOR1
(式中 R1はメチル基またはェチル基である。)
で表される繰り返し単位、
5〜30モル%の下記式 (A- 2)
Figure imgf000015_0002
COO― R2— OFT
(式中 R2は炭素数 2〜5のアルキレン基である。 式 (A— 2) で表される繰り 返し単位において少なくとも一部の Raは単結合であり、 残りが水素原子である < R aが単結合の場合はウレタン結合を介して、 他の式 (A— 2) で表される繰り 返し単位と結合している。)
で表される繰り返し単位、 および
0〜30モル%の下記式 (A— 3)
Y
Figure imgf000016_0001
(但し、 式中 Yは水素原子またはメチル基であり、 R3は水素原子、 炭素数 2〜 5のアルキル基、 紫外線吸収残基からなる群より選ばれる少なくとも一種の基で ある。 但し、 Yがメチル基であり、 力つ R 3がメチル基またはェチル基である場 合を除く。)
で表される繰り返し単位からなり、 ウレタン結合と、 式 (A— 1) 〜 (A— 3) で表される繰り返し単位の合計量とのモル比が 4/100〜 30/100の範囲 にある架橋したァクリル共重合体である。
式 (A— 1) で表される繰り返し単位に対応するメタクリレ一トモノマ一は、 メチルメタクリレートまたはェチルメ夕クリレートである。
式 (A— 2) で表される繰り返し単位に対応するメタクリレートモノマーは、 具体的には、 2—ヒドロキシェチルメ夕クリレート、 2—ヒドロキシプロピルメ 夕クリレー卜、 3—ヒドロキシプロピルメタクリレート、 4—ヒドロキシブチル メタクリレートが挙げられ、 これらは単独または 2種以上を混合して使用できる。 なかでも 2—ヒドロキシェチルメタクリレー卜が好ましく採用される。
式 (A— 2) で表される繰り返し単位において少なくとも一部の Raは単結合 であり、 残りが水素原子である。 R aが単結合の場合はウレタン結合を介して、 他の式 (A— 2) で表される繰り返し単位と結合している。
すなわち、 式 (A— 2) で表される繰り返し単位はその一部が、 _〇Raの位 置において後述する成分 (B) のイソシァネート基と反応し、 他の式 (A— 2) で表される繰り返し単位と結合し、 架橋構造を形成している。 架橋の程度は、 ゥ レ夕ン結合と、 式 (A— 1) 〜 (A— 3) で表される繰り返し単位の合計量との モル比が 4Z100〜 30/100の範囲にある。 好ましくはかかるモル比が 1 0/100〜20/100の範囲である。
式 (A— 3) で表される繰り返し単位中の R3が炭素数 2〜 5のアルキル基で ある場合の具体例として、 ェチル基、 プロピル基、 ブチル基、 ペンチル基が挙げ られる。
( A— 3 ) で表わされる繰り返し単位中の R 3が単素数 2〜 5のアルキル基の 場合の (メタ) ァクリレートモノマ一として具体的にはメチルァクリレート、 ェ チルァクリレート、 プロピルァクリレート、 ブチルァクリレート、 ペンチルァク リレート、 プロピルメタクリレート、 ブチルメタクリレート、 ペンチルメ夕クリ レートが挙げられ、 これらは単独または 2種以上を混合して使用できる。
また、 (A_ 3) で表される繰り返し単位中の R3が紫外線吸収残基の場合の (メタ) アタリレートモノマ一として、 濃度 1 Omg/Lのクロ口ホルム溶液、 光路長 1. 0 c mで測定した、 波長 300 n mにおける吸光度が 0. 25以上で あるものが挙げられる。
かかるモノマーの具体例として、 2— (2, 一ヒドロキシ一5' —ァクリロキ シェチルフエニル) ベンゾトリアゾール、 2_ (2' —ヒドロキシ— 5, 一ァク リロキシエトキシフエニル) ベンゾトリアゾ一ル、 2— (2' —ヒドロキシー 5, 一ァクリロキシプロピルフエニル) ベンゾトリアゾール、 2— (2, 一ヒド 口キシ— 5 ' 一ァクリロキシプロポキシフエニル) ベンゾトリアゾール、 2一 (2, ーヒドロキシー 5' —ァクリロキシェチルフエニル) _5_クロ口べンゾ トリァゾール、 2— (2' —ヒドロキシ— 3' —ァクリロキシェチル一 5' — t 一ブチルフエニル) ベンゾトリアゾ一ル、 2— (2' —ヒドロキシー 3' —ァク リロキシェチル一5' — t_ブチルフエニル) _ 5—クロ口べンゾトリァゾール、 2—ヒドロキシー 4一 (ァクリロキシエトキシ) ベンゾフエノン、 2—ヒドロキ シ一 4— (ァクリロキシプロボキシ) ベンゾフエノン、 2, 2, —ジヒドロキシ —4一 (ァクリロキシエトキシ) ベンゾフエノン、 2—ヒドロキシ一 4— (ァク リロイルォキシェチル) ベンゾフエノン、 2— (2' —ヒドロキシ一 5' —メタ クリロキシェチルフエニル) ベンゾトリアゾール、 2— (2, —ヒドロキシー 5, 一メ夕クリロキシエトキシフエニル) ベンゾトリアゾール、 2— (2, 一ヒ ドロキシ— 5' —メタクリロキシプロピルフエ二レ) ベンゾトリアゾール、 2— (2' ーヒドロキシ一5' —メタクリロキシプロポキシフエニル) ベンゾトリア ゾール、 2— (2, ーヒドロキシ— 5, ーメタクリロキシェチルフエニル) 一 5 一クロ口べンゾトリアゾ一ル、 2- (2 ' ーヒドロキシー 3' ーメタクリロキシ ェチル _5, 一 t—ブチルフエニル) ベンゾトリアゾール、 2— (2, —ヒドロ キシ— 3, ーメタクリロキシェチル一 5' — t一ブチルフエニル) 一 5—クロ口 ベンゾトリアゾール、 2—ヒドロキシー 4— (メタクリロキシエトキシ) ベンゾ フエノン、 2—ヒドロキシ一 4一 (メタクリロキシプロポキシ) ベンゾフエノン、 2, 2 ' —ジヒドロキシー 4一 (メタクリロキシエトキシ) ベンゾフエノン、 2 ーヒドロキシー 4一 (メタクリロイルォキシェチル) ベンゾフエノン等が挙げら れる。
アクリル共重合体中の式 (A— 1) で示される繰り返し単位の割合は、 50モ ル%以上である、 好ましくは 60モル%以上、 さらに好ましくは 70モル%以上 である。
アクリル共重合体中の (A— 2) で示される繰り返し単位の割合は、 5〜30 モル%である、 好ましくは 8〜20モル%、 さらに好ましくは 10〜20モル% ある。 .
アクリル共重合体中の (A— 3) で示される繰り返し単位の割合は、 0〜30 モル%である。
成分 (A) は、 70〜95モル%の式 (A— 1) で表される繰り返し単位およ び 5〜30モル%の式 (A— 2) で表される繰り返し単位からなるアクリル共重 合体であることが好ましい。
成分 (A) は、 式 (A— 1) の R1がェチル基、 かつ式 (A— 2) の R2がェ チレン基であることが好ましい。
架橋したアクリル共重合体の分子量は、 重量平均分子量で 20, 000以上が 好ましく、 50, 000以上がより好ましく、 また、 重量平均分子量で 1千万以 下のものが好ましく使用される。 力 る分子量範囲の上記アクリル樹脂は、 第 1 層としての密着性や強度などの性能が十分に発揮され好ましい。
第 1層は、 濃度 1 OmgZLのクロ口ホルム溶液、 光路長 1. O cmで測定し た、 波長 30 Onmにおける吸光度が 0. 25以上である紫外線吸収剤を含有し、 下記式 ( i ) 〜 ( i i i )
2≤d≤8 (i)
0. l≤c≤0. 5 ( i i)
0. 6≤dX c≤3 ( i i i)
(伹し、 式中 dは mで表された第 1層の厚さであり、 cは第 1層中の gZcm 3で表された紫外線吸収剤の濃度である)
を満足することが好ましい。
第 1層は、 後述する本発明の第 3の態様であるァクリル樹脂組成物をポリカー ポネ一ト基材上に積層した後、 硬化することにより形成することができる。
第 1層の厚さは、 l〜12 m、 好ましくは 2〜10 mである。
<第 2層 >
第 2層は、 架橋したオルガノシロキサン重合体からなる。
該架橋したオルガノシロキサン重合体は、 下記式 (b— 4) 〜 (b— 6)
Q'Si 0- (b-4)
3
Q1Q2Si+0+ (b-5)
2
Figure imgf000019_0001
(式中、 Q Q2は、 それぞれ炭素数 1〜4のアルキル基、 ビニル基、 または メタクリロキシ基、 アミノ基、 グリシドキシ基および 3, 4—エポキシシクロへ キシル基からなる群より選ばれる少なくとも一種の基で置換された炭素数 1〜 3 のアルキル基である。)
で表される繰り返し単位からなり、 各繰り返し単位のモル比 b— 4) (b-5) / (b-6)} が、 80〜1 00/0〜20Z0〜20である架橋したオルガノシロキサン重合体である。
Q1, Q2のアルキル基として、 メチル基、 ェチル基等が挙げられる。
モル比 Kb— 4) / (b-5) / (b-6)} は、 好ましくは、 85〜100 Z0〜15Z0〜15、 さらに好ましくは、 85-100/0-10/0-10 である。
第 2層は、 後述する本発明の第 4の態様であるオルガノシロキサン樹脂組成物 を第 1層上に積層した後、 硬化することにより形成することができる。
本発明の第 1の態様の積層体および後述する第 2の態様の積層体は、 窓材に適 用することができる。 窓材としては、 自動車用、 住宅用のものが挙げられる。
<第 2の態様 >
本発明の第 2の態様は、 ポリカーボネート基材、 第 1層および第 2層からなり、 ポリ力一ポネー卜基材の表面に第 1層が形成され、 第 1層の表面に第 2層が形成 されてなる積層体であって、
第 1層は、 後述する本発明の第 3の態様であるァクリル樹脂組成物をポリカー ポネ一ト基材の表面に積層した後、 硬ィ匕した層であって、 第 2層は、 後述する本 発明の第 4の態様であるオルガノシロキサン樹脂組成物を第 1層の表面に積層し た後、 硬化した層からなる積層体である。
以下、 アクリル樹脂組成物、 オルガノシロキサン樹脂組成物について説明する。 ぐ第 3の態様:ァクリル樹脂組成物 >
本発明のアクリル樹脂組成物は、 成分 (A) 〜成分 (E) を含有する。 以下、 各成分について説明する。
<成分 (A) :アクリル共重合体 >
(A) のアクリル共重合体は、 下記式 (A— 1)、 (A-4) および (A— 3) で示される繰り返し単位からなる共重合体である。
式 (A— 1) で示される繰り返し単位は以下の構造を有する。
Figure imgf000021_0001
COOR1
(式中 R 1はメチル基またはェチル基である。)
式 (A— 1 ) で表される繰り返し単位に対応するメタクリレートモノマーは、 メチルメタクリレー卜またはェチルメタクリレートである。
式 (A— 4 ) で示される繰り返し単位は以下の構造を有する。
Figure imgf000021_0002
COO― R2― OH
(式中 R 2は炭素数 2〜 5のアルキレン基である。)
炭素数 2〜 5のアルキレン基の具体例として、 エチレン、 プロピレン基が挙げ られる。 式 (A— 4 ) で表される繰り返し単位に対応するメタクリレートモノマ 一は、 具体的には、 2—ヒドロキシェチルメタクリレート、 2—ヒドロキシプロ ピルメタクリレート、 3—ヒドロキシプロピルメタクリレート、 4—ヒドロキシ ブチルメタクリレートが挙げられ、 これらは単独または 2種以上を混合して使用 できる。 なかでも 2—ヒドロキシェチルメ夕クリレートが好ましく採用される。 式 (A— 3 ) で示される繰り返し単位は以下の構造を有する。
Y
Figure imgf000021_0003
(式中 Yは水素原子またはメチル基である。 R 3は水素原子、 炭素数 2〜5のァ ルキル基、 紫外線吸収残基からなる群より選ばれる少なくとも一種の基である。 伹し、 Yがメチル基であり、 かつ R 3がメチル基またはェチル基である場合を除 く。) R3が炭素数 2 ~ 5のアルキル基である塲合の具体例として、 エチレン、 プロ ピレン基が挙げられる。
また、 (A— 3) で表される繰り返し単位中の R3が紫外線吸収残基の場合の (メタ) ァクリレートモノマーとして、 濃度 1 OmgZLのクロ口ホルム溶液、 光路長 1. 0 c mで測定した、 波長 300 nmにおける吸光度が 0. 25以上で あるものが挙げられる。
かかるモノマ一の具体例として、 2— (2, ーヒドロキシー 5' —ァクリロキ シェチルフエニル) ベンゾトリアゾール、 2— (2, ーヒドロキシ一 5' —ァク リロキシエトキシフエニル) ベンゾトリアゾール、 2_ (2' —ヒドロキシ一 5' —ァクリロキシプロピルフエニル) ベンゾトリァゾ一ル、 2— (2, 一ヒド 口キシー 5 ' ーァクリロキシプロポキシフエニル) ベンゾトリアゾ一ル、 2一 (2 ' —ヒドロキシー 5' —ァクリロキシェチルフエ二レ) 一 5—クロ口べンゾ トリァゾール、 2— (2, —ヒドロキシー 3' —ァクリロキシェチルー 5, 一 t 一ブチルフエニル) ベンゾトリアゾール、 2_ (2, 一ヒドロキシー 3, 一ァク リロキシェチル _ 5, 一 t_ブチルフエニル) 一 5—クロ口べンゾトリァゾール、 2—ヒドロキシ一4—ァクリロキシェ卜キシベンゾフエノン、 2—ヒドロキシ一 4ーァクリロキシプロポキシベンゾフエノン、 2, 2 ' ージヒドロキシ一 4—ァ クリロキシエトキシベンゾフエノン、 2—ヒドロキシー 4ーァクリロキシェチル ベンゾフエノン、 2— (2, ーヒドロキシー 5, ーメタクリロキシェチルフエ二 ル) ベンゾトリアゾール、 2— (2' ーヒドロキシー 5' —メ夕クリロキシエト キシフエニル) ベンゾトリアゾール、 2— (2, ーヒドロキシー 5, 一メタクリ ロキシプロピルフエニル) ベンゾトリアゾール、 2 - (2, ーヒドロキシー 5 ' ーメタクリロキシプロポキシフエニル) ベンゾトリアゾール、 2_ (2' ーヒド 口キシー 5, —メタクリロキシェチルフエニル) 一 5—クロ口べンゾ卜リアゾー ル、 2— (2, 一ヒドロキシ一 3, 一メタクリロキシェチル一 5, 一 t—ブチ^/ フエニル) ベンゾトリァゾール、 2— (2, ーヒドロキシー 3, —メタクリロキ シェチルー 5, 一 t一ブチルフエニル) 一 5—クロ口べンゾトリァゾール、 2— ヒドロキシー 4—メタクリ口キシェトキシベンゾフエノン、 2—ヒドロキシー 4 ェノン、 2, 2, ージヒドロキシー 4一
'ェノン、 2—ヒドロキシ一 4—メタクリロキシ ェチルベンゾフエノン等が挙げられる。
式 (A—3 ) で表される繰り返し単位に対応する (メタ) ァクリレートモノマ 一は、 具体的には、 メチルァクリレート、 ェチルァクリレート、 メチルメタクリ レートまたはェチルメタクリレートが挙げられ、 これらは単独または 2種以上を 混合して使用できる。
ァクリル共重合体の分子量は、 重量平均分子量で 2 0 , 0 0 0以上が好ましく、 5 0, 0 0 0以上がより好ましく、 また、 重量平均分子量で 1千万以下のものが 好ましく使用される。 かかる分子量範囲の上記アクリル樹脂は、 第 1層としての 密着性や強度などの性能が十分に発揮され好ましい。
アクリル共重合体中の式 (A— 1 ) で示される繰り返し単位の割合は、 5 0モ ル%以上である、 好ましくは 6 0モル%以上、 さらに好ましくは 7 0モル%以上 である。 アクリル共重合体中の (A— 2 ) で示される繰り返し単位の割合は、 5 〜3 0モル%である、 好ましくは 8〜2 0モル%、 さらに好ましくは 1 0〜2 0 モル%である。 アクリル共重合体中の (A— 3 ) で示される繰り返し単位の割合 は、 0〜3 0モル%である。
成分 (A) は、 7 0〜9 5モル%の式 (A— 1 ) で表される繰り返し単位およ び 5〜3 0モル%の式 (A— 2 ) で表される繰り返し単位からなるアクリル共重 合体であることが好ましい。
成分 (A) は、 式 (A— 1 ) の R 1がェチル基、 かつ式 (A— 2 ) の R 2がェ チレン基であることが好ましい。 く成分 (B):ポリイソシァネート >
成分 (B) は、 イソシァネート基の含有量が成分 (A) のヒドロキシ基 1当量 に対して 0 . 7〜5当量である、 ポリイソシァネート化合物および Zまたはプロ ック化されたポリイソシァネート化合物である。
ポリイソシァネート化合物としてはポリィソシァネート、 ポリイソシァネ一ト と多価アルコールの付加物、 ポリイソシァネ一トと低分子ポリエステル樹脂の付 加物、 ポリイソシァネート同士の環ィ匕重合体、 そしてイソシァネ一ト 'ピュレツ ト体等が挙げられる。
ポリイソシァネートとしてはトリレンジイソシァネート、 4 , 4ージフエニル メタンジイソシァネ一ト、 1 , 5—ナフ夕レンジイソシァネート、 トリフエニル メタントリイソシァネート、 卜リジンジイソシァネ一卜、 キシレンジイソシァネ ダイマー酸ジイソシァネート、 へキサメチレンジイソシァネート、 ジシクロへキ ブロック化されたポリイソシァネート化合物としては、 ポリイソシァネ一ト化 合物のイソシァネ一卜基に、 ァセトォキシム、 メチルェチルケトォキシム等のォ キシム類;マロン酸ジメチル、 マロン酸ジェチル、 ァセト酢酸メチル、 ァセト酢 酸ェチル、 ァセチルアセトン等の活性メチレン化合物;メタノール、 エタノール、
2一プロパノール、 n—ブタノール、 s e cーブタノール、 2—ェチルー 1—へ キサノール等のアルコール類;フエノール、 クレゾ一ル、 ェチルフエノール等の フエノール類に代表されるブロック化剤を付加させ、 熱分解によりポリイソシァ ネート化合物を生成するブロック化されたイソシァネ一ト化合物が挙げられる。 このプロック化されたィソシァネートは熱硬ィ匕反応時に初めてィソシァネート 基が生成するので塗料組成物の貯蔵安定性に優れ、 またイソシァネート基が副反 応に消費されることが少なぐ 塗装環境の影響を受け難く安定した塗膜物性を有 する硬化被膜を得ることができる。
上記ポリィソシァネート化合物、 プロック化されたポリィソシァネート化合物 は、 単独もしくは 2種類以上を混合して使用できる。 これらのなかでも脂肪族お よび/または脂環族ポリイソシァネート化合物が特に耐候性に優れ好ましい。 かかるポリイソシァネート化合物として、 下記式 (B— 1 ) で表されるァダク ト型ポリイソシァネート化合物をプロック剤でプロックしたァダクト型ポリイソ シァネート化合物が挙げられる。 (B-1)
