WO2003093203A1 - Method of desulphurising a mixture of hydrocarbons - Google Patents

Method of desulphurising a mixture of hydrocarbons Download PDF

Info

Publication number
WO2003093203A1
WO2003093203A1 PCT/EP2003/004709 EP0304709W WO03093203A1 WO 2003093203 A1 WO2003093203 A1 WO 2003093203A1 EP 0304709 W EP0304709 W EP 0304709W WO 03093203 A1 WO03093203 A1 WO 03093203A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
equal
adsorbent solid
hydrocarbons
process according
Prior art date
Application number
PCT/EP2003/004709
Other languages
French (fr)
Inventor
Chantal Louis
Jean-Paul Schoebrechts
Original Assignee
Solvay (Societe Anonyme)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solvay (Societe Anonyme) filed Critical Solvay (Societe Anonyme)
Priority to US10/511,597 priority Critical patent/US20060000750A1/en
Priority to EP03740127A priority patent/EP1503974A1/en
Priority to AU2003264849A priority patent/AU2003264849A1/en
Publication of WO2003093203A1 publication Critical patent/WO2003093203A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G53/00Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more refining processes
    • C10G53/02Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more refining processes plural serial stages only
    • C10G53/14Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more refining processes plural serial stages only including at least one oxidation step

Definitions

  • the present invention relates to a process for desulfurization of a mixture of hydrocarbons, such as petroleum fractions such as fuels, containing sulfur compounds.
  • the method includes an oxidation step to oxidize the sulfur compounds, which is followed by a step of removing the oxidized compounds by adsorption on an adsorbent solid.
  • sulfur compounds that are found in petroleum fractions such as benzothiophenes and substituted dibenzothiophenes such as for example 4-methyldibenzothiophene and 4,6-dimethyldibenzothiophene, are very resistant to hydrodesulfurization. The sulfur present there is therefore difficult to remove by this route. However, these compounds are relatively easy to oxidize.
  • the elimination of the oxidized compounds can be done by various means, for example by physical treatment such as an extraction with a solvent immiscible with the fuel or by adsorption on a solid, or by distillation or by cold precipitation. . It can also be a chemical treatment of the pyrolysis or alkaline hydrolysis type. Compared with an extraction using a solvent, adsorption on a solid has certain advantages: - no significant losses of the extracting agent - generally simpler industrial installations.
  • the Applicant has carried out desulphurization tests on mixtures of oxidized hydrocarbons in an attempt to drop below 50 ppm of residual S, and has found that with this type of adsorbent solid, the selectivity is not optimal, ie d. that there is a non-negligible loss in hydrocarbons (by non-selective adsorption).
  • crystalline silica-aluminas (clays or zeolites).
  • the Applicant has found that surprisingly, the selectivity obtained is much better when using as an adsorbent solid, a solid comprising at least 60% by weight of amorphous silica-alumina.
  • the invention consequently relates to a process for desulphurizing a hydrocarbon mixture containing sulfur compounds, comprising an oxidation step using an oxidizing agent to oxidize sulfur compo ⁇ ed, followed by a step removal of the sulfur-containing compounds oxidized by adsorption on an adsorbent solid, in which the adsorbent solid comprises at least 60% by weight of amorphous silica-alumina.
  • mixture of hydrocarbons is meant any product containing predominantly hydrocarbons such as paraffins, olefins, naphthenic compounds and aromatic compounds. It may be crude oil or a petroleum derivative obtained by any known refining treatment.
  • the mixture of hydrocarbons can be chosen from petroleum fractions which are used in the composition of any type of fuel and fuel. Among these, mention may be made of kerosene, motor fuels such as petrol or diesel, and domestic fuels such as heating oil.
  • the mixture of hydrocarbons which is subjected to the oxidation stage contains hydrocarbons with 10 carbon atoms or more (in particular from 10 to 50 carbon atoms, and most often of 10 to 40 carbon atoms) in an amount greater than 50% by weight, in particular greater than or equal to 60% by weight.
  • the process according to the invention proves to be particularly effective when the mixture of hydrocarbons contains aromatic hydrocarbons in a quantity less than or equal to 80% by weight, in particular less than or equal to 60% by weight, the values less than or equal to 50% by weight giving particularly good results.
  • aromatic hydrocarbons is intended to denote all the compounds dosed by the method described in standard IP 391 (1995). Without wishing to be bound by a theory, the applicant thinks that a too high content of aromatics is likely to reduce the selectivity of the process taking into account the polar character of these molecules and therefore, their affinity with respect to the adsorbent solid.
  • the oxidation step can be preceded by one or more other steps such as the conventional steps of a refining process. Particularly effective results are obtained when the oxidation step is preceded by one or more hydrodesulfurization (HDS) steps.
  • the sulfur content of the mixture of hydrocarbons treated by the process according to the present invention is advantageously less than or equal to 200 ppm, or even to 100 ppm, and preferably even to 50 ppm. At these low sulfur contents, the oxidized sulfur compounds are in fact particularly difficult to selectively remove from the mixture of oxidized hydrocarbons.
  • sulfur compounds means all the pure substances and all the compounds present in the mixture of hydrocarbons, which contain sulfur. They are in particular benzothiophene, dibenzothiophene, benzonaphthothiophene and their mono- or multisubstituted derivatives, more specifically 4-methyldibenzothiophene and 4,6-dimethyldibenzothiophene.
  • deulfurization is meant any treatment which makes it possible to reduce the sulfur content of the mixture of hydrocarbons.
  • the sulfur-containing compounds can be oxidized, for example to the corresponding sulfoxides, sulfones and sulfonic acids.
  • the oxidizing agent used in the process according to the invention can be chosen from gaseous oxygen, hydrogen peroxide, ozone, nitrogen oxides, nitric acid, organic peracids (carboxylic, sulfonic and
  • the hydrogen peroxide can be used in the presence of a carboxylic acid (such as acetic acid) and a acid catalyst so as to form, in situ or in a separate reactor, the corresponding peracid (such as peracetic acid) which is the substance which oxidizes sulfur compounds.
  • a carboxylic acid such as acetic acid
  • a acid catalyst so as to form, in situ or in a separate reactor, the corresponding peracid (such as peracetic acid) which is the substance which oxidizes sulfur compounds.
  • the hydrogen peroxide can be used in the presence of a solid catalyst, the active sites of which are activated by the hydrogen peroxide so as to be able to oxidize the sulfur compounds.
  • This second variant is used in the co-pending French patent application of the plaintiff filed on 09.05.2001 under number 01.06151, the content of which is incorporated by reference in the present patent application.
  • the hydrogen peroxide can be used in the presence of an acid catalyst, at least part of which forms a distinct phase in the reaction medium and which comprises acid groups capable of reacting with the peroxide. hydrogen to form an oxidizing agent for sulfur compounds.
  • an acid catalyst at least part of which forms a distinct phase in the reaction medium and which comprises acid groups capable of reacting with the peroxide. hydrogen to form an oxidizing agent for sulfur compounds.
  • the oxidation and adsorption steps can be separated by one or more other steps such as filtration, aqueous washing, destruction of the residues of the oxidizing agent, extraction using a solvent, stripping or distillation.
  • the adsorption step in the process according to the present invention consists in bringing the mixture of hydrocarbons containing oxidized sulfur compounds into contact with an adsorbent solid, preferably with a contact time and a weight ratio, mixture to be treated / solid adsorbent adapted to the desired desulfurization rate. This contact can be made in any suitable type of apparatus. It can be done batchwise in a reactor where the adsorbent solid is suspended.
  • the contact is preferably made continuously in an adsorption column filled with a fixed bed of adsorbent solid through which the elution of the hydrocarbon mixture is carried out.
  • the quantity of adsorbent solid contained in the column, the elution speed, the temperature and the adsorption pressure are to be optimized as a function of the desired desulfurization rate.
