EP0638628B1 - Process for sweetening of petroleum fractions without regular addition of an aqueous alkaline solution, using a solid basic catalyst - Google Patents

Process for sweetening of petroleum fractions without regular addition of an aqueous alkaline solution, using a solid basic catalyst Download PDF

Info

Publication number
EP0638628B1
EP0638628B1 EP19930402014 EP93402014A EP0638628B1 EP 0638628 B1 EP0638628 B1 EP 0638628B1 EP 19930402014 EP19930402014 EP 19930402014 EP 93402014 A EP93402014 A EP 93402014A EP 0638628 B1 EP0638628 B1 EP 0638628B1
Authority
EP
European Patent Office
Prior art keywords
weight
process according
catalyst
aluminosilicate
negative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19930402014
Other languages
German (de)
French (fr)
Other versions
EP0638628A1 (en
Inventor
Christian Marcilly
Philippe Courty
Serge Leporq
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Priority to DE1993622636 priority Critical patent/DE69322636T2/en
Priority to EP19930402014 priority patent/EP0638628B1/en
Publication of EP0638628A1 publication Critical patent/EP0638628A1/en
Application granted granted Critical
Publication of EP0638628B1 publication Critical patent/EP0638628B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G27/00Refining of hydrocarbon oils in the absence of hydrogen, by oxidation
    • C10G27/04Refining of hydrocarbon oils in the absence of hydrogen, by oxidation with oxygen or compounds generating oxygen
    • C10G27/10Refining of hydrocarbon oils in the absence of hydrogen, by oxidation with oxygen or compounds generating oxygen in the presence of metal-containing organic complexes, e.g. chelates, or cationic ion-exchange resins

Definitions

  • the present invention relates to softening in a fixed bed of cuts oil by catalytic oxidation of the mercaptans they contain disulfides.
  • oxidability of mercaptans and therefore their ability to transform into disulfides depend on their chemical structure. Generally, the higher the number of carbon atoms in the aliphatic chain of mercaptan, the higher its responsiveness is great.
  • the metal chelate used as catalyst is generally a metal phthalocyanine, such as cobalt phthalocyanine for example.
  • the reaction generally takes place at a pressure between 5 10 5 and 30.10 5 Pascals, at a temperature between 20 and 70 ° C. It is well known to those skilled in the art that when the temperature is raised above about 70 ° C., the stability of the catalyst based on metal chelate decreases rapidly, causing a degradation in performance with respect to the softening reaction.
  • the mineral part of the support can be chosen from a set of constituents including aluminas, clays, aluminosilicates and silicates.
  • alkali metal aluminosilicates more particularly sodium and / or potassium, characterized by an Si / Al atomic ratio of their structure less than or equal to 5 (that is to say a SiO 2 / Al 2 O 3 molar ratio less than or equal to 10) are clearly more efficient than the other mineral compounds mentioned above.
  • These aluminosilicates closely associated with activated carbon and a metal chelate exhibit optimal catalytic performance in softening when the hydration rate of the catalyst is between 0.1 and 40% and preferably between 1 and 25% by weight thereof. this.
  • these alkaline aluminosilicates have the advantage of very low solubility in aqueous medium, which allows their prolonged use in the hydrated state to treat petroleum fractions to which a little water is regularly added, or optionally, an alkaline aqueous solution. This is not the case for mineral compounds such as alkali silicates or alkaline aluminates.
  • the softening process in a fixed bed of petroleum fractions containing mercaptans according to the invention can be defined, in general, as comprising the passage, under oxidation conditions, of the petroleum fraction to be treated in contact with a porous catalyst comprising from 10 to 98%, preferably from 50 to 95% by weight, of at least one inorganic solid phase consisting of an alkaline aluminosilicate having an Si / Al atomic ratio of less than or equal to 5, preferably less or equal to 3, from 1 to 60% by weight of activated carbon, from 0.02 to 2% by weight of at least one metal chelate and from 0 to 20% by weight of at least one mineral or organic binder.
  • a porous catalyst comprising from 10 to 98%, preferably from 50 to 95% by weight, of at least one inorganic solid phase consisting of an alkaline aluminosilicate having an Si / Al atomic ratio of less than or equal to 5, preferably less or equal to 3, from 1 to 60% by weight of activated carbon, from 0.02 to
  • This porous catalyst has a basicity determined according to standard ASTM 2896 greater than 20 milli-equivalent of potash per gram and a total BET surface area greater than 10 m 2 g -1 , and contains within its porosity a permanent aqueous phase representing from 0.1 to 40%, preferably from 1 to 25%, by weight of the dry catalyst.
  • said alkaline aluminosilicate is obtained by reaction in aqueous medium of at least one clay (kaolinite, halloysite, montmorillonite, etc.) with at least one compound (hydroxide, carbonate, acetate, nitrate, etc.) of at least an alkali metal, in particular sodium and / or potassium, this compound being preferably hydroxide, followed by heat treatment at a temperature between 90 and 600 ° C, preferably between 120 and 350 ° C.
  • the clay can also be heat treated and ground before being put in contact with alkaline solution.
  • kaolinite and all of its products thermal transformation metalakaolin, reverse spinel phase, mullite
  • thermal transformation metalakaolin, reverse spinel phase, mullite
  • kaolinite and / or metakaolin are the preferred basic chemical reagents.
  • any chelate can be deposited on the support.
  • phthalocyanines used for this purpose in the prior art, in particular phthalocyanines, porphyrins or metallic corrines.
  • cobalt phthalocyanine and vanadium phthalocyanine we particularly prefer the cobalt phthalocyanine and vanadium phthalocyanine.
  • metallic phthalocyanine in the form of a derivative of the latter, with a particular preference for its commercially available sulfonates, such as for example cobalt phthalocyanine mono- or disulfonate and mixtures of these.
  • the temperature of the load is fixed at a sufficient value, below 80 ° C, to dissolve the resulting reaction water of the transformation of mercaptans into disulfides.
  • Charge temperature is thus chosen so as to maintain the water content of the support between 0.1 and 40% by weight of the support and, preferably, between 1 and 25% by weight thereof.
  • This range of predetermined values of water contents of the support will depend, of course, on the very nature of the catalytic support used during the softening reaction. Indeed, the applicant has found, in accordance with the patent FR-2,651,791, that if many catalytic supports are likely to be used without aqueous soda (or without base), their activity will only manifest when their water content (also called the hydration level of the support) is maintained within a relatively narrow range of values, variable according to the supports, but apparently linked to the content of the silicate support and to the structure of its pores.
  • a cationic surfactant such as a tetraalkylammonium hydroxide N (R) 4OH
  • R tetraalkylammonium hydroxide N
  • surfactants are added to the filler as aqueous solution containing for example between 0.01 and 50% by weight and preferably between 0.1 and 10% by weight of surfactant.
  • the addition to the load advantageously replaces the addition of water described above.
  • This figure represents a diagram of continuous implementation of the process according to the invention.
  • the supply of the reactor 1 in section oil to be softened is carried out by line 2, in which the oxidizing agent, air for example, is introduced directly by line 3.
  • the petroleum cut processed is discharged through line 4, which feeds a filter system 5, intended to eliminate traces of water and nascent sulfur often produced during the oxidation of mercaptans and not retained by the support.
  • the processed charge is then transferred via line 6 to a storage enclosure 7.
  • measurement probes 8 and 9 placed respectively upstream and downstream of reactor 1, make it possible to determine in permanently the water and mercaptans contents at the entry and at the exit of this one. It is thus possible to continuously check whether the water content of the catalytic support increases or decreases. Corrective action can then be carried out by modifying the amount of heat supplied to the load by a heat exchanger 10 placed on line 2 upstream of reactor 1
  • the mixture is mixed for a few minutes at room temperature and then brought to 60 ° C.
  • the liquid paste obtained is then kneaded for 30 minutes at this temperature of 60 ° C.
  • the activated carbon thus moistened is added to the liquid kaolin paste alkalized before and the whole is kneaded for about 30 minutes in a paddle mixer then is slightly heated (around 70 to 80 ° C approximately) to bring it to the state of plastic paste allowing shaping by extrusion.
  • the extrudates obtained 1.6 mm in diameter and cut to a length of between 3 and 10 mm, are dried at 200 ° C for 12 hours.
  • the dried extrudates are very hard and very resistant to crushing.
  • a structural analysis by X-ray diffraction reveals that the structure of the initial kaolinite is completely transformed at the temperature of 200 ° C. into kaliophilite of composition K 2 O, Al 2 O 3 , 2SiO 2 (FIG. 2).
  • the solid thus extruded is washed 3 times successively in 2 liters of water. permuted, at room temperature, for 30 minutes. It is then immersed in 2 liters of a solution containing 1.0 g per liter of sulfonated cobalt phthalocyanine from type marketed by the French company PROCATALYSE under the name "LCPS". The whole is stirred at room temperature for 30 hours; then the solid is filtered and washed once in 1 liter of distilled water, at room temperature.
  • This catalyst contains approximately 20% by weight of carbon, 18.5% by weight of potassium, 32.5% by weight of silica, and 4.9 g of LCPS per kg of support.
  • This catalyst is then dried slowly at 50 ° C. in an oven until reach a residual water content of 6% by weight. This catalyst is called SX 1.
  • a liquid paste is prepared, as described in Example 1, consisting of 187 g of dry kaolin and 135 cm 3 of a solution containing 90 g of KOH potassium hydroxide. This dough is kneaded at 60 ° C for 15 minutes.
  • the alkalized kaolin paste is then mixed with the combination of activated carbon and amorphous potassium silicoaluminate.
  • the whole is kneaded for 15 minutes, then is slightly heated to bring it to a paste state plastic allowing easy extrusion.
  • the catalyst resulting from these treatments contains approximately: 20% by weight of carbon, 14.5% by weight of potassium, and 4.8 g of LPCS per kg of support, Its surface is 131 m2 g-1 and its basicity greater than 60 meq. KOH per g.
  • This catalyst is then dried slowly at 50 ° C. in an oven until reach a residual water content of 8% by weight.
  • This catalyst is called SX2.
  • the mixture is mixed for a few minutes at room temperature and then brought to 60 ° C.
  • the liquid paste obtained is then kneaded for 30 minutes at this temperature of 60 ° C.
  • the activated carbon thus moistened is added to the liquid kaolin paste alkalized before and the whole is kneaded for about 30 minutes in a paddle mixer then is slightly heated (around 70 to 80 ° C approximately) to bring it to the state of plastic paste allowing shaping by extrusion.
  • the extrudates obtained 1.6 mm in diameter and cut to a length of between 3 and 10 mm, are dried at 200 ° C for 12 hours.
  • the dried extrudates are very hard and very resistant to crushing.
  • a structural analysis by X-ray diffraction reveals that the structure of the initial kaolinite is completely transformed at a temperature of 200 ° C. into a sodalite type compound of composition Na 2 O, Al 2 O 3 , 2SiO 2 (FIG. 3).
  • the solid thus extruded is washed 3 times successively in 2 liters of water. permuted, at room temperature, for 30 minutes. It is then immersed in 2 liters of a solution containing 1.0 g per liter of sulfonated cobalt phthalocyanine from type marketed by the French company PROCATALYSE under the name "LCPS". The whole is stirred at room temperature for 30 hours; then the solid is filtered and washed once in 1 liter of distilled water, at room temperature.
  • This catalyst contains approximately 20% by weight of carbon, 9% by weight of sodium 32.5% by weight of silica ,. and 4.9 g of LCPS per kg of support Its surface is 125 m 2 g -1 and its basicity greater than 100 meq. KOH per g.
  • This catalyst is then dried slowly at 50 ° C. in an oven until reach a residual water content of less than 7% by weight.
  • This catalyst is called SX3.
  • the humidified activated carbon is added to the acidified alumina and is kneaded for 30 minutes until a homogeneous paste is obtained. Then dry the product around 70-80 ° C for a few minutes while kneading until obtained thick extrudable paste. After extrusion, the product is dried at 200 ° C under air for 12 hours then calcined at 500 ° C under nitrogen for 2 hours.
  • the catalyst resulting from these treatments contains approximately: 20% by weight of carbon, and 3.8 g of LCPS per kg of support. Its surface is 282 m 2 g -1 and its basicity is 10 meq. KOH per g.
  • the humidified and alkalized activated carbon is added to the acidified alumina and the mixture is kneaded for 30 minutes to obtain a homogeneous paste.
  • 40 cm 3 of a solution containing 10 g of KOH are then added slowly, while kneading. It is kneaded again for 30 minutes and then dried at 70-80 ° C until a thick extrudable paste is obtained. After extrusion, the solid is dried at 200 ° C under nitrogen for 2 hours.
  • the catalyst resulting from these treatments contains approximately: 20% by weight of carbon 2.6% by weight of potassium and 5.1 g of LCPS per kg of support. Its surface is 244 m 2 g -1 and its basicity is 16 meq. KOH per g.
  • This catalyst is then dried slowly at 50 ° C. in an oven until reach a residual water content of 6% by weight. It is called in the following SX5.
  • the charge used for the softening test is a kerosene obtained from an Egyptian light crude.
  • the characteristics of this kerosene are given in the following Table 1: CHARACTERISTICS OF KEROSENE TO SOFTEN R-SH (ppm) 167 TAN (mgKOH / g) 0.050 COLOR SAYBOLT 25 TOTAL SULFUR% wt 0.285 INITIAL POINT ° C 151 151 END POINT ° C 243 VOLUME MASS g / l 0.8 WATER CONTENT (ppm) 150 PHENOLS (ppm) 610 THIOPHENOLS (ppm) ⁇ 10
  • Table 4 shows the performance of the SX3 catalyst when, all other conditions remaining identical, the addition of water after 2000 h of test is replaced by the addition of an aqueous solution containing 2% by weight of tetrabutyl hydroxide ammonium N (Bu) 4 OH.
  • the catalysts SX1, and SX3 according to the present invention have properties for softening the kerosene feed used here significantly higher than that of the SX4 catalysts and SX5.
  • their activity in conversion of mercaptans to disulfides and the stability of their performance over time are significantly improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)