Figure imgf000025_0001
(但し、 式中 R5、 R6、 R7は、 同 または異なり、 脂肪族および Zまたは脂環 族ジィソシァネ一ト化合物よりイソシァネ一ト基を除いた基を表す。 また R8は ヒドロキシ化合物からヒド口キシ基を除いた基を表し、 n 1は 0または 2以下の 整数を表す。)
脂肪族ジィソシァネート化合物として、 ト、 環族ジィソシァネート化合物としてシク口へキシルジィソシァネー卜等が挙げら れる。
また、 下記式 (B-2) で表されるイソシァヌレート型ポリイソシァネート化 合物をプロック剤でプロックしたィソシァヌレート型ポリイソシァネート化合物 が、挙げられる。
Figure imgf000025_0002
(伹し、 式中 n2はイソシァヌレートプレボリマ一の核体数を表し、 その統計的 平均値は 1. 0〜4. 0であり、 R9〜Rnは同一または異なり、 脂肪族および Zまたは脂環族ジィソシァネート化合物よりイソシァネート基を除いた基を表 す。) s旨肪族ジィソシァネート化合物として、
環族ジィソシァネ一ト化合物としてシクロへキシルジィソシァネート等が挙げら れる。
式 (B— 1 ) 中の R 5 R 6 R 7および式 (B - 2 ) 中の R 9 R 1 0, R 1 1の 炭素数は 2 1 0の範囲であることが耐久性の点で優れるため特に好ましい。 またブロック剤は、 透明プラスチック基材の耐熱性にもよるが、 ォキシム類、 活性メチレン化合物がより低温で熱硬化可能なため好ましく使用される。
またポリィソシァネ一ト化合物、 プロック化されたポリィソシァネ一ト化合物 の中のイソシァネート基の含有率は 5 6 0重量%、 好ましくは 6 5 5重量%、 最も好ましくは 6 5 0重量%である。 イソシァネート基含有率が 5重量%未満 であるとァクリル樹脂に対するポリィソシァネート化合物、 プロックイ匕されたポ リイソシァネート化合物の配合量が多くなり、 塗膜樹脂中の前記式 (A—1 ) で 表される繰返し単位の割合が低下するため、 プラスチック基材との密着性が乏し くなる。 また 6 0重量%より多くなると塗膜層の可撓性が低下し、 第二層を熱硬 化する際に塗膜層にクラックが生じたり、 環境の変ィ匕に対する耐久性を損うため 好ましくない。
成分 (A) と成分 (B) との混合量比は、 成分 (A)' のアクリル; It脂のヒドロ キシ基 1当量に対して、 成分 (B) の生成するイソシァネート基が 0 . 7 5当 量、 好ましくは 0 . 7 5 3当量、 最も好ましくは 0 . 8 2当量である。 この ような組成に調製することで、 第 1層は、 ポリ力一ポネ一ト基材および第 2層の オルガノシロキサン樹脂熱硬化層との良好な密着性を保つことができ、 また、 高 水準の架橋密度を持つので紫外線や水、 酸素による架橋密度の低下を引き起こし にくく、 長期にわたる密着性、 環境変ィ匕および高温環境下での耐久性を維持でき 耐候性に優れる。
イソシァネート基が 0 . 7当量より少ないと架橋が不十分となるため高温環境 での耐久性が不十分になり、 また、 未反応のヒドロキシ基が水分子と高い親和性 を示すために塗膜層が吸湿し、 このため耐候性や耐熱水性も低くなる。 イソシァ ネート基が 5当量よりも多いと塗膜層はァロファネ一ト結合を伴った非常に架橋 密度が高く、 硬くてもろい層となり、 環境の変化に対する追従性が悪くなり、 環 境の変化に対する密着性に劣り好ましくない。
<成分 (C):硬化触媒 >
成分 (C) は、 成分 (A) および成分 (B) の合計 1 0 0重量部に対して 0〜 0 . 4重量部の硬化触媒である。 硬化触媒としては、 主として有機錫化合物およ び Zまたは 4級ァンモニゥム塩化合物が使用される。
成分 (C) として、 下記式
Rx mS n (〇C ORy) 4_m
(式中、 Rxは同一または異なっていてもよく炭素数 1〜8の炭化水素基、 Ry は同一または異なっていてもよく炭素数 1 ~ 1 7の置換または非置換の炭化水素 基であり、 mは 0〜3の整数である。)
で表される有機錫化合物が好ましい。
; Rxの炭素数 1〜 8の炭化水素基として、 炭素数 1〜 8のアルキル基が挙げら れ、 具体的にはメチル基、 ェチル基、 プロピル基等が挙げられる。 Ryの炭素数
1〜1 7の炭化水素基として、 炭素数 1〜1 7のアルキル基力《挙げられ、 具体的 には、 ェチル基、 ヘプチル基、 へキシル基、 ォクチル基、 デシル基、 ドデシル基、 ヘプ夕デシル基等力挙げられる。 置換基として、 メチル基が挙げられる。
有機錫化合物の代表的なものとしては、 モノブチルチントリス (2—ェチルへ キサノエ一ト)、 ジメチルチンジネオデカノエート、 ジォクチルチンジネオデカ ノエ一ト、 ジメチルヒドロキシチンォレエ一ト、 ジブチルチンビス (2—ェチル へキサノエ一ト)、 ビス (2—ェチルへキサノエート) チン、 モノプチルチント リアセテート、 ジブチ»レチンジアセテート、 トリブチルチンモノアセテート、 ジ ブチルチンメチルマレエート、 モノブチルチントリ (メチルダリコレ一卜)、 モ ノブチルチントリ (メチルプロピオネート)、 モノブチルチントリラウレート、 ジブチルチンジラウレート、 トリブチルチンモノラウレート、 ジブチルチンジ
(n—ブチルマレエ一ト)、 モノブチルチントリ (ブチルダリコレ^ "卜)、 モノブ チルチントリ (ブチルプロピオネート)、 モノへキシルチントリオクトエート、 ジへキシルチンジォクトエート、 トリへキシルチンモノォクトエート、 ジへキシ ルチンジ (n—ォクチルマレート)、 モノへキシルチントリ (ォクチルダリコレ 一ト)、 モノへキシルチントリ (メチルマレート)、 モノォクチルチントリァセテ ート、 ジォクチルチンジアセテート、 トリオクチルチンモノァセテ一卜、 ジォク チルチンジ (メチルマレ一ト)、 モノォクチルチントリ (メチルダリコレー卜)、 モノォクチルチントリ (メチルプロピオネート)、 モノォクチルチントリプロピ ォネート、 ジォクチルチンジブ口ピオネート、 トリオクチルチンモノプロピオネ ート、 ジォクチルチンジ (n—プロピルマレ一卜)、 モノォクチルチントリ (プ 口ピルグリコレート)、 モノォクチルチントリ (プロピルプロピオネート)、 モノ ォクチルチントリオクトェ一ト、 ジォクチルチンジォクトェ一ト、 トリオクチル チンモノォクトェ一ト、 ジォクチルチンジ (n—才クチルマレ一ト)、 モノォク チルチントリ (ォクチルダリコレート)、 モノォクチルチントリ (ォクチルプロ ピオネート) モノォクチルチントリラウレート、 ジォクチルチンジラウレート、 トリオクチルチンモノラウレート、 ジォクチルチンジ (n—ラウリルマレート)、 モノォクチルチントリ (ラウリルグリコレー卜)、 モノォクチルチントリ (ラウ リルプロピオネート)、 n—ブチルチンヒドロキシドォキシド等が挙げられる。 また 4級アンモニゥム塩化合物の代表例としては、 例えば 2—ヒドロキシェチ ル ' トリ n—プチルアンモニゥム · 2 , 2—ジメチルプロピオネート、 2—ヒド ロキシェチル · トリ n—プチルアンモニゥム · 2 , 2—ジメチルブタノエ一卜、 2—ヒドロキシプロピル · トリ n—ブチルアンモニゥム · 2 , 2—ジメチルプロ ピオネート、 2—ヒドロキシプロピル · トリ n—プチルアンモニゥム · 2, 2— ジメチルブタノエ一卜、 2—ヒドロキシプロピル · トリ n _プチルアンモニゥ ム · 2, 2ジメチルペン夕ノエート、 2—ヒドロキシプロピル · トリ η—ブチル アンモニゥム ' 2—ェチルー 2—メチルプロピオネート、 2—ヒドロキシプロピ ル · トリ η _プチルアンモニゥム · 2—ェチルー 2—メチルブタノエート、 2— ヒドロキシプロピル' トリ η—ブチルアンモニゥム · 2—ェチルー 2—メチルぺ ンタノエート、 2—ヒドロキシプロピル' トリ η—ォクチルアンモニゥム · 2 , 2—ジメチルプロピオネート、 2—ヒドロキシプロピル · トリ η—ォクチルアン モニゥム · 2, 2 _ジメチルブ夕ノエ一ト、 2—ヒドロキシプロピル · トリアミ ルアンモニゥム · 2, 2 _ジメチルブ夕ノエート、 2—ヒドロキシプロピル · ト リアミルアンモニゥム · 2 , 2—ジメチルペン夕ノエ一卜等が挙げられる。 これ らの剤は単独もしくは 2種以上を併用してもよい。 さらに本発明ではジメチルェ 夕ノールァミン、 トリエチレンジァミン等の第三級アミン類等を併用することも できる。
かかる硬化触媒は、 成分 (A) および成分 (B) の合計 1 0 0重量部に対して、 0から 0 . 4重量部用いられる。 好ましくは 0 . 0 0 1〜0 . 4重量部、 より好 ましくは 0 . 0 0 2〜0 . 3重量部用いられる。 硬化触媒が 0 . 重量部を超え ると、 該アクリル樹脂層と第二層との密着性が低下し好ましくない。
<成分 (D):紫外線吸収剤 >
成分 (D) は、 成分 (A) および成分 (B) の合計 1 0 0重量部に対して 1 0 〜 5 0重量部の紫外線吸収剤である。
紫外線吸収剤としては、 例えば 2, 4—ジヒドロキシベンゾフエノン、 2—ヒ ドロキシー 4ーメトキシベンゾフエノン、 2—ヒドロキシ一 4—ォク卜キシベン ゾフエノン、 2, 2, ージヒドロキシー 4, 4, ージメトキシベンゾフエノン等 のべンゾフエノン類; 2 - (5, 一メチル一2, ーヒドロキシフエニル) ベンゾ トリァゾール、 2— (3, _ t一プチルー 5, 一メチル一2, —ヒドロキシフエ ニル) ベンゾ卜リアゾール、 2 - ( 3,, 5 ' ージ— t—プチルー 2, ーヒドロ キシフエニル) 一 5一クロ口べンゾトリァゾ一ル等のベンゾトリァゾール類;ェ チル一 2—シァノー 3, 3—ジフエニルァクリレート、 2 _ェチルへキシルー 2 ーシァノー 3 , 3ージフエ二ルァクリレート等のシァノアクリレート類;フエ二 ルサリシレート、 p—ォクチルフエ二ルサリシレ一ト等のサリシレート類;ジェ チルー P—メトキシベンジリデンマロネート、 ビス (2—ェチルへキシル) ベン ジリデンマロネート等のベンジリデンマロネート類; 2— (4, 6—ジフエニル 一 1, 3 , 5—トリアジン _ 2—ィル) 一 5— 〔(メチル) ォキシ〕 一フエノー ル、 2一 ( 4, 6—ジフエ二ルー 1 , 3 , 5—トリアジン一 2—ィル) 一5— 〔(ェチル) ォキシ〕 一フエノール、 2— (4, 6—ジフエ二ルー 1, 3, 5 - トリアジンー 2 _ィル) —5— 〔(プロピル) ォキシ〕 一フエノール、 2— ( 4 , 6—ジフエニル— 1 , 3, 5—トリアジン— 2—ィル) 一 5— 〔(ブチル) ォキ シ〕 一フエノ一ル、 2— ( 4, 6—ジフエニル一 1, 3, 5—トリアジン一 2— ィル) — 5— 〔(へキシル) ォキシ〕 一フエノール等のトリアジン類; 2—
( 2 ' ーヒドロキシ一 5—メタクリロキシェチルフエ二レ) 一 2 H—ベンゾトリ ァゾールと該モノマーと共重合可能なビニル系モノマーとの共重合体; 2—
( 2, 一ヒドロキシー 5—ァクリロキシェチルフエニル) 一 2 H—ベンゾ卜リア ゾールと該モノマーと共重合可能なピエル系モノマーとの共重合体;酸化チタン、 酸化セリウム、 酸化亜鉛、 酸化スズ、 酸化タングステン、 硫化亜鉛、 硫化カドミ ゥムなどの金属酸ィ匕物微粒子類が挙げられる。
また、 コート剤添加用の紫外線吸収剤として例えばチバスペシャルティケミカ ルス (株) からチヌピン 4 0 5、 チヌビン 4 1 1 L、 C G L 7 7 7 M P A等が巿 販されており、 本目的に好ましく使用できる。
これらの剤は単独もしくは 2種以上を併用してもよく、 成分 (A) および成分 (B ) の合計 1 0 0重量部に対して、 1 0〜5 0重量部、 好ましくは 1 5〜 4 5 重量部用いられる。 該紫外線吸収剤は 1 0重量部未満であると、 紫外線の透過率 が髙くなり基材の黄変が生じたり密着性を低下させるため耐候性が乏しくなる。 また 5 0重量部を超えると密着性が低下し好ましくない。 く成分 (E):シランカップリング剤 >
成分 (E) は、 成分 (A) および成分 (B) の合計 1 0 0重量部に対して 0〜 5重量部のシランカップリング剤である。
シランカップリング剤としては、 r一 ( 2—アミノエチル) ァミノプロビルト リメトキシシラン、 ァー (2—アミノエチル) ァミノプロピルメチルジメトキシ シラン、 ァーメタクリロキシプロビルトリメトキシシラン、 N— j3— (N—ビニ ルペンジルァミノェチル) 一ァ一アミノプロビルトリメトキシシラン ·塩酸塩、 ァ一ダリシドキシプロピルトリメトキシシラン、 γ—メルカプトプロピルトリメ トキシシラン、 ビニルトリァセトキシシラン、 ァーァ二リノプロビルトリメトキ シシラン、 ビニレトリメトキシシラン、 ォク夕デシルジメチル 〔3— (トリメト キシシリル) プロピル〕 アンモニゥムクロライド、 Tーゥレイドプロピルトリェ トキシシラン等が挙げられ、 また上記シランカツプリング剤の部分加水分解縮合 物も使用できる。
かかる剤を添加することにより、 透明プラスチック基材と第一層および第一層 と第二層の密着力が長期にわたり持続される。 これらの剤は単独もしくは 2種以 上を併用してもよい。
シランカップリング剤は、 成分 (A) および成分 (B) の合計 100重量部に 対して 0〜 5重量部、 好ましくは 0. 2〜 5重量部用いられる。
(光安定剤)
第一層に用いるァクリル樹脂組成物には、 必要に応じ光安定剤を含有すること ができる。 光安定剤としては、 例えばビス (2, 2, 6, 6—テトラメチルー 4 ーピペリジル) カーボネート、 ビス (2, 2, 6, 6—テトラメチルー 4ーピぺ リジル) サクシネート、 ビス (2, 2, 6, 6—テトラメチル— 4—ピベリジ ル) セバケ一卜、 4 _ベンゾィルォキシ—2, 2, 6, 6—テトラメチルピペリ ジン、 4ーォクタノィルォキシー 2, 2, 6, 6—テトラメチルピペリジン、 ビ ス (2, 2, 6, 6—テトラメチルー 4ーピペリジル) ジフエニルメタン一 p, p, ージカーバメート、 ビス (2, 2, 6, 6—テトラメチルー 4ーピベリジ ル) ベンゼン一 1, 3 _ジスルホネート、 ビス (2, 2, 6, 6—テトラメチル —4ーピペリジル) フエニルホスファイト等のヒンダ一ドアミン類、 ニッケルビ ス (ォクチルフエニルサルフアイド、 ニッケルコンプレクス一 3, 5—ジ _ t_ プチルー 4ーヒドロキシベンジルリン酸モノエチラ一ト、 ニッケルジブチルジチ ォカーバメート等のニッケル錯体が挙げられる。 これらの剤は単独もしくは 2種 以上を併用してもよい。 光安定剤は、 成分 (A) および成分 (B) の合計 100 重量部に対して好ましくは 0. 01〜50重量部、 より好ましくは 0. 05〜1 0重量部用いられる。
(第 1層) 第 1層は、 成分 (A) ~ (E) を含有するアクリル樹脂組成物をポリカーポネ —ト基材の表面に積層した後、 硬化した層である。
アクリル樹脂層の膜厚は 1〜1 2 m、 好ましくは 2〜1 0 ΠΙ、 より好まし くは 2〜8 imである。
本発明の第 1層は、 (A) 〜 (E) 成分を、 基材と反応したり該基材を溶解し たりしない揮発性の溶媒に溶解してコーティング組成物とし、 かかるコ一ティン グ組成物を該基材表面に塗布し、 次いで該溶媒を加熱等により除去し、 さらに加 熱して成分 (A) 中のヒドロキシ基と成分 (B) 中のイソシァネート基とを反応 させ架橋させることにより形成する。
反応するイソシァネート基は、 (B) 成分中のポリイソシァネート化合物のィ ソシァネ一ト基または (B) 成分中のブロック化されたポリイソシァネート化合 物を加熱することにより生成されるィソシァネ一ト基である。
(溶媒)
コーティング組成物中の溶媒としては、 アセトン、 メチルェチルケトン、 メチ ルイソブチルケトン、 シクロへキサノン等のケトン類、 テトラヒドロフラン、 1, 4—ジォキサン、 1, 2—ジメトキシェタン等のエーテル類、 酢酸ェチル、 酢酸 Xトキシェチル等のエステル類、 メタノール、 エタノール、 1—プロパノール、 2一プロパノール、 1ーブタノ一ル、 2ーブタノ一ル、 2—メチルー 1—プロパ ノール、 2—メチルー 2—プロパノール、 2—エトキシエタノール、 1ーメトキ シ一 2—プロパ/—ル、 2—ブトキシエタノール等のアルコール類、 n-へキサ ン、 n-ヘプタン、 イソオクタン、 ベンゼン、 トルエン、 キシレン、 ガソリン、 軽油、 灯油等の炭化水素類、 ァセトニトリル、 ニトロメタン、 水等が挙げられ、 これらは単独で使用してもよいし 2種以上を混合して使用してもよい。
上記 (A) 〜 (E) を含有してなるコ一ティング組成物中の塗膜樹脂からなる 固形分の濃度は 1〜 5 0重量%が好ましく、 3〜3 0重量%がより好ましい。 上記 (A) 〜 (E) を含有してなるコーティング組成物のプラスチック基材へ の塗布はバ一コート法、 ディップコート法、 フローコート法、 スプレーコート法、 スピンコート法、 ローラーコート法等の方法を、 塗装される基材の形状に応じて 適宜選択することができる。
かかるコ一ティング組成物が塗布された基材は、 通常常温から該基材の熱変形 温度以下の'温度下で溶媒の乾燥、 除去が行われ、 加熱硬化する。 かかる熱硬化は 基材の耐熱性に問題がない範囲で高い温度で行う方がより早く硬化を完了するこ とができ好ましい。 なお、 常温では、 熱硬化が完全には進行せず、 第 1層に求め られる十分な架橋密度を持ったコート層にならない。 力 る熱硬ィ匕の過程で、 熱 硬化型ァクリル樹脂組成物中の架橋性基が反応してコート層の架橋密度が上がり、 密着性、 耐熱水性、 高温環境下での耐久性に優れたコート層となる。