  • the temperature this is preferably low. Temperatures close to 20 ° C are generally good.
  • the process according to the present invention can be a continuous or discontinuous process. It is preferably a continuous process, i.e. that both the oxidation and adsorption steps are carried out continuously and use to do this at least one oxidation reactor and at least one adsorption column. 0 Since the oxidized sulfur compounds contained in the hydrocarbon mixture are gradually adsorbed on the adsorbent solid and the active sites of the latter are gradually saturated, it is generally advisable to regenerate the adsorbent solid regularly by all appropriate method (calcination in air, displacement using polar solvent (s), etc.). Also, in the case of a continuous process, it is often necessary to provide several adsorption columns in order to ensure the operating / regeneration cycles.
  • silica-alumina is meant the compounds comprising silica and alumina and in which at least part of the silica and at least part of the alumina reacted to form Si-O- bonds al.
  • the 0 physical mixtures of pure silica and pure alumina do not meet this definition.
  • the silica-aluminas used in the process according to the present invention can be obtained by any known process, for example by one of those described by K. Foger ("Dispersed Metal Catalysts", Catalysis; Science & Technology, Ed. JR Anderson and M Boudait, Springer ' Verlag, 1984, V 6, 5 p.232).
  • the silica: alumina weight ratio in the silica-alumina used in the process according to the present invention is between 99: 1 and 1:99.
  • the alumina content is less than or equal to 50% by weight (relative to the total weight of the dry solid, that is to say after 0 elimination of physisorbed water), or even less than or equal at 30% by weight and more particularly, less than or equal to 20% by weight.
  • This content is however advantageously greater than or equal to 2% by weight, and preferably, greater than or equal to 3% by weight.
  • the Applicant has in fact found that a low alumina content gives good results both in terms of selectivity and of adsorption capacity. Without wishing to be bound by a theory, the applicant believes that silica-aluminas with a low alumina content have strong acid sites which interact with oxidized sulfur compounds which have a slightly basic character.
  • amorphous is meant to characterize a structure which does not have an X-ray diffraction line (as opposed to crystal structures, which have at least one such line).
  • - Either comprises a solid of crystalline structure but in an amount less than or equal to 40% and in particular, less than or equal to 20% by weight (relative to the total weight of the dry adsorbent solid).
  • An example of a solid with a crystalline structure is crystalline silica-aluminas (clays, zeolites).
  • X and Y zeolites (faujasite type) give good results.
  • the cracking catalysts constituted by an amorphous silica-alumina matrix in which is dispersed a zeolite X or Y, preferably exchanged with a rare earth give good results.
  • the choice of such an adsorbent solid makes it possible to optionally couple its regeneration with that of a cracking catalyst, for example by calcination in air within a catalytic cracking unit.
  • the adsorbent solid used in the process according to the present invention preferably has a silica-alumina (amorphous and / or crystalline) content greater than or equal to 95% by weight, and preferably greater than or equal to 98% by total weight of the solid. dry.
  • the adsorbent solid can, in certain cases, contain oxides of other elements such as alkali, alkaline earth, earth, rare earth, Ti, Fe or Zr. These oxides are generally present in a content less than or equal to 5% by weight, or even 2% by weight.
  • the adsorbent solids used in the process according to the present invention make it possible to achieve high desulfurization and very high weight ratios between the hydrocarbon mixture to be treated and the quantity of adsorbent solid required.
  • the results obtained can be optimized both in terms of capacity and selectivity.
  • the adsorbent solid preferably has a specific surface (determined by the BET equation derived from the analysis of the nitrogen adsorption isotherms: Ref. Adsorption by Powders and Porous Solids, Principles, Methodology and Applications, F. Rouquerol, J. Rouquerol, K. Sing, 1997, Académie Press, P 166-174) greater than or equal to 400 m 2 / g, or even 500 m 2 / g.
  • specific surface area debt is generally less than or equal to 1000 m 2 / g, or even 800 m / g, and even less than 700 m 2 / g.
  • the adsorbent solid preferably comprises mesopores (i.e. pores with an average diameter between 2 and 50 nm).
  • mesopores i.e. pores with an average diameter between 2 and 50 nm.
  • the presence of mesopores can be established on the basis of the form of the gas physisorption isotherm according to the IUPAC classification (Ref. Adsorption by Powders and Porous Solids, Principles,
  • the adsorbent solid used in the process according to the invention generally has a pore volume (measured by the adsorption technique - nitrogen desorption; Ref. Adsorption by Powders and Porous Solids, Principles, Methodology and Applications, F. Rouquerol, J Rouquerol, K. Sing, 1997, Académie Press, P 166-174) greater than or equal to 0.1 cm 3 / g, in particular greater than or equal to 0.2 cm Vg, and preferably greater than or equal to 0.5 cm 3 / g.
  • the pore volume is usually less than or equal to 5 cm / g, more particularly qq less than or equal to 3 cm / g, the values less than or equal to 1.5 cm / g being the most common.
  • the adsorbent solid is generally used in the form of particles, which can be obtained by any known process. We think of the most diverse forms of particles such as in particular powders, beads, pellets, extrudates or honeycomb structures.
  • the solid adsorbent can be used in suspension or in the form of a fixed bed.
  • the average size of these particles depends on the type of implementation. For a process where the adsorbent solid is in suspension, the size average particle size is generally greater than or equal to 5 ⁇ m, more particularly 10 ⁇ m and more particularly 50 ⁇ m.
  • the average particle size is usually less than or equal to 500 ⁇ m, more particularly to 250 ⁇ m and more particularly to 150 ⁇ m.
  • Average sizes greater than or equal to 100 ⁇ m and less than or equal to 125 ⁇ m are particularly suitable.
  • the average particle size is generally greater than or equal to 0.5 mm, more particularly to 1 mm and very particularly to 2 mm.
  • the average particle size is commonly less than or equal to 10 mm, more particularly 5 mm and very particularly 4 mm.
  • An additional advantage of the process according to the present invention is that it also allows the elimination of the nitrogen compounds contained in the hydrocarbon mixtures.
  • the adsorbent solid is preferably dried before its use to remove physisorbed water. This. can be done by any suitable method, for example by drying under vacuum at 100 ° C for 12 h. .
  • the examples below illustrate the present invention without limitation. In these:
  • SRGO straight run gas oil
  • Attapulgite Engelhard clay Attapulgite 30/60 AA-LVM, 250-500 ⁇ m, 125 m 2 / g Montmorillonite clay GIRDLER, montmorillonite K10, 63-125 ⁇ m,
  • the reaction medium was kept stirring (575 revolutions / minute) at 25 ° C for 1 h and then was brought to 50 ° C for 2 h.
  • the color of the organic phase has changed from yellow to orange.
  • the phases were then separated and the organic phase was further washed with 3 times 100 ml of water.
  • Analysis of the organic phase by vapor phase chromatography with specific sulfur detection (GC-AED) indicated a total conversion of the sulfur compounds present in the starting petroleum charge.
  • the S content of the oxidized sample was 35 ppm wt by X-ray fluorescence. 4.
  • the fractionation tests (exploratory tests whose aim is to determine the capacity of the adsorbent solid) were carried out according to the following procedure:
  • % S eliminated the percentage of S eliminated (% S eliminated) defined as being the percentage of moles of S having been eliminated from the hydrocarbon mixture by adsorption; this value is somewhat different from the variation in the S content of the hydrocarbon mixture (Difference [S]), which value is influenced by the adsorption of petroleum hydrocarbons on the adsorbent solid.
  • the yield of hydrocarbon mixture after adsorption defined as the ratio between the mass of the hydrocarbon mixture after adsorption and the mass of the hydrocarbon mixture initially used - the efficiency factor K defined by Zannikos [Zannikos F., - Lois E., Stournas S., Fuel Processing Technology, 1995, V 42, P 35-45] as the ratio between the% S eliminated and the fraction of the mixture of hydrocarbons lost by non-selective adsorption; this quantity characterizes the selectivity of the adsorption process