Description

La présente invention concerne l'adoucissement en lit fixe de coupes pétrolières par oxydation catalytique des mercaptans qu'elles contiennent en disulfures.The present invention relates to softening in a fixed bed of cuts oil by catalytic oxidation of the mercaptans they contain disulfides.

Dans son principe, une telle oxydation peut être réalisée simplement en mélangeant la coupe pétrolière à traiter et une solution aqueuse d'une base alcaline, telle la soude, dans laquelle on ajoute un catalyseur à base d'un chélate métallique, en présence d'un agent oxydant. La coupe pétrolière et la solution aqueuse de la base alcaline ne sont pas miscibles. C'est à l'interface de ces deux phases liquides que se produisent les étapes successives de la transformation des mercaptans en disulfures, à savoir :

  • la transformation des mercaptans en mercaptides selon la réaction : RSH + B+OH- RS-B+ + H2O où B+ est le cation de la base considérée (Na+ ou K+ par exemple),
  • l'oxydation des mercaptides et leur transformation en disulfures selon la réaction : 2 R-S- B+ + H2O + 1/2 O2 R-S-S-R + 2 B+ OH-·
In principle, such an oxidation can be carried out simply by mixing the petroleum fraction to be treated and an aqueous solution of an alkaline base, such as sodium hydroxide, to which a catalyst based on a metal chelate is added, in the presence of an oxidizing agent. The petroleum fraction and the aqueous solution of the alkaline base are immiscible. It is at the interface of these two liquid phases that the successive stages of the transformation of mercaptans into disulfides take place, namely:
  • the transformation of mercaptans into mercaptides according to the reaction: RSH + B + OH - RS - B + + H 2 O where B + is the cation of the base considered (Na + or K + for example),
  • the oxidation of mercaptides and their transformation into disulfides according to the reaction: 2 RS - B + + H 2 O + 1/2 O 2 RSSR + 2 B + OH - ·

L'oxydabilité des mercaptans et donc leur aptitude à se transformer en disulfures dépendent de leur structure chimique. En règle générale, plus le nombre d'atomes de carbone de la chaíne aliphatique du mercaptan est élevé, plus sa réactivité est grande.The oxidability of mercaptans and therefore their ability to transform into disulfides depend on their chemical structure. Generally, the higher the number of carbon atoms in the aliphatic chain of mercaptan, the higher its responsiveness is great.

Dans le cas de coupes pétrolières contenant des mercaptans difficilement oxydables et surtout si les teneurs de ces derniers sont importantes (certaines coupes essences et certaines coupes kérosènes par exemple), il est préférable de traiter ces coupes pétrolières à l'aide d'un catalyseur supporté, en présence d'une base alcaline et d'un agent oxydant. Un tel procédé est souvent désigné par l'appellation "procédé d'adoucissement en lit fixe". La base alcaline habituellement utilisée est le plus souvent la soude en solution aqueuse ; elle est introduite dans le milieu réactionnel soit en continu, soit par intermittence, pour maintenir les conditions d'alcalinité et la phase aqueuse nécessaires à la réaction d'oxydation. L'agent oxydant, généralement de l'air, est mélangé à la coupe pétrolière à adoucir. Le chélate métallique utilisé comme catalyseur est généralement une phtalocyanine métallique, telle la phtalocyanine de cobalt par exemple. La réaction a lieu généralement à une pression comprise entre 5 105 et 30.105 Pascals, à une température comprise entre 20 et 70 °C. Il est bien connu de l'homme de l'art que lorsque la température est portée au-delà de 70 °C environ, la stabilité du catalyseur à base de chélate métallique diminue rapidement provoquant une dégradation des performances vis-à-vis de la réaction d'adoucissement.In the case of petroleum fractions containing mercaptans which are difficult to oxidize and especially if the contents of the latter are important (certain petroleum fractions and certain kerosene fractions for example), it is preferable to treat these petroleum fractions using a supported catalyst , in the presence of an alkaline base and an oxidizing agent. Such a process is often referred to as the "fixed bed softening process". The alkaline base usually used is most often sodium hydroxide in aqueous solution; it is introduced into the reaction medium either continuously or intermittently, to maintain the alkalinity conditions and the aqueous phase necessary for the oxidation reaction. The oxidizing agent, generally air, is mixed with the petroleum cut to be softened. The metal chelate used as catalyst is generally a metal phthalocyanine, such as cobalt phthalocyanine for example. The reaction generally takes place at a pressure between 5 10 5 and 30.10 5 Pascals, at a temperature between 20 and 70 ° C. It is well known to those skilled in the art that when the temperature is raised above about 70 ° C., the stability of the catalyst based on metal chelate decreases rapidly, causing a degradation in performance with respect to the softening reaction.

Par ailleurs, il convient de renouveler la solution sodique qui s'épuise, d'une part, en raison des impuretés provenant de la charge, qui se dissolvent dans cette solution et la rendent impropre au recyclage et, d'autre part, en raison de la variation de la concentration de la base, qui diminue du fait de l'apport d'eau par la charge et de la transformation des mercaptans en disulfures.In addition, it is advisable to renew the sodium solution which runs out, of a hand, due to the impurities from the filler, which dissolve in this solution and make it unsuitable for recycling and, on the other hand, due to the variation in the base concentration, which decreases due to the supply of water by the charge and transformation of mercaptans into disulfides.

Pour remédier à cet inconvénient, il a été proposé (notamment dans les brevets FR-2.343.043, US-4.498.978 et US-4.502.949) de supprimer l'utilisation de soude (ou de base) aqueuse. Toutefois, pour que la réaction puisse se dérouler normalement, les sites actifs du support doivent alors se trouver en contact avec les mercaptans présents dans la charge pétrolière, ce qui suppose un milieu homogène et donc l'absence d'une solution aqueuse. Or, il apparaít que les molécules d'eau déjà présentes dans la charge et surtout celles produites au cours de la réaction favorisent l'apparition à la surface du catalyseur d'une telle solution aqueuse, dont le maintien au-delà d'un certain seuil conduit à un abaissement de l'activité catalytique. Il a donc été proposé soit d'intégrer dans le support un dessicant solide (brevet US-4.498.978), soit de résorber périodiquement cette phase aqueuse par séchage du catalyseur à l'aide d'un solvant polaire miscible à l'eau tel qu'un alcool (brevet FR-2.640.636). Toutefois, ces solutions, si elles s'avèrent efficaces, conduisent nécessairement à des coûts d'exploitation relativement élevés.To remedy this drawback, it has been proposed (in particular in patents FR-2,343,043, US-4,498,978 and US-4,502,949) to delete the use of aqueous soda (or base). However, in order for the reaction to proceed unfold normally, the active support sites must then be in contact with the mercaptans present in the petroleum charge, which implies a homogeneous medium and therefore the absence of an aqueous solution. However, it appears that the water molecules already present in the charge and especially those produced during the reaction favor the appearance on the surface of the catalyst of such a solution aqueous, the maintenance of which beyond a certain threshold leads to a lowering of catalytic activity. It has therefore been proposed either to integrate into the support a solid desiccant (US patent 4,498,978), or to periodically absorb this aqueous phase by drying the catalyst using a water-miscible polar solvent such as an alcohol (patent FR-2,640,636). However, these solutions, if they prove efficient, necessarily lead to relatively high operating costs.

L'art antérieur mentionne un grand nombre de supports utilisables pour réaliser un catalyseur susceptible de constituer un lit fixe, parmi lesquels :

  • des charbons actifs obtenus par pyrolyse de bois, de tourbe, de lignite, d'os ou de diverses autres matières carbonées ;
  • des argiles et silicates naturels, comme la terre de diatomée, la terre à foulon, le kieselguhr, l'attapulgite, le feldspath, la montmorillonite, l'halloysite et le kaolin, et
  • des oxydes minéraux réfractaires naturels ou de synthèse, comme la silice, l'oxyde de zirconium, de thorium, de bore ou leurs mélanges.
The prior art mentions a large number of supports which can be used to produce a catalyst capable of constituting a fixed bed, among which:
  • activated carbon obtained by pyrolysis of wood, peat, lignite, bone or various other carbonaceous materials;
  • natural clays and silicates, such as diatomaceous earth, fuller's earth, kieselguhr, attapulgite, feldspar, montmorillonite, halloysite and kaolin, and
  • natural or synthetic refractory mineral oxides, such as silica, zirconium oxide, thorium oxide, boron oxide or mixtures thereof.

Des améliorations importantes permettant de remédier partiellement ou totalement aux inconvénients précédemment cités ont été proposées dans les divers brevets suivants : EP-0.376.774, EP-0.252.853 et FR-2.651.791. Ces brevets mentionnent l'utilisation de catalyseurs solides constitués d'un support contenant :Significant improvements to partially or partially remedy totally to the aforementioned drawbacks have been proposed in the various following patents: EP-0,376,774, EP-0,252,853 and FR-2,651,791. These patents mention the use of solid catalysts consisting of a support containing:

60 % à 90 % en poids d'une matrice minérale, 5 à 35 % en poids de carbone pyrolysé ou de charbon actif et 0,05 à 10 % en poids de chélate métallique. Ces catalyseurs peuvent travailler avec une teneur en eau comprise entre 0,1 et 50 % en poids du support et ne nécessitent pas l'adjonction en continu d'une solution aqueuse alcaline. La partie minérale du support peut être choisie parmi un ensemble de constituants incluant les alumines, les argiles, les aluminosilicates et les silicates.60% to 90% by weight of a mineral matrix, 5 to 35% by weight of carbon pyrolyzed or activated carbon and 0.05 to 10% by weight of metal chelate. These catalysts can work with a water content between 0.1 and 50% in weight of the support and do not require the continuous addition of a solution alkaline aqueous. The mineral part of the support can be chosen from a set of constituents including aluminas, clays, aluminosilicates and silicates.

Ces derniers catalyseurs, quoique représentant un progrès certain par rapport aux catalyseurs de l'art antérieur, ne sont réellement performants que sur des charges relativement pauvres en mercaptans (< 400 ppm environ). Ils s'avèrent inopérants sur des charges réputées difficiles, montrant notamment une chute rapide (en quelques jours ou quelques dizaines de jours) de leur activité. Dans ces cas défavorables, il peut être alors nécessaire d'ajouter en continu des petites quantités de solution aqueuse alcaline, ce qui pénalise le procédé utilisant ces catalyseurs et conduit à des rejets liquides (solution sodique contenant des impuretés notamment) qui posent les mêmes problèmes que ceux déjà évoqués précédemment.These latter catalysts, although representing a certain progress by compared to the catalysts of the prior art, are only really effective on loads relatively poor in mercaptans (<400 ppm approximately). They prove ineffective on loads deemed to be difficult, showing in particular a rapid fall (in a few days or a few tens of days) of their activity. In these unfavorable cases, it may then be necessary to continuously add small quantities of alkaline aqueous solution, which penalizes the process using these catalysts and leads to liquid releases (sodium solution containing impurities in particular) which pose the same problems as those already mentioned previously.

On a découvert dans la présente invention que cet inconvénient pouvait être évité, voire supprimé, en utilisant un catalyseur dans lequel la matrice basique est obtenue par incorporation d'un ion alcalin (Na+, K+) dans une structure oxyde mixte constituée essentiellement d'oxydes d'aluminium et de silicium combinés.It has been discovered in the present invention that this drawback could be avoided, or even eliminated, by using a catalyst in which the basic matrix is obtained by incorporation of an alkaline ion (Na + , K + ) in a mixed oxide structure consisting essentially of '' aluminum and silicon oxides combined.

Lesdits aluminosilicates de métaux alcalins, plus particulièrement de sodium et/ou de potassium, caractérisés par un rapport atomique Si/Al de leur structure inférieur ou égal à 5 (c'est-à-dire un rapport molaire SiO2/Al2O3 inférieur ou égal à 10) sont nettement plus performants que les autres composés minéraux cités précédemment. Ces aluminosilicates associés intimement à du charbon actif et à un chélate métallique présentent des performances catalytiques optimales en adoucissement lorsque le taux d'hydratation du catalyseur est compris entre 0,1 et 40 % et de préférence entre 1 et 25 % en poids de celui-ci.Said alkali metal aluminosilicates, more particularly sodium and / or potassium, characterized by an Si / Al atomic ratio of their structure less than or equal to 5 (that is to say a SiO 2 / Al 2 O 3 molar ratio less than or equal to 10) are clearly more efficient than the other mineral compounds mentioned above. These aluminosilicates closely associated with activated carbon and a metal chelate exhibit optimal catalytic performance in softening when the hydration rate of the catalyst is between 0.1 and 40% and preferably between 1 and 25% by weight thereof. this.

Outre leurs performances catalytiques supérieures, ces aluminosilicates alcalins présentent l'avantage d'une très faible solubilité en milieu aqueux, ce qui permet leur utilisation prolongée à l'état hydraté pour traiter des coupes pétrolières auxquelles on ajoute régulièrement un peu d'eau ou, éventuellement, de solution aqueuse alcaline.
Ce n'est pas le cas des composés minéraux du type silicates alcalins ou aluminates alcalins.
In addition to their superior catalytic performance, these alkaline aluminosilicates have the advantage of very low solubility in aqueous medium, which allows their prolonged use in the hydrated state to treat petroleum fractions to which a little water is regularly added, or optionally, an alkaline aqueous solution.
This is not the case for mineral compounds such as alkali silicates or alkaline aluminates.

Ainsi, le procédé d'adoucissement en lit fixe de coupes pétrolières contenant des mercaptans selon l'invention peut être défini, de manière générale, comme comprenant le passage, dans des conditions d'oxydation, de la coupe pétrolière à traiter au contact d'un catalyseur poreux comprenant de 10 à 98 %, de préférence de 50 à 95 % en poids, d'au moins une phase solide minérale constituée d'un aluminosilicate alcalin ayant un rapport atomique Si/Al inférieur ou égal à 5, de préférence inférieur ou égal à 3, de 1 à 60 % en poids de charbon actif, de 0,02 à 2 % en poids d'au moins un chélate métallique et de 0 à 20 % en poids d'au moins un liant minéral ou organique. Ce catalyseur poreux présente une basicité déterminée selon la norme ASTM 2896 supérieure à 20 milli-équivalents de potasse par gramme et une surface totale BET supérieure à 10 m2g-1, et contient à l'intérieur de sa porosité une phase aqueuse permanente représentant de 0,1 à 40 %, de préférence de 1 à 25 %, en poids du catalyseur sec. Thus, the softening process in a fixed bed of petroleum fractions containing mercaptans according to the invention can be defined, in general, as comprising the passage, under oxidation conditions, of the petroleum fraction to be treated in contact with a porous catalyst comprising from 10 to 98%, preferably from 50 to 95% by weight, of at least one inorganic solid phase consisting of an alkaline aluminosilicate having an Si / Al atomic ratio of less than or equal to 5, preferably less or equal to 3, from 1 to 60% by weight of activated carbon, from 0.02 to 2% by weight of at least one metal chelate and from 0 to 20% by weight of at least one mineral or organic binder. This porous catalyst has a basicity determined according to standard ASTM 2896 greater than 20 milli-equivalent of potash per gram and a total BET surface area greater than 10 m 2 g -1 , and contains within its porosity a permanent aqueous phase representing from 0.1 to 40%, preferably from 1 to 25%, by weight of the dry catalyst.

Parmi les phases minérales basiques du type aluminosilicates, principalement de sodium et/ou de potassium qui conviennent particulièrement bien, on peut citer un grand nombre de phases (dont la plupart sont décrites dans l'ouvrage de R.M. BARRER : Zeolites and Clay Minerals as Sorbents and Molecular Sieves, Acad. Press., 1978) :

  • lorsque l'alcalin est majoritairement le potassium :
    • la kaliophilite : K2O, Al2O3, a SiO2 (1,8 < a < 2,4) ;
    • le feldspathoïde appelé leucite :
      K2O, Al2O3, a SiO2 (3,5 < a < 4,5) ;
    • les zéolithes du type :
      • phillipsite : (K, Na)O, Al2O3, a SiO2 (3,0 < a < 5,0) ;
      • érionite ou offrétite : (K, Na, Mg, Ca)O, Al2O3, a SiO2 (4 < a < 8) ;
      • mazzite ou zéolithe Oméga (W) : (K, Na, Mg, Ca) O, Al2O3, a SiO2 (4 < a < 8) ;
      • zéolithe L : (K, Na)O, Al2O3, a SiO2 (5 < a < 8).
  • lorsque l'alcalin est le sodium :
    • les aluminosilicates de sodium amorphes dont l'organisation cristalline ne peut être détectée par diffraction X et dont le rapport atomique Si/Al est inférieur ou égal à 5, et de préférence inférieur ou égal à 3 ;
    • la sodalite : Na2O, Al2O3, a SiO2 (1,8 < a < 2,4) ;
      En ce qui concerne la sodalité, plusieurs variétés différentes connues contenant des ions ou sels alcalins divers piégés dans la structure peuvent être préparées. Ces variétés conviennent pour la présente invention. A titre d'exemples d'ions ou molécules pouvant être introduites dans la structure au cours de la synthèse, on peut citer :
      CI-, Br-, ClO - / 3, BrO3-, IO - / 3, NO - / 3, OH-, CO 2- / 3, SO 2- / 3, SO 2- / 4, CrO 2- / 4, MoO 2- / 4, PO 3- / 4, etc, sous forme de sels alcalins notamment de sodium. Les variétés particulièrement préférées dans la présente invention sont celles contenant l'ion OH- sous forme NaOH et l'ion S2- sous forme Na2S.
    • la néphéline : Na2O, Al2O3, aSiO2(1,8 < a < 2,4);
    • les tectosilicates du type:
      • sodalite,
      • analcime,
      • natrolite,
      • mésolite,
      • thomsonite,
      • clinoptilolite,
      • stilbite,
      • zéolithe Na-P1,
      • dachiardite,
      • chabasie,
      • gmélinite,
      • cancrinite,
      • faujasite comprenant les zéolithes synthétiques X et Y,
      • zéolithe A.
Among the basic mineral phases of the aluminosilicate type, mainly sodium and / or potassium which are particularly suitable, a large number of phases can be mentioned (most of which are described in the work by RM BARRER: Zeolites and Clay Minerals as Sorbents and Molecular Sieves, Acad. Press., 1978):
  • when the alkali is mainly potassium:
    • kaliophilite: K 2 O, Al 2 O 3 , a SiO 2 (1.8 <a <2.4);
    • the feldspathoid called leucite:
      K 2 O, Al 2 O 3 , a SiO 2 (3.5 <a <4.5);
    • zeolites of the type:
      • phillipsite: (K, Na) O, Al 2 O 3 , a SiO 2 (3.0 <a <5.0);
      • erionite or offretite: (K, Na, Mg, Ca) O, Al 2 O 3 , a SiO 2 (4 <a <8);
      • Omega mazzite or zeolite (W): (K, Na, Mg, Ca) O, Al 2 O 3 , a SiO 2 (4 <a <8);
      • zeolite L: (K, Na) O, Al 2 O 3 , a SiO 2 (5 <a <8).
  • when the alkali is sodium:
    • amorphous sodium aluminosilicates whose crystal organization cannot be detected by X-ray diffraction and whose Si / Al atomic ratio is less than or equal to 5, and preferably less than or equal to 3;
    • sodalite: Na 2 O, Al 2 O 3 , a SiO 2 (1.8 <a <2.4);
      With regard to sodality, several different known varieties containing various alkali ions or salts trapped in the structure can be prepared. These varieties are suitable for the present invention. As examples of ions or molecules which can be introduced into the structure during the synthesis, mention may be made of:
      CI-, Br-, ClO - / 3, BrO 3 -, IO - / 3, NO - / 3, OH-, CO 2- / 3, SO 2- / 3, SO 2- / 4, CrO 2- / 4, MoO 2- / 4, PO 3- / 4, etc., in the form of alkaline salts, in particular sodium. The varieties particularly preferred in the present invention are those containing the OH- ion in NaOH form and the S 2- ion in Na 2 S form.
    • nepheline: Na 2 O, Al 2 O 3 , aSiO 2 (1.8 <a <2.4);
    • tectosilicates of the type:
      • sodalite,
      • analcime,
      • natrolite,
      • mesolite,
      • thomsonite,
      • clinoptilolite,
      • stilbite,
      • Na-P1 zeolite,
      • dachiardite,
      • chabasie,
      • gmelinite,
      • cancrinitis,
      • faujasite comprising the synthetic zeolites X and Y,
      • zeolite A.