熱硬化は好ましくは 8 0〜1 6 0 °Cの範囲、 より好ましくは 1 0 0〜1 4 0 °C の範囲、 最も好ましくは 1 1 0〜1 3 0 °Cの範囲で、 好ましくは 1 0分間〜 3時 間、 より好ましくは 2 0分間〜 2時間、 最も好ましくは 3 0分間から 1時間 3 0 分間加熱して架橋性基を架橋させ、 第 1層として上記塗膜樹脂を積層した透明プ ラスチック基材が得られる。 熱硬化時間が 1 0分以下では架橋反応が十分に進行 せず、 高温環境下での耐久性、 耐候性に乏しい塗膜層になることがある。 また、 塗膜の性能上熱硬化時間は 3時間以内で十分である。
前記ァクリル樹脂を主とする塗膜樹] 3旨からなる第 1層を形成することにより、 第 2層とポリ力一ポネ一ト基材との密着性が良好となり、 耐摩耗性および耐候性 に優れた積層体を得ることができる。 くオルガノシロキサン樹脂組成物 >
本発明のオルガノシロキサン樹脂組成物は、 成分 (a) 〜 (d) を含有する。 以下、 各成分について説明する。
く成分 ( a ):コロイダルシリカ > ,
本発明で成分 (a ) として用いられるコロイダルシリカは、 直径 5〜2 0 0 n m、 好ましくは 5〜4 0 nmのシリカ微粒子が水または有機溶媒中にコロイド状 に分散されたものである。 該コロイダルシリカは、 水分散型および有機溶媒分散 型のどちらでも使用できるが、 水分散型のものを用いるのが好ましい。 水分散型 のコロイダルシリカの場合、 シリカ微粒子の表面に多数の水酸基が存在し、 これ がアルコキシシラン加水分解縮合物と強固に結合するため、 より耐摩耗性に優れ たプラスチック積層体が得られるものと考えられる。
また、 水分散型コロイダルシリカはさらに酸性水溶液分散型と塩基性水溶液分 散型に分かれる。 該水分散型コロイダルシリ力は酸性水溶液分散型と塩基性水溶 液分散型のどちらでも使用できるが硬ィ匕触媒選択の多様性、 メチルトリアルコキ シシランの適切な加水分解、 縮合状態の実現の観点から酸性水溶液分散型コロイ ダルシリカが好ましく使用される。
かかるコロイダルシリカとして、 具体的には、 酸性水溶液中で分散させた商品 として日産化学工業 (株) のスノーテックス 0、 触媒化成工業 (株) のカタロイ ド SN、 塩基性水溶液中で分散させた商品として日産化学工業 (株) のスノーテ ックス 30、 スノーテックス 40、 触媒化成工業 (株) の力夕ロイド S 30、 力 夕ロイド S 40、 有機溶剤に分散させた商品として日産化学工業 (株) の MA— ST、 I PA - ST、 NBA— ST、 I BA— ST、 EG— ST、 XBA— ST、 NPC— ST、 DMAC— ST、 触媒化成工業 (株) の OSCAL1 132、 O S CAL 1232 OS CAL 1332, OS CAL 1432, OS CAL 15 32、 OS CAL 1632, 〇 S CAL 1732等が挙げられる。 く成分 (b):アルコキシシランの加水分解物および/またはそれらの縮合物 > 成分 (b) は、 下記式 (b-1) 〜 (b— 3)
Q'S i (OQ3) 3 (b-1)
i (OQ3) 2 (b-2)
S i (OQ3) 4 (b - 3)
(式中、 Q Q2は、 炭素数 1〜4のアルキル基、 ビニル基、 またはメタクリ ロキシ基、 アミノ基、 グリシドキシ基および 3, 4 _エポキシシクロへキシル基 からなる群より選ばれる 1以上の基で置換された炭素数 1〜3のアルキル基であ り、 Q3は炭素数 1〜4のアルキル基である。)
で表されるアルコキシシランから形成され、 各成分の割合、 (b— 1) / (b- 2) / (b— 3) が、 80〜: L 00/0〜20Z0〜20である、 アルコキシシ ランの加水分解物および zまたはそれらの縮合物である。
Q1, Q2、 Q3のアルキル基の具体例として、 メチル基、 ェチル基等が挙げら れる。
式 (b— 1) のアルコキシシランとして、 メチルトリメトキシシラン、 メチル ン、 ビニルトリメトキシシラン、 ビニルトリエトキシシラン、 ァ一メタクリロキ
Figure imgf000035_0001
ミノプロピルトリメトキシシラン、 r—ァミノプロピルトリエトキシシラン、 N — β (アミノエチル) 一 τ—アミノプロビルトリメトキシシラン、 N-i3 (アミ ノエチル) —ァ一アミノプロピルトリエトキシシラン等が挙げられる。
式 (b-2) のアルコキシシランとして、 ジメチルジメトキシシラン、 ビニル
ジエトキシシラン等が挙げられる。
式 (b-3) のアルコキシシランとして、 テトラメトキシシラン、 テトラエト キシシラン、 テ卜ラ一 n—プロポキシシシラン、 テトライソプロボキシシラン、 テトラ _n—ブトキシシラン、 テトライソブトキシシラン等が挙げられる。 各成分の割合 {(b—l) / (b-2) / (b-3)} は、 好ましくは、 85〜 100/0-15/0-15、 さらに好ましくは、 85〜95/5〜15Z5〜 15である。
樹脂組成物中の、 成分 (a) 由来の S iと成分 (b) 由来の S iとのモル比 (S i aXS i b) は 2 8〜4 6であり、 好ましくは 2. 5/7. 5〜3. 5/6. 5である。
く成分 (c) :硬化触媒〉
本発明のオルガノシロキサン樹脂組成物はさらに硬化触媒を含有する。 かかる 触媒としては、 ギ酸、 プロピオン酸、 酪酸、 乳酸、 酒石酸、 コハク酸等の脂肪族 カルボン酸のリチウム塩、 ナトリウム塩、 カリウム塩等のアルカリ金属塩、 ベン ジルトリメチルアンモニゥム塩、 コリン塩、 テトラメチルアンモニゥム塩、 テト ラエチルアンモニゥム塩等の 4級アンモニゥム塩が挙げられる。 具体的には酢酸 ナトリウム、 酢酸カリウム、 酢酸コリン、 酢酸べンジルトリメチルアンモニゥム が好ましく使用される。
コロイダルシリカとして塩基性水分散型コロイダルシリカを使用し、 アルコキ シシランの加水分解の際に酸として脂肪族カルボン酸を使用した場合には、 該ォ ルガノシロキサン樹脂組成物中に既に硬ィ匕触媒が含有されていることになる。 必要含有量はオルガノシロキサン樹脂の組成、 加水分解、 縮合反応の進行度、 熱硬化条件により変化するが、 成分 (a) および成分 (b) の合計 1 0 0重量部 に対して、 硬化触媒の含有量は 0 . 0 1〜1 0重量部であり、 好ましくは 0 . 1 〜5重量部である。 含有量が 0 . 0 1重量部より少ないと十分な硬化速度が得ら れず、 1 0重量部より多いとオルガノシロキサン樹脂組成物の保存安定性が低下 したり、 沈殿物を生じたりして好ましくない。 く成分 (d ) :溶媒〉
本発明のオルガノシロキサン樹脂組成物に用いられる溶媒としては成分 (a) および成分 (b) が安定に溶解することが必要であり、 そのためには少なくとも 2 0重量%以上、 好ましくは 5 0重量%以上がアルコールであることが望ましい。 かかるアルコールとしては例えばメタノール、 エタノール、 1一プロパノール、 2—プロパノール、 1—ブタノール、 2—ブ夕ノール、 2—メチルー 1一プロパ ノール、 2—エトキシエタノール、 4ーメチルー 2—ペン夕ノール、 2—ブトキ シエタノール等が挙げられ、 炭素数 1〜4の低沸点アルコールが好ましく、 溶解 性、 安定性および塗工性の点で 2—プロパノ一ルが特に好ましい。 該溶媒中には 水分散型コロイダルシリカ中の水で該加水分解反応に関与しない水分、 アルコキ シシランの加水分解に伴って発生する低級アルコール、 有機溶媒分散型のコロイ ダルシリ力を使用した場合にはその分散媒の有機溶媒、 オルガノシロキサン樹脂 組成物の p H調節のために添加される酸も含まれる。
p H調節のために使用される酸としては塩酸、 硫酸、 硝酸、 リン酸、 亜硝酸、 過塩素酸、 スルファミン酸等の無機酸、 ギ酸、 酢酸、 プロピオン酸、 酪酸、 シュ ゥ酸、 コハク酸、 マレイン酸、 乳酸、 パラトルエンスルホン酸等の有機酸が挙げ られ、 p Hのコントロールの容易さの観点からギ酸、 酢酸、 プロピオン酸、 酪酸、 シユウ酸、 コハク酸、 マレイン酸等の有機カルボン酸が好ましい。
その他の溶媒としては水 Zアルコールと混和することが必要であり、 例えばァ セトン、 メチルェチルケトン、 メチルイソプチルケトン等のケトン類、 テトラヒ ドロフラン、 1, 4 _ジォキサン、 1, 2—ジメトキシェタン等のエーテル類、 酢酸ェチル、 酢酸エトキシェチル等のエステル類が挙げられる。 溶媒はオルガノ シロキサン樹脂固形分 1 0 0重量部に対して 5 0〜9 0 0重量部、 好ましくは 1 5 0〜7 0 0重量部である。
本発明のオルガノシロキサン樹脂組成物は、 酸および硬化触媒の含有量を調節 することにより p Hを 3 . 0〜6 . 0、 好ましくは 4. 0〜5 . 5に調製するこ とが望ましい。 これにより、 常温でのオルガノシロキサン樹脂組成物のゲル化を 防止し、 保存安定性を増すことができる。 該オルガノシロキサン樹脂組成物は、 通常数時間から数日間さらに熟成させることにより安定な組成物になる。
さらに、 本発明のオルガノシロキサン樹脂組成物には塗工性並びに得られる塗 膜の平滑性を向上する目的で公知のレペリング剤を配合することができる。 配合 量はオルガノシロキサン樹脂組成物 1 0 0部に対して 0 . 0 1〜 2重量部の範囲 が好ましい。 また、 本発明の目的を損なわない範囲で紫外線吸収剤、 染料、 顔料、 フィラーなどを添加してもよい。
このようにして調製されたオルガノシロキサン樹脂組成物は、 ポリカーボネー ト棚旨等の透明觀旨成形体に塗布できる。 特にポリカーボネート棚旨上にプライ マ一層としてァクリル樹脂層を形成した成形体に好ましく塗布できる。
本発明のオルガノシロキサン樹脂組成物は、 例えば以下のプロセスを経て調製 される。
コロイダルシリカ分散液中で、 式 (b— 1 )、 (b— 2 )、 ( b - 3 ) のアルコキ 'を酸性条件下、 加水分解縮合反応させる。
:で、 アルコキシシランの加水分解反応に必要な水は水分散型のコロイダル シリカ分散液を使用した場合はこの分散液から供給され、 必要であればさらに水 を加えてもよい。 アルコキシシラン 1当量に対して通常 1〜10当量、 好ましく は 1. 5〜7当量、 さらに好ましくは 3〜 5当量の水が用いられる。
前述のようにアルコキシシランの加水分解縮合反応は、 酸性条件下で行う必要 がある。 かかる条件で加水分解を行なうために一般的には加水分解剤として酸が 使用される。 かかる酸は、 予めアルコキシシランまたはコロイダルシリカ分散液 に添加する力 両者を混合後に添加してもよい。 また、 該添加は 1回あるいは 2 回以上に分けることもできる。 また酸性水溶液分散型コロイダルシリ力を用いる 場合、 コロイダルシリカ中の酸が反応液を酸性条件下に保つので酸の使用は必ず しも必要ない。
かかる酸としては塩酸、 硫酸、 硝酸、 リン酸、 亜硝酸、 過塩素酸、 スルフアミ ン酸等の無機酸、 ギ酸、 酢酸、 プロピオン酸、 酪酸、 シユウ酸、 コハク酸、 マレ イン酸、 乳酸、 パラトルエンスルホン酸等の有機酸が挙げられる。
かかる酸として無機酸を使用する場合は通常 0. 0001〜2mo l/l、 好 ましくは 0. 001〜0. 1 mo 1Z1の濃度で使用し、 有機酸を使用する場合 はメチルトリアルコキシシラン 100重量部に対して 0. 1〜50重量部、 好ま しくは 1〜30重量部の範囲で使用される。
アルコキシシランの加水分解、 縮合反応の条件は使用するアルコキシシランの 種類、 系中に共存するコロイダルシリカの種類、 量によって変化するので一概に は云えないが、 通常、 系の温度が 20〜 40 °C、 反応時間が 1時間〜数日間であ る。 アルコキシシランの加水分解反応は発熱反応だが、 系の温度は最高でも 6 0 °Cを超えないことが望ましい。 このような条件で十分に加水分解反応を進行さ せた上で、 コート剤の安定化のため 40〜 80 °Cで 1時間〜数日間縮合反応を進 行させることも好ましく行われる。
この反応で前記式 (b— 1)、 (b— 2)、 (b-3) のアルコキシシランは加水 分解されて下記式
i (OH) 3
Q'Q'S i (OH) 2 S i (OH) 4
(式中、 Q1 Q2は、 式 (b— 1) 〜 (b— 3) と同じである)
で表わされる加水分解物となり、 生成した S i—〇Hはコロイダルシリカ中の S i一〇Hや、 この分子とは別のトリアルコキシシラン加水分解物分子の S i—〇 Hと縮合反応を起こして S i -O-S i結合を形成し、 生成した縮合物もまた別 の S i—OHと縮合反応を起こして S i -O-S i結合を形成する。 この加水分 解反応および縮合反応は完全ではなく部分的に進行する。
反応液をシリコン核磁気共鳴スペクトル (29S i— NMR) 測定すると、 オル ガノシロキサン樹脂組成物のケミカルシフトが、 テトラメチルシランのシリコン 原子を O ppmとして、 トリアルコキシシラン 2量体縮合物のシリコン原子ピー クで— 46. 5 ppmから一48. 5ppmに、 シリコーンオリゴマーで末端の トリアルコキシシラン由来でかつ、 一つの水酸基だけが縮合反応したシリコン原 子団に基づくピークが— 52. 5 ppmから一 61. O ppmに、 シリコーンォ リゴマ一で、 トリアルコキシシラン由来でかつ、 2つの水酸基が縮合反応したシ リコン原子団に基づくピークが一 6 1. Oppmから一 70. O ppmに、 シリ コ一ンオリゴマーで、 トリアルコキシシラン由来でかつ、 3つの水酸基が縮合反 応したシリコン原子団に基づくピークおよび、 コロイダルシリカに結合したシリ コン原子団に基づくピークが一 95 p pmから— 130 p pmになる。 また、 テ トラアルコキシシランおよびジアルコキシシランのシリコン原子に基づくピーク は前述の領域以外にピークが現れる。
オルガノシロキサン樹脂組成物には好ましい加水分解、 縮合割合が存在し、 加 水分解反応の進行が不十分だと熱硬化時に原料トリアルコキシシランの蒸散、 急 激な硬ィ匕反応の進行等の原因でヘアークラックが発生する場合がある。 また、 縮 合反応が進行しすぎるとゾル中の粒子径が大きくなりすぎ、 適切な架橋反応が不 可能になるため耐摩耗性が低下する場合がある。
本発明のオルガノシロキサン樹脂組成物は、'測定溶媒として重水 (D20) を 用い、 観測周波数 7 9MHZ、 観測パルス 6. O S, 繰り返し時間 30秒、 ブ 口一ドニングファクタ一 5 Hzの条件でシリコン核磁気共鳴スぺクトル (29S i — NMR) 測定した時、 オルガノシロキサン樹脂組成物のシリコン原子のケミカ ルシフトが、 テトラメチルシランのシリコン原子を 0 p pmとして、 一 46. 5 ppmから— 70. 0 ρ pmの範囲のすべてのピークの積分値を [S]、 該ピ一 ク積分値中で一 46. 5 p pmから一 48. 5 p p mの範囲のピーク積分値 [X]、 一 52. 5 ppmから一 61. 0 p pmの範囲のピーク積分値を [Y]、 -61. 0 ppmから一 70. 0 p pmの範囲のピーク値を [Z] と表したとき、 0. 002≤ [X] / [S] ≤0. 2であり、 かつ 0. 6≤ [Y] / [Z] ≤3 であることが好ましい。 かかるオルガノシロキサン樹脂組成物は、 熱硬化時にク ラック発生なく、 十分な耐摩耗性を有する。
各積分値の範囲は好ましくは 0. 003≤ [X] / [S] ≤0. 1 50であり、 かつ 0. 75≤ [Y] / [Z] ≤2. 25、 最も好ましくは 0. 003≤ [X] / [S] ≤0. 150であり、 かつ 0. Ί 5≤ [Y] / [Z] ≤2. 00である。 なお、 オルガノシロキサン榭脂組成物にコロイダルシリカを用いないときには、 本発明のシリコン核磁気共鳴スぺクトルの範囲にあっても耐擦傷性等が不足する 場合がある。
本発明において、 成分 (a)、 成分 (b) の混合割合はオルガノシロキサン樹 脂組成物の安定性、 得られる硬化膜の透明性、 耐摩耗性、 耐擦傷性、 密着性およ びクラック発生の有無等の点から決められ、 成分 (a) および成分 (b) の合計 を 100重量%としたとき、 この 2成分の好ましい混合割合は成分 (a) が 10 〜60重量%、 成分 (b) が Q^Q^S i O (4mn) /2に換算して 40〜90 重量%、 好ましくは成分 (a) が 10〜40重量%、 成分 (b) が Q^Q^S i O (4_m_n) /2に換算して 60〜90重量%である。
オルガノシロキサン樹脂組成物は、 酸および硬化触媒の含有量を調節すること により pHを 3. 0〜6. 0、 好ましくは 4. 0〜5. 5に調製することが望ま しい。 これにより、 常温でのオルガノシロキサン樹脂組成物のゲル化を防止し、 保存安定性を増すことができる。 該オルガノシロキサン樹脂組成物は、 通常数時 間から数日間さらに熟成させることにより安定な組成物になる。
オルガノシロキサン樹脂組成物はさらに、 成分 (e) として、 アクリル共重合体であって、 5 0〜9 0モル%以上の下記式 (A— 1 )
Figure imgf000041_0001
COOR1
(但し、 式中 R 1はメチル基またはェチル基である。) で表される繰り返し単位、 および 1 0〜5 0モル%の下記式 (A— 4 )
Figure imgf000041_0002
COO一 R2— OH
(但し、 式中 R 2は炭素数 2〜5のアルキレン基である。)
で表される繰り返し単位からなるァクリル共重合体を、
オルガノシロキサン樹脂組成物 1 0 0重量部に対して 0 . 1〜2 0重量部含有し ていてもよい。
また、 本発明のオルガノシロキサン樹脂組成物には塗工性並びに得られる塗膜 の平滑性を向上する目的で公知のレペリング剤を配合することができる。 配合量 はオルガノシロキサン樹脂組成物 1 0 0部に対して 0 . 0 1〜 2重量部の範囲が 好ましい。 また、 本発明の目的を損なわない範囲で紫外線吸収剤、 染料、 顔料、 フィラーなどを添 &Πしてもよい。
このようにして調製されたオルガノシロキサン樹脂組成物は、 ポリ力一ポネ一 ト樹脂等の透明樹脂成形体に塗布できる。 特にポリカーボネート樹脂上にプライ マー層としてァクリル樹脂層を形成した成形体に好ましく塗布できる。 実施例
以下、 実施例により本発明を詳述するが本発明はもとよりこれに限定されるも のではない。
実施例:!〜 5 以下の実施例において、 得られた積層体は以下の方法によって評価した。 また、 実施例中の部および%は重量部および重量%を意味する。