Abstract

The invention relates to a method of desulphurising a mixture of hydrocarbons containing sulphur compounds. The inventive method comprises: a step involving oxidation using an oxidising agent in order to oxidise the sulphur compounds and, subsequently, a step consisting of the elimination of the oxidised sulphur compounds by means of absorption on an absorbing material, in which the absorbing material comprises at least 60 wt.- % amorphous silica-alumina.

Description

Procédé de désulfuration d'un mélange d'hydrocarbures Desulfurization process for a mixture of hydrocarbons
La présente invention concerne un procédé de désulfuration d'un mélange d'hydrocarbures, tels que les coupes pétrolières comme les carburants, contenant des composés soufrés. Le procédé comprend une étape d'oxydation afin d'oxyder les composés soufrés, qui est suivie d'une étape d'élimination des composés oxydés par adsorption sur un solide adsorbant.The present invention relates to a process for desulfurization of a mixture of hydrocarbons, such as petroleum fractions such as fuels, containing sulfur compounds. The method includes an oxidation step to oxidize the sulfur compounds, which is followed by a step of removing the oxidized compounds by adsorption on an adsorbent solid.
Pour des raisons environnementales, les spécifications sur la teneur en soufre des carburants deviennent de plus en plus sévères et des méthodes permettant de réduire cette teneur ont donc été mises au point. Le procédé classique d'élimination du soufre des pétroles est. basé sur la réaction d'hydrodésulfuration représentée par RSR' + 2 H2 -» RH + R'H + H2S où RSR' représente un composé soufré aliphatique, alicyclique ou aromatique. Ce procédé connu présente certains inconvénients. Par exemple, le respect des nouvelles spécifications en soufre nécessite des conditions plus sévères d'hydrodésulfuration (excès d'hydrogène, plus haute température, plus haute pression, ...) et entraîne nécessairement une augmentation du coût des carburants. En outre, certains composés soufrés que l'on retrouve dans les coupes pétrolières, tels que les benzothiophènes et dibenzothiophènes substitués comme par exemple le 4-méthyldibenzothiophène et le 4,6-diméthyldibenzothiophène, sont très résistants à l'hydrodésulfuration. Le soufre qui y est présent est donc difficile à éliminer par cette voie. Par contre, ces composés sont relativement faciles à oxyder.For environmental reasons, specifications on the sulfur content of fuels are becoming more and more stringent and methods to reduce this content have therefore been developed. The classic method of removing sulfur from oils is. based on the hydrodesulfurization reaction represented by RSR '+ 2 H 2 - »RH + R'H + H 2 S where RSR' represents an aliphatic, alicyclic or aromatic sulfur compound. This known method has certain drawbacks. For example, compliance with the new sulfur specifications requires more severe hydrodesulfurization conditions (excess hydrogen, higher temperature, higher pressure, etc.) and necessarily leads to an increase in the cost of fuels. In addition, certain sulfur compounds that are found in petroleum fractions, such as benzothiophenes and substituted dibenzothiophenes such as for example 4-methyldibenzothiophene and 4,6-dimethyldibenzothiophene, are very resistant to hydrodesulfurization. The sulfur present there is therefore difficult to remove by this route. However, these compounds are relatively easy to oxidize.
Par conséquent, des procédés comprenant une étape d'oxydation des composés soufrés suivie d'une étape d'élimination de ces composés oxydés ont été mis au point. Dans ceux-ci, l'élimination des composés oxydés peut se faire par différents moyens, par exemple par traitement physique comme une extraction par un solvant non miscible avec le carburant ou par adsorption sur un solide, ou encore par distillation ou par précipitation à froid. Il peut également s'agir d'un traitement chimique du type pyrolyse ou hydrolyse alcaline. Par rapport à une extraction à l'aide d'un solvant, l'adsorption sur un solide présente certains avantages : - pas de pertes importantes de l'agent extracteur - installations industrielles généralement plus simples.Consequently, methods comprising a step of oxidation of the sulfur-containing compounds followed by a step of elimination of these oxidized compounds have been developed. In these, the elimination of the oxidized compounds can be done by various means, for example by physical treatment such as an extraction with a solvent immiscible with the fuel or by adsorption on a solid, or by distillation or by cold precipitation. . It can also be a chemical treatment of the pyrolysis or alkaline hydrolysis type. Compared with an extraction using a solvent, adsorption on a solid has certain advantages: - no significant losses of the extracting agent - generally simpler industrial installations.
Ainsi, dans le brevet GB 2262 942, deux solides adsorbants (silice et alumine) utilisés seuls ou l'un après l'autre, en deux couches séparées, ont été testés sur des combustibles oxydés. La teneur résiduelle en soufre la plus faible obtenue avec ces solides adsorbants est de 50 ppm.Thus, in patent GB 2262 942, two solid adsorbents (silica and alumina) used alone or one after the other, in two separate layers, were tested on oxidized fuels. The lowest residual sulfur content obtained with these adsorbent solids is 50 ppm.
La demanderesse a effectué des essais de désulfuration de mélanges d'hydrocarbures oxydés pour tenter de descendre sous 50 ppm de S résiduel, et a constaté qu'avec ce type de solide adsorbant, la sélectivité n'est pas optimale, c.-à-d. qu'il y a une perte en hydrocarbures (par adsorption non sélective) non négligeable. Il en va de même avec les silices-alumines cristallines (argiles ou zéolites). Par contre, la demanderesse a constaté que de manière surprenante, la sélectivité obtenue est nettement meilleure lorsqu'on emploie comme solide adsorbant, un solide comprenant au moins 60 % en poids de silice-alumine amorphe. L'invention concerne dès lors un procédé de désulfuration d'un mélange d'hydrocarbures contenant des composés soufrés, comprenant une étape d'oxydation au moyen d'un agent oxydant afin d'oxyder les cômpo és~soufrés, suivie d'une étape d'élimination des composés soufrés oxydés par adsorption sur un solide adsorbant, dans lequel le solide adsorbant comprend au moins 60 % en poids de silice-alumine amorphe.The Applicant has carried out desulphurization tests on mixtures of oxidized hydrocarbons in an attempt to drop below 50 ppm of residual S, and has found that with this type of adsorbent solid, the selectivity is not optimal, ie d. that there is a non-negligible loss in hydrocarbons (by non-selective adsorption). The same is true with crystalline silica-aluminas (clays or zeolites). By cons, the Applicant has found that surprisingly, the selectivity obtained is much better when using as an adsorbent solid, a solid comprising at least 60% by weight of amorphous silica-alumina. The invention consequently relates to a process for desulphurizing a hydrocarbon mixture containing sulfur compounds, comprising an oxidation step using an oxidizing agent to oxidize sulfur compo ~ ed, followed by a step removal of the sulfur-containing compounds oxidized by adsorption on an adsorbent solid, in which the adsorbent solid comprises at least 60% by weight of amorphous silica-alumina.
Par "mélange d'hydrocarbures", on entend désigner tout produit contenant majoritairement des hydrocarbures tels que des paraffines, des oléfmes, des composés naphténiques et des composés aromatiques. Il peut s'agir de pétrole brut ou d'un dérivé du pétrole obtenu par tout traitement de raffinage connu. Le mélange d'hydrocarbures peut être choisi parmi les coupes pétrolières qui entrent dans la composition de tout type de carburant et de combustible. Parmi ceux-ci, on peut citer le kérosène, les carburants pour voiture tels que l'essence ou le diesel, et les combustibles domestiques comme par exemple le mazout de chauffage. Des résultats particulièrement intéressants sont obtenus lorsque le mélange d'hydrocarbures que l'on soumet à l'étape d'oxydation contient des hydrocarbures à 10 atomes de carbone ou plus (en particulier de 10 à 50 atomes de carbone, et le plus souvent de 10 à 40 atomes de carbone) en une quantité supérieure à 50 % en poids, en particulier supérieure ou égale à 60 % en poids. Le procédé selon l'invention s'avère particulièrement performant lorsque le mélange d'hydrocarbures contient des hydrocarbures aromatiques en une quantité inférieure ou égale à 80 % en poids, en particulier inférieure ou égale à 60 % en poids, les valeurs inférieures ou égales à 50 % en poids donnant de particulièrement bons résultats. Par "hydrocarbures aromatiques" on entend désigner tous les composés dosés par la méthode décrite dans la norme IP 391 (1995). Sans vouloir être liée à une théorie, la demanderesse pense qu'une teneur trop importante en aromatiques est susceptible de diminuer la sélectivité du procédé compte tenu du caractère polaire de ces molécules et donc, de leur affinité vis-à-vis du solide adsorbant.By "mixture of hydrocarbons" is meant any product containing predominantly hydrocarbons such as paraffins, olefins, naphthenic compounds and aromatic compounds. It may be crude oil or a petroleum derivative obtained by any known refining treatment. The mixture of hydrocarbons can be chosen from petroleum fractions which are used in the composition of any type of fuel and fuel. Among these, mention may be made of kerosene, motor fuels such as petrol or diesel, and domestic fuels such as heating oil. Particularly interesting results are obtained when the mixture of hydrocarbons which is subjected to the oxidation stage contains hydrocarbons with 10 carbon atoms or more (in particular from 10 to 50 carbon atoms, and most often of 10 to 40 carbon atoms) in an amount greater than 50% by weight, in particular greater than or equal to 60% by weight. The process according to the invention proves to be particularly effective when the mixture of hydrocarbons contains aromatic hydrocarbons in a quantity less than or equal to 80% by weight, in particular less than or equal to 60% by weight, the values less than or equal to 50% by weight giving particularly good results. By "aromatic hydrocarbons" is intended to denote all the compounds dosed by the method described in standard IP 391 (1995). Without wishing to be bound by a theory, the applicant thinks that a too high content of aromatics is likely to reduce the selectivity of the process taking into account the polar character of these molecules and therefore, their affinity with respect to the adsorbent solid.
Dans le procédé selon l'invention, l'étape d'oxydation peut être précédée par une ou plusieurs autres étapes telles que les étapes classiques d'un procédé de raffinage. Des résultats particulièrement performants sont obtenus lorsque l'étape d'oxydation est précédée d'une ou plusieurs étapes d'hydrodésulfuration (HDS). Ainsi, de préférence, la teneur en soufre du mélange d'hydrocarbures traité par le procédé selon la présente invention est avantageusement inférieure ou égale à 200 ppm, voire à 100 ppm, et de préférence même à 50 ppm. A ces faibles teneurs en soufre, les composés soufrés oxydés sont en effet particulièrement difficiles à éliminer sélectivement du mélange d'hydrocarbures oxydé.In the process according to the invention, the oxidation step can be preceded by one or more other steps such as the conventional steps of a refining process. Particularly effective results are obtained when the oxidation step is preceded by one or more hydrodesulfurization (HDS) steps. Thus, preferably, the sulfur content of the mixture of hydrocarbons treated by the process according to the present invention is advantageously less than or equal to 200 ppm, or even to 100 ppm, and preferably even to 50 ppm. At these low sulfur contents, the oxidized sulfur compounds are in fact particularly difficult to selectively remove from the mixture of oxidized hydrocarbons.
Par "composés soufrés" on entend désigner tous les corps purs et tous les composés présents dans le mélange d'hydrocarbures, qui contiennent du soufre. II s'agit en particulier de benzothiophène, de dibenzothiophène, de benzonaphtothiophène et de leurs dérivés mono- ou multisubstitués, plus spécifiquement le 4-méthyldibenzothiophène et le 4,6-diméthyldibenzothiophène.By "sulfur compounds" means all the pure substances and all the compounds present in the mixture of hydrocarbons, which contain sulfur. They are in particular benzothiophene, dibenzothiophene, benzonaphthothiophene and their mono- or multisubstituted derivatives, more specifically 4-methyldibenzothiophene and 4,6-dimethyldibenzothiophene.
Par "désulfuration", on entend désigner tout traitement permettant de réduire la teneur en soufre du mélange d'hydrocarbures.By "desulfurization" is meant any treatment which makes it possible to reduce the sulfur content of the mixture of hydrocarbons.
Les composés soufrés peuvent être oxydés par exemple en sulfoxydes, sulfones et acides sulfoniques correspondants.The sulfur-containing compounds can be oxidized, for example to the corresponding sulfoxides, sulfones and sulfonic acids.
L'agent oxydant utilisé dans le procédé selon l'invention peut être choisi parmi l'oxygène gazeux, le peroxyde d'hydrogène, l'ozone, les oxydes d'azote, l'acide nitrique, les peracides organiques (carboxyliques, sulfoniques etThe oxidizing agent used in the process according to the invention can be chosen from gaseous oxygen, hydrogen peroxide, ozone, nitrogen oxides, nitric acid, organic peracids (carboxylic, sulfonic and
phosphoniques) ou minéraux (acide de Caro, acide perborique), le chlore, les hypochlorites minéraux et organiques, les hydroperoxydes et les persels (perborate, percarbonate). Un agent oxydant contenant le peroxyde d'hydrogène est préféré. Selon une première variante, le peroxyde d'hydrogène peut être mis en œuvre en présence d'un acide carboxylique (tel que l'acide acétique) et un catalyseur acide de manière à former, in situ ou dans un réacteur séparé, le peracide correspondant (tel que l'acide peracétique) qui est la substance qui oxyde les composés soufrés. Cette première variante est utilisée dans la demande de brevet français co-pendante de la demanderesse déposée le 26.02.2001 sous le numéro 01.02688, dont le contenu est incorporé par référence dans la présente demande de brevet. phosphonic) or mineral (Caro acid, perboric acid), chlorine, mineral and organic hypochlorites, hydroperoxides and persalts (perborate, percarbonate). An oxidizing agent containing hydrogen peroxide is preferred. According to a first variant, the hydrogen peroxide can be used in the presence of a carboxylic acid (such as acetic acid) and a acid catalyst so as to form, in situ or in a separate reactor, the corresponding peracid (such as peracetic acid) which is the substance which oxidizes sulfur compounds. This first variant is used in the co-pending French patent application of the plaintiff filed on 26.02.2001 under the number 01.02688, the content of which is incorporated by reference in the present patent application.
Selon une deuxième variante, le peroxyde d'hydrogène peut être mis en œuvre en présence d'un catalyseur solide dont les sites actifs sont activés par le peroxyde d'hydrogène de manière à pouvoir oxyder les composés soufrés. Cette deuxième variante est utilisée dans la demande de brevet français co-pendante de la demanderesse déposée le 09.05.2001 sous le numéro 01.06151, dont le contenu est incorporé par référence dans la présente demande de brevet.According to a second variant, the hydrogen peroxide can be used in the presence of a solid catalyst, the active sites of which are activated by the hydrogen peroxide so as to be able to oxidize the sulfur compounds. This second variant is used in the co-pending French patent application of the plaintiff filed on 09.05.2001 under number 01.06151, the content of which is incorporated by reference in the present patent application.
Enfin, selon une troisième variante, le peroxyde d'hydrogène peut être mis en œuvre en présence d'un catalyseur acide dont au moins une partie forme une phase distincte dans le milieu réactionnel et qui comporte des groupements acides susceptibles de réagir avec le peroxyde d'hydrogène pour former un agent oxydant des composés soufrés. Cette troisième variante est utilisée dans la demande de brevet français co-pendante de la demanderesse déposée le 14.02.02 sous le numéro 02.01881, dont le contenu est incorporé par référence dans la présente demande de brevet.Finally, according to a third variant, the hydrogen peroxide can be used in the presence of an acid catalyst, at least part of which forms a distinct phase in the reaction medium and which comprises acid groups capable of reacting with the peroxide. hydrogen to form an oxidizing agent for sulfur compounds. This third variant is used in the co-pending French patent application of the plaintiff filed on 14.02.02 under the number 02.01881, the content of which is incorporated by reference in the present patent application.
Dans le procédé selon l'invention, les étapes d'oxydation et d'adsorption peuvent être séparées par une ou plusieurs autres étapes telles que filtration, lavage aqueux, destruction des résidus de l'agent oxydant, extraction au moyen d'un solvant, stripping ou distillation. L'étape d'adsorption dans le procédé selon la présente invention consiste en une mise en contact du mélange d'hydrocarbures contenant des composés soufrés oxydés avec un solide adsorbant, de préférence avec une durée de contact et un rapport pondéral, mélange à traiter/solide adsorbant adapté au taux de désulfuration souhaité. Ce contact peut être réalisé dans tout type d'appareillage approprié. Il peut se faire en discontinu (batch) dans un réacteur où le solide adsorbant est mis en suspension. Toutefois, le contact se fait de préférence en continu dans une colonne d'adsorption remplie avec un lit fixe de solide adsorbant à travers lequel on procède à l'élution du mélange d'hydrocarbures. Dans ce cas,. la quantité de solide adsorbant contenu dans la colonne, la vitesse d'élution, la température et la pression d'adsorption sont à optimiser en fonction du taux de désulfuration souhaité. Généralement, on veillera à obtenir une vitesse d'élution comprise entre 20 et 40 cm/min, des vitesses trop élevées menant à une perte de charge excessive et des vitesses trop faibles menant à des chemins préférentiels d'élution. En ce qui concerne la température, celle-ci est de préférence peu élevée. Des températures proches de 20 °C conviennent 5. généralement bien.In the process according to the invention, the oxidation and adsorption steps can be separated by one or more other steps such as filtration, aqueous washing, destruction of the residues of the oxidizing agent, extraction using a solvent, stripping or distillation. The adsorption step in the process according to the present invention consists in bringing the mixture of hydrocarbons containing oxidized sulfur compounds into contact with an adsorbent solid, preferably with a contact time and a weight ratio, mixture to be treated / solid adsorbent adapted to the desired desulfurization rate. This contact can be made in any suitable type of apparatus. It can be done batchwise in a reactor where the adsorbent solid is suspended. However, the contact is preferably made continuously in an adsorption column filled with a fixed bed of adsorbent solid through which the elution of the hydrocarbon mixture is carried out. In this case ,. the quantity of adsorbent solid contained in the column, the elution speed, the temperature and the adsorption pressure are to be optimized as a function of the desired desulfurization rate. Generally, we will take care to obtain a speed elution between 20 and 40 cm / min, too high speeds leading to an excessive pressure drop and too low speeds leading to preferential paths of elution. As regards the temperature, this is preferably low. Temperatures close to 20 ° C are generally good.
Le procédé selon la présente invention peut être un procédé continu ou discontinu. Il s'agit de préférence d'un procédé continu, c.-à-d. qu'à la fois les étapes d'oxydation et d'adsorption sont réalisées en continu et utilisent pour ce faire au moins un réacteur d'oxydation et au moins une colonne d'adsorption. 0 Etant donné que les composés soufrés oxydés contenus dans le mélange d'hydrocarbures s'adsorbent peu à peu sur le solide adsorbant et que les sites actifs de ce dernier sont peu à peu saturés, il convient généralement de régénérer le solide adsorbant régulièrement par toute méthode appropriée (calcination sous air, déplacement au moyen de solvant(s) polaire(s)...). Aussi, dans le cas d'un 5 procédé continu, il est souvent nécessaire de prévoir plusieurs colonnes d'adsorption afin d'assurer les cycles de fonctionnement/régénération.The process according to the present invention can be a continuous or discontinuous process. It is preferably a continuous process, i.e. that both the oxidation and adsorption steps are carried out continuously and use to do this at least one oxidation reactor and at least one adsorption column. 0 Since the oxidized sulfur compounds contained in the hydrocarbon mixture are gradually adsorbed on the adsorbent solid and the active sites of the latter are gradually saturated, it is generally advisable to regenerate the adsorbent solid regularly by all appropriate method (calcination in air, displacement using polar solvent (s), etc.). Also, in the case of a continuous process, it is often necessary to provide several adsorption columns in order to ensure the operating / regeneration cycles.
Par « silice-alumine », on entend désigner les composés comprenant de la silice et de l' alumine et dans lesquels une partie au moins de la silice et une partie au moins de l'alumine ont réagi pour former des liaisons Si-O-Al. Les 0 mélanges physiques de silice pure et d'alumine pure ne répondent pas à cette définition. Les silices-alumines utilisées dans le procédé selon la présente invention peuvent être obtenues par tout procédé connu, par exemple par un de ceux décrits par K. Foger (« Dispersed Métal Catalysts », Catalysis; Science & Technology, Ed. J.R. Anderson et M. Boudait, Springer'Verlag, 1984, V 6, 5 p.232).By "silica-alumina" is meant the compounds comprising silica and alumina and in which at least part of the silica and at least part of the alumina reacted to form Si-O- bonds al. The 0 physical mixtures of pure silica and pure alumina do not meet this definition. The silica-aluminas used in the process according to the present invention can be obtained by any known process, for example by one of those described by K. Foger ("Dispersed Metal Catalysts", Catalysis; Science & Technology, Ed. JR Anderson and M Boudait, Springer ' Verlag, 1984, V 6, 5 p.232).
Généralement, le rapport pondéral silice: alumine dans la silice-alumine utilisée dans le procédé selon la présente invention est compris entre 99:1 et 1:99. Toutefois, de manière préférée, la teneur en alumine est inférieure ou égale à 50 % en poids (par rapport au poids total du solide sec, c.-à-d. après 0 élimination de l'eau physisorbée), voire inférieure ou égale à 30 % en poids et plus particulièrement, inférieure ou égale à 20 % en poids. Cette teneur est toutefois avantageusement supérieure ou égale à 2 % en poids, et de manière préférée, supérieure ou égale à 3 % en poids. La demanderesse a en effet constaté qu'une faible teneur en alumine donne de bons résultats à la fois en termes de sélectivité et de capacité d'adsorption. Sans vouloir être liée à une théorie, la demanderesse pense que les silices-alumines à faible teneur en alumine présentent des sites acides forts qui interagissent avec les composés soufrés oxydés qui présentent un caractère légèrement basique.Generally, the silica: alumina weight ratio in the silica-alumina used in the process according to the present invention is between 99: 1 and 1:99. However, preferably, the alumina content is less than or equal to 50% by weight (relative to the total weight of the dry solid, that is to say after 0 elimination of physisorbed water), or even less than or equal at 30% by weight and more particularly, less than or equal to 20% by weight. This content is however advantageously greater than or equal to 2% by weight, and preferably, greater than or equal to 3% by weight. The Applicant has in fact found that a low alumina content gives good results both in terms of selectivity and of adsorption capacity. Without wishing to be bound by a theory, the applicant believes that silica-aluminas with a low alumina content have strong acid sites which interact with oxidized sulfur compounds which have a slightly basic character.
Par le terme « amorphe », on entend caractériser une structure qui ne présente pas de raie' de diffraction aux rayons X (par opposition aux structures cristallines, qui présentent au moins une telle raie). Dans le procédé selon la présente invention, le solide adsorbant utilisé :By the term "amorphous" is meant to characterize a structure which does not have an X-ray diffraction line (as opposed to crystal structures, which have at least one such line). In the process according to the present invention, the adsorbent solid used:
- est soit essentiellement constitué d'une structure amorphe telle que définie ci- dessus et donc, est exempt de tout solide de structure cristalline- either is essentially constituted by an amorphous structure as defined above and therefore, is free from any solid of crystalline structure
- soit comprend un solide de structure cristalline mais en une quantité inférieure ou égale à 40 % et en particulier, inférieure ou égale à 20 % en poids (par rapport au poids total du solide adsorbant sec). Un exemple de solide de structure cristalline sont les silices-alumines cristallines (argiles, zéolites). Les zéolites X et Y (de type faujasite) donnent de bons résultats. Plus particulièrement, les catalyseurs de craquage constitués d'une matrice de silice-alumine amorphe dans laquelle est dispersée une zéolite X ou Y, de préférence échangée par une terre rare, donnent de bons résultats. Le choix d'un tel solide adsorbant permet d'éventuellement coupler sa régénération avec celle d'un catalyseur de craquage, par exemple par calcination sous air au sein même d'une unité de craquage catalytique. Le solide adsorbant utilisé dans le procédé selon la présente invention a de préférence une teneur en silice-alumine (amorphe et/ou cristalline) supérieure ou égale à 95 % en poids, et de préférence supérieure ou égale à 98 % en poids total du solide sec. Le solide adsorbant peut, dans certains cas, contenir des oxydes d'autres éléments tels que les alcalins, alcalino-terreux, terreux, terres rares, Ti, Fe ou Zr. Ces oxydes sont généralement présents en une teneur inférieure ou égale à 5 % en poids, voire à 2 % en poids. Sans vouloir être liée à une théorie, la demanderesse pense que la présence d'une faible quantité de terre rare dans le solide adsorbant permet de diminuer la température de régénération par calcination et donc, de limiter les phénomènes de frittage. Les solides adsorbants utilisés dans le procédé selon la présente invention permettent d'atteindre une désulfuration poussée et des rapports pondéraux entre le mélange d'hydrocarbure à traiter et la quantité de solide adsorbant requise très élevés. En outre, comme évoqué ci-dessus, ils permettent d'augmenter la sélectivité de l'adsorption, c.-à-d. de limiter l'adsorption non sélective d'hydrocarbures non soufrés. Par le choix d'une surface spécifique adéquate ainsi que d'une porosité particulière (voir ci-dessous), on peut optimiser les résultats obtenus à la fois en termes de capacité et de sélectivité.- Either comprises a solid of crystalline structure but in an amount less than or equal to 40% and in particular, less than or equal to 20% by weight (relative to the total weight of the dry adsorbent solid). An example of a solid with a crystalline structure is crystalline silica-aluminas (clays, zeolites). X and Y zeolites (faujasite type) give good results. More particularly, the cracking catalysts constituted by an amorphous silica-alumina matrix in which is dispersed a zeolite X or Y, preferably exchanged with a rare earth, give good results. The choice of such an adsorbent solid makes it possible to optionally couple its regeneration with that of a cracking catalyst, for example by calcination in air within a catalytic cracking unit. The adsorbent solid used in the process according to the present invention preferably has a silica-alumina (amorphous and / or crystalline) content greater than or equal to 95% by weight, and preferably greater than or equal to 98% by total weight of the solid. dry. The adsorbent solid can, in certain cases, contain oxides of other elements such as alkali, alkaline earth, earth, rare earth, Ti, Fe or Zr. These oxides are generally present in a content less than or equal to 5% by weight, or even 2% by weight. Without wishing to be bound by a theory, the applicant thinks that the presence of a small quantity of rare earth in the adsorbent solid makes it possible to decrease the temperature of regeneration by calcination and therefore, to limit the phenomena of sintering. The adsorbent solids used in the process according to the present invention make it possible to achieve high desulfurization and very high weight ratios between the hydrocarbon mixture to be treated and the quantity of adsorbent solid required. In addition, as mentioned above, they make it possible to increase the selectivity of the adsorption, i.e. to limit the non-selective adsorption of non-sulfur hydrocarbons. By choosing an adequate specific surface as well as a particular porosity (see below), the results obtained can be optimized both in terms of capacity and selectivity.
Ainsi, dans le procédé selon la présente invention, le solide adsorbant présente de préférence une surface spécifique (déterminée .par l'équation BET dérivée de l'analyse des isothermes d'adsorption d'azote : Réf. Adsorption by Powders and Porous Solids, Principles, Methodology and Applications, F. Rouquerol, J. Rouquerol, K. Sing, 1997, Académie Press, P 166-174) supérieure ou égale à 400 m2/g, voire à 500 m2/g. Toutefois, dette surface spécifique est généralement inférieure ou égale à 1000 m2/g, voire à 800 m /g, et même, inférieure à 700 m2/g.Thus, in the process according to the present invention, the adsorbent solid preferably has a specific surface (determined by the BET equation derived from the analysis of the nitrogen adsorption isotherms: Ref. Adsorption by Powders and Porous Solids, Principles, Methodology and Applications, F. Rouquerol, J. Rouquerol, K. Sing, 1997, Académie Press, P 166-174) greater than or equal to 400 m 2 / g, or even 500 m 2 / g. However, specific surface area debt is generally less than or equal to 1000 m 2 / g, or even 800 m / g, and even less than 700 m 2 / g.
En outre, dans le procédé selon la présente invention, le solide adsorbant comprend de préférence des mésopores (c.-à-d. des pores de diamètre moyen compris entre 2 et 50 nm). La présence de mésopores peut être établie sur base de la forme de l'isotherme de physisorption de gaz selon la classification IUPAC (Réf. Adsorption by Powders and Porous Solids, Principles,Furthermore, in the process according to the present invention, the adsorbent solid preferably comprises mesopores (i.e. pores with an average diameter between 2 and 50 nm). The presence of mesopores can be established on the basis of the form of the gas physisorption isotherm according to the IUPAC classification (Ref. Adsorption by Powders and Porous Solids, Principles,
Methodology and Applications, F. Rouquerol, J. Rouquerol, K. Sing, 1997, Académie Press, P 18.-19). Il y a présence de mésopores lorsque cette courbe est de type IV. A noter toutefois que la présence de mésopores n'exclut pas la présence simultanée de micropores (pores de taille inférieure à 2nm) dans le solide.Methodology and Applications, F. Rouquerol, J. Rouquerol, K. Sing, 1997, Académie Press, P 18.-19). There is presence of mesopores when this curve is type IV. Note however that the presence of mesopores does not exclude the simultaneous presence of micropores (pores smaller than 2nm) in the solid.
Le solide adsorbant utilisé dans le procédé selon l'invention présente généralement un volume poreux (mesuré par la technique d'adsorption- désorption d'azote; Réf. Adsorption by Powders and Porous Solids, Principles, Methodology and Applications, F. Rouquerol, J. Rouquerol, K. Sing, 1997, Académie Press, P 166-174) supérieur ou égal à 0,1 cm3/g, en particulier supérieur ou égal à 0,2 cmVg, et de préférence supérieur ou égal à 0,5 cm3/g. Le volume poreux est habituellement inférieur ou égal à 5 cm /g, plus spécialement q q inférieur ou égal à 3 cm /g, les valeurs inférieures ou égales à 1,5 cm /g étant les plus courantes. Dans le procédé selon l'invention, le solide adsorbant est généralement mis en œuvre sous forme de particules, pouvant être obtenues par tout procédé connu. On pense aux formes de particules les plus diverses telles que notamment les poudres, les billes, les pastilles, les extradés ou les structures en nids d'abeilles. Le solide adsorbant peut être mis en œuvre en suspension ou sous forme d'un lit fixe. La taille moyenne de ces particules dépend du type de mise en œuvre. Pour un procédé où le solide adsorbant est en suspension, la taille moyenne des particules est en général supérieure ou égale à 5 μm, plus particulièrement à 10 μm et tout particulièrement à 50 μm. La taille moyenne des particules est habituellement inférieure ou égale à 500 μm, plus particulièrement à 250 μm et tout particulièrement à 150 μm. Des tailles moyennes supérieures ou égales à 100 μm et inférieures ou égales à 125 μm conviennent particulièrement ' bien. Pour un procédé où le solide adsorbant est utilisé en lit fixe, la taille moyenne des particules est généralement supérieure ou égale à 0,5 mm, plus particulièrement à 1 mm et tout particulièrement à 2 mm. La taille moyenne des particules est couramment inférieure ou égale à 10 mm, plus particulièrement à 5 mm et tout particulièrement à 4 mm.The adsorbent solid used in the process according to the invention generally has a pore volume (measured by the adsorption technique - nitrogen desorption; Ref. Adsorption by Powders and Porous Solids, Principles, Methodology and Applications, F. Rouquerol, J Rouquerol, K. Sing, 1997, Académie Press, P 166-174) greater than or equal to 0.1 cm 3 / g, in particular greater than or equal to 0.2 cm Vg, and preferably greater than or equal to 0.5 cm 3 / g. The pore volume is usually less than or equal to 5 cm / g, more particularly qq less than or equal to 3 cm / g, the values less than or equal to 1.5 cm / g being the most common. In the process according to the invention, the adsorbent solid is generally used in the form of particles, which can be obtained by any known process. We think of the most diverse forms of particles such as in particular powders, beads, pellets, extrudates or honeycomb structures. The solid adsorbent can be used in suspension or in the form of a fixed bed. The average size of these particles depends on the type of implementation. For a process where the adsorbent solid is in suspension, the size average particle size is generally greater than or equal to 5 μm, more particularly 10 μm and more particularly 50 μm. The average particle size is usually less than or equal to 500 μm, more particularly to 250 μm and more particularly to 150 μm. Average sizes greater than or equal to 100 μm and less than or equal to 125 μm are particularly suitable. For a process where the adsorbent solid is used in a fixed bed, the average particle size is generally greater than or equal to 0.5 mm, more particularly to 1 mm and very particularly to 2 mm. The average particle size is commonly less than or equal to 10 mm, more particularly 5 mm and very particularly 4 mm.
Un avantage supplémentaire du procédé selon la présente invention est qu'il permet en outre l'élimination des composés azotés contenus dans les mélanges d'hydrocarbures.An additional advantage of the process according to the present invention is that it also allows the elimination of the nitrogen compounds contained in the hydrocarbon mixtures.
A noter enfin que dans le procédé selon l'invention, le solide adsorbant est de préférence séché avant son utilisation pour éliminer l'eau physisorbée. Ceci . peut se faire par toute méthode appropriée, par exemple par séchage sous vide à 100 °C pendant 12 h. . Exemples : Les exemples ci-dessous illustrent la présente invention de manière non limitative. Dans ceux-ci :Finally, note that in the process according to the invention, the adsorbent solid is preferably dried before its use to remove physisorbed water. This. can be done by any suitable method, for example by drying under vacuum at 100 ° C for 12 h. . Examples: The examples below illustrate the present invention without limitation. In these:
1. On a utilisé un échantillon de gazole direct hydrotraité (Straight Run Gas Oil, SRGO), qui est le produit d'un traitement HDS effectué sur la fraction « distillats moyens » issue d'une distillation directe à pression atmosphérique de pétrole brut. Les caractéristiques de ce mélange d'hydrocarbures sont reprises dans le tableau 1. 1. A sample of straight run gas oil (SRGO) was used, which is the product of an HDS treatment carried out on the “middle distillates” fraction obtained from direct distillation of crude oil at atmospheric pressure. The characteristics of this mixture of hydrocarbons are listed in Table 1.
- 9- 9
Tableau 1 : caractéristiques du mélange d'hydrocarburesTable 1: characteristics of the hydrocarbon mixture
Figure imgf000010_0001
Figure imgf000010_0001
2. On a utilisé les solides adsorbants suivants :2. The following adsorbent solids were used:
Gel de silice 60 Merck ALDRICH, 70-230 mesh, diamètre moyen des pores 60Â, surface spécifique 529 m2/g , volume poreux 0,72 cm3/g; lot 33266-050Silk gel 60 Merck ALDRICH, 70-230 mesh, average pore diameter 60Â, specific surface 529 m 2 / g, pore volume 0.72 cm 3 / g; lot 33266-050
Gel de silice 10180 Merck ALDRICH, 70-230 mesh, diamètre moyen des pores 40Â, surface spécifique 750 m2/g lot 32665-010Silica gel 10180 Merck ALDRICH, 70-230 mesh, average pore diameter 40Â, specific surface 750 m 2 / g lot 32665-010
Alumine Dynocel 600 POROCEL, 90-98 % Al2O3, 420-590 μm, 376 m2/g, lot 1PA-0073 Silice-alumine 1 AKZO-KETJEN C25, 13,1 % Al2O3 pds, 75 μm,Alumina Dynocel 600 POROCEL, 90-98% Al 2 O 3 , 420-590 μm, 376 m 2 / g, lot 1PA-0073 Silica-alumina 1 AKZO-KETJEN C25, 13.1% Al 2 O 3 wt, 75 μm,
495 m2/g, 0,71 cm3/g495 m 2 / g, 0.71 cm 3 / g
Silice-alumine 2 GRACE, 3,8 % Al2O3 pds, 45-125 μm, 417 m2/g,Silica-alumina 2 GRACE, 3.8% Al 2 O 3 wt, 45-125 μm, 417 m 2 / g,
0,92 cm3/g Silice-alumine 3 NIKKIN631L, 13 % Al2O3 pds, 45-125 μm, 423 m2/g, 0,49 cm3/g Silice-alumine 4 GRACE, 13 % AI2O3 pds, 40-80 μm, 541 m2/g,0.92 cm 3 / g Silica-alumina 3 NIKKIN631L, 13% Al 2 O 3 wt, 45-125 μm, 423 m 2 / g, 0.49 cm 3 / g Silica-alumina 4 GRACE, 13% AI 2 O3 wt, 40-80 μm, 541 m 2 / g,
