WO2003095652A2 - EXPRESSIONSKONSTRUKTE ZUR HERSTELLUNG VON DOPPELSTRANG (ds) RNA UND DEREN ANWENDUNG - Google Patents

EXPRESSIONSKONSTRUKTE ZUR HERSTELLUNG VON DOPPELSTRANG (ds) RNA UND DEREN ANWENDUNG Download PDF

Info

Publication number
WO2003095652A2
WO2003095652A2 PCT/EP2003/004835 EP0304835W WO03095652A2 WO 2003095652 A2 WO2003095652 A2 WO 2003095652A2 EP 0304835 W EP0304835 W EP 0304835W WO 03095652 A2 WO03095652 A2 WO 03095652A2
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
stranded
polynucleotide
host cell
rna
Prior art date
Application number
PCT/EP2003/004835
Other languages
English (en)
French (fr)
Other versions
WO2003095652A3 (de
Inventor
Wolfgang Liebetrau
Dieter Link
Original Assignee
Xantos Biomedicine Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xantos Biomedicine Ag filed Critical Xantos Biomedicine Ag
Priority to AU2003239851A priority Critical patent/AU2003239851A1/en
Publication of WO2003095652A2 publication Critical patent/WO2003095652A2/de
Publication of WO2003095652A3 publication Critical patent/WO2003095652A3/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/111General methods applicable to biologically active non-coding nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1096Processes for the isolation, preparation or purification of DNA or RNA cDNA Synthesis; Subtracted cDNA library construction, e.g. RT, RT-PCR
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/11Antisense
    • C12N2310/111Antisense spanning the whole gene, or a large part of it
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/50Physical structure
    • C12N2310/53Physical structure partially self-complementary or closed
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/50Methods for regulating/modulating their activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2330/00Production
    • C12N2330/30Production chemically synthesised
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/108Plasmid DNA episomal vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2840/00Vectors comprising a special translation-regulating system
    • C12N2840/20Vectors comprising a special translation-regulating system translation of more than one cistron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the invention relates to a polynucleotide containing an inner polynucleotide which is operatively linked at the 5 ' end to a first eukaryotic expression control sequence and at the 3 ' end is operably linked to a second eukaryotic expression control sequence, with (i) only the first eukaryotic expression control sequence at the 5 'end is functionally linked to a first polyadenylation sequence and the polyadenylation sequence is functional in 3 ' after 5 ' orientation, or (ii) only the second eukaryotic expression control sequence at the 3 'end is functionally linked with a second polyadenylation sequence and the polyadenylation sequence in 5 ' after 3 ' orientation is functional, or (iii) the first eukaryotic expression control sequence at the 5 'end is functionally linked to a first polyadenylation sequence and the polyadenylation sequence is functional in 3' after 5 ' orientation and the second eukaryotic expression control sequence in turn is functionally
  • the invention further relates to methods for producing double-stranded polynucleotides.
  • the invention also relates to vectors and mixtures of vectors and to methods for producing vectors which comprise the polynucleotides according to the invention or the polynucleotides produced by the methods of the invention, and to host cells which contain these vectors.
  • the invention relates to methods for identifying genes, the inactivation of which leads to detectable changes in a target cell.
  • the invention also relates to transgenic animals which contain a polynucleotide according to the invention.
  • the invention relates to the use of the polynucleotide according to the invention for the manufacture of a medicament for the treatment and prevention of diseases.
  • RNA interference describes the specific interaction of a nucleic acid with a sequence-homologous mRNA and the resulting reduction in gene expression in the literature.
  • RNAi is a form of post-transcriptional gene silencing, a natural process that involves the inactivation of genes by double-stranded RNA (dsRNA). DsRNA is broken down into small fragments within the cells by specific enzymes.
  • RNA interference means the nucleolytic cleavage, guided by a double-stranded RNA (dsRNA), of one of the dsRNA sequence homologous mRNAs (Fire et al., 1998).
  • dsRNA double-stranded RNA
  • the specific protein complex required for this must be activated by a dsRNA (Bass, 2000; Carthew, 2001).
  • RNAi is induced by dsRNA, which originates from transgenes, transposons, viruses, or artificially introduced dsRNA.
  • RNAi has been described in various species (Bosher and Labouesse, 2000). The best studied organisms are Arabidopsis thaliana, Caenorhabditis elegans, and Drosophila melanogaster. Furthermore, RNAi has been shown in Xenopus (Nakano et al., 2000), Hydra (Lohmann et al., 1999; Lohmann and Bosch, 2000) and Trypanosoma brucei (Shi et al., 2000).
  • RNAi is also known in plant genetics under the name PTGS (“post-transcriptional gene silencing”).
  • PTGS post-transcriptional gene silencing
  • a modulation of chromatin activity such as methylation of regions with homologous sequences is also here (Jones et al., 1999; Mette et al., 2000 ; Matzke et al., 2001) and a spreading of the dsRNA-dependent signal across the cell boundaries "spreading" (Voinnet et al., 1998; Voinnet et al., 2000; Matzke et al., 2001).
  • RNA-dependent RNA polymerases RdRP
  • RNAi was found in embryos (Yang et al., 2000; Kennerdell and Carthew,
  • RNAi is also effective in mammalian cells.
  • Elbashir et al. 2001
  • 21-nucleotide siRNA small interfering RNAs
  • RNAs to prevent.
  • Paddison et al. (2002) have shown that long double-stranded RNAs (approximately 500 nucleotides) specifically express gene expression in
  • Mammalian cells such as P19 mouse embryonic carcinoma cells and C2 / C12 mouse
  • RNAi in mammalian cells is apparently developmentally limited and no longer detectable in later embryonic stages (Wianny and Zemicka-Goetz, 2000). Experiments conducted in mammalian cells suggest that there are at least two different ones
  • Nonspecific RNAi effects are due, among other things, to the presence of an antiviral common in mammalian cells
  • dsRNA molecules are inducers of the unspecific dsRNA response, provided that they are at least 30 base pairs long.
  • Cellular proteins sense the dsRNA and initiate a general inhibition of cellular translation (Terenzi et al., 1999; Williams, 1999). This leads to an unspecific reduction of
  • RNA interference RNA interference
  • siRNAs short interfering RNAs
  • RNAi enzyme complex 21-23-mer dsRNA molecules, which arise from processing from longer precursors.
  • cell-free Drosophila extracts it could be shown that the direct addition of
  • 21-23 mer dsRNA does not lead to a comparable or no interference, in contrast to the use of longer dsRNA inducers which are processed to 21-23 mer (Elbashir et al., 2001). Shorter dsRNA molecules are then processed very slowly to 21-23 mer dsRNA. This speaks for the use of longer dsRNA molecules in Drosophila cell culture in order to achieve strong RNAi effects. However, chemically synthesized 21-mer dsRNA molecules can also be used
  • Oligonucleotide may be highly position dependent, apparently due to the different accessibility of the target mRNA. When processing different dsRNA-21mers from a longer precursor, this problem obviously does not occur due to the availability of different dsRNA-21mers.
  • DsRNA for experimental purposes is usually used in an in vitro
  • RNA polymerase binding sites attached to gene-specific primers and used in a gene-specific PCR reaction.
  • the DNA templates of both strands obtained in this way are then used in one or in separate in vitro transcription reactions.
  • the complementary RNA strands obtained therefrom individually or in one batch can be purified, optionally hybridized and then in various ways, e.g. by calcium-phosphate transfection (Ui-Tei et al., 2000), lipofection (Lin et al.,
  • Target organism are introduced.
  • short dsRNA is also chemically synthesized (Elbashir et al., 2001).
  • C. elegans is a special one
  • Expression plasmid were transformed with oppositely arranged promoters
  • RNA strands are made and the hybridized dsRNA is in the digestive tract of C. elegans added. Obviously the ds-RNA dependent can be found there
  • RNAi molecules must first be produced in vitro before they are introduced into the cells. Such techniques are time-consuming and not particularly effective due to numerous process and purification steps and the introduction of the RNA into the cells. Nevertheless, it would be very desirable to use RNAi effects in eukaryotic cells as well.
  • therapeutically or diagnostically relevant target genes could thereby be identified and / or provided. Diseases that are based on a malfunction of such target genes could then also be treated with RNAi or their occurrence could be prevented by preventive measures.
  • the technical problem of the present invention is therefore to provide measures and methods which allow an effective and time-optimized use of the RNAi effect, in particular in eukaryotic host cells. This enables the diagnosis and therapy of diseases that are based on a malfunction of target genes of the RNAi effect.
  • the present invention initially relates to a polynucleotide containing an inner polynucleotide which is functionally linked at the 5 ' end to a first eukaryotic expression control sequence and at the 3' end is functionally linked to a second eukaryotic expression control sequence, wherein
  • Polyadenylation sequence is functionally linked and the
  • Polyadenylation sequence in 5 'after 3 ' orientation is functional, or
  • the first eukaryotic expression control sequence at the 5 'end is functionally linked to a first polyadenylation sequence and the polyadenylation sequence is functional in 3 ' after 5 ' orientation and the second eukaryotic expression control sequence in turn is functionally linked at the 3 ' end to a second polyadenylation sequence and the polyadenylation sequence in 5 ' to 3 '
  • polynucleotide refers to a polymeric form of nucleotides of any length. However, the polynucleotides according to the invention must comprise at least the sequences mentioned above. They can also comprise further sequences. These are preferably plasmid or vector sequences. Polynucleotides in the sense of the invention can be ribonucleotides, deoxyribonucleotides or derivatives thereof. The term encompasses DNA and RNA molecules in single-strand or double-strand form. The DNA can be both cDNA and genomic DNA.
  • the term also includes the known types of modifications of the Polynucleotides, eg methylation, "capping", base substitution with natural or synthetic analogs, intemucleotide modifications with uncharged compounds (eg methyl phosphate, phosphoamidate, carbamate, phosphotriester etc.) or with charged compounds (eg phosphorothioate, phosphorodithioate etc.) or with Bindeglie such as proteins and peptides (e.g. Nucleases, toxins, antibodies, poly-L-lysine, etc.).
  • the term also includes forms with intercalators (e.g. acridine, psoralen etc.), chelators (e.g. with metals, radioactive metals or oxidizing metals etc.), those with alkylating agents and finally with modified bonds (e.g. alpha anomeric nucleic acids etc.).
  • inner polynucleotide encompasses any polynucleotide which is intended to serve as a template for RNAi molecules.
  • inner polynucleotides are preferably DNA molecules or fragments thereof which are transcribed into cells and / or for which there is a corresponding RNA, such as
  • cDNAs are particularly preferred, in particular also in
  • eukaryotic expression control sequence encompasses each of the cis-regulatory elements which are necessary for the expression of a gene or a cDNA in
  • Eukaryotes are needed.
  • eukaryotes include all cells or organisms that - unlike prokaryotes - have a cell nucleus that is well delimited from the cytoplasm by two nuclear membranes.
  • Cis-regulatory elements are DNA sequences with regulatory
  • Characteristics include promoter, enhancer and silencer elements.
  • Promoter elements mediate the basal expression of a gene
  • Enhancer elements increase expression, silencer elements, however, reduce or inhibit expression.
  • the promoter, enhancer and silencer elements interact physically with regulatory proteins
  • Transcription factors can influence gene expression in different ways. Some transcription factors, the so-called basal transcription factors, bind to DNA elements such as the TATA box or other so-called “initiator” elements or to neighboring elements
  • the basal transcription factors form a complex that ultimately also recruits RNA polymerase, a DNA-dependent RNA-synthesizing enzyme that mediates the actual transcription.
  • transcription factors that bind to silencing elements negatively interfere with the formation of a complex of the basal transcription factors.
  • DNA and thereby usually brings distant cis-regulatory sequences in close proximity to one another, so that transcription factors binding therein can interact physically with one another. Understandably, such cis-regulatory elements or the transcription factors that bind to them can also
  • Affect gene expression as enhancer or silencer elements For the tissue-specific expression of a gene, the presence and the architecture of enhancer and silencer elements in a gene locus, on the other hand the tissue-specific expression of the cis-regulatory elements
  • “Expression control sequence” in the sense of the invention is therefore to be understood as a DNA sequence which comprises various of the previously described cis-regulatory elements which are sufficient for the expression of the latter
  • the meaning of the invention are strong promoters, by means of which sufficiently long transcripts of the polynucleotide can be formed in sufficient quantity to enable the bimolecular assembly of the single-stranded RNA molecules into a functional RNAi molecule.
  • Expression control sequences can be found in known test systems, e.g. through Northern
  • polyadenylation sequence refers to a polynucleotide sequence that mediates the processing of the 3 'end of the eukaryotic mRNA as set out below. To process the transcript, a must
  • Polyadenylation refers to that which occurs after the synthesis of almost all eukaryotic mRNAs at the 3 'end
  • poly (A) tails A sequence conserved in many genes, AATAAA, is responsible for the processing of the mRNA and is located 6-30 bases in the 5 'direction in front of the polyadenylation site. Other, either U-rich or G + U-rich, less conserved sequences in the 3 'direction behind the polyadenylation site are also required for the correct processing of the 3' end of an mRNA.
  • the importance of polyadenylation should lie in the stabilization of the mRNA. Whether a particular nucleotide sequence can act as a polyadenylation sequence can easily be determined by the person skilled in the art using known techniques.
  • Particularly preferred Polyadenylation sequences within the scope of the invention are SV-40 and BGH
  • the polynucleotide described above containing an inner polynucleotide is used in the
  • dsRNA double-stranded RNA
  • RNAi molecules Expression system for RNAi molecules, the dsRNA is described here by a
  • Expression unit generated with two oppositely arranged eukaryotic promoters.
  • the two promoters preferably flank a complete or partial cDNA sequence.
  • the polynucleotide according to the invention contains
  • Expression control sequences for example CMV promoters or tk-
  • the arrangement has not yet been described.
  • the promoters must be at least strong enough so that from both sides, i.e. of 5 'and of 3' sufficiently long transcripts can be produced in sufficient quantity, so that the individual can be assembled in a bimolecular reaction
  • ssRNAs Single stranded RNA molecules in the cell to enable a dsRNA.
  • the promoters should therefore preferably be strong promoters, e.g. CMV
  • a single cDNA or an entire cDNA library can be cloned between the two promoters (see FIG. 1). Both can
  • Promoters can be regulated. If they are regulated according to the same principle, the dose of the expressed dsRNA can be regulated. Will they be different
  • the polynucleotide according to the invention can also be converted, inter alia, into a multifunctional plasmid which can be used both for the expression of sense and / or antisense RNA and of dsRNA - depending on the selected one
  • Such an embodiment of the polynucleotide according to the invention is particularly preferred.
  • the invention is based on the unexpected finding that the
  • Polyadenylation sequences in the polynucleotides according to the invention outside the expression control sequences must be localized to ensure adequate expression of the inner polynucleotide.
  • Polynucleotide should be localized. The reason for this is that dsRNA molecules, which also include expression control sequences, are still unclear
  • strong promoters such as CMV promoters
  • CMV promoters are preferably suitable for the polynucleotides according to the invention.
  • strong promoters in particular cannot be used in a suitable way in a bipromotor construct, since they would compete for the factors regulating the transcription and thus ultimately no or only a very inefficient transcription would be possible ,
  • polynucleotides according to the invention can advantageously be introduced into eukaryotic host cells by the methods known in the prior art, which are also described in more detail below.
  • Polynucleotides can be included. Another advantage of Polynucleotides according to the invention consist in the fact that these molecules can easily be used in screening processes, in particular in so-called high throughput screening (HTS). DNA polynucleotides are particularly suitable for these high throughput processes since a number of In addition to ensuring a specific RNAi effect and high efficiency in introducing different polynucleotides into the host cells, it is also important in such processes to counter the structure, ie the nucleic acid sequence of the RNAi molecules or the target genes The use of the polynucleotides according to the invention ensures this, since in particular the DNA polynucleotides can easily be sequenced using known and automated methods driving enables the detection of genes, the inactivation of which leads to detectable changes in the target cell.
  • HTS high throughput screening
  • RNAi in a screening method has the advantage that a reduction / switch-off of the gene expression of a target gene can be detected.
  • the likelihood of blocking gene expression is increased, since antisense molecules are often unable to hybridize with their target RNA due to cumbersome secondary structures.
  • sequences from the 3 ' region of genes would preferably be cloned when producing a gene bank with antisense RNA. This prevents efficient antisense effects, which can preferably be achieved in the region of the 5 ' mRNA sequences (in the region of the start codon).
  • RNA In contrast to inducers for RNAi, antisense molecules, which are mostly used as oligonucleotides, must be present in significantly higher amounts ( ⁇ M concentrations to nM). The use of lower concentrations of RNA leads to an increase in transfection efficiency.
  • the transfection of the polynucleotides according to the invention also facilitates the introduction of the dsRNA into the cell, since the RNA is expressed in the target cell.
  • the RNA had to be obtained by in vitro transcription reactions, the complementary RNA strands purified or hybridized if necessary and then in various ways (such as by calcium phosphate transfection, lipofection or microinjection) into a target cell or one Target organism are introduced.
  • the polynucleotides according to the invention can also be used to treat and / or prevent
  • RNAi ds RNA
  • the polynucleotides can be used as DNA molecules, for example in the context of gene therapy approaches. Diseases preferred within the scope of the invention are described in more detail below.
  • the inner polynucleotide comprises at least 50 nucleotides.
  • the inner polynucleotide comprises a cDNA molecule or a fragment thereof.
  • fragment of a cDNA molecule includes cDNA molecules which have the characteristic and specific components of the inner polynucleotide. These fragments are preferably sufficiently long that the RNAi molecules they form can specifically inhibit the function of the target gene. Polynucleotides which comprise at least 50 nucleotides, 60 nucleotides, 70 nucleotides, 80 nucleotides, 90 nucleotides, 100 nucleotides, 150 nucleotides, 200 nucleotides, 250 nucleotides or 1000 nucleotides are particularly preferred. This fragment preferably contains no start codon.
  • the cDNA molecule or fragment thereof comes from a library of cDNA molecules.
  • library of cDNA molecules includes gene banks which contain mRNA sequences in the form of cDNA.
  • Preferred here are cDNA libraries from eukaryotic organisms, in particular from mammals and preferably from humans.
  • the preparation, isolation and cloning of cDNA molecules or cDNA fragments fails cDNA libraries are known to the person skilled in the art and are described, for example, in standard molecular biology textbooks, such as Sambrook et al. or in Ausubel et al.
  • the first and the second expression control sequence are identical to one another or different from one another.
  • the expression control sequence is selected from the group consisting of CMV promoter, thymidine kinase promoter, SV40 promoter or PGK promoter, ⁇ -myosin heavy chain promoter.
  • the first and the second expression control sequence are constitutively active.
  • constitutitutively active expression control sequence denotes an expression control sequence which is activated by the transcription machinery already contained in the cell.
  • the first and the second expression control sequence are inducible.
  • inducible expression control sequence denotes an expression control sequence which, by adding an inducer, for example certain chemicals (e.g. Cu ++ ions, methanol etc.) or by other influences such as heat, the transcription of a gene which is functionally linked to this expression control sequence induced.
  • an inducer for example certain chemicals (e.g. Cu ++ ions, methanol etc.) or by other influences such as heat, the transcription of a gene which is functionally linked to this expression control sequence induced.
  • the expression control sequences are regulated according to the same principle, the dose of the expressed dsRNA can be regulated. If they are regulated according to different principles, the bipromotor plasmid of the invention can be converted into a multifunction plasmid which can be used both for the expression of sense and / or antisense RNA and of dsRNA - depending on the chosen promoter and regulation principle. Directed cloning of the cDNA may be required for this. An example of this is the Ecdyson system (Invitrogen, Düsseldorf).
  • the inducible first and second expression control sequence is selected from the group consisting of tetracycline inducible promoters, metallothionine promoters and ecdysone inducible promoters (Gossen and Bujard, 1992; Clontech, Tet-System; Acra et al., 1998; Thummel, 2002).
  • the first and the second polyadenylation sequence are identical to one another.
  • the first and the second polyadenylation sequence are different from one another.
  • the invention also relates to a method for producing a double-stranded polynucleotide comprising the steps:
  • step (d) Synthesis of a third single-stranded DNA molecule using a third oligonucleotide comprising a sequence identical to the first oligonucleotide, the second single-stranded DNA molecule from step (c) serving as a template and the second and third single-stranded DNA molecules as a double strand at the end of the synthesis. All previously made term definitions meet these and all subsequent ones
  • production also includes additional steps, such as pretreatments of the starting material or
  • link encompasses a process in which between two neighboring
  • Nucleic acid bases a chemical bond is made. It is preferably a 5'-3'-phosphodiester bond in the sugar phosphate backbone of the
  • restriction endonuclease recognition sequence includes one
  • Restriction endonuclease can range from 4 to 10 base pairs. As part of the
  • recognition sequences are preferred which comprise 6 base pairs and more.
  • second oligonucleotide encompasses an oligonucleotide whose 5 'end is phosphorylated, the second oligonucleotide also comprising a sequence which allows the linkage to a first DNA molecule and one at the 3 ' end
  • Sequence of at least 5 nucleotides comprises, which allows the formation of a hairpin-shaped secondary structure ("stem loop") structure.
  • the second oligonucleotide has a free, single-stranded end (10 to 50 nucleotides) at the 5 'end. This overhang serves as a recognition motif for the T4 RNA ligase.
  • the second oligonucleotide has a free single-stranded 3 'end, consisting of an overhang of 3 to 5 guanine Bases, on.
  • a known 3 'region is obtained by adding 3 to 5 cytosine bases to the 3' region of the single-stranded first DNA molecule.
  • a second oligonucleotide is hybridized to these, which has a single-stranded 3 '
  • the advantage of this system lies in the improved efficiency of the substrate conversion by using a T4 DNA ligase instead of a T4 RNA ligase as well as
  • the length of the second oligonucleotide is between 10 and 150 nucleotides, preferably 20 to 100 nucleotides. Suitable techniques for the design and manufacture of suitable, specific oligonucleotides are known to those skilled in the art. Preferred oligonucleotides which can be used in the process according to the invention are described in more detail below and in the examples.
  • hairpin-shaped secondary structure or “stem-loop” structure denotes a double-helical region which is formed via intramolecular base pairing between adjacent (inverted) complementary sequences of a single-stranded DNA or RNA. This structure thus enables the oligonucleotide end to be refolded itself.
  • the hairpin loop forms after hybridization of the 3 'end of the oligonucleotide with its 5' end.
  • the hybridized portions ie the 3 'and 5' ends of the oligonucleotide, must be used , include at least enough nucleotides to allow specific hybridization, and the segment between the two ends must include enough nucleotides to spatially form a hairpin loop.
  • synthesis encompasses the linking of nucleotides to polynucleotides.
  • the synthesis is preferably mediated by polymerases, the polynucleotides preferably being DNA or cDNA.
  • the synthesis of polynucleotides has been described in the literature (Sambrook et al., Ausubel et al.)
  • Polynucleotide triggers Denaturation is also known as melting.
  • Denaturation of polynucleotides can be achieved, for example, by increasing the rate
  • the melting temperature of the respective polynucleotides is a decisive parameter which, among other things, is influenced by the relative GC content of the polynucleotides.
  • the melting temperature for polynucleotides in solution is approximately in the range of 85-95 ° C.
  • third oligonucleotide includes an oligonucleotide that is one of the first
  • Oligonucleotide has identical sequence. With the first oligonucleotide in
  • an oligonucleotide is referred to which can hybridize specifically with the 3 'end of eukaryotic mRNAs.
  • Preferred here are oligo dT primers which can hybridize with the poly (A) tail of eukaryotic mRNAs. Oligo-dT primers are described in the prior art. The third
  • Oligonucleotide is used in the process according to the invention for third-strand synthesis and can be produced by processes known in the prior art.
  • Preferred as the fourth oligonucleotide is a 5 ' phosphorylated (anti
  • Hairpin structure binds to avoid refolding of the second strand product.
  • an oligo-dT primer which is provided with at least one rare restriction site can be used in a cDNA first strand synthesis.
  • the further steps are then preferably carried out as described below: Before the second strand synthesis takes place, a T4-RNA Ligase or a T4 DNA ligase (see above) a special DNA
  • (Primer) is characterized by the following properties: It has a phosphorylated 5 ' end, a single-stranded region (for example 10-20 bp), which is ligated by T4-RNA ligase (Tessier et al., 1986; Delort et al ., 1989; Edwards et al., 1991; Troutt et al., 1992; Chenchik et al., 1996) and one
  • Hairpin loop ("stem-loop” structure), which enables the primer end to be folded back onto itself.
  • the “loop” must be greater than 5 bp in order to ensure subsequent amplification of the cloned reaction product in E. coli bacteria.
  • a length of the strain of approximately 6-10 bp is preferred. Examples of
  • Primers that enable such self-priming are for cellular and viral
  • Second strand synthesis performed.
  • the result is an uninterrupted, unilaterally covalently closed paired DNA second strand synthesis product.
  • Denaturation is carried out using an identical to the original oligo dT primer
  • Primers the third strand synthesis. To avoid refolding of the second strand product, a further 5 ' phosphorylated (anti-hairpin primer) is preferred.
  • the third-strand synthesis product should still be treated with T4 DNA ligase before it is cloned into a common expression plasmid.
  • T4 DNA ligase Such a construct is also called as
  • Hairpin expression vector (see for example Figure 2).
  • E. coli bacteria such as B. "E. coli acid "transfected.
  • the methods according to the invention advantageously provide polynucleotides which allow the production of single-stranded RNA molecules in equimolar amounts.
  • polynucleotides that have two expression control sequences for strand and counter strand of the RNAi molecule for example, flanking Sequences the transcription undesirably in different
  • a linear single strand of RNA is first of all generated from the polynucleotides produced by the methods according to the invention
  • Molecule formed, which comprises the two strands of the RNAi molecule.
  • the two strands of the RNAi molecule The two strands of the RNAi molecule.
  • the single-stranded first DNA molecule of the method according to the invention is produced by:
  • first oligonucleotide includes an oligonucleotide that can (specifically) hybridize to the 3 'end of eukaryotic mRNAs.
  • the first oligonucleotide is preferably an oligo-dT primer which can hybridize with the 3 'end of the polyadenylated mRNA, the poly (A) tail of the mRNA, and which at the 5' end has at least one rare restriction site, for example an interface from 6 or more nucleotides.
  • the design and production of specifically hybridizing oligonucleotides is known to the person skilled in the art and is described in the prior art. Melting temperatures of oligonucleotides can be calculated using known computer programs.
  • the first oligonucleotide preferably contains at the 3 'end of the oligo-dT-
  • polyadenylated RNA molecule of a single species means one or more identical mRNA molecules. This includes mRNA
  • MRNAs are preferred
  • mRNAs Mammals, especially human mRNAs. mRNAs can be made up of cells,
  • Body fluids such as lymph, serum, plasma, urine, spinal fluid etc.
  • hybridization means within the scope of this invention
  • Hybridization under conventional hybridization conditions preferably under stringent conditions, as described, for example, in Sambrook (Molecular
  • the term "remove” includes the separation and removal of the building blocks of the polyadenylated RNA molecule.
  • the mRNA molecules can be removed by incubation with RNases or by alkaline hydrolysis. Incubation with RNase H is preferred.
  • supply includes purification methods and
  • the polyadenylated RNA molecule is obtained by extracting mRNA from cells, tissues or complete organisms or by transcription of cDNA molecules which are contained in libraries of cDNA molecules.
  • the invention further relates to a method for producing a mixture of double-stranded polynucleotides comprising the steps:
  • step (d) Synthesis of third single-stranded DNA molecules using a third oligonucleotide each, which comprises a sequence identical to the first oligonucleotide, the second single-stranded DNA molecule from step (c) serving as a template and the second and third single-stranded DNA molecules present as a double strand at the end of the synthesis.
  • mixture of double-stranded polynucleotides denotes a multiplicity of double-stranded polynucleotides according to the invention, which comprise identical or different nucleic acid molecules.
  • the single-stranded first DNA molecules of the method according to the invention are produced by:
  • RNA molecules of different species in the context of the invention denotes structurally different mRNA molecules. Mixtures of mRNAs which can be obtained from gene banks, cells or cell lines are preferred. The mRNAs can preferably be obtained from non-vertebrates or vertebrates, in particular from mammalian cells. Human mRNAs are most preferred.
  • the polyadenylated RNA molecules are obtained by extraction of mRNA from cells, tissues or complete organisms or by transcription of cDNA molecules which are contained in libraries of cDNA molecules.
  • the restriction endonuclease recognizes a sequence of at least 6 nucleotides.
  • the rarely cleaving restriction endonucleases are selected from the group consisting of: Xho I, Not I, Xba I, Bgl II, Asp 718, Sal I, Sac I, Sfi I.
  • the sequence from (a) (i) which permits the linkage is a 5 'single-stranded region (overhang) which serves as the recognition region for the T4 RNA ligase.
  • the sequence from step (a) (i) which allows the linkage is a single-stranded 3 'region from 3 to 5 guanine bases which, after hybridization with the 3' region of the single-stranded first DNA Molecule is closed by a T4 DNA ligase.
  • the sequence from step (a) (i) which allows the linkage is a single-stranded 3 'region from 3 to 5 guanine bases which, after hybridization with the 3' region of the single-stranded first DNA Molecule is closed by a T4 DNA ligase.
  • “Stem loop”) allows at least 5, 6, 7, 8, 9, 10 or up to 100 nucleotides in length.
  • a fourth oligonucleotide is added in step (d), which is phosphorylated on 5 ' and comprises a sequence complementary to the second oligonucleotide.
  • the term “fourth oligonucleotide” encompasses an oligonucleotide which is complementary to the second oligonucleotide described above. As already mentioned, this second oligonucleotide has a sequence which allows the formation of a hairpin-shaped secondary structure.
  • the fourth oligonucleotide can be used in the context of the invention to avoid refolding of the second strand product.
  • the fourth oligonucleotide is preferably an oligonucleotide complementary to the hairpin primer and phosphorylated at the 5 'end.
  • the preparation and the phosphorylation of such an oligonucleotide are known to the person skilled in the art.
  • the invention further relates to a method for producing a vector or a mixture of vectors, the method comprising the additional step of cloning the heterologous polynucleotides produced into a suitable vector.