( 1 ) 塗料貯蔵安定性:ァクリル樹脂組成物を 23 °Cで 3ヶ月間保管後、 塗料の 状態を目視で評価した。 なお、 塗料のゲル化が見られないものを良好とした。
(2) 外観評価:目視にて試験片のコート層外観 (異物の有無)、 ひび割れ (ク ラック) の有無を確認した。
(3) 密着性:コート層にカッターナイフで lmm間隔の 100個の碁盤目を作 りニチバン製粘着テープ (商品名 "セロテープ") を圧着し、 垂直に強く引き剥 がして基材上に残った碁盤目の数で評価した ( J I S K5400に準拠)。
(4) 耐擦傷性:試験片を # 0000のスチールウールで擦った後、 表面の傷つ きの状態を目視により 5段階で評価した。
1 : 500 g荷重で 10回擦っても全く傷つかない
2 : 500 g荷重で 10回擦ると僅かに傷つく
3 : 500 g荷重で 10回擦ると少し傷つく
4: 500 g荷重で 10回擦ると傷つく
5 : 100 g荷重で 10回擦ると傷つく
(5) 耐摩耗性: J I S K 6 7 3 5に準じ、 両面コート層の 1面で、 Calibrase社製 CS_ 10 Fの摩耗輪を用い、 荷重 500 gで 1000回転のテ ーパ一摩耗試験を行い、 テーバー摩耗試験後のヘーズとテーバー摩耗試験前のへ —ズとの差 ΔΗを測定して評価した。 但し、 摩耗輪のリフエ一スは研磨紙 A A— 400の代わりに研磨紙 S— 11を用いて 25回転で行なった。
(6) 耐熱水性:試験片を沸騰水中に 3時間、 および 10時間浸漬した後のコー ト層の外観変化、 密着性を評価した。
(7) 環境サイクルテスト:試験片を 80°Cで 80%RH環境下に 4時間、 2 5 °Cで 50 % RH環境下に 1時間、 一 15 °C環境下に 4時間、 25 °Cで 50 % R
H環境下に 1時間放置するサイクルを 1サイクルとし、 このようなサイクルを 2 0回繰り返した後で試験片を取り出して外観、 密着性を評価した。
(8) 高温環境耐久性:試験片を 105°C環境下で 100時間放置し、 試験片を 取り出して外観、 密着性を評価した。
(9) 耐湿熱性:試験片を 110°Cに保った蒸気滅菌器中に 5時間放置し、 試験 片を取り出して外観、 密着性を評価した。
(10) 耐侯性:試験片を紫外線照射面を変更することなくスガ試験機製 (株) スーパーキセノンウエザーメーター SX— 75を用いて、 UV照射強度 180W Zm2、 ブラックパネル温度 63° (:、 120分中 18分降雨条件下で 2000時 間および 2500時間暴露試験し、 試験片を取出して外観、 紫外線照射面の密着 性および試験前後の黄色度変化 (ΔΥ Ι) を評価した。 (黄色度 (Y I) 測定は 日本電色 (株) 製分光式色彩計 SE— 2000を用いて行った。) 参考例 1 (アクリル樹脂 (I) の合成)
還流冷却器および撹拌装置を備え、 窒素置換したフラスコ中にメチルメタクリ レート (以下 MMAと略称する) 90. 1部、 2—ヒドロキシェチルメ夕クリレ ート (以下 HEMAと略称する) 13部、 ァゾビスイソプチロニトリル (以下 A I BNと略称する) 0. 14部ぉょび1, 2—ジメトキシェタン 200部を添加 混合し、 溶解させた。 次いで、 窒素気流中 70°Cで 6時間攪拌下に反応させた。 得られた反応液を n—へキサンに添加して再沈精製し、 MMAZHEMAの組成 比 90ノ 10 (モル比) のコポリマー (アクリル樹脂 (1)) 81部を得た。 該 コポリマーの水酸基価は 54. 3mgKOH/g, 重量平均分子量は G P Cの測 定 (カラム; Shod ex GPCA— 804、 溶離液; THF) からポリスチ レン換算で 180, 000であった。 参考例 2 (アクリル樹脂 (I I) の合成)
MMA80. 1部、 HEMA26部、 AI BN0. 18部を用いる以外は参考 例 1と同様にして MMAZHEMAの組成比 80/20 (モル比) のコポリマー (アクリル樹脂 (I 1)) 85部を得た。 該コポリマーの水酸基価は 106. 0 mgK〇HZg、 重量平均分子量はポリスチレン換算で 80, 000であった。 参考例 3 (アクリル樹脂 (I I I) の合成)
ェチルメタクリレート (以下 EMAと略称する) 102. 7部、 HEMA13 部、 AI BN0. 18部を用いる以外は参考例 1と同様にして EMA/HEMA の組成比 90/10 (モル比) のコポリマー (アクリル樹脂 (I I 1)) 98部 を得た。 該コポリマーの水酸基価は 48. 7mgK〇H/g、 重量平均分子量は ポリスチレン換算で 90, 000であった。 参考例 4 (アクリル樹脂 (IV) の合成)
EMA97部、 HEMA19. 5部、 AI BN0. 18部を用いる以外は参考 例 1と同様にして EMAZHEMAの組成比 85/15 (モル比) のコポリマ一 (アクリル樹脂 (IV)) 97部を得た。 該コポリマーの水酸基価は 72. 5m gK〇H/g、 重量平均分子量はポリスチレン換算で 83, 000であった。 参考例 5 (アクリル樹脂 (V) の合成)
EMA91. 2部、 HEMA13部、 2— (2, 一ヒドロキシー5, 一メタク リロキシェチルフエニル) ベンゾトリアゾ一ル (以下 MEBTと略称する) 32. 3部を用いる以外は参考例 1と同様にして ΕΜΑ/ΉΕΜΑΖΜΕΒΤの組成比 80/10/10 (モル比) のコポリマー (アクリル樹脂 (V)) 108部を得 た。 該コポリマ一の水酸基価は 41. 3mgKOH/g, 重量平均分子量はポリ スチレン換算で 80, 000であった。
アクリル樹脂 (I) 〜 (V) のモノマー組成を表 1に示す。 実施例 1 (ァクリル樹脂組成物の調製)
<ァクリル樹脂組成物 ( i— 1 ) >
前記アクリル樹脂 (I) 10. 0部および 2— (2' —ヒドロキシー 5' — t ーォクチルフエ二ル) ベンゾトリアゾール 2. 88部をメチルイソブチルケトン 33部およびメチルェチルケトン 13部および 2—ブ夕ノール 26部からなる混 合溶媒に溶解し、 さらにこの溶液に前記アクリル榭脂 (I) のヒドロキシ基 1当 量に対してィソシァネート基が 1. 0当量となるようにタケネ一ト XB— 72— H6 (三井武田ケミカル (株) 性ポリイソシァネート化合物前駆体) 4. 39部 を添加し、 さらにジブチルチンジラウレート 0. 003部を添加して 25°Cで 3 0分間攪拌しァクリル樹脂組成物 ( i一 1) を調製した。
<アクリル樹脂組成物 (卜 2) >
前記アクリル樹脂 (I I) 10. 0部および 2, 4—ジヒドロキシベンゾフエ ノン 3. 64部をメチルイソブチルケトン 64部および 2—ブタノール 32部か らなる混合溶媒に溶解し、 さらにこの溶液に前記アクリル樹脂 (I I) のヒドロ キシ基 1当量に対してイソシァネート基が 1. 0当量となるようにデユラネート MF20-B (旭化成 (株) 性ポリイソシァネート化合物前駆体) 13. 68部 を添加し、 さらにジメチルチンジネオデカノエート 0. 01部を添加して 25°C で 30分間攪拌し、 アクリル樹脂組成物 U— 2) を調製した。 くァクリル樹脂組成物 ( i一 3 ) >
前記アクリル樹脂 (I I I) 10. 0部および 2— (2' ーヒドロキシー 5' 一 t—ォクチルフエニル) ベンゾトリアゾ一ル 2. 59部をメチルイソプチルケ トン 42部および 2—ブタノ一ル 28部からなる混合溶媒に溶解し、 さらにこの 溶液に前記アクリル樹脂 (I I I) のヒドロキシ基 1当量に対してイソシァネー ト基が 1. 0当量となるように VESTANATB 1358/100 (デグサジ ャパン (株) 性ポリイソシァネート化合物前駆体) 2. 96部を添加し、 さらに ジブチルチンジラウレート 0. 003部を添加して 25でで 30分間攪拌し、 ァ クリル樹脂組成物 ( i一 3 ) を調製した。 くァクリル樹脂組成物 ( i— 4) >
前記アクリル榭脂 (I I I) 10. 0部および 2— (2' ーヒドロキシー 5' 一 tーォクチルフエ二ル) ベンゾトリアゾール 2. 71部をメチルイソプチルケ トン 32部および 2—ブ夕ノール 28部およびキシレン 10部からなる混合溶媒 に溶解し、 さらにこの溶液に前記アクリル樹脂 (I I I) のヒドロキシ基 1当量 に対してイソシァネート基が 1. 2当量となるように VESTANATB 135 8/100 3. 56部を添加し、 さらにモノブチルチントリス (2—ェチルへ キサノエ一ト) 0. 005部を添加して 25°Cで 30分間攪拌し、 アクリル樹脂 組成物 (i一 4) を調製した。 くアクリル樹脂組成物 (i一 5) >
前記アクリル樹脂 (I V) 10. 0部および 2, 4ージヒドロキシベンゾフエ ノン 2. 85部をメチルイソプチルケトン 56部および 2—ブ夕ノール 28部か らなる混合溶媒に溶解し、 さらにこの溶液に前記アクリル樹脂 (IV) のヒドロ キシ基 1当量に対してィソシァネート基が 1. 0当量となるようにタケネート X B-72-H6 5. 83部を添加し、 さらにジブチルチンジラウレート 0. 0 05部を添加して 25 :で 30分間攪拌し、 アクリル樹脂組成物 (i _5) を調 製した。
<ァクリル樹脂組成物 (1— 6) >
前記アクリル樹脂 (I V) 10. 0部および 2— (2' —ヒドロキシー 5' — t—ォクチリレフェニル) ベンゾトリアゾ一ル 3. 12部をメチルイソプチ ケト ン 50部およびメチルェチルケトン 10部および 2—ブタノール 30部からなる 混合溶媒に溶解し、 さらにこの溶液に前記アクリル樹脂 (IV) のヒドロキシ基 1当量に対してイソシァネート基が 1. 0当量となるようにデユラネート MF 2 0-Β 9. 36部を添加し、 さらにジブチルチンジラウレート 0. 005部を 添加して 25°Cで 30分間攪拌し、 アクリル樹脂組成物 (i— 6) を調製した。 <ァクリル樹脂組成物 ( i一 7 ) >
前記アクリル樹脂 (V) 10. 0部および 2— (2, ーヒドロキシ一 5' — t 一才クチルフエニル) ベンゾトリアゾ一ル 1. 95部をメチルイソプチルケトン 24部およびメチルェチルケトン 10部および 2—ブタノ一ル 32部および 1一 メトキシ一 2—プロパノール 10部からなる混合溶媒に溶解し、 さらにこの溶液 に前記アクリル樹脂 (V) のヒドロキシ基 1当量に対してイソシァネート基が 1. 2当量となるように VESTANAT B 1358/100· 3. 00部を添加 し、 さらにモノブチルチン (2—ェチルへキサノエート) 0. 01部を添加して 25°Cで 30分間攪拌し、 アクリル樹脂組成物 (i -7) を調製した。 くアクリル樹脂組成物 (i一 8) >
前記アクリル樹脂 (V) 10. 0部および 2— (2' —ヒドロキシー 5' - t —ォクチルフエニル) ベンゾ卜リアゾ一ル 1. 88部をメチルイソプチルケトン 42部および 2—ブ夕ノ一ル 28部からなる混合溶媒に溶解し、 さらにこの溶液 に前記アクリル樹脂 (V) のヒドロキシ基 1当量に対してイソシァネート基が 1. 0当量となるように VEST AN AT B 1358/100 2. 50部を添加 し、 さらにジブチルチンジラウレート 0. 005部を添加して 25°Cで 30分間 攪拌し、 アクリル樹脂組成物 (i— 8) を調製した。 くァクリル樹脂組成物 ( i— 9) >
前記アクリル樹脂 (I) 10. 0部および 2_ (2' —ヒドロキシー 5, 一 t 一才クチルフエ二ル) ベンゾトリアゾール 2. 52部をメチルイソプチルケトン 46部および 2—ブ夕ノール 23部からなる混合溶媒に溶解し、 さらにこの溶液 に前記アクリル樹脂 (I) のヒドロキシ基 1当量に対してイソシァネート基が 0. 8当量となるように VESTANAT B 1358/100 2. 66部を添加 し、 さらにジブチルチンジラウレート 0. 001部を添加して 25°Cで 30分間 攪拌し、 アクリル樹脂組成物 (i一 9) を調製した。 <ァクリル樹脂組成物 (卜 10 ) >
前記アクリル榭脂 (I) 10. 0部および 2— (2' ーヒドロキシ— 5' — t —ォクチルフエ二ル) ベンゾ卜リアゾール 2. 80部をメチルイソプチルケトン 50部および 2—ブ夕ノール 25部からなる混合溶媒に溶解し、 さらにこの溶液 に前記アクリル樹脂 (I) のヒドロキシ基 1当量に対してイソシァネート基が 1. 2当量となるように VESTANAT B 1358/100 3. 99部を添加 し、 さらにジブチルチンジラウレート 0. 003部を添加して 25°Cで 30分間 攪拌し、 アクリル樹脂組成物 (i— 10) を調製した。 くァクリル樹脂組成物 ( i一 11 ) >
前記アクリル樹脂 (I) 10. 0部および 2_ (2' —ヒドロキシー 5' — t 一才クチルフエ二ル) ベンゾトリアゾール 2. 80部をメチルイソブチルケトン 50部および 2—ブタノ一ル 25部からなる混合溶媒に溶解し、 さらにこの溶液 に前記アクリル樹脂 (I) のヒドロキシ基 1当量に対してイソシァネート基が 1. 2当量となるように VESTANAT B 1358/100 3. 99部を添加 し、 さらに 2—ヒドロキシェチル · トリ n—ブチルアンモニゥム · 2, 2—ジメ チルプロピオネート (以下 HEBAPと略称する。) 0. 01部を添加して 2 5°Cで 30分間攪拌し、 アクリル樹脂組成物 (i _l l) を調製した。 くァクリル樹脂組成物 ( i一 12) >
前記アクリル樹脂 (I I I) 10部および紫外線吸収剤 (チバスペシャルテ ケミカルス (株) 製 チヌビン 411 L) 2. 00部をメチルイソプチルケトン 50部および 2—ブタノール 25部からなる混合溶媒に溶解し、 さらにこの溶液 に前記アクリル樹脂 (I I I) のヒドロキシ基 1当量に対してイソシァネート基 が 1当量になるように VESTANATB 1358/100 2. 96部を添加 し、 さらにジメチルチンジネオデカノエート 0. 005部、 シランカップリング 剤 (日本ュニ力一 (株) 製 APZ— 6633 5%エタノール溶液) 1. 5部 を添加し 25 °Cで 30分間攪拌し、 アクリル樹脂組成物 (i— 12) を調製した。
<ァクリル樹脂組成物 ( i一 13) >
前記アクリル樹脂 (IV) 10部および紫外線吸収剤 (チバスペシャルティケ ミカルス (株) 製 CGL 777MPA) 1. 50部をメチルイソプチルケトン 48部および 2—ブ夕ノール 22部からなる混合溶媒に溶解し、 さらにこの溶液 に前記アクリル樹脂 (IV) のヒドロキシ基 1当量に対してイソシァネー卜基が 1当量になるように VESTANATB 1358/100 4. 41部を添加し、 さらにジブチルチンジラウレート 0. 007部、 シランカップリング剤 (日本ュ 二カー (株) 製 APZ— 6633 5 %エタノール溶液) 1. 2部を添加し 2 5 °Cで 30分間攪拌し、 アクリル樹脂組成物 (i一 13) を調製した。
アクリル榭旨組成物 (i _l) 〜 (i一 13) の組成を表 2に示す。 実施例 2 (オルガノシロキサン樹脂組成物の調製)
くテトラエトキシシラン加水分解縮合物溶液 (X) >
テトラエトキシシラン 208部、 0. 01N塩酸 81部を氷水で冷却下混合し た。 この混合液を 25 °Cで 3時間攪拌し、 イソプロパノール 11部で希釈してテ トラエトキシシラン加水分解縮合物溶液 (X) 300部を得た。 くオルガノシロキサン樹脂組成物 ( i i _ 1) >
水分散型コロイダルシリカ分散液 (日産化学工業 (株) 製 スノ一テックス 3 0 固形分濃度 30重量%) 100部に蒸留水 2部、 酢酸 20部を加えて攪拌し、 この分散液に氷水浴で冷却下メチルトリメトキシシラン 130部を加えた。 この 混合液を 25 °Cで 1時間攪拌して得られた反応液に、 硬化触媒として酢酸ナトリ ゥム 2部を氷水冷却下で混合し、 イソプロパノ一ル 200部で希釈して、 オルガ ノシロキサン樹脂組成物 (i i-1) を得た。 くオルガノシロキサン樹脂組成物 (i i一 2) 〉
水分散型コロイダルシリカ分散液 (日産化学工業 (株) 製 スノ一テックス 3 0 固形分濃度 30重量%) 100部に酢酸 20部を加えて攪拌し、 この分散液 に氷水浴で冷却下メチルトリメトキシシラン 122部を加えた。 この混合液を 2 5 °Cで 1時間攪拌して得られた反応液に、 硬化触媒として酢酸力リゥム 1部を氷 水冷却下で混合し、 イソプロパノール 408部で希釈してオルガノシロキサン樹 脂組成物 (i i一 2 ) を得た。
<ォルガノシロキサン測旨組成物 ( i i一 3 ) >
水分散型コロイダルシリカ分散液 (日産化学工業 (株) 製 スノーテックス 3 0 固形分濃度 3 0重量%) 6 0部に蒸留水 2 8部、 酢酸 2 0部を加えて攪拌し、 この分散液に氷水浴で冷却下メチルトリメトキシシラン 1 3 0部を加えた。 この 混合液を 2 5でで 1時間攪拌して得られた反応液に、 硬化触媒として酢酸べンジ ルトリメチルアンモニゥム 4部を氷水冷却下で混合し、 イソプロパノール 1 7 2 部で希釈してオルガノシロキサン樹脂組成物 ( i i— 3 ) を調製した。
<オルガノシロキサン樹脂組成物 (i i一 4) >
水分散型コロイダルシリカ分散液 (日産化学工業 (株) 製 スノーテックス 3 0 固形分濃度 3 0重量%) 1 0 0部に蒸留水 1 2部、 酢酸 2 0部を加えて攪拌 し、 この分散液に氷水浴で冷却下メチルトリメトキシシラン 1 3 4部を加えた。 この混合液を 2 5 °Cで 1時間攪拌して得られた反応液に、 硬化触媒として酢酸ナ トリウム 1部を加えイソプロパノール 2 0 0部で希釈してオルガノシロキサン樹 脂組成物 (i i— 4 ) を調製した。
<ォルガノシロキサン樹脂組成物 U i— 5 ) >
水分散型コロイダルシリカ分散液 (触媒化成 (株) 製 カタロイド S N 3 0 固形分濃度 3 0重量%) 1 0 0部に蒸留水 2部を加えて攪拌し、 この分散液に氷 水浴で冷却下メチルトリメトキシシラン 1 3 0部を加えた。 この混合液を 2 5 °C で 1時間攪拌して得られた反応液に、 硬化触媒として酢酸ナトリゥム 2部を氷水 冷却下で混合し、 イソプロパノール 2 0 0部で希釈してオルガノシロキサン樹脂 組成物 (i i— 5 ) を得た。
<オルガノシロキサン棚旨組成物 (i i— 6 ) >
水分散型コロイダルシリカ分散液 (日産化学工業 (株) 製 スノーテックス 3 0 固形分濃度 30重量%) 100部に蒸留水 12部、 酢酸 20部を加えて攪拌 し、 この分散液に氷水浴で冷却下メチルトリメトキシシラン 134部を加えた。 この混合液を 25°Cで 1時間攪拌して得られた反応液に、 テトラエトキシシラン 加水分解縮合物溶液 (X) 20部および硬化触媒として酢酸ナトリウム 1部を加 えイソプロパノール 200部で希釈してオルガノシロキサン樹脂組成物 ( i i一 6) を調製した。
<オルガノシロキサン測旨組成物 (i i一 7) >
水分散型コロイダルシリカ分散液 (触媒化成工業 (株) 製 カタロイド SN 3 0 固形分濃度 30重量%) 100部に 35%塩酸 0. 1部を加えて攪拌し、 こ の分散液に氷水浴で冷却下メチルトリメトキシシラン 136部、 ジメチルジメト キシシラン 20. 3部を加えた。 この混合液を 25でで 6時間攪拌して得られた 反応液に、 硬ィ匕触媒および pH調節剤として 45%コリンメタノール溶液 1部お よび酢酸 4部を加えイソプロパノール 200部で希釈してオルガノシロキサン樹 脂組成物 (i i— 7) を調製した。
<オルガノシロキサン樹脂組成物 (i i一 8) >
前記オルガノシロキサン樹脂組成物 ( i i _ 5) 432部に前記ァクリル樹脂 (I I I) 3部を溶解してオルガノシロキサン樹脂組成物 (i i一 8) を調製し た。
得られたオルガノシロキサン樹脂組成物 (i i一 1) 〜 (i i— 8) の組成を ¾ ύに不 "。 実施例 3 (ァクリル樹脂組成物の貯蔵安定性の評価)
アクリル榭脂組成物 (i _l) 〜 (i一 13) を 23°Cで 3ヶ月間保管後、 組 成物の状態を目視で評価した。 なお、 組成物のゲル化が見られないものを良好と した。 その結果を表 4に示す。 実施例 4 (積層体の製造)
5 mm厚の PC樹脂製シートに、 アクリル樹脂組成物 U— 1) を、 熱硬化後 の膜厚が 4. 0 mになるようにディップコート法によって両面塗布し、 2 5で で 20分静置後、 1 30 °Cで 1時間熱硬化させた。 次いで該シ一トの被膜表面上 に、 オルガノシロキサン樹脂組成物 (i i一 1) を熱硬化後の膜厚が 5. O nm になるようにディップコ一ト法で塗布し、 25 °Cで 20分静置後 1 20 で 1時 間熱硬化させた。 得られた積 〇層体 1の評価結果を表 5に示した。
同様に、 表 5に示したァクリル樹脂組成物およびオルガノシロキサン樹脂組成 物を用い、 塗布、 熱硬化処理を行い積層体 2〜1 7を作成した。 該積層体 2〜1 7の評価結果を表 5に示した。 実施例 5 (自動車の後部三角窓)
自動車の後部三角窓形状に、 PC樹脂を用いて 5 mm厚の射出成型品を作成し た。 該射出成型品の上に、 アクリル樹脂組成物 (i一 4) を熱硬化後の膜厚が 4. 0 mになるようにディップコート法によって塗布し、 25°Cで 20分間静置後、 1 30°Cで 1時間熱硬化させた。 次いで、 該シートの被膜表面上に、 オルガノシ ロキサン樹脂組成物 ( i i— 4) を熱硬化後の膜厚が 4. 0 mになるようにデ ィップコ一ト法で塗布し、 2 5 °Cで 20分間静置後、 1 20 °Cで 1時間熱硬化さ せた。 得られた積層体 18の評価結果を表 5に示した。 表 1
モノマ一組成
アクリル樹脂
MMA EMA HEMA AIBN MEBT
(I) 13 0.14
(II) 80.1 26 0.18
(III) 102.7 13 0.18
(IV) 97 0.18
(V) 91.2 13 32.3 表 2
'
Figure imgf000053_0001
1
表 2 (つづき)
塗料 No. 紫外線吸収剤 シランカップリング斉 IJ 溶剤
配合量 C n皇 V _DiV PMA 、ソレ zン
(i一 1) UV-1 t CO
Figure imgf000054_0001
33 13 26
(i-2) UV-2 64 32
(i-3) UV-1 42 28
(i一 4) UV-1 32 28 10
(i一 5) UV-2 56 28
(i-6) UV- 1 3. 12 50 10 30
(i一 7) UV-1 1. 95 24 10 32 10 0
(i-8) UV-1 1. 88 42 28 0
(i-9) UV-1 2. 52 46 23
UV-1 2. 80 50 25
UV- 1 2. 80 50 25
(i-12) UV-3 2. 00 APZ-6633 1. 5 50 25
UV-4 1. 50 APZ-6633 1. 5 50 22
表 2において、
(1) M I BK;メチルイソブチルケトン
(2) MEK;メチルェチルケトン
(3) 2— BuOH; 2—ブ夕ノール
(4) PMA; 1—メトギシー 2_プロパノール
(5) タケネート;タケネ一ト;三井武田ケミカル (株) 製ポリイソシァネー ト化合物前駆体、 タケネート XB— 72— H6
(6) デユラネート;旭化成工業 (株) 製ポリィソシァネ一ト化合物前駆体、 デユラネ一ト MF 20-B
(7) VES TANAT;デグサジャパン製ポリイソシァネート化合物前駆体、 VESTANAT B 1358/100
(8) I PD I ;イソホロンジイソシァネート
(9) DBTDL;ジブチルチンジラウレート
(10) DMDNT ジメチルチンジネオデカノエート
(11) BTEHT モノブチルチントリス (2—ェチルへキサノエ一ト)
(12) HEBAP 2—ヒドロキシェチル · トリ n_プチルアンモニゥム ' 2 2ージメチルプロピオネート
また、 紫外線吸収剤の種類としては、
UV- 1 ; 2— (2, —ヒドロキシー 5, t一才クチルフエ二ル) ベンゾトリ ァゾ一ル
UV-2 エノンを示す。
UV- 3
Figure imgf000055_0001
(株) 製チヌビン 411L
UV-4 チバスペシャルティケミカルス (株) 製 CGL 777MPA 表 3
塗料 No. コロイダルシリカ(Si〇2量) ァノレコキシシラン アタリノレ棚旨
S-30 SN-30 DMDMOS配合量 MTMOS配合量 TEOS配合量
配合量 配合量 (Me2SiO換算) (MeSi。3Z2換算) (Si。2換算) アクリル樹脂 (IV)
(ii-1) 30 64
(ii-2) 30 60
(ii-3) 18 64
(ii-4) 30 66
(ii-5) 30 64
(ii-6) 30 66 4
(ii-7) 30 7 67
(ii-8) 30 64 3 0
0
表 3中において、
(1) MTMOS ;メチルトリメトキシシラン
(2) TEOS:テトラエトキシシラン
(3) DMDMOS ;ジメチルジメトキシシラン
(4) S-30 ;水分散型コロイダルシリカ分散液 (日産化学工業 (株) 製 ス ノ一テックス 30 固形分濃度 30重量%、 平均粒子径 20 nm)
(5) SN30 ;水分散型コロイダルシリカ分散液 (触媒化成 (株) 製 力夕口 イド SN30 固形分濃度 30重量%、 平均粒子径 10 nm) を表し、 トリアル コキシシランの重量部は RS i〇3/2に換算した値を示し、 テトラアルコキシシ ランの重量部は S i〇。に換算した値を示す。
表 4
NO. 貯蔵安定性
(i -1) 良好
(i -2) 良好
(i -3) 良好
(i -4) 良好
(i -5) 良好
(i一 6) 良好
(i一 7) 良好
(i -8) 良好
(i -9) 良好
(i -10) 良好
(卜 11) 良好
(i -12) 良好
(i一 13) 良好
表 5
第 2層 耐熱水性
耐摩耗性
膜厚 膜厚 外観 、着性 H#擦傷性 3時間 10時間
No. No. △H(%)
(μ πι) 外観 密着性 外観 密着性 積層体1 (i-1) 4.0 (ii-1) 5.0 良好 100 3.2 1 良好 100 良好 100 積層体 2 (i-2) 4.5 (ii-2) 5.0 良好 100 4 1 良好 100 良好 100 積層体 3 (i-3) 5.0 (ii-3) 4.0 良好 100 4.4 1 良好 . 100 良好 100 積層体 4 (i-4) 4.0 (ii-4) 4.5 良好 100 3.8 1 良好 100 良好 100 積層体 5 (i-5) 5.0 (ii-5) 4.5 良好 100 3 1 良好 100 良好 100 積層体 6 (i-6) 4.0 (ii-6) 4.0 良好 100 2.9 1 良好 100 クラック 100 積層体 7 (i-7) 3.0 (ii-1) 4.0 良好 100 3.1 1 良好 100 良好 100
(i-8) 3.5 (ii-2) 4.0 良好 100 3.9 1 良好 100 良好 100 0 積層体 9 (i-9) 4.0 (ii-2) 3.5 良好 100 4 1 良好 100 良好 100
• (MO) 6.0 (ii-1) 4.0 良好 100 3.9 1 良好 100 良好 100
(i-11) 4.5 (ii-2) 4.0 良好 100 4.1 1 良好 100 良好 100
(i-12) 4.0 (ii-1) 3.8 良好 100 3.6 1 良好 100 良好 100
(i-12) 4.5 (ii-7) 4.2 良好 100 6.9 1 良好 100 良好 98
(i-1) 4.0 (ii-7) 4.1 良好 100 6.2 1 良好 100 良好 100
(i-13) 4.5 (ii-1) 4.3 良好 100 3.8 1 良好 100 良好 95 積層体 16 G - 13) 4.0 (ii-7) 4.0 良好 100 6.7 1 良好 100 良好 100 積層体 17 (i-13) 4.0 (ii-8) 4.0 良好 100 5.5 1 良好 100 良好 100
(i-4) 4.0 (ii-4) 4.0 良好 100 実際の自動車に搭載したが、実用上有害な欠点なく良好であった。
表 5 (つづき)
耐環境サイクル試験 高温環境耐久性 耐湿熱性 耐候性
2000時間 2500時間
外 f 密着性 外観 密差性 外観 密着性
密着 黄変度 密着 黄変度
積層体 1 良好 100 良好 100 良好 100 100 0.9 50 2.4
積層体 2 良好 100 良好 100 良好 100 100 1.1 40 2.8
積層体 3 良好 100 良好 100 良好 100 100 1.2 20 3.1
積層体 4 良好 100 良好 100 良好 100 100 1.2 50 2.8
積層体 5 良好 100 良好 100 良好 100 100 0.8 50 2.5
積層体 6 良好 100 良好 1G0 良好 100 100 0.9 0 2.2
積層体 7 良好 100 良好 100 良好 100 100 1.3 20 1.8
積層体 8 良好 100 良好 100 良好 100 100 1.4 20 1.9
0 良好 100 良好 100 良好 100 100 1.1 50 3.1
良好 100 良好 100 良好 100 100 1.2 50 2.8
積層体 11 良好 100 良好 100 良好 100 100 1.1 50 2.1
良好 100 良好 100 良好 100 100 0.8 90 1.1
積層体 13 良好 100 良好 100 良好 100 100 0.6 100 0.9
積層体 14 良好 100 良好 100 良好 100 100 0.9 80 2.5
積層体 15 良好 100 良好 100 良好 100 100 0.5 90 0.7
良好 100 良好 100 良好 100 100 0.6 100 .0.9
積層体 17 良好 100 良好 100 良好 100 100 0.6 100 0.9
積層体 18 実際の自動車に搭載したが、実用上有害な欠点なく良好であった。
実施例 6〜7
以下の実施例において、 得られた積層体は下記の方法によって評価した。 また、 実施例中の部は重量部を意味する。
(1) 外観評価:目視にて試験片の両面コート層外観 (異物やハジキ、 まだら模 様の有無)、 ひび割れ (クラック) の有無を確認した。
(2) 密着性:両面コート層の 1面にカッターナイフで lmm間隔の 100個の 碁盤目を作りニチバン製粘着テープ (商品名 "セロテープ") を圧着し、 垂直に 強く引き剥がして基材上に残った碁盤目の数で評価した (J I S K5400に 準拠)。
(3) 耐擦傷性:両面コ一ト層の 1面を # 0000のスチールウールで擦った後、 表面の傷つきの状態を目視により 5段階で評価した。
1 :強く擦っても全く傷つかない
2 :強く擦ると僅かに傷つく
3 :強く擦ると少し傷つく
4 :強く擦ると傷つく
5 :弱く擦るだけで傷つく
(4) 耐摩耗性:両面コート層の 1面を C a 1 i b r a s e社製 CS— 10 Fの 摩耗輪を用い、 荷重 500 gで 1, 000回転テーバー摩耗試験を行い、 テーバ 一摩耗試験後のへ一ズとテ一バ一摩耗試験前のヘーズとの差 ΔΗを測定して評価 した (ASTM D 1044に準拠)。 (ヘーズ =Td/T t X 100、 Td : 散乱光線透過率、 T t :全光線透過率)
(5) 耐熱水性:試験片を沸騰水中に 2時間浸漬した後のコート層の外観変化、 密着性を評価した。 実施例 6
<アクリル樹脂 (G—1) の調製 >
還流冷却器および撹拌装置を備え、 窒素置換したフラスコ中にメチルメタクリ レート (以下 MM Aと略称する) 80. 1部、 2—ヒドロキシェチルメ夕クリレ —ト (以下 HEMAと略称する) 13部、 ァゾビスイソプチロニトリル (以下 A I BNと略称する) 0. 14部ぉょぴ1, 2—ジメトキシェタン 200部を添加 混合し、 溶解させた。 次いで、 窒素気流中 70°Cで 6時間攪拌下に反応させた。 得られた反応液を n—へキサンに添加して再沈精製し、 MMAZHEMAの組成 比 90Z10 (モル比) のコポリマ一 (アクリル樹脂 (G— 1)) 80部を得た。
<アクリル樹脂組成物 (g— 1) の調製 >
アクリル樹脂 (G— 1) 8. 9部および 2— (2' —ヒドロキシ _ 5, - t - ォクチルフエ二ル) ベンゾトリアゾール 1. 5部をメチルェチルケトン 20部、 メチルイソプチルケトン 30部および 2—プロパノール 30部からなる混合溶媒 に溶解し、 さらにこの溶液に前記アクリル樹脂 (G— 1) のヒドロキシ基 1当量 に対してィソシァネ一ト基が 1. 5当量となるようにへキサメチレンジィソシァ ネ一ト 1. 1部を添加して 25°Cで 5分間攪拌しアクリル樹脂組成物 (g— 1) を調製した。 ぐオルガノシロキサン樹脂組成物 (h— 1) の調製 >
水分散型コロイダルシリカ分散液 (触媒化成工業 (株) 製カタロイド SN— 35、 固形分濃度 30重量%) 80部を氷水浴で冷却下メチルトリメ卜キシシ ラン 127部に加えた。 この混合液を 25 °Cで 1時間半攪拌後、 70 °Cで 2時間 攪拌した反応液を氷水冷却し、 これに、 酢酸 24部および 化触媒として酢酸ナ トリウム 2部を氷水冷却下で混合し、 オルガノシロキサン樹脂組成物 (h— 1) を得た。
該オルガノシロキサン樹脂組成物 (h— 1) を、 測定溶媒として重水 (D2 O) を用い、 観測周波数 79 MHz、 観測パルス 6. 0 S、 繰り返し時間 30 秒、 ブロードニンダフアクター 5Hzの条件でシリコン核磁気共鳴スペクトル (29S i -NMR) 測定した。 以下の実施例でも各コート剤を同条件でシリコン 核磁気共鳴スペクトル (29 S i— NMR) 測定した。 オルガノシロキサン樹脂組 成物のシリコン原子のケミカルシフ卜が、 テトラメチルシランのシリコン原子を Oppmとして、 一 46. 5ppmから一 70. 0 p pmの範囲のすべてのピ一 クの積分値を [S]、 該ピーク積分値中で一 46. 5ppmから一48. 5 p p mの範囲のピーク積分値を [X]、 -52. 5ppmから— 61. Oppmの範 囲のピーク積分値を [Y]、 -61. Oppmから一 70. Oppmの範囲のピ —ク積分値を [Z] と表わしたとき、 [X] / [S] =0. 010、 [Y] / [Z] =0. 96であった。
<積層体の製造 >
予めアクリル樹脂組成物 (g— 1) を硬化膜厚 4 mになるようにディップコ ―トで両面塗布し 120 °C、 1時間熱硬化した透明な 2 mm厚のポリ力一ボネー ト製シートに、 かかるオルガノシロキサン樹脂組成物 (h-1) を硬化膜厚 5 mになるようにディップコートで両面塗布し、 120°C、 1時間熱硬化して積層 体 19を得た。 積層体 19を評価した結果を表 6に示した。 実施例 7
<オルガノシロキサン樹脂組成物 (h— 2) の調製 >
水分散型コロイダルシリカ分散液 (触媒化成工業 (株) 製 カタロイド SN— 35、 固形分濃度 30重量%) 80部に酢酸 12部を加えて攪拌し、 この分散 液に氷水浴で冷却下メチルトリメトキシシラン 127部を加えた。 この混合液を 30°Cで 1時間半攪拌後、 70°Cで 4時間攪拌した反応液を氷水冷却し、 これに、 硬化触媒として酢酸ナトリウム 2部を氷水冷却下で混合し、 オルガノシロキサン 樹脂組成物 (h— 2) を得た。
該オルガノシロキサン樹脂組成物 (h— 2) のシリコン核磁気共鳴スペクトル 測定を実施した結果、 各ピーク積分値は、 [X] / [S] =0. 006、 [Y] / [Z] =0. 82であった。
予めアクリル樹脂組成物 (g— 1) を硬化膜厚 4 mになるようにディップコ 一トで両面塗布し 1201:、 1時間熱硬化した透明な 2 mm厚のポリ力一ポネー ト製シートに、 オルガノシロキサン樹脂組成物 (h-2) を硬化膜厚 5 mにな るようにディップコートで両面塗布し、 120°C、 1時間熱硬化してコート層を 有する積層体 20を得た。 得られた積層体 20を評価した結果を表 6に示した。
表 6
第 2層 評価結果
実施例 No.積層体 No. 第 1層 耐謹
[X]ノ [S] [X]/[Z] 密着性 耐擦傷性 耐磨耗性
ノ、ジキ クラック その他 密着性 実施例 6 g-i 0.010 0.960 良好 良好 良好 100 1 4.1 良好 100 実施例 7 積層体 20 g-i 0.006 0.820 良好 良好 良好 100 1 4.7 良好 100
実施例 8〜13
(1) 紫外線吸収能を有する化合物の濃度測定
各実施例および比較例を実施する時、 記載した紫外線吸収能を有する化合物の 濃度 (cQ :単位 g/cm3) が分かっている第 1層用組成物を帝人化成 (株) 製透明ポリカーボネート樹脂板 (PC— 1151 :紫外線吸収剤無添加) 5. 0 mmにディップコ一卜法で各実施例で記載した厚さに塗布し、 20分間室温で放 置後の 380 nmの吸光度 (1 を測定した (硬化前測定)。
次に 130°Cで 1時間熱硬ィ匕させた後、 硬化前測定個所と同じ所の 380 nm の吸光度 (12) を再び測定した。 これらの値を用いて下記式 (f) に従って塗 膜中の紫外線吸収能を有する化合物の濃度 (c) を計算した。
c = c。X (I 2/1 … (f)
なお、 I iおよび I 2の測定値は別に P C- 1 151単独の 380 nmの吸光 度を測定して補償した。
(2) 外観評価:目視にて試験片の 1面のコート層外観 (異物の有無)、 ひび割 れ (クラック) の有無を確認した。
(3) 密着性:両面コート層の 1面にカッターナイフで lmm間隔の 100個の 碁盤目を作りニチバン製粘着テープ (商品名 "セロテープ") を圧着し、 垂直に 強く引き剥がして基材上に残った碁盤目の数で評価した (J I S K5400に 準拠)。
(4) 耐摩耗性: J I S K6735に準じて、 両面コート層の 1面を C a 1 i b r a s e社製 CS— 10 Fの摩耗輪を用い、 荷重 500 gで 1, 000回転テ ーバ一摩耗試験を行い、 テーバー摩耗試験後のへ一ズとテ一バ一摩耗試験前のへ —ズとの差 ΔΗを測定して評価した。 但し、 磨耗輪のリフエ一スは研磨紙 A A— 400に代えて研磨紙 S— 11を用いて 25回転で行った。 (ヘーズ =TdZT t X 100、 Td:散乱光線透過率、 T t :全光線透過率)
(5) 促進試験:紫外線照射面を変更することなくスガ試験機製 (株) スーパー キセノンウエザーメ一ター SX— 75を用いて、 UV照射強度 180W/m2、 ブラックパネル温度 63 °C、 120分中 18分降雨条件下で 1500時間暴露し、 試験片を取り出して紫外線照射面の外観、 黄色度 (ΔΥΙ) を評価した。
(6) 実曝試験:試験片を南向き 45° に設置し、 5年間の曝露面を変更する ことなく実曝後、 試験片を取り出して曝露面の外観、 黄変度 (ΔΥΙ) を評価し た。 参考例 6 (ァクリル樹脂 ( J— 1 ) の合成)
還流冷却器および撹拌装置を備え、 窒素置換したフラスコ中にメチルメタクリ レート (以下 MM Aと略称する) 80. 1部、 2—ヒドロキシェテルメタクリレ ート (以下 HEMAと略称する) 13部、 ァゾビスイソプチロニトリル (以下 A I BNと略称する) 0. 14部ぉょび1, 2—ジメトキシェタン 200部を添加 混合し、 溶解させた。 次いで、 窒素気流中 70°Cで 6時間攪拌下に反応させた。 得られた反応液を n—へキサンに添加して再沈精製し、 アクリル樹脂 (J一 1)) 80部を得た。 参考例 7 (アクリル樹脂 (J— 2) の合成)
還流冷却器および撹拌装置を備え、 窒素置換したフラスコ中にェチルメタクリ レート (以下 EMAと略称する) 91. 3部、 HEMA19. 5部、 2— (2' ーヒドロキシ一 5, —メタクリロキシェチルフエニル) ベンゾトリアゾ一ル (以 下 MEBTと略称する。 濃度 1 OmgZLのクロ口ホルム溶液、 光路長 1. 0 c mで測定した、 波長 300 nmにおける吸光度が 0. 43) 16. 2部、 AI B NO. 25部およびメチルイソプチルケトン 100部および 2—ブ夕ノール 50 部を添加混合し、 溶解させた。 次いで、 窒素気流中 70°Cで 6時間攪拌下に反応 させた。 得られた反応液を n—へキサンに添加して再沈精製し、 アクリル樹脂 (J-2) 100部を得た。 参考例 8 (アタリル樹脂 ( J一 3 ) の合成)
還流冷却器および撹拌装置を備え、 窒素置換したフラスコ中に EMA91. 3 部、 HEMA19. 5部、 UVA— ST1 (B AS F製高分子紫外線吸収剤。 濃 度 1 Omg/Lのクロ口ホルム溶液、 光路長 1. O cmで測定した、 波長 300 nmにおける吸光度が 0. 21) 15部、 AI BN0. 25部およびメチルイソ プチルケトン 100部および 2—ブタノール 50部を添加混合し、 溶解させた。 次いで、 窒素気流中 70°Cで 6時間攪拌下に反応させた。 得られた反応液を n— へキサンに添加して再沈精製し、 アクリル榭脂 (J— 3) 100部を得た。 実施例 8
くオルガノシロキサン樹脂組成物 (t一 1) の調製 >
水分散型コロイダルシリカ分散液 (日産化学工業 (株) 製 スノーテックス 3 0 固形分濃度 30重量%) 100部に蒸留水 2部、 酢酸 20部を加えて攪拌し、 この分散液に氷水浴で冷却下メチルトリメトキシシラン 130部を加えた。 この 混合液を 25 °Cで 1時間攪拌して得られた反応液に、 硬化触媒として酢酸ナトリ ゥム 2部を氷水冷却下で混合し、 イソプロパノール 200部で希釈して得たオル ガノシロキサン樹脂組成物 (t一 1) を得た。 実施例 9 (積層体 21の製造)
<アクリル樹脂組成物 (j一 1) の調製 >
前記アクリル樹脂 (J— 1) 8. 9部および 2— (2' ーヒドロキシ— 5' — t—ォクチルフエ二ル) ベンゾトリアゾ一ル (濃度 1 OmgZLのクロ口ホルム 溶液、 光路長 1. 0 cmで測定した、 波長 300 nmにおける吸光度が 0. 4 5) 4. 0部をメチルェチルケトン 20部、 メチルイソプチルケトン 30部およ び 2—プロパノール 30部からなる混合溶媒に溶解し、 さらにこの溶液に前記ァ クリル樹脂 (J— 1) のヒドロキシ基 1当量に対してイソシァネ一ト基が 1. 5 当量となるようにへキサメチレンジイソシァネート 1. 1部を添加して 25°Cで 5分間攪拌しァクリル樹脂組成物 ( j — 1 ) とした。
このアクリル樹脂組成物 (j一 1) を 5mm厚の PC—l 151にディップ方 式でコーティングし、 25°Cで 20分間静置後、 130°Cで 1時間加熱硬化した。 このとき第 1層は、 膜厚 3. 2 、 膜中に残っている 2— (2' ーヒドロキシ 一 5' — t—才クチルフエニル) ベンゾトリアゾ一ル濃度が 0. 20 gZcm3 であった。
さらに、 オルガノシロキサン樹脂組成物 (t一 1) をディップコート方式でコ —ティングし、 25 で 20分間静置後、 120でで 1時間熱硬ィ匕させた。 第 2 層の膜厚は 5. 1 xmだった。 得られた積層体 21の評価結果を表 7に示した。 表 7中 εは、 濃度 10mg/L のクロ口ホルム溶液、 光路長 1. 0 cmで測定し た、 紫外線吸収能を有する波長 300 nmにおける化合物の吸光度である。 実施例 10 (積層体 22の製造)
くァクリル樹脂組成物 ( j _ 2 ) の調製 >
実施例 9の添加紫外線吸収基を有する化合物を、 2— (2, ーヒドロキシー
5, 一 t一才クチルフエニル) ベンゾトリアゾール 6. 7部とした以外は、 実施 例 9と同様の組成でアクリル樹脂組成物 (j -2) とした。
このアクリル樹脂組成物 (j一 2) を 5mm厚の PC— 1151にディップ方 式でコーティングし、 25 °Cで 20分間静置後、 130 °Cで 1時間加熱硬化した。 このとき第 1層は、 膜厚 7. 2 m、 膜中に残っている 2— (2' —ヒドロキシ 一 5' — t—ォクチルフエニル) ベンゾトリアゾ一ル濃度が 0. 40 g/cm3 であった。
さらに、 オルガノシロキサン樹脂組成物 (t一 1) をディップコート方式でコ 一ティングし、 25°Cで 20分間静置後、 120 Cで 1時間熱硬化させた。 第 2 層の膜厚は 5. 1 だった。 得られた積層体 22の評価結果を表 7に示した。 実施例 11 (積層体 23の製造)
<アクリル樹脂組成物 (j _3) の調製 >
実施例 9の添加紫外線吸収基を有する化合物を、 2— (2' —ヒドロキシー 5, 一 t—ォクチルフエニル) ベンゾトリアゾール 3. 0部と 2_ (2H—ベン ゾトリアゾ一ル—2—ィル) 一 4, 6—ビス (1—メチル _ 1一フエ二ルェチ ル) フエノ一ル (濃度 1 OmgZLのクロ口ホルム溶液、 光路長 1· O cmで測 定した、 波長 30 Onmにおける吸光度が 0. 38) 1. 6部の併用とした以外 は、 実施例 9と同様の組成でアクリル樹脂組成物 ( j -3) とした。
このァクリル樹脂組成物を 5 mm厚の P C— 1151にディップ方式でコ一テ イングし、 25°Cで 20分間静置後、 130°Cで 1時間加熱硬化した。 このとき 第 1層は、 膜厚 2. 3 m, 膜中に残っている 2— (2, ーヒドロキシ一 5, - t一才クチルフエ二ル) ベンゾトリアゾ一ル濃度が 0. 13 g/cm3、 2— ( 2 H—べンゾトリァゾールー 2—ィル) 一 4, 6—ビス (1一メチル一1ーフ ェニルェチル) フエノール濃度が 0. 16 gZcm3であった。
さらに、 オルガノシロキサン樹脂組成物 (t一 1) をディップコート方式でコ —ティングし、 25°Cで 20分間静置後、 120°Cで 1時間熱硬ィ匕させた。 第 2 層の膜厚は 4. 9 /imだった。 得られた積層体 23の評価結果を表 7に示した。 実施例 12 (積層体 24の製造)
<アクリル樹脂組成物 (j一 4) の調製 >
前記アクリル樹脂 (J— 2) 10. 0部を、 メチルイソプチルケトン 50部お よび 2—ブタノ一ル 30部からなる混合溶媒に溶解し、 さらにこの溶液に前記ァ クリル樹脂 (J一 2) のヒドロキシ基 1当量に対してイソシァネート基が 1. 0 当量となるように VEST ANAT B 1358/100 (デダサジャパン製ァ ダクト型ポリイソシァネート化合物前駆体) 4. 04部を添加し、 さらにモノブ チルチントリス (2—ェチルへキサノエート) 0. 001部を添加して 25°Cで 30分間攪拌しァクリル樹脂組成物 ( j— 4 ) とした。
このアクリル樹脂組成物 (j—4) を 5mm厚の PC— 1151にディップ方 式でコーティングし、 25 で 20分間静置後、 130 °Cで 1時間加熱硬化した。 このとき第 1層は、 膜厚 6. 0 m、 膜中に残っている 2_ (2' ーヒドロキシ -5' ーメタクリロキシェチルフエニル) ベンゾトリアゾ一ルに相当する濃度が 0. 11 g/ cm3であった。
さらに、 オルガノシロキサン樹脂組成物 (t-1) をディップコート方式でコ —ティングし、 25 °Cで 20分間静置後、 120 で 1時間熱硬化させた。 第 2 層の膜厚は 4. 9 mだった。 得られた積層体 24の評価結果を表 7に示した。 実施例 13 (積層体 25の製造)
くアクリル樹脂組成物 (J -5) の調製 >
実施例 12のアクリル樹脂組成物 (j一 4) に、 添加紫外線吸収基を有する化 合物、 2— (2, 一ヒドロキシ—5' - t一才クチルフエ二ル) ベンゾトリアゾ ール 3. 0部を添加した以外は、 実施例 12と同様の組成でアクリル樹脂組成物. (j -5) とした。
このアクリル樹脂組成物 (j一 5) を 5mm厚の PC— 1151にディップ方 式でコ一ティングし、 25°Cで 20分間静置後、 130でで 1時間加熱硬化した。 このとき第 1層は、 膜厚 3. 5 m, 膜中に残っている 2— (2' —ヒドロキシ 一 5' —メ夕クリロキシェチルフエニル) ベンゾトリアゾ一ルに相当する濃度が 0. l l g cm3、 2- (2' —ヒドロキシ一 5, 一 t一才クチルフエニル) ベンゾトリァゾール濃度が 0. 13 g / c m3であった。
さらに、 オルガノシロキサン樹脂組成物 (t— 1) をディップコート方式でコ 一ティングし、 25 :で 20分間静置後、 120°Cで 1時間熱硬化させた。 第 2 層の膜厚は 4. 2 mだった。 得られた積層体 25の評価結果を表 7に示した。
表 7
Figure imgf000071_0001
1 ο
表 7 (つづき)
性能評価
実施例 No. c (g/cm3) dX c 外観 密着性 耐磨耗性 促進試験 夹 ft口 驟 厶 Y1 厶 Y1 実施例 9 積層体 21 3.2 0.20 0.64 〇 100 3.2 〇 1.1 〇 2.0 実施例 10 積層体 22 7.2 0.40 2.88 〇 100 4.2 〇 0.8 〇 1.5
0.13
実施例 11 積層体 23 2.3 0.67 〇 100 3.4 〇 1.0 〇 1.3
0.16
実施例 12 積層体 24 6.0 0.11 0.66 〇 100 3.8 〇 0.9 〇 2.0
0.11
実施例 13 積層体 25 3.5 0.84 〇 100 3.6 〇 0.4 〇 0.8
0.13
実施例 14
くァクリル樹脂組成物 ( s— 1 ) の調製 >
前記アクリル樹脂 (I) 10. 0部および 2— (2' ーヒドロキシ一 5' - t 一才クチルフエニル) ベンゾトリアゾール 3. 00部をメチルイソプチルケトン 52部および 2—ブタノ一ル 26部からなる混合溶媒に溶解し、 さらにこの溶液 に前記アクリル樹脂 (I) のヒドロキシ基 1当量に対してイソシァネ一ト基が 1. 5当量となるように VESTANAT B1358/100 (デダサジャパン製 ブロックイソシァネート) 4. 99部を添加し、 さらに APZ— 6633 (日本 ュニカー (株) 製ァミノ基含有シランカップリング剤加水分解縮合物) 1. 00 部を添加して 25°Cで 30分間攪拌しアクリル樹脂組成物 (s— 1) を調製した。 得られたアクリル樹脂組成物 (s— 1) の組成を表 8に示す。
(積層体 26の製造)
5 mm厚の PC樹脂製シートに、 アクリル樹脂組成物 (s— 1) を、 熱硬化後 の膜厚が 4. 0 mになるようにディップコート法によって両面塗布し、 25°C で 20分静置後、 130 °Cで 1時間熱硬化させた。 次いで該シー卜の被膜表面上 に、 オルガノシロキサン樹脂組成物 (i i— 1) を熱硬化後の膜厚が 5. 0 zm になるようにディップコ一卜法で塗布し、 25 °Cで 20分静置後 120 °Cで 1時 間熱硬化させた。 得られた積層体 26の評価結果を表 9に示す。 評価は実施例 4 と同じ方法で行った。 ' 実施例 15
<アクリル樹脂組成物 (s— 4) の調製 >
前記アクリル樹脂 (I I I) 10. 0部および 2— (2' —ヒドロキシー 5' 一 t一才クチルフエニル) ベンゾトリアゾール 2. 22部をメチルイソプチルケ トン 40部および 2—ブタノール 20部からなる混合溶媒に溶解し、 さらにこの 溶液に前記アクリル樹脂 (I I I) のヒドロキシ基 1当量に対してイソシァネー ト基が 1. 5当量となるようにへキサメチレンジイソシァネート 1. 09部を添 加し、 さらに KBM403 (信越シリコーン (株) 製シランカップリング剤) 0. 1部を添加して 25 °Cで 30分間攪拌し、 アクリル樹脂組成物 (s-4) を調製 した。 得られたアクリル樹脂組成物 (s-4) の組成を表 8に示す。
<積層体 27の製造 >
5 mm厚の PC樹脂製シートに、 アクリル樹脂組成物 (s— 4) を、 熱硬化後 の膜厚が 4. 0 mになるようにディップコ一ト法によって両面塗布し、 25°C で 20分静置後、 130°Cで 1時間熱硬化させた。 次いで該シートの被膜表面上 に、 オルガノシロキサン樹脂組成物 (i i一 4) を熱硬化後の膜厚が 5. O um になるようにディップコート法で塗布し、 25 °Cで 20分静置後 120 °Cで 1時 間熱硬化させた。 得られた積層体 27の評価結果を表 9に示した。 評価は実施例 4と同じ方法で行った。
表 8
塗料 No. アクリル樹脂 架橋剤 シランカップリング斉 IJ
No. 配合量 NCO/OH当量比 配合量 配合量 s-1 (I) 10 VESTANAT 1.5 4.99 APZ-6633 1 s-4 (III) 10 HDI 1.5 1.09 KBM403 0.1
表 8 (つづき)
Figure imgf000076_0001
^3
表 9
第 2層 耐熱水性
耐摩耗性
実施例 No. 膜厚 膜厚 密着性 耐擦傷性 3時間 10時間
No. ' No. △Η(%)
(μτ ; 密着性 密着性 実施例 14 積層体 26 (s-1) 4.0 (ii一 1) 5.0 良好 100 3.2 1 良好 100 良好 100 実施例 15 積層体 27 (s-4) 4.0 (ϋ一 4) 4.5 良好 100 3.9 1 良好 100 良好 100
表 9 (つづき)
耐環境サイクル試験 高温環境耐久性 耐候性 実施例 No. ■ 2000時間 2500時間 密着性 密着性 密着性
密着 密着 黄変度 実施例 14 良好 100 良好 100 良好 100 100 0.9 100 1.8 実施例 15 良好 100 良好 100 良好 100 100 1.1 100 2.3
(発明の効果)
本発明によれば、 外観、 密着性、 耐擦傷性、 耐摩耗性、 耐熱水性が良好で、 高 いレベルの耐候性を有し、 環境の変化や高温環境に対する耐久性に優れた積層体 が提供される。
また、 本発明によれば、 該積層体の製造に用いることのできる貯蔵安定性に優 れたァクリル榭脂組成物、 オルガノシロキサン樹脂組成物が提供される。 産業上の利用可能性
本発明の積層体は、 その透明性を生かし、 自動車用窓ガラスやサンルーフに好 適に使用することができる。