0,77 cm3/g Catalyseur de craquage AKZO, Zeolite Fluid Cracking Catalyst - M.Z.-l,0.77 cm 3 / g AKZO cracking catalyst, Zeolite Fluid Cracking Catalyst - MZ-l,
13,0 % AI2O3 pds , < 10 % pds de zéolite Y, 40-13.0% AI2O3 wt, <10% wt of zeolite Y, 40-
80 μm, 627 m2/g, 0,74 cm3/g80 μm, 627 m 2 / g, 0.74 cm 3 / g
Zéolite Y ZEOLYST INTERNATIONAL, 657 m2/g,Zeolite Y ZEOLYST INTERNATIONAL, 657 m 2 / g,
[Al2O3]= 2,1 % pds, ZD99062, lot 001-91, 45-125 μm[Al 2 O 3 ] = 2.1% wt, ZD99062, lot 001-91, 45-125 μm
Argile attapulgite Engelhard, Attapulgite 30/60 AA-LVM, 250-500 μm, 125 m2/g Argile montmorillonite GIRDLER, montmorillonite K10, 63-125 μm,Attapulgite Engelhard clay, Attapulgite 30/60 AA-LVM, 250-500 μm, 125 m 2 / g Montmorillonite clay GIRDLER, montmorillonite K10, 63-125 μm,
220-270 m2/g Bauxite activée POROCEL, Purocel RI, 77,7 % Al2O3 / 10,8 %220-270 m 2 / g Activated bauxite POROCEL, Purocel RI, 77.7% Al 2 O 3 / 10.8%
SiO2 / 6,5 % Fe2O3 / 5,0 % TiO2 , 420-840 μm,SiO 2 / 6.5% Fe 2 O 3 / 5.0% TiO 2 , 420-840 μm,
202 m2/g, lot 1PB-0005 3. A l'exception de l'essai objet de l'exemple Cil (non conforme à l'invention), tous les essais ont été réalisés sur un mélange d'hydrocarbures oxydé préalablement selon le mode opératoire suivant:202 m 2 / g, lot 1PB-0005 3. With the exception of the test which is the subject of the example C11 (not in accordance with the invention), all the tests were carried out on a mixture of hydrocarbons previously oxidized according to the following procedure:
Dans un réacteur en Pyrex double enveloppe pourvu d'un agitateur à pales en verre et en polymère fluoré Teflon®, d'un point d'introduction d'azote au sein de la solution (barbotage), d'un réfrigérant maintenu à -25 °C, d'un système d'addition d'une solution de peroxyde d'hydrogène à 39 % pds, d'un point de prélèvement d'échantillons, on a introduit successivement dans le réacteur de l'acide acétique AcOH (90,750 g), de l'acide sulfurique (2,2987 g) et le SRGO (964,170 g). On a introduit ensuite 115,125 ml de la solution d'H2O2 à une vitesse de 50 ml min à l'aide d'une pompe doseuse ; cette opération a constitué le temps zéro de la réaction. Le milieu réactionnel a été maintenu sous agitation (575 tours/minute) à 25 °C pendant 1 h puis a été porté à 50 °C pendant 2 h. La couleur de la phase organique est passée du jaune à l'orange. Les phases ont été alors séparées et la phase organique a encore été lavée par 3 fois 100 ml d'eau. L'analyse de la phase organique par chromatographie en phase vapeur avec détection spécifique du soufre (GC-AED) indiquait une conversion totale des composés soufrés présents dans la charge pétrolière de départ. La teneur en S de l'échantillon oxydé était de 35 ppm pds par fluorescence X. 4. Les essais avec fractionnement (essais exploratoires dont le but est de déterminer la capacité du solide adsorbant) ont été réalisés selon le mode opératoire suivant :In a reactor made of Pyrex jacket provided with a paddle stirrer and glass polymer fluorinated Teflon ®, a nitrogen introduction point within the solution (bubbling), a condenser maintained at -25 ° C, of a system for adding a hydrogen peroxide solution at 39 wt%, of a sampling point, acetic acid AcOH (90.750 g) was successively introduced into the reactor ), sulfuric acid (2.2987 g) and SRGO (964.170 g). 115.125 ml of the H 2 O 2 solution was then introduced at a speed of 50 ml min using a metering pump; this operation constituted the zero time of the reaction. The reaction medium was kept stirring (575 revolutions / minute) at 25 ° C for 1 h and then was brought to 50 ° C for 2 h. The color of the organic phase has changed from yellow to orange. The phases were then separated and the organic phase was further washed with 3 times 100 ml of water. Analysis of the organic phase by vapor phase chromatography with specific sulfur detection (GC-AED) indicated a total conversion of the sulfur compounds present in the starting petroleum charge. The S content of the oxidized sample was 35 ppm wt by X-ray fluorescence. 4. The fractionation tests (exploratory tests whose aim is to determine the capacity of the adsorbent solid) were carried out according to the following procedure:
100 ml de SRGO oxydé par le système H2O2/AcOH/H2SO4 ont été passés sur une colonne de solide adsorbant (1 g placé dans une pipette jaugée de 50 ml). Le solide a été préalablement séché à l' étuve sous vide à 100 °C pendant 16 h. Le débit de SRGO a été réglé à 1-2 ml/min. Cinq fractions de 20 ml ont été récoltées et pesées. La teneur en S de ces fractions a été mesurée par fluorescence X et les résultats obtenus ont été globalisés. 5. Les essais sans fractionnement (où l'on utilise la quantité de SRGO optimale pour la quantité de solide adsorbant disponible en utilisant le résultat des essais exploratoires) ont été réalisés selon le mode opératoire suivant : Du SRGO (en une quantité qui dépend de la nature du mélange d'hydrocarbures et de celle du solide adsorbant) oxydé par le système H2O2/AcOH/H SO (sauf dans le cas de l'exemple Cl 1) a été passé sur une colonne de solide adsorbant (1 g placé dans une pipette jaugée de 25 ou 50 ml) préalablement séché à l'étuve sous vide à 100 °C pendant 16 h. Le débit a été réglé à 1-2 ml/min. Une seule fraction par essai a été récoltée, pesée et sa teneur en S déterminée par fluorescence X (XRF) et/ou par combustion ickbold et dosage des sulfates par électrophorèse capillaire. 6. On a calculé :100 ml of SRGO oxidized by the H 2 O 2 / AcOH / H 2 SO 4 system were passed over a column of adsorbent solid (1 g placed in a 50 ml volumetric pipette). The solid was dried beforehand in a vacuum oven at 100 ° C for 16 h. The SRGO flow rate was set to 1-2 ml / min. Five 20 ml fractions were collected and weighed. The S content of these fractions was measured by X-ray fluorescence and the results obtained were globalized. 5. The tests without fractionation (where the optimal quantity of SRGO is used for the quantity of adsorbent solid available using the result of the exploratory tests) were carried out according to the following procedure: SRGO (in an amount which depends on the nature of the mixture of hydrocarbons and that of the adsorbent solid) oxidized by the H 2 O 2 / AcOH / H SO system (except in the case of example Cl 1) was passed over a column of adsorbent solid (1 g placed in a 25 or 50 ml graduated pipette) previously dried in the vacuum oven at 100 ° C for 16 h. The flow rate was set to 1-2 ml / min. A single fraction per test was collected, weighed and its S content determined by X-ray fluorescence (XRF) and / or by ickbold combustion and determination of the sulfates by capillary electrophoresis. 6. We calculated:
- la capacité du solide adsorbant, exprimée en mg de soufre adsorbés par g de solide adsorbant- the capacity of the adsorbent solid, expressed in mg of sulfur adsorbed per g of adsorbent solid
- le pourcentage de S éliminé (% S éliminé) défini comme étant le pourcentage de moles de S ayant été éliminées du mélange d'hydrocarbures par adsorption ; cette valeur est quelque peu différente de la variation de la teneur en S du mélange d'hydrocarbures (Différence [S]), valeur qui est influencée par l'adsorption d'hydrocarbures du pétrole sur le solide adsorbant.- the percentage of S eliminated (% S eliminated) defined as being the percentage of moles of S having been eliminated from the hydrocarbon mixture by adsorption; this value is somewhat different from the variation in the S content of the hydrocarbon mixture (Difference [S]), which value is influenced by the adsorption of petroleum hydrocarbons on the adsorbent solid.
- le rendement en mélange d'hydrocarbures après adsorption défini comme le rapport entre la masse du mélange d'hydrocarbures après adsorption et la masse du mélange d'hydrocarbures initialement mise en œuvre - le facteur d'efficacité K défini par Zannikos [Zannikos F.,- Lois E., Stournas S., Fuel Processing Technology, 1995, V 42, P 35-45] comme le rapport entre le % S éliminé et la fraction du mélange d'hydrocarbures perdue par adsorption non sélective; cette grandeur caractérise la sélectivité du processus d'adsorption- the yield of hydrocarbon mixture after adsorption defined as the ratio between the mass of the hydrocarbon mixture after adsorption and the mass of the hydrocarbon mixture initially used - the efficiency factor K defined by Zannikos [Zannikos F., - Lois E., Stournas S., Fuel Processing Technology, 1995, V 42, P 35-45] as the ratio between the% S eliminated and the fraction of the mixture of hydrocarbons lost by non-selective adsorption; this quantity characterizes the selectivity of the adsorption process
- la masse optimale d'hydrocarbures m (en g) pour 1 g de solide adsorbant si l'on désire une désulfuration complète.- the optimal mass of hydrocarbons m (in g) for 1 g of adsorbent solid if complete desulfurization is desired.
Les résultats des essais et des calculs effectués figurent dans les tableaux 2 et 3 ci-après : The results of the tests and calculations carried out are shown in Tables 2 and 3 below:
TABLEAU 2TABLE 2
ii
Figure imgf000014_0001
Figure imgf000014_0001
Numéros précédés de « C » : exemples non conformes à l'invention Numbers preceded by "C": examples not in accordance with the invention
TABLEAU 3TABLE 3
=" I= "I
Figure imgf000015_0001
Figure imgf000015_0001
Numéros précédés de « C » : exemples non conformes à l'invention.Numbers preceded by "C": examples not in accordance with the invention.
Cl 9 et C20 : essais réalisés avec des mélanges physiques de montmorillonite et de bauxite afin de résoudre les problèmes de percolation rencontrés avec la montmorillonite (la bauxite est un adsorbant inerte qui joue le rôle de diluant). Cl 9 and C20: tests carried out with physical mixtures of montmorillonite and bauxite in order to solve the percolation problems encountered with montmorillonite (bauxite is an inert adsorbent which plays the role of diluent).

Claims

RE V END I C A T I O N SRE V END I C A T I O N S
1 - Procédé de désulfuration d'un mélange d'hydrocarbures contenant des composés soufrés, comprenant une étape d'oxydation au moyen d'un agent oxydant afin d'oxyder les composés soufrés, suivie d'une étape d'élimination des composés soufrés oxydés par adsorption sur un solide adsorbant, caractérisé en ce que le solide adsorbant comprend au moins 60 % en poids de silice-alumine amorphe.1 - Process for desulfurization of a mixture of hydrocarbons containing sulfur compounds, comprising an oxidation step using an oxidizing agent in order to oxidize the sulfur compounds, followed by a step of removing the oxidized sulfur compounds by adsorption on an adsorbent solid, characterized in that the adsorbent solid comprises at least 60% by weight of amorphous silica-alumina.
2 - Procédé selon la revendication 1, caractérisé en ce que le mélange d'hydrocarbures avant oxydation contient des hydrocarbures aromatiques en une quantité inférieure ou égale à 80 % en poids.2 - Process according to claim 1, characterized in that the mixture of hydrocarbons before oxidation contains aromatic hydrocarbons in an amount less than or equal to 80% by weight.
3 - Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la teneur en soufre du mélange d'hydrocarbures avant adsorption est inférieure ou égale à 200 ppm3 - Process according to any one of the preceding claims, characterized in that the sulfur content of the mixture of hydrocarbons before adsorption is less than or equal to 200 ppm
4 - Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'agent oxydant contient du peroxyde d'hydrogène4 - Method according to any one of the preceding claims, characterized in that the oxidizing agent contains hydrogen peroxide
5 - Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la teneur en alumine de la silice-alumine est inférieure ou égale à 50 % en poids (par rapport au poids total du solide adsorbant sec).5 - Process according to any one of the preceding claims, characterized in that the alumina content of the silica-alumina is less than or equal to 50% by weight (relative to the total weight of the dry adsorbent solid).
6 - Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le solide adsorbant est exempt de tout solide de structure cristalline.6 - Process according to any one of the preceding claims, characterized in that the adsorbent solid is free from any solid of crystalline structure.
7 - Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que le solide adsorbant comprend au moins un solide de structure cristalline en une quantité inférieure ou égale à.40 % en poids (par rapport au poids total du solide adsorbant sec).7 - Process according to any one of claims 1 to 5, characterized in that the adsorbent solid comprises at least one solid of crystalline structure in an amount less than or equal to.40% by weight (relative to the total weight of the adsorbent solid dry).
8 - Procédé selon la revendication précédente, caractérisé en ce que le solide de structure cristalline est une zéolite X ou Y.8 - Method according to the preceding claim, characterized in that the solid of crystalline structure is an X or Y zeolite.
9 - Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le solide adsorbant présente une surface spécifique • supérieure ou égale à 400 m2/g et inférieure ou égale à 1000 m2/g. 10 - Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le solide adsorbant comprend des mésopores. 9 - Method according to any one of the preceding claims, characterized in that the adsorbent solid has a specific surface • greater than or equal to 400 m 2 / g and less than or equal to 1000 m 2 / g. 10 - Process according to any one of the preceding claims, characterized in that the adsorbent solid comprises mesopores.
PCT/EP2003/004709 2002-05-03 2003-05-01 Method of desulphurising a mixture of hydrocarbons WO2003093203A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/511,597 US20060000750A1 (en) 2002-05-03 2003-05-01 Method of desulphurising a mixture of hydrocarbons
EP03740127A EP1503974A1 (en) 2002-05-03 2003-05-01 Method of desulphurising a mixture of hydrocarbons
AU2003264849A AU2003264849A1 (en) 2002-05-03 2003-05-01 Method of desulphurising a mixture of hydrocarbons

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR02/05658 2002-05-03
FR0205658A FR2839307B1 (en) 2002-05-03 2002-05-03 PROCESS FOR DESULFURIZING A HYDROCARBON MIXTURE

Publications (1)

Publication Number Publication Date
WO2003093203A1 true WO2003093203A1 (en) 2003-11-13

Family

ID=29226228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/004709 WO2003093203A1 (en) 2002-05-03 2003-05-01 Method of desulphurising a mixture of hydrocarbons

Country Status (5)

Country Link
US (1) US20060000750A1 (en)
EP (1) EP1503974A1 (en)
AU (1) AU2003264849A1 (en)
FR (1) FR2839307B1 (en)
WO (1) WO2003093203A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7144499B2 (en) * 2003-11-26 2006-12-05 Lyondell Chemical Technology, L.P. Desulfurization process

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110021341A1 (en) * 2007-10-02 2011-01-27 The Regents Of The University Of Michigan Adsorbents for Organosulfur Compound Removal from Fluids
US8888994B2 (en) * 2010-04-22 2014-11-18 The United States Of America As Represented By The Administrator Of The U.S. Environmental Protection Agency Method for deep desulphurization of hydrocarbon fuels

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0565324A1 (en) * 1992-04-06 1993-10-13 Funakoshi, Izumi Method of recovering organic sulfur compound from liquid oil

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4098684A (en) * 1976-11-29 1978-07-04 Gulf Research & Development Company Purification of liquid n-paraffins containing carbonyl sulfide and other sulfur compounds
US4762537A (en) * 1985-11-07 1988-08-09 Aluminum Company Of America Adsorbent for HCl comprising alumina and acid-treated Y zeolite
US4992161A (en) * 1985-12-20 1991-02-12 Chevron Research Company Chromium/tin mixture as sulfur dioxide oxidation promoter for FCC units
JPH0515784A (en) * 1991-07-10 1993-01-26 Res Assoc Util Of Light Oil Regeneration of catalyst
US6610264B1 (en) * 1992-04-15 2003-08-26 Exxonmobil Oil Corporation Process and system for desulfurizing a gas stream
US5807475A (en) * 1996-11-18 1998-09-15 Uop Llc Process for removing sulfur compounds from hydrocarbon streams
WO2000071249A1 (en) * 1999-05-21 2000-11-30 Zeochem Llc Molecular sieve adsorbent-catalyst for sulfur compound contaminated gas and liquid streams and process for its use
US6531052B1 (en) * 2000-10-05 2003-03-11 Alcoa Inc. Regenerable adsorbent for removing sulfur species from hydrocarbon fluids
FR2821350B1 (en) * 2001-02-26 2004-12-10 Solvay PROCESS FOR DESULFURIZING A HYDROCARBON MIXTURE
US7149499B1 (en) * 2001-07-18 2006-12-12 Cisco Technology, Inc. System for dynamically tracking the location of network devices to enable emergency services
US20040007501A1 (en) * 2002-07-08 2004-01-15 Sughrue Edward L. Hydrocarbon desulfurization with pre-oxidation of organosulfur compounds
US7270742B2 (en) * 2003-03-13 2007-09-18 Lyondell Chemical Technology, L.P. Organosulfur oxidation process
US7144499B2 (en) * 2003-11-26 2006-12-05 Lyondell Chemical Technology, L.P. Desulfurization process
US7314545B2 (en) * 2004-01-09 2008-01-01 Lyondell Chemical Technology, L.P. Desulfurization process
US7186328B1 (en) * 2004-09-29 2007-03-06 Uop Llc Process for the regeneration of an adsorbent bed containing sulfur oxidated compounds
US7297253B1 (en) * 2005-07-19 2007-11-20 Uop Llc Process for producing hydroperoxides

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0565324A1 (en) * 1992-04-06 1993-10-13 Funakoshi, Izumi Method of recovering organic sulfur compound from liquid oil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7144499B2 (en) * 2003-11-26 2006-12-05 Lyondell Chemical Technology, L.P. Desulfurization process

Also Published As

Publication number Publication date
US20060000750A1 (en) 2006-01-05
FR2839307A1 (en) 2003-11-07
FR2839307B1 (en) 2004-07-09
AU2003264849A1 (en) 2003-11-17
EP1503974A1 (en) 2005-02-09

Similar Documents

Publication Publication Date Title
EP1346009B1 (en) Method for desulphurising hydrocarbons containing thiophene derivatives
CA1326658C (en) Preparation and regeneration process of a solid mercury collecting mass containing copper
US20060108263A1 (en) Oxidative desulfurization and denitrogenation of petroleum oils
FR2930262A1 (en) PROCESS FOR PURIFYING SULFURED COMBUSTIBLE OIL
WO2000068342A1 (en) Method for obtaining oil products with low sulphur content by desulphurization of extracts
FR2844518A1 (en) Desulfurization of hydrocarbon fractions, e.g. kerosene or oil, involves treatment with oxidizing agent in presence of Group IVB, VB or VIB metal oxide catalyst
FR2889699A1 (en) PROCESS FOR THE SEPARATION OF METAXYLENE FROM AN AROMATIC HYDROCARBON LOAD BY LIQUID ADSORPTION
FR2929620A1 (en) PROCESS FOR PURIFYING SULFURED COMBUSTIBLE OIL
EP1377652A1 (en) Method for desulphurizing a hydrocarbon mixture
CA2442510C (en) Method for eliminating oxygenated organic molecules that are present in an organic effluent using alumina agglomerates
EP2556133B1 (en) Process for purifying aromatic extracts containing aromatic polycyclic compounds
EP1503974A1 (en) Method of desulphurising a mixture of hydrocarbons
FR2688223A1 (en) New process for sweetening petroleum cuts without regular addition of alkaline aqueous solution, employing a basic solid catalyst
EP2586851B1 (en) Method for producing middle distillates in which the feedstock from the Fischer-Tropsch process and the hydrogen stream have limited oxygen levels
US8888994B2 (en) Method for deep desulphurization of hydrocarbon fuels
JP3723841B2 (en) Oil reforming method
EP0458675B1 (en) Regeneration process of a used catalyst by an aqueous hydrogen peroxide solution stabilized by an organic compound
EP0638628B1 (en) Process for sweetening of petroleum fractions without regular addition of an aqueous alkaline solution, using a solid basic catalyst
KR100992606B1 (en) Separation method of sulfone compounds from light cycle oil by solvent extraction
FR2619822A1 (en) PROCESS FOR CONTINUOUS SOFTENING OF LIQUID PHASE OIL CUTTERS
WO2010128216A1 (en) Method for completely removing the mercury in a liquid hydrocarbon feedstock in one step using a hybrid organic-inorganic material
WO2003025097A1 (en) Method of desulphurising and/or denitrogenating a hydrocarbon mixture
FR3133622A1 (en) Method of recycling metals from porous materials including them
FR2635111A1 (en) Process for continuous sweetening of petroleum cuts
JPH10168466A (en) Gas oil composition

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003740127

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003740127

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006000750

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10511597

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10511597

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP