WO2003085345A1 - Loop-type thermosiphon and stirling refrigerator - Google Patents

Loop-type thermosiphon and stirling refrigerator Download PDF

Info

Publication number
WO2003085345A1
WO2003085345A1 PCT/JP2003/004399 JP0304399W WO03085345A1 WO 2003085345 A1 WO2003085345 A1 WO 2003085345A1 JP 0304399 W JP0304399 W JP 0304399W WO 03085345 A1 WO03085345 A1 WO 03085345A1
Authority
WO
WIPO (PCT)
Prior art keywords
evaporator
working fluid
loop
condenser
heat
Prior art date
Application number
PCT/JP2003/004399
Other languages
French (fr)
Japanese (ja)
Inventor
Hengliang Zhang
Wei Chen
Masaaki Masuda
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to BR0309143-0A priority Critical patent/BR0309143A/en
Priority to AU2003236294A priority patent/AU2003236294A1/en
Priority to US10/510,502 priority patent/US20050172644A1/en
Priority to EP03745945A priority patent/EP1493983A4/en
Priority to CA2481477A priority patent/CA2481477C/en
Priority to KR1020047015931A priority patent/KR100691578B1/en
Publication of WO2003085345A1 publication Critical patent/WO2003085345A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B23/00Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect
    • F25B23/006Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect boiling cooling systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/003General constructional features for cooling refrigerating machinery

Definitions

  • the present invention relates to a 'loop-type thermosiphon and a Stirling refrigerator using the loop-type thermosiphon. Background art,.
  • Heat sinks, heat pipes, thermosiphons, etc. are used to cool heating equipment and electronic cooling elements. Since the heat sink has a temperature distribution in the base of the heat sink to which the heat source is attached, the further away from the heat source, the less the heat contributes to heat dissipation. Heat pipes or thermosiphons are characterized by high heat transfer capacity and small temperature changes even when heat is transferred to a location far from the heat source.
  • the number of heat pipes required increases as the amount of heat transfer increases because the flow of the working fluid vapor and the liquid flow in the same pipe.
  • the heat transfer will be 10 O WS.
  • the heat transfer coefficient of the air is low.
  • a tubular thermosiphon that returns the liquid to the evaporator by gravity has the same characteristics.
  • the loop-type thermosiphon also has a structure in which the liquid condensed in the condenser by gravity returns to the evaporator.
  • the shape and size of the condenser can be designed not only according to the cooling means of the condenser, but also the evaporator can be designed according to the shape and size of the heat source. Therefore, in most cases, only two pipes, a gas pipe and a liquid pipe, connecting the condenser and the evaporator can be used. Of course, the condenser must be located higher than the evaporator.
  • the loop-type thermosiphon has a problem that the circulation flow rate is difficult to stabilize depending on the type of working fluid to be enclosed or when the heat load fluctuates within a certain range. Temperature fluctuates frequently.
  • CFC specified chlorofluorocarbon
  • HCFC-based refrigerants have been used as working fluids and secondary working fluids for cooling equipment, but CFC-based refrigerants have already been completely abolished, and HCFC-based refrigerants are also in the ozone layer. Regulated by international conventions of protection.
  • HFC-based refrigerants do not destroy the ozone layer, but are powerful warming substances with a global warming potential of several hundred to several thousand times that of carbon dioxide, and are subject to emission regulations. . Therefore, the type of refrigerant that can be selected from the viewpoint of environmental protection is also limited as the working fluid of the loop-type thermosiphon.
  • natural refrigerants that are environmentally friendly include media such as HC-based refrigerants, ammonia, carbon dioxide, water, and ethanol, and mixtures thereof.
  • the conventional loop-type thermosiphon consists of an evaporator 101 and a condenser, as shown in Fig. 5.
  • Heat source 105 is cooled in evaporator 101.
  • the condenser 103 is provided at a position higher than the evaporator 101, and the working fluid liquefied in the condenser 103 is vaporized in a gas-liquid separation tank 106 provided between the condenser and the evaporator. The liquid is separated. The liquid of the working fluid passes through the pipe 104 by gravity and is introduced into the evaporator from the lower part of the evaporator 101.
  • the working fluid that has taken heat from the heat source is vaporized in the evaporator 101, and the steam of the working fluid is passed through the pipe 102 due to the steam pressure difference between the evaporator and the condenser, and the condenser 1 Introduced at 03.
  • the evaporator 101 is designed according to the shape of the heat source.
  • the gas-liquid separation tank I ⁇ 6 is not always necessary.
  • Japanese Patent Application Laid-Open No. H11-122304 discloses a method for cooling a warm part of a Stirling refrigerator by using a liquid of a secondary refrigerant using a pump.
  • the conventional loop-type thermosiphon has a drawback that the circulation flow rate of the working fluid tends to be unstable, which causes the temperature of the heat source to fluctuate.
  • the temperature of the heat source often fluctuates drastically. If the temperature of the heat source fluctuates drastically, not only the performance of the heat source device becomes unstable, but also the heat source device may be damaged.
  • a loop-type thermosiphon is used, for example, for cooling a high-temperature portion of a Stirling refrigerator and the Stirling refrigerator is mounted in a refrigerator.
  • the heat load of refrigerators varies from season to season.
  • the heat load of the refrigerator fluctuates Also, the amount of heat radiation in the high temperature part of the Stirling refrigerator changes.
  • Loop type thermosiphons often exhibit unstable operation with fluctuating heat loads. In such a case, if the temperature of the high temperature part of the Stirling refrigerator fluctuates drastically, it is not enough that the COP (Coefficient of Performance) of the Stirling refrigerator fluctuates only. If the temperature of the high temperature part is too high, the regenerator of the Stirling refrigerator may be broken.
  • Fig. 6 shows a conventional loop-type thermosiphon evaporator that cools a cylindrical heat source.
  • This evaporator 101 has an annular shape to cool the cylindrical heat source 105, and the cylindrical heat source 105 is fitted into the hole of the evaporator and closely adheres to the surface of the hole of the evaporator. are doing.
  • An internal fin (not shown) is provided on the surface of the hole of the evaporator to increase the evaporation area.
  • the liquid from the condenser flows from the lower part of the evaporator through the pipe 104 to the liquid pool 1 211, and the vaporized vapor flows out of the upper part of the evaporator through the pipe 102 to the condenser. .
  • Figure 7 shows the change in the heat source temperature during the experimental operation of the loop-type thermosiphon using the evaporator and piping structure shown in Fig. 6 and filled with water as the working fluid.
  • the heat value of the heat source falls below 75% of the design load, the temperature of the heat source fluctuates as shown in Fig. 7. No improvement was observed even when the amount of working fluid was changed.
  • An object of the present invention is to provide a loop-type thermosiphon that can stably maintain the temperature of a high-temperature heat source even if the fluctuation of the heat load is large, and a Stirling refrigerator equipped with the loop-type thermosiphon.
  • the loop-type thermosiphon of the present invention is a loop-type thermosiphon that uses a working fluid to transfer heat from a high-temperature heat source.
  • the loop-type thermosiphon has a heat absorbing section, an evaporator that removes heat from the high-temperature heat source through the heat absorbing section to evaporate the working fluid, and that is located at a position higher than the high-temperature heat source and evaporates by the evaporator.
  • a condenser for condensing the working fluid and a pipe connecting the evaporator and the condenser so as to form a loop. Then, the working fluid that has passed through the condenser is brought into contact with the heat absorbing section before the working fluid accumulates in the liquid pool of the working fluid in the evaporator. .
  • FIG. 1 is a basic configuration diagram of a loop-type thermosiphon according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram showing a modification of the loop-type thermosiphon according to the first embodiment of the present invention. .
  • FIG. 3 is a diagram showing a Stirling refrigerator according to Embodiment 2 of the present invention.
  • FIG. 4 is a diagram showing the stability of the heat source temperature when the loop thermosiphon according to Embodiment 3 of the present invention is used.
  • FIG. 5 is a diagram showing a configuration of a general loop-type thermosiphon.
  • FIG. 6 is a diagram showing a conventional loop-type thermosiphon evaporator.
  • FIG. 7 is a diagram showing a change in heat source temperature when a conventional loop-type thermosiphon is used. '' Best mode for carrying out the invention
  • FIG. 1 is a conceptual diagram illustrating a basic configuration of a loop-type thermosiphon according to Embodiment 1 of the present invention.
  • the loop-type thermosiphon shown in Fig. 1 has an evaporator 1, a condenser 3, a gas pipe 2 that is a pipe from the evaporator 1 to the condenser 3, and a liquid pipe 4 that is a pipe from the condenser 3 to the evaporator 1. It is composed of
  • the high-temperature heat source 5 to be cooled has a cylindrical heat radiation surface
  • the generator has an annular shape provided with a round hole of the same size corresponding to the cylindrical heat radiation surface of the heat source.
  • the condenser 3 is a fin-tube type, in which a working fluid flows inside the pipe, and outside the pipe, air flows to cool the working fluid.
  • the working fluid pipe of the condenser can be parallel flow type (Parallel Flow) type or Serpentine type.
  • the condenser is installed with the gas inlet higher than the condensed liquid outlet.
  • the gas pipe 2 from the evaporator 1 to the condenser 3 uses a thicker pipe than the liquid pipe 4 from the condenser to the evaporator. For this reason, the flow resistance of the gas pipe 2 is made smaller than the flow resistance of the liquid pipe 4. This is to prevent backflow of the working fluid and difficulty in starting.
  • the diameter of the liquid pipe was determined based on the design heat load and the thermophysical properties of the working fluid. In order to form a thermosiphon, the condenser 3 is positioned higher than the evaporator 1.
  • pure water is sealed as a working fluid.
  • Fill the liquid with 13 to 2 Z3, which is the total volume of liquid that can be stored in the condenser (for example, the header pipe at the condenser outlet), the volume of the liquid pipe, and the volume of the evaporator.
  • the remaining volume is filled with the saturated steam of the working fluid at the working temperature, and the mass of the working fluid is defined as the sealed volume.
  • the operation of the working fluid can be made smooth by this amount of sealing.
  • water takes heat from the high-temperature heat source 5 in the evaporator 1 and evaporates.
  • the steam evaporated in the evaporator 1 flows into the condenser 3 through the gas pipe 2 by utilizing the difference in steam pressure due to the temperature difference between the condenser 3 and the evaporator 1, and transfers heat to the air outside the pipe. It is deprived and condensed.
  • the liquid condensed in the condenser 3 returns to the evaporator 1 again through the liquid pipe 4 by gravity. In this way, the process in which the working fluid circulates, absorbs heat in the evaporator, and releases heat in the condenser is repeated.
  • the liquid from the condenser is introduced from the upper part of the evaporator as shown in FIG. 1, instead of being introduced from the lower part of the evaporator (see FIG. 5). It is here.
  • cold liquid is supplied to the lower part of the evaporator. For this reason, the influence of the temperature gradient in the liquid stored in the evaporator on the flow is small, and the evaporation is not promoted.
  • the loop-type thermosiphon according to the present embodiment shown in FIG. 1 is configured such that the liquid from the condenser is introduced from the upper part of the evaporator so that the liquid having a supercooling degree is first heated to a high-temperature heat absorbing portion or an internal portion (not shown). Preheated by falling into fins. The inner fin is attached to the heat absorbing part and is formed toward the inside of the evaporator. 'This makes it easier for the liquid stored in the evaporator to evaporate.
  • the cooler liquid enters from above the liquid level in the evaporator and tries to move downward by the force of gravity due to the difference in density, the liquid in the evaporator is stirred and the evaporation is promoted. Bubbles adhering to the heat transfer surface will peel off and break easily.
  • the loop-type thermosiphon according to the present embodiment can obtain a stable heat source temperature even under conditions away from the designed heat load.
  • the loop-type thermosiphon shown in FIG. 1 does not have a gas-liquid separation tank.
  • a gas-liquid separation tank 6 may be provided between the condenser and the evaporator as shown in FIG. However, when determining the amount to be filled, the internal volume of the gas-liquid separation tank should be considered as a part of the liquid pipe. Providing a gas-liquid separation tank may be effective for the stable operation of a loop-type thermosiphon. By adding 60 ° / 0 or less ethanol to the working fluid, the permissible ambient temperature for operation and transportation can be reduced.
  • FIG. 3 is a conceptual diagram of a staring refrigerator according to Embodiment 2 of the present invention equipped with a loop-type thermosiphon.
  • the Stirling refrigerator shown in Fig. 3 has a Stirling refrigerator, a loop-type thermosiphon attached to the cooling of the high-temperature part of the Stirling refrigerator, and the cold heat of the low-temperature part of the Stirling refrigerator, which is installed in the refrigerator main body 19. It consists of a side heat exchange system and a refrigerator body.
  • the low-temperature side heat exchange system is also a loop-type thermosiphon, but is a loop-type thermosiphon not covered by the present embodiment.
  • a Stirling refrigerator 11 having a columnar high temperature part and a low temperature part is arranged on the back of the refrigerator.
  • a loop-type thermosiphon that cools the high-temperature section 13 of the Stirling refrigerator Attach the generator 1 to the high-temperature part of the Stirling refrigerator and bring it into close contact.
  • the condenser '3 is placed on the refrigerator body, and the evaporator 1 and the condenser 3 are connected by a pipe as shown in Fig. 1, so that the loop-type thermosiphon according to the present embodiment can be used in the Stirling refrigerator.
  • the skin tube 4 is inserted into the evaporator 1 from above.
  • the working fluid is filled with pure water or a mixture of pure water and ethanol.
  • Refrigerator cooler 15 is installed inside the cool air duct.
  • the temperature of the high temperature part 13 of the Stirling refrigerator rises, the working fluid is heated by the evaporator 1 and evaporates, and flows into the condenser 3 through the gas pipe 2.
  • the air outside the refrigerator is introduced by the rotation of the fan 7, and the working fluid gas from the evaporator 1 is cooled by the condenser 3 and condensed.
  • the working fluid liquefied in the condenser 3 returns to the evaporator 1 by gravity through the liquid pipe 4 and the inlet pipe 4a.
  • the liquefied working fluid returns to the evaporator 1, it contacts the heat absorbing portion 1a of the evaporator and / or the internal fin (not shown) to exchange heat.
  • the natural circulation of the working fluid is performed, and the heat of the Stirling refrigerator 11 is transmitted to the air outside the refrigerator.
  • the operation of the Stirling refrigerator 11 lowers the temperature of the low temperature section 12 and the secondary refrigerant of the heat exchange system flowing through this low temperature section loses heat.
  • the secondary refrigerant of this low-temperature side heat exchange system absorbs heat from the air in the refrigerator by the rotation of the cooling fan 16 in the refrigerator cooler. Above the cooling fan, a damper 17 is arranged.
  • the secondary refrigerant of the low-temperature side heat exchange system naturally circulates by gravity.
  • a circulation means using a pump may be used.
  • the cold heat of the Stirling refrigerators 1 and 1 is continuously provided to the air in the refrigerator.
  • drain water formed by defrosting the refrigerator cooler 15 is discharged from the drain water outlet 18.
  • FIG. 4 is a diagram showing temperature fluctuations of a high-temperature heat source when the loop-type thermosiphon according to Embodiment 3 of the present invention is used.
  • the loop-type thermosyphon according to the present embodiment is configured to return the liquid to the evaporator in the conventional loop-type thermosiphon shown in FIG. It is a device that simply changes the way it is connected. That is, the condensed working fluid is not directly introduced into the liquid pool, but is returned so as to come into contact with the heat absorbing portion that is not in contact with the liquid pool.
  • the time lapse of the high-temperature heat source temperature shown in Fig. 4 is the effect obtained under the same heat load conditions as the conventional loop-type thermosiphon. Compared to the large temperature fluctuation of the heat source in the conventional loop-type thermosiphon shown in Fig. 7, a stable temperature transition can be obtained.
  • a loop-type thermosiphon for transferring heat from a high-temperature heat source having a heat-radiating surface, comprising: an evaporator for removing heat from the high-temperature heat source; a condenser disposed above the heat source; A pipe connecting the evaporator and the condenser is provided to form the air, the working fluid is sealed, and when the working fluid liquid from the condenser is introduced into the evaporator, it is dropped on the heat absorbing part to exchange heat.
  • an internal fin is provided in a heat absorbing portion in an evaporator constituting the loop-type thermosiphon, and a liquid of a working fluid condensed in the condenser is supplied to the evaporator. It is introduced into the evaporator so as to fall from the upper part into the heat absorbing portion and the internal fins in the evaporator.
  • the evaporator may have a box shape, or may have a semi-circular shape in combination to form a ring. Further, other shapes may be combined.
  • the heat absorbing section may be formed in a cylindrical shape or a hole so as to receive a high-temperature heat source.
  • the working fluid can be preheated by utilizing the heat from the upper half of the cylindrical heat-dissipating surface of the high-temperature heat source, which does not emit as much heat as the lower half inside the evaporator. And the temperature of the high-temperature heat source can be stabilized.
  • the flow resistance of the gas pipe for guiding the vapor evaporated by the evaporator to the condenser is determined by the flow of the liquid pipe for guiding the liquid condensed by the condenser to the evaporator. Make it smaller than resistance. With this configuration, it is possible to prevent the backflow of the working fluid and the difficulty in starting the working fluid seen in the thermosiphon.
  • the flow resistance of the pipe is reduced if the transfer heat is large, and the flow resistance of the liquid pipe is reduced if the transfer heat is small. It is better to increase the flow resistance.
  • a more stable circulating flow rate of the working fluid can be obtained.
  • a reference value of the amount of heat transferred for example, a design load of 75 ° / ⁇ can be used. In other words, when the heat value of the heat source is 75% or less of the design load, the flow resistance of the above piping is increased, and when it exceeds 75%, the flow resistance of the above piping is reduced.
  • Other reference values for example, a value such as 50% of the design load, may be used.
  • the amount of the working fluid to be filled is 1 mm of the volume capable of storing the liquid in the condenser at the operating temperature, the volume of the liquid pipe (pipe), and the volume of the evaporator. It is possible to fill 3 to 2 33 with liquid and fill the remaining volume with the saturated steam of the working fluid at the working temperature and fill the mass of the working fluid. With this configuration, problems caused by the amount of working fluid enclosed can be eliminated.
  • the loop-type thermosiphon uses a natural refrigerant such as carbon dioxide gas, water, or hydrated carbon as a working fluid, and can provide an environmentally friendly heat exchange technique.
  • a natural refrigerant such as carbon dioxide gas, water, or hydrated carbon
  • water as the working fluid
  • a highly safe loop-type thermosiphon with no toxicity or flammability can be obtained.
  • the evaporator of the loop-type thermosiphon exchanges heat with a high-temperature portion of the Stirling refrigerator.
  • both can be brought into close contact with each other, and the condenser can be placed at a higher temperature than the high temperature part of the stirling refrigerator of the refrigerator.
  • loop thermosiphon of the broadest embodiment of the present invention does not need to have the effects of the above embodiments. Good.
  • Loop type thermosa of the widest embodiment of the present invention The microphone need only have an effect of operating stably in response to the load fluctuation of the heat source.
  • the loop-type thermosiphon by this effort can absorb the fluctuation of the heat load of the heat source and operate stably.
  • the above-mentioned loop-type thermosiphon is used to cool the high-temperature part of a Stirling refrigerator, for example, in refrigerators that use a Stirling refrigerator that does not use Freon and emits no warming gas, as a cooling device. It is expected to contribute to secure stable refrigeration performance.

Abstract

A loop-type thermosiphon that is operable stably independently of fluctuation in thermal load, and a Stirling refrigerator using the loop-type thermosiphon. A loop-type thermosiphon where heat is carried by a working fluid from a high temperature heat source (5) has a heat absorption unit (1a), an evaporator (1) that takes away heat from the high temperature heat source through the heat absorption unit and evaporates the working fluid, a condenser (3) located at a higher place than the high temperature heat source and condenses the working fluid evaporated in the evaporator, and pipes (2, 4) inter connecting the evaporator and the condenser so as to form a loop. The working fluid (22) passed through the condenser (3) is brought into contact with the heat absorption unit (1a) before the fluid is stayed in a liquid container (21) for the working fluid so that heat exchange is carried out.

Description

明細書 ループ型サーモサイホンおよびスターリング冷蔵庫 技術分野  Description Loop-type thermosiphon and Stirling refrigerator
本発明は、'ループ型サーモサイホンおよびそのループ型サーモサイホンを用い - たスターリング冷蔵庫に関するものである。 背景技術, .  The present invention relates to a 'loop-type thermosiphon and a Stirling refrigerator using the loop-type thermosiphon. Background art,.
発熱機器や電子冷却素子などの冷却に、 ヒ トシンク、 ヒートパイプ、 サーモ サイホン等が用いられている。 ヒートシンクは熱源を取り付けたヒートシンクの ベース部に温度分布ができるため、 熱源から離れれば離れるほど、 放熱に寄与し なくなる。 ヒ一トパイプまたはサーモサイホンは、 熱搬送能力が高く、 熱源から 離れたところまで熱を伝達しても温度変化が小さい特徴がある。  Heat sinks, heat pipes, thermosiphons, etc., are used to cool heating equipment and electronic cooling elements. Since the heat sink has a temperature distribution in the base of the heat sink to which the heat source is attached, the further away from the heat source, the less the heat contributes to heat dissipation. Heat pipes or thermosiphons are characterized by high heat transfer capacity and small temperature changes even when heat is transferred to a location far from the heat source.
し力 し、 ヒートパイプは、 作動流体の蒸気と液の流れが同じ管内にて行われる ので、'伝熱量が大きい場合には、 必要な本数が増える。 たとえば、 外径 1 5 . 8 mm, 長さ 3 0 O mmのヒートパイプでは、 温度差を 5 °Cとすると、 伝熱量が 1 0 O WS度となる。 また、 最終的に熟を大気環境に放出する必要がある場合、 空 気の熱伝達率が低いため、 空気との熱交換にはヒートパイプの凝縮部に大きな伝 熱面積をもつものを設けなければならない。 同様に、 重力によって液が蒸発部ま で戻る管状サ一モサイホンも同じ特徴を持つ。  However, the number of heat pipes required increases as the amount of heat transfer increases because the flow of the working fluid vapor and the liquid flow in the same pipe. For example, in a heat pipe with an outer diameter of 15.8 mm and a length of 30 O mm, if the temperature difference is 5 ° C, the heat transfer will be 10 O WS. Also, when it is necessary to finally release the ripening into the atmosphere, the heat transfer coefficient of the air is low. Must. Similarly, a tubular thermosiphon that returns the liquid to the evaporator by gravity has the same characteristics.
—方、 ループ型サーモサイホンも重力によって凝縮器で凝縮した液が蒸発器に 戻る構造を有する。 しカゝし、 凝縮器の形状と大きさは、 凝縮器の冷却手段に合わ せて設計できるだけでなく、 また蒸発器も熱源の形状と大きさに合わせて設計で きる。 このため、 ほとんどの場合は凝縮器と蒸発器とを接続するガス管と液管と の二本のパイプで済ませることができる。 もちろん、 凝縮器を蒸発器より高い位 置に設置する必要がある。  -On the other hand, the loop-type thermosiphon also has a structure in which the liquid condensed in the condenser by gravity returns to the evaporator. However, the shape and size of the condenser can be designed not only according to the cooling means of the condenser, but also the evaporator can be designed according to the shape and size of the heat source. Therefore, in most cases, only two pipes, a gas pipe and a liquid pipe, connecting the condenser and the evaporator can be used. Of course, the condenser must be located higher than the evaporator.
しかしながら、 ループ型サーモサイホンは、 封入する作動流体の種類によって、 または熱負荷がある範囲において変動する場合、 循環流量が安定しにくく、 熱源 の温度が激しく変動することが多い。 周知のように、 C F C (特定フロン) およ び H C F C系冷媒が冷却機器の作動流体や二次作動流体として使われてきたが、 C F C系冷媒がすでに全廃されており、 H C F C系冷媒もオゾン層保護の国際条 約に規制されている。 また、 新しく開発された H F C系冷媒は、 オゾン層を破壊 しないが、 地球温暖化係数が二酸化炭素の数百から数千倍以上という強力な温暖 化物質であり、 排出規制の対象となっている。 したがって、 ループ型サーモサイ ホンの作動流体としても、 環境保護の視点から選択できる冷媒の種類が限られて きている。 環境に優しいいわゆる自然冷媒は、 たとえば、 H C系冷媒、 アンモニ ァ、 二酸化炭素、 水、 エタノールなどの媒質およびこれらの混合物が挙げられる。 従来のループ型サーモサイホンは、 図 5に示すように、 蒸発器 1 0 1、 凝縮器However, the loop-type thermosiphon has a problem that the circulation flow rate is difficult to stabilize depending on the type of working fluid to be enclosed or when the heat load fluctuates within a certain range. Temperature fluctuates frequently. As is well known, CFC (specified chlorofluorocarbon) and HCFC-based refrigerants have been used as working fluids and secondary working fluids for cooling equipment, but CFC-based refrigerants have already been completely abolished, and HCFC-based refrigerants are also in the ozone layer. Regulated by international conventions of protection. In addition, newly developed HFC-based refrigerants do not destroy the ozone layer, but are powerful warming substances with a global warming potential of several hundred to several thousand times that of carbon dioxide, and are subject to emission regulations. . Therefore, the type of refrigerant that can be selected from the viewpoint of environmental protection is also limited as the working fluid of the loop-type thermosiphon. Examples of so-called natural refrigerants that are environmentally friendly include media such as HC-based refrigerants, ammonia, carbon dioxide, water, and ethanol, and mixtures thereof. The conventional loop-type thermosiphon consists of an evaporator 101 and a condenser, as shown in Fig. 5.
1 0 3、 気液分離タンク 1 0 6を配管 1 0 2 , 1 0 4により接続して構成されて いる。 熱源、 1 0 5は蒸発器 1 0 1の中で冷却される。 凝縮器 1 0 3は蒸発器 1 0 1より高い位置に設けられ、 凝縮器 1 0 3で液化した作動流体は、 凝縮器と蒸発' 器の間に設けた気液分離タンク 1 0 6で気液分離される。 作動流体の液は、 重力 によって配管 1 0 4を通り、 蒸発器 1 0 1の下部から蒸発器に導入される。 さら に、 熱源から熱を奪った作動流体は蒸発器 1 0 1で気化し、 作動流体の蒸気は蒸 発器と凝縮器との間の蒸気圧力差により配管 1 0 2を通って凝縮器 1 0 3に導入 される。 ほとんどの場合は、 熱源の形状に合わせて蒸発器 1 0 1を設計する。 図 5において、 気液分離タンク I◦ 6は必ずしも必要なものではない。 103 and the gas-liquid separation tank 106 are connected by pipes 102 and 104. Heat source 105 is cooled in evaporator 101. The condenser 103 is provided at a position higher than the evaporator 101, and the working fluid liquefied in the condenser 103 is vaporized in a gas-liquid separation tank 106 provided between the condenser and the evaporator. The liquid is separated. The liquid of the working fluid passes through the pipe 104 by gravity and is introduced into the evaporator from the lower part of the evaporator 101. Furthermore, the working fluid that has taken heat from the heat source is vaporized in the evaporator 101, and the steam of the working fluid is passed through the pipe 102 due to the steam pressure difference between the evaporator and the condenser, and the condenser 1 Introduced at 03. In most cases, the evaporator 101 is designed according to the shape of the heat source. In Figure 5, the gas-liquid separation tank I◦6 is not always necessary.
また、 スターリング冷凍機の髙温部の冷却には、 ポンプを使った二次冷媒の液 による方法が特開平 1 1一 2 2 3 4 0 4号公報に開示されている。  Japanese Patent Application Laid-Open No. H11-122304 discloses a method for cooling a warm part of a Stirling refrigerator by using a liquid of a secondary refrigerant using a pump.
しかしながら、 従来のループ型サ一モサイホンは、 作動流体の循環流量が不安 定になりやすく、 これにより熱源の温度が変動する欠点があった。 とくに、 設計 の目標負荷から離れた負荷で運転すると、 熱源の温度が激しく変動することが多 い。 熱源の温度が激しく変動すると、 熱源機器の性能が不安定になるだけでなく、 熱源機器にダメージを与えることもある。  However, the conventional loop-type thermosiphon has a drawback that the circulation flow rate of the working fluid tends to be unstable, which causes the temperature of the heat source to fluctuate. In particular, when operating at a load away from the design target load, the temperature of the heat source often fluctuates drastically. If the temperature of the heat source fluctuates drastically, not only the performance of the heat source device becomes unstable, but also the heat source device may be damaged.
ここで、 ループ型サーモサイホンを、 たとえばスターリング冷凍機の高温部の 冷却に利用し、 このスターリング冷凍機を冷蔵庫に搭载する場合を想定する。 周 知のように、 冷蔵庫の熱負荷は季節により変動する。 冷蔵庫の熱負荷が変動する と、 スターリング冷凍機の高温部の放熱量も変わる。 ループ型サーモサイホンに は変動する熱負荷での不安定な作動がよく見られる。 このような場合、 スターリ ング冷凍機の高温部の温度が激しく変動すると、 スターリング冷凍機の C O P (Coefficient of Performance)が変動するだけではすまない。 高温部の温度が髙 すぎると、 スターリング冷凍機の再生器が壊れることもある。 Here, it is assumed that a loop-type thermosiphon is used, for example, for cooling a high-temperature portion of a Stirling refrigerator and the Stirling refrigerator is mounted in a refrigerator. As is well known, the heat load of refrigerators varies from season to season. The heat load of the refrigerator fluctuates Also, the amount of heat radiation in the high temperature part of the Stirling refrigerator changes. Loop type thermosiphons often exhibit unstable operation with fluctuating heat loads. In such a case, if the temperature of the high temperature part of the Stirling refrigerator fluctuates drastically, it is not enough that the COP (Coefficient of Performance) of the Stirling refrigerator fluctuates only. If the temperature of the high temperature part is too high, the regenerator of the Stirling refrigerator may be broken.
図 6に示すのは、 円柱状の形状を有する熱源を冷却する従来のループ型サーモ サイホンの蒸発器である。 この蒸発器 1 0 1は円柱状の熱源 1 0 5を冷やすため 環状の形をしており、 円柱状の熱源 1 0 5は蒸発器の孔部に嵌め込んで蒸発器の 孔の面と密着している。 蒸発器の孔の面には、 蒸発面積を増やすための内部フィ ン (図示せず) が設けられている。 凝縮器からの液が蒸発器の下部から配管 1 0 4を経て液溜まり 1 2 1の中に流入し、 気化した蒸気が蒸発器の上部から配管 1 0 2を搔て凝縮器へと流出する。  Fig. 6 shows a conventional loop-type thermosiphon evaporator that cools a cylindrical heat source. This evaporator 101 has an annular shape to cool the cylindrical heat source 105, and the cylindrical heat source 105 is fitted into the hole of the evaporator and closely adheres to the surface of the hole of the evaporator. are doing. An internal fin (not shown) is provided on the surface of the hole of the evaporator to increase the evaporation area. The liquid from the condenser flows from the lower part of the evaporator through the pipe 104 to the liquid pool 1 211, and the vaporized vapor flows out of the upper part of the evaporator through the pipe 102 to the condenser. .
図 6に示す蒸発器と配管構造とを用い、 作動流体として水を封入したループ型 サーモサイホンの実験運転における熱源温度の変化を図 7に示す。 熱源の発熱量 が設計負荷の 7 5 %以下になると、 図 7に示したような熱源の温度変動が起こる。 作動流体の封入量を変えても改善が認められなかった。  Figure 7 shows the change in the heat source temperature during the experimental operation of the loop-type thermosiphon using the evaporator and piping structure shown in Fig. 6 and filled with water as the working fluid. When the heat value of the heat source falls below 75% of the design load, the temperature of the heat source fluctuates as shown in Fig. 7. No improvement was observed even when the amount of working fluid was changed.
本発明は、 熱負荷の変動が大きくても、 高温熱源の温度を安定に維持すること ができるループ型サーモサイホンおよびそのループ型サーモサイホンを装備した スターリング冷蔵庫を提供することを目的とする。 発明の開示 .  An object of the present invention is to provide a loop-type thermosiphon that can stably maintain the temperature of a high-temperature heat source even if the fluctuation of the heat load is large, and a Stirling refrigerator equipped with the loop-type thermosiphon. DISCLOSURE OF THE INVENTION.
本発明のループ型サーモサイホンは、 作動流体を用いて高温熱源から熱を搬送 するループ型サ一モサイホンである。 そのループ型サ一モサイホンは、 吸熱部を 有し、 その吸熱部を介して高温熱源から熱を奪い作動流体を蒸発させる蒸発器と、 高温熱源よりも高い位置に位置し、 蒸発器で蒸発した作動流体を凝縮させる凝縮 器と、 ループを形成するように蒸発器と凝縮器とを接続する配管とを備える。 そ して、 凝縮器を経た作動流体を、 蒸発器の作動流体の液溜まりに溜まる前に吸熱 部に接触させる。 .  The loop-type thermosiphon of the present invention is a loop-type thermosiphon that uses a working fluid to transfer heat from a high-temperature heat source. The loop-type thermosiphon has a heat absorbing section, an evaporator that removes heat from the high-temperature heat source through the heat absorbing section to evaporate the working fluid, and that is located at a position higher than the high-temperature heat source and evaporates by the evaporator. A condenser for condensing the working fluid; and a pipe connecting the evaporator and the condenser so as to form a loop. Then, the working fluid that has passed through the condenser is brought into contact with the heat absorbing section before the working fluid accumulates in the liquid pool of the working fluid in the evaporator. .
この構成により、 冷却された作動流体がそのまま液溜まりに供給されずに吸熱 部で予熱された後に、 上から重力作用で供給される。 このため、 液溜まりで流動 が生じるし、 また、 液溜まりも含めた作動流体全体の蒸発が促進される。 導入さ れ、 まず吸熱部で熱交換する作動流体の蒸発も確実に促進されることは言うまで もない。 このため、 高温熱源部の温度分布を均一化することができる。 さらに、 . 吸熱部などに付着した気泡の離脱を促進させることができる。 このため、 熱負荷 の変動に対応して熱交換を行うことができ、 高温熱源温度などを安定化すること ができる。 図面の簡単な説明 ' 図 1は、 本発明の実施の形態 1におけるループ型サーモサイホンの基本構成図 である。 ' 図 2は、 本発明の実施の形態 1におけるループ型サーモサイホンの変形例を示 す図である。 . With this configuration, the cooled working fluid absorbs heat without being supplied to the liquid pool as it is. After being preheated in the section, it is supplied by gravity from above. For this reason, a flow occurs in the liquid pool, and the evaporation of the entire working fluid including the liquid pool is promoted. It goes without saying that the introduction of the working fluid, which first exchanges heat in the heat absorbing section, is also surely promoted. Therefore, the temperature distribution of the high-temperature heat source can be made uniform. Further, the detachment of air bubbles adhering to the heat absorbing portion can be promoted. Therefore, heat exchange can be performed in response to fluctuations in the heat load, and the high-temperature heat source temperature and the like can be stabilized. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a basic configuration diagram of a loop-type thermosiphon according to Embodiment 1 of the present invention. FIG. 2 is a diagram showing a modification of the loop-type thermosiphon according to the first embodiment of the present invention. .
図 3は、 本発明の実施の形態 2におけるスターリング冷蔵庫を示す図である。 図 4は、 本発明の実施の形態 3におけるループ型サーモサイホンを用いた場合 の熱源温度の安定度を示す図である。  FIG. 3 is a diagram showing a Stirling refrigerator according to Embodiment 2 of the present invention. FIG. 4 is a diagram showing the stability of the heat source temperature when the loop thermosiphon according to Embodiment 3 of the present invention is used.
図 5は、 一般的なループ型サーモサイホンの構成を示す図である。  FIG. 5 is a diagram showing a configuration of a general loop-type thermosiphon.
図 6は、 従来のループ型サーモサイホンの蒸発器を示す図である。  FIG. 6 is a diagram showing a conventional loop-type thermosiphon evaporator.
図 7は、 従来のループ型サーモサイホンを用いた場合の熱源温度の変動を示す 図である。 ' 発明を実施するための最良の形態  FIG. 7 is a diagram showing a change in heat source temperature when a conventional loop-type thermosiphon is used. '' Best mode for carrying out the invention
以下、 本発明の実施の形態について図面に基づいて説明する。 '  Hereinafter, embodiments of the present invention will be described with reference to the drawings. '
(実施の形態 1 )  (Embodiment 1)
図 1は、 本発明の実施の形態 1におけるループ型サーモサイホンの基本構成を 説明する概念図である。 図 1に示すループ型サーモサイホンは、 蒸発器 1、 凝縮 器 3、 蒸発器 1から凝縮器 3にいたる配管であるガス管 2と、 凝縮器 3から蒸発 器 1にいたる配管である液管 4とから構成されている。 本実施の形態においては、 図 1に示すように、 冷却される高温熱源 5が筒状の放熱面を有しているため、 蒸 発器は熱源の筒状放熱面に合わせた同寸法の丸い孔を設けた環状の形をしている。 さらに、 接触熱抵抗を小さくする目的で蒸発器の孔の面を熱源 5の筒状放熱面と 密着させている。 凝縮器 3は、 フィン一チューブ型であり、 管内を作動流体が流 れ、 管外では空気を流してその作動流体を冷却する。 FIG. 1 is a conceptual diagram illustrating a basic configuration of a loop-type thermosiphon according to Embodiment 1 of the present invention. The loop-type thermosiphon shown in Fig. 1 has an evaporator 1, a condenser 3, a gas pipe 2 that is a pipe from the evaporator 1 to the condenser 3, and a liquid pipe 4 that is a pipe from the condenser 3 to the evaporator 1. It is composed of In the present embodiment, as shown in FIG. 1, since the high-temperature heat source 5 to be cooled has a cylindrical heat radiation surface, The generator has an annular shape provided with a round hole of the same size corresponding to the cylindrical heat radiation surface of the heat source. Further, the surface of the hole of the evaporator is brought into close contact with the cylindrical heat radiation surface of the heat source 5 for the purpose of reducing the contact thermal resistance. The condenser 3 is a fin-tube type, in which a working fluid flows inside the pipe, and outside the pipe, air flows to cool the working fluid.
凝縮器の作動流体パイプはパラレルフ口一 (Parallel Flow)型またはサーペンタ ィン (Serpentine)型のレ、ずれでもよレ、。 凝縮器を、 ガスの導入口が凝縮した液の出 口よりも高く、 設置している。 蒸発器 1から凝縮器 3.にいたるガス管 2は、 凝縮 器から蒸発器にいたる液管 4より太いパイプを使用している。 このためガス管 2 の流動抵抗は液管 4の流動抵抗より小さくされている。 これは、 作動流体の逆流 や起動しにくさを防ぐためである。 液管の管径は設計熱負荷と作動流体の熱物性 に基づいて決めた。 サーモサイホンを形成するために、 凝縮器 3を蒸発器 1より 位置的に高いところに配置している。  The working fluid pipe of the condenser can be parallel flow type (Parallel Flow) type or Serpentine type. The condenser is installed with the gas inlet higher than the condensed liquid outlet. The gas pipe 2 from the evaporator 1 to the condenser 3 uses a thicker pipe than the liquid pipe 4 from the condenser to the evaporator. For this reason, the flow resistance of the gas pipe 2 is made smaller than the flow resistance of the liquid pipe 4. This is to prevent backflow of the working fluid and difficulty in starting. The diameter of the liquid pipe was determined based on the design heat load and the thermophysical properties of the working fluid. In order to form a thermosiphon, the condenser 3 is positioned higher than the evaporator 1.
本実施の形態においては、 作動流体として純水を封入した。 凝縮器に液が溜ま る可能な容積 (たとえば、 凝縮器出口のヘッダパイプ等) と、 液管の容積と、 蒸 発器容積との合計容積の 1 3〜2 Z 3を液で充満させ、 さらに残った容積を作 動温度における作動流体の飽和蒸気で充満させた作動流体の質量を封入量とする。 この封入量により、 作動流体の作動を円滑にすることができる。  In the present embodiment, pure water is sealed as a working fluid. Fill the liquid with 13 to 2 Z3, which is the total volume of liquid that can be stored in the condenser (for example, the header pipe at the condenser outlet), the volume of the liquid pipe, and the volume of the evaporator. The remaining volume is filled with the saturated steam of the working fluid at the working temperature, and the mass of the working fluid is defined as the sealed volume. The operation of the working fluid can be made smooth by this amount of sealing.
作動に関しては、 図 1に示すように、 蒸発器 1で水が高温熱源 5から熱を奪い、 蒸発する。 蒸発器 1で蒸発した蒸気は、 凝縮器 3と蒸発器 1との温度差による蒸 気圧の差を利用してガス管 2を通って、 凝縮器 3に流入し、 管外の空気に熱を奪 われて凝縮する。 凝縮器 3で凝縮した液は、 重力によって液管 4を通って再び蒸 発器 1に戻る。 このように、 作動流体が循環し、 蒸発器で吸熱して凝縮器で放熱 する過程を繰り返す。  As for the operation, as shown in FIG. 1, water takes heat from the high-temperature heat source 5 in the evaporator 1 and evaporates. The steam evaporated in the evaporator 1 flows into the condenser 3 through the gas pipe 2 by utilizing the difference in steam pressure due to the temperature difference between the condenser 3 and the evaporator 1, and transfers heat to the air outside the pipe. It is deprived and condensed. The liquid condensed in the condenser 3 returns to the evaporator 1 again through the liquid pipe 4 by gravity. In this way, the process in which the working fluid circulates, absorbs heat in the evaporator, and releases heat in the condenser is repeated.
. 本発明の実施の形態の特徴の 1つは、 凝縮器からの液を蒸発器の下部から導入 する (図 5参照) のではなく、 図 1に示すように、 蒸発器の上部から導入するこ とにある。 図 4および図 5に示す従来のサーモサイホンの構成では、 冷たい液が 蒸発器の下部に補給される。 このため、 蒸 器に溜まっている液内の温度勾配に よる流れへの影響が小さく、 蒸発促進にならない。 蒸努器が設計熱負荷から離れ た条件下で、 とくに小さい熱負荷の条件下で作動すると、 伝熱面に付着する気泡 の成長時間が長くなり、 蒸努器にさらに液が溜まり、 気泡は脱出しにくくなる。 このように、 従来のサーモサイホンは、 作動流体の循環流量が変化し、 または一 時的に止まることにより、 熱源に激しい温度変動が生じる (図 7参照) 。 One of the features of the embodiment of the present invention is that the liquid from the condenser is introduced from the upper part of the evaporator as shown in FIG. 1, instead of being introduced from the lower part of the evaporator (see FIG. 5). It is here. In the configuration of the conventional thermosiphon shown in FIGS. 4 and 5, cold liquid is supplied to the lower part of the evaporator. For this reason, the influence of the temperature gradient in the liquid stored in the evaporator on the flow is small, and the evaporation is not promoted. When the steamer is operated at a distance from the design heat load, especially under a small heat load, bubbles adhering to the heat transfer surface The growth time of the elongation is prolonged, more liquid accumulates in the steamer, and bubbles are hard to escape. As described above, in the conventional thermosiphon, the circulating flow rate of the working fluid changes or temporarily stops, causing a severe temperature fluctuation in the heat source (see Fig. 7).
図 1に示す本実施の形態によるループ型サーモサイホンは、 凝縮器からの液を 蒸発器の上部から導入することにより、 過冷却度を持った液がまず高温の吸熱部 または図示していない内部フィンに落ちて予熱される。 内部フィンは吸熱部に取 り付けられ、 蒸発器内に向けて形成される。' このため、 蒸発器に溜まっている液 が蒸発しやすくなる。 また、 より冷たい液が蒸発器内の液面の上から入ることに よって、 密度の差による重力の力で下方へ移動しょうとするから、 蒸発器内の液 が撹拌されて蒸発が促進し、 伝熱面に付着している気泡が剥離して破泡しやすく なる。 こうして、 本実施の形態によるループ型サーモサイホンは、 設計熱負荷か ら離れた条件下でも、 安定な熱源温度が得られる。  The loop-type thermosiphon according to the present embodiment shown in FIG. 1 is configured such that the liquid from the condenser is introduced from the upper part of the evaporator so that the liquid having a supercooling degree is first heated to a high-temperature heat absorbing portion or an internal portion (not shown). Preheated by falling into fins. The inner fin is attached to the heat absorbing part and is formed toward the inside of the evaporator. 'This makes it easier for the liquid stored in the evaporator to evaporate. In addition, since the cooler liquid enters from above the liquid level in the evaporator and tries to move downward by the force of gravity due to the difference in density, the liquid in the evaporator is stirred and the evaporation is promoted. Bubbles adhering to the heat transfer surface will peel off and break easily. Thus, the loop-type thermosiphon according to the present embodiment can obtain a stable heat source temperature even under conditions away from the designed heat load.
なお、 図 1に示すループ型サーモサイホンには気液分離タンクを設けていない 1S 図 2に示すように凝縮器と蒸発器の間に気液分離タンク 6を設けてもよい。 ただ、 封入量を決定する際に、 気液分離タンクの内容積を液管の一部と見なすベ きである。 気液分離タンクを設けることにより、 ループ型サーモサイホンの安定 な作動に効果があるこ.とがある。 . 作動流体の水に 6 0 °/0以下のェタノールを添加することで、 作動や運送の許容 環境温度を下げることができる。 The loop-type thermosiphon shown in FIG. 1 does not have a gas-liquid separation tank. 1S A gas-liquid separation tank 6 may be provided between the condenser and the evaporator as shown in FIG. However, when determining the amount to be filled, the internal volume of the gas-liquid separation tank should be considered as a part of the liquid pipe. Providing a gas-liquid separation tank may be effective for the stable operation of a loop-type thermosiphon. By adding 60 ° / 0 or less ethanol to the working fluid, the permissible ambient temperature for operation and transportation can be reduced.
(実施の形態 2 )  (Embodiment 2)
図 3は、 ループ型サーモサイホンを搭載した本発明の実施の形態 2におけるス ターリング冷蔵庫の概念図である。 図 3のスターリング冷蔵庫は、 冷蔵庫本体 1 9に設けた、 スターリング冷凍機、 スターリング冷凍機の高温部の冷却に取り付 けたループ型サーモサイホン、 スターリング冷凍機の低温部の冷熱を庫内へ運ぶ 低温側熱交換システム、 冷蔵庫本体などから構成されている。 低温側熱交換シス テムは、 ループ型サーモサイホンでもあるが、 本実施の形態が対象としないルー プ型サーモサイホンである。  FIG. 3 is a conceptual diagram of a staring refrigerator according to Embodiment 2 of the present invention equipped with a loop-type thermosiphon. The Stirling refrigerator shown in Fig. 3 has a Stirling refrigerator, a loop-type thermosiphon attached to the cooling of the high-temperature part of the Stirling refrigerator, and the cold heat of the low-temperature part of the Stirling refrigerator, which is installed in the refrigerator main body 19. It consists of a side heat exchange system and a refrigerator body. The low-temperature side heat exchange system is also a loop-type thermosiphon, but is a loop-type thermosiphon not covered by the present embodiment.
円柱状の高温部と低温部を有するスターリング冷凍機 1 1を冷蔵庫背面に配置 する。 スターリング冷凍機の高温部 1 3を冷却するループ型サーモサイホンの蒸 発器 1を、 スターリング冷凍機の高温部に取り付けて密着させる。 また、 凝縮器' 3を冷蔵庫本体の上に載せ、 図 1に示すようにパイプで蒸発器 1と凝縮器 3とを 接続することで、 本実施の形態によるループ型サーモサイホンをスターリング冷 蔵庫に搭載する。 皮管 4は、 蒸発器 1に上部から差し込んでいる。 作動流体とし ては、 純水、 または純水とエタノールとの混合物を封入する。 - 低温側熱交換システムは、 スターリング冷凍機の低温部 1 2の冷熱を、 二次冷 媒を利用して冷蔵庫冷却器 1 5で冷蔵庫内へ提供する。 冷蔵庫冷却器 1 5を庫内 冷気ダク ト内に設けている。 A Stirling refrigerator 11 having a columnar high temperature part and a low temperature part is arranged on the back of the refrigerator. A loop-type thermosiphon that cools the high-temperature section 13 of the Stirling refrigerator Attach the generator 1 to the high-temperature part of the Stirling refrigerator and bring it into close contact. Also, the condenser '3 is placed on the refrigerator body, and the evaporator 1 and the condenser 3 are connected by a pipe as shown in Fig. 1, so that the loop-type thermosiphon according to the present embodiment can be used in the Stirling refrigerator. To be mounted on. The skin tube 4 is inserted into the evaporator 1 from above. The working fluid is filled with pure water or a mixture of pure water and ethanol. -The low-temperature side heat exchange system provides the cold heat of the low temperature section 12 of the Stirling refrigerator to the refrigerator using the secondary refrigerant with the refrigerator cooler 15. Refrigerator cooler 15 is installed inside the cool air duct.
スターリング冷凍機 1 1が稼動すると、 スターリング冷凍機の高温部 1 3の温 度が上がり、 蒸発器 1で作動流体が加熱されて蒸発し、 ガス管 2を通って凝縮器 3に流入する。 '同時にファン 7の回転により庫外の空気が導入され、 蒸発器 1か らの作動流体ガスが凝縮器 3で冷やされて凝縮する。 凝縮器 3で液化した作動流 体液が重力によって液管 4および導入管 4 aを通って蒸発器 1に戻る。 この液化 'した作動流体が蒸発器 1に戻る際に、 蒸発器の吸熱部 1 aおよび/または内部フ イン (図示せず) に接触して熱交換する。 このように、 作動流体の自然循環が行 われ、 スターリング冷凍機 1 1の熱が庫外の空気に伝達される。  When the Stirling refrigerator 11 operates, the temperature of the high temperature part 13 of the Stirling refrigerator rises, the working fluid is heated by the evaporator 1 and evaporates, and flows into the condenser 3 through the gas pipe 2. 'At the same time, the air outside the refrigerator is introduced by the rotation of the fan 7, and the working fluid gas from the evaporator 1 is cooled by the condenser 3 and condensed. The working fluid liquefied in the condenser 3 returns to the evaporator 1 by gravity through the liquid pipe 4 and the inlet pipe 4a. When the liquefied working fluid returns to the evaporator 1, it contacts the heat absorbing portion 1a of the evaporator and / or the internal fin (not shown) to exchange heat. Thus, the natural circulation of the working fluid is performed, and the heat of the Stirling refrigerator 11 is transmitted to the air outside the refrigerator.
スターリング冷凍機 1 1の運転により低温部 1 2の温度が下がり、 この低温部 を流れる熱交換システムの二次冷媒が熱を奪われる。 一方、 この低温側熱交換シ ステムの二次冷媒は、 冷却ファン 1 6の回転により冷蔵庫冷却器で庫内空気から 吸熱する。 冷却ファンの上には、 ダンパー 1 7が配置されている。 この実施例に おいては、 低温側熱交換システムの二次冷媒は重力によって自然循環する。 もち ろん、 ポンプによる循環手段でもよい。 このように、 スターリング冷凍機 1 , 1の 冷熱が庫内の空気へ連続的に提供される。  The operation of the Stirling refrigerator 11 lowers the temperature of the low temperature section 12 and the secondary refrigerant of the heat exchange system flowing through this low temperature section loses heat. On the other hand, the secondary refrigerant of this low-temperature side heat exchange system absorbs heat from the air in the refrigerator by the rotation of the cooling fan 16 in the refrigerator cooler. Above the cooling fan, a damper 17 is arranged. In this embodiment, the secondary refrigerant of the low-temperature side heat exchange system naturally circulates by gravity. Of course, a circulation means using a pump may be used. Thus, the cold heat of the Stirling refrigerators 1 and 1 is continuously provided to the air in the refrigerator.
また、 冷蔵庫冷却器 1 5の除霜によりできたドレン水がドレン水排出口 1 8か ら排出される。  In addition, drain water formed by defrosting the refrigerator cooler 15 is discharged from the drain water outlet 18.
(実施の形態 3 )  (Embodiment 3)
図 4は、 本発明の実施の形態 3におけるループ型サ一モサイホンを用いた場合 の高温熱源の温度変動を示す図である。 本実施の形態におけるループ型サーモサ ィホンは、 図 6に示す従来のループ型サーモサイホンにおける蒸発器への液の戻 り方を、 変えただけの装置である。 すなわち、 凝縮された作動流体を、 直接、 液 溜まりに導入しないで、 液溜まりに接触していない吸熱部に接触するように戻す 構成とした。 FIG. 4 is a diagram showing temperature fluctuations of a high-temperature heat source when the loop-type thermosiphon according to Embodiment 3 of the present invention is used. The loop-type thermosyphon according to the present embodiment is configured to return the liquid to the evaporator in the conventional loop-type thermosiphon shown in FIG. It is a device that simply changes the way it is connected. That is, the condensed working fluid is not directly introduced into the liquid pool, but is returned so as to come into contact with the heat absorbing portion that is not in contact with the liquid pool.
図 4に示す高温熱源温度の時間経過は、 従来のループ型サーモサイホンと同様 な熱負荷の条件下において得られた効果である。 図 7に示す従来のループ型サー モサイホンにおける熱源の大きな温度変動に比較して、 安定した温度推移を得る ことができる。  The time lapse of the high-temperature heat source temperature shown in Fig. 4 is the effect obtained under the same heat load conditions as the conventional loop-type thermosiphon. Compared to the large temperature fluctuation of the heat source in the conventional loop-type thermosiphon shown in Fig. 7, a stable temperature transition can be obtained.
次に、 上記本発明の実施の形態 1〜 3にあげた例も含め、 本発明の各実施の形 態にけるループ型サーモサイホンおよび冷蔵庫の ¾能についてできるだけ多くの 例を網羅的に説明する。  Next, as many examples as possible of the functions of the loop-type thermosiphon and the refrigerator in each embodiment of the present invention, including the examples described in the first to third embodiments of the present invention, will be comprehensively described. .
•本発明の 1実施の形態では、 放熱面を有する高温熱源から熱を搬送するループ 型サーモサイホンにおいて、 高温熱源から熱を奪う蒸発器と、 髙温熱源の上方に 配置した凝縮器と、 ループを形成するように蒸発器と凝縮器を接続した配管を備 え、 作動流体を封入し、 凝縮器からの作動流体の液を蒸発器へ導入する際に、 吸 熱部に滴下して熱交換させることにより、 高温熱源の温度を安定に維持できるル 一プ型サ一モサイホンを提供することができる。  In one embodiment of the present invention, there is provided a loop-type thermosiphon for transferring heat from a high-temperature heat source having a heat-radiating surface, comprising: an evaporator for removing heat from the high-temperature heat source; a condenser disposed above the heat source; A pipe connecting the evaporator and the condenser is provided to form the air, the working fluid is sealed, and when the working fluid liquid from the condenser is introduced into the evaporator, it is dropped on the heat absorbing part to exchange heat. By doing so, it is possible to provide a loop-type thermosiphon capable of stably maintaining the temperature of the high-temperature heat source.
また、 本 明の上記と異なる 1実施の形態においては、 前記ループ型サーモサ ィホンを構成する蒸発器内の吸熱部に内部フィンを設け、 前記凝縮器で凝縮した 作動流体の液を前記蒸発器の上部から、 前記蒸発器内の吸熱部や内部フィンに落 ちるように、 前記蒸発器に導入する。 蒸発器は箱状であってもよいし、 半環状の ものを組み合わせて環状とした構成でもよい。 また、 他の形状のものを組み合わ せてもよい。 吸熱部は高温熱源を装入するように筒状または孔状としてもよい。 上記構成により、 蒸発器内部で下半部ほど放熱量が大きくない高温熱源の筒状放 熱面の上半部からの熱を利用して作動流体の液を予熱することが実現でき、 蒸発 器の高温熱源の均温化かつ温度の安定化を得ることができる。  In one embodiment of the present invention, which is different from the above, an internal fin is provided in a heat absorbing portion in an evaporator constituting the loop-type thermosiphon, and a liquid of a working fluid condensed in the condenser is supplied to the evaporator. It is introduced into the evaporator so as to fall from the upper part into the heat absorbing portion and the internal fins in the evaporator. The evaporator may have a box shape, or may have a semi-circular shape in combination to form a ring. Further, other shapes may be combined. The heat absorbing section may be formed in a cylindrical shape or a hole so as to receive a high-temperature heat source. With the above configuration, the working fluid can be preheated by utilizing the heat from the upper half of the cylindrical heat-dissipating surface of the high-temperature heat source, which does not emit as much heat as the lower half inside the evaporator. And the temperature of the high-temperature heat source can be stabilized.
本発明の他の 1実施の形態によるループ型サーモサイホンの構成では 蒸発器 で蒸発した蒸気を凝縮器へ導くガス管の流動抵抗を、 凝縮器で凝縮した液を蒸発 器へ導く液管の流動抵抗より小さくする。 この構成により、 ザーモサイホンに見 られる作動流体の逆流や起動し難さを防ぐことができる。 また、 本発明の上記以外の 1実施の形態において、 高温熱 から搬送する熱の 量に応じ、 搬送熱量が大きければ前記配管の流動抵抗を小さくし、 搬送熱量が小 さければ前記液管の流動抵抗を大きくするのがよい。 この構成に基づいて、 配管 の直径を決定する方法を取れば、 より安定な作動流体の循環流量が得られる。 な お、 上記の搬送熱量の大小の基準値として、 たとえば設計負荷の 7 5 °/όを揉用す ることができる。 すなわち、 熱源の発熱量が設計負荷の 7 5 %以下の場合には上 記配管の流動抵抗を大きく し、 7 5 %を超える場合には上記配管の流動抵抗を小 さくする。 他の基準値、 たとえば設計負荷の 5 0 %などの値を用いてもよい。 本発明の別の 1実施の形態によるループ型サーモサイホンは、 作動流体の封入 量は、 作動温度において凝縮器に液が溜まる可能な容積と液管 (配管) の容積と 蒸発器容積の 1 Ζ 3〜 2 Ζ 3を液で充満させ、 さらに残った容積を作動温度にお ける作動流体の飽和蒸気で充満させた作動流体の質量を封入量とすることができ る。 この構成により、 作動流体の封入量による不具合を解消できる。 In the configuration of the loop-type thermosiphon according to another embodiment of the present invention, the flow resistance of the gas pipe for guiding the vapor evaporated by the evaporator to the condenser is determined by the flow of the liquid pipe for guiding the liquid condensed by the condenser to the evaporator. Make it smaller than resistance. With this configuration, it is possible to prevent the backflow of the working fluid and the difficulty in starting the working fluid seen in the thermosiphon. In one embodiment of the present invention other than the above, according to the amount of heat transferred from the high-temperature heat, the flow resistance of the pipe is reduced if the transfer heat is large, and the flow resistance of the liquid pipe is reduced if the transfer heat is small. It is better to increase the flow resistance. If a method of determining the diameter of the pipe is adopted based on this configuration, a more stable circulating flow rate of the working fluid can be obtained. As a reference value of the amount of heat transferred, for example, a design load of 75 ° / ό can be used. In other words, when the heat value of the heat source is 75% or less of the design load, the flow resistance of the above piping is increased, and when it exceeds 75%, the flow resistance of the above piping is reduced. Other reference values, for example, a value such as 50% of the design load, may be used. In the loop-type thermosiphon according to another embodiment of the present invention, the amount of the working fluid to be filled is 1 mm of the volume capable of storing the liquid in the condenser at the operating temperature, the volume of the liquid pipe (pipe), and the volume of the evaporator. It is possible to fill 3 to 2 33 with liquid and fill the remaining volume with the saturated steam of the working fluid at the working temperature and fill the mass of the working fluid. With this configuration, problems caused by the amount of working fluid enclosed can be eliminated.
本発明のさらに別の 1実施の形態によるループ型サーモサイホンは、 炭酸ガス、 水、 ハイド口カーボンなどの自然冷媒を作動流体としており、 環境にやさしい熱 交換技術を提供できる。 特に水を作動流体に用いることで、 毒性や可燃性もなく、 安全 ½Ξの高いループ型サーモサイホンとなる。 なお、 6 0 %以下のエタノー を 添加すれば、 水を作動流体としたループ型サーモサイホンの作動可能な環境温度 範囲を広げることができる。 ·  The loop-type thermosiphon according to still another embodiment of the present invention uses a natural refrigerant such as carbon dioxide gas, water, or hydrated carbon as a working fluid, and can provide an environmentally friendly heat exchange technique. In particular, by using water as the working fluid, a highly safe loop-type thermosiphon with no toxicity or flammability can be obtained. By adding 60% or less of ethanol, it is possible to extend the operable ambient temperature range of the loop-type thermosiphon using water as a working fluid. ·
上記本発明の上述のいずれかの 1実施の形態のループ型サーモサイホンを用い たスターリング冷凍摁搭载の冷蔵庫において、 上記ループ型サーモサイホンの蒸 発器とスターリング冷凍機の高温部と熱交換させ、 具体的には両者を密着させ、 凝縮器を冷蔵庫のスタ一リング冷凍機の高温部より高いところに配置することが できる。 この構成により、 スターリング冷蔵庫の熱負荷が変化しても、 スターリ ング冷凍機が安定に作動でき、 また作動流体が重力によって自然循環することで ポンプが必要ではないから、 信頼性と効率が高いという優れた効果を奏する。 上記の本発明の各実施の形態についてその効果を羅列して説明したが、 本発明 において、 最も広い実施の形態のループ型サーモサイホンは、 上記の各実施の形 態の効果を備えなくてもよい。 本発明の最も広い実施の形態のループ型サーモサ ィホンは、 熱源の負荷変動に対応して安定して動作する効果を有してさえいれば よい。 In a refrigerator equipped with a Stirling refrigerating machine using the loop-type thermosiphon according to any one of the above-described embodiments of the present invention, the evaporator of the loop-type thermosiphon exchanges heat with a high-temperature portion of the Stirling refrigerator. Specifically, both can be brought into close contact with each other, and the condenser can be placed at a higher temperature than the high temperature part of the stirling refrigerator of the refrigerator. With this configuration, even if the heat load of the Stirling refrigerator changes, the Stirling refrigerator can operate stably and the working fluid naturally circulates by gravity, eliminating the need for a pump. It has excellent effects. Although the effects of each of the embodiments of the present invention have been described, the loop thermosiphon of the broadest embodiment of the present invention does not need to have the effects of the above embodiments. Good. Loop type thermosa of the widest embodiment of the present invention The microphone need only have an effect of operating stably in response to the load fluctuation of the heat source.
上記において、 本発明の実施の形態について説明を行ったが、 上記に開示され た本発明の実施の形態は、 あくまで例示であって、 本発明の範囲はこれら発明の 実施の形態に限定されることはない。 本発明の範囲は、 特許請求の範囲の |B載に よって示され、 さらに特許請求の範囲の記載と均等の意味および範囲内でのすべ ての変更を含むものである。 産業上の利用可能性  Although the embodiments of the present invention have been described above, the embodiments of the present invention disclosed above are merely examples, and the scope of the present invention is limited to these embodiments. Never. The scope of the present invention is indicated by the | B in the claims, and further includes meanings equivalent to those in the claims and all modifications within the scope. Industrial applicability
本努明によるループ型サーモサイホンは熱源の熱負荷の変動を吸収して、 安定 して動作することができる。 このため、 上記ループ型サーモサイホンは、 たとえ ばフロンを用いず温暖化ガスの排出のないスターリング冷凍機を冷却装置として 用いた冷蔵庫において、 スターリング冷凍機の高温部の冷却に用いられ、 年間を 通して安定した冷凍性能の確保に寄与することが期待される。  The loop-type thermosiphon by this effort can absorb the fluctuation of the heat load of the heat source and operate stably. For this reason, the above-mentioned loop-type thermosiphon is used to cool the high-temperature part of a Stirling refrigerator, for example, in refrigerators that use a Stirling refrigerator that does not use Freon and emits no warming gas, as a cooling device. It is expected to contribute to secure stable refrigeration performance.

Claims

請求の範囲 The scope of the claims
1. 作動流体 (2 2, 23) を用いて高温熱源 (5) から熱を搬送するループ 型サーモサイホンにおいて、 1. In a loop-type thermosiphon that transfers heat from a high-temperature heat source (5) using a working fluid (2 2, 23),
吸熱部 (l a) を有し、 その吸熱部を介して前記高温熱源から熱を奪い前記作 動流体を蒸発させる蒸発器 (1) と、  An evaporator (1) having a heat absorbing portion (la), for removing heat from the high-temperature heat source through the heat absorbing portion and evaporating the working fluid;
前記高温熱源よりも高い位置に位置し、 前記蒸発器で蒸発した作動流体 (2 3) を凝縮させる凝縮器 (3) と、  A condenser (3) located at a position higher than the high-temperature heat source and condensing the working fluid (2 3) evaporated by the evaporator;
ループを形成するように前記蒸発器と前記凝縮器とを接続する配管 (2, 4) とを備え、  A pipe (2, 4) for connecting the evaporator and the condenser so as to form a loop,
前記凝縮器を経た作動流体 (22) を、 前記蒸発器の作動流体の液溜まり (2 1) に溜まる前に前記吸熱部 (l a) に接触させることを特徴とする、 ループ型 サーモサイホン。  A loop-type thermosiphon, wherein the working fluid (22) that has passed through the condenser is brought into contact with the heat absorbing portion (la) before the working fluid (21) is accumulated in the working fluid reservoir (21) of the evaporator.
2.. 前記蒸発器 (1) は、 前記高温熱源 (5) を装着するように設けられた吸 熱部 (l a) を有し、 前記凝縮器で凝縮した前記作動流体を前記蒸発器の上部か ら、 前記蒸発器内の吸熱部に落ちるように導入したことを特徴とする、 請求項 1 に記載のループ型サーモサイホン。  2. The evaporator (1) has a heat absorbing portion (la) provided so as to mount the high-temperature heat source (5), and the working fluid condensed in the condenser is provided at an upper portion of the evaporator. The loop-type thermosiphon according to claim 1, wherein the loop-type thermosiphon is introduced so as to fall into a heat absorbing portion in the evaporator.
3. 前記蒸発器 ( 1 ) で蒸発した作動流体 (2 3) を前記凝縮器 ( 3 ) へ導く 前記配管 (2) の流動抵抗を、 前記凝縮器 (3) で凝縮した作動流体 (2 2) を 前記蒸発器 (1) へ導く前記配管 (4) の流動抵抗より小さくすることを特徴と する、 請求項 1に記載のループ型サーモサイホン。  3. Guide the working fluid (2 3) evaporated in the evaporator (1) to the condenser (3) The flow resistance of the pipe (2) is reduced by the working fluid (2 2) condensed in the condenser (3) The loop-type thermosiphon according to claim 1, wherein the flow resistance of the pipe (4) for leading the evaporator (1) to the evaporator (1) is smaller than the flow resistance.
4. .前記高温熱源から搬送する熱の量に じ、 搬送熱量が大きければ前記凝縮 器から前記蒸発器へいたる配管の流動抵抗を小さくし、 搬送熱量が小さければ前 記凝縮器から前記蒸発器へいたる配管の流動抵抗を大きくすることを特徴とする、 請求項 1に記載のループ型サーモサイホン。  4. According to the amount of heat transferred from the high-temperature heat source, if the amount of transferred heat is large, the flow resistance of the pipe from the condenser to the evaporator is reduced; if the amount of transferred heat is small, the condenser is changed from the condenser to the evaporator. 2. The loop thermosiphon according to claim 1, wherein the flow resistance of the pipe leading to the loop is increased.
5. 作動流体の封入量が、 作動温度において、 前記凝縮器に液が溜まる可能な 容積と、 配管の容積と、 蒸発器容積との合計容積の 1 3〜2 3を前記作動流 体の液で充満させ、 前記合計容積の残りの容稹を前記作動流体の飽和蒸気で充満 させる封入量であることを特徴とする、 請求項 1に記載のループ型サーモサイホ ン。 . + 5. When the amount of working fluid to be filled is 13 to 23, the total volume of the volume that can store liquid in the condenser, the volume of piping, and the volume of the evaporator at the operating temperature, 2. The loop thermosyphon according to claim 1, wherein the remaining amount of the total volume is filled with saturated steam of the working fluid. 3. N. . +
6. 作動流体として、 自然冷媒を用いることを特徴とする請求項 1に記載のル ープ型サーモサイホン。 .  6. The loop type thermosiphon according to claim 1, wherein a natural refrigerant is used as a working fluid. .
7. 作動流体として、 二酸化炭素、 水、 ハイ ド口カーボン、 アンモニア、 エタ ノールおよびこれらの混合物、 のいずれかを用いることを特徴とする請求項 1に 記載のループ型サーモサイホン。  7. The loop thermosiphon according to claim 1, wherein the working fluid is any one of carbon dioxide, water, carbon at a hide port, ammonia, ethanol and a mixture thereof.
8. 作動流体として、 ェタノールを 60 %以下含む混合物を用いることを特徴 とする請求項 1に記載のループ型サーモサイホン。  8. The thermosyphon according to claim 1, wherein a mixture containing 60% or less of ethanol is used as a working fluid.
9. スターリング冷凍機 (1 1) を搭載した冷蔵庫であつて、 前記スターリ ン グ冷凍機は請求項 1のループ型サーモサイホンを備え、 前記蒸発器 (1) を前記 スターリング冷凍機の高温部 (1 3) と熱交換させ、 fti記凝縮器 (3) を前記高 温部より高い位置に配置したことを特徴とする、 スターリング冷蔵庫。  9. A refrigerator equipped with a Stirling refrigerator (11), wherein the Stirling refrigerator includes the loop-type thermosiphon according to claim 1, and the evaporator (1) is connected to a high-temperature part ( 13. A Stirling refrigerator, wherein heat exchange is performed with 13), and the fti condenser (3) is arranged at a position higher than the high temperature section.
PCT/JP2003/004399 2002-04-08 2003-04-07 Loop-type thermosiphon and stirling refrigerator WO2003085345A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BR0309143-0A BR0309143A (en) 2002-04-08 2003-04-07 Loop type thermosiphon and stirling cooler
AU2003236294A AU2003236294A1 (en) 2002-04-08 2003-04-07 Loop-type thermosiphon and stirling refrigerator
US10/510,502 US20050172644A1 (en) 2002-04-08 2003-04-07 Loop-type thermosiphon and stirling refrigerator
EP03745945A EP1493983A4 (en) 2002-04-08 2003-04-07 Loop-type thermosiphon and stirling refrigerator
CA2481477A CA2481477C (en) 2002-04-08 2003-04-07 Loop-type thermosiphon and stirling refrigerator
KR1020047015931A KR100691578B1 (en) 2002-04-08 2003-04-07 Loop-type thermosiphon

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-104896 2002-04-08
JP2002104896A JP4033699B2 (en) 2002-04-08 2002-04-08 Loop thermosyphon and Stirling refrigerator

Publications (1)

Publication Number Publication Date
WO2003085345A1 true WO2003085345A1 (en) 2003-10-16

Family

ID=28786352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/004399 WO2003085345A1 (en) 2002-04-08 2003-04-07 Loop-type thermosiphon and stirling refrigerator

Country Status (9)

Country Link
US (1) US20050172644A1 (en)
EP (1) EP1493983A4 (en)
JP (1) JP4033699B2 (en)
KR (1) KR100691578B1 (en)
CN (1) CN100350211C (en)
AU (1) AU2003236294A1 (en)
BR (1) BR0309143A (en)
CA (1) CA2481477C (en)
WO (1) WO2003085345A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014109293B4 (en) * 2013-07-03 2020-02-20 Thorsten Rapp Device for heating a degreasing and / or cleaning system

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3746496B2 (en) * 2003-06-23 2006-02-15 シャープ株式会社 refrigerator
WO2005008160A1 (en) 2003-07-23 2005-01-27 Sharp Kabushiki Kaisha Loop type thermo syphone, heat radiation system, heat exchange system, and stirling cooling chamber
KR100746795B1 (en) * 2003-09-02 2007-08-06 샤프 가부시키가이샤 Cooling appartus
JP2006084111A (en) * 2004-09-16 2006-03-30 Sharp Corp Refrigerator
US9074825B2 (en) 2007-09-28 2015-07-07 Panasonic Intellectual Property Management Co., Ltd. Heatsink apparatus and electronic device having the same
KR100909929B1 (en) * 2007-10-04 2009-07-29 순 동 강 Heat exchanger using natural air-cooled heat pipe
FR2922003A1 (en) * 2007-10-09 2009-04-10 Christian Michel Gillet Household freezing cabinet/cell for preserving food in building, has climatic cold capturing and storage system exploiting natural thermosiphon fluid circulation phenomenon, and sphere blocking fluid by its expansion under freezing effect
US8262263B2 (en) * 2007-11-16 2012-09-11 Khanh Dinh High reliability cooling system for LED lamps using dual mode heat transfer loops
FI2577205T3 (en) 2010-05-27 2023-04-18 Johnson Controls Tyco IP Holdings LLP Cooling system comprising thermosyphon cooler and cooling tower and method for operating such cooling system
KR101219359B1 (en) * 2010-11-26 2013-01-21 강희주 heat transfer device
US9897365B2 (en) * 2011-12-14 2018-02-20 Lg Electronics Inc. Refrigerator, thermosyphon, and solenoid valve and method for controlling the same
US8893513B2 (en) 2012-05-07 2014-11-25 Phononic Device, Inc. Thermoelectric heat exchanger component including protective heat spreading lid and optimal thermal interface resistance
US20130291555A1 (en) 2012-05-07 2013-11-07 Phononic Devices, Inc. Thermoelectric refrigeration system control scheme for high efficiency performance
FR3002028B1 (en) * 2013-02-14 2017-06-02 Euro Heat Pipes DEVICE FOR TRANSPORTING HEAT WITH DIPHASIC FLUID
US10458683B2 (en) 2014-07-21 2019-10-29 Phononic, Inc. Systems and methods for mitigating heat rejection limitations of a thermoelectric module
US9593871B2 (en) 2014-07-21 2017-03-14 Phononic Devices, Inc. Systems and methods for operating a thermoelectric module to increase efficiency
EP3209957B1 (en) 2014-10-21 2021-04-07 LG Electronics Inc. Defrosting device and refrigerator having the same
KR101645428B1 (en) * 2015-04-17 2016-08-16 한국원자력연구원 Spray heat exchanger on the saturated steam
WO2018183677A1 (en) * 2017-03-29 2018-10-04 Perkinelmer Health Sciences, Inc. Cooling devices and instruments including them
JP6902102B2 (en) * 2017-07-05 2021-07-14 Phcホールディングス株式会社 Refrigerator
US10677369B2 (en) 2017-08-03 2020-06-09 Fluke Corporation Temperature calibration system comprising a valve in a closed fluidic system
US10591366B2 (en) 2017-08-03 2020-03-17 Fluke Corporation Temperature calibration system with separable cooling assembly
CN107560227B (en) * 2017-10-09 2019-12-17 中国科学院理化技术研究所 Thermally-driven Stirling heat pump
KR102140944B1 (en) * 2018-06-27 2020-08-05 한국전력공사 Energy Storage System with Air conditioner using thermosiphon
US11008927B2 (en) 2019-04-10 2021-05-18 James Moore Alternative method of heat removal from an internal combustion engine
CN112667036A (en) * 2019-10-16 2021-04-16 北京百度网讯科技有限公司 Computer server
WO2022099089A1 (en) 2020-11-05 2022-05-12 Deeia, Inc. Loop thermosyphon devices and systems, and related methods
KR102393685B1 (en) * 2021-08-18 2022-05-03 주식회사 코벡엔지니어링 High-efficiency heat exchanging system for recycling waste cold/hot heat

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0732456U (en) * 1993-11-08 1995-06-16 株式会社フジクラ Geothermal heat source Heat pipe type snow melting device
JP2002013885A (en) * 2000-06-28 2002-01-18 Twinbird Corp Thermo-siphon for refrigerator
WO2002016842A1 (en) * 2000-08-22 2002-02-28 Sharp Kabushiki Kaisha Stirling refrigerator

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2083611A (en) * 1931-12-05 1937-06-15 Carrier Corp Cooling system
FR1468770A (en) * 1965-08-24 1967-02-10 Thomson Houston Comp Francaise Improvements to liquid supply circuits for vaporized cooled electron tubes
US3371298A (en) * 1966-02-03 1968-02-27 Westinghouse Electric Corp Cooling system for electrical apparatus
US3576903A (en) * 1968-04-29 1971-04-27 Minnesota Mining & Mfg Epoxy-terminated adducts of carboxy terminated polyesters and polyepoxides
US3756903A (en) * 1971-06-15 1973-09-04 Wakefield Eng Inc Closed loop system for maintaining constant temperature
US3986550A (en) * 1973-10-11 1976-10-19 Mitsubishi Denki Kabushiki Kaisha Heat transferring apparatus
US4117525A (en) * 1977-09-09 1978-09-26 Electric Power Research Institute, Inc. Overpressure protection for vaporization cooled electrical apparatus
US4321421A (en) * 1979-03-07 1982-03-23 General Electric Company Vaporization cooled transformer having a high voltage
US4280333A (en) * 1979-03-16 1981-07-28 The United States Of America As Represented By The United States Department Of Energy Passive environmental temperature control system
JP2550770B2 (en) * 1990-10-11 1996-11-06 日本電気株式会社 Electronic component cooling mechanism
US5159972A (en) * 1991-03-21 1992-11-03 Florida Power Corporation Controllable heat pipes for thermal energy transfer
US5642622A (en) * 1995-08-17 1997-07-01 Sunpower, Inc. Refrigerator with interior mounted heat pump
GB2317222B (en) * 1996-09-04 1998-11-25 Babcock & Wilcox Co Heat pipe heat exchangers for subsea pipelines
KR100276076B1 (en) * 1997-12-17 2001-03-02 이계철 Device for controlling instability of flow in loop-type thermosyphon/heat pipe
US6761212B2 (en) * 2000-05-25 2004-07-13 Liebert Corporation Spiral copper tube and aluminum fin thermosyphon heat exchanger
JP3625182B2 (en) * 2000-08-22 2005-03-02 シャープ株式会社 Stirling refrigerator and Stirling refrigerator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0732456U (en) * 1993-11-08 1995-06-16 株式会社フジクラ Geothermal heat source Heat pipe type snow melting device
JP2002013885A (en) * 2000-06-28 2002-01-18 Twinbird Corp Thermo-siphon for refrigerator
WO2002016842A1 (en) * 2000-08-22 2002-02-28 Sharp Kabushiki Kaisha Stirling refrigerator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1493983A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014109293B4 (en) * 2013-07-03 2020-02-20 Thorsten Rapp Device for heating a degreasing and / or cleaning system

Also Published As

Publication number Publication date
AU2003236294A1 (en) 2003-10-20
JP4033699B2 (en) 2008-01-16
EP1493983A1 (en) 2005-01-05
US20050172644A1 (en) 2005-08-11
EP1493983A4 (en) 2006-06-07
BR0309143A (en) 2005-01-11
CN100350211C (en) 2007-11-21
CN1646871A (en) 2005-07-27
CA2481477A1 (en) 2003-10-16
CA2481477C (en) 2011-12-20
KR100691578B1 (en) 2007-03-12
JP2003302178A (en) 2003-10-24
KR20040094913A (en) 2004-11-10

Similar Documents

Publication Publication Date Title
WO2003085345A1 (en) Loop-type thermosiphon and stirling refrigerator
US5940270A (en) Two-phase constant-pressure closed-loop water cooling system for a heat producing device
US20070227703A1 (en) Evaporatively cooled thermosiphon
JP2003322457A (en) Dewfall preventing device of refrigerator
JP6285356B2 (en) Boiling cooler
JP5523186B2 (en) Data center cooling system
US20100018224A1 (en) Stirling cooler
JP2011080736A (en) Heat exchange device
US20200011583A1 (en) Refrigerator
RU2253075C2 (en) Stirling cooling plant
US20050016184A1 (en) Stirling cooling device, cooling chamber, and refrigerator
KR101116138B1 (en) Cooling system using separated heatpipes
JP3910096B2 (en) Heat dissipating system for Stirling engine and refrigerator equipped with the same
JP2007078275A (en) Heat exchanger for stirling refrigerating machine
JP2005214479A (en) Cooling device
KR200282298Y1 (en) Heating-exchange type refrigerating device
JP2006138605A (en) Stirling refrigerator
KR20240037274A (en) Active/passive cooling system
JP2006214709A (en) Stirling cooling storage
JP2005283023A (en) Stirling cooler
JP2008064384A (en) Loop-type thermosiphon and stirling type refrigerator
JPH04240325A (en) Heat syphone type ice heat accumulation system
JP2006349233A (en) Cooling storage
JP2004037055A (en) Stirling refrigerator
JP2004278998A (en) Cooling storage shed

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2481477

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020047015931

Country of ref document: KR

Ref document number: 10510502

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20038077752

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2003745945

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020047015931

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003745945

Country of ref document: EP