Claims

請 求 の 範 囲
1. ポリ力一ポネート基材、 第 1層および第 2層からなり、 ポリカーボネート基 材の表面に第 1層が形成され、 第 1層の表面に第 2層が形成されてなる積層体で あって、
第 1層は、 架橋したアクリル共重合体および紫外線吸収剤からなり、 第 2層は、 架橋したオルガノシロキサン重合体からなり、
該架橋したァクリル共重合体は、 50モル%以上の下記式 (A-1)
Figure imgf000080_0001
COOR1
(式中 R1はメチル基またはェチル基である。) で表される繰り返し単位、
5〜30モル%の下記式 (A-2)
Figure imgf000080_0002
COO一 R2— OFT
(式中 R2は炭素数 2〜5のアルキレン基である。 式 (A—2) で表される繰り 返し単位において少なくとも一部の R aは単結合であり、 残りが水素原子である £ R aが単結合の場合はウレタン結合を介して、 他の式 (A—2) で表される繰り 返し単位と結合している。) で表される繰り返し単位、 および
0〜30モル%の下記式 (A— 3)
Y
Figure imgf000080_0003
(伹し、 式中 Yは水素原子またはメチル基であり、 R3は水素原子、 炭素数 2 5のアルキル基、 紫外線吸収残基からなる群より選ばれる少なくとも一種の基で ある。 但し、 Yがメチル基であり、 かつ R3がメチル基またはェチル基である場 合を除く。) で表される繰り返し単位からなり、 ウレタン結合と、 式 (A— 1) 〜 (A— 3) で表される繰り返し単位の合計量とのモル比が 4Z100〜30Z 100の範囲にある架橋したアクリル共重合体であり、
該架橋したオルガノシロキサン重合体は、 下記式 (b— 4) 〜 (b— 6)
Q1Si ■0- (b-4)
3
Q1Q2Si~("0+ (b-5)
2
Figure imgf000081_0001
(式中、 QK Q2は、 それぞれ炭素数 1〜4のアルキル基、 ビニル基、 または メ夕クリロキシ基、 アミノ基、 グリシドキシ基および 3, 4—エポキシシクロへ キシル基からなる群より選ばれる少なくとも一種の基で置換された炭素数 1〜 3 のアルキル基である。) で表される繰り返し単位からなり、 各繰り返し単位のモ ル比 {(b-4) Z (b-5) / (b-6)} が、 80-100/0-20Z0〜 20である架橋したオルガノシロキサン重合体である、 前記積層体。
2. 該架橋したアクリル共重合体は、 70〜95モル%の式 (A— 1) で表され る繰り返し単位、 および 5〜30モル%の式 (Α— 2) で表される繰り返し単位 からなる架橋したァクリル共重合体である請求項 1に記載の積層体。
3. 該架橋したアクリル共重合体は、 式 (A— 1) の R1がェチル基、 かつ式 (Α— 2) の R2がエチレン基である請求項 1に記載の積層体。
4. ポリカーボネート基材の厚さが 1〜10mm、 第 1層の厚さが 1〜 12 m、 第 2層の厚さが 2〜10 mである請求項 1に記載の積層体。
5. 第 1層は、 濃度 1 OmgZLのクロ口ホルム溶液、 光路長 1. O cmで測定 した、 波長 300 nmにおける吸光度が 0. 25以上である紫外線吸収剤を含有 し、 下記式 ( i ) 〜 ( i i i )
2≤d≤8 (i)
0. l≤c≤0. 5 (i i)
0. 6≤dX c≤3 (i i i)
(但し、 式中 dは で表された第 1層の厚さであり、 cは第 1層中の g/cm 3で表された紫外線吸収剤の濃度である)
を満足する請求項 1に記載の積層体。
6. 請求項 1に記載の積層体より形成された窓材。
7. ポリ力一ポネート基材、 第 1層および第 2層からなり、 ポリカーボネート基 材の表面に第 1層が形成され、 第 1層の表面に第 2層が形成されてなる積層体で あって、
第 1層は、 成分 (A) 〜 (E) を含有するアクリル樹脂組成物をポリカーボネ —ト基材の表面に積層した後、 硬化した層であって、 第 2層は、 成分 (a) 〜 (d) を含有するオルガノシロキサン樹脂組成物を第 1層の表面に積層した後、 硬ィ匕した層であって、
成分 (A) は、 アクリル共重合体であって、 50モル%以上の下記式 (A— 1)
Figure imgf000082_0001
COOR1
(式中 R1はメチル基またはェチル基である。)
で表される繰り返し単位、 5〜3 0モル%の下記式 (A- 4)
Figure imgf000083_0001
COO一 R2— OH
(式中 R 2は炭素数 2〜 5のアルキレン基である。)
で表される繰り返し単位、 および
0〜3 0モル%の下記式 (A— 3 )
Y
Figure imgf000083_0002
(式中 Yは水素原子またはメチル基であり、 R 3は水素原子、 炭素数 2〜5のァ ルキル基、 紫外線吸収残基からなる群より選ばれる少なくとも一種の基である。 但し、 Yがメチル基であり、 かつ R 3がメチル基またはェチル基である場合を除 く。)
で表される繰り返し単位からなるァクリル共重合体、
成分 (B) は、 イソシァネート基の含有量が成分 (A) のヒドロキシ基 1当量 に対して 0 . 7〜 5当量である、 ポリイソシァネ一ト化合物および/またはプロ ック化されたポリィソシァネート化合物、
成分 (C) は、 成分 (A) および成分 (B) の合計 1 0 0重量部に対して 0〜 0 . 4重量部の硬化触媒、
成分 (D) は、 成分 (A) および成分 (B) の合計 1 0 0重量部に対して 1 0 〜 5 0重量部の紫外線吸収剤、
成分 (E) は、 成分 (A) および成分 (B) の合計 1 0 0重量部に対して 0〜 5重量部のシラン力ップリング剤であり、
成分 (a) は、 コロイダルシリカ、
成分 (b) は、 下記式 (b— 1 ) ~ (b— 3 ) C^S i (〇Q3) 3 (b— 1)
i (OQ3) 2 (b-2)
S i (OQ3) 4 (b - 3)
(式中、 Q1, Q 2はそれぞれ、 炭素数 1〜4のアルキル基、 ビニル基、 または メタクリロキシ基、 アミノ基、 グリシドキシ基および 3, 4一エポキシシクロへ キシル基からなる群より選ばれる少なくとも一種の基で置換された炭素数 1〜 3 のアルキル基であり、 Q 3は炭素数 1〜 4のアルキル基である。)
で表されるアルコキシシランから形成され、
各成分のモル比 b— 1) / (b-2) / (b- 3)} が、 80〜: L 00/0 〜20/0〜20である、 アルコキシシランの加水分解物および/またはそれら の縮合物、
成分 (c) は硬化触媒、
成分 (d) は溶媒であり、
成分 (a) 由来の S iと成分 (b) 由来の S iとのモル比 (S i a/S i b) が 2/8〜4Z6である、
前記積層体。
8. 成分 (B) は、 ブロック化されたポリイソシァネート化合物である請求項 7 に記載の積層体。
9. 成分 (C) は、 下記式
Rx mSn (〇CORy) 4_m
(式中、 Rxは同一または異なっていてもよく炭素数 1〜8の炭化水素基、 Ry は同一または異なっていてもよく炭素数 1〜 17の置換または非置換の炭化水素 基であり、 mは 0〜3の整数である。)
で表される有機錫化合物であり、 (A) および (B) の合計 100重量部に対し て 0. 01〜 0. 4重量部含有する請求項 7に記載の積層体。
10. 成分 (A) は、 70~95モル%の式 (A—l) で表される繰り返し単位 および 5〜30モル%の式 (A— 4) で表される繰り返し単位からなるアクリル 共重合体である請求項 7に記載の積層体。
1 1. 成分 (A) は、 式 (A— 1) の R1がェチル基、 かつ式 (A— 4) の R2 がエチレン基である請求項 7に記載の積層体。
12. 請求項 7に記載の積層体より形成された窓材。
13. 成分 (A) 〜 (E) を含有するアクリル樹脂組成物であって、
成分 (A) は、 アクリル共重合体であって、 50モル%以上の下記式 (A_ 1)
Figure imgf000085_0001
COOR1
(式中 R1はメチル基またはェチル基である。)
で表される繰り返し単位、
5〜30モル%の下記式 (A— 4)
Figure imgf000085_0002
(式中 R 2は炭素数 2〜 5のアルキレン基である。)
で表される繰り返し単位、 および
0〜30モル%の下記式 (A— 3) Y
Figure imgf000086_0001
(但し、 式中 Yは水素原子またはメチル基であり、 R3は水素原子、 炭素数 2〜 5のアルキル基、 紫外線吸収残基からなる群より選ばれる少なくとも一種の基で ある。 但し、 Yがメチル基であり、 かつ R3がメチル基またはェチル基である場 合を除く。)
で表される繰り返し単位からなるァクリル共重合体、
成分 (B) は、 イソシァネート基の含有量が成分 (A) のヒドロキシ基 1当量 に対して 0. 7~5当量である、 ポリイソシァネート化合物および Zまたはプロ ック化されたポリイソシァネート化合物、
成分 (C) は、 成分 (A) および成分 (B) の合計 100重量部に対して 0〜 0. 4重量部の硬化触媒、
成分 (D) は、 成分 (A) および成分 (B) の合計 100重量部に対して 10 〜 50重量部の紫外線吸収剤、
成分 (E) は、 成分 (A) および成分 (B) の合計 100重量部に対して 0〜 5重量部のシランカップリング剤、
である前記ァクリル樹脂組成物。
14. 成分 (B) は、 ブロック化されたポリイソシァネート化合物である請求項 13に記載のァクリル榭脂組成物。
15. 成分 (C) は、 有機錫化合物であり、 (A) および (B) の合計 100重 量部に対して 0. 01〜0. 4重量部含有する請求項 13に記載のアクリル樹脂 組成物。
16. 成分 (A) は、 70〜95モル%の式 (A— 1) で表される繰り返し単位 および 5〜30モル%の式 (A— 4) で表される繰り返し単位からなるアクリル 共重合体である請求項 13に記載のァクリル樹脂組成物。
17. 成分 (A) は、 式 (A— 1) の R1がェチル基、 かつ式 (A— 4) の R2 がエチレン基である請求項 13に記載のァクリル樹脂組成物。
18. 成分 (C) は、 下記式
Rx mSn (OCORy) 4_m
(式中、 Rxは同一または異なっていてもよく炭素数 1〜8の炭化水素基、 Ry は同一または異なっていてもよく炭素数 1〜17の置換または非置換の炭ィ匕水素 基であり、 mは 0〜3の整数である。)
で表される有機錫化合物である請求項 13に記載のァクリル樹脂組成物。
19. 成分 (a) 〜 (d) を含有するオルガノシロキサン樹脂組成物であって、 成分 (a) は、 コロイダルシリカ、
成分 (b) は、 下記式 (b— 1) 〜 (b— 3)
i (OQ3) 3 (b - 1)
Q'Q2S i (OQ3) 2 (b- 2)
S i (OQ3) 4 (b - 3)
(式中、 Q Q2は、 炭素数 1〜4のアルキル基、 ビニル基、 またはメタクリ ロキシ基、 アミノ基、 グリシドキシ基および 3, 4—エポキシシクロへキシル基 からなる群より選ばれる 1以上の基で置換された炭素数 1〜 3のアルキル基であ り、 Q3は炭素数 1〜4のアルキル基である。)
で表されるアルコキシシランから形成され、 各成分の割合、 (b— 1) / (b— 2) / (b - 3) が、 80〜: L 00/0〜20Z0〜20である、 アルコキシシ ランの加水分解物および Zまたはそれらの縮合物であつて、
成分 (c) は硬化触媒、
成分 (d) は溶媒であり、 樹脂組成物中の、 成分 (a) 由来の S iと成分 (b) 由来の S iとのモル比 (S i VS i b) が 2Z8〜4/6、
である前記オルガノシロキサン樹脂組成物。
20. 該オルガノシロキサン樹脂組成物は、 測定溶媒として重水 (D2〇) を用 い、 観測周波数 79MHZ、 観測パルス 6. 0 S, 繰り返し時間 30秒、 プロ 一ドニングファクタ一 5HZの条件でシリコン核磁気共鳴スペクトル (29S i— NMR) 測定した時、 オルガノシロキサン樹脂組成物のシリコン原子のケミカル シフトが、 テトラメチルシランのシリコン原子を 0 p pmとして、 —46. 5 p pmから一 70. 0 ρ pmの範囲のすべてのピークの積分値を [S]、 該ピーク 積分値中で一 46. 5 p pmから一 48. 5 p pmの範囲のピーク積分値 [X]、 - 52. 5 ppmから— 61. 0 p pmの範囲のピーク積分値を [Y]、 —61. O ppmから一 70. 0 p pmの範囲のピーク値を [Z] と表したとき、 0. 0 02≤ [X] / [S] ≤0. 2であり、 かつ 0. 6≤ [Y] / [Z] ≤3である ことを特徴とする請求項 19に記載のオルガノシロキサン樹脂組成物。
21. さらに、 成分 (e) として、
アクリル共重合体であって、 50〜90モル%以上の下記式 (A— 1)
Figure imgf000088_0001
COOR1
(但し、 式中 R1はメチル基またはェチル基である。) で表される繰り返し単位、 および 10〜50モル%の下記式 (A— 4)
Figure imgf000088_0002
COO― R^— OH (伹し、 式中 R 2は炭素数 2〜 5のアルキレン基である。)
で表される繰り返し単位からなるァクリル共重合体を、
オルガノシロキサン樹脂組成物 1 0 0重量部に対して 0 . 1〜 2 0重量部含有す る請求項 1 9に記載のオルガノシロキサン樹脂組成物。
PCT/JP2003/007883 2002-06-21 2003-06-20 アクリル樹脂組成物、オルガノシロキサン樹脂組成物およびそれからなる積層体 WO2004000551A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2003244100A AU2003244100A1 (en) 2002-06-21 2003-06-20 Acrylic resin composition, organosiloxane resin composition and laminates made by using them
US10/487,218 US7070859B2 (en) 2002-06-21 2003-06-20 Acrylic resin composition organosiloxane resin composition and laminate comprising the same
KR1020047002490A KR100984993B1 (ko) 2002-06-21 2003-06-20 아크릴 수지조성물, 오르가노실록산 수지조성물 및 이들로이루어지는 적층체
EP03760926.0A EP1516722B1 (en) 2002-06-21 2003-06-20 Acrylic resin composition, organosiloxane resin composition and laminates made by using them
CA 2460387 CA2460387C (en) 2002-06-21 2003-06-20 Acrylic resin composition, organosiloxane resin composition and laminate comprising the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2002181142A JP4046156B2 (ja) 2002-06-21 2002-06-21 表面を保護された透明プラスチック成形体およびオルガノシロキサン樹脂組成物用下塗り塗料組成物
JP2002-181142 2002-06-21
JP2002184229A JP2004026979A (ja) 2002-06-25 2002-06-25 オルガノシロキサン樹脂組成物および該樹脂で表面を保護されたポリカーボネート樹脂成形体
JP2002-184229 2002-06-25
JP2002187969A JP4065728B2 (ja) 2002-06-27 2002-06-27 実曝耐候性に優れたポリカーボネート樹脂積層体
JP2002-187969 2002-06-27

Publications (1)

Publication Number Publication Date
WO2004000551A1 true WO2004000551A1 (ja) 2003-12-31

Family

ID=30003578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/007883 WO2004000551A1 (ja) 2002-06-21 2003-06-20 アクリル樹脂組成物、オルガノシロキサン樹脂組成物およびそれからなる積層体

Country Status (7)

Country Link
US (1) US7070859B2 (ja)
EP (1) EP1516722B1 (ja)
KR (1) KR100984993B1 (ja)
CN (1) CN100519178C (ja)
AU (1) AU2003244100A1 (ja)
CA (1) CA2460387C (ja)
WO (1) WO2004000551A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011105382A1 (ja) * 2010-02-23 2013-06-20 旭硝子株式会社 ハードコート層を有する樹脂基板
US8765891B2 (en) 2006-03-10 2014-07-01 Teijin Chemicals, Ltd. Laminate of an acrylic resin composition layer containing triazine based ultra-violet compounds and an organosiloxane resin composition layer
DE102014107610A1 (de) 2014-05-28 2015-12-03 Emsland-Stärke GmbH Verwendung eines Nahrungsmittelprodukts aus stärkehaltigen Pflanzenteilen
WO2017171033A1 (ja) * 2016-03-31 2017-10-05 新日鉄住金化学株式会社 積層体、その中間体、およびその製造方法、それに用いる硬化性樹脂組成物
US10280272B2 (en) 2012-02-21 2019-05-07 Teijin Limited Laminate having a top coat layer containing flaky metal oxide fine particles

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1879739B1 (en) * 2005-02-23 2017-05-17 Exatec, LLC. Plastic panels with uniform weathering characteristics
DE102005017023A1 (de) * 2005-04-13 2006-10-19 Bayer Materialscience Ag UV-stabilisierte Polycarbonatformkörper
US8304085B2 (en) * 2006-04-18 2012-11-06 Dow Corning Corporation Metal foil substrates coated with condensation cured silicone resin compositions
US20080199675A1 (en) * 2007-01-31 2008-08-21 Sumitomo Chemical Company, Limited Laminate film
JP4881208B2 (ja) * 2007-03-30 2012-02-22 リンテック株式会社 日射遮蔽フィルム用粘着剤及び日射遮蔽フィルム
WO2008153143A1 (ja) * 2007-06-14 2008-12-18 Nippon Shokubai Co., Ltd. 熱可塑性樹脂組成物とそれを用いた樹脂成形品および偏光子保護フィルムならびに樹脂成形品の製造方法
KR101495398B1 (ko) * 2008-12-02 2015-02-25 아리조나 보드 오브 리젠츠 온 비하프 오브 아리조나 스테이트 유니버시티 유연성 기판 조립체의 제조 방법 및 그것으로부터의 유연성 기판 조립체
CA2741003A1 (en) * 2008-12-05 2010-06-10 E. I. Dupont De Nemours And Company Self-assembled silica condensates
EP2517878B1 (en) * 2009-12-25 2015-07-08 Asahi Glass Company, Limited Resin substrate with hard coat and process for production thereof
EP2563865B1 (en) * 2010-04-28 2016-06-01 3M Innovative Properties Company Articles including nanosilica-based primers for polymer coatings and methods
EP2666629A4 (en) * 2011-01-20 2014-09-17 Asahi Glass Co Ltd RESIN RESIN WITH A HARD COATING AND METHOD FOR THE PRODUCTION THEREOF
JP5573760B2 (ja) * 2011-04-07 2014-08-20 信越化学工業株式会社 耐候性ハードコート組成物及び被覆物品
CN103848428A (zh) * 2012-12-07 2014-06-11 深圳富泰宏精密工业有限公司 二氧化硅溶胶,应用该二氧化硅溶胶对金属基体进行表面处理的方法及其制品
ITRM20120656A1 (it) * 2012-12-20 2014-06-21 Bayer Materialscience Ag Articolo multistrato a base di policarbonato con forte resistenza agli agenti atmosferici.
KR101768277B1 (ko) * 2014-09-05 2017-08-16 삼성에스디아이 주식회사 프라이머 조성물 및 이를 이용한 플라스틱 글레이징
CN105295083A (zh) * 2015-11-23 2016-02-03 北京航玻新材料技术有限公司 具有增硬涂层的透明塑料及其制备方法
JP7389102B2 (ja) * 2019-02-27 2023-11-29 テルモ株式会社 医療用具の製造方法および医療用具

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4826822A (ja) 1971-08-11 1973-04-09
JPS512736A (ja) 1974-06-25 1976-01-10 Dow Corning
JPS5133128A (ja) 1974-09-13 1976-03-22 Sumitomo Chemical Co
GB2028228A (en) 1978-07-26 1980-03-05 Roehm Gmbh Method of coating
JPS5594971A (en) 1978-11-30 1980-07-18 Gen Electric Silicone resin coating composition
JPS56161871A (en) 1980-05-16 1981-12-12 Sumitomo Chem Co Ltd Protection of surface
US4309319A (en) 1978-11-30 1982-01-05 General Electric Company Silicone resin coating composition
JPS60219234A (ja) 1984-04-16 1985-11-01 Toray Ind Inc 複合膜の製造方法
JPS62169832A (ja) 1985-12-25 1987-07-27 Toshiba Silicone Co Ltd プラスチツク成形品の表面保護法
JPS63278979A (ja) 1987-05-12 1988-11-16 Sanruuku:Kk 組成物
JPH01306476A (ja) 1988-06-03 1989-12-11 Catalysts & Chem Ind Co Ltd 被覆用組成物
WO1997022672A1 (en) 1995-12-20 1997-06-26 Basf Coatings Ag Thermosetting paint composition
JP2000318106A (ja) 1999-05-11 2000-11-21 Teijin Chem Ltd 表面を保護された透明ポリカーボネート樹脂成形体
EP1125764A1 (en) 1998-10-01 2001-08-22 Nissha Printing Co., Ltd. Transfer material, surface-protective sheet, and process for producing molded article with these
JP2002338719A (ja) 2001-05-16 2002-11-27 Teijin Chem Ltd 表面を保護された透明プラスチック成形体

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999008158A1 (fr) * 1997-08-08 1999-02-18 Dai Nippon Printing Co., Ltd. Corps de formation de motifs, procede de formation de motifs et leurs applications
EP1312472B1 (en) * 2000-08-18 2009-02-11 Teijin Chemicals, Ltd. Sheet-form layered structure with attractive appearance and utilization thereof
JP4848583B2 (ja) * 2000-11-21 2011-12-28 大日本印刷株式会社 ハードコート層を有するフィルムの製造方法

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4826822A (ja) 1971-08-11 1973-04-09
JPS512736A (ja) 1974-06-25 1976-01-10 Dow Corning
US3986997A (en) 1974-06-25 1976-10-19 Dow Corning Corporation Pigment-free coating compositions
JPS5133128A (ja) 1974-09-13 1976-03-22 Sumitomo Chemical Co
GB2028228A (en) 1978-07-26 1980-03-05 Roehm Gmbh Method of coating
JPS5594971A (en) 1978-11-30 1980-07-18 Gen Electric Silicone resin coating composition
US4309319A (en) 1978-11-30 1982-01-05 General Electric Company Silicone resin coating composition
JPS56161871A (en) 1980-05-16 1981-12-12 Sumitomo Chem Co Ltd Protection of surface
JPS60219234A (ja) 1984-04-16 1985-11-01 Toray Ind Inc 複合膜の製造方法
JPS62169832A (ja) 1985-12-25 1987-07-27 Toshiba Silicone Co Ltd プラスチツク成形品の表面保護法
US4725459A (en) 1985-12-25 1988-02-16 Toshiba Silicone Co., Ltd. Protection method for molded-plastic surfaces
JPS63278979A (ja) 1987-05-12 1988-11-16 Sanruuku:Kk 組成物
JPH01306476A (ja) 1988-06-03 1989-12-11 Catalysts & Chem Ind Co Ltd 被覆用組成物
WO1997022672A1 (en) 1995-12-20 1997-06-26 Basf Coatings Ag Thermosetting paint composition
EP1125764A1 (en) 1998-10-01 2001-08-22 Nissha Printing Co., Ltd. Transfer material, surface-protective sheet, and process for producing molded article with these
JP2000318106A (ja) 1999-05-11 2000-11-21 Teijin Chem Ltd 表面を保護された透明ポリカーボネート樹脂成形体
JP2002338719A (ja) 2001-05-16 2002-11-27 Teijin Chem Ltd 表面を保護された透明プラスチック成形体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1516722A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8765891B2 (en) 2006-03-10 2014-07-01 Teijin Chemicals, Ltd. Laminate of an acrylic resin composition layer containing triazine based ultra-violet compounds and an organosiloxane resin composition layer
US8859099B2 (en) 2006-03-10 2014-10-14 Teijin Chemicals, Ltd. Laminate of an acrylic resin composition layer containing triazine based ultra-violet compounds and an organosiloxane resin composition layer
JPWO2011105382A1 (ja) * 2010-02-23 2013-06-20 旭硝子株式会社 ハードコート層を有する樹脂基板
US10280272B2 (en) 2012-02-21 2019-05-07 Teijin Limited Laminate having a top coat layer containing flaky metal oxide fine particles
DE102014107610A1 (de) 2014-05-28 2015-12-03 Emsland-Stärke GmbH Verwendung eines Nahrungsmittelprodukts aus stärkehaltigen Pflanzenteilen
WO2017171033A1 (ja) * 2016-03-31 2017-10-05 新日鉄住金化学株式会社 積層体、その中間体、およびその製造方法、それに用いる硬化性樹脂組成物

Also Published As

Publication number Publication date
EP1516722B1 (en) 2015-09-02
EP1516722A4 (en) 2008-03-12
AU2003244100A1 (en) 2004-01-06
US7070859B2 (en) 2006-07-04
KR20050009980A (ko) 2005-01-26
CN100519178C (zh) 2009-07-29
EP1516722A1 (en) 2005-03-23
CA2460387A1 (en) 2003-12-31
CN1564742A (zh) 2005-01-12
US20040247878A1 (en) 2004-12-09
CA2460387C (en) 2010-09-28
KR100984993B1 (ko) 2010-10-04

Similar Documents

Publication Publication Date Title
WO2004000551A1 (ja) アクリル樹脂組成物、オルガノシロキサン樹脂組成物およびそれからなる積層体
US8940397B2 (en) Weatherable and abrasion resistant coating systems for polymeric substrates
JP5242929B2 (ja) コーティング用アクリル樹脂組成物およびこれを用いたプラスチック成形体
US8637157B2 (en) Copolycarbonates, their derivatives and the use thereof in silicone hardcoat compositions
US6281322B1 (en) Coating compositions containing alkoxysilanes
WO2007105741A1 (ja) 積層体
PL205153B1 (pl) Zastosowanie zawierających rozpuszczalnik dwuskładnikowych poliuretanowych środków wiążących
JP2005200546A (ja) シリコーンレジン組成物及びそれを用いた被覆物品
JP5598448B2 (ja) 耐擦傷性シリコーンコーティング組成物並びに被覆物品及びその製造方法
JPWO2018003880A1 (ja) 活性エネルギー線硬化性樹脂組成物、樹脂成形品および樹脂成形品の製造方法
JP2014508834A5 (ja)
CA2522010C (en) Hybrid topcoats
JP2004027110A (ja) 被覆ポリカーボネート板状成形体の形成方法
JP2005161652A (ja) 表面を保護された曲面を有するポリカーボネート樹脂積層体および該積層体から形成された建設機械用天窓
JP4046156B2 (ja) 表面を保護された透明プラスチック成形体およびオルガノシロキサン樹脂組成物用下塗り塗料組成物
JP2005161600A (ja) ポリカーボネート樹脂積層体
JP2004035613A (ja) 表面を保護された透明プラスチック成形体およびオルガノシロキサン樹脂組成物用下塗り塗料組成物
JP2004035614A (ja) 被覆ポリカーボネート板状成形体
JP2004027107A (ja) 被覆ポリカーボネート板状成形体
JP2004035612A (ja) 表面を保護された透明プラスチック成形体およびオルガノシロキサン樹脂組成物用下塗り塗料組成物
JP4046157B2 (ja) 表面を保護された透明プラスチック成形体およびオルガノシロキサン樹脂組成物用下塗り塗料組成物
JP2004034338A (ja) 表面を保護された透明プラスチック成形体およびオルガノシロキサン樹脂組成物用下塗り塗料組成物
JP2004025470A (ja) オルガノシロキサン樹脂組成物で表面が保護された透明プラスチック成形体
JP2004026934A (ja) 表面を保護された透明プラスチック成形体およびオルガノシロキサン樹脂組成物用下塗り塗料組成物
JP2004035608A (ja) オルガノシロキサン樹脂組成物および表面を保護されたポリカーボネート樹脂成形体

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 10487218

Country of ref document: US

Ref document number: 2460387

Country of ref document: CA

Ref document number: 2003760926

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020047002490

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20038011859

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003760926

Country of ref document: EP