  • vector refers to prokaryotic or eukaryotic cloning and / or expression vectors.
  • prokaryotic vectors are chromosomal vectors such as bacteriophages (eg bacteriophage lambda, P1) and extrachromosomal vectors such as plasmids, circular plasmid vectors being particularly preferred.
  • Suitable prokaryotic vectors are described, for example, in Sambrook et al., Chapters 1 to 4.
  • the vector according to the invention can also be a eukaryotic vector, for example a yeast vector or a vector suitable for higher cells, for example a plasmid vector viral vector, a plant vector, etc. Examples of such vectors are also in Sambrook et al. (Chapter 16).
  • the vectors can be the same or different according to the invention.
  • Construction of the vector according to the invention advantageously allows the polynucleotides according to the invention to be cloned and / or expressed in eukaryotic cells.
  • heterologous polynucleotides means in the context of
  • Polynucleotides of the invention can be from different species.
  • the polynucleotide or the vector is then treated with a T4 DNA ligase.
  • the invention further relates to a vector containing a polynucleotide according to the invention or a polynucleotide which is produced by a method according to the invention.
  • the invention relates to a host cell which contains a vector according to the invention.
  • the term “host cell” includes both prokaryotic and eukaryotic host cells.
  • Prokaryotic host cells include, for example, E. coli, Streptomyces, Bacillus or Salmonella cells.
  • E. coli "SURE" cells are particularly preferred here.
  • Eukaryotic host cells include fungal cells, for example yeast cells, plant cells, insect cells such as Drosophila or SF9 cells, animal cells, in particular mammalian cells. 293 cells, NIH3T3 cells, BHK are preferred here Cells, CHO K1 cells, and HeLa cells. The cultivation of these cells is
  • the invention also relates to a method for producing a double-stranded RNA which comprises the step of bringing a polynucleotide according to the invention or a polynucleotide produced by a method according to the invention into contact with a protein or protein mixture under conditions which allow the synthesis of a double-stranded RNA , includes. All previously made definitions of terms apply to this and all subsequent embodiments mutatis mutandis.
  • the term "contacting" encompasses all types of physical or chemical interactions between the polynucleotides and the protein or protein mixture.
  • the polynucleotide can be in solution in a suitable liquid, for example in a buffer, the liquid also containing the protein or protein mixture.
  • the protein or protein mixture can be introduced into the liquid before or after the polynucleotide.
  • a suitable liquid in the sense of the invention also contains the necessary components which are required for the synthesis of the RNA. These are preferably the ribonucleotides and buffer substances, ions etc. which the protein or protein mixture requires in order to catalyze the synthesis of the RNA. Suitable liquids are known and described in the prior art.
  • the term “protein or protein mixture” means a protein or protein mixture which is able to catalyze the synthesis of RNA molecules.
  • proteins are preferably RNA polymerases. Suitable RNA polymerases are described in more detail below.
  • a mixture of proteins which is used in the method according to the invention can also contain proteins which regulate the polymerases or which additionally chemically modify the RNA transcripts, such as enzymes which are involved in the polyadenylation described above.
  • the inventive method described here is preferably carried out in vitro, ie in a cell-free system.
  • the protein or protein mixture contains T7 polymerase, T3 polymerase or SP6 polymerase.
  • T7 polymerase Properties and applications of T7 polymerase, T3 polymerase or SP6 polymerase are described in the prior art.
  • the invention further relates to a method for producing a double-stranded RNA, the method comprising the steps:
  • introduction encompasses all types of physical or chemical interactions between the polynucleotides and the cell or the cellular components.
  • the polynucleotide can be in solution in a suitable liquid, for example a nutrient medium for the cell, this nutrient medium then being brought into contact with the cell, for example by incubating the cell in this medium.
  • a suitable liquid for example a nutrient medium for the cell
  • gels and gel-like liquids can also be used.
  • introduction also optionally includes the integration of the polynucleotide into the genome of the host cell.
  • nucleic acids examples include precipitation transfection, such as, for example, calcium phosphate or RbCI precipitation transfection, transfection by means of liposomes, transfection by means of macromolecular polymers, for example fullerenes, electroporation methods or transfection by retrovection or recombinant techniques for integration into the cellular genome.
  • the nucleic acids have to be linked to other nucleic acid molecules. Examples of these are plasmids which contain the nucleic acid molecules or retroviral genomes in which the nucleic acids have been integrated. Nucleic acid molecules can also be integrated into the cellular genome after introduction into the cell. According to the invention, the term “cultivating the host cell” is understood to mean all measures which are necessary to ensure the vitality
  • a culture medium which contains nutrients and, if appropriate, growth and
  • Vectors containing the polynucleotide of the invention can be obtained via conventional transfection methods such as e.g. by calcium phosphate transfection
  • Electroporation, viral transfer or other transfection methods into which cells are introduced The cultivation of these cells under conditions that a
  • the invention additionally relates to a method for the identification and / or production of genes, the inactivation of which leads to detectable changes in the target cell, wherein in addition to the above-mentioned method the following step is included: (c) comparison of the phenotype of the host cell from (b) with a host cell into which no vector or control vector was introduced in step (a). All previously made definitions of terms apply to this and all subsequent embodiments mutatis mutandis.
  • identification encompasses the identification of a gene and / or its function (s), which is made possible due to the detectable changes in the target cell resulting from the inactivation of the gene. Such changes can be triggered by the use of RNAi in a screening process in the sense of the invention.
  • detectable changes in the target cell refers to changes at the molecular level, as well as changes that change the phenotype the cell, for example the cell morphology.
  • Cell morphology can e.g. be examined by means of morphometric methods.
  • activation in the context of the invention also includes a significantly reduced expression of a target gene which is a detectable change in the
  • Target cell causes. Comparative tests between treated and untreated target cells can be used to determine whether the expression of a target gene has changed significantly. This is also described in more detail below and in the examples. The observed expression levels can be checked for significant differences using suitable statistical tests. Such statistical
  • Tests include, for example, the Student's T test, the Chi 2 test, and known variations based thereon.
  • the reduction is preferably
  • Target gene can be, for example, a cell gene, an endogenous gene, but also a transgene or a gene of a pathogen that is infected with an infection in the
  • phenotype denotes the appearance of a cell that is characterized by the
  • Phenotype includes all external and internal structures and functions of the cell.
  • control vector denotes the vector used for the above-mentioned method, which, in contrast to this, is not an inventive one
  • Polynucleotides or vectors can be checked or ensured by suitable controls in which target cells are transfected, for example with this control vector.
  • suitable controls in which target cells are transfected, for example with this control vector.
  • the construction and implementation of such control experiments are known to the person skilled in the art. If the applied RNA interference in the target cell leads to a specific, detectable effect that does not occur in a suitable control experiment, this effect can allow conclusions to be drawn about the function of the gene.
  • target cells in the context of the invention includes eukaryotic cells
  • Cells especially mammalian cells and preferably human cells, in which specifically suppress or at least reduce the expression of a target gene.
  • the host cell is a prokaryotic host cell.
  • the prokaryotic host cell is an E. coli “SURE” cell.
  • the host cell is a eukaryotic host cell.
  • the eukaryotic host cell is selected from the group consisting of 293 cells, NIH3T3 cells, BHK cells, CHO K1 cells, and HeLa cells.
  • At least one protein from the group of proteins which can be activated by double-stranded RNA is inactivated or not present in the host cell.
  • RNAi effects are attributed, among other things, to the presence of an antiviral mechanism which is widespread in mammalian cells and is also known as the interferon response.
  • Longer dsRNA molecules are inducers of the unspecific dsRNA response, provided that they are at least 30 base pairs long.
  • Cellular proteins secrete the dsRNA and initiate a general inhibition of cellular translation (Terenzi et al., 1999; Williams, 1999). This leads to an unspecific reduction in gene expression.
  • PKR The dsRNA activates two enzymes: PKR, which in its active form phosphorylates the translation initiation factor elF2a, which leads to a shutdown of protein synthesis, and 2 ', 5'-oligoadenylate syntetase, which forms a molecule that activates RNaseL, which degrades mRNAs non-specifically (Elbashir et al, 2001).
  • PKR thus plays as a dsRNA
  • PLR antiviral response
  • PKR antiviral response
  • PKR and apoptosis (Der et al., 1997) (Gil and Esteban, 2000a; Gil and Esteban, 2000b; Gil et al., 2001); PKR and involvement of RNase L (Terenzi et al., 1999; lordanov et al., 2000).
  • the non-specific dsRNA response thus competes with the specific dsRNA response and thereby conceals (overlaps) the desired, specific effect by means of RNA interference (Elbashir et al., 2001).
  • RNA interference the initiating double-stranded RNAs are first broken down into short interfering RNAs (siRNAs).
  • siRNAs provide the sequence information which allows a specific degradation of a specific mRNA.
  • a reduction in the unspecific dsRNA response in the target cell (and at the same time an increased specific dsRNA response by RNAi) can be achieved by:
  • Such processing is made possible, for example, by the co-expression of an RNAi-associated nuclease (Ketting et al., 1999; Filippov et al., 2000; Hammond et al., 2000; Bernstein et al., 2001; Dalmay et al., 2001).
  • the human helicase MOl (Matsuda et al., 2000) is due to sequence homologies as the homolog of the RNAi-associated nucleases Mut-7 (C.
  • RNAi-enzyme complex a cell line in which inhibition of the interferon response has been described.
  • PKR deficiency (lordanov et al., 2001; Khabar et al., 2000) or interferon-resistant cell lines (K562, BJAB;: (Yamamoto et al., 2000)).
  • Deficiency of the interferon response can also be achieved by:
  • RNA 's the co-expression following inhibitory RNA 's: PKR and small- RNA' s (. Clemens et al, 1994), VAI RNA (Svensson and Akusjarvi, 1984; O'Malley et al, 1986; Evstafieva et. al., 1988) (Ghadge et al., 1991; Ghadge et al., 1994; Rahman et al., 1995; Desai et al., 1995; Lei et al., 1998), EBER-RNA 's (Clarke et al., 1990; Sharp et al., 1993).
  • the group of proteins which can be activated by double-stranded RNA comprises protein kinase R (PKR) and RNAse L (loc. Cit).
  • the activity of the RNAi-enzyme complex is increased.
  • the term “increased” is understood to mean a significantly increased activity of the RNAi complex, which can be demonstrated by methods which are described in the prior art. Whether the observed differences are significant can be determined by known statistical tests determined elsewhere in the description.
  • the RNAi-enzyme complex has at least one protein which has the biological activity of a protein selected from the group consisting of helicase MOl, nuclease Mut-7 or Dicer (loc. Cit.).
  • the host cell comprises proteins that inhibit the interferon response.
  • interferon response encompasses an antiviral mechanism which is widespread in mammalian cells and which can be attributed to non-specific RNAi effects.
  • the proteins inhibiting the interferon response are selected from the group consisting of E1A, HepB virus protein, tetratricopeptide repeat protein, cochaperone p58 (IPK), E3L, or TAR (loc. Cit.) ,
  • the invention also relates to a transgenic animal containing a polynucleotide of the invention or a polynucleotide which can be obtained by a method of the invention.
  • transgenic animal is understood to mean non-human transgenic animals which (i) constitutively or inducibly overexpress the polynucleotides or vectors according to the invention, or (ii) have a conditional and tissue-specific overexpression of the polynucleotides or vectors according to the invention
  • a polynucleotide according to the invention or a vector which contains this polynucleotide can be introduced into animals into a germ line cell, an embryonic cell, stem cell or an egg cell or a cell derived therefrom are analyzed using, for example, known techniques such as Southern blotting in conjunction with suitable samples, and transgenic animals in the context of the invention here include mice, rats, hamsters, dogs, monkeys, rabbits, pigs, C.
  • transgenic mice preferred are transgenic mice.
  • Mice have numerous advantages over other animals. They are easy to hold and their physiology is considered a model system for that of humans.
  • the production of such genetically manipulated animals is well known to the person skilled in the art and is carried out by customary methods (Hogan, B., Beddington, R., Costantini, F. and Lacy, E. (1994), Manipulating the Mouse Embryo; A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY; Joyner, AL (Editor), Gene Targeting, A Practical Approach (1993), Oxford University Press.
  • Constructs can optionally be used to produce the transgenic animals tissue-specific, regulated during development Promoters, cell-specific promoters and / or inducible promoters are used which regulate the expression of the polynucleotide of the invention.
  • a suitable inducible system is, for. B. regulated the tetracycline
  • transgenic animals according to the invention can be used as a model for
  • the animals can also be useful for diagnosis or early detection of a disease.
  • the invention also relates to a medicament comprising a polynucleotide of the invention or a polynucleotide obtainable by a method of the invention. All previously made definitions of terms apply to this and all subsequent embodiments mutatis mutandis.
  • the term “pharmaceuticals” defines substances and preparations made of substances which are intended to heal, alleviate, prevent or recognize diseases, ailments, bodily harm or pathological complaints by application to or in the human body.
  • the polynucleotides of According to the invention medical and / or pharmaceutical-technical auxiliaries can be added.
  • medical auxiliaries are those substances which are used for the production (as active ingredients) of medicaments in a method according to the invention. provided that they are only required during the process, are subsequently removed or may be part of the medicament as pharmaceutically acceptable carriers, examples of pharmaceutically acceptable carriers are listed below g is optionally in combination with a pharmaceutically acceptable carrier and / or diluent.
  • Suitable pharmaceutically acceptable carriers include phosphate-buffered saline, water, emulsions such as oil / water emulsions, various types of detergents, sterile solutions, etc.
  • Drugs comprising such carriers can be made using known conventional methods be formulated. These drugs can be administered to an individual in a suitable dose, for example in a range from 1 ⁇ g to 100 mg per day and patient. The administration can be done in various ways, for example directly on the skin, intravenously, intraperitoneally, subcutaneously, intramuscularly, locally or intradermally. Nucleic acids can also be administered in the form of gene therapy. The kind of
  • Dosage is determined by the attending physician according to the clinical factors. It is known to the person skilled in the art that the type of dosage depends on various factors, e.g. the size, the body surface, the age, the sex or the general health of the patient, but also of the special agent that is administered, the duration and type of
  • the invention also relates to the use of a polynucleotide of the invention or a polynucleotide obtainable by a method of the invention for the manufacture of a medicament which can be used for the treatment or prevention of diseases.
  • treatment here denotes therapeutic measures for combating, inhibiting, eliminating or alleviating diseases
  • prevention denotes measures which serve to prevent a disease so that it does not arise at all.
  • the term "manufacture" of pharmaceuticals also includes additional steps such as common formulation and / or packaging steps. This includes in particular purification steps, enrichment steps, sterilization processes and the subsequent provision of the polynucleotides produced by the process according to the invention, for example in suitable containers etc.
  • the term also includes the formulation of the polynucleotides produced in suitable dosage forms. These can be injection solutions, liposomes, organic carriers or transport molecules, such as fullerenes, capsules, tablets, and other known suitable administration forms for polynucleotides.
  • the guidelines of the GMP (“Good Manufacturing Practice”) are preferably observed in the production of pharmaceuticals.
  • the polynucleotides of the invention can preferably be used for gene therapy in that they are introduced into the cells of a target organism be introduced.
  • the polynucleotides of the invention can be viral
  • Vectors are cloned which mediate the transfer of the sequences coding for the double-stranded RNA into replicating host cells. Suitable viral
  • Vectors include retrovirus, adenovirus, adeno-associated virus, herpes virus,
  • Invention can be transferred into cells by non-viral gene therapy techniques, including receptor-mediated, targeted DNA transfer using
  • the disease is selected from the group: cancer, diseases of the cardiovascular system, diseases of the skin, diseases of the internal organs, metabolic disorders, neurological diseases or disorders or disorders of the immune system, degenerative diseases such as Alzheimer's disease, Huntington's disease, Parkinson's disease, reperfusion damage, stroke and alcohol damage to the liver, tumor diseases such as leukemia, carcinoma or sarcoma, autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, diabetes lupus, viral diseases such as hepatitis or influenza.
  • the symptoms of such diseases are described in detail in clinical lexica, such as Pschyrembel or Stedman, and can easily be recognized by a person skilled in the art.
  • this further comprises the formulation of the polynucleotide obtained by the method according to the invention with a pharmaceutically acceptable carrier, excipient and / or diluent.
  • a pharmaceutically acceptable carrier excipient and / or diluent.
  • PCMVI and PCMVI I show the position of the opposing promoters for the transcription of the opposing transcripts of the target gene (X); the resulting sense and antisense transcripts are shown below; bla: ampicillin resistance; pA: poly-A sequence; ori: origin of replication
  • PCMV shows the position of the promoter for the transcription of the opposite transcripts of the target gene (X); below are the resulting sense and antisense transcripts linked by the hairpin sequence; bla: ampicillin resistance; pA: poly A sequence; ori: origin of replication
  • the flow chart shows the individual steps in the construction of a hairpin expression vector
  • the first strand (first single-stranded DNA molecule) is synthesized (1).
  • the polyadenylated RNA molecule is removed (by RNAse or alkaline lysis) (2).
  • the second strand (second DNA molecule) can be synthesized by ligation of a hairpin primer (second oligonucleotide a) by T4-RNA ligase and subsequent synthesis by DNA polymerase (3a).
  • the first strand can be extended by an oligo-dC sequence with terminal transferase or a suitable reverse transcriptase before the alternative hairpin primer (2nd oligonucleotide b) is ligated to the first strand by T4-DNA ligase (3b).
  • the double-stranded DNA molecule is then denatured (4) and the third strand (third single-stranded DNA molecule) Attachment of the 3.0 ligonucleotide by a DNA
  • Polymerase (preferably thermostable) synthesized (5). If necessary, an internal anti-hairpin primer is used to avoid intramolecular refolding.
  • the strand gap can pass through
  • T4 DNA ligase are closed. After restriction cleavage (in Fig.
  • the construct obtained in this way can be inserted into a suitable expression vector regardless of the orientation (6).
  • the antisense sequence appears in the
  • Fig. 4 schematic representation of the vector ptwopA
  • PCMVI and PCMVI I shows the position of the opposite promoters for the transcription of the opposite transcripts from GFP; bla: ampicillin resistance; pA: poly-A sequence; ori: origin of replication
  • Fig. 7 Singular transfections of GFP-Bi promoter constructs and a conventional GFP expression plasmid in 293 cells: fluorescence microscopic images of 293 cells 24 hours after the transfection. Below this, the phase contrast microscopic documentation of the same field of view (20X magnification) is shown.
  • the figure shows that the transfection of the bi-promoter constructs with the complete GFP reading frame (A and B) is strong reduced GFP expression in 293 cells compared to the conventional expression plasmid pEGFP-N2 (D).
  • Reading frame (C) did not lead to GFP-positive cells.
  • these GFP-positive cells showed after transfection of p ⁇ BI-CMV-GFP (A) and p ⁇ BI-CMV-GFP-INV (B), but also that full-length transcripts were generated by both promoters.
  • Fig. 8 schematic representation of the hairpin expression vector php-1
  • Fig. 10 Specific reduction of the firefly luciferase activity in cell extracts from transfected CGR8 mouse embryonic stem cells by pBI-Luc and pLuc-hp
  • the data refer to three independent transfections. Firefly luciferase activity in the cell extract normalized to Renilla luciferase and expressed as a percentage of the measured activity of the control (pcDNA3.1 ⁇ neo).
  • the constructs pBI-Luc and pLuc-hp specifically reduced Firefly luciferase activity to about 60% and 50% of the control, respectively.
  • the GFB-directed dsRNA vectors pBI-GFP and php-1 did not reduce the Firefly luciferase activity compared to the control.
  • the examples illustrate the invention.
  • Example 1 Location of the pA (polyadenylation) signal in the bipromotor construct: GFP expression is switched off when an SV40-polyA fragment is positioned between two promoters.
  • the aim of this experiment was to insert a polyadenylation signal (SV40 polyA fragment) from an origin vector into a target vector using a conventional eukaryotic expression unit.
  • the polyA fragment was inserted between the promoter and the reading frame of the gene to be expressed (GFP; "green fluorescent protein") in the antisense orientation of the promoter into the expression unit of the target vector.
  • GFP green fluorescent protein
  • a BamHI / HindIII fragment (458 base pairs) from the vector pTet-OFF (GenBank accession number: U89929) was inserted into a GFP expression vector pEGFP-N2 (GenBank accession number: U57608) by restriction cleavage with HindIII and BamHI , which contained its SV40 polyA fragment.
  • the orientation of this fragment relative to the PhCMV promoter in pEGFP-N2 was opposite to the orientation of the fragment in the vector pTet-OFF to the associated promoter.
  • the inserted SV40-polyA ⁇ fragment (SV40-pA ' ) was in the indicated orientation between the promoter (PhCMV) and the GFP reading frame.
  • the resulting vector was named ptwopA (Fig. 4).
  • pEGFP-N2 and ptwopA were transfected into 293 cells using conventional calcium phosphate transfection and the expression of GFP was monitored by fluorescence microscopy 24 hours after the transfection (FIG. 5).
  • the example shows that the transfection of ptwopA did not lead to GFP-positive transfectants, in contrast to that of pEGFP-N2, which led to numerous GFP-positive transfectants.
  • the insertion of the polyA fragment leads to the GFP expression being switched off. This is probably due to processing and polyadenylation of the transcript before the GFP reading frame, mediated by polyA signals of the inserted SV40-polyA fragment, which are also present in the normally non-transcribed strand - for example, there are two 5 ' - AATAAA 3 ' sequences.
  • the SV40-PolyA signal could only be positioned outside the promoters.
  • the aim of this experiment was to show that both transcripts are produced and that the complementary strands assemble into a dsRNA in a bimolecular reaction.
  • a reduced rate of GFP protein expression was expected compared to a conventional expression vector due to the competitive assembly of the RNA strands. If transcripts are formed from both promoters, inverting the reading frame of GFP in the bi-promoter construct also leads to a comparable (reduced) expression of GFP.
  • bi-promoter constructs used here were not generated by gene bank synthesis, but were produced in individual clonings. However, they nevertheless represented constructs that could come from a gene bank synthesis. However, a complete reading frame was cloned here only for test purposes. As the experiments also suggest, it is not aimed at in a gene bank synthesis for bi-promoter constructs. Production of the bi-promoter constructs used:
  • the vector pcDNA3.1 + (Invitrogen, Düsseldorf) was cleaved with the restriction enzymes Bsml and Smal. Here the neo-resistance gene was removed. The free ends were filled in using Klenow enzyme and religated. The resulting vector was named pcDNA3.1 ⁇ neo. This vector was in turn opened with the restriction enzymes Nhel and BamHI in the polylinker sequence and the GFP fragment cut out with the restriction enzymes BglII and Xbal from the vector pEGFP-N2 (GenBank accession number: U57608) was inserted.
  • a CMV promoter fragment from the vector pTet-OFF (GenBank Accession Number: U89929) was inserted into the resulting plasmid via the restriction sites Xhol and EcoRI.
  • the resulting bi-promoter plasmid was named p ⁇ BI-CMV-GFP (Fig. 6).
  • the GFP fragment was cut out from p ⁇ BI-CMV-GFP by NotI and EcoRI cleavage. The ends of all fragments were filled in using Klenow enzyme and the GFP fragment was reinserted.
  • One of the resulting plasmids with the GFP reading frame in the inverted orientation was named p ⁇ BI-CMV-GFP-INV.
  • Another vector pBI-GFP contained a GFP reading frame shortened at the 5 ' end without start codon (604 base pairs; from base pair 792 to 1395 relative to GenBank entry U57608). The corresponding sequence was generated by means of PCR from plasmid pEGFP-N2.
  • the primers used (5 ' primer: 5 ' - GAATTCGGATCCATGCCACCTACGGCAAGC-3 ' 3 ' primer: 5 ' -
  • TCTAGAGCGGCCGCTACAGCTCGTCCATGCCG-3 ' also carried cleavage sites for BamHI (5 ' primer) and Notl (3 ' primer).
  • BamHI 5 ' primer
  • Notl 3 ' primer
  • the PCR fragment was cut out with BamHI and Notl and, instead of the BamHI-Notl fragment, inserted with the complete GFP reading frame in p ⁇ BI-CMV-GFP.
  • the resulting vector was named pBI-GFP.
  • the vectors p ⁇ BI-CMV-GFP, p ⁇ BI-CMV-GFP-INV, pBI-GFP and the vector pEGFP-N2 were by conventional calcium phosphate transfection in 293 cells transfected and the expression of GFP monitored by fluorescence microscopy 24 hours after the transfection (FIG. 7).
  • Example 3 Singular transfection and expression analysis of a GFP hairpin construct: extinction of GFP expression
  • This experiment was intended to determine whether, when expressing a hairpin construct with the complete reading frame of GFP, despite the possibility of intramolecular base pairing to a dsRNA hairpin, GFP protein expression can be detected.
  • the hairpin construct was cloned by excision of the second promoter from p ⁇ BI-CMV-GFP (see Example 2) using the restriction enzymes EcoRI and Xbal and the insertion of a second GFP reading frame from pEGFP-N2 (GenBank Accession Number: U57608) - which were also cut out using EcoRI and Xbal.
  • the two reading frames were arranged inverted in the resulting plasmid php-1 (FIG. 8), the first being the anti-sense orientation and then separated by a 29nt long non-complementary sequence the sense orientation of the reading frame came to rest. This arrangement is essential for a third strand synthesis product.
  • Example 4 Use of bi-promoter constructs and hairpin constructs for reducing the gene expression of Firefly luciferase in CGR8 mouse embryonic stem cells
  • dsRNA causes a general translation stop that is caused by an antiviral mechanism. It has been reported in mouse embryonic cells that this mechanism is not yet active. Therefore, the specific reduction of gene expression by a bi-promoter vector (pBI-Luc) and a hairpin vector (pLuc-hp) in mouse ES cell culture was reproduced, which expresses the gene expression of the transiently coexpressed transcript of the firefly luciferase (photinus pyralis; abbreviated as PP- Luciferase) from the vector pGL3.
  • pBI-Luc bi-promoter vector
  • pLuc-hp hairpin vector
  • the vector pGL3 (GenBank Accession Number: U47296; from Promega, Mannheim) also served as the source for the PP luciferase sequences in the dsRNA vectors. Construction of pBI-Luc and pLuc-hp:
  • the plasmid pBI-Luc was created from p ⁇ BI-CMV-GFP (see patent example 2)
  • the plasmid pLuc-hp was created by cutting out the second promoter from pBI-
  • the bi-promoter vector pBI-GFP and the hairpin vector php-1 served as controls in separate transfection approaches of the same type. It was investigated whether the expressed GFP-specific dsRNA it's a nonspecific reducing effect on the PP-luciferase expression have.
  • Renilla (RL) luciferase was also examined in all transfections - by cotransfection of the vector pRL-Tk (GenBank Accession Number: AF025846; Promega, Mannheim).
  • the transcript of the Renilla luciferase was not sequence homologous to that of the PP luciferase.
  • Bi-promoter vector OR hairpin construct OR control vector pcDNA3.1 ⁇ neo 2.
  • pGL3 3.
  • the vectors were used in the ratio: 5: 1: 2.5 in a transfection.
  • the transfection was carried out by electroporation in mouse CGR8 embryonic stem cells (European Collection of Cell Cultures (ECACC), CAMR, Salisbury, Wiltshire, SP4 OJG, UK; ECACC number: 95011018), which were based on STO-feeder cells (ECACC number: 86032003) in KO-DMEM + 15% serum replacement (Invitrogen, Karksruhe) and with 1000 U / ml LIF factor (from Chemicon, Hofheim) (the Cultivation took place after exercise! et al.)
  • the ES cells were passaged one day before the transfection. Before electroporation, the trypsinized ES and
  • ES cells were carried out in the Easy-Ject-Plus electroporator (from Peqlab, Erberg) under the following conditions:
  • Electroporator 900 ⁇ F, 200V. The cells were in simple KO-DMEM
  • Luminescence reader (Labsystems, Frankfurt) the activities of PP and RL
  • Luciferase (relative light units / second) determined. The PP activities were normalized to the activities of the control gene RL.
  • Example 5 Suppression of the antiviral response in mammalian cell culture by co-expression of the vaccinia virus protein E3L
  • the aim of this experiment was to co-express the vaccinia virus protein E3L in a transfection with the dsRNA-producing vectors to inhibit the interferon response established in mammalian cells without disturbing the dsRNA-mediated RNAi effect.
  • the reading frame of the vaccinia virus protein E3L (see GenBank Accession Number NC-001559) is cloned into a eukaryotic expression vector by means of PCR.
  • the resulting expression plasmid was designated pE3L.
  • pE3L In the transfection of a bi-promoter vector or one
  • This expression plasmid is co-transfected into the hairpin vector.
  • the E3L expression plasmid may also have been stably introduced into a mammalian cell line beforehand, so that it is expressed either constitutively or under a regulated promoter.
  • Example 6 Enhancement of the RNAi effect in mammalian cell culture by co- / expression of the helicase MOI
  • dsRNA nuclease - By coexpressing the reading frame of the helicase MOl - a putative dsRNA nuclease - (GenBank Accession Number: AB028449) in mammalian cells, two different goals can be achieved: on the one hand, the extent of the interferon response in mammalian cells into which a bi- Promoter or hairpin construct was transfected. This is done by quantitatively reducing the inductor - that is, dsRNA 's longer than 30 base pairs - by cleavage before a dsRNA response can be triggered.
  • the reading frame of the helicase MOl is cloned into a eukaryotic expression vector in order to obtain the expression plasmid pMOl.
  • this expression plasmid pMOl is cotransfected.
  • the pMOI expression plasmid may also have been stably introduced into a mammalian cell line beforehand, so that it is expressed either constitutively or under a regulated promoter. credentials
  • Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev., 15 (20): 2654-9.
  • dsRNA-mediated gene silencing in cultured Drosophila cells a tissue culture model for the analysis of RNA interference. Gene., 252 (1-2): 95-105.
  • RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus.
  • RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev., 15 (2): 188-200.
  • VAI RNA virus-associated RNA I
  • H1.1 histone H1 isoform
  • Adenovirus VAI RNA antagonizes the RNA editing activity of the ADAR adenosine deaminase. Virology., 245 (2): 188-96.
  • TAR RNA-binding protein is an inhibitor of the interferon-induced protein kinase PKR. Proc Natl Acad Sei U SA., 91 (11): 4713-7.
  • Vaccinia virus E3L protein is an inhibitor of the interferon (i.f.n.) - induced 2-5A synthetase enzyme. Virology., 243 (2): 406-14.
  • RNA the transcript from a master gene for ID element amplification, is able to prime its own reverse transcription.
  • Double-stranded RNA is a trigger for apoptosis in vaccinia virus-infected cells. J Virol., 71 (3): 1992-2003.
  • Adenovirus VA RNAI a positive regulator of mRNA translation. Mol Cell Biol., 4 (4): 736-42.
  • Zamanian-Daryoush M., Der, S.D., Williams, B.R., (1999). Cell cycle regulation of the double stranded RNA activated protein kinase, PKR. Oncogene., 18 (2): 315-26.
  • RNAi double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell., 101 (1): 25-33.