D'une façon préférée, ledit aluminosilicate alcalin est obtenu par réaction en milieu aqueux d'au moins un argile (kaolinite, halloysite, montmorillonite, etc.) avec au moins un composé (hydroxyde, carbonate, acétate, nitrate, etc.) d'au moins un métal alcalin, notamment le sodium et/ou de potassium, ce composé étant de préférence l'hydroxyde, suivie d'un traitement thermique à une température entre 90 et 600 °C, de préférence entre 120 et 350 °C.In a preferred manner, said alkaline aluminosilicate is obtained by reaction in aqueous medium of at least one clay (kaolinite, halloysite, montmorillonite, etc.) with at least one compound (hydroxide, carbonate, acetate, nitrate, etc.) of at least an alkali metal, in particular sodium and / or potassium, this compound being preferably hydroxide, followed by heat treatment at a temperature between 90 and 600 ° C, preferably between 120 and 350 ° C.

L'argile peut aussi être traité thermiquement et broyé avant d'être mis au contact de la solution alcaline. Ainsi, la kaolinite et tous ses produits de transformation thermique (métakaolin, phase spinelle inverse, mullite) peuvent être utilisés selon le procédé de l'invention.The clay can also be heat treated and ground before being put in contact with alkaline solution. Thus, kaolinite and all of its products thermal transformation (metakaolin, reverse spinel phase, mullite) can be used according to the method of the invention.

Lorsque l'argile considéré est le kaolin, la kaolinite et/ou le métakaolin constituent les réactifs chimiques de base préférés.When the clay considered is kaolin, kaolinite and / or metakaolin are the preferred basic chemical reagents.

Comme chélate métallique, on pourra déposer sur le support tout chélate utilisé dans ce but dans la technique antérieure, en particulier les phtalocyanines, les porphyrines ou les corrines métalliques. On préfère particulièrement la phtalocyanine de cobalt et la phtalocyanine de vanadium. On utilise, de préférence, la phtalocyanine métallique sous forme d'un dérivé de cette dernière, avec une préférence particulière pour ses sulfonates disponibles dans le commerce, comme par exemple le mono-ou le disulfonate de phtalocyanine de cobalt et des mélanges de ceux-ci.As a metallic chelate, any chelate can be deposited on the support. used for this purpose in the prior art, in particular phthalocyanines, porphyrins or metallic corrines. We particularly prefer the cobalt phthalocyanine and vanadium phthalocyanine. Preferably, metallic phthalocyanine in the form of a derivative of the latter, with a particular preference for its commercially available sulfonates, such as for example cobalt phthalocyanine mono- or disulfonate and mixtures of these.

Les conditions réactionnelles mises en oeuvre pour réaliser le procédé de l'invention diffèrent principalement des conditions connues des procédés de l'art antérieur par l'absence de base aqueuse, une température et une vitesse spatiale horaire plus élevées. En général, les conditions adoptées sont les suivantes :

  • température :   20 à 100 °C,
  • pression :   105 à 30.105 Pascal,
  • quantité d'agent oxydant air :   1 à 3 kg/kg de mercaptans,
  • vitesse spatiale horaire en v.v.h. (volume de charge par volume de catalyseur et par heure) :   1 à 10.
The reaction conditions used to carry out the process of the invention differ mainly from the conditions known from the processes of the prior art by the absence of an aqueous base, a higher temperature and an hourly space velocity. In general, the conditions adopted are as follows:
  • temperature: 20 to 100 ° C,
  • pressure: 10 5 to 30.10 5 Pascal,
  • quantity of air oxidizing agent: 1 to 3 kg / kg of mercaptans,
  • hourly space velocity in vvh (volume of charge per volume of catalyst and per hour): 1 to 10.

La teneur en eau du catalyseur utilisé dans la présente invention peut varier en cours d'opération dans deux directions opposées :

  • 1/ Si la coupe pétrolière à adoucir est préalablement séchée, elle peut entrainer progressivement, en la dissolvant, l'eau présente à l'intérieur de la porosité du catalyseur. Dans ces conditions, la teneur en eau de ce dernier diminue régulièrement et peut ainsi descendre en dessous de la valeur limite de 0,1 % en poids.
  • 2/ Inversement, si la coupe pétrolière à adoucir est saturée en eau et compte tenu du fait que la réaction d'adoucissement s'accompagne de la production d'une molécule d'eau par molécule de disulfure formée, la teneur en eau du catalyseur peut augmenter et atteindre des valeurs supérieures à 25 % et surtout 40 % en poids, valeurs auxquelles les performances du catalyseur se dégradent.
  • The water content of the catalyst used in the present invention can vary during operation in two opposite directions:
  • 1 / If the petroleum cut to be softened is dried beforehand, it can gradually entrain, by dissolving it, the water present inside the porosity of the catalyst. Under these conditions, the water content of the latter decreases regularly and can therefore drop below the limit value of 0.1% by weight.
  • 2 / Conversely, if the petroleum cut to be softened is saturated with water and taking into account that the softening reaction is accompanied by the production of one molecule of water per molecule of disulfide formed, the water content of the catalyst can increase and reach values greater than 25% and especially 40% by weight, values at which the performance of the catalyst degrades.
  • Dans le premier cas, de l'eau peut être ajoutée, en quantité adéquate, à la coupe pétrolière, en amont du catalyseur de manière continue ou discontinue pour maintenir le degré d'hydratation à l'intérieur de l'intervalle désiré.In the first case, adequate water can be added to the petroleum cut, upstream of the catalyst continuously or discontinuously to maintain the hydration level within the desired range.

    Dans le second cas, il suffit que la température de la charge soit fixée à une valeur suffisante, inférieure à 80 °C, pour solubiliser l'eau de réaction résultant de la transformation des mercaptans en disulfures. La température de la charge est ainsi choisie de manière à maintenir la teneur en eau du support entre 0,1 et 40 % en poids du support et, de préférence, entre 1 et 25 % en poids de celui-ci.In the second case, it is sufficient that the temperature of the load is fixed at a sufficient value, below 80 ° C, to dissolve the resulting reaction water of the transformation of mercaptans into disulfides. Charge temperature is thus chosen so as to maintain the water content of the support between 0.1 and 40% by weight of the support and, preferably, between 1 and 25% by weight thereof.

    Cet intervalle de valeurs prédéterminées de teneurs en eau du support dépendra, bien entendu, de la nature même du support catalytique utilisé lors de la réaction d'adoucissement. En effet, le demandeur a constaté, conformément au brevet FR-2.651.791, que si de nombreux supports catalytiques sont susceptibles d'être utilisés sans soude (ou sans base) aqueuse, leur activité ne se manifestera que lorsque leur teneur en eau (également appelée taux d'hydratation du support) est maintenue dans un intervalle de valeurs relativement étroit, variable suivant les supports, mais apparemment lié à la teneur du support en silicate et à la structure de ses pores.This range of predetermined values of water contents of the support will depend, of course, on the very nature of the catalytic support used during the softening reaction. Indeed, the applicant has found, in accordance with the patent FR-2,651,791, that if many catalytic supports are likely to be used without aqueous soda (or without base), their activity will only manifest when their water content (also called the hydration level of the support) is maintained within a relatively narrow range of values, variable according to the supports, but apparently linked to the content of the silicate support and to the structure of its pores.

    Il a été observé par ailleurs, au cours de divers essais que l'addition à la charge d'un surfactant cationique, tel qu'un hydroxyde de tétraalkyl-ammonium N(R)4OH, permet d'améliorer notablement les performances des catalyseurs de la présente invention. De tels surfactants sont ajoutés à la charge sous forme de solution aqueuse contenant par exemple entre 0,01 et 50% en poids et de préférence entre 0,1 et 10% en poids de surfactant. Dans ce cas, l'addition à la charge remplace de manière avantageuse l'adjonction d'eau décrite précedemment. It has also been observed, during various tests that the addition to the charge of a cationic surfactant, such as a tetraalkylammonium hydroxide N (R) 4OH, significantly improves the performance of the catalysts present invention. Such surfactants are added to the filler as aqueous solution containing for example between 0.01 and 50% by weight and preferably between 0.1 and 10% by weight of surfactant. In this case, the addition to the load advantageously replaces the addition of water described above.

    Une forme de mise en oeuvre de l'invention sera décrite ci-après en détail, à titre d'exemple non limitatif, en référence à la figure 1 annexée.An embodiment of the invention will be described below in detail, at by way of nonlimiting example, with reference to Figure 1 attached.

    Cette figure représente un schéma de mise en oeuvre en continu du procédé conforme à l'invention.This figure represents a diagram of continuous implementation of the process according to the invention.

    Dans cette forme de mise en oeuvre, l'alimentation du réacteur 1 en coupe pétrolière à adoucir s'effectue par la ligne 2, dans laquelle l'agent oxydant, de l'air par exemple, est introduit directement par la ligne 3. La coupe pétrolière traitée est évacuée par la ligne 4, qui alimente un système de filtre 5, destiné à éliminer les traces d'eau et de soufre naissant souvent produit au cours de l'oxydation des mercaptans et non retenu par le support. La charge traitée est ensuite transférée par la ligne 6 à une enceinte de stockage 7.In this embodiment, the supply of the reactor 1 in section oil to be softened is carried out by line 2, in which the oxidizing agent, air for example, is introduced directly by line 3. The petroleum cut processed is discharged through line 4, which feeds a filter system 5, intended to eliminate traces of water and nascent sulfur often produced during the oxidation of mercaptans and not retained by the support. The processed charge is then transferred via line 6 to a storage enclosure 7.

    Conformément à l'invention, des sondes de mesure 8 et 9, placées respectivement en amont et en aval du réacteur 1, permettent de déterminer en permanence les teneurs en eau et en mercaptans à l'entrée et à la sortie de celui-ci. Il est ainsi possible de vérifier en continu si la teneur en eau du support catalytique croít ou décroít. Une action corrective peut alors être réalisée par modification de la quantité de chaleur apportée à la charge par un échangeur thermique 10 placé sur la ligne 2 en amont du réacteur 1In accordance with the invention, measurement probes 8 and 9, placed respectively upstream and downstream of reactor 1, make it possible to determine in permanently the water and mercaptans contents at the entry and at the exit of this one. It is thus possible to continuously check whether the water content of the catalytic support increases or decreases. Corrective action can then be carried out by modifying the amount of heat supplied to the load by a heat exchanger 10 placed on line 2 upstream of reactor 1

    Les exemples qui suivent illustrent la présente invention sans en limiter la portée. Les exemples 3 et 4 décrivent la préparation des catalyseurs testés à titre de comparaison.The examples which follow illustrate the present invention without limiting its scope. Examples 3 and 4 describe the preparation of the catalysts tested as for comparison.

    EXEMPLE 1EXAMPLE 1 PREPARATION DU CATALYSEUR SX1 SELON L'INVENTIONPREPARATION OF THE SX1 CATALYST ACCORDING TO THE INVENTION

    A 272 g de kaolin sec commercialisé par les établissements FONJAC, dont le degré de pureté est 83 % environ (principales impuretés en % poids : TiO2 = 0,2 ; Fe2O3 = 0,9 ; CaO = 0,15 K2O = 1,5 ; Na2O = 0,1 ; MgO = 0,2 ; quartz = 6,0 ; micas + feld spathoides = 8,0) on ajoute 200 cm3 d'une solution aqueuse contenant 130 g de KOH. A 272 g of dry kaolin sold by FONJAC establishments, the degree of purity of which is approximately 83% (main impurities in% by weight: TiO 2 = 0.2; Fe 2 O 3 = 0.9; CaO = 0.15 K 2 O = 1.5; Na 2 O = 0.1; MgO = 0.2; quartz = 6.0; micas + feld spathoides = 8.0) 200 cm 3 of an aqueous solution containing 130 g of KOH.

    Le mélange est mélangé quelques minutes à la température ambiante puis est porté à 60 °C. La pâte liquide obtenue est alors malaxée pendant 30 minutes à cette température de 60 °C.The mixture is mixed for a few minutes at room temperature and then brought to 60 ° C. The liquid paste obtained is then kneaded for 30 minutes at this temperature of 60 ° C.

    87 g de charbon actif de la Société NORIT d'une surface spécifique de 550 m2g-1 environ sont humidifiés par 77 cm3 d'une solution aqueuse contenant 20 g de KOH.87 g of activated carbon from the company NORIT with a specific surface of 550 m 2 g -1 approximately are moistened with 77 cm 3 of an aqueous solution containing 20 g of KOH.

    Le charbon actif ainsi humidifié est ajouté à la pâte liquide de kaolin alcalinisé précédente et l'ensemble est malaxé pendant 30 minutes environ dans un malaxeur à pales puis est légèrement chauffé (vers 70 à 80 °C environ) pour l'amener à l'état de pâte plastique permettant une mise en forme par extrusion.The activated carbon thus moistened is added to the liquid kaolin paste alkalized before and the whole is kneaded for about 30 minutes in a paddle mixer then is slightly heated (around 70 to 80 ° C approximately) to bring it to the state of plastic paste allowing shaping by extrusion.

    Les extrudés obtenus de 1,6 mm de diamètre et coupés à une longueur comprise entre 3 et 10 mm, sont séchés à 200 °C pendant 12 heures. Les extrudés séchés sont très durs et très résistants à l'écrasement. Une analyse structurale par diffraction X révèle que la structure de la kaolinite initiale est entièrement transformée à la température de 200 °C en kaliophilite de composition K2O, Al2O3, 2SiO2 (figure 2).The extrudates obtained, 1.6 mm in diameter and cut to a length of between 3 and 10 mm, are dried at 200 ° C for 12 hours. The dried extrudates are very hard and very resistant to crushing. A structural analysis by X-ray diffraction reveals that the structure of the initial kaolinite is completely transformed at the temperature of 200 ° C. into kaliophilite of composition K 2 O, Al 2 O 3 , 2SiO 2 (FIG. 2).

    Le solide ainsi extrudé est lavé 3 fois successivement dans 2 litres d'eau permutée, à température ambiante, pendant 30 minutes. Il est plongé ensuite dans 2 litres d'une solution contenant 1,0 g par litre de phtalocyanine de cobalt sulfonée du type commercialisé par la Société Française PROCATALYSE sous l'appellation "LCPS". L'ensemble est agité à température ambiante pendant 30 heures ; puis le solide est filtré et lavé une fois dans 1 litre d'eau distillée, à température ambiante.The solid thus extruded is washed 3 times successively in 2 liters of water. permuted, at room temperature, for 30 minutes. It is then immersed in 2 liters of a solution containing 1.0 g per liter of sulfonated cobalt phthalocyanine from type marketed by the French company PROCATALYSE under the name "LCPS". The whole is stirred at room temperature for 30 hours; then the solid is filtered and washed once in 1 liter of distilled water, at room temperature.

    Ce catalyseur contient environ
       20 % en poids de carbone,
       18,5 % en poids de potassium,
       32,5 % en poids de silice,
       et 4,9 g de LCPS par kg de support.
    This catalyst contains approximately
    20% by weight of carbon,
    18.5% by weight of potassium,
    32.5% by weight of silica,
    and 4.9 g of LCPS per kg of support.

    Sa surface est de 125 m2 g-1 et sa basicité supérieure à 80 meq. KOH par g. Its surface is 125 m 2 g -1 and its basicity greater than 80 meq. KOH per g.

    Ce catalyseur est ensuite séché lentement à 50 °C dans une étuve jusqu'à atteindre une teneur résiduelle en eau de 6 % en poids. Ce catalyseur est appelé SX 1.This catalyst is then dried slowly at 50 ° C. in an oven until reach a residual water content of 6% by weight. This catalyst is called SX 1.

    EXEMPLE 2EXAMPLE 2 PREPARATION DU CATALYSEUR SX2 SELON L'INVENTIONPREPARATION OF THE SX2 CATALYST ACCORDING TO THE INVENTION

    On prépare tout d'abord une pâte liquide, comme décrit dans l'exemple 1, constituée de 187 g de kaolin sec et 135 cm3 d'une solution contenant 90 g de potasse KOH. Cette pâte est malaxée à 60 °C pendant 15 minutes.First a liquid paste is prepared, as described in Example 1, consisting of 187 g of dry kaolin and 135 cm 3 of a solution containing 90 g of KOH potassium hydroxide. This dough is kneaded at 60 ° C for 15 minutes.

    A 87 g de charbon actif, on ajoute 60 cm3 d'une solution contenant 33 g de silice sous forme d'orthosilicate de potassium commercial. On ajoute ensuite 40 cm3 d'une solution contenant 28 g d'alumine sous forme de nitrate d'aluminium. Ce mélange est malaxé à 50 °C pendant 30 minutes. Puis on ajoute 40 cm3 d'une solution contenant 30 g de KOH. On malaxe encore l'ensemble pendant 30 minutes environ.To 87 g of activated carbon, 60 cm 3 of a solution containing 33 g of silica in the form of commercial potassium orthosilicate are added. 40 cm 3 of a solution containing 28 g of alumina in the form of aluminum nitrate are then added. This mixture is kneaded at 50 ° C for 30 minutes. Then 40 cm 3 of a solution containing 30 g of KOH is added. The whole is still kneaded for approximately 30 minutes.

    La pâte de kaolin alcalinisée est ensuite mélangée à la combinaison de charbon actif et de silicoaluminate amorphe de potassium. L'ensemble est malaxé pendant 15 minutes, puis est légèrement chauffé pour l'amener à l'état de pâte plastique permettant une extrusion aisée.The alkalized kaolin paste is then mixed with the combination of activated carbon and amorphous potassium silicoaluminate. The whole is kneaded for 15 minutes, then is slightly heated to bring it to a paste state plastic allowing easy extrusion.

    Le support sous forme d'extrudés ainsi obtenu est soumis ensuite aux mêmes traitements que ceux de l'exemple 1.The support in the form of extrudates thus obtained is then subjected to the same treatments than those of Example 1.

    Le catalyseur résultant de ces traitements contient environ :
       20 % en poids de carbone,
       14,5 % en poids de potassium,
       et 4,8 g de LPCS par kg de support,
    Sa surface est de 131 m2 g-1 et sa basicité supérieur à 60 meq. KOH par g.
    The catalyst resulting from these treatments contains approximately:
    20% by weight of carbon,
    14.5% by weight of potassium,
    and 4.8 g of LPCS per kg of support,
    Its surface is 131 m2 g-1 and its basicity greater than 60 meq. KOH per g.

    L'analyse structurale par diffraction X du catalyseur obtenu révèle que ici encore la partie minérale est essentiellement constituée de kaliophilite. Structural X-ray diffraction analysis of the catalyst obtained reveals that here still the mineral part consists essentially of kaliophilite.

    Ce catalyseur est ensuite séché lentement à 50 °C dans une étuve jusqu'à atteindre une teneur résiduelle en eau de 8 % en poids.This catalyst is then dried slowly at 50 ° C. in an oven until reach a residual water content of 8% by weight.

    Ce catalyseur est appelé SX2.This catalyst is called SX2.

    EXEMPLE 3EXAMPLE 3 PREPARATION DU CATALYSEUR SX3 SELON L'INVENTIONPREPARATION OF THE SX3 CATALYST ACCORDING TO THE INVENTION

    A 272 g de kaolin sec commercialisé par les établissements FONJAC, dont le degré de pureté est 83 % environ (principales impuretés en % poids : TiO2 = 0,2 ; Fe2O3 = 0,9 : CaO = 0,15 : K2O = 1,5 : Na2O = 0,1 ; MgO = 0,2 : quartz = 6,0 ; micas + feld pathoides = 8,0) on ajoute 200 cm3 d'une solution aqueuse contenant 102 g de NaOH.A 272 g of dry kaolin sold by FONJAC establishments, the degree of purity of which is approximately 83% (main impurities in% by weight: TiO 2 = 0.2; Fe 2 O 3 = 0.9: CaO = 0.15: K 2 O = 1.5: Na 2 O = 0.1; MgO = 0.2: quartz = 6.0; micas + feld pathoides = 8.0) 200 cm 3 of an aqueous solution containing 102 g is added of NaOH.

    Le mélange est mélangé quelques minutes à la température ambiante puis est porté à 60 °C. La pâte liquide obtenue est alors malaxée pendant 30 minutes à cette température de 60 °C.The mixture is mixed for a few minutes at room temperature and then brought to 60 ° C. The liquid paste obtained is then kneaded for 30 minutes at this temperature of 60 ° C.

    87 g de charbon actif de la Société NORIT d'une surface spécifique de 550 m2 g-1 environ sont humidifiés par 77 cm3 d'une solution aqueuse contenant 17 g de NaOH.87 g of activated carbon from the company NORIT with a specific surface of 550 m 2 g -1 approximately are moistened with 77 cm 3 of an aqueous solution containing 17 g of NaOH.

    Le charbon actif ainsi humidifié est ajouté à la pâte liquide de kaolin alcalinisé précédente et l'ensemble est malaxé pendant 30 minutes environ dans un malaxeur à pales puis est légèrement chauffé (vers 70 à 80 °C environ) pour l'amener à l'état de pâte plastique permettant une mise en forme par extrusion.The activated carbon thus moistened is added to the liquid kaolin paste alkalized before and the whole is kneaded for about 30 minutes in a paddle mixer then is slightly heated (around 70 to 80 ° C approximately) to bring it to the state of plastic paste allowing shaping by extrusion.

    Les extrudés obtenus de 1,6 mm de diamètre et coupés à une longueur comprise entre 3 et 10 mm, sont séchés à 200 °C pendant 12 heures. Les extrudés séchés sont très durs et très résistants à l'écrasement. Une analyse structurale par diffraction X révèle que la structure de la kaolinite initiale est entièrement transformée à la température de 200 °C en un composé de type sodalite de composition Na2O, Al2O3, 2SiO2 (figure 3).The extrudates obtained, 1.6 mm in diameter and cut to a length of between 3 and 10 mm, are dried at 200 ° C for 12 hours. The dried extrudates are very hard and very resistant to crushing. A structural analysis by X-ray diffraction reveals that the structure of the initial kaolinite is completely transformed at a temperature of 200 ° C. into a sodalite type compound of composition Na 2 O, Al 2 O 3 , 2SiO 2 (FIG. 3).

    Le solide ainsi extrudé est lavé 3 fois successivement dans 2 litres d'eau permutée, à température ambiante, pendant 30 minutes. Il est plongé ensuite dans 2 litres d'une solution contenant 1,0 g par litre de phtalocyanine de cobalt sulfonée du type commercialisé par la Société Française PROCATALYSE sous l'appellation "LCPS". L'ensemble est agité à température ambiante pendant 30 heures ; puis le solide est filtré et lavé une fois dans 1 litre d'eau distillée, à température ambiante.The solid thus extruded is washed 3 times successively in 2 liters of water. permuted, at room temperature, for 30 minutes. It is then immersed in 2 liters of a solution containing 1.0 g per liter of sulfonated cobalt phthalocyanine from type marketed by the French company PROCATALYSE under the name "LCPS". The whole is stirred at room temperature for 30 hours; then the solid is filtered and washed once in 1 liter of distilled water, at room temperature.

    Ce catalyseur contient environ 20 % en poids de carbone,
       9 % en poids de sodium
       32,5% en poids de silice,.
       et 4,9 g de LCPS par kg de support
    Sa surface est de 125 m2 g-1 et sa basicité supérieure à 100 meq. KOH par g.
    This catalyst contains approximately 20% by weight of carbon,
    9% by weight of sodium
    32.5% by weight of silica ,.
    and 4.9 g of LCPS per kg of support
    Its surface is 125 m 2 g -1 and its basicity greater than 100 meq. KOH per g.

    Ce catalyseur est ensuite séché lentement à 50 °C dans une étuve jusqu'à atteindre une teneur résiduelle en eau inférieure à 7% en poids. Ce catalyseur est appelé SX3.This catalyst is then dried slowly at 50 ° C. in an oven until reach a residual water content of less than 7% by weight. This catalyst is called SX3.

    EXEMPLE 4EXAMPLE 4 PREPARATION DU CATALYSEUR SX4 NON CONFORME A L'INVENTIONPREPARATION OF THE SX4 CATALYST NOT CONFORMING TO THE INVENTION

    100 g de charbon actif sont mouillés par 88 cm3 d'une solution aqueuse.100 g of activated carbon are wetted with 88 cm 3 of an aqueous solution.

    400 g d'alumine Al2O3 sous forme de pseudoboehmite en poudre, commercialisée sous l'appellation "gel Condéa SB3" par la société CONDEA, sont acidifiés par 580 cm3 d'une solution contenant 28 g d'acide nitrique pur.400 g of alumina Al 2 O 3 in the form of powdered pseudoboehmite, sold under the name "Condéa SB3 gel" by the company CONDEA, are acidified with 580 cm 3 of a solution containing 28 g of pure nitric acid.

    Le charbon actif humidifié est ajouté à l'alumine acidifiée et est malaxé pendant 30 minutes jusqu'à obtention d'une pâte homogène. On sèche ensuite le produit vers 70-80 °C pendant quelques minutes tout en malaxant jusqu'à obtention d'une pâte épaisse extrudable. Après extrusion, le produit est séché à 200 °C sous air pendant 12 heures puis calciné à 500 °C sous azote pendant 2 heures.The humidified activated carbon is added to the acidified alumina and is kneaded for 30 minutes until a homogeneous paste is obtained. Then dry the product around 70-80 ° C for a few minutes while kneading until obtained thick extrudable paste. After extrusion, the product is dried at 200 ° C under air for 12 hours then calcined at 500 ° C under nitrogen for 2 hours.

    Le support sous forme d'extrudés ainsi obtenu est soumis ensuite aux mêmes traitements que ceux des exemples 1 et 2. The support in the form of extrudates thus obtained is then subjected to the same treatments than those of Examples 1 and 2.

    Le catalyseur résultant de ces traitements contient environ :
       20 % en poids de carbone,
       et 3,8 g de LCPS par kg de support.
    Sa surface est de 282 m2 g-1 et sa basicité de 10 meq. KOH par g.
    The catalyst resulting from these treatments contains approximately:
    20% by weight of carbon,
    and 3.8 g of LCPS per kg of support.
    Its surface is 282 m 2 g -1 and its basicity is 10 meq. KOH per g.

    Il est séché lentement à 50 °C dans une étuve jusqu'à atteindre une teneur résiduelle en eau de 6 % en poids. Il est appelé dans la suite SX 4 4.It is dried slowly at 50 ° C in an oven until it reaches a content residual water of 6% by weight. It is called in the following SX 4 4.

    EXEMPLE 5EXAMPLE 5 PREPARATION DU CATALYSEUR SX5 NON CONFORME A L'INVENTIONPREPARATION OF THE SX5 CATALYST NOT CONFORMING TO THE INVENTION

    100 g de charbon actif sont mouillés par 88 cm3 d'une solution aqueuse contenant 10 g de KOH.100 g of activated carbon are wetted with 88 cm 3 of an aqueous solution containing 10 g of KOH.

    400 g d'alumine Al2O3 sous forme de pseudoboehmite en poudre, commercialisée sous l'appellation "gel Condéa SB3" par la société CONDEA, sont acidifiés par 540 cm3 d'une solution contenant 28 g d'acide nitrique pur.400 g of alumina Al 2 O 3 in the form of powdered pseudoboehmite, sold under the name "Condéa SB3 gel" by the company CONDEA, are acidified with 540 cm 3 of a solution containing 28 g of pure nitric acid.

    Le charbon actif humidifié et alcalinisé est ajouté à l'alumine acidifiée et le mélange est malaxé pendant 30 minutes pour obtenir une pâte homogène. On ajoute ensuite lentement, tout en malaxant, 40 cm3 d'une solution contenant 10 g de KOH. On malaxe encore pendant 30 minutes puis on sèche à 70-80 °C jusqu'à obtention d'une pâte épaisse extrudable. Après extrusion, le solide est séché à 200 °C sous azote pendant 2 heures.The humidified and alkalized activated carbon is added to the acidified alumina and the mixture is kneaded for 30 minutes to obtain a homogeneous paste. 40 cm 3 of a solution containing 10 g of KOH are then added slowly, while kneading. It is kneaded again for 30 minutes and then dried at 70-80 ° C until a thick extrudable paste is obtained. After extrusion, the solid is dried at 200 ° C under nitrogen for 2 hours.

    Le support sous forme d'extrudés ainsi obtenu est soumis ensuite aux mêmes traitements que ceux des exemples 1, 2 et 3.The support in the form of extrudates thus obtained is then subjected to the same treatments than those of examples 1, 2 and 3.

    Le catalyseur résultant de ces traitements contient environ :
       20 % en poids de carbone
       2,6 % en poids de potassium
       et 5,1 g de LCPS par kg de support.
    Sa surface est de 244 m2 g-1 et sa basicité de 16 meq. KOH par g.
    The catalyst resulting from these treatments contains approximately:
    20% by weight of carbon
    2.6% by weight of potassium
    and 5.1 g of LCPS per kg of support.
    Its surface is 244 m 2 g -1 and its basicity is 16 meq. KOH per g.

    Ce catalyseur est ensuite séché lentement à 50 °C dans une étuve jusqu'à atteindre une teneur résiduelle en eau de 6 % en poids. Il est appelé dans la suite SX5.This catalyst is then dried slowly at 50 ° C. in an oven until reach a residual water content of 6% by weight. It is called in the following SX5.

    EXEMPLE 6EXAMPLE 6 EVALUATION ET COMPARAISON DES PROPRIETES DES CATALYSEURS SX1, SX3, SX4 et SX5 DANS UN TEST D'ADOUCISSEMENT DE COUPES PETROLIERESASSESSMENT AND COMPARISON OF CATALYST PROPERTIES SX1, SX3, SX4 and SX5 IN A SOFTENING TEST OF OIL CUTS

    La charge utilisée pour le test d'adoucissement est un kérosène obtenu à partir d'un brut Iranian light. Les caractéristiques de ce kérosène sont donnés dans le Tableau 1 suivant : CARACTERISTIQUES DU KEROSENE A ADOUCIR R-SH (ppm) 167 TAN (mgKOH/g) 0,050 COULEUR SAYBOLT 25 SOUFRE TOTAL % pds 0,285 POINT INITIAL °C 151 151 POINT FINAL °C 243 MASSE VOLUMIQUE g/l 0,8 TENEUR EN EAU (ppm) 150 PHENOLS (ppm) 610 THIOPHENOLS (ppm) <10 The charge used for the softening test is a kerosene obtained from an Iranian light crude. The characteristics of this kerosene are given in the following Table 1: CHARACTERISTICS OF KEROSENE TO SOFTEN R-SH (ppm) 167 TAN (mgKOH / g) 0.050 COLOR SAYBOLT 25 TOTAL SULFUR% wt 0.285 INITIAL POINT ° C 151 151 END POINT ° C 243 VOLUME MASS g / l 0.8 WATER CONTENT (ppm) 150 PHENOLS (ppm) 610 THIOPHENOLS (ppm) <10

    Les 4 catalyseurs ont été évalués et comparés sur cette charge dans les conditions opératoires suivantes :

    • Température = 40 °C
    • Pression = 0,7 MPa (7 bars) relatif
    • WH = variable de 1 à 7 (heure)-1
    • débit d'air = variable de 1 à 1,2 fois la stoechiométrie de la réaction.
    • addition d'eau à la charge à raison de 1cm3 par kg de charge
    The 4 catalysts were evaluated and compared on this charge under the following operating conditions:
    • Temperature = 40 ° C
    • Pressure = 0.7 MPa (7 bar) relative
    • WH = variable from 1 to 7 (hour) -1
    • air flow = variable from 1 to 1.2 times the stoichiometry of the reaction.
    • addition of water to the load at a rate of 1 cm 3 per kg of load

    Les résultats obtenus dans ces conditions sur plusieurs dizaines ou centaines d'heures de test selon le cas. avec les catalyseurs SX1, SX3 SX4 et SX5 sont présentés respectivement dans les tableaux 2, 3, 5 et 6.The results obtained under these conditions over several tens or hundreds test hours as appropriate. with the catalysts SX1, SX3 SX4 and SX5 are presented respectively in Tables 2, 3, 5 and 6.

    Le tableau 4 présente les performances du catalyseur SX3 lorsque, toutes autres conditions restant identiques, on remplace après 2000 h.de test l'addition d'eau par l'addition d'une solution aqueuse contenant 2% en poids d'hydroxyde de tétrabutyle ammonium N(Bu)4OH. RESULTATS OBTENUS AVEC LE CATALYSEUR SX1 TEMPS (heure) TEMPER (°C) PRESSION( Bars rel) STOECHIO. VVH (heure-1) R-SH (ppm) DOCTOR Test 0 40 7 1,2 1 13 40 7 1,2 1 5,5 négatif 37 40 7 1,2 1 0,5 négatif 45 Passage à VVH = 1,7 négatif 61 40 7 1,2 1,7 0,5 négatif 85 40 7 1,2 1,7 0,9 négatif 109 40 7 1,2 1,7 0,9 négatif 133 40 7 1,2 1,7 0,6 négatif 135 Passage à VVH=1,7 et stoechiométrie = 1,1 négatif 159 40 7 1,1 1,7 1,6 négatif 183 40 7 1,1 1,7 1,7 négatif 184 Passage à stoechiométrie = 1 négatif 207 40 7 1,0 1,7 0,8 négatif 231 40 7 1,0 1,7 1 négatif 251 40 7 1,0 1,7 1,4 négatif 275 40 7 1,0 1,7 1,8 négatif 299 40 7 1,0 1,7 0,4 négatif 323 40 7 1,0 1,7 1,5 négatif 347 40 7 1,0 1,7 1,2 négatif 371 40 7 1,0 1,7 1,1 négatif RESULTATS OBTENUS AVEC LE CATALYSEUR SX3 TEMPS heure TEMPER (°C) PRESSION( Bars rel) STOECHIO. VVH (heure-1 R-SH (ppm) DOCTOR Test 0 40 7 1,0 1,7 15 40 7 1,0 1,7 1,1 négatif 35 40 7 1,0 1,7 2,2 négatif 45 40 7 1,0 1,7 0,7 négatif 108 40 7 1,0 1,7 1,0 négatif 152 40 7 1,0 1,7 1,0 négatif 210 40 7 1,0 1,7 1,2 négatif 258 40 7 1,0 1,7 1,1 négatif 315 40 7 1,0 1,7 1,0 négatif 410 40 7 1,0 1,7 1,5 négatif 492 40 7 1,0 1,7 1,8 négatif 507 40 7 1,0 1,7 1,7 négatif 600 40 7 1,0 1,7 1,8 négatif 705 40 7 1,0 1,7 2,1 négatif 812 40 7 1,0 1,7 2,4 négatif 904 40 7 1,0 1,7 2,8 négatif 1020 40 7 1,0 1,7 3,9 négatif 1950 40 7 1,0 1,7 7,3 positif RESULTATS OBTENUS AVEC LE CATALYSEUR SX3 AVEC ADDITION D'UN AGENT TENSIO-ACTIF CATIONIQUE, L'HYDROXYDE DE TETRABUTYLE AMMONIUM (N(Bu)4OH). Temps (heure) Température(°C) Pression Bars rel. Stoechio VVH (heure 1) R-SH ppm Doctor test 1020 40 7 1,0 1,7 3,9 négatif 1950 40 7 1,0 1,7 7,3 positif 2000 40 7 1,0 1,7 7,5 positif 2001 Ajout de N(Bu)4 OH 2050 40 7 1,0 1,7 3,1 négatif 2106 40 7 1,0 1,7 2,4 négatif 2203 40 7 1,0 1,7 2,5 négatif 2298 40 7 1,0 1,7 2,7 négatif 2415 40 7 1,0 1,7 3,2 négatif 2620 40 7 1,0 1,7 3,3 négatif 2625 Arrêt de l'ajout de N(Bu)4OH 2702 40 7 1,0 1,7 3,4 négatif 2807 40 7 1,0 1,7 3,4 négatif 2918 40 7 1,0 1,7 3,7 négatif 3005 40 7 1,0 1,7 4,0 négatif RESULTATS OBTENUS AVEC LE CATALYSEUR SX4 TEMPS( heure) TEMPER. (°C) PRESSION( Bars rel) STOECHIO. VVH (heure-1) R-SH (ppm) DOCTOR Test 0 40 7 1,0 1,7 - - 10 40 7 1,1 1,7 6,5 positif 20 40 7 1,2 1,0 10,0 positif 40 40 7 1,2 1,0 18,1 positif 55 40 7 1,2 1,0 30,5 positif 80 40 7 1,2 1,0 45,5 positif 95 40 7 1,2 1,0 62,0 positif RESULTATS OBTENUS AVEC LE CATALYSEUR SX5 TEMPS (heure) TEMPER (°C) PRESSION( Bars rel) STOECHIO. VVH (heure-1) R-SH (ppm) DOCTOR Test 0 40 7 1,0 1,7 13 40 7 1,0 1,7 2,2 négatif 25 40 7 1,0 1,7 4,1 négatif 42 40 7 1,1 1,0 5,5 positif 50 40 7 1,2 1,0 9,5 positif 82 40 7 1,2 1,0 14,1 positif 105 40 7 1,2 1,0 20,8 positif Table 4 shows the performance of the SX3 catalyst when, all other conditions remaining identical, the addition of water after 2000 h of test is replaced by the addition of an aqueous solution containing 2% by weight of tetrabutyl hydroxide ammonium N (Bu) 4 OH. RESULTS OBTAINED WITH THE SX1 CATALYST TIME (hour) TEMPER (° C) PRESSURE (Rel Bars) STOECHIO. VVH (hour-1) R-SH (ppm) DOCTOR Test 0 40 7 1.2 1 13 40 7 1.2 1 5.5 negative 37 40 7 1.2 1 0.5 negative 45 Transition to VVH = 1.7 negative 61 40 7 1.2 1.7 0.5 negative 85 40 7 1.2 1.7 0.9 negative 109 40 7 1.2 1.7 0.9 negative 133 40 7 1.2 1.7 0.6 negative 135 Transition to VVH = 1.7 and stoichiometry = 1.1 negative 159 40 7 1.1 1.7 1.6 negative 183 40 7 1.1 1.7 1.7 negative 184 Switch to stoichiometry = 1 negative 207 40 7 1.0 1.7 0.8 negative 231 40 7 1.0 1.7 1 negative 251 40 7 1.0 1.7 1.4 negative 275 40 7 1.0 1.7 1.8 negative 299 40 7 1.0 1.7 0.4 negative 323 40 7 1.0 1.7 1.5 negative 347 40 7 1.0 1.7 1.2 negative 371 40 7 1.0 1.7 1.1 negative RESULTS OBTAINED WITH THE SX3 CATALYST TIME hour TEMPER (° C) PRESSURE (Rel Bars) STOECHIO. VVH (hour-1 R-SH (ppm) DOCTOR Test 0 40 7 1.0 1.7 15 40 7 1.0 1.7 1.1 negative 35 40 7 1.0 1.7 2.2 negative 45 40 7 1.0 1.7 0.7 negative 108 40 7 1.0 1.7 1.0 negative 152 40 7 1.0 1.7 1.0 negative 210 40 7 1.0 1.7 1.2 negative 258 40 7 1.0 1.7 1.1 negative 315 40 7 1.0 1.7 1.0 negative 410 40 7 1.0 1.7 1.5 negative 492 40 7 1.0 1.7 1.8 negative 507 40 7 1.0 1.7 1.7 negative 600 40 7 1.0 1.7 1.8 negative 705 40 7 1.0 1.7 2.1 negative 812 40 7 1.0 1.7 2.4 negative 904 40 7 1.0 1.7 2.8 negative 1020 40 7 1.0 1.7 3.9 negative 1950 40 7 1.0 1.7 7.3 positive RESULTS OBTAINED WITH THE SX3 CATALYST WITH THE ADDITION OF A CATIONIC SURFACTANT, TETRABUTYL AMMONIUM HYDROXIDE (N (Bu) 4 OH). Time (hour) Temperature (° C) Pressure Bars rel. Stoechio VVH (hour 1) R-SH ppm Doctor test 1020 40 7 1.0 1.7 3.9 negative 1950 40 7 1.0 1.7 7.3 positive 2000 40 7 1.0 1.7 7.5 positive 2001 Addition of N (Bu) 4 OH 2050 40 7 1.0 1.7 3.1 negative 2106 40 7 1.0 1.7 2.4 negative 2203 40 7 1.0 1.7 2.5 negative 2298 40 7 1.0 1.7 2.7 negative 2415 40 7 1.0 1.7 3.2 negative 2620 40 7 1.0 1.7 3.3 negative 2625 Stop adding N (Bu) 4OH 2702 40 7 1.0 1.7 3.4 negative 2807 40 7 1.0 1.7 3.4 negative 2918 40 7 1.0 1.7 3.7 negative 3005 40 7 1.0 1.7 4.0 negative RESULTS OBTAINED WITH THE SX4 CATALYST TIME (hour) TEMPER. (° C) PRESSURE (Rel Bars) STOECHIO. VVH (hour-1) R-SH (ppm) DOCTOR Test 0 40 7 1.0 1.7 - - 10 40 7 1.1 1.7 6.5 positive 20 40 7 1.2 1.0 10.0 positive 40 40 7 1.2 1.0 18.1 positive 55 40 7 1.2 1.0 30.5 positive 80 40 7 1.2 1.0 45.5 positive 95 40 7 1.2 1.0 62.0 positive RESULTS OBTAINED WITH THE SX5 CATALYST TIME (hour) TEMPER (° C) PRESSURE (Rel Bars) STOECHIO. VVH (hour-1) R-SH (ppm) DOCTOR Test 0 40 7 1.0 1.7 13 40 7 1.0 1.7 2.2 negative 25 40 7 1.0 1.7 4.1 negative 42 40 7 1.1 1.0 5.5 positive 50 40 7 1.2 1.0 9.5 positive 82 40 7 1.2 1.0 14.1 positive 105 40 7 1.2 1.0 20.8 positive

    Il est clair, au vu de ces résultats, que les catalyseurs SX1, et SX3 conformes à la présente invention possèdent des propriétés d'adoucissement de la charge kérosène utilisée ici nettement supérieures à celles des catalyseurs SX4 et SX5. Notamment leur activité en conversion des mercaptans en disulfures et la stabilité de leurs performances au cours du temps sont nettement améliorées.It is clear, in view of these results, that the catalysts SX1, and SX3 according to the present invention have properties for softening the kerosene feed used here significantly higher than that of the SX4 catalysts and SX5. In particular their activity in conversion of mercaptans to disulfides and the stability of their performance over time are significantly improved.

    Il est également clair que l'addition continue ou discontinue d'un surfactant cationique permet d'améliorer, sensiblement les performances du catalyseur SX3 conforme à la présente invention.It is also clear that the continuous or discontinuous addition of a surfactant cationic significantly improves the performance of the SX3 catalyst according to the present invention.

    Claims (18)

    1. A process for sweetening a petroleum cut containing mercaptans wherein said petroleum cut is subjected to oxidation conditions by its being passed in the presence of air in contact with a porous catalyst, said process being characterised in that said catalyst comprises 10 to 98% by weight of at least one solid mineral phase constituted of an alkaline aluminosilicate with a Si/Al atomic ratio which is less than or equal to 5, 1 to 60% by weight active carbon, 0.02 to 2% by weight of at least one metal chelate and 0 to 20% by weight of at least one mineral or organic binding agent, has a basicity determined according to the ASTM 2896 standard which is above 20 milli-equivalents of potash per gramme and a total BET surface area which is greater than 10 m2g-1, and inside its pore structure it contains a permanent aqueous phase representing 0.1 to 40% by weight of the dry catalyst.
    2. A process according to Claim 1, characterised in that the Si/Al ratio of the alkaline aluminosilicate is less than or equal to 3.
    3. A process according to one of Claims 1 and 2, characterised in that the alkaline aluminosilicate is a sodium aluminosilicate or a potassium aluminosilicate.
    4. A process according to Claim 3, characterised in that the potassium alu-minosilicate is kaliophilite of the approximate formula K2O, Al2O3, a SiO2, with a value of 1.8 to 2.4.
    5. A process according to Claim 3, characterised in that the potassium alu-minosilicate is leucite of the approximate formula K2O, Al2O3, a SiO2, with a value of 3.5 to 4.5.
    6. A process according to Claim 3, characterised in that the sodium aluminosilicate is a compound of the sodalite type of the approximate formula Na2O, Al2O3, a SiO2, with a value of 1.8 to 2.4.
    7. A process according to one of Claims 3 to 5, characterised in that the sodium aluminosilicate and/or potassium aluminosilicate is obtained by reacting in aqueous medium at least one clay with sodium hydroxide and/or potassium hydroxide, followed by a heat treatment at a temperature of between 90 and 600°C.
    8. A process according to Claim 7, characterised in that the clay is activated thermally beforehand, and then crushed before it is placed in contact with the sodium hydroxide and/or potassium hydroxide in aqueous media.
    9. A process according to Claim 3, characterised in that the alkaline aluminosilicate is constituted at least partially of a zeolite, the major part of which, at least, contains sodium.
    10. A process according to one of Claims 1 to 7, characterised in that the alkaline aluminosilicate represents 50 to 95% by weight of sweetening catalyst, calculated in relation to the weight of dry catalyst.
    11. A process according to one of Claims 1 to 8, characterised in that the metal chelate contained in the catalyst is a cobalt phthalocyanine.
    12. A process according to one of Claims 1 to 11, characterised in that the amount of permanent aqueous phase is between 1 and 25% by weight relative to the dry catalyst.
    13. A process according to one of Claims 1 to 12, characterised in that the temperature is between 20 and 100°C, the pressure 105 to 30.105Pa, the proportion of air from 1 to 3 kg/kg of mercaptans and the spatial speed per hour being 1 to 10.
    14. A process according to one of Claims 1 to 13, characterised in that an amionic or cationic surface-active agent is added in the form of an aqueous solution continuously or discontinuously to the charge which is to be sweetened.
    15. A process according to Claim 14, characterised in that the surface-active agent is of the cationic type, and is preferably a quaternary ammonium hydroxyde or salt.
    16. A process according to one of Claims 1 to 15, characterised in that the temperature is selected in such a way as to maintain the water content of the support within the desired range.
    17. A process according to one of Claims 1 to 16, characterised in that the petroleum cut treated is selected from petrols and kerosenes.
    18. A catalyst usable in a process for sweetening petroleum cuts containing mercaptans according to one of Claims 1 to 12, characterised in that it consists in a porous, catalyst comprising 10 to 98% by weight of at least one solid mineral phase constituted of an alkaline aluminosilicate with a Si/Al atomic ratio which is less than or equal to 5, from 1 to 60% by weight active carbon, 0.02 to 2% by weight of at least one metal chelate and 0 to 20% by weight of at least one mineral or organic binding agent, having a basicity determined according to the ASTM 2896 standard which is above 20 milli equivalents of potash per gramme and a total BET surface area which is greater than 10 m2g-1, and containing inside its pore structure a permanent aqueous phase representing 0.1 to 40% by weight of the dry catalyst.
    EP19930402014 1993-08-04 1993-08-04 Process for sweetening of petroleum fractions without regular addition of an aqueous alkaline solution, using a solid basic catalyst Expired - Lifetime EP0638628B1 (en)

    Priority Applications (2)

    Application Number Priority Date Filing Date Title
    DE1993622636 DE69322636T2 (en) 1993-08-04 1993-08-04 Process for sweetening petroleum fractions without continuous addition of an aqueous alkaline solution using a basic catalyst
    EP19930402014 EP0638628B1 (en) 1993-08-04 1993-08-04 Process for sweetening of petroleum fractions without regular addition of an aqueous alkaline solution, using a solid basic catalyst

    Applications Claiming Priority (1)

    Application Number Priority Date Filing Date Title
    EP19930402014 EP0638628B1 (en) 1993-08-04 1993-08-04 Process for sweetening of petroleum fractions without regular addition of an aqueous alkaline solution, using a solid basic catalyst

    Publications (2)

    Publication Number Publication Date
    EP0638628A1 EP0638628A1 (en) 1995-02-15
    EP0638628B1 true EP0638628B1 (en) 1998-12-16

    Family

    ID=8214741

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP19930402014 Expired - Lifetime EP0638628B1 (en) 1993-08-04 1993-08-04 Process for sweetening of petroleum fractions without regular addition of an aqueous alkaline solution, using a solid basic catalyst

    Country Status (2)

    Country Link
    EP (1) EP0638628B1 (en)
    DE (1) DE69322636T2 (en)

    Families Citing this family (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US6709639B1 (en) 1996-09-24 2004-03-23 Institut Francais Du Petrole Apparatus for purification of raw gasoline from catalytic cracking
    FR2753718B1 (en) * 1996-09-24 1999-05-14 PROCESS AND PLANT FOR PURIFYING CRUDE GASOLINE FROM CATALYTIC CRACKING

    Family Cites Families (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US4498978A (en) * 1983-11-29 1985-02-12 Uop Inc. Catalytic oxidation of mercaptan in petroleum distillate
    FR2601263B1 (en) * 1986-07-11 1988-11-25 Total France NEW CATALYTIC COMPOSITE PRODUCT FOR THE OXIDATION OF MERCAPTANS AND ITS USE FOR THE SOFTENING OF OIL CUTTINGS.
    FR2651791B1 (en) * 1989-09-08 1994-05-20 Total France Cie Raffinage Distr METHOD OF SOFTENING IN A FIXED BED OF OIL CUTS.
    FR2688223B1 (en) * 1992-03-05 1994-05-20 Institut Francais Petrole NEW PROCESS FOR SOFTENING OIL CUTS WITHOUT REGULAR ADDITION OF AQUEOUS ALKALINE SOLUTION, USING A BASIC SOLID CATALYST.

    Also Published As

    Publication number Publication date
    DE69322636D1 (en) 1999-01-28
    EP0638628A1 (en) 1995-02-15
    DE69322636T2 (en) 1999-05-06

    Similar Documents

    Publication Publication Date Title
    CA2101972C (en) Process for softening petroleum cuts without adding alkali aqueous solution, and using a base solid catalyst
    EP0074900B1 (en) Process for the preparation of synthetic zeolites and zeolites obtained by this process
    FR2753717A1 (en) PROCESS AND PLANT FOR THE PRODUCTION OF CATALYTIC CRACKS WITH LOW SULFUR CONTENT
    PT1222023E (en) Sorbent composition, process for producing same and use in desulfurization
    FR2543153A1 (en) Dehydro:cyclisation of hydrocarbon feedstocks
    LU82916A1 (en) SYNTHETIC COMPOSITIONS OF CRYSTALLINE BOROSILICATE AND PROCESSES FOR THE PREPARATION AND ACTIVATION THEREOF
    FR3092104A1 (en) Process for the preparation of a binder-free composite molecular sieve and its use in desulfurization by adsorption of petroleum
    EP0848641B1 (en) Direct oxidation method for converting sulphur compounds into sulphur with a copper catalyst
    EP0638628B1 (en) Process for sweetening of petroleum fractions without regular addition of an aqueous alkaline solution, using a solid basic catalyst
    EP1728551B1 (en) Use of cesium exchanged faujasite-type zeolites for the deep desulfurisation of gasoline
    EP1519785B1 (en) Catalysts comprising a tungsten oxide monolayer onto a zirconia and/or titania carrier
    US5633216A (en) Process for sweetening petroleum cuts without regular addition of alkaline solution using a basic solid catalyst
    CN1774288A (en) A process for the removal of H2S and mercaptans from a gas stream
    CA2197899C (en) Process for purifying a paraffin section
    EP0831140B1 (en) Process for the purification of catalytically cracked gasolines
    JP5011107B2 (en) Method for reducing elemental and total sulfur levels in a hydrocarbon stream
    EP1907511B1 (en) Method for degrading polycyclic aromatic hydrocarbons by using an immobilized hemoprotein
    FR2824565A1 (en) PROCESS FOR DESULFURIZING A HYDROCARBON MIXTURE
    WO2003093203A1 (en) Method of desulphurising a mixture of hydrocarbons
    EP0527219B1 (en) Ruthenium sulphur hydrorefining catalyst, synthesis thereof and hydrorefining method using said catalyst
    CN1112154A (en) Process for petroleum solvent refining of fine chemical products
    BE877810R (en) PROCESS FOR TREATMENT OF CORROSIVE PETROLEUM DISTILLATES
    FR2619822A1 (en) PROCESS FOR CONTINUOUS SOFTENING OF LIQUID PHASE OIL CUTTERS
    JPS61263634A (en) Removing method for minor sulfur compound
    SU910731A1 (en) Process for producing transformer oil

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): BE DE FR GB IT NL

    17P Request for examination filed

    Effective date: 19950816

    17Q First examination report despatched

    Effective date: 19970514

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): BE DE FR GB IT NL

    REF Corresponds to:

    Ref document number: 69322636

    Country of ref document: DE

    Date of ref document: 19990128

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 19990128

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20000817

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20000904

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20010717

    Year of fee payment: 9

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20010725

    Year of fee payment: 9

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20010831

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20010831

    Year of fee payment: 9

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    BERE Be: lapsed

    Owner name: INSTITUT FRANCAIS DU PETROLE

    Effective date: 20010831

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020501

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020804

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030301

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20020804

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030430

    NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

    Effective date: 20030301

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 20050804