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Die Erfindung betrifft ein Polynucleotid enthaltend ein inneres Polynucleotid, das am 5' Ende funktionell mit einer ersten eukaryontischen Expressionskontrollsequenz verbunden ist und am 3' Ende funktionell mit einer zweiten eukaryontischen Expressionskontrollsequenz verbunden ist, wobei (i) nur die erste eukaryontische Expressionskontrollsequenz am 5' Ende mit einer ersten Polyadenylierungssequenz funktionell verbunden ist und die Polyadenylierungssequenz in 3' nach 5' Orientierung funktionell ist, oder (ii) nur die zweite eukaryontische Expressionskontrollsequenz am 3' Ende mit einer zweiten Polyadenylierungssequenz funktionell verbunden ist und die Polyadenylierungssequenz in 5' nach 3' Orientierung funktionell ist, oder (iii) die erste eukaryontische Expressionskontrollsequenz am 5' Ende mit einer ersten Polyadenylierungssequenz funktionell verbunden ist und die Polyadenylierungssequenz in 3' nach 5' Orientierung funktionell ist und die zweite eukaryontische Expressionskontrollseqüenz ihrerseits am 3' Ende mit einer zweiten Polyadenylierungssequenz funktionell verbunden ist und die Polyadenylierungssequenz in 5' nach 3' Orientierung funktionell ist. Die Erfindung betrifft des weiteren Verfahren zur Herstellung doppelsträngiger Polynucleotide. Die Erfindung betrifft zudem Vektoren und Gemische von Vektoren sowie Verfahren zur Herstellung von Vektoren, die die erfindungsgemässen Polynucleotide oder die nach den Verfahren der Erfindung hergestellten Polynucleotide umfassen, sowie Wirtszellen, die diese Vektoren enthalten. Weiterhin betrifft die Erfindung Verfahren zur Identifizierung von Genen, deren Inaktivierung zu nachweisbaren Veränderungen einer Zielzelle führt. Ausserdem betrifft die Erfindung transgene Tiere, die ein erfindungsgemässes Polynucleotid enthalten. Schliesslich betrifft die Erfindung die Verwendung des erfindungsgemässen Polynucleotids zur Herstellung eines Arzneimittels zur Behandlung and Prävention von Krankheiten.

Description

Expressionskonstrukte zur Herstellung von Doppelstrang (ds) RNA und deren
Anwendung
Die Erfindung betrifft ein Polynucleotid enthaltend ein inneres Polynucleotid, das am 5' Ende funktionell mit einer ersten eukaryontischen ExpressionskontroUsequenz verbunden ist und am 3' Ende funktionell mit einer zweiten eukaryontischen ExpressionskontroUsequenz verbunden ist, wobei (i) nur die erste eukaryontische ExpressionskontroUsequenz am 5' Ende mit einer ersten Polyadenylierungssequenz funktionell verbunden ist und die Polyadenylierungssequenz in 3' nach 5' Orientierung funktionell ist, oder (ii) nur die zweite eukaryontische ExpressionskontroUsequenz am 3' Ende mit einer zweiten Polyadenylierungssequenz funktionell verbunden ist und die Polyadenylierungssequenz in 5' nach 3' Orientierung funktionell ist, oder (iii) die erste eukaryontische ExpressionskontroUsequenz am 5' Ende mit einer ersten Polyadenylierungssequenz funktionell verbunden ist und die Polyadenylierungssequenz in 3' nach 5' Orientierung funktionell ist und die zweite eukaryontische ExpressionskontroUsequenz ihrerseits am 3' Ende mit einer zweiten Polyadenylierungssequenz funktionell verbunden ist und die Polyadenylierungssequenz in 5' nach 3' Orientierung funktionell ist. Die Erfindung betrifft des weiteren Verfahren zur Herstellung doppelsträngiger Polynucleotide. Die Erfindung betrifft zudem Vektoren und Gemische von Vektoren sowie Verfahren zur Herstellung von Vektoren, die die erfindungsgemäßen Polynucleotide oder die nach den Verfahren der Erfindung hergestellten Polynucleotide umfassen, sowie Wirtszellen, die diese Vektoren enthalten. Weiterhin betrifft die Erfindung Verfahren zur Identifizierung von Genen, deren Inaktivierung zu nachweisbaren Veränderungen einer Zielzelle führt. Außerdem betrifft die Erfindung transgene Tiere, die ein erfindungsgemäßes Polynucleotid enthalten. Schließlich betrifft die Erfindung die Verwendung des erfindungsgemäßen Polynucleotids zur Herstellung eines Arzneimittels zur Behandlung und Prävention von Krankheiten. Unter RNA-Interferenz (RNAi) wird in der Literatur die spezifische Interaktion einer Nukleinsäure mit einer sequenzhomologen mRNA und der daraus resultierenden Verminderung der Genexpression beschrieben. RNAi stellt eine Form des post- transkriptionalen „gene silencing" dar, einen natürlichen Prozeß, der die Inaktivierung von Genen durch doppelsträngige RNA (dsRNA) umfaßt. dsRNA wird innerhalb der Zellen durch spezifische Enzyme in kleine Fragmente zerteilt. Diese RNA-Fragmente aktivieren einen RNAi-induzierten Enzymkomplex (RNAi-induced silencing complex, RISC), der mRNA, die komplementär zu den RNA-Fragmenten aus der dsRNA ist, zerstört. Durch die Zerstörung der mRNA wird die Aktivität eines spezifischen Gens verringert, bzw. aufgehoben. In Abgrenzung zu „antisense"-Effekten, bedeutet RNA- Interferenz (RNAi) die durch eine doppelsträngige RNA (dsRNA) geleitete nukleolytische Spaltung einer der dsRNA sequenzhomologen mRNA (Fire et al., 1998). Der dazu notwendige spezifische Proteinkomplex muß hierbei von einer dsRNA aktiviert werden (Bass, 2000; Carthew, 2001). Demnach wird RNAi durch dsRNA induziert, die von Transgenen, Transposons, Viren, oder künstlich eingebrachter dsRNA stammt. RNAi ist in verschiedenen Spezies beschrieben worden (Bosher and Labouesse, 2000). Die am besten untersuchten Organismen sind Arabidopsis thaliana, Caenorhabditis elegans, und Drosophila melanogaster. Des weiteren ist RNAi in Xenopus (Nakano et al., 2000), Hydra (Lohmann et al., 1999; Lohmann and Bosch, 2000) und Trypanosoma brucei (Shi et al., 2000) gezeigt worden. Ferner ist RNAi auch in der Pflanzengenetik unter der Bezeichnung PTGS („post transcriptional gene silencing") bekannt. Neben der Degradierung einer mRNA ist hier eine Modulierung von Chromatinaktivität wie Methylierung sequenzhomologer Regionen (Jones et al., 1999; Mette et al., 2000; Matzke et al., 2001) sowie eine Verbreitung des dsRNA-abhängigen Signals über die Zellgrenzen hinweg „spreading" - gezeigt worden (Voinnet et al., 1998; Voinnet et al., 2000; Matzke et al., 2001). Zusätzlich ist eine Rolle von RNA-abhängigen RNA-Polymerasen (RdRP) bei der Amplifikation der induzierenden dsRNA beschrieben worden (Matzke et al., 2001; Dalmay et al., 2000). Studien über die notwendige Struktur des dsRNA Moleküls liefern (Hutvagner et al., 2000) und (Thomas et al., 2001). Interferenz mit mRNA, „Chromatin-Silencing" (Kelly and Fire, 1998) und "spreading" (Tabara et al., 1998) des dsRNA Signals fungieren auch in C. elegans als spezifische dsRNA-Effekte (Harbinder et al., 1997; Fire et al., 1998; Montgomery et al., 1998; Tabara et al., 1998; Fire, 1999; Bosher et al., 1999; Sharp, 1999; Grishok et al., 2000; Bosher and
Labouesse, 2000; Tavernarakis et al., 2000). In C. elegans hat die Analyse von RNAi-
Mutanten wesentlich zur Aufklärung des Mechanismus beigetragen ((Tabara et al.,
1999; Hunter, 1999; Hunter, 2000).
In Drosophila wurde RNAi in Embryos (Yang et al., 2000; Kennerdell and Carthew,
2000), in S2/Schneider-Zellen (Caplen et al., 2000; Clemens et al., 2000) sowie in deren Extrakt (Tuschl et al., 1999; Zamore et al., 2000; Elbashir et al., 2001) dokumentiert.
Neuere Publikationen haben jedoch erwiesen, daß RNAi auch in Säugerzellen wirksam ist. Elbashir et al. (2001) haben beispielsweise 21-Nukleotid siRNA (small interfering RNAs) Duplexe verwendet, um die Expression endogener und heterologer
Gene in verschiedenen Säugerzellinien, wie beispielsweise 293-Zellen und HeLa-
Zellen, zu unterbinden. Paddison et al. (2002) haben gezeigt, daß lange doppelsträngige RNAs (ungefähr 500 Nukleotide) spezifisch die Genexpression in
Säugerzellen, wie P19 Maus embryonalen Karzinomzellen und C2/C12 Maus-
Myoblastzellen, verringern. Ferner haben Brummelkamp et al. (2002) ein System zur stabilen Expression von „Short interfering" (si)RNAs in Säugerzellen entwickelt.
Jedoch ist in Säugerzellen die Funktion von RNAi offensichtlich entwicklungsbiologisch beschränkt und in späteren Embryonalstadien nicht mehr nachweisbar (Wianny and Zemicka-Goetz, 2000). Die in Säugerzellen durchgeführten Experimente deuten darauf hin, daß es zumindest zwei verschiedene
Antworten auf dsRNA gibt, eine unspezifische sowie eine spezifische dsRNA-
Antwort, die um die dsRNA kompetitieren. Unspezifische RNAi-Effekte werden unter anderem auf das Vorhandensein eines in Säugerzellen verbreiteten antiviralen
Mechanismus zurückgeführt, der auch als Interferonantwort bezeichnet wird.
Induktor der unspezifischen dsRNA-Antwort sind längere dsRNA Moleküle, so fern diese zumindest 30 Basenpaare lang sind. Dabei sensieren zelluläre Proteine die dsRNA und initiieren eine allgemeine Inhibition der zellulären Translation (Terenzi et al., 1999; Williams, 1999). Dies führt zu einer unspezifischen Reduktion von
Genexpression. Die dsRNA aktiviert hierbei u.a. zwei Enzyme: PKR, welches in seiner aktiven Form den Translationsinitiationsfaktor elF2a phosphoryliert, was zu einem Abschalten der Proteinsynthese führt, und 2', 5'-Oligoadenylatsynthetase, welche ein Molekül bildet, das RNase L aktiviert, ein nicht-spezifisches Enzym, das mRNAs abbaut (Elbashir et al, 2001). In der sequenzspezifischen dsRNA-Antwort, der RNA-Interferenz (RNAi), wird die initiierende Doppelstrang-RNA zuerst in kurze interferrierende RNAs (siRNAs) zerteilt. Die siRNAs liefern (vermutlich) die
Sequenzinformation, die eine gezielte Degradation einer spezifischen mRNA erlaubt.
Die eigentlichen Leit-Moleküle für den RNAi-Enzymkomplex sind hierbei 21-23-mer dsRNA-Moleküle, die durch Prozessierung aus längeren Vorläufern entstehen. In zellfreien Drosophila Extrakten konnte gezeigt werden, daß die direkte Zugabe von
21-23 mer dsRNA nicht zu einer vergleichbar starken oder zu keiner Interferenz führt, im Gegensatz zum Einsatz längerer dsRNA-lnduktoren, die zu 21-23 meren prozessiert werden (Elbashir et al., 2001). Kürzere dsRNA-Moleküle werden danach nur sehr langsam zu 21-23 mer dsRNA prozessiert. Dies spricht für den Einsatz längerer dsRNA Moleküle in Drosophila Zellkultur, um starke RNAi-Effekte zu erzielen. Allerdings können auch chemisch synthetisierte 21-mer dsRNA-Moleküle
RNAi-Effekte erzielen. Die Wirksamkeit eines solchen einzelnen dsRNA-
Oligonucleotids ist möglicherweise stark positionsabhängig, offensichtlich aufgrund unterschiedlicher Zugänglichkeit der Ziel-mRNA. Bei der Prozessierung von verschiedenen dsRNA-21 meren aus einem längeren Vorläufer tritt dieses Problem aufgrund der Verfügbarkeit verschiedener dsRNA-21mere offensichtlich nicht auf.
DsRNA für experimentelle Zwecke wird gewöhnlich in einem in vitro
Transkriptionssystem hergestellt (Hunter, 1999). Dabei werden prokaryontische T7
(oder auch T3) -RNA-Polymerasebindungsstellen an genspezifische Primer angefügt und in einer genspezifischen PCR-Reaktion eingesetzt. Die auf diese Weise gewonnenen DNA-Templates beider Stränge werden dann in einer oder in getrennten in vitro Transkriptionsreaktionen eingesetzt. Die daraus einzeln oder in einem Ansatz gewonnenen komplementären RNA-Stränge können aufgereinigt, gegebenenfalls hybridisiert und anschließend auf verschiedene Weise, wie z.B. durch Calcium-Phosphat-Transfektion (Ui-Tei et al., 2000), Lipofektion (Lin et al.,
2001) oder Mikroinjektion (Tabara et al., 1998) in eine Zielzelle bzw. einen
Zielorganismus eingebracht werden. In anderen Fällen wird kurze dsRNA auch chemisch synthetisiert (Elbashir et al., 2001). Für C. elegans ist eine spezielle
Technik beschrieben worden, die auf der Verfütterung von genetisch manipulierten
E. coli Bakterien beruht, die zuvor mit einem prokaryontischen dsRNA-
Expressionsplasmid mit gegenläufig angeordneten Promotoren transformiert wurden
(Tabara et al., 1998; Timmons and Fire, 1998). In diesem Fall werden in E. coli beide
RNA-Stränge hergestellt und die hybridisierte dsRNA wird im Verdauungstrakt von C. elegans aufgenommen. Offensichtlich kann sich von dort das ds-RNAabhängige
„Silencing"-Signal über den gesamten Organismus ausbreiten (Tabara et al., 1998; Kamath et al., 2000).
Die im Stand der Technik beschriebenen Techniken zur Untersuchung von RNAi Effekten in eukaryotischen Wirtszellen, insbesondere in Säugerzellen, sehen allesamt vor, dass RNAi Moleküle zunächst in vitro hergestellt werden müssen bevor sie in die Zellen eingebracht werden. Solche Techniken sind aufgrund zahlreicher Verfahrensund Reinigungsschritte sowie der Einbringung der RNA in die Zellen zeitintensiv und nicht besonders effektiv. Nichtsdestotrotz wäre es sehr wünschenswert, RNAi Effekte auch in eukaryontischen Zellen zu nutzen. Insbesondere könnten dadurch therapeutisch oder diagnostisch relevante Zielgene identifiziert und/oder bereitgestellt werden. Erkrankungen, die auf einer Fehlfunktion solcher Zielgene beruhen, könnten dann auch mittels RNAi behandelt bzw. es könnte ihrem Entstehen durch präventive Maßnahmen vorgebeugt werden.
Das technische Problem der vorliegenden Erfindung ist es also Maßnahmen und Verfahren bereitzustellen, die eine effektive und zeitoptimierte Nutzung des RNAi Effektes, insbesondere in eukaryotischen Wirtszellen, erlauben. Dadurch wird gleichzeitig die Diagnose und die Therapie von Erkrankungen ermöglicht, die auf einer Fehlfunktion von Zielgenen des RNAi Effekts beruhen.
Die Lösung des technischen Problems wird durch die in den Ansprüchen beschriebenen Ausführungsformen ermöglicht.
Somit betrifft die vorliegende Erfindung zunächst ein Polynucleotid enthaltend ein inneres Polynucleotid, das am 5' Ende funktionell mit einer ersten eukaryontischen ExpressionskontroUsequenz verbunden ist und am 3' Ende funktionell mit einer zweiten eukaryontischen ExpressionskontroUsequenz verbunden ist, wobei
(i) nur die erste eukaryontische ExpressionskontroUsequenz am 5' Ende mit einer ersten Polyadenylierungssequenz funktionell verbunden ist und die Polyadenylierungssequenz in 3' nach 5' Orientierung funktionell ist, oder (ii) nur die zweite eukaryontische
ExpressionskontroUsequenz am 3' Ende mit einer zweiten
Polyadenylierungssequenz funktionell verbunden ist und die
Polyadenylierungssequenz in 5' nach 3' Orientierung funktionell ist, oder
(iii) die erste eukaryontische ExpressionskontroUsequenz am 5' Ende mit einer ersten Polyadenylierungssequenz funktionell verbunden ist und die Polyadenylierungssequenz in 3' nach 5' Orientierung funktionell ist und die zweite eukaryontische ExpressionskontroUsequenz ihrerseits am 3' Ende mit einer zweiten Polyadenylierungssequenz funktionell verbunden ist und die Polyadenylierungssequenz in 5' nach 3'
Orientierung funktionell ist.
Der Begriff „Polynucleotid" bezieht sich auf eine polymere Form von Nucleotiden beliebiger Länge. Die erfindungsgemäßen Polynucleotide müssen jedoch mindestens die zuvor genannten Sequenzen umfassen. Sie können darüber hinaus noch weitere Sequenzen umfassen. Bevorzugterweise sind dies Plasmid- oder Vektorsequenzen. Polynucleotide im Sinne der Erfindung können Ribonucleotide, Desoxyribonucleotide oder Derivate davon sein. Der Begriff umfaßt DNA- und RNA-Moleküle in Einzelstrang- oder Doppelstrangform. Bei der DNA kann es sich sowohl um cDNA als auch um genomische DNA handeln. Der Begriff umfaßt auch die bekannten Arten von Modifikationen der Polynucleotide, z.B. Methylierung, "capping", Basensubstitution mit natürlichen oder synthetischen Analogen, Intemucleotid-Modifikationen mit ungeladenen Verbindungen (z.B. Methyl-Phosphat, Phosphoamidat, Carbamat, Phosphotriester u.a.m.) oder mit geladenen Verbindungen (z.B. Phosphorothioat, Phosphorodithioat u.a.m.) oder mit Bindegliedern wie Proteinen und Peptiden (z.B. Nucleasen, Toxine, Antikörper, poly-L-Lysin u.a.m.). Der Begriff umfaßt auch Formen mit Intercalatoren (z.B. Acridin, Psoralen u.a.m.), Chelatoren (z.B. mit Metallen, radioaktiven Metallen oder oxidierenden Metallen, u.a.m.), solche mit alkylierenden Agentien und schließlich mit modifizierten Bindungen (z.B. alpha anomere Nucleinsäuren u.a.m.).
Der Begriff „inneres Polynucleotid" umfaßt ein beliebiges Polynucleotid, das als Matrize für RNAi Moleküle dienen soll. Vorzugsweise sind innere Polynucleotide im Sinne der Erfindung DNA Moleküle oder Fragmente davon, die in Zellen transkribiert werden und/oder zu denen eine korrespondierende RNA vorliegt, wie z.B.
Gene oder cDNAs. Besonders bevorzugt sind hierbei cDNAs, insbesondere auch in
Form von cDNA Bibliotheken.
Der Begriff „eukaryontische ExpressionskontroUsequenz" umfaßt jedes der cis- regulatorischen Elemente, die für die Expression eines Gens oder einer cDNA in
Eukaryonten benötigt werden. Unter Eukaryonten fallen defintionsgemäß alle Zellen oder Organismen, die - im Gegensatz zu Prokaryonten - einen vom Cytoplasma durch zwei Kernmembranen wohl abgegrenzten Zellkern besitzen. Unter cis- regulatorischen Elementen versteht man DNA Sequenzen mit regulatorischen
Eigenschaften. Hierzu zählen Promotor-, Enhancer- und Silencer-Elemente.
Promotor-Elemente vermitteln die basale Expression eines Gens, wohingegen
Enhancer-Elemente eine Verstärkung der Expression, Silencer-Elemente dagegen eine Reduktion oder Inhibition der Expression bewirken. Die Promoter-, Enhancer- und Silencer-Elemente interagieren physikalisch mit regulatorischen Proteinen, den
Transkriptionsfaktoren. Transkriptionsfaktoren können die Genexpression auf unterschiedliche Weise beinflußen. Einige Transkriptionsfaktoren, die sogenannten basalen Transkriptionsfaktoren, binden an DNA-Elemente wie die TATA Box oder andere sogenannte "Initiator" Elemente bzw. an dazu benachbarte
Sequenzabschnitte. Die basalen Transkriptionsfaktoren bilden einen Komplex, der letztlich auch die RNA Polymerase rekrutiert, ein DNA-abhängiges RNA synthetisierendes Enzym, das die eigentliche Transkription vermittelt.
Transkriptionsfaktoren, die an Enhancer-Elemente binden, sorgen für die schnelle
Bildung eines stabilen Komplexes der basalen Transkriptionsfaktoren, indem sie diese beispielsweise direkt oder indirekt über weitere Proteine, die sogenannten Ko-
Faktoren rekrutieren und den so initiierten Komplex stabilisieren.
Transkriptionsfaktoren, die an Silencer-Elemente binden, interferieren dagegen in negativer Weise mit der Bildung eines Komplexes der basalen Transkriptionsfaktoren.
Eine Reihe von Transkriptionsfaktoren verändert jedoch lediglich die Struktur der
DNA und bringt dadurch normalerweise weit entfernte cis-regulatorische Sequenzen in Nähe zueinander, so daß darin bindende Transkriptionsfaktoren miteinander physikalisch interagieren können. Verständlicherweise können solche cis- regulatorischen Elemente bzw. die daran bindenden Transkriptionsfaktoren auch die
Genexpression als Enhancer- oder Silencer-Elemente beeinflussen. Für die gewebsspezifische Expression eines Gens sind einerseits das Vorhandensein und die Architektur von Enhancer- und Silencer-Elemente in einem Gen-Locus, andererseits die gewebsspezifische Expression der an diese cis-regulatorischen
Elemente bindenden Transkriptionsfaktoren verantwortlich. Unter dem Begriff
„ExpressionskontroUsequenz" im Sinne der Erfindung ist somit eine DNA Sequenz zu verstehen, die verschiedene der zuvor beschriebenen cis-regulatorischen Elemente umfaßt, die ausreichend sind, die Expression des mit dieser
ExpressionskontroUsequenz verbundenen Polynucleotids zu vermitteln und die normalerweise in vivo an der Vermittlung der Gewebsspezifität der Genexpression beteiligt sind. Die Organisation und Funktionsweise eukaryontischer
Expressionskontrollsequenzen sind beispielsweise in Genes V, Lewin B., Oxford
University Press (1994) beschrieben. Bevorzugte Expressionskontrollsequenzen im
Sinne der Erfindung sind starke Promotoren, durch die hinreichend lange Transkripte des Polynucleotids in ausreichender Menge gebildet werden können, um die bimolekulare Zusammenlagerung der Einzelstrang RNA Moleküle zu einem funktionellen RNAi Molekül zu ermöglichen. Die Transkriptionseffizienz von
Expressionskontrollsequenzen kann in bekannten Testsystemen, z.B. durch Northern
Analysen oder RNase Schutzexperimente, überprüft werden. Besonders bevorzugte
Expressionskontrollsequenzen im Rahmen der Erfindung sind nachfolgend genauer beschrieben.
Der Begriff „Polyadenylierungssequenz" bezeichnet eine Polynucleotidsequenz, die die Prozessierung des 3' Endes der eukaryontischen mRNA wie nachstehend ausgeführt vermittelt. Zur Prozessierung des Transkriptes muß ein
Polyadenylierungs-(poly-A) Signal vorhanden, sein. Polyadenylierung bezeichnet die nach der Synthese fast aller eukaryontischen mRNAs am 3'-Ende erfolgende
Anheftung von ca. 20-250 Adenylresten durch eine kernständige Poly(A)-Synthetase.
Diese Reste werden auch als poly(A)-Schwanz bezeichnet. Für die Prozessierung der mRNA ist u.a. eine in vielen Genen konservierte Sequenz, AATAAA, verantwortlich, die 6-30 Basen in 5'-Richtung vor der Polyadenylierungsstelle lokalisiert ist. Andere, entweder U-reiche oder G+U-reiche, weniger konservierte Sequenzen in 3'-Richtung hinter der Polyadenylierungsstelle, werden ebenfalls für die korrekte Prozessierung des 3'-Endes einer mRNA benötigt. Die Bedeutung der Polyadenylierung dürfte hierbei in einer Stabilisierung der mRNA liegen. Ob eine bestimmte Nucleotidsequenz als Polyadenylierungssequenz fungieren kann, ist vom Fachmann leicht durch bekannte Techniken bestimmbar. Besonders bevorzugte Polyadenylierungssequenzen im Rahmen der Erfindung sind SV-40- und BGH-
Polyadenylierungssequenzen.
Das oben beschriebene Polynucleotid enthaltend ein inneres Polynucleotid wird in der
Folge auch als Bi-Promotor-Expressionsvektor bezeichnet.
Durch die Verwendung der eukaryontischen Polynucleotide, z.B. in Form von eukaryontischen Expressionsplasmiden, wird erstmals die Bildung von doppelsträngiger RNA (dsRNA) direkt in der Zielzelle ermöglicht. In Anlehnung an das prokaryontische Expressionssystem von Kamath (2000), der ein prokaryontisches
Expressionssystem für RNAi Moleküle beschreibt, wird hier die dsRNA durch eine
Expressionseinheit mit zwei gegenläufig angeordneten eukaryontischen Promotoren generiert. Die beiden Promotoren flankieren vorzugsweise eine komplette oder partielle cDNA Sequenz. Jedoch enthält das erfindungsgemäße Polynucleotid im
Gegensatz zu dem Expressionssystem von Kamath, loc. cit. eukaryontische
Expressionskontrollsequenzen, beispielsweise CMV-Promotoren oder tk-
Promotoren. Für solche Promotoren ist eine Funktionalität in einer derartigen
Anordnung bisher noch nicht beschrieben worden. Die Promotoren müssen zumindest stark genug sein sein, damit von beiden Seiten, d.h. von 5' und von 3' hinreichend lange Transkripte in ausreichender Menge hergestellt werden können, um so in einer bimolekularen Reaktion eine Zusammenlagerung der einzelnen
Einzelstrang RNA Moleküle (ssRNAs) in der Zelle zu einer dsRNA zu ermöglichen.
Die Promotoren sollten daher vorzugsweise starke Promotoren sein, z.B. CMV
Promotoren. Zwischen die beiden Promotoren kann eine einzelne cDNA bzw. eine gesamte cDNA Genbank kloniert werden (siehe Figur 1). Dabei können auch beide
Promotoren regulierbar sein. Werden sie nach dem gleichen Prinzip reguliert, läßt sich die Dosis der exprimierten dsRNA regulieren. Werden sie nach unterschiedlichen
Prinzipien reguliert, läßt sich das erfindungsgemäße Polynucleotid unter anderem auch in ein Multifunktionsplasmid verwandeln, das sowohl zur Expression von sense und/oder antisense RNA als auch von dsRNA einsetzbar ist - je nach gewähltem
Promotor und Regulationsprinzip. Hierzu kann z.B. eine gerichtete Klonierung der cDNA erforderlich sein. Ein Beispiel für ein derartiges Expressionsplasmid ist in Figur
1 gezeigt. Eine solche Ausführungsform des erfindungsgemäßen Polynucleotids ist besonders bevorzugt.
Die Erfindung beruht, inter alia, auf dem unerwarteten Befund, dass die
Polyadenylierungssequenzen bei den erfindungsgemäßen Polynucleotiden außerhalb der Expressionskontrollsequenzen lokalisiert werden müssen, um eine ausreichende Expression des inneren Polynucleotids zu gewährleisten.
Veröffentlichungen, bei denen der RNA Mechanismus zur Inhibition der
Genexpression bei Pflanzen untersucht wurde, schlagen jedoch vor, dass die
Polyadenylierungssequenzen zwischen ExpressionskontroUsequenz und innerem
Polynucleotid lokalisiert werden sollten. Der Grund hierfür ist, dass dsRNA Moleküle, die auch Expressionskontrollsequenzen umfassen, über einen noch ungeklärten
Mechanismus mit der Funktion der Expressionskontrollsequenzen von Zielgenen interferieren könnten und somit beobachtete Effekte nicht auf den eigentlichen RNAi
Effekt zurückzuführen wären. Ein weiterer überraschender Befund, der im
Zusammenhang mit der Anmeldung erhoben wurde, ist, dass sich vorzugsweise starke Promotoren, wie CMV Promotoren, für die erfindungsgemäßen Polynucleotide eignen. Ausgehend vom Stand der Technik wäre der Fachmann nämlich davon ausgegangen, dass gerade starke Promotoren in einem Bipromotorkonstrukt nicht in geeigneter Weise eingesetzt werden können, da sie um die die Transkription regulierenden Faktoren kompetitieren würden und somit letztlich keine oder nur eine sehr ineffiziente Transkription ermöglicht werden würde.
Die erfindungsgemäßen Polynucleotide können vorteilhafterweise durch die im Stand der Technik bekannten Verfahren, die auch nachfolgend noch detaillierter beschrieben werden, in eukaryontische Wirtszellen eingebracht werden.
Überraschenderweise wurde in den der Erfindung zugrunde liegenden Befunden festgestellt, dass die erfindungsgemäßen Polynucleotide auch in der Lage sind, nachdem sie in die Zelle eingebracht worden sind, RNAi Moleküle zu bilden, die spezifisch mit der biologische Aktivität des Zielgens interferieren, gegen das sie gerichtet sind. Die Effizienz des Einbringens kann hierbei je nach eingesetztem
Verfahren zum Einbringen maximiert werden. Darüber hinaus ist durch im Stand der
Technik bekannte Verfahren eine effiziente Reinigung von DNA Molekülen möglich, durch die unerwünschte unspezifische Effekte durch kontaminierende Substanzen nicht mehr auftreten. Besonders vorteilhaft ist, dass eine Vielzahl unterschiedlicher erfindungsgemäßer Polynucleotide, die beispielsweise in Screening Verfahren eingesetzt werden können, dadurch hergestellt werden können, dass kodierende
Polynucleotide aus vorhandenen Bibliotheken, z.B. cDNA Bibliotheken, durch molekulare Klonierungsverfahren in die erfindungsgemäßen Polynucleotide als innere
Polynucleotide aufgenommen werden können. Ein weiterer Vorteil der erfindungsgemäßen Polynucleotide besteht darin, dass diese Moleküle leicht in Screening Verfahren, insbesondere in sogenannten Hochdurchsatzverfahren ('Ηigh Throughput Screening"; HTS) eingesetzt werden können. Insbesondere DNA Polynucleotide eignen sich für diese Hochdurchsatzverfahren besonders, da für das Arbeiten mit solchen Polynucleotiden eine Reihe von automatisierten Methoden im Stand der Technik bekannt sind. Bei solchen Verfahren ist es neben der Gewährleistung eines spezifischen RNAi Effektes und einer hohen Effizienz beim Einbringen unterschiedlicher Polynukleotide in die Wirtszellen auch wichtig, die Struktur, d.h. die Nucleinsäuresequenz der RNAi Moleküle bzw. der Zielgene, gegen die sie gerichtet sind, schnell zu bestimmen. Durch den Einsatz der erfindungsgemäßen Polynucleotide wird dies gewährleistet, da insbesondere die DNA Polynucleotide leicht mit bekannten und automatisierten Verfahren sequenziert werden können. Der Einsatz von RNAi in einem Screeningverfahren ermöglicht die Detektion von Genen, deren Inaktivierung zu detektierbaren Veränderungen der Zielzelle führt. Ein geeignetes Screeningverfahren ist in anderem Zusammenhang in der WO01/48239 beschrieben. Die Verwendung von RNAi in einem Screeningverfahren hat den Vorteil, dass eine Verminderung / Abschaltung der Genexpression eines Zielgens detektierbar wird. Gegenüber der Verwendung von antisense-RNA ist die Wahrscheinlichkeit einer Blockierung der Genexpression erhöht, da antisense- Moleküle aufgrund von hinderlichen Sekundärstrukturen oft nicht mit ihrer target RNA hybridisieren können. Ausserdem würden bei einer Herstellung einer Genbank mit antisense-RNA bevorzugt Sequenzen aus dem 3' Bereich von Genen kloniert. Dies verhindert effiziente antisense-Effekte, die bevorzugt im Bereich der 5'-mRNA- Sequenzen (im Bereich des Start-Codons) zu erzielen sind. Antisense-Moleküle, die meist als Oligonucleotide eingesetzt werden, müssen im Gegensatz zu Induktoren für RNAi in deutlich höheren Mengen vorliegen (μM Konzentrationen zu nM). Die Verwendung geringerer Konzentrationen an RNA führt zu einer Steigerung der Transfektionseffizienz. Durch die Transfektion der erfindungsgemäßen Polynucleotide, z.B. in Form von Plasmiden, wird zudem das Einbringen der dsRNA in die Zelle erleichtert, da die Expression der RNA in der Zielzelle erfolgt. Bisher musste die RNA durch in vitro Transkriptionsreaktionen gewonnen, die komplementären RNA-Stränge aufgereinigt oder gegebenefalls hybridisiert und anschließend auf verschiedene Weise (wie z.B. durch Calcium-Phosphat- Transfektion, Lipofektion oder Mikroinjektion) in eine Zielzelle bzw. einen Zielorganismus eingebracht werden. Nicht zuletzt können die erfindungsgemäßen Polynucleotide auch zur Behandlung und/oder Prävention von
Erkrankungen eingesetzt werden, die auf einer fehlerhaften Regulierung der Zielgene des ds RNA (RNAi) Moleküls beruhen. Hierbei können die Polynukleotide beispielsweise im Rahmen von Gentherapie Ansätzen als DNA Moleküle verwendet werden. Im Rahmen der Erfindung bevorzugte Erkrankungen werden nachfolgend noch genauer beschrieben.
In einer bevorzugten Ausführungsform des erfindungsgemäßen Polynucleotids umfaßt das innere Polynukleotid zumindest 50 Nukleotide.
In einer weiteren bevorzugten Ausführungsform der Erfindung umfaßt das innere Polynucleotid ein cDNA Molekül oder ein Fragment davon.
Der Begriff "Fragment eines cDNA Moleküls" umfaßt hierbei cDNA Moleküle, die die charakteristischen und spezifischen Bestandteile des inneren Polynucleotids aufweisen. Vorzugsweise sind diese Fragmente ausreichend lang, so daß die von ihnen gebildeten RNAi Moleküle die Funktion des Zielgens spezifisch inhibieren können. Besonders bevorzugt sind Polynucleotide, die mindestens 50 Nukleotide, 60 Nukleotide, 70 Nukleotide, 80 Nukleotide, 90 Nukleotide, 100 Nukleotide, 150 Nukleotide, 200 Nukleotide, 250 Nucleotide oder 1000 Nucleotide umfassen. Bevorzugt enthält dieses Fragment kein Startcodon.
Aus den zuvor gemachten Ausführungen folgt, dass in einer besonders bevorzugten Ausführungsform des erfindungsgemäßen Polynucleotids das cDNA Molekül oder Fragment davon aus einer Bibliothek von cDNA Molekülen stammt. Unter den Begriff „Bibliothek von cDNA Molekülen" fallen Genbanken, die mRNA Sequenzen in Form von cDNA enthalten. Bevorzugt sind hierbei cDNA Bibliotheken eukaryontischer Organismen, insbesondere von Säugern und bevorzugt des Menschen. Die Herstellung, Isolierung und Klonierung von cDNA Molekülen oder cDNA Fragmenten aus cDNA Bibliotheken ist dem Fachmann bekannt und beispielsweise in Standard Lehrbüchern der Molekularbiologie, wie Sambrook et al. oder in Ausubel et al., beschrieben. In einer weiteren bevorzugten Ausführungsform der Erfindung sind die erste und die zweite ExpressionskontroUsequenz miteinander identisch oder unterschiedlich voneinander.
Die ExpressionskontroUsequenz ist in einer weiteren bevorzugten Ausführungsform der Erfindung ausgewählt aus der Gruppe bestehend aus CMV-Promotor, Thymidinkinase-Promotor, SV40 Promotor oder PGK Promotor, α-Myosin heavy chain Promotor.
In einer bevorzugten Ausführungsform der Erfindung sind die erste und die zweite ExpressionskontroUsequenz konstitutiv aktiv.
Der Begriff "konstitutiv aktive ExpressionskontroUsequenz" bezeichnet eine ExpressionskontroUsequenz, die durch die in der Zelle bereits enthaltene Transkriptionsmaschinerie aktiviert wird.
In einer anderen bevorzugten Ausführungsform der Erfindung sind die erste und die zweite ExpressionskontroUsequenz induzierbar.
Der Begriff "induzierbare ExpressionskontroUsequenz" bezeichnet eine ExpressionskontroUsequenz, die durch Zugabe eines Induktors, beispielsweise bestimmter Chemikalien (z. B. Cu++-lonen, Methanol etc.) oder durch andere Einflüsse wie Hitze, die Transkription eines mit dieser ExpressionskontroUsequenz funktionell verbundenen Gens induziert.
Werden die Expressionskontrollsequenzen hierbei nach dem gleichen Prinzip reguliert, läßt sich die Dosis der exprimierten dsRNA regulieren. Werden sie nach unterschiedlichen Prinzipien reguliert, läßt sich das Bipromotorplasmid der Erfindung in ein Multifunktionsplasmid verwandeln, das sowohl zur Expression von sense und/oder antisense RNA als auch von dsRNA einsetzbar ist - je nach gewähltem Promotor und Regulationsprinzip. Hierzu kann eine gerichtete Klonierung der cDNA erforderlich sein. Ein Beispiel hierfür ist das Ecdyson-System (Invitrogen, Karlsruhe).
In einer besonders bevorzugten Ausführungsform der Erfindung ist die induzierbare erste und zweite ExpressionskontroUsequenz ausgewählt aus der Gruppe bestehend aus Tetracyclin induzierbaren Promotoren, Metallothionin Promotoren und Ecdyson induzierbare Promotoren (Gossen und Bujard, 1992; Clontech, Tet-System; Acra et al., 1998; Thummel, 2002).
In einer bevorzugten Ausführungsform der Erfindung sind die erste und die zweite Polyadenylierungssequenz miteinander identisch.
In einer anderen bevorzugten Ausführungsform der Erfindung sind die erste und die zweite Polyadenylierungssequenz dagegen unterschiedlich voneinander.
Die Erfindung betrifft außerdem ein Verfahren zur Herstellung eines doppelsträngigen Polynucleotids umfassend die Schritte:
(a) Verknüpfung eines einzelsträngigen ersten DNA Moleküls, das am 5' Ende eine Erkennungssequenz für eine Restriktionsendonuclease umfasst, an dessen 3' Ende mit einem zweiten Oligonucleotid, dessen 5' Ende phosphoryliert ist, wobei das zweite Oligonucleotid (i) eine Sequenz umfasst, die die Verknüpfung mit dem ersten DNA Molekül erlaubt und (ii) an dem 3' Ende eine Sequenz von mindestens 5 Nucleotiden umfaßt, die die Bildung einer haarnadelförmigen Sekundärstruktur („stem loop") Struktur erlaubt;
(b) Synthese eines zweiten DNA Moleküls, wobei das erste einzelsträngige DNA Molekül als Matrize für die Synthese des zweiten DNA Moleküls dient und das zweite DNA Molekül ausgehend von dem 3' Ende des eine haarnadelförmige Sekundärstruktur bildenden zweiten Oligonucleotids als Primer dient, wobei am Ende der Synthese ein doppelsträngiges DNA Molekül bestehend aus erstem DNA Molekül, zweitem Oligonucleotid und zweitem DNA Molekül vorliegt;
(c) Denaturierung des so erhaltenen doppelsträngigen DNA Moleküls; und
(d) Synthese eines dritten einzelsträngigen DNA Moleküls unter Verwendung eines dritten Oligonucleotids, das eine zu dem ersten Oligonucleotid identische Sequenz umfaßt, wobei das zweite einzelsträngige DNA Molekül aus Schritt (c) als Matrize dient und das zweite und das dritte einzelsträngige DNA Molekül als Doppelstrang am Ende der Synthese vorliegen. Alle zuvor gemachten Begriffsdefinitionen treffen auf diese und alle nachfolgenden
Ausführungsformen mutatis mutandis zu.
Der Begriff "Herstellung" umfasst neben den zuvor explizit genannten Schritten auch zusätzliche Schritte, wie etwa Vorbehandlungen des Ausgangsstoffes oder
Weiterbehandlungen des Endproduktes. Vorbehandlungsverfahren werden nachfolgend bei der Beschreibung der bevorzugten Ausführungsformen noch genauer erläutert. Weiterbehandlungsverfahren umfassen beispielsweise chemische
Modifikation oder weiter gängige Formulierungs- und/oder Konfektionierungsschritte.
Hierunter sind insbesondere zu verstehen Aufreinigungsschritte,
Anreicherungsschritte sowie die anschließende Bereitstellung der durch das erfindungsgemäße Verfahren hergestellten Polynucleotide, z.B. in geeigneten
Behältern, Verpackungen etc.
Der Begriff "Verknüpfung" umfaßt einen Prozeß, in dem zwischen zwei benachbarten
Nucleinsäure-Basen eine chemische Bindung hergestellt wird. Vorzugsweise handelt es sich um eine 5'-3'-Phosphodiesterbindung im Zuckerphosphat-Rückgrat des
Polynucleotids zwischen zwei benachbarten Basen. Protokolle für die Verknüpfung von Polynucleotiden, die auch als Ligation bezeichnet ist, sind in der Literatur beschrieben (Sambrook et al.; Ausubel et al.).
Der Begriff "Erkennungssequenz für eine Restriktionsendonuclease" umfaßt einen
Bereich definierter Basensequenz, der von einer Restriktionsendonuclease spezifisch erkannt wird und ggf. gespalten wird. Die Erkennungssequenz für eine
Restriktionsendonuclease kann 4 bis 10 Basenpaare umfassen. Im Rahmen der
Erfindung sind solche Erkennungssequenzen bevorzugt, die 6 Basenpaare und mehr umfassen.
Der Begriff "zweites Oligonucleotid" umfaßt ein Oligonucleotid, dessen 5' Ende phosphoryliert ist, wobei das zweite Oligonucleotid zudem eine Sequenz umfasst, die die Verknüpfung mit einem ersten DNA Molekül erlaubt und an dem 3' Ende eine
Sequenz von mindestens 5 Nucleotiden umfaßt, die die Bildung einer haarnadelförmigen Sekundärstruktur („stem loop") Struktur erlaubt.
In einer bevorzugten Ausführungsform weist das zweite Oligonucleotid am 5' Ende ein freies, einzelsträngiges Ende (10 bis 50 Nucleotide) auf. Dieser Überhang dient der T4-RNA-Ligase als Erkennungsmotiv.
In einer weiteren bevorzugten Ausführungsform weist das zweite Oligonucleotid ein freies einzelsträngiges 3' Ende, bestehend aus einem Überhang von 3 bis 5 Guanin- Basen, auf. Durch Anfügen von 3 bis 5 Cytosin Basen an den 3' Bereich des einzelsträngigen ersten DNA Molekül erhält man einen bekannten 3' Bereich. An diesen wird ein zweites Oligonucleotid hybridisiert, das einen einzelsträngigen 3'
Bereich aus 3 bis 5 Guanin Basen enthält. Nach Hybridisierung des ersten einzelsträngigen DNA-Moleküls mit dem zweiten Oligonucleotid wird die Lücke mit einer T4-DNA-Ligase geschlossen.
Der Vorteil dieses Systems liegt in der verbesserten Effizienz der Substratumsetzung durch Verwendung einer T4 DNA Ligase anstatt einer T4 RNA Ligase sowie der
Anfügung des Primers durch Hybridisierung.
Die Phosphorylierung von Polynucleotid-Enden ist in der Literatur beschrieben (Sambrook et al.; Ausubel et al.). Die Länge des zweiten Oligonucleotids beträgt zwischen 10 und 150 Nucleotide, vorzugsweise 20 bis 100 Nucleotide. Geeignete Techniken für das Entwerfen und die Herstellung von geeigneten, spezifischen Oligonucleotiden sind dem Fachmann bekannt. Bevorzugte Oligonucleotide, die im Rahmen des erfindungsgemäßen Verfahrens eingesetzt werden können, werden nachfolgend und in den Beispielen genauer beschrieben. Der Begriff "haarnadelförmige Sekundärstruktur" oder „stem-loop"-Struktur bezeichnet eine doppel-helikale Region, die über intramolekulare Basenpaarung zwischen benachbarten (invertierten) komplementären Sequenzen einer einzelsträngigen DNA oder RNA entsteht. Diese Struktur ermöglicht somit eine Rückfaltung des Oligonucleotid-Endes auf sich selbst. Bei den im erfindungsgemäßen Verfahren eingesetzten Oligonucleotiden bildet sich die Haarnadelschleife nach Hybridisierung des 3' Endes des Oligonucleotids mit seinem 5' Ende. Damit die beiden Enden miteinander hybridisieren, müssen die hybridisierten Anteile, d.h. die 3' und 5' Enden des Oligonucleotids, mindestens so viele Nucleotide umfassen, daß eine spezifische Hybridisierung ermöglicht wird. Daneben muß das Segment zwischen den beiden Enden genügend viele Nucleotide umfassen, um eine Haarnadelschleife räumlich ausbilden zu können.
Der Begriff "Synthese" umfaßt die Verknüpfung von Nucleotiden zu Polynucleotiden. Die Synthese wird beim erfindungsgemäßen Verfahren vorzugsweise durch Polymerasen vermittelt, wobei die Polynucleotide vorzugsweise DNA oder cDNA sind. Die Synthese von Polynucleotiden ist in der Literatur beschrieben (Sambrook et al., Ausubel et al.)
Der Begriff "Denaturierung" bezeichnet eine Behandlung, die
Wasserstoffbrückenbindungen zwischen den Strängen eines doppelsträngigen
Polynucleotids löst. Denaturierung ist auch unter dem Begriff Schmelzen bekannt.
Eine Denaturierung von Polynucleotiden kann beispielsweise durch Erhöhung der
Temperatur oder durch niedrige Salzkonzentrationen erreicht werden. Vorzugsweise wird die Denaturierung durch Erhöhung der Temperatur erreicht. Wie dem Fachmann bekannt, ist hierbei die Schmelztemperatur der jeweiligen Polynucleotide ein entscheidender Parameter, die u.a. durch den relativen GC-Gehalt der Polynucleotide beeinflußt wird. Die Schmelztemperatur liegt für in Lösung vorliegende Polynucleotide etwa im Bereich von 85-95°C. Verfahren und Formeln zur Bestimmung der
Schmelztemperatur sind im Stand der Technik beschrieben.
Der Begriff "drittes Oligonucleotid" umfaßt ein Oligonucleotid, das eine dem ersten
Oligonucleotid identische Sequenz aufweist. Mit dem ersten Oligonucleotid wird im
Rahmen der Erfindung ein Oligonucleotid bezeichnet, das mit dem 3' Ende eukaryontischer mRNAs spezifisch hybridisieren kann. Bevorzugt sind hierbei oligo dT-Primer, die mit dem poly(A) Schwanz eukaryontischer mRNAs hybridisieren können. Oligo-dT-Primer sind im Stand der Technik beschrieben. Das dritte
Oligonucleotid wird im erfindungsgemäßen Verfahren zur Drittstrangsynthese eingesetzt und kann nach im Stand der Technik bekannten Verfahren hergestellt werden. Bevorzugt wird als viertes Oligonucleotid ein 5'-phosphorylierter (Anti-
Haamadelprimer)-Primer eingesetzt, der im Bereich der aufgefalteten
Haarnadelstruktur bindet, um eine Rückfaltung des Zweitstrangproduktes zu vermeiden. Bevorzugt weist das 3' Ende des oligo dT Bereiches des ersten
Oligonucleotids die Basen A, C, G auf, um sicherzustellen, daß der oligo-dT-Primer exakt am Übergang zwischen Polyadenylierungssequenz (pA)-Sequenz und 3' UTR
(nichttranslatierter Bereich) des Transkripts positioniert wird.
In einem dem erfindungsgemäßen Verfahren, das zuvor beschrieben wurde, vorgeschalteten Schritt kann ein oligo-dT-Primer, der mit mindestens einer seltenen Restriktionsspaltstelle versehen ist, in eine cDNA Erststrangsynthese eingesetzt. Vorzugsweise werden dann die weiteren Schritte wie nachfolgend beschrieben durchgeführt: Bevor die Zweitstrangsynthese erfolgt, wird mittels einer T4-RNA- Ligase bzw. einer T4-DNA-Ligase (siehe oben) ein spezieller DNA-
Haarnadelprimer an das 3 Ende der Erststrang-cDNA ligiert. Dieses Oligonucleotid
(Primer) zeichnet sich durch folgende Eigenschaften aus: Er besitzt ein phosphoryliertes 5'-Ende, eine einzelsträngige Region (beispielsweise 10-20 bp), die eine Ligation durch T4-RNA-Ligase (Tessier et al., 1986; Delort et al., 1989; Edwards et al., 1991; Troutt et al., 1992; Chenchik et al., 1996) erlaubt und eine
Haarnadelschleife ("stem-loop"-Struktur), die eine Rückfaltung des Primer-Endes auf sich selbst ermöglicht. Der „loop" muß hierbei größer als 5bp sein, um eine anschließende Amplifikation des klonierten Reaktionsproduktes in E. coli Bakterien zu gewährleisten. Bevorzugt ist eine Länge des Stamms von ca. 6-10 bp. Beispiele für
Primer, die ein derartiges „self-priming" ermöglichen, sind für zelluläre und virale
Nukleinsäuren im Stand der Technik beschrieben (für Beta-Globin-mRNA (Rougeon and Mach, 1976; Volloch et al., 1994); für BC1-mRNA (Shen et al., 1997); für virale
Nukleinsäuren (Salzman and Fabisch, 1979; Baroudy et al., 1982; Lin and Levin,
1998). Nach der Ligation wird am 3Εnde des rückgefalteten Primers eine
Zweitstrangsynthese durchgeführt. Als Ergebnis erhält man ein ununterbrochenes einseitig kovalent geschlossenes gepaartes DNA-Zweitstrangsyntheseprodukt. Nach
Denaturierung erfolgt mittels eines zum ursprünglichen oligo dT-Primer identischen
Primers die Drittstrangsynthese. Bevorzugt wird zur Vermeidung einer Rückfaltung des Zweitstrangproduktes ein weiterer 5'-phosphorylierter (Anti-Haarnadelprimer)-
Primer eingesetzt, der dem o.a. vierten Oligonucleotid entspricht. In dieser bevorzugten Ausührungsform sollte das Drittstrangsyntheseprodukt allerdings noch mit T4-DNA-Ligase behandelt werden, bevor es in ein gängiges Expressionsplasmid kloniert wird. Ein derartiges Konstrukt wird in der Folge auch als als
Haarnadelexpressionsvektor (siehe beispielsweise Figur 2) bezeichnet.
Entsprechende gängige Expressionsplasmide sind im Stand der Technik bekannt. Die
Klonierung in das Expressionsplasmid erfolgt über die seltene Restriktions-Spaltstelle des oligo-dT Primers. Diese Genbank wird dann bevorzugt in rekombinationsdefekte
E. coli Bakterien wie z. B. „E. coli Sure" transfiziert.
Durch die erfindungsgemäßen Verfahren werden vorteilhafterweise Polynucleotide bereitgestellt, die die Herstellung von Einzelstrang- RNA Molekülen in äquimolaren Mengen erlaubt. Bei Polynucleotiden, die zwei Expressionskontrollsequenzen für Strang und Gegenstrang des RNAi Moleküls besitzen können z.B. flankierende Sequenzen die Transkription in unerwünschterweise in unterschiedlichem
Maße beeinflussen. Bei der Transkription der durch die erfindungsgemäßen
Verfahren hergestellten Polynucleotide können solche unerwünschten Einflüsse jedoch vermieden werden. Von den durch die erfindungsgemäßen Verfahren hergestellten Polynucleotiden wird nämlich zunächst ein lineares Einzelstrang RNA
Molekül gebildet, welches die beiden Stränge des RNAi Moleküls umfasst. Die beiden
Stränge des RNAi Moleküls hybridisieren zunächst intramolekular bleiben jedoch noch über die Haarnadelschleife verbunden. Die Vorteile der durch die erfindungsgemäßen Verfahren hergestellten Polynucleotide beim Einsatz in der
Analyse von therapeutisch oder diagnostisch relevanten Zielgenen, in Screening
Verfahren, in Hochdurchsatzverfahren und bei Behandlung und Prävention von
Erkrankungen entsprechen mutatis mutandis den Vorteilen, die im Zusammenhang mit den erfindungsgemäßen Polynucleotiden aufgeführt sind.
In einer bevorzugten Ausführungsform der Erfindung wird das einzelsträngige erste DNA Molekül des erfindungsgemäßen Verfahrens hergestellt durch:
(a) Synthese eines einzelsträngigen ersten DNA Moleküls unter Verwendung eines ersten Oligonucleotids, das eine oligo-dT Sequenz, und am 5'-Ende der oligo-dT Sequenz eine Erkennungssequenz für eine Restiktionsendonuclease umfaßt, wobei ein an seinem 3'-Ende polyadenyliertes RNA Molekül einer einzelnen Spezies als Matrize dient und das erste Oligonucleotid in der Lage ist, mit dem 3'-Ende des polyadenylierten RNA Moleküls zu hybridisieren;
(b) Entfernen des polyadenylierten RNA Moleküls; und
(c) Bereitstellung des ersten einzelsträngigen DNA Moleküls.
Der Begriff "erstes Oligonucleotid" umfaßt ein Oligonucleotid, das mit dem 3' Ende eukaryontischer mRNAs (spezifisch) hybridisieren kann. Vorzugsweise ist das erste Oligonucleotid ein oligo-dT-Primer, der mit dem 3' Ende der polyadenylierten mRNA, dem poly(A) Schwanz der mRNA, hybridisieren kann und der am 5' Ende mit mindestens einer seltenen Restriktionsspaltstelle, beispielsweise eine Schnittstelle aus 6 oder mehr Nucleotiden, versehen ist. Das Entwerfen und die Herstellung von spezifisch hybridisierenden Oligonucleotiden ist dem Fachmann bekannt und im Stand der Technik beschrieben. Schmelztemperaturen von Oligonucleotiden können berechnet werden mit Hilfe von bekannten Computerprogrammen. Bevorzugt enthält das erste Oligonucleotid am 3' Ende des oligo-dT-
Bereiches noch zusätzlich die Basen G, A, C.
Unter dem Begriff "polyadenyliertes RNA Molekül einer einzelnen Spezies" sind ein oder mehrere identische mRNA Moleküle zu verstehen. Umfaßt sind hierbei mRNA
Moleküle aus Nicht-Vertebraten oder Vertebraten. Bevorzugt sind mRNAs aus
Säugern, insbesondere mRNAs des Menschen. mRNAs können hierbei aus Zellen,
Körperflüssigkeiten (wie Lymphe, Serum, Plasma, Urin, Spinalflüssigkeit etc.),
Gewebebiopsien etc. stammen.
Der Begriff "Hybridisierung" bedeutet im Rahmen dieser Erfindung eine
Hybridisierung unter konventionellen Hybridisierungsbedingungen, vorzugsweise unter stringenten Bedingungen, wie sie beispielsweise in Sambrook (Molecular
Cloning, A Laboratory Manual, 2. Aufl. (1989) Cold Spring Harbor Laboratory Press,
Cold Spring Harbor, NY) oder den Beispielen beschrieben sind.
Der Begriff "Entfernen" umfaßt die Abtrennung und das Entfernen der Bausteine des polyadenylierten RNA Moleküls. Beispielsweise können in mRNA/cDNA Hybriden die mRNA Moleküle über eine Inkubation mit RNasen oder durch alkalische Hydrolyse entfernt werden. Bevorzugt ist eine Inkubation mit RNase H.
Der Begriff "Bereitstellung" umfaßt Aufreinigungsmethoden und
Anreicherungsmethoden von (einzelsträngigen) DNA Molekülen. Diese sind beispielsweise in Sambrook et al. und in Ausubel et al. beschrieben.
In einer bevorzugten Ausführungsform der Erfindung wird das polyadenylierte RNA Molekül durch Extraktion von mRNA aus Zellen, Geweben oder kompletten Organsismen oder durch Transkription von cDNA Molekülen, die in Bibliotheken von cDNA Molekülen enthalten sind, gewonnen.
Methoden zur Extraktion von mRNA aus Zellen, Geweben oder Organismen und die Transkription von cDNA Molekülen sind im Stand der Technik beschrieben (Sambrook et al., Ausubel et al.)
Die Erfindung betrifft weiterhin ein Verfahren zur Herstellung eines Gemisches doppelsträngiger Polynucleotide umfassend die Schritte:
(a) Verknüpfung von einzelsträngigen ersten DNA Molekülen, die am 5' Ende eine Erkennungssequenz für eine Restriktionsendonuclease umfassen, an deren 3' Enden jeweils mit einem zweiten Oligonucleotid, dessen 5' Ende phosphoryliert ist, wobei das zweite Oligonucleotid (i) eine Sequenz umfasst, die die Verknüpfung mit dem ersten DNA Molekül erlaubt und (ii) an dem 3' Ende eine Sequenz von mindestens 5 Nucleotiden umfaßt, die die Bildung einer haarnadelförmigen Sekundärstruktur („stem loop") Struktur erlaubt;
(b) Synthese von zweiten DNA Molekülen, wobei jeweils das erste einzelsträngige DNA Molekül als Matrize für die Synthese des zweiten DNA Moleküls dient und das zweite DNA Molekül ausgehend von dem 3' Ende des eine haarnadelförmige Sekundärstruktur bildenden zweiten Oligonucleotids als Primer dient, wobei am Ende der Synthese ein doppelsträngiges DNA Molekül bestehend aus erstem DNA Molekül, zweitem Oligonucleotid und zweitem DNA Molekül vorliegt;
(c) Denaturierung des so erhaltenen doppelsträngigen DNA Moleküls; und
(d) Synthese von dritten einzelsträngigen DNA Molekülen unter Verwendung von jeweils einem dritten Oligonucleotid, das eine zu dem ersten Oligonucleotid identische Sequenz umfaßt, wobei das zweite einzelsträngige DNA Molekül aus Schritt (c) als Matrize dient und das zweite und das dritte einzelsträngige DNA Molekül als Doppelstrang am Ende der Synthese vorliegen.
Alle zuvor gemachten Begriffsdefinitionen treffen auf diese und alle nachfolgenden Ausführungsformen mutatis mutandis zu.
Der Begriff "Gemisch von doppelsträngigen Polynucleotiden" bezeichnet eine Vielzahl von erfindungsgemäßen, doppelsträngigen Polynucleotiden, die identische oder verschiedene Nucleinsäuremoleküle umfassen.
In einer bevorzugten Ausführungsform der Erfindung werden die einzelsträngigen ersten DNA Moleküle des erfindungsgemäßen Verfahrens hergestellt durch:
(a) Synthese von einzelsträngigen ersten DNA Molekülen unter Verwendung von ersten Oligonucleotiden, die eine oligo-dT Sequenz, und am 5'-Ende der oligo-dT Sequenz eine Erkennungssequenz für eine Restiktionsendonuclease umfaßen, wobei an ihrem 3'-Ende polyadenylierte RNA Moleküle verschiedener Spezies als Matrize dienen und die ersten Oligonuleotide in der Lage sind, mit den 3'-Enden der polyadenylierten RNA Moleküle zu hybridisieren;
(b) Entfernen der polyadenylierten RNA Moleküle; und
(c) Bereitstellung der ersten einzelsträngigen DNA Moleküle.
Der Begriff "polyadenylierte RNA Moleküle verschiedener Spezies" im Rahmen der Erfindung bezeichnet strukturell unterschiedliche mRNA Moleküle. Bevorzugt sind hierbei Gemische von mRNAs, die aus Genbanken, Zellen oder Zellinien gewonnen werden können. Die mRNAs können vorzugsweise aus Nicht-Vertebraten oder Vertebraten, insbesondere aus Säugerzellen gewonnen werden. Am meisten bevorzugt sind mRNAs des Menschen.
In einer bevorzugten Ausführungsform der erfindungsgemäßen Verfahren werden die polyadenylierten RNA Moleküle durch Extraktion von mRNA aus Zellen, Geweben oder kompletten Organismen oder durch Transkription von cDNA Molekülen, die in Bibliotheken von cDNA Molekülen enthalten sind, gewonnen.
In einer bevorzugten Ausführungsform der Verfahren der Erfindung erkennt die Restriktionsendonuklease eine Sequenz von mindestens 6 Nucleotiden.
In einer besonders bevorzugten Ausführungsform der erfindungsgemäßen Verfahren sind die selten spaltende Restriktionsendonuklease ausgewählt aus der Gruppe bestehend aus: Xho I, Not I, Xba I, Bgl II, Asp 718, Sal I, Sac I, Sfi I.
In einer weiteren bevorzugten Ausführungsform der erfindungsgemäßen Verfahren ist die Sequenz aus (a) (i), die die Verknüpfung erlaubt, ein 5' einzelsträngiger Bereich (Überhang), der der T4-RNA-Ligase als Erkennungsregion dient.
In einer noch weiter bevorzugten Ausführungsform der erfindungsgemäßen Verfahren ist die Sequenz aus Schritt (a) (i), die die Verknüpfung erlaubt, ein einzelsträngiger 3' Bereich aus 3 bis 5 Guanin Basen, der nach Hybridisierung mit dem 3' Bereich des einzelsträngigen ersten DNA-Moleküls durch eine T4-DNA-Ligase geschlossen wird. In einer bevorzugten Ausführungsform der Verfahren der Erfindung umfaßt die
Sequenz aus Schritt (a) (ii), die die Bildung einer haarnadelförmigen Sekundärstruktur
(„stem loop") erlaubt, mindestens 5, 6, 7, 8, 9, 10 oder bis 100 Nucleotide in Länge.
In einer bevorzugten Ausführungsform der erfindungsgemäßen Verfahren wird in Schritt (d) zusätzlich ein viertes Oligonucleotid zugesetzt, das am 5' phosphoryliert ist und eine zu dem zweiten Oligonucleotid komplementäre Sequenz umfaßt. Der Begriff "viertes Oligonucleotid" umfaßt im Sinne der Erfindung ein zu dem oben beschriebenen zweiten Oligonucleotid komplementäres Oligonucleotid. Wie bereits angeführt, weist dieses zweite Oligonucleotid eine Sequenz auf, die die Bildung einer haarnadelförmigen Sekundärstruktur erlaubt. Das vierte Oligonucleotid kann im Rahmen der Erfindung zur Vermeidung einer Rückfaltung des Zweitstrangproduktes eingesetzt werden kann. Vorzugsweise ist das vierte Oligonucleotid ein zum Haarnadelprimer komplementäres Oligonucleotid und am 5' Ende phosphoryliert. Die Herstellung sowie die Phosphorylierung eines solchen Oligonucleotids ist dem Fachmann bekannt.
Die Erfindung betrifft des weiteren ein Verfahren zur Herstellung eines Vektors oder eines Gemisches von Vektoren, wobei das Verfahren den zusätzlichen Schritt des Klonierens der hergestellten heterologen Polynucleotide in einen geeigneten Vektor umfaßt.
Alle zuvor gemachten Begriffsdefinitionen treffen auf diese und alle nachfolgenden Ausführungsformen mutatis mutandis zu.
Der Begriff "Vektor" bezeichnet prokaryontische oder eukaryontische Klonierungsund/oder Expressions- Vektoren. Beispiele für prokaryontische Vektoren sind chromosomale Vektoren, wie etwa Bakteriophagen (z.B. Bakteriophage Lambda, P1) und extrachromosomale Vektoren, wie etwa Plasmide, wobei zirkuläre Plasmidvektoren besonders bevorzugt sind. Geeignete prokaryontische Vektoren sind beispielsweise bei Sambrook et al., Kapitel 1 bis 4, beschrieben. Der erfindungsgemäße Vektor kann auch ein eukaryontischer Vektor sein, z.B. ein Hefevektor oder ein für höhere Zellen geeigneter Vektor, z.B. ein Plasmidvektor, ein viraler Vektor, ein Pflanzenvektor, u.a.m.. Beispiele für derartige Vektoren sind ebenfalls in Sambrook et al. (Kapitel 16) beschrieben.
Der Begriff "Gemisch von Vektoren" umfaßt mehrere identische oder verschiedene
Vektoren. Die Vektoren können hierbei gleiche oder verschiedene erfindungsgemäße
Polynucleotide umfassen. Verfahren zur Herstellung eines Vektors oder eines
Gemisches von Vektoren sowie die Methoden der Klonierung von Polynucleotiden in solche Vektoren sind in Sambrook et al. und Ausubel et al. beschrieben. Die
Konstruktion des erfindungsgemäßen Vektors erlaubt vorteilhafterweise, die erfindungsgemäßen Polynucleotide zu klonieren und/oder in eukaryontischen Zellen zu exprimieren.
Unter dem Begriff "heterologe Polynucleotide" versteht man im Rahmen der
Erfindung, daß die spezifischen und charakteristischen Bestandteile des
Polynucleotids der Erfindung (wie zum Beispiel die Polyadenylierungssequenzen oder die Promotoren) aus unterschiedlichen Spezies stammen können.
In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird das Polynucleotid oder der Vektor anschließend mit einer T4 DNA Ligase behandelt.
Die Erfindung betrifft ferner einen Vektor enthaltend ein erfindungsgemäßes Polynucleotid oder ein Polynucleotid, das durch ein erfindungsgemäßes Verfahren hergestellt ist.
Alle zuvor gemachten Begriffsdefinitionen treffen auf diese und alle nachfolgenden Ausführungsformen mutatis mutandis zu.
In einer weiteren Ausführungsform betrifft die Erfindung eine Wirtszelle, die einen erfindungsgemäßen Vektor enthält.
Unter den Begriff "Wirtszelle" fallen erfindungsgemäß sowohl prokaryontische als auch eukaryontische Wirtszellen. Prokaryontische Wirtszellen umfassen z.B. E. coli-, Streptomyces-, Bacillus- oder Salmonella-Zellen. Besonders bevorzugt sind hierbei E. coli „SURE" Zellen. Eukaryontische Wirtszellen umfassen Pilzzellen, z.B. Hefezellen, Pflanzenzellen, Insektenzellen wie z.B. Drosophila- oder SF9-Zellen, tierische Zellen insbesondere Säugerzellen. Bevorzugt sind hierbei 293 Zellen, NIH3T3 Zellen, BHK Zellen, CHO K1 Zellen, und HeLa Zellen. Die Kultivierung dieser Zellen ist
Standard in der Zellbiologie und z.B. beschrieben in Sambrook et al. oder Ausubel et al..
Die Erfindung betrifft zudem ein Verfahren zur Herstellung einer doppelsträngigen RNA, das den Schritt des In-Kontakt bringens eines erfindungsgemäßen Polynucleotids oder eines Polynucleotids, das durch ein erfindungsgemäßes Verfahren hergestellt ist, mit einem Protein oder Proteingemisch unter Bedingungen, die die Synthese einer doppelsträngigen RNA erlauben, umfaßt. Alle zuvor gemachten Begriffsdefinitionen treffen auf diese und alle nachfolgenden Ausführungsformen mutatis mutandis zu.
Der Begriff "In-Kontakt-Bringen" umfaßt sämtliche Arten der physikalischen oder chemischen Interaktionen zwischen den Polynucleotiden und dem Protein oder Proteingemisch. Zum In-Kontakt-Bringen kann das Polynucleotid in einer geeigneten Flüssigkeit, z.B. in einem Puffer, in Lösung vorliegen, wobei die Flüssigkeit auch das Protein oder Proteingemisch enthält. Das Protein oder Proteingemisch kann vor oder nach dem Polynucleotid in die Flüssigkeit eingebracht werden. Eine geeignete Flüssigkeit im Sinne der Erfindung enthält auch die notwendigen Komponenten, die für die Synthese der RNA benötigt werden. Dies sind bevorzugterweise die Ribonucleotide sowie Puffersubstanzen, Ionen etc., die das Protein oder Proteingemisch benötigt, um die Synthese der RNA zu katalysieren. Geeignete Flüssigkeiten sind im Stand der Technik bekannt und beschrieben. Statt einer Flüssigkeit können auch Gele und Gel-artige Flüssigkeiten verwendet werden. Unter dem Begriff "Protein oder Proteingemisch" versteht man im Rahmen der Erfindung ein Protein oder Proteingemisch, das in der Lage ist die Synthese von RNA Molekülen zu katalysieren. Bei solchen Proteinen handelt es sich vorzugsweise um RNA Polymerasen. Geeignete RNA Polymerasen sind nachfolgend genauer beschrieben. Zusätzlich zu den RNA Polymerasen kann ein Gemisch von Proteinen, das in dem erfindungsgemäßen Verfahren eingesetzt wird auch noch Proteine enthalten, die die Polymerasen regulieren oder die die RNA Transkripte zusätzlich chemisch modifizieren, wie Enzyme, die an der zuvor beschrieben Polyadenylierung beteiligt sind. Das hier beschriebene erfindungsgemäße Verfahren wird vorzugsweise in vitro, d.h. in einem Zeil- freien System durchgeführt. In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens enthält das Protein oder Proteingemisch T7-Polymerase, T3-Polymerase oder SP6-
Polymerase. Eigenschaften und Anwendungen der T7-Polymerase, T3-Polymerase oder SP6-Polymerase sind im Stand der Technik beschrieben.
Die Erfindung betrifft des weiteren ein Verfahren zur Herstellung einer doppelsträngigen RNA, wobei das Verfahren die Schritte umfaßt:
(a) Einbringen eines Vektors der Erfindung oder eines Vektors, der durch das Verfahren der Erfindung erhältlich ist, in eine Wirtszelle; und
(b) Kultivierung der Wirtszelle für einen Zeitraum und unter Bedingungen, die die Synthese von doppelsträngiger RNA von dem Vektor in der Wirtszelle erlauben.
Alle zuvor gemachten Begriffsdefinitionen treffen auf diese und alle nachfolgenden Ausführungsformen mutatis mutandis zu.
Der Begriff "Einbringen" umfaßt sämtliche Arten der physikalischen oder chemischen Interaktionen zwischen den Polynucleotiden und der Zelle bzw. den zellulären Bestandteilen. Zum Einbringen kann das Polynucleotid in einer geeigneten Flüssigkeit, z.B. einer einem Nährmedium für die Zelle, in Lösung vorliegen, wobei dieses Nährmedium dann mit der Zelle in Kontakt gebracht wird, z.B. durch Inkubation der Zelle in diesem Medium. Statt einer Flüssigkeit können auch Gele und Gel-artige Flüssigkeiten verwendet werden. Der Begriff des Einbringens umfaßt neben dem Einbringen der Polynucleotide in die Zelle gegebenenfalls auch die Integration des Polynucleotids in das Genom der Wirtszelle. Beispiele für Methoden, die für das Einbringen von Nucleinsäuren geeignet sind, sind Präzipitations- Transfektion, wie z.B. Ca-Phosphat oder RbCI Präzipitations-Transfektion, Transfektion mittels Liposomen, Transfektion mittels makromolekularer Polymere, z.B. Fullerenen, Elektroporations-Methoden oder Transfektion durch Retrovieren oder Rekombinantionstechniken zur Integration in das zelluläre Genom. Je nach Methode ist es möglich, daß die Nucleinsäuren mit anderen Nucleinsäuremolekülen verknüpft werden müssen. Beispiele hierfür sind Plasmide, die die Nucleinsäuremoleküle enthalten oder retrovirale Genome, in die die Nucleinsäuren integriert wurde. Nucleinsäuremoleküle können nach dem Einbringen in die Zelle auch in das zelluläre Genom integriert werden. Unter dem Begriff "Kultivieren der Wirtszelle" versteht man erfindungsgemäß alle Maßnahmen die notwendig sind um die Vitalität, das
Wachstum der Wirtszellen sowie die Fähigkeit zur Synthese von RNAs in den
Wirtszellen zu erhalten. Dies wird vorzugsweise durch ein Kulturmedium gewährleistet, das Nährstoffe und gegebenenfalls Wachstums- und
Überlebensfaktoren enthält. Bevorzugte Kulturbedingungen sind im Stand der
Technik oder in den Beispielen näher beschrieben (z. B. Current Protocols).
Vektoren, die das erfindungsgemäße Polynucleotid enthalten, können über herkömmliche Transfektionsmethoden wie z.B. durch Calcium-Phosphat-Transfektion
(Ui-Tei et al., 2000); Lipofektion (Lin et al., 2001), Mikroinjektion (Tabara et al., 1998),
Elektroporation, viralen Transfer oder sonstige Transfektionsmethoden, in die Zellen eingebracht werden. Die Kultivierung dieser Zellen unter Bedingungen, die eine
Expression der erfindungsgemäßen Polynucleotide/Vektoren erlauben, sowie
Methoden für den Nachweis der produzierten Polynucleotide sind Standardverfahren der Zellbiologie bzw. Molekularbiologie und ausführlich in Sambrook et al. oder
Ausubel et al., beschrieben. Die Ausführungen die zu den Vorteilen der erfindungsgemäßen Polynucleotide gemacht wurden treffen für das zuvor beschriebene Verfahren mutatis mutandis zu
Die Erfindung betrifft zusätzlich ein Verfahren zur Identifizierung und/oder Herstellung von Genen, deren Inaktivierung zu nachweisbaren Veränderungen der Zielzelle führt, wobei zusätzlich zu dem oben angeführten Verfahren der folgende Schritt umfaßt ist: (c) Vergleich des Phänotyps der Wirtszelle aus (b) mit einer Wirtszelle, in die in Schritt (a) kein Vektor oder ein Kontrollvektor eingebracht wurde. Alle zuvor gemachten Begriffsdefinitionen treffen auf diese und alle nachfolgenden Ausführungsformen mutatis mutandis zu.
Der Begriff "Identifizierung" umfaßt die Identifizierung eines Gens und/oder seiner Funktion(en), die aufgrund der durch die Inaktivierung des Gens resultierenden, detektierbaren Veränderungen der Zielzelle ermöglicht wird. Solche Veränderungen können durche den Einsatz von RNAi in einem Screeningverfahren im Sinne der Erfindung ausgelöst werden.
Der Begriff "nachweisbare Veränderungen der Zielzelle" bezeichnet Veränderungen auf molekularer Ebene, als auch Veränderungen, die eine Änderung des Phänotyps der Zelle, z.B. der Zellmorphologie, zur Folge haben. Geeignete
Analyseverfahren sind dem Fachmann bekannt und beschrieben. Die
Zellmorphologie kann z.B. mittels morphometrischer Verfahren untersucht werden.
Bei der Analyse der Genexpression oder der Proteinexpression kommen bevorzugt
Verfahren wie Northern Analyse, RNase Schutzexperimente, PCR basierende
Techniken, oder Western Analysen zum Einsatz. Diese Analyseverfahren können auch in einen automatisierten Prozess eingebunden werden.
Der Begriff "Inaktivierung" im Rahmen der Erfindung umfasst auch eine signifikant reduzierte Expression eines Zielgens, die eine nachweisbare Veränderung der
Zielzelle bewirkt. Ob die Expression eines Zielgens signifikant verändert ist, kann durch Vergleichsversuche zwischen behandelten und unbehandelten Zielzellen festgestellt werden. Dies ist auch nachfolgend und in den Beispielen genauer beschrieben. Die beobachteten Expressionsstärken können durch geeignete statistische Tests auf signifikante Unterschiede überprüft werden. Solche statistischen
Tests schließen beispielsweise den T-Test nach Student, den Chi2 Test sowie darauf basierende bekannte Abwandlungen ein. Vorzugsweise beträgt die Verminderung der
Genexpression um 10%, 15%, 20%, 25%, 30%, 35%, 40%, 50% oder im günstigsten
Fall um 100%. Zielgen kann beispielsweise ein Gen der Zelle, ein endogenes Gen, aber auch ein Transgen oder ein Gen eines Pathogens, das mit einer Infektion in die
Zelle gelangt ist.
Der Begriff "Phänotyp" bezeichnet das Erscheinungsbild einer Zelle, das durch die
Summe aller Merkmale, die in den Genen der Zelle verankert sind, geprägt wird. Der
Phänotyp umfasst alle äußeren und inneren Strukturen und Funktionen der Zelle.
Der Begriff "Kontrollvektor" bezeichnet den für das oben angeführte Verfahren eingesetzte Vektor, der jedoch im Gegensatz zu diesem kein erfindungsgemäßes
Polynucleotid enthält. Die Spezifität des Verfahrens bzw. des erfindungsgemäßen
Polynucleotids oder Vektors kann durch geeignete Kontrollen, in denen Zielzellen beispielsweise mit diesem Kontrollvektor transfiziert werden, überprüft bzw. gewährleistet werden. Der Aufbau und die Durchführung solcher Kontrollexperimente sind dem Fachmann bekannt. Führt die angewandte RNA Intereferenz in der Zielzelle zu einem spezifischen, nachweisbaren Effekt, der im geeigneten Kontrollexperiment nicht auftritt, kann diese Wirkung Rückschlüsse auf die Funktion des Gens erlauben.
Der Begriff "Zielzellen" im Rahmen der Erfindung umfaßt hierbei eukaryontische
Zellen, insbesondere Säugerzellen und bevorzugterweise menschliche Zellen, in denen spezifisch die Expression eines Zielgens unterdrückt oder zumindest verringert werden soll.
Die Ausführungen die zu den Vorteilen der erfindungsgemäßen Polynucleotide gemacht wurden treffen für das zuvor beschriebene Verfahren mutatis mutandis zu.
In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens ist die Wirtszelle eine prokaryontische Wirtszelle.
In einer besonders bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens ist die prokaryontische Wirtszelle eine E. coli „SURE" Zelle.
In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens ist die Wirtszelle eine eukaryontische Wirtszelle.
In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens ist die eukaryontische Wirtszelle ausgewählt aus der Gruppe bestehend aus 293 Zellen, NIH3T3 Zellen, BHK Zellen, CHO K1 Zellen, und HeLa Zellen.
In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens mindestens ein Protein aus der Gruppe der durch doppelsträngige RNA aktivierbaren Proteine in der Wirtszelle inaktiviert oder nicht vorhanden.
Studien in Säugerzellen haben gezeigt, daß eine Akkumulation von dsRNA in Säugerzellen häufig zu einer unspezifischen Antwort führt, die in einer generellen Blockade der Translation und in anschließender Apoptose resultiert. Unspezifische RNAi-Effekte werden unter anderem auf das Vorhandensein eines in Säugerzellen verbreiteten antiviralen Mechanismus zurückgeführt, der auch als Interferonantwort bezeichnet wird. Induktor der unspezifischen dsRNA-Antwort sind längere dsRNA Moleküle, so fern diese zumindest 30 Basenpaare lang sind. Dabei sezemieren zelluläre Proteine die dsRNA und initiieren eine allgemeine Inhibition der zellulären Translation (Terenzi et al., 1999; Williams, 1999). Dies führt zu einer unspezifischen Reduktion von Genexpression. Die dsRNA aktiviert hierbei zwei Enzyme: PKR, welches in seiner aktiven Form den Translationsinitiationsfaktor elF2a phosphoryliert, was zu einem Abschalten der Proteinsynthese führt, und 2', 5'- Oligoadenylatsyntetase, welche ein Molekül bildet, das RNaseL aktiviert, die mRNAs unspezifisch abbaut (Elbashir et al, 2001). Somit spielt PKR als dsRNA-
Sensor und bei der Einleitung der antiviralen Antwort eine zentrale Rolle (PKR) (Williams, 1999) (Williams, 1999; Zamanian-Daryoush et al., 1999; Der and Lau, 1995); PKR und Apoptose (Der et al., 1997) (Gil and Esteban, 2000a; Gil and Esteban, 2000b; Gil et al., 2001); PKR und Involvierung von RNase L (Terenzi et al., 1999; lordanov et al., 2000). Die unspezifische dsRNA Antwort kompetitiert somit mit der spezifischen dsRNA-Antwort und kaschiert (überlagert) dadurch den gewünschten, spezifischen Effekt durch RNA-Interferenz (Elbashir et al., 2001). Wie bereits erläutert, werden in der sequenzspezifischen dsRNA-Antwort, der RNA- Interferenz (RNAi), die initiierenden Doppelstrang-RNAs zuerst in kurze interferrierende RNAs (siRNAs) zerteilt. Die siRNAs liefern (vermutlich) die Sequenzinformation, die eine gezielte Degradation eines spezifischen mRNA erlaubt. Eine Reduktion der unspezifischen dsRNA Antwort in der Zielzelle (und somit gleichzeitig eine verstärkte spezifische dsRNA Antwort durch RNAi) kann erreicht werden durch:
(a) die Generierung eines PKR-defizienten Hintergrunds in der Zelle, wobei vorzugsweise noch weitere dsRNA-Sensormoleküle ausgeschaltet werden, oder
(b) die Blockierung der intrazelluläre Akkumulation großer Mengen an langkettiger dsRNA. Dies kann durch eine verstärkte Prozessierung zu 21-23meren, den eigentlichen RNAi-lnduktoren darstellen, erfolgen.
Eine derartige Prozessierung wird beispielsweise durch die Co-Expression einer RNAi-assoziierten Nuklease ermöglicht (Ketting et al., 1999; Filippov et al., 2000; Hammond et al., 2000; Bernstein et al., 2001; Dalmay et al., 2001). Die humane Helikase-MOl (Matsuda et al., 2000) ist aufgrund von Sequenzhomologien als das Homolog der RNAi-assoziierten Nukleasen Mut-7 (C. elegans; (Ketting et al., 1999)) bzw. Dicer (Drosophila; (Bernstein et al., 2001) beschrieben. Für Dicer wurde biochemisch die Prozessierung langer dsRNA zu 21-23meren nachgewiesen (Bernstein et al., 2001). Die Helikase-MOl besitzt sowohl eine vergleichbare RNAse Ill-Aktivität als auch eine Helikase-Aktivität, wie sie für ein RNAi-Enzymkomplex postuliert wird (Provost et al., 1999; Bass, 2000). Geeignete Zelllinien, in denen eine Inhibition der Interferon-Antwort beschrieben wurde, sind beispielsweise Zellinien aus PKR-defizienten KO-Mäusen (Rivas et al., 1999), PKR-Defizienz (lordanov et al., 2001; Khabar et al., 2000) oder Interferon-resistente Zellinien (K562 , BJAB; : (Yamamoto et al., 2000)). Eine Defizienz der Interferon-Antwort kann auch erreicht werden durch:
(i) eine Co-Expression folgender inhibitorischer Proteine: E1A-Fragmente (Ackrill et al., 1991) (Quinlan, 1993), HepB-Virus-Protein (Foster et al., 1991), Tetratricopeptide-repeat-protein und cochaperone p58 (IPK) (Tang et al., 1999), E3L (Shors and Jacobs, 1997) (Shors et al., 1997) (Rivas et al., 1998) (Shors et al., 1998) oder TAR (Park et al., 1994), oder durch
(ii) die Co-Expression folgender inhibitorische RNA's: PKR und small- RNA's (Clemens et al., 1994), VAI-RNA (Svensson and Akusjarvi, 1984; O'Malley et al., 1986; Evstafieva et al., 1988) (Ghadge et al., 1991 ; Ghadge et al., 1994; Rahman et al., 1995; Desai et al., 1995; Lei et al., 1998), EBER-RNA's (Clarke et al., 1990; Sharp et al., 1993).
In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens umfaßt die Gruppe der durch doppelsträngige RNA aktivierbaren Proteine Protein Kinase R (PKR) und RNAse L (loc. cit).
In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens ist die Aktivität des RNAi-Enzymkomplexes erhöht.
Unter dem Begriff „erhöht" versteht man im Sinne der Erfindung eine signifikant erhöhte Aktivität des RNAi Komplexes, die sich durch Methoden nachweisen lässt, die im Stand der Technik beschrieben sind. Ob die beobachteten Unterschiede signifikant sind, lässt sich durch bekannte statistische Tests, auf die andernorts in der Beschreibung verwiesen wird, bestimmen.
In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens besitzt der RNAi-Enzymkomplex mindestens ein Protein, das die biologische Aktivität von einem Protein ausgewählt aus der Gruppe, Helikase-MOl, Nuclease Mut-7 oder Dicer besitzt (loc. cit.).
In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens umfaßt die Wirtszelle die Interferon-Antwort inhibierende Proteine.
Der Begriff „Interferon-Antwort" umfaßt einen in Säugerzellen verbreiteten antiviralen Mechanismus, der auf unspezifische RNAi-Effekte zurückgeführt werden kann. In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens sind die die Interferon-Antwort inhibierende Proteine ausgewählt aus der Gruppe bestehend aus E1A, HepB-Virus Protein, Tetratricopeptide-repeat-protein, Cochaperone p58 (IPK), E3L, oder TAR (loc. cit.).
Die Erfindung betrifft zudem ein transgenes Tier enthaltend ein Polynucleotid der Erfindung oder ein Polynucleotid, das nach einem Verfahren der Erfindung erhältlich ist.
Alle zuvor gemachten Begriffsdefinitionen treffen auf diese und alle nachfolgenden Ausführungsformen mutatis mutandis zu.
Unter dem Begriff „transgenes Tier" versteht man im Rahmen der Erfindung nichtmenschliche transgene Tiere, die (i) die erfindungsgemäßen Polynucleotide oder Vektoren konstitutiv oder induzierbar überexprimieren, oder (ii) eine konditionale und gewebsspezifische Überexpression der erfindungsgemäßen Polynucleotide oder Vektoren aufweisen. Zur Herstellung transgener Tiere kann ein erfindungsgemäßes Polynukleotid oder ein Vektor, der dieses Polynukleotid enthält, in eine Keimbahnzelle, eine embryonale Zelle, Stammzelle oder eine Eizelle oder eine von diesen abstammende Zelle eingebracht werden. Zur Analyse trangener Tiere können beispielsweise die genomischen DNAs embryonaler Membranen, Ohrbiopsien oder Schwanzbiopsien analysiert werden, in dem z. B. bekannte Techniken wie Southern blotting in Verbindung mit geeigneten Proben verwendet werden. Transgene Tiere im Sinne der Erfindung umfassen hierbei Mäuse, Ratten, Hamster, Hunde, Affen, Kaninchen, Schweine, C. elegans und Zebrafisch. Bevorzugt sind hierbei transgene Mäuse. Mäuse haben gegenüber anderen Tieren zahlreiche Vorteile. Sie sind leicht zu halten und ihre Physiologie gilt als Modellsystem für die des Menschen. Die Herstellung solcher gen-manipulierter Tiere ist dem Fachmann hinreichend bekannt und wird nach üblichen Verfahren durchgeführt (Hogan, B., Beddington, R., Costantini, F. und Lacy, E. (1994), Manipulating the Mouse-Embryo; A Laboratory Manual, 2. Aufl., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY; Joyner, A.L. (Editor), Gene Targeting, A Practical Approach (1993), Oxford University Press, beschrieben. Zur Herstellung der transgenen Tiere können gegebenenfalls Konstrukte mit gewebespezifischen, während der Entwicklung regulierten Promotoren, zellspezifische Promotoren und/oder induzierbare Promotoren verwendet werden, die die Expression des Polynucleotids der Erfindung regulieren.
Ein geeignetes induzierbares System ist hierbei, z. B. die Tetracyclin-regulierte
Genexpression, wie z. B. durch Gossen und Bujard beschrieben (PNAS 1992, Seiten
5547-5551). Die erfindungsgemäßen transgenen Tiere können als Modell für
Krankheiten bei Menschen oder auch bei Nutztieren dienen. Ebenfalls können die Tiere zur Diagnose bzw. dem frühzeitigen Erkennen einer Krankheit von Nutzen sein.
Die Erfindung betrifft zudem ein Arzneimittel das ein Polynucleotid der Erfindung oder ein Polynucleotid, das nach einem Verfahren der Erfindung erhältlich ist, umfaßt. Alle zuvor gemachten Begriffsdefinitionen treffen auf diese und alle nachfolgenden Ausführungsformen mutatis mutandis zu.
Unter dem Begriff „Arzneimittel" sind erfindungsgemäß Stoffe und Zubereitungen aus Stoffen definiert, die dazu bestimmt sind, durch Anwendung am oder im menschlichen Körper Krankheiten, Leiden, Körperschäden oder krankhafte Beschwerden zu heilen, zu lindern, zu verhüten oder zu erkennen. Den Polynucleotiden der Erfindung können medizinische und/oder pharmazeutischtechnische Hilfsstoffe zugesetzt werden. Medizinische Hilfsstoffe sind erfindungsgemäß solche Stoffe, die zur Produktion (als aktive Ingredienzien) von Arzneimitteln in einem erfindungsgemäßen Verfahren eingesetzt werden. Pharmazeutisch-technische Hilfsstoffe dienen lediglich der geeigneten Formulierung des Arzneimittels und können sogar, sofern sie nur während des Verfahrens benötigt werden, anschließend entfernt werden oder können als pharmazeutisch verträgliche Träger Teil des Arzneimittels sein. Beispiele für pharmazeutisch verträgliche Träger sind nachstehend aufgeführt. Die Arzneimittelformulierung erfolgt gegebenenfalls in Kombination mit einem pharmazeutisch verträglichen Träger und/oder Verdünnungsmittel. Beispiele für geeignete pharmazeutisch verträgliche Träger sind dem Fachmann bekannt und umfassen Phosphat-gepufferte Kochsalzlösungen, Wasser, Emulsionen wie z.B. Öl/Wasser-Emulsionen, verschiedene Arten von Detergenzien, sterile Lösungen, etc. Arzneimittel, die solche Träger umfassen, können mittels bekannter konventioneller Methoden formuliert werden. Diese Arzneimittel können einem Individuum in einer geeigneten Dosis verabreicht werden, z.B. in einem Bereich von 1μg bis 100 mg pro Tag und Patient. Die Verabreichung kann auf verschiedenen Wegen erfolgen, z.B. direkt auf der Haut, intravenös, intraperitoneal, subkutan, intramuskulär, lokal oder intradermal. Die Verabreichung von Nucleinsäuren kann auch in Form von Gen-Therapie geschehen. Die Art der
Dosierung wird vom behandelnden Arzt entsprechend den klinischen Faktoren bestimmt. Es ist dem Fachmann bekannt, daß die Art der Dosierung von verschiedenen Faktoren abhängig ist, wie z.B. der Größe, der Körperoberfläche, dem Alter, dem Geschlecht oder der allgemeinen Gesundheit des Patienten, aber auch von dem speziellen Mittel, welches verabreicht wird, der Dauer und Art der
Verabreichung und von anderen Medikamenten, die möglicherweise parallel verabreicht werden.
Die Erfindung betrifft zudem die Verwendung eines Polynucleotids der Erfindung oder ein Polynucleotid, das nach einem Verfahren der Erfindung erhältlich ist, zur Herstellung eines Arzneimittels, das zur Behandlung oder Prävention von Erkrankungen eingesetzt werden kann.
Alle zuvor gemachten Begriffsdefinitionen treffen auf diese und alle nachfolgenden Ausführungsformen mutatis mutandis zu.
Der Begriff „Behandlung" bezeichnet hierbei therapeutische Maßnahmen zur Bekämpfung, Hemmung, Beseitigung oder Linderung von Krankheiten, während der Begriff „Prävention" Maßnahmen bezeichnet, die dazu dienen, einer Krankheit vorzubeugen, so daß diese erst gar nicht entsteht.
Der Begriff "Herstellung" von Arzneimitteln umfasst auch zusätzliche Schritte wie gängige Formulierungs- und/oder Konfektionierungsschritte. Hierunter sind insbesondere Aufreinigungsschritte, Anreicherungsschritte, Sterilisierungsverfahren sowie die anschließende Bereitstellung der durch das erfindungsgemäße Verfahren hergestellten Polynucleotide, z.B. in geeigneten Behältern etc., zu verstehen. Der Begriff umfasst auch die Formulierung der hergestellten Polynucleotide in geeigneten Darreichungsformen. Dies können sein Injektionslösungen, Liposomen, organische Träger oder Transportmoleküle, wie Fullerene, Kapseln, Tabletten, sowie andere bekannte geeignete Darreichungsformen für Polynucleotide. Vorzugsweise werden bei der Herstellung von Arzneimitteln die Richtlinien der GMP („Good Manufacturing Practice") beachtet. Die Polynukleotide der Erfindung können vorzugsweise zur Gentherapie eingesetzt werden, in dem diese in die Zellen eines Zielorganismus eingebracht werden. Die Polynucleotide der Erfindung können dazu in virale
Vektoren kloniert werden, die den Transfer der für die Doppelstrang-RNA kodierenden Sequenzen in replizierende Wirtszellen vermitteln. Geeignete virale
Vektoren umfassen Retrovirus, Adenovirus, Adeno-assoziierten Virus, Herpesvirus,
Vaccinia-Virus, Poliovirus und ähnliche. Alternativ können die Polynukleotide der
Erfindung durch nicht virale Techniken zur Gentherapie in Zellen transferiert werden, umfassend rezeptorvermittelter, gezielter DNA Transfer durch Verwendung von
Liganden-DNA-Konjugaten oder Adenovirus-Liganden-DNA-Konjugaten, Lipofektion,
Membranfusion oder direkte Mikroinjektion. Diese Verfahren und Variationen davon sind sowohl für ex vivo als auch für in vivo Gentherapie geeignet. Protokolle zur
Gentherapie sind beschrieben in Gentherapy protocols, Robbins, Paul D. (Editor),
Human Press, Totawa NJ. (1996).
In einer bevorzugten Ausführungsform der Verwendung des erfindungsgemäßen Polynucleotids ist die Erkrankung ausgewählt aus der Gruppe: Krebs, Erkrankungen des Herz-Kreislaufsystems, Erkrankungen der Haut, Erkrankungen der inneren Organe, Stoffwechselstörungen, neurologische Erkrankungen oder Störungen oder Erkrankungen oder Störungen des Immunsystems, degenerative Erkrankungen wie Alzheimer Krankheit, Huntington's Krankheit, Parkinsonsche Krankheit, Reperfusionsschäden, Schlaganfall und Alkoholschädigungen der Leber, Tumorerkrankungen wie Leukämie, Carcinom oder Sarkom, Autoimmunerkrankungen wie Multiple Sklerose, Rheumatoide Arthritis, Diabetes Lupus, virale Erkrankungen wie Hepatitis oder Influenza. Die Symptome solcher Erkrankungen sind in klinischen Lexika, wie Pschyrembel oder Stedman, detalliert beschrieben und können vom Fachmann leicht erkannt werden.
In einer weiteren bevorzugten Ausführungsform des vorstehend beschriebenen erfindungsgemäßen Verfahrens umfasst dies ferner die Formulierung des nach dem erfindungsgemäßen Verfahren erhaltenen Polynucleotids mit einem pharmazeutisch verträglichen Träger, Exzipienten und/oder Verdünnungsmittel. Die Figuren zeigen:
Fig. 1: schematische beispielhafte Darstellung eines Bi-Promotor-
Expressionsvektors:
PCMVI und PCMVI I zeigt die Lage der gegenläufigen Promotoren für die Transkription der gegenläufigen Transkripte des Zielgens (X); unten sind die resultierenden sense- und antisense-Transkripte gezeigt; bla: Ampicillin-Resistenz; pA: poly-A-Sequenz; ori: Replikationsursprung
Fig. 2: schematische beispielhafte Darstellung eines Haarnadel-
Expressionsvektors:
PCMV zeigt die Lage des Promotors für die Transkription der gegenläufigen Transkripte des Zielgens (X); unten sind die resultierenden sense- und antisense-Transkripte gezeigt, die durch die Haarnadelsequenz verbunden sind; bla: Ampicillin-Resistenz; pA: poly- A-Sequenz; ori: Replikationsursprung
Fig. 3: schematisches beispielhaftes Verlaufsdiagramm für die Konstruktion eines Haarnadel-Expressionsvektors:
Das Verlaufsdiagramm zeigt die einzelnen Schritte der Konstruktion eines Haarnadel-Expressionsvektors
Nach Anlagerung des RNAi-oligodT-Primers mit Restriktionsspaltstelle (erstes Oligonukleotid) wird der Erststrang (erstes einzelsträngiges DNA-molekül) synthetisiert (1). Das polyadenylierte RNA-Molekül wird (durch RNAse oder alkalische Lyse) entfernt (2). Die Synthese des Zweitstrangs (zweites DNA-Molekül) kann durch Ligation eines Haarnadelprimers (2. Oligonukleotid a) durch T4-RNA-Ligase und anschließender Synthese durch DNA-Polymerase erfolgen (3a). Alternativ kann der Erststrang durch eine Oligo-dC-Sequenz mit terminaler Transferase oder einer geeigneten Reversen Transkriptase verlängert werden, bevor der alternative Haarnadelprimer (2. Oligonukleotid b) durch T4-DNA-Ligase an den Erststrang ligiert wird (3b). Das doppelsträngige DNA-Molekül wird anschließend denaturiert (4) und der Drittstrang (drittes einzelsträngiges DNA-Molekül) nach Anlagerung des 3.0ligonukleotids durch eine DNA-
Polymerase (bevorzugt thermostabil) synthetisiert (5). Gegebenenfalls wird ein interner Anti-Haarnadel-Primer zur Vermeidung von intramolekularer Rückfaltung eingesetzt. Die Strang-Lücke kann durch
T4-DNA-Ligase geschlossen werden. Nach Restriktionsspaltung (im Fig.
3 beispielhaft EcoRI) kann das so gewonnene Konstrukt unabhängig von der Orientierung in einen geeigneten Expressionsvektor inseriert werden (6). Bei der Expression erscheint die Antisense-Sequenz im
Transkript immer zuerst.
Fig. 4: schematische Darstellung des Vektors ptwopA
Fig. 5: Extinktion der GFP-Expression nach Insertion eines invertierten SV40- poly-A-Fragmentes zwischen Promotor und GFP-Leserahmen: Fluoreszenzmikroskopische Aufnahmen von 293 Zellen 24 Stunden nach der Transfektion. Jeweils darunter phasenkontrastmikroskopische Dokumentation desselben Sichtfeldes (20X Vergrößerung). A: Transfektion von pEGFP-N2, B: Transfektion von ptwopA
Fig. 6: schematische Darstellung des Vektors pΔBi-CMV-GFP:
PCMVI und PCMVI I zeigt die Lage der gegenläufigen Promotoren für die Transkription der gegenläufigen Transkripte von GFP; bla: Ampicillin-Resistenz; pA: poly-A-Sequenz; ori: Replikationsursprung
Fig. 7: Singuläre Transfektionen von GFP-Bi-Promotorkonstrukten und eines herkömmlichen GFP-Expressionsplasmids in 293 Zellen: Fluoreszenzmikroskopische Aufnahmen von 293 Zellen 24 Stunden nach der Transfektion. Darunter ist jeweils die Phasenkontrast- mikroskopische Dokumentation desselben Sichtfeldes (20X Vergrößerung) gezeigt.
Transfektion von pΔBI-CMV-GFP (A), pΔBI-CMV-GFP-INV (B), pBI-GFP (C) und pEGFP-N2 (D).
Die Figur zeigt, dass die Transfektion der Bi-Promotorkonstrukte mit dem vollständigen GFP-Leserahmen (A und B) zu einer stark reduzierten GFP-Expression in 293 Zellen im Vergleich zum herkömmlichen Expressionsplasmid pEGFP-N2 (D) führte. Die
Transfektion des Bi-Promotorplasmids pBI-GFP mit 5'-trunkiertem
Leserahmen (C) führte dagegen nicht zu GFP-positiven Zellen.
Andererseits zeigten diese GFP-positiven Zellen nach Transfektion von pΔBI-CMV-GFP (A) und pΔBI-CMV-GFP-INV (B), aber auch, daß von beiden Promotoren Volle-Länge-Transkripte gebildet wurden.
Fig. 8: schematische Darstellung des Haarnadel-Expressions-Vektors php-1
Fig. 9: Transfektion eines GFP-Haarnadelkonstruktes in 293 Zellen:
Fluoreszenzmikroskopische Aufnahmen von 293 Zellen 24 Stunden nach der Transfektion. Jeweils darunter phasenkontrastmikroskopische Dokumentation desselben Sichtfeldes (20X Vergrößerung). Transfektion von pEGFP-N2 (A), php-1 (B)
Fig. 10: Spezifische Reduktion der firefly-Luziferase-Aktivität in Zellextrakten von transfizierten CGR8-Maus embryonalen Stammzellen durch pBI-Luc und pLuc-hp
Die Daten beziehen sich jeweils auf drei unabhängige Transfektionen. Aktivität der Firefly-Luziferase im Zellextrakt normiert auf Renilla- Luziferase und angegeben in Prozent der gemessenen Aktivität der Kontrolle (pcDNA3.1Δneo). Die Konstrukte pBI-Luc und pLuc-hp reduzierten spezifisch die Aktivität der Firefly-Luziferase auf etwa 60% bzw. 50% der Kontrolle. Die gegen GFP gerichteten dsRNA Vektoren pBI-GFP und php-1 reduzierten die Firefly-Luziferase-Aktivität nicht im Vergleich zur Kontrolle. Die Beispiele erläutern die Erfindung.
Sofern nicht anders angegeben, wurden die Versuche nach „Current Protocols" (Ausubel et al., 2002) durchgeführt.
Beispiel 1: Lage des pA- (Polyadenylierungs) Signals im Bipromotorkonstrukt: Ausschaltung der GFP-Expression bei Positionierung eines SV40-polyA-Fragmentes zwischen zwei Promotoren.
Ziel dieses Versuches war es, ein Polyadenylierungssignal (SV40 polyA-Fragment) aus einem Herkunftsvektor in einen Zielvektor mit einer herkömmlichen eukaryontischen Expressionseinheit zu inserieren. Das polyA-Fragment wurde zwischen den Promotor und den Leserahmen des zu exprimierenden Gens (GFP; „green flouorescent protein") in antisense-Orientierung zum Promotor in die Expressionseinheit des Zielvektors inseriert. Beobachtet werden sollte der Einfluss dieses Fragmentes auf die Expression von GFP im Zielvektor.
In einen GFP-Expressionvektor pEGFP-N2 (GenBank-Accession-Number: U57608) wurde durch Restriktionsspaltung mit Hindlll und BamHI ein BamHI/Hindlll-Fragment (458 Basenpaare) aus dem Vektor pTet-OFF (GenBank-Accession-Number: U89929) eingefügt, das dessen SV40-polyA-Fragment beinhaltete.
Die Orientierung dieses Fragmentes relativ zum PhCMV- Promotor in pEGFP-N2 war dabei entgegengesetzt zu der Orientierung des Fragmentes im Vektor pTet-OFF zu dem zugehörigen Promotor. Das eingefügte SV40-polyA~Fragment (SV40-pA') lag in der angegebenen Orientierung zwischen dem Promotor (PhCMV) und dem GFP- Leserahmen. Der resultierende Vektor wurde mit ptwopA bezeichnet (Fig. 4). pEGFP-N2 und ptwopA wurden mittels herkömmlicher Calciumphosphattransfektion in 293 Zellen transfiziert und die Expression von GFP 24 Stunden nach der Transfektion fluoreszenzmikroskopisch verfolgt (Fig 5).
Das Beispiel zeigt, dass die Transfektion von ptwopA nicht zu GFP-positiven Transfektanten führte, im Gegensatz zu der von pEGFP-N2, die zu zahlreichen GFP- positiven Transfektanten führte. Die Insertion des polyA-Fragmentes führt zu einer Ausschaltung der GFP- Expression. Vermutlich liegt das an einer Prozessierung und Polyadenylierung des Transkriptes noch vor dem GFP-Leserahmen, vermittelt durch polyA-Signale des inserierten SV40-polyA-Fragmentes, die auch im normalerweise nicht transkribierten Strang präsent sind - so finden sich dort zum Beispiel zwei 5'-AATAAA-3'- Sequenzen. Das SV40-PolyA Signal konnte so nur ausserhalb der Promotoren positioniert werden.
Beispiel 2: Singuläre Transfektion und Analyse der GFP-Expression von GFP-Bi- Promotorkonstrukten
Mit diesem Versuch sollte gezeigt werden, dass beide Transkripte hergestellt werden und sich die komplementären Stränge in einer bimolekularen Reaktion zu einer dsRNA zusammenlagern. Allerdings sollte das Transkript mit dem regulären Leserahmen auch translatiert werden können, wenn es sich noch nicht mit dem komplementären Partner gepaart hat. Erwartet wurde eine reduzierte Rate der GFP- Proteinexpression im Vergleich zu einem herkömmlichen Expressionsvektor aufgrund der kompetitierenden Zusammenlagerung der RNA-Stränge. Werden Transkripte von beiden Promotoren aus gebildet, so führt die Invertierung des Leserahmens von GFP im Bi-Promotorkonstrukt ebenfalls zu einer vergleichbaren (reduzierten) Expression von GFP.
Hierzu wurde ein vollständiger, ein invertierter Leserahmen, sowie ein trunkierter Leserahmen für GFP zwischen zwei Promotoren kloniert und nach Transfektion die Expression von GFP-Protein im Vergleich bestimmt.
Die hier eingesetzten Bi-Promotorkonstrukte wurden nicht durch eine Genbank- Synthese generiert, sondern in einzelnen Klonierungen hergestellt. Sie stellten aber dennoch Konstrukte dar, wie sie aus einer Genbanksynthese stammen könnten. Die Klonierung eines vollständigen Leserahmens erfolgte hier allerdings nur zu Testzwecken. Sie wird, wie die Experimente ebenfalls nahe legen, in einer Genbanksynthese für Bi-Promotorkonstrukte nicht angestrebt. Herstellung der verwendeten Bi- Promotorkonstrukte:
Der Vektor pcDNA3.1+ (Invitrogen, Karlsruhe) wurde mit den Restriktionsenzymen Bsml und Smal gespalten. Hierbei wurde das dabei das Neo-Resistenzgen entfernt. Die freien Enden wurden mit Hilfe von Klenow-Enzym aufgefüllt und religiert. Der resultierende Vektor wurde als pcDNA3.1Δneo bezeichnet. Dieser Vektor wurde wiederum mit den Restriktionsenzymen Nhel und BamHI in der Polylinkersequenz geöffnet und das mit den Restriktionsenzymen Bglll und Xbal ausgeschnittene GFP- Fragment aus dem Vektor pEGFP-N2 (GenBank-Accession-Number: U57608) inseriert. In das resultierende Plasmid wurde über die Restriktionsspaltstellen Xhol und EcoRI ein CMV-Promotorfragment aus dem Vektor pTet-OFF (GenBank- Accession-Number: U89929) inseriert. Das resultierende Bi-Promotorplasmid wurde pΔBI-CMV-GFP (Fig. 6) benannt.
Zur Konstruktion eines Vektors mit invertiertem GFP-Leserhamen wurde das GFP- Fragment aus pΔBI-CMV-GFP durch Notl und EcoRI Spaltung ausgeschnitten. Die Enden aller Fragmente wurden mit Hilfe von Klenow-Enzym aufgefüllt und das GFP- Fragment wieder inseriert. Eines der resultierenden Plasmide mit dem GFP- Leserahmen in der invertierten Orientierung wurde pΔBI-CMV-GFP-INV benannt.
Ein weiterer Vektor pBI-GFP enthielt einen am 5'-Ende verkürzten GFP-Leserahmen ohne Startcodon (604 Basenpaare; von Basenpaar 792 bis 1395 relativ zum GenBank-Eintrag U57608). Die entsprechende Sequenz wurde mittels PCR von Plasmid pEGFP-N2 generiert. Die verwendeten Primer (5'-Primer: 5'- GAATTCGGATCCATGCCACCTACGGCAAGC-3' 3'-Primer: 5'-
TCTAGAGCGGCCGCTACAGCTCGTCCATGCCG-3') trugen zusätzlich Spaltstellen für BamHI (5'Primer) und Notl (3'-Primer). Das PCR-Fragment wurde nach Zwischenklonierung in pcDNA3.1v5histopo (Invitrogen, Karlsruhe) mit BamHI und Notl ausgeschnitten und anstelle des BamHI-Notl-Fragmentes mit dem vollständigen GFP-Leserahmen in pΔBI-CMV-GFP inseriert. Der resultierende Vektor wurde mit pBI-GFP bezeichnet.
Die Vektoren pΔBI-CMV-GFP, pΔBI-CMV-GFP-INV, pBI-GFP und der Vektor pEGFP- N2 wurden mittels herkömmlicher Calciumphosphat-Transfektion in 293 Zellen transfiziert und die Expression von GFP 24 Stunden nach der Transfektion fluoreszenzmikroskopisch verfolgt (Fig. 7).
Dieses Beispiel zeigt, dass die Transfektion der Bi-Promotorkonstrukte mit dem vollständigen GFP-Leserahmen (A und B) zu einer stark reduzierten GFP-Expression in 293 Zellen im Vergleich zum herkömmlichen Expressionsplasmid pEGFP-N2 (D) führte. Die Transfektion des Bi-Promotorplasmids pBI-GFP mit 5 '-trunkiertem Leserahmen (C) führte dagegen nicht zu GFP-positiven Zellen. Die GFP-Expression in den Transfektionen mit den Bi-Promotorkonstrukten war vorhanden, aber stark reduziert. Eine schwache GFP-Expression zeigte, daß nicht alle Transkripte sich zu dsRNA zusammenlagern. Einige sense-Transkripte können offensichtlich auch zur Translation gelangen. Dies begründet die Notwendigkeit von 5'-trunkierten cDNA's bei der Genbanksynthese für Bi-Promotorkonstrukte, wie dies beispielhaft durch das Konstrukt pBI-GFP demonstriert wurde. Andererseits zeigten diese GFP-positiven Zellen nach Transfektion von pΔBI-CMV- GFP (A) und pΔBI-CMV-GFP-INV (B) aber auch, daß von beiden Promotoren Volle- Länge-Transkripte gebildet wurden. Dies ist der Beleg für die von Bi- Promotorvektoren veranlasste Expression komplementärer RNA's in Säugerzellen.
Beispiel 3: Singuläre Transfektion und Expressionsanalyse eines GFP-Haarnadel- Konstrukts: Extinktion der GFP-Expression
Mit diesem Versuch sollte festgestellt werden, ob bei der Expression eines Haarnadelkonstrukts mit dem kompletten Leserahmen von GFP trotz der Möglichkeit zu intramolekularer Basenpaaarung zu einer dsRNA-Haarnadel eine GFP- Proteinexpression nachweisbar ist.
Die Klonierung des Haarnadelkonstruktes erfolgte durch Exzision des zweiten Promotors aus pΔBI-CMV-GFP (s. Beispiel 2) mit Hilfe der Restriktionsenzyme EcoRI und Xbal und der Insertion eines zweiten GFP-Leserahmens aus pEGFP-N2 (GenBank-Accession-Number: U57608) - die ebenfalls über EcoRI und Xbal ausgeschnitten wurden. Die beiden Leserahmen wurden dadurch im resultierenden Plasmid php-1 (Fig. 8) invertiert angeordnet, wobei zunächst die anti-sense Orientierung und dann getrennt durch eine 29nt lange nicht komplementäre Sequenz die sense-Orientierung des Leserahmens zu liegen kam. Diese Anordnung ist unerlässlich für ein Produkt einer Drittstrangsynthese.
Die Transfektion von php-1 zeigte keine GFP-positiven Zellen, während der herkömmliche GFP-Expressionsvektor zahlreiche GFP-positive Transfektanten erzeugte.
Folglich ist davon auszugehen, dass es im Transkript des Haamadelvektors vermutlich durch eine intramolekulare dsRNA Bildung zu einer Maskierung des GFP- Leserahmens kommt, die so effizient ist, dass eine Translation nicht mehr möglich ist. Bei der Herstellung einer Haarnadelvektor-Genbank muss daher - im Unterschied zu einer Bi-Promotor-Genbanksynthese nicht auf eine Trunkierung der Leserahmen geachtet werden.
Beispiel 4: Einsatz von Bi-Promotorkonstrukten und Haarnadelkonstrukten zur Reduktion der Genexpression von Firefly-Luziferase in CGR8-Maus-Embryonalen- Stammzellen
In normalen Säugerzelllinien bewirkt dsRNA einen allgemeinen Translationsstop der durch einen antiviralen Mechanismus hervorgerufen wird. In embryonalen Zellen der Maus wurde berichtet, dass dieser Mechanismus noch nicht aktiv ist. Deshalb wurde die spezifische Reduktion einer Genexpression durch einen Bi-Promotorvektor (pBI- Luc) und einen Haarnadelvektor (pLuc-hp) in Maus ES-Zellkultur nachvollzogen, die die Genexpression des transient koexprimierte Transkript der firefly Luziferase (photinus pyralis; abgekürzt als PP-Luziferase) von dem Vektor pGL3 verringern sollten.
Der Vektor pGL3 (GenBank-Accession-Number: U47296; Fa. Promega, Mannheim) diente auch als Quelle für die PP-Luziferase-Sequenzen in den dsRNA Vektoren. Konstruktion von pBI-Luc und pLuc-hp:
In beiden Vektoren wurde ein Teil des firefly-Luziferase-Leserahmens - ohne das Startcodon - (798 Basenpaare; von Basenpaar 1131 bis 1928 relativ zu dem pGL3- GenBank-Datenbankeintrag: U47296) aus dem Expressionsplasmid pGL3 verwendet. Zunächst wurden an diese Teilsequenz mittels PCR am 5'-Ende die
Restriktionsspaltstellen für EcoRI und BamHI und am 3'-Ende die für Xbal und Notl in eben dieser Reihenfolge angefügt und das Produkt in einem Vektor für PCR-Produkte zwischenkloniert. (Verwendete Primer: 5'-Primer: 5'-
GAATTCGGATCCCGCTGCTGGTGCCAACCC-3' 3'-Primer: 5'-
TCTAGAGCGGCCGCACGGCGATCTTTCCGCCC-3')
Das Plasmid pBI-Luc enstand aus pΔBI-CMV-GFP (s. Patentbeispiel 2) durch
Ausschneiden der GFP-Sequenz mit den Restriktionsenzymen Notl und BamHI und der Insertion des PP-Luziferase-Notl-BamHI-PCR-Fragmentes.
Das Plasmid pLuc-hp enstand durch Ausschneiden des zweiten Promotors aus pBI-
Luc mit Hilfe einer EcoRI-Xbal-Spaltung. An dessen Stelle wurde das PP-Luziferase-
EcoRI-Xbal-PCR-Fragment kloniert, so daß zwei firefly-Luziferase-Teilsequenzen in invertierter Anordnung resultierten.
Als Kontrollen dienten in separaten gleichartigen Transfektionsansätzen der Bi- Promotorvektor pBI-GFP und der Haarnadelvektor php-1 (siehe Patentbeispiel 2) mit einer von PP-Luziferase verschiedenen Zielsequenz. Es wurde untersucht, ob die davon exprimierten GFP-spezifischen dsRNA's einen unspezifisch reduzierenden Effekt auf die PP-Luziferase-Expression haben.
Zur Kontrolle der Transfektionseffizienz und der ungestörten allgemeinen Genexpression wurde in allen Transfektionen auch die Expression von Renilla-(RL)- Luziferase untersucht - durch Kotransfektion des Vektors pRL-Tk (GenBank- Accession-Number: AF025846; Fa. Promega, Mannheim). Das Transkript der Renilla- Luziferase war dem der PP-Luziferase nicht sequenzhomolog. Jede Transfektion umfasste also drei Vektoren
1. Bi-Promotorvektor ODER Haarnadelkonstrukt ODER Kontrollvektor pcDNA3.1Δneo 2. pGL3 3. pRL-Tk
Die Vektoren wurden im Verhältnis: 5:1:2,5 in einer Tansfektion eingesetzt. Die Transfektion erfolgte per Elektroporation in Maus CGR8 embryonale Stammzellen (European Collection of Cell Cultures (ECACC), CAMR, Salisbury, Wiltshire, SP4 OJG, UK; ECACC-Nummer: 95011018), die auf STO-feeder-Zellen (ECACC- Nummer: 86032003) in KO-DMEM + 15% Serum-replacement (Invitrogen, Karksruhe) und mit 1000 U/ml LIF-Faktor (Fa. Chemicon, Hofheim) kultiviert wurden (die Kultivierung erfolgte nach Ausübe! et al.) Einen Tag vor der Transfektion wurden die ES-Zellen passagiert. Vor der Elektroporation wurden die trypsinierten ES und
STO-Zellen für mindestens zwei Stunden plattiert, um die STO-Zellen durch
Readhäsion aus der ES-Zellsuspension zu eliminieren. Die Transfektion von je 4 E+6
ES Zellen erfolgte in dem Easy-Ject-Plus-Elektroporator (Fa. Peqlab, Erlangen) unter folgenden Bedingungen:
Elektroporator: 900 μF, 200V. Die Zellen wurden in einfachem KO-DMEM
(Invitrogen, Karlsruhe) elektroporiert, dem zuvor noch 60 μg Hering-Sperma-DNA
(Invitrogen, Karlsruhe), und 10 μg/μl-DEAE-Dextran (Molekulargewicht 500.000;
Sigma, München) zugesetzt worden waren. Nach der Elektroporation wurden die
Zellen in eine 3 cm-Schale mit STO-feeder-Zellen verbracht und für 24 Stunden inkubiert.
Anschliessend wurden alle Zellen lysiert und in den Lysaten wurden mittels des Dual-
Luciferase-Assay-Systems (Fa. Promega, Mannheim) in einem Fluoroscan Ascent-
Lumineszenz-Reader (Fa. Labsystems, Frankfurt) die Aktivitäten von PP- und RL-
Luziferase (Relative Lichteinheiten/Sekunde) bestimmt. Die PP-Aktivitäten wurden auf die Aktivitäten des Kontrollgens RL normiert.
Sowohl das Bipromotor- als auch das Haarnadelkonstrukt zeigten eine vergleichbare spezifischen Reduktion der Expression der Firefly-Luziferase, die nicht spezifisch gegen die Firefly-Luziferase gerichteten Konstrukte pBI-GFP und php-1 zeigten keine
Reduktion der der Expression der Firefly-Luziferase (Fig. 10).
Beispiel 5: Unterdrückung der antiviralen Antwort in Säugerzellkuftur durch Ko- Expression des Vaccinia-Virus-Proteins E3L
Ziel dieses Versuches war, durch Koexpression des Vaccinia Virus Proteins E3L in einer Transfektion mit den dsRNA produzierenden Vektoren, die in Säugerzellen etablierte Interferon-Antwort zu inhibieren, ohne den dsRNA vermittelten RNAi-Effekt zu stören.
Der Leserahmen des Vaccinia Virus-Proteins E3L (s. GenBank-Accession-Number NC-001559) wird mittels PCR in einen eukaryontischen Expression vektor kloniert, Das resultierende Expressionsplasmid wurde mit pE3L bezeichnet. Bei der Transfektion eines Bi- Promotorvektors bzw. eines
Haarnadelvektors wird dieses Expressionsplasmid kotransfiziert.
In einer anderen Ausführungsform kann das E3L~Expressionsplasmid auch zuvor stabil in eine Säugerzelllinie eingebracht worden sein, so dass es entweder konstitutiv oder unter einem regulierten Promotor exprimiert wird.
Es kommt zu einer Reduktion bzw. Extinktion der antiviralen Antwort (unspezifischen
Reduktion der gesamten zellulären Translationsmaschinerie) in den Säugerzellen, bei ungestörter Entfaltung des RNAi-Effektes.
Beispiel 6: Verstärkung des RNAi Effektes in Säugerzellkultur durch Ko-/Expression der Helikase MOI
Durch Koexpression des Leserahmens der Helikase-MOl - einer putativen dsRNA Nuklease - (GenBank-Accession-Number: AB028449) in Säugerzellen können zwei unterschiedliche Ziele erreicht werden: Einerseits kann das Ausmaß der Interferon- Antwort in Säugerzellen reduziert werden, in die ein Bi-Promotor- oder Haarnadelkonstrukts transfiziert wurde. Dies geschieht indem der Induktor - das sind dsRNA's länger als 30 Basenpaare - durch Spaltung mengenmäßig reduziert wird, bevor eine dsRNA-Antwort ausgelöst werden kann..
Andererseits kann im Falle transienter Transfektionen einer Zielsequenz die Stärke des RNAi-Effektes erhöht werden, der in einem solchen Falle nie zu einer kompletten Ausschaltung der Expression derZielsequenz führt, weil sehr große Mengen davon transient transkribiert werden.
Der Leserahmen der Helikase-MOl wird in einen eukaryontischen Expressionsvektor kloniert, um das Expressionsplasmid pMOl zu erhalten. Bei der Transfektion eines Bi- Promotorvektors bzw. eines Haarnadelvektors wird dieses Expressionsplasmid pMOl kotransfiziert. In einer anderen Ausführungsform kann das pMOI-Expressionsplasmid auch zuvor stabil in eine Säugerzelllinie eingebracht worden sein, so dass es entweder konstitutiv oder unter einem regulierten Promotor exprimiert wird. Referenzen
Ackrill, A. M., Foster, G. R., Laxton, C. D., Flavell, D. M., Stark, G. R., Kerr, I. M., (1991). Inhibition of the cellular response to interferons by products of the adenovirus type 5 E1A oncogene. NucleicAcids Res., 19(16): 4387-93.
Ausubel et al. (1994). Current Protocols in Molecular Biology, Current Protocols. Volumes 1 and 2.
Bargmann, C. I., (2001). High-throughput reverse genetics: RNAi screens in Caenorhabditis elegans. Genome Biol., 2(2): 1005.
Baroudy, B. M., Venkatesan, S., Moss, B., (1982). Incompletely base-päired flip-flop terminal loops link the two DNA Strands of the vaccinia virus genome into one uninterrupted polynucleotide chain. Cell., 28(2): 315-24.
Barstead, R., (2001). Genome-wide RNAi. Curr Opin Chem Biol., 5(1): 63-6.
Bass, BL. (2000). Double-stranded RNA as a template for gene silencing. Cell, 101(3): 235 - 8. Review. No abstract available.
Bernstein, E., Ketting, R. F., Fischer, S. E., Sijen, T., Hannon, G. J., Plasterk, R. H., (2001). Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev., 15(20): 2654-9.
Bosher, J. M., Labouesse, M. (2000). RNA interference: genetic wand and genetic watchdog. Nat. Cell. Biol., 2(2): E31-6.
Caplen, N. J., Fleenor, J., Fire, A., Morgan, R. A., (2000). dsRNA-mediated gene silencing in cultured Drosophila cells: a tissue culture model for the analysis of RNA interference. Gene., 252(1-2): 95-105.
Carthew, R. W. (2001). Gene silencing by double-stranded RNA. Curr. Opin. Cell. Biol., 13(2): 244-8.
Clarke, P. A., Sharp, N. A., Clemens, M. J., (1990). Translational control by the Epstein-Barr virus small RNA EBER-1. Reversal of the double-stranded RNA-induced inhibition of protein synthesis in reticulocyte lysates. EurJ Biochem., 193(3): 635-41.
Clemens, M. J., Laing, K. G., Jeffrey, I. V. V., Schofield, A., Sharp, T. V., Elia, A., Matys, V., James, M. C, Tilleray, V. J., (1994). Regulation of the interferon-inducible elF-2 alpha protein kinase by small RNAs. Biochimie., 76(8): 770-8.
Dalmay, T., Hamilton, A., Rudd, S., Angell, S., Baulcombe, D. C, (2000). An RNA- dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell. 101(5): 543-53.
Dalmay, T., Horsefield, R., Braunstein, T. H., Baulcombe, D. C, (2001). SDE3 encodes an RNA helicase required for post-transcriptional gene silencing in Arabidopsis. EMBO J., 20(8): 2069-78. Der, S. D., Lau, A. S., (1995). Involvement of the double-stranded-RNA-dependent kinase PKR in interferon expression and interferon-mediated antiviral activity. Proc Natl Acad Sei U S A, 92(19): 8841-5.
Der, S. D., Yang, Y. L., Weissmann, O, Williams, B. R., (1997). A double-stranded RNA-activated protein kinase-dependent pathway mediating stress-induced apoptosis. Proc Natl Acad Sei U S A, 94(7): 3279-83.
Desai, S. Y., Patel, R. C, Sen, G. C, Malhotra, P., Ghadge, G. D., Thimmapaya, B., (1995). Activation of interferon-inducible 2'-5' oligoadenylate synthetase by adenoviral VAI RNA. J Biol Chem., 270(7): 3454-61.
Elbashir, S. M., Lendeckel, W., Tuschl, T., (2001). RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev., 15(2): 188-200.
Evstafieva, A. G., Arya, B., Pragai, B., Toth, M. I., (1988). Adenovirus 2 VA RNAI synthesized in SP6 System. Nucleic Acids Res., 16(4): 1624.
Foster, G. R., Ackrill, A. M., Laxton, C. D., Flavell, D. M., Stark, G. R., Kerr, I. M., (1991). Inhibition of the cellular response to 'Interferons by products of the adenovirus type 5 E1A oncogene. Nucleic Acids Res., 19(16): 4387-93.
Fräser, A. G., Kamath, R. S., Zipperlen, P., Martinez-Campos, M., Sohrmann, M., Ahringer, J., (2000). Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature., 408(6810): 325-30.
Ghadge, G. D., Swaminathan, S., Katze, M. G., Thimmapaya, B., (1991). Binding of the adenovirus VAI RNA to the interferon-induced 68-kDa protein kinase correlates with funetion. Proc Natl Acad Sei U S A., 88(16): 7140-4.
Ghadge, G. D., Malhotra, P., Furtado, M. R., Dhar, R., Thimmapaya, B., (1994). In vitro analysis of virus-associated RNA I (VAI RNA): inhibition of the double-stranded RNA-activated protein kinase PKR by VAI RNA mutants correlates with the in vivo phenotype and the structural integrity of the central domain. J Virol., 68(7): 4137-51.
Gil, J., Esteban, M., (2000). Induction of apoptosis by the dsRNA-dependent protein kinase (PKR): mechanism of action. Apoptosis., 5(2): 107-14.
Gil, J., Rullas, J., Alcami, J., Esteban, M., (2001). MC159L protein from the poxvirus molluscum contagiosum virus inhibits NF-kappaB activation and apoptosis induced by PKR. J Gen Virol., 82(Pt 12): 3027-34.
Gonczy, P., Echeyerri, G., Oegema, K., Coulson, A., Jones, S. J., Copley, R. R., Duperon, J., Oegema, J., Brehm, M., Cassin, E., Hannak, E., Kirkham, M., Pichler, S., Flohrs, K., Goessen, A., Leidel, s., Alleaume, A. M., Marin, C, Ozlu, N., Bork, P., Hyman, A. A., (2000). Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III. Nature., 408(6810): 331-6.
Gossen M. und Bujard H. (1992) Tight control of gene expression in mammalian cells by tetraeycline-responsive Promoters. Proc Natl Acad Sei U S A 89: 5547-51. Hammond, S. M., Bernstein, E., Beach, D., Hannon, G. J., (2000). An RNA- directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature., 404(6775): 293-6.
Harbinder, S., Tavernarakis, N., Herndon, L. A., Kinnell, M., Xu, S. Q., Fire, A., Driscoll, M., (1997). Genetically targeted cell disruption in Caenorhabditis elegans. Proc Natl Acad Sei U S A., 94(24): 13128-33.
Hunter, C. P., (1999). Genetics: a touch of elegance with RNAi. Curr Biol., 9(12): R440-2.
Hunter, C. P., (2000). Gene silencing: shrinking the black box of RNAi. Curr Biol., 10(4): R137-40.
Hutvagner, G., Mlynarova, L., Nap, J. P., (2000). Detailed characterization of the posttranscriptional gene-silencing-related small RNA in a GUS gene-silenced tobaeco. RNA. 6(10): 1445-54. lordanov, M. S., Paranjape, J. M., Zhou, A., Wong, J., Williams, B. R., Meurs, E. F., Silverman, R. H., Magun, B. E., (2000). Activation of p38 mitogen-activated protein kinase and c-Jun NH(2)-terminal kinase by double-stranded RNA and eneephalomyocarditis virus: involvement of RNase L, protein kinase R, and alternative pathways. Mol Cell Biol., 20(2): 617-27. lordanov, M. S., Wong, J., Bell, J. C, Magun, B. E, (2001). Activation of NF-kappaB by double-stranded RNA (dsRNA) in the absence of protein kinase R and RNase L demonstrates the existence of two separate dsRNA-triggered antiviral programs. Mol Cell Biol., 21(1): 61-72.
Jedrusik, MA, Schulze, E. (2001). A Single histone H1 isoform (H1.1) is essential for chromatin silencing and germline development in Caenorhabditis elegans. Development, 128(7): 1069 - 80.
Jones, L., Hamilton, A. J., Voinnet, O., Thomas, C. L., Maule, A. J., Baulcombe, D. C, (1999). RNA-DNA interactions and DNA methylation in post-transcriptional gene silencing. Plant Cell., 11(12) : 2291-301.
Joyner, Gil (editor), (1993). Gen targeting, a practical approach, Oxford University Press.
Kamath, R. S., Fräser, A. G., Zipperlen, P., Marinez-Campos, M., Sohrmann, M., Ahringer, J., (2000). Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature., 408(6810): 325-30.
Khabar, K. S., Dhalla, M., Siddiqui, Y., Zhou, A., Al-Ahdal, M. N., Der, S. D., Silverman, R. H., Williams, B. R., (2000). Effect of deficiency of the double-stranded RNA-dependent protein kinase, PKR, on antiviral resistance in the presence or absence of ribonuclease L: HSV-1 replication is particularly sensitive to deficiency of the major IFN-mediated enzymes. J Interferon Cytokine Res., 20(7): 653-9. Kelly, WG, Fire A. (1998). Chromatin silencing and the maintenance of a functional germline in Caenorhabditis elegans. Development, 125(13): 2451 - 6.
Ketting, R. F., Haverkamp, T. H., van Luenen, H. G., Plasterk, R. H., (1999). Mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD. Cell., 99(2): 133-41.
Lei, M., Liu, Y., Samuel, C. E., (1998). Adenovirus VAI RNA antagonizes the RNA- editing activity of the ADAR adenosine deaminase. Virology., 245(2): 188-96.
Lin, S. L, Chuong, C. M., Ying, S. Y., (2001). A Novel mRNA-cDNA interference phenomenon for silencing bcl-2 expression in human LNCaP cells. Biochem Biophys Res Commun., 281(3): 639-44.
Lin, J. H., Levin, H. L., (1998). Reverse transcription of a self-primed retrotransposon requires an RNA structure similar to the U5-IR stem-loop of retroviruses. Mol Cell Biol., 18(11): 6859-69.
Lohmann, J. U., Endl, I., Bosch, T. C. (1999). Silencing of developmental genes in Hydra. Dev Biol., 214(1): 211-4.
Lohmann, J.U., Bosch, T.C. (2000). The novel peptide HEADY specifies apical fate in a simple radially symmetirc metazoan. Genes Dev., 14(21): 2771-7.
Maeda, I., Kohara, Y., Yamamoto, M., Sugimoto, A., (2001). Large-scale analysis of gene function in Caenorhabditis elegans by high-throughput RNAi. Curr Biol., 11(3): 171-6.
Marcus, P. L., (1983). Interferon induction by viruses: one molecule of dsRNA as the threshold for interferon induction. Interferon., 5: 115-80.
Matsuda, S., Ichigotani, Y., Okuda, T., Irimura, T., Nakatsugawa, S., Hamaguchi, M., (2000). Molecular cloning and characterization of a novel human gene (HERNA) which encodes a putative RNA-helicase. Biochim Biophys Acta., 1490(1-2): 163-9
Matzke, A. J., Matzke, M. A., Mette, M. F., (2001). Resistance of RNA-mediated TGS to HC-Pro, a viral suppressor of PTGS, suggests alternative pathways for dsRNA processing. Curr Biol. 11(14): 1119-23.
Mette, M. F., Aufsatz, W., von der Winder, J., Matzke, M. A, Matzke, A. J., (2000). Transcriptional silencing and promoter methylation triggered by double-stranded RNA. EMBO J., 19(19): 5194-201.
Nakano, H., Amemiya, S., Shiokawa, K., Taira, M., (2000). RNA interference for the organizer-specific gene Xlim-1 in Xenopus embryos. Biochem Biophys Res Commun, 274(2): 434-9.
Oates, A. C, Bruce A. E., Ho, R. K., (2000). Too much interference: injection of double-stranded RNA has nonspecific effects in the zebrafish embryo. Dev Biol., 224(1): 20-8. O'Malley, R. P., Mariano, T. M., Siekeirka, J., Mathews, M. B., (1986). A mechanism for the control of protein synthesis by adenovirus VA RNAI. Cell., 44(3): 391-400.
Park, H., Davies, M. V., Langland, J. O., Chang, H. W., Nam, Y. S., Tartaglia, J., Paolette, E., Jacobs, B. L, Kaufman, R. J., Venkatesan, S., (1994). TAR RNA-binding protein is an inhibitor of the interferon-induced protein kinase PKR. Proc Natl Acad Sei U SA., 91 (11): 4713-7.
Parrish, S., Fleenor, J., Xu, S., Mello, C, Fire, A., (2000). Functional anatomy of a dsRNA trigger: differential requirement for the two trigger Strands in RNA interference. Mol Cell., 6(5): 1077-87.
Provost, P., Samuelsson, B., Radmark, O., (1999). Interaction of 5-lipoxygenase with cellular proteins. Proc Natl Acad Sei U SA., 96(5): 1881-5.
Qinlan, M. P., (1993). E1A 12S in the absence of E1B or other cooperating oncogenes enables cells to overcome apoptosis. Oncogene., 8(12): 3289-96.
Rivas, C, Gil, J., Esteban, M., (1999). Identification of functional domains of the interferon-induced enzyme PKR in cells lacking endogenous PKR. J Interferon Cytokine Res., 19(11): 1229-36.
Rahman, A., Malhotra, P., Dhar, R., Kewalramani, T., Thimmapaya, B., (1995). Effect of single-base substitutions in the central domain of virus-associated RNA I on its funetion. J Virol., 69(7): 4299-307.
Rivas, C, Gil, J., Melkova, Z., Esteban, M., Diaz-Guerra, M., (1998). Vaccinia virus E3L protein is an inhibitor of the interferon (i.f.n.)-induced 2-5A synthetase enzyme. Virology., 243(2): 406-14.
Rougeon, F., Mach, B., (1976). Stepwise biosynthesis in vitro of globin genes from globin mRNA by DNA polymerase of avian myeloblastosis virus. Proc Natl Acad Sei U S A., 73(10): 3418-22.
Salzman, L. A., Fabisch, P., (1979). Nucleotide sequence of the self-priming 3' terminus of the single-stranded DNA extracted from the parvovirus Kilham rat virus. J Virol., 30(3): 946-50.
Sambrook et al. (1989). Molecular Cloning: A Laboratory Manual Cold Spring Harbor Laboratory Press, NY.
Sharp, T. V., Schwemmle, M., Jeffrey, I., Laing, K., Mellor, H., Proud, C. G., Hilse, K., Clemens, M. J., (1993). Comparative analysis of the regulation of the interferon- inducible protein kinase PKR by Epstein-Barr virus RNAs EBER-1 and EBER-2 and adenovirus VAI RNA. Nucleic Acids Res., 21(19): 4483-90.
Shen, M. R., Brosius, J., Deininger, P. L., (1997). BC1 RNA, the transcript from a master gene for ID element amplification, is able to prime its own reverse transcription. NucleicAcids Res., 25(8): 1641-8. Shi, H., Djikeng, A., Mark, T., Wirtz, E., Tschudi, C, Ullu, E., (2000). Genetic interference in Trypanosoma brucei by heritable and inducible double-stranded RNA. RNA, 6(7): 1069-76.
Shors, T., Kibler, K. V., Perkins, K. B., Zeman, C. O, Banaszak, M. P., Biesterfeldt, J., Langland, J. O., Jacobs, B. L., (1997). Double-stranded RNA is a trigger for apoptosis in vaccinia virus-infected cells. J Virol., 71(3): 1992-2003.
Shors, T., Kibler, K. V., Perkins, K. B., Zeman, C. O, Banaszak, M. P., Jacobs, B. L., (1997). Complementation of vaccinia virus deleted of the E3L gene by mutants of E3L. Virology., 239(2): 269-76.
Shors, S. T., Beattie, E., Paoletti, E., Tartaglia, J., Jacobs, B. L., (1998). Role of the vaccinia virus E3L and K3L gene products in rescue of VSV and EMCV from the effects of IFN-alpha. J Interferon Cytokine Res., 18(9): 721-9.
Svensson, O, Akusjarvi, G., (1984). Adenovirus VA RNAI: a positive regulator of mRNA translation. Mol Cell Biol., 4(4): 736-42.
Svoboda, P., Stein, P., Hayashi, H., Schultz, R. M., (2000). Selective reduction of dormant matemal mRNAs in mouse oocytes by RNA interference. Development, 127(19): 4147-56.
Tabara, H., Grishok, A., Mello, C. C, (1998). RNAi in C. elegans: soaking in the genome sequence. Science., 282(5388): 430-1.
Tabara, H., Sarkissian, M., Kelly W. G., Fleenor, J., Grishok, A., Timmons, L., Fire, A., Mello, C. C, (1999). The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell., 99(2): 123-32.
Tang, N. M., Korth, M. J., Gale, M. Jr., Wambach, M., Der, S. D., Sandyopadhyay, S. K., Williams, B. R., Katze, M. G., (1999). Inhibition of double-stranded RNA- and tumor necrosis factor alpha-mediated apoptosis by tetratricopeptide repeat protein and cochaperone P58(IPK). Mol Cell Biol., 19(7): 4757-65.
Tavernarakis, N., Wang, S. L., Dorovkov, M., Ryazanov, A., Driscoll, M., (2000). Heritable and inducible genetic interference by double-stranded RNA encoded by transgenes. Nat Genet, 24(2): 180-3.
Terenzi, F., deVeer, M. J., Ying, H., Restifo, N. P., Williams, B. R., Silverman, R. H., (1999). The antiviral enzymes PKR and RNase L suppress gene expression from viral and non-viral based vectors. Nucleic Acids Res., 27(22): 4369-75.
Tessier, D. O, Brousseau, R., Vernet, T., (1986). Ligation of single-stranded oligodeoxyribonucleotides by T4 RNA ligase. Anal Biochem., 158(1): 171-8.
Thomas, C. L., Jones L., Baulcombe D. C, Maule A. J., (2001). Size constraints for targeting post-transcriptional gene silencing and for RNA-directed methylation in Nicotiana benthamiana using a potato virus X vector. Plant J. 25(4): 417-25. Tuschl, T., Zamore, P. D., Lehmann, R., Bartel, D. P., Sharp, P. A., (1999). Targeted mRNA degradation by double-stranded RNA in vitro. Genes Dev., 13(24): 3191-7.
Ui-Tei, K., Zenno, S., Miyata, Y., Saigo, K., (2000). Sensitive assay of RNA interference in Drosophila and Chinese hamster cultured cells using firefly luciferase gene as target. FEBS Lett., 479(3): 79-82.
Voinnet, O., Vain, P., Angell, S., Baulcombe, D. C, (1998). Systemic spread of sequence-specific transgene RNA degradation in plants is initiated by localized introduction of ectopic promoterless DNA. Cell. 95(2): 177-87.
Voinnet, O., Lederer, C, Baulcombe, D. C, (2000). A viral movement protein prevents spread of the gene silencing signal in Nicotiana benthamiana. Cell. 103(1):
157-67.
Volloch, V. Z., Schweitzer, B., Rits, S., (1994). Evolutionarily conserved elements in the 5' untranslated region of beta globin mRNA mediate site-specific priming of a unique hairpin structure during cDNA synthesis. Nucleic Acids Res., 22(24): 5302-9.
Wianny, F., Zernicka-Goetz, M., (2000). Specific interference with gene function by double-stranded RNA in early mouse development. Nat Cell Biol., 2(2): 70-5. Williams, B. R., (1999). PKR; a sentinel kinase for cellular stress. Oncogene., 18(45): 6112-20.
Yamamoto, N., Takizawa, T., Iwanaga, Y., Shimizu, N., Yamamoto, N., (2000). Malignant transformation of B lymphoma cell line BJAB by Epstein-Barr virus- encoded small RNAs. FEBS Lett, 484(2): 153-8.
Yang, D., Lu, H. Erickson, JW.(2000). Evidence that processed small dsRNAs may mediate sequence-specific mRNA degradation during RNAi in Drosophila embryos. Curr Biol.; 10(19): 1191 - 200.
Zamanian-Daryoush, M., Der, S. D., Williams, B. R., (1999). Cell cycle regulation of the double stranded RNA activated protein kinase, PKR. Oncogene., 18(2): 315-26.
Zamore, P. D., Tuschl, T., Sharp, P. A., Bartel, D. P., (2000). RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell., 101(1): 25-33.
Zhao, Z., Cao, Y., Li, M., Meng, A. (2001). Double-stranded RNA injection produces nonspecific defects in zebrafish. Dev Biol. 229(1): 215 - 23.

Claims

Ansprüche
1. Polynucleotid enthaltend ein inneres Polynucleotid, das am 5' Ende funktionell mit einer ersten eukaryontischen ExpressionskontroUsequenz verbunden ist und am 3' Ende funktionell mit einer zweiten eukaryontischen ExpressionskontroUsequenz verbunden ist, wobei
(i) nur die erste eukaryontische ExpressionskontroUsequenz am 5' Ende mit einer ersten Polyadenylierungssequenz funktionell verbunden ist und die Polyadenylierungssequenz in 3' nach 5' Orientierung funktionell ist, oder
(ii) nur die zweite eukaryontische ExpressionskontroUsequenz am 3' Ende mit einer zweiten Polyadenylierungssequenz funktionell verbunden ist und die Polyadenylierungssequenz in 5' nach 3' Orientierung funktionell ist, oder
(iii) die erste eukaryontische ExpressionskontroUsequenz am 5' Ende mit einer ersten Polyadenylierungssequenz funktionell verbunden ist und die Polyadenylierungssequenz in 3' nach 5' Orientierung funktionell ist und die zweite eukaryontische ExpressionskontroUsequenz ihrerseits am 3' Ende mit einer zweiten Polyadenylierungssequenz funktionell verbunden ist und die Polyadenylierungssequenz in 5' nach 3' Orientierung funktionell ist.
2. Polynukleotid nach Anspruch 1, wobei das innere Polynukleotid zumindest 50 Nukleotide umfaßt.
3. Polynucleotid nach Anspruch 2, wobei das innere Polynucleotid ein cDNA Molekül oder ein Fragment davon umfaßt.
4. Polynucleotid nach Anspruch 3, wobei das cDNA Molekül oder Fragment davon aus einer Bibliothek von cDNA Molekülen stammt.
Polynucleotid nach einem der Ansprüche 1 bis 4, wobei die erste und die zweite ExpressionskontroUsequenz miteinander identisch sind.
6. Polynucleotid nach einem der Ansprüche 1 bis 4, wobei die erste und die zweite ExpressionskontroUsequenz unterschiedlich voneinander sind.
7. Polynucleotid nach einem der Ansprüche 1 bis 6, wobei die ExpressionskontroUsequenz ausgewählt ist aus der Gruppe bestehend aus CMV-Promotor, Thymidinkinase-Promotor, SV40 Promotor, PGK Promotor und α-Myosin heavy chain Promotor.
8. Polynucleotid nach einem der Ansprüche 1 bis 7, wobei die erste und die zweite ExpressionskontroUsequenz konstitutiv aktiv sind.
9. Polynucleotid nach einem der Ansprüche 1 bis 6, wobei die erste und die zweite ExpressionskontroUsequenz induzierbar sind.
10. Polynucleotid nach Anspruch 9, wobei die induzierbare erste und zweite ExpressionskontroUsequenz ausgewählt ist aus der Gruppe bestehend aus: Tetracyclin induzierbare Promotoren, Metallothionin Promotoren, Ecdyson induzierbare Promotoren.
11. Polynucleotid nach einem der Ansprüche 1 bis 10, wobei die erste und die zweite Polyadenylierungssequenz identisch zueinander sind.
12. Polynucleotid nach einem der Ansprüche 1 bis 10, wobei die erste und die zweite Polyadenylierungssequenz unterschiedlich voneinander sind.
13. Verfahren zur Herstellung eines doppelsträngigen Polynucleotids umfassend die Schritte:
(a) Verknüpfung eines einzelsträngigen ersten DNA Moleküls, das am 5' Ende eine Erkennungssequenz für eine Restriktionsendonuclease umfasst, an dessen 3' Ende mit einem zweiten Oligonucleotid, dessen 5' Ende phosphoryliert ist, wobei das zweite Oligonucleotid (i) eine Sequenz umfasst, die die Verknüpfung mit dem ersten DNA Molekül erlaubt und (ii) an dem 3' Ende eine Sequenz von mindestens 5
Nucleotiden umfaßt, die die Bildung einer haarnadelförmigen
Sekundärstruktur („stem loop") Struktur erlaubt;
(b) Synthese eines zweiten DNA Moleküls, wobei das erste einzelsträngige DNA Molekül als Matrize für die Synthese des zweiten DNA Moleküls dient und das zweite DNA Molekül ausgehend von dem 3' Ende des eine haarnadelförmige Sekundärstruktur bildenden zweiten Oligonucleotids als Primer dient, wobei am Ende der Synthese ein doppelsträngiges DNA Molekül bestehend aus erstem DNA Molekül, zweitem Oligonucleotid und zweitem DNA Molekül vorliegt;
(c) Denaturierung des so erhaltenen doppelsträngigen DNA Moleküls; und
(d) Synthese eines dritten einzelsträngigen DNA Moleküls unter Verwendung eines dritten Oligonucleotids, das eine zu dem ersten Oligonucleotid identische Sequenz umfaßt, wobei das zweite einzelsträngige DNA Molekül aus Schritt (c) als Matrize dient und das zweite und das dritte einzelsträngige DNA Molekül als Doppelstrang am Ende der Synthese vorliegen.
14. Verfahren nach Anspruch 13, wobei das 3' Ende des zweiten Oligonucleotids eine Sequenz aus 3 Guanin Basen trägt.
15. Verfahren nach Anspruch 13 oder 14, wobei das einzelsträngige erste DNA Molekül hergestellt wird durch:
(a) Synthese eines einzelsträngigen ersten DNA Moleküls unter Verwendung eines ersten Oligonucleotids, das eine oligo-dT Sequenz, und am δ'-Ende der oligo-dT Sequenz eine Erkennungssequenz für eine Restiktionsendonuclease umfaßt, wobei ein an seinem 3'-Ende polyadenyliertes RNA Molekül einer einzelnen Spezies als Matrize dient und das erste Oligonucleotid in der Lage ist, mit dem 3'-Ende des polyadenylierten RNA Moleküls zu hybridisieren;
(b) Entfernen des polyadenylierten RNA Moleküls; und
(c) Bereitstellung des ersten einzelsträngigen DNA Moleküls.
16. Verfahren nach Anspruch 13, 14 oder 15, wobei das polyadenylierte RNA
Molekül durch Extraktion von mRNA aus Zellen, Geweben oder kompletten Organsismen oder durch Transkription von cDNA Molekülen, die in Bibliotheken von cDNA Molekülen enthalten sind, gewonnen wird.
17. Verfahren zur Herstellung eines Gemisches doppelsträngiger Polynucleotide umfassend die Schritte:
(a) Verknüpfung von einzelsträngigen ersten DNA Molekülen, die am 5' Ende eine Erkennungssequenz für eine Restriktionsendonuclease umfassen, an deren 3' Enden jeweils mit einem zweiten Oligonucleotid, dessen 5' Ende phosphoryliert ist, wobei das zweite Oligonucleotid (i) eine Sequenz umfasst, die die Verknüpfung mit dem ersten DNA Molekül erlaubt und (ii) an dem 3' Ende eine Sequenz von mindestens 5 Nucleotiden umfaßt, die die Bildung einer haarnadelförmigen Sekundärstruktur („stem loop") Struktur erlaubt;
(b) Synthese von zweiten DNA Molekülen, wobei jeweils das erste einzelsträngige DNA Molekül als Matrize für die Synthese des zweiten DNA Moleküls dient und das zweite DNA Molekül ausgehend von dem 3' Ende des eine haarnadelförmige Sekundärstruktur bildenden zweiten Oligonucleotids als Primer dient, wobei am Ende der Synthese ein doppelsträngiges DNA Molekül bestehend aus erstem DNA Molekül, zweitem Oligonucleotid und zweitem DNA Molekül vorliegt;
(c) Denaturierung des so erhaltenen doppelsträngigen DNA Moleküls; und
(d) Synthese von dritten einzelsträngigen DNA Molekülen unter Verwendung von jeweils einem dritten Oligonucleotid, das eine zu dem ersten Oligonucleotid identische Sequenz umfaßt, wobei das zweite einzelsträngige DNA Molekül aus Schritt (c) als Matrize dient und das zweite und das dritte einzelsträngige DNA Molekül als Doppelstrang am Ende der Synthese vorliegen.
18. Verfahren nach Anspruch 17, wobei das 3' Ende des zweiten Oligonucleotids eine Sequenz aus 3 Guanin Basen trägt.
19. Verfahren nach Anspruch 17 oder 18, wobei die einzelsträngigen ersten
DNA Moleküle hergestellt werden durch:
(a) Synthese von einzelsträngigen ersten DNA Molekülen unter Verwendung von ersten Oligonucleotiden, die eine oligo-dT Sequenz, und am 5'-Ende der oligo-dT Sequenz eine Erkennungssequenz für eine Restiktionsendonuclease umfaßen, wobei an ihrem 3'-Ende polyadenylierte RNA Moleküle verschiedener Spezies als Matrize dienen und die ersten Oligonuieotide in der Lage sind, mit den 3'-Enden der polyadenylierten RNA Moleküle zu hybridisieren;
(b) Entfernen der polyadenylierten RNA Moleküle; und
(c) Bereitstellung der ersten einzelsträngigen DNA Moleküle.
20. Verfahren nach Anspruch 17, 18 oder 19, wobei die polyadenylierten RNA Moleküle durch Extraktion von mRNA aus Zellen, Geweben oder kompletten Organsismen oder durch Transkription von cDNA Molekülen, die in Bibliotheken von cDNA Molekülen enthalten sind, gewonnen werden.
21. Verfahren nach einem der Anspruch 13 bis 20, wobei die Restriktionsendonuklease eine Restriktionsendonuklease ist, die eine Sequenz von mindestens 6 Nucleotiden erkennt.
22. Verfahren nach Anspruch 21 , wobei die selten spaltende Restriktionsendonuklease ausgewählt ist aus der Gruppe bestehend aus: Xho I, Not I, Xba I, Bgl II, Asp 718, Sal I, Sac I, Sfi I.
23. Verfahren nach einem der Ansprüche 13 bis 22, wobei die Sequenz aus Schritt (a) (i), die die Verknüpfung erlaubt, ein 5' einzelsträngiger Bereich ist, der der T4-RNA-Ligase als Erkennungsregion dient.
24. Verfahren nach einem der Ansprüche 13 bis 22, wobei die Sequenz aus Schritt (a) (i), die die Verknüpfung erlaubt, ein einzelsträngiger 3' Bereich aus 3 bis 5 Guanin Basen ist, der nach Hybridisierung mit dem 3' Bereich des einzelsträngigen ersten DNA-Moleküls durch eine T4-DNA-Ligase geschlossen wird.
25. Verfahren nach einem der Ansprüche 13 bis 24, wobei die Sequenz aus Schritt (a) (ii), die die Bildung einer haarnadelförmigen Sekundärstruktur („stem loop") erlaubt, mindestens 5, 6, 7, 8, 9, 10 oder bis 100 Nucleotide in Länge umfaßt.
26. Verfahren nach einem der Ansprüche 13 bis 25, wobei in Schritt (d) zusätzlich ein viertes Oligonucleotid zugesetzt wird, das am 5' phosphoryliert ist und eine zu dem zweiten Oligonucleotid komplementäre Sequenz umfaßt.
27. Verfahren nach einem der Ansprüche 13 bis 26, wobei in Schritt (a) das 3' Ende des oligo-dT-Bereichs des einzelsträngigen ersten DNA-Moleküls noch zusätzlich die Basen A, C, G enthält.
28. Verfahren zur Herstellung eines Vektors oder eines Gemisches von Vektoren, wobei das Verfahren die Schritte des Verfahrens nach einem der Ansprüche 13 bis 27 umfaßt und den zusätzlichen Schritt des Klonierens, der hergestellten heterologen Polynucleotide in einen geeigneten Vektor.
29. Verfahren nach Anspruch 26, 27 oder 28, wobei das Polynucleotid oder der Vektor anschließend mit einer T4 (DNA- oder RNA-) Ligase behandelt wird.
30. Vektor enthaltend ein Polynucleotid nach einem der Ansprüche 1 bis 12 oder ein Polynucleotid, das durch ein Verfahren nach einem der Ansprüche 13 bis 29 hergestellt ist.
31. Wirtszelle enthaltend den Vektor nach Anspruch 30 oder einen Vektor erhältlich durch das Verfahren nach Anspruch 28.
32. Verfahren zur Herstellung einer doppelsträngigen RNA, das den Schritt des InKontakt bringens eines Polynucleotids nach einem der Ansprüche 1 bis 12 oder eines Polynucleotids, das durch ein Verfahren nach einem der Ansprüche 13 bis 29 hergestellt ist, mit einem Protein oder Proteingemisch unter Bedingungen, die die Synthese einer doppelsträngigen RNA erlauben, umfaßt.
33. Verfahren nach Anspruch 32, wobei das Protein oder Proteingemisch
T7-Polymerase, T3-Polymerase oder SP6-Polymerase enthält.
34. Verfahren zur Herstellung einer doppelsträngigen RNA, wobei das Verfahren die Schritte umfaßt:
(a) Einbringen eines Vektors nach Anspruch 30 oder eines Vektors der durch das Verfahren nach Anspruch 28 erhältlich ist, in eine Wirtszelle; und
(b) Kultivierung der Wirtszelle für einen Zeitraum und unter Bedingungen, die die Synthese von doppelsträngiger RNA von dem Vektor in der Wirtszelle erlauben.
35. Verfahren zur Identifizierung von Genen, deren Inaktivierung zu nachweisbaren Veränderungen der Zielzelle führt, wobei das Verfahren die Schritte des Verfahrens aus Anspruch 34 und den zusätzlichen Schritt umfaßt:
Vergleich des Phänotyps der Wirtszelle aus (b) mit einer Wirtszelle, in die in Schritt (a) kein Vektor oder ein Kontrollvektor eingebracht wurde.
36. Wirtszelle nach Anspruch 31 oder Verfahren nach Anspruch 34 oder 35, wobei die Wirtszelle eine prokaryontische Wirtszelle ist.
37. Wirtszelle oder Verfahren nach Anspruch 36, wobei die prokaryontische Wirtszelle eine E. coli „SURE" Zelle ist.
38. Wirtszelle nach Anspruch 31 oder Verfahren nach Anspruch 34 oder 35, wobei die Wirtszelle eine eukaryontische Wirtszelle ist.
39. Wirtszelle oder Verfahren nach Anspruch 38, wobei die eukaryontische Wirtszelle ausgewählt ist aus der Gruppe bestehend aus 293 Zellen, NIH3T3 Zellen, BHK Zellen, CHO K1 Zellen, und HeLa Zellen.
40. Wirtszelle nach Anspruch 31 , Verfahren nach Anspruch 34 oder 35 oder Wirtszelle oder Verfahren nach einem der Ansprüche 36 bis 39, wobei in der Wirtszelle mindestens ein Protein aus der Gruppe der durch doppelsträngige RNA aktivierbaren Proteine in der Wirtszelle inaktiviert oder nicht vorhanden ist.
41. Wirtszelle oder Verfahren nach Anspruch 40, wobei die Gruppe der durch doppelsträngige RNA aktivierbaren Proteine Protein Kinase R (PKR) und RNAse L umfaßt.
42. Wirtszelle nach Anspruch 31, Verfahren nach Anspruch 34 oder 35 oder Wirtszelle oder Verfahren nach einem der Ansprüche 36 bis 41 , wobei die Aktivität des RNAi-Enzymkomplexes erhöht ist.
43. Wirtszelle oder Verfahren nach Anspruch 42, wobei der RNAi-Enzymkomplex mindestens ein Protein, das die biologische Aktivität von einem Protein ausgewählt aus der Gruppe, Helikase-MOl, Nuclease Mut-7 oder Dicer aufweist, besitzt.
44. Wirtszelle nach Anspruch 31 , Verfahren nach Anspruch 34 oder 35 oder Wirtszelle oder Verfahren nach einem der Ansprüche 36 bis 43, wobei die Wirtszelle die Interferon-Antwort inhibierende Proteine umfaßt.
45. Wirtszelle oder Verfahren nach Anspruch 44, wobei die die Interferon-Antwort inhibierende Proteine ausgewählt sind aus der Gruppe bestehend aus E1A, HepB-Virus Protein, Tetratricopeptide-repeat-protein, Cochaperone p58 (IPK), E3L, oder TAR.
46. Transgenes Tier enthaltend ein Polynucleotid nach einem der Ansprüche 1 bis 12 oder ein Polynucleotid, das nach einem Verfahren nach einem der Ansprüche 13 bis 29 erhältlich ist.
47. Arzneimittel, das ein Polynucleotid nach einem der Ansprüche 1 bis 12 oder ein Polynucleotid, das nach einem Verfahren nach einem der Ansprüche 13 bis 29 erhältlich ist, umfaßt.
48. Verwendung eines Polynucleotids nach einem der Ansprüche 1 bis 12 oder ein Polynucleotid, das nach einem Verfahren nach einem der Ansprüche 13 bis 29 erhältlich ist, zur Herstellung eines Arzneimittels, das zur Behandlung oder Prävention von Erkrankungen eingesetzt werden kann.
49. Verwendung nach Anspruch 48, wobei die Erkrankung ausgewählt ist aus der Gruppe: Krebs, Erkrankungen des Herz-Kreislaufsystems, Erkrankungen der Haut, Erkrankungen der inneren Organe, Stoffwechselstörungen, neurologische Erkrankungen oder Störungen oder Erkrankungen oder Störungen des Immunsystems, degenerative Erkrankungen wie Alzheimer Krankheit, Huntington's Krankheit, Parkinsonsche Krankheit, Reperfusionsschäden, Schlaganfall und Alkoholschädigungen der Leber, Tumorerkrankungen wie Leukämie, Carcinom oder Sarkom, Autoimmunerkrankungen wie Multiple Sklerose, Rheumatoide Arthritis, Diabetes Lupus, virale Erkrankungen wie Hepatitis oder Influenza.
PCT/EP2003/004835 2002-05-08 2003-05-08 EXPRESSIONSKONSTRUKTE ZUR HERSTELLUNG VON DOPPELSTRANG (ds) RNA UND DEREN ANWENDUNG WO2003095652A2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003239851A AU2003239851A1 (en) 2002-05-08 2003-05-08 Expression constructs for producing double-stranded (ds) rna and the use thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP02010488.1 2002-05-08
EP02010488 2002-05-08
EP02016849 2002-07-29
EP02016849.8 2002-07-29

Publications (2)

Publication Number Publication Date
WO2003095652A2 true WO2003095652A2 (de) 2003-11-20
WO2003095652A3 WO2003095652A3 (de) 2004-02-26

Family

ID=29421890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/004835 WO2003095652A2 (de) 2002-05-08 2003-05-08 EXPRESSIONSKONSTRUKTE ZUR HERSTELLUNG VON DOPPELSTRANG (ds) RNA UND DEREN ANWENDUNG

Country Status (2)

Country Link
AU (1) AU2003239851A1 (de)
WO (1) WO2003095652A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004010547A1 (de) * 2004-03-03 2005-11-17 Beiersdorf Ag Oligoribonukleotide zur Behandlung von irritativen und/oder entzündlichen Hauterscheinungen durch RNA-Interferenz

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997004131A1 (en) * 1995-07-21 1997-02-06 Forsyth Dental Infirmary For Children Single primer amplification of polynucleotide hairpins
WO2000001846A2 (en) * 1998-07-03 2000-01-13 Devgen N.V. Characterisation of gene function using double stranded rna inhibition
US6087099A (en) * 1997-09-08 2000-07-11 Myriad Genetics, Inc. Method for sequencing both strands of a double stranded DNA in a single sequencing reaction
WO2001048239A2 (de) * 1999-12-23 2001-07-05 Xantos Biomedicine Ag Screening-verfahren für nukleinsäuren
WO2001068836A2 (en) * 2000-03-16 2001-09-20 Genetica, Inc. Methods and compositions for rna interference
WO2001088121A1 (en) * 2000-05-19 2001-11-22 Devgen Nv Vector constructs
WO2001092513A1 (en) * 2000-05-30 2001-12-06 Johnson & Johnson Research Pty Limited METHODS FOR MEDIATING GENE SUPPRESION BY USING FACTORS THAT ENHANCE RNAi
WO2003020931A2 (en) * 2001-09-01 2003-03-13 Galapagos Genomics N.V. Sirna knockout assay method and constructs

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997004131A1 (en) * 1995-07-21 1997-02-06 Forsyth Dental Infirmary For Children Single primer amplification of polynucleotide hairpins
US6087099A (en) * 1997-09-08 2000-07-11 Myriad Genetics, Inc. Method for sequencing both strands of a double stranded DNA in a single sequencing reaction
WO2000001846A2 (en) * 1998-07-03 2000-01-13 Devgen N.V. Characterisation of gene function using double stranded rna inhibition
WO2001048239A2 (de) * 1999-12-23 2001-07-05 Xantos Biomedicine Ag Screening-verfahren für nukleinsäuren
WO2001068836A2 (en) * 2000-03-16 2001-09-20 Genetica, Inc. Methods and compositions for rna interference
WO2001088121A1 (en) * 2000-05-19 2001-11-22 Devgen Nv Vector constructs
WO2001092513A1 (en) * 2000-05-30 2001-12-06 Johnson & Johnson Research Pty Limited METHODS FOR MEDIATING GENE SUPPRESION BY USING FACTORS THAT ENHANCE RNAi
WO2003020931A2 (en) * 2001-09-01 2003-03-13 Galapagos Genomics N.V. Sirna knockout assay method and constructs

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
BRUMMELKAMP T R ET AL: "A system for stable expression of short interfering RNAs in mammalian cells" SCIENCE, AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE,, US, Bd. 296, Nr. 5567, 2002, Seiten 550-553, XP002225638 ISSN: 0036-8075 *
GIORDANO ENNIO ET AL: "RNAi triggered by symmetrically transcribed transgenes in Drosophila melanogaster." GENETICS, Bd. 160, Nr. 2, Februar 2002 (2002-02), Seiten 637-648, XP002251399 ISSN: 0016-6731 *
KETTING R F ET AL: "mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of werner syndrome helicase and RNaseD" CELL, Bd. 99, 15. Oktober 1999 (1999-10-15), Seiten 133-141, XP002962430 ISSN: 0092-8674 *
ROMANO PR ET AL: "Inhibition of double-stranded RNA-dependent protein kinase PKR by vaccinia virus E3: Role of complex formation and the E3 N-terminal domain." MOLECULAR AND CELLULAR BIOLOGY, Bd. 18, Nr. 12, Dezember 1998 (1998-12), Seiten 7304-7316, XP002251401 ISSN: 0270-7306 *
TANG NM ET AL: "Inhibition of double-stranded RNA- and tumor necrosis factor alpha-mediated apoptosis by tetratricopeptide repeat protein and cochaperone P58IPK." MOLECULAR AND CELLULAR BIOLOGY, Bd. 19, Nr. 7, Juli 1999 (1999-07), Seiten 4757-4765, XP002251400 ISSN: 0270-7306 *
WANG Z ET AL: "Inhibition of trypanosoma brucei gene expression by RNA interference using an integratable vector with opposing T7 promoters" JOURNAL OF BIOLOGICAL CHEMISTRY, Bd. 275, Nr. 51, 22. Dezember 2000 (2000-12-22), Seiten 40174-40179, XP002965219 ISSN: 0021-9258 *
WESLEY S VARSHA ET AL: "Construct design for efficient, effective and high-throughput gene silencing in plants" PLANT JOURNAL, BLACKWELL SCIENTIFIC PUBLICATIONS, OXFORD, GB, Bd. 27, Nr. 6, September 2001 (2001-09), Seiten 581-590, XP002187670 ISSN: 0960-7412 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004010547A1 (de) * 2004-03-03 2005-11-17 Beiersdorf Ag Oligoribonukleotide zur Behandlung von irritativen und/oder entzündlichen Hauterscheinungen durch RNA-Interferenz

Also Published As

Publication number Publication date
AU2003239851A1 (en) 2003-11-11
WO2003095652A3 (de) 2004-02-26

Similar Documents

Publication Publication Date Title
JP6724099B2 (ja) Rna 干渉のrna 配列特異的メディエータ
JP5969889B2 (ja) 二本鎖rnaによる遺伝子阻害
DE60310944T3 (de) Weitere neue formen von interferierende rns moleküle
Dzitoyeva et al. Intra-abdominal injection of double-stranded RNA into anesthetized adult Drosophila triggers RNA interference in the central nervous system
JP6325974B2 (ja) Rna干渉を媒介する短鎖rna分子
CN113840925A (zh) 修饰非编码rna分子对于在真核细胞中的沉默基因的特异性
DE69634698T2 (de) Gewebespezifische und ziel-rna-spezifische ribozyme
WO2001049844A1 (en) Compositions and methods for gene silencing
EP3199633B1 (de) Herabregulation der genexpression mittels nukleinsäure-beladener virus-ähnlicher partikel
EP1759004A1 (de) RNAi-BASIERTE VERFAHREN ZUR SELEKTION VON TRANSFIZIERTEN EUKARYONTISCHEN ZELLEN
US20060088837A1 (en) Expression system for stem-loop rna molecule having rnai effect
WO2005033310A1 (de) Pim-1-spezifische dsrna-verbindungen
WO2003095652A2 (de) EXPRESSIONSKONSTRUKTE ZUR HERSTELLUNG VON DOPPELSTRANG (ds) RNA UND DEREN ANWENDUNG
DE69933382T2 (de) Herstellung von ssdna innerhalb der zelle
WO2002024931A1 (de) Expressionssystem für funktionale nukleinsäuren
WO2018149740A1 (de) System und verfahren zur zelltyp-spezifischen translation von rna-molekülen in eukaryoten
Gennet Activity dependent neuroprotective protein: initial characterisation of its role in physiology
DE10350256A1 (de) PIM-1-spezifische siRNA-Verbindungen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP