WO2003072519A1 - Glass powder, fired product and method for producing glass powder - Google Patents

Glass powder, fired product and method for producing glass powder Download PDF

Info

Publication number
WO2003072519A1
WO2003072519A1 PCT/JP2003/002043 JP0302043W WO03072519A1 WO 2003072519 A1 WO2003072519 A1 WO 2003072519A1 JP 0302043 W JP0302043 W JP 0302043W WO 03072519 A1 WO03072519 A1 WO 03072519A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass powder
glass
diameter
powder
powder according
Prior art date
Application number
PCT/JP2003/002043
Other languages
French (fr)
Japanese (ja)
Inventor
Akihiko Kamiya
Shiro Ootaki
Koichi Shibuya
Masaharu Tanaka
Original Assignee
Asahi Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Company, Limited filed Critical Asahi Glass Company, Limited
Priority to AU2003207111A priority Critical patent/AU2003207111A1/en
Publication of WO2003072519A1 publication Critical patent/WO2003072519A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C12/00Powdered glass; Bead compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form

Definitions

  • the present invention relates to a glass powder suitable for manufacturing electronic components and the like, and a fired body suitable for insulating layers of electronic components and the like.
  • Landscape technology a glass powder suitable for manufacturing electronic components and the like, and a fired body suitable for insulating layers of electronic components and the like.
  • Glass powder is widely used, for example, as a sealing material, coating material, binder material, substrate material and the like in the manufacture of electronic components, and as a coating material and the like in the manufacture of plasma display panels (PDP) or window glasses for automobiles.
  • PDP plasma display panels
  • glass powder When glass powder is used for hermetic sealing, for example, a binder is added to this and granulated, pressed into a desired shape, calcined, the binder is decomposed, and then set on the part to be sealed and fired I do. The glass powder is fired to form a fired body, and the portion to be sealed is hermetically sealed.
  • glass powder When glass powder is used for coating, for example, it is mixed with a vehicle to form a paste, which is applied to a portion to be coated by a screen printing method or the like, and baked. The glass powder is fired to form a fired body, which covers the portion to be coated.
  • a hybrid IC HIC
  • an electronic circuit pattern having a multilayer structure is formed on the green sheet by a screen printing method or the like.
  • a fired body obtained by firing glass powder is used for the crossover layer and the overcoat layer of the HIC, and the fired body is made into a paste by adding a vehicle to the glass powder, and this is formed on a green sheet by a screen printing method or the like. It is obtained by laminating the applied materials and firing.
  • glass powder used for such purposes is produced by melting a prepared raw material to form a molten glass, followed by cooling and grinding.
  • Glass powder produced by crushing glass may cause problems such as cracks in the fired body, low dimensional accuracy of the fired body, and easy occurrence of irregularities on the surface of the fired body. I got it.
  • An object of the present invention is to provide a glass powder capable of solving the above problems. Disclosure of the invention
  • the present invention in mass percentage based on the following oxides, S i 0 2 + B 2 0 3 + B i 2 0 3 20 ⁇ 98%, ⁇ 1 2 ⁇ 3 0 ⁇ 18%, MgO + CaO + S rO + B a O + ZnO 0 to 77%, PbO 0 to 75%, L i 20 + Na 2 0 + K 2 O 0 to 30%, T i 0 2 + Z r0 20 to 19%, S nO a + CeO 2 + CuO 0-5%, which is a glass powder consisting essentially of: volume-based average diameter 0 5 .
  • a glass powder characterized by having a specific surface area 1. of at least 1.5 m and a specific surface area ⁇ ⁇ ⁇ of at least 6 m 2 / g by gas adsorption BET method.
  • the present invention also provides a fired body obtained by firing an inorganic powder containing the glass powder.
  • a method for producing the glass powder wherein the raw material powder is dispersed in a flammable liquid to form a slurry, and the slurry is formed into droplets and burned to dissolve the raw material powder.
  • a manufacturing method is provided.
  • the glass powder of the present invention is usually used by firing after the following treatment. That is, the glass powder is press-formed to form a press-formed body, the glass powder is formed into a base or slurry, and this is applied to a substrate, a green sheet, or the like. .
  • the material to be fired contains glass powder as an essential component, but may contain inorganic powders other than glass powder as necessary.
  • inorganic powders include ceramics fillers and heat-resistant inorganic pigments.
  • the TG is measured by differential thermal analysis (DTA) and is typically 400-750 ° C.
  • the rate of temperature rise in DTA is 10 ° C / min.
  • the temperature at which the glass powder of the present invention is fired is usually preferably (T G + 150 ° C.) to (T e + 400 ° C.). If the temperature is less than (T e +1 50 ° C), the sinterability of the fired body may decrease. It is more preferably (T G + 200 ° C.) or more. If it exceeds (T G +400 V), the softening flow during firing may increase. It is more preferably (T e + 350 ° C) or less.
  • the volume-based average diameter of the glass powder of the present invention is 0 5 . Is more than 1. If it is less than 1.5 zm, residual bubbles in the fired body increase, and problems such as a decrease in strength of the fired body and a decrease in electrical insulation of the fired body may occur. It is preferably at least 2 m. In addition, D 5. Is preferably 4 xm or less. If it exceeds 4 m, the sinterability may be reduced, and the strength of the fired body may be reduced, and the electrical insulation of the fired body may be reduced. More preferably, it is 3 zm or less.
  • the accumulated sieve bottom 1 0% diameter 13 1 0 is preferably 1 im or more. If it is less than 1 xm, residual foam in the fired body may increase. It is more preferably at least 1.4 m. Also, 90% diameter 0 9 under the integrating sieve. Is preferably 5 m or less. If it exceeds 5 im, the sinterability may decrease. More preferably 4.5 or less
  • ⁇ , 0 is greater than and D 9 . Is more preferably 5 // m or less. In addition, Q, D 5. And D 9. Is determined from a particle size distribution measured by, for example, a laser scattering type particle size measuring device.
  • the specific surface area ⁇ ⁇ ⁇ by gas adsorption BET method of the glass powder of the present invention is 6 m 2 Zg or more. If it is less than 6 m 2 / g, the value of S becomes large. It is preferably at least 7 m 2 Zg. Further, ® is typically 15 m 2 Zg or less.
  • the practical sphericity ⁇ of Wade 11 of glass particles having a maximum diameter of 2 to 4 m is It is preferably 0.85 or more, and if it is less than 0.85, there is a possibility that the above-mentioned S becomes large, more preferably 0.90 or more.
  • is the diameter d of a circle having an area equal to the projected area of each glass particle obtained by using a laser microscope (magnification: ⁇ 1000) for 5 or more glass particles having a maximum diameter of 2 to 4 tm, and It is the average of the dZD of each glass particle calculated from the diameter D of the smallest circle circumscribing the projected image of the particle. D corresponds to the maximum diameter.
  • Glass powder of the present invention as previously described, S i 0 2, B 2 0 3, B i 2 0 3, A 1 2 0 3, MgO, C aO, S r 0, B aO, ZnO, P bO, L i 2 0, Na 2 0, K 2 0, T i 0 2, Z r0 2, Sn0 2, but consists essentially of Ce_ ⁇ 2 and CuO, other components impair the glass powder intended use It may be contained to the extent that it does not exist. It is preferable that the total content of the other components in terms of mass percentage is 10% or less. It is preferable that PbO is not contained because it may put a burden on the environment.
  • a 1 2 0 3 0 ⁇ 1 8% is meant that it does not contain A 1 2 0 3, was or its content when they contain A 1 2 0 3 18% or less I do.
  • the glass powder of the present invention is used for HIC 'crossover glass paste, HIC, multi-layer insulating glass paste, overcoat for printing head, etc.
  • the senor hermetically wear frit, metallic, sealing or frit used in the bonding of ceramics, etc., S i 0 2 5 ⁇ 35%, B 2 0 3 15 ⁇ 35%, A 1 2 0 3 1 ⁇ 10%, M gO + C aO + S rO + B aO + ZnO 20 ⁇ 66%, T i 0 2 0 ⁇ 5%, Z r 0 2 0 ⁇ 5%, Preferably, it consists essentially of L i 20 + Na 20 + K 2 O 0 to 30%, S nO a 0 to 2%, and C e0 20 to 2%.
  • the glass powder of the present invention is used for an insulating glass paste for a PDP or the like, Si 0 2 + B 2 0 3 20 to 40%, Al 2 O 3 0 to 10%, PbO 35 to 75%, MgO + CaO + S r O + B aO + Z nO 0 ⁇ 20%, T i O 2 0 ⁇ 5%, S n0 2 0 ⁇ 2%, CeO 2 0 ⁇ 2%, i 0 to 1% CuO, from essentially Preferably.
  • the glass powder of the present invention is used for a ceramic color paste for an automotive window glass, etc. If, S i 0 2 10 ⁇ 35%, B 2 0 3 0 ⁇ 25%, A 1 2 0 3 0 ⁇ 2%, B i 2 0 3 20 ⁇ 70%, B aO + 0 ⁇ 50% ZnO, T It is preferable that the organic solvent be essentially composed of i 0 20 to 10%, Li 2 O + Na 2 O + K 2 O 0 to 12%, and CeO 2 0 to 2%.
  • the glass powder of the present invention consists essentially of a glass powder, but may contain a crystalline powder as long as the object of the present invention is not impaired. Normally, it is preferable not to contain crystal powder.
  • whether or not the glass powder contains crystalline powder depends on whether or not a diffraction peak is observed in the X-ray diffraction pattern of the glass powder. That is, when a diffraction peak is observed in the X-ray diffraction pattern of the glass powder, the glass powder is said to contain crystalline powder.
  • s′Zs is 0.05 or less, where s is the area of the first broad peak and s is the area of the diffraction peak in the X-ray diffraction pattern. . It is preferably at most 0.03, more preferably at most 0.02, particularly preferably at most 0.01.
  • s is the area of the portion excluding the background portion from the first prod peak.
  • s' is the area of the diffraction peak of the portion that does not include the broad pattern (broad peak etc.) portion, and when there are multiple diffraction peaks, the sum of them.
  • the fired body of the present invention is obtained by firing an inorganic powder containing the glass powder of the present invention.
  • the inorganic powder may be composed of only the glass powder of the present invention, or may be made of glass.
  • An inorganic powder other than the powder may be contained. Examples of the inorganic powder include a ceramic filler and a heat-resistant inorganic pigment.
  • the glass powder of the present invention is preferably manufactured by the glass powder manufacturing method of the present invention (hereinafter referred to as the manufacturing method of the present invention).
  • raw materials are prepared and mixed so as to obtain a glass powder having a desired composition to obtain a raw material powder.
  • the composition calculated from the raw material powder does not always match the desired composition.
  • the raw material is preferably an oxide or a carbonate. Also not sulfate Is preferred. If the raw material is a sulfate, the glass powder produced by the production method of the present invention may be hollow.
  • the raw material powder is mixed in a flammable liquid to form a slurry in which the raw material powder is dispersed in the flammable liquid.
  • the volume-based average diameter of the raw material powder in the slurry is preferably 2 m or less. If it exceeds 2 m, it becomes difficult to melt and vitrify the raw material powder in the combustion described later. It is more preferably 1 / m or less.
  • the flammable liquid is not particularly limited as long as it is easy to handle, easily combustible, and more preferably inexpensive. Examples thereof include kerosene, heavy oil, and alcohol.
  • the slurry is formed into droplets using a two-fluid nozzle or the like, and the droplets are brought close to a separately prepared flame and burned.
  • the temperature at which the slurry is formed into droplets and burned is preferably ( TG + 1400) or more. If the temperature is lower than (T G + 1400 ° C), it becomes difficult to dissolve and vitrify the raw powder. It is more preferably (T G +1 500) or more, particularly preferably (T e +1600) or more.
  • Raw materials silica sand 69 g, boric anhydride 160.5 g, alumina 13.5 g, calcium carbonate 37.5 g, barium carbonate 45 g, zinc oxide 340.5 g, sodium carbonate 36 g, potassium carbonate 40.5 g and stannic oxide 7.5 g were prepared and sufficiently mixed to obtain 750 g of raw material powder.
  • this raw material powder 750 g of this raw material powder and 75 g of a dispersing agent (Homogenol L-1820 manufactured by Kao Corporation) were added to 800 g of kerosene, and the mixture was ground using a pole mill at a stirring speed of 80 rpm for 7 hours.
  • the pole mill used had a pot made of alumina, the inner volume was 5,000 ml, and the pole was made of alumina and had an outer diameter of 15 mm.
  • kerosene After pulverization, 1784 g of kerosene was added, and the mixture was wet-pulverized for 2 hours using a medium stirring mill at a stirring speed of 2500 rpm to obtain a slurry in which the raw material powder was dispersed in kerosene.
  • a medium stirring mill the chamber is made of zirconia and The volume used was 1400 ml, the beads put in the chamber were made of zirconia, the average diameter was 0.5 Omm, and the total volume was 1120 ml.
  • the solid particles were collected from the slurry, and the volume-based average diameter was measured using a laser scattering particle size analyzer (Microtrac HRA model 9320-X100, manufactured by Nikkisha) to be 0.8 m.
  • the slurry was formed into droplets by using a two-fluid nozzle (AMH45 S-OS type, manufactured by Atmax Co., Ltd.), which was burned by approaching a flame.
  • the combustion temperature was 2070 ° C.
  • Air with a pressure of 0.3 MPa was used as the atomizing gas used for the two-fluid nozzle.
  • the flame is generated by igniting a pilot burner using, for example, LPG (liquefied petroleum gas).
  • LPG liquefied petroleum gas
  • the powder obtained by the combustion was recovered using a bag-filled mixer and subjected to X-ray diffraction measurement. No diffraction peak was observed. That is, the recovered powder was glass powder.
  • the X-ray diffraction measurement was performed using Cu as a radiation source under the conditions of a tube voltage of 40 kV and a tube current of 35 mA.
  • the mass percentile rate display composition determined by an X-ray fluorescence method for a glass powder obtained (unit:%) are shown in the column of S i 0 2 ⁇ Ce_ ⁇ 2 of Example 1 in Table 1 .
  • DTA Te (unit in)
  • D 5 Q, Q, D 9 Q ( unit:)
  • Shimadzu Corporation specific surface area measuring apparatus (Furosobu 2 2300) was used to measure ⁇ (unit: m 2 / g), and ⁇ ⁇ ⁇ was measured for 5 glass particles having a maximum diameter of 2 to 4 m.
  • S (unit:%) at 800 ° C was measured. The results are shown in each corresponding column of Example 1 in Table 1.
  • Example 2 After pulverization, the mixture was wet-pulverized using a medium stirring mill in the same manner as in Example 1 to obtain a slurry in which the raw material powder was dispersed in kerosene.
  • the volume-based average diameter of the solid particles collected from the slurry was measured in the same manner as in Example 1 and found to be 0.5 m.
  • Example 2 the slurry was burned in the same manner as in Example 1, and the obtained powder was collected using a bag filter.
  • the recovered powder was a glass powder as a result of X-ray diffraction measurement.
  • composition of the glass powder obtained in this manner expressed as a percentage by mass determined by X-ray fluorescence, TG , D 5 . ,. , D 9. , ⁇ , and S at 800 ° C. are shown in the corresponding columns of Example 2 in Table 1.
  • the i 2 O content of the glass powder is equal to L i 2 O content of the raw material powder
  • the content of other Ingredients of was calculated based on the data obtained by the X-ray fluorescence method, i.e., the content obtained by assuming the Li 2 O content as 0%, and the above-mentioned force and the above-mentioned mass percentage composition were obtained. .
  • the glass powders of Examples 1 and 2 are suitable for a resistance paste for electronic parts, a seal for hermetically sealing a sensor, an insulating glass paste for PDP, and the like.
  • Raw materials 46 g of silica sand, 107 g of boric anhydride, 9 g of alumina, 25 g of calcium carbonate, 30 g of barium carbonate, 27 g of zinc oxide, 24 g of sodium carbonate, 2 g of potassium carbonate 7 g and stannic oxide 5 g were prepared, and these were sufficiently mixed to obtain 50,000 raw material powder.
  • This raw material powder was put in a platinum crucible and melted at 140 ° C. to produce a molten glass.
  • the molten glass was quenched by a cooling roll and wet-ground with a pole mill using water as a solvent.
  • the water was dehydrated and filtered, and then dried at 120 ° C to obtain a glass powder (Example 3).
  • the same raw material powder as in Example 2 was prepared, and a glass powder was obtained in the same manner as in Example 3 (Example 3). Four) .
  • Examples 3 and 4 are comparative examples.
  • the glass powder obtained in this manner was determined in the same manner as in Examples 1 and 2 to show the composition by mass percentage, TG and D 5 . ,. , D 9 D, ®, ⁇ , and S at 800 ° C are shown in the corresponding columns of Examples 3 and 4 in Table 1.
  • a glass powder having a small shrinkage during firing can be obtained.

Abstract

A glass powder which consists essentially of, in mass %, 20 to 98 % of (SiO2 + B2O3 + Bi2O3), 0 to 18 % of Al2O3, 0 to 77 % of (MgO + CaO + SrO + BaO + ZnO), O to 75 % of PbO, O to 30 % of (Li2O + Na2O + K2O), O to 19 % of (TiO2 + ZnO2) and O to 5 % of (SnO2 + CeO2 + CuO), and has a volume average particle diameter D50 of 1.5 μm or more and a specific surface area (Θ) measured by the vapor adsorption BET method of 6 m2/g or more, as.

Description

明細書 ガラス粉末、 焼成体およびガラス粉末製造方法 技術分野  Description Glass powder, fired body and method for producing glass powder
本発明は、 電子部品の製造等に好適なガラス粉末、 および電子部品の絶縁層等 に好適な焼成体に関する。 景技術  The present invention relates to a glass powder suitable for manufacturing electronic components and the like, and a fired body suitable for insulating layers of electronic components and the like. Landscape technology
ガラス粉末はたとえば、 電子部品の製造において封着材料、 被覆材料、 結合材 料、 基板材料等として、 プラズマディスプレイパネル (P D P ) または自動車用 窓ガラスの製造において被覆材料等として広く用いられている。  Glass powder is widely used, for example, as a sealing material, coating material, binder material, substrate material and the like in the manufacture of electronic components, and as a coating material and the like in the manufacture of plasma display panels (PDP) or window glasses for automobiles.
ガラス粉末を気密封着に用いる場合、 たとえばこれにバインダを加えて顆粒状 にしたものを所望の形状にプレス成形し、 仮焼してバインダを分解後、 封着すベ き部分にセットし焼成する。 ガラス粉末は焼成されて焼成体となり、 当該封着す べき部分を気密に封着する。  When glass powder is used for hermetic sealing, for example, a binder is added to this and granulated, pressed into a desired shape, calcined, the binder is decomposed, and then set on the part to be sealed and fired I do. The glass powder is fired to form a fired body, and the portion to be sealed is hermetically sealed.
ガラス粉末を被覆に用いる場合、 たとえばこれをビヒクルと混鍊してペース卜 とし、 スクリーン印刷法等によって被覆すべき部分に塗布し、 焼成する。 ガラス 粉末は焼成されて焼成体となり、 当該被覆すべき部分を被覆する。  When glass powder is used for coating, for example, it is mixed with a vehicle to form a paste, which is applied to a portion to be coated by a screen printing method or the like, and baked. The glass powder is fired to form a fired body, which covers the portion to be coated.
ハイプリッド I C (H I C) 等をグリーンシート法によって製造する場合、 グ リーンシート上にスクリーン印刷法等によって多層構造の電子回路パターンが形 成される。 H I Cのクロスオーバー層およびオーバーコート層にはガラス粉末を 焼成した焼成体が用いられるが、 当該焼成体はガラス粉末にビヒクルを加えてぺ 一スト化し、 これをスクリーン印刷法等によってグリーンシート上に塗布したも のを積層し、 焼成して得られる。  When a hybrid IC (HIC) or the like is manufactured by a green sheet method, an electronic circuit pattern having a multilayer structure is formed on the green sheet by a screen printing method or the like. A fired body obtained by firing glass powder is used for the crossover layer and the overcoat layer of the HIC, and the fired body is made into a paste by adding a vehicle to the glass powder, and this is formed on a green sheet by a screen printing method or the like. It is obtained by laminating the applied materials and firing.
このような用途に用いられるガラス粉末は従来、 調合された原料を溶解して溶 融ガラスとし、 これを冷却後粉碎する方法によって製造されている。  Conventionally, glass powder used for such purposes is produced by melting a prepared raw material to form a molten glass, followed by cooling and grinding.
ガラスを粉砕して製造されたガラス粉末には、 焼成体に亀裂が入る、 焼成体の 寸法精度が低い、 焼成体表面に凹凸が発生しやすい、 等の問題が生じることがあ つた。 Glass powder produced by crushing glass may cause problems such as cracks in the fired body, low dimensional accuracy of the fired body, and easy occurrence of irregularities on the surface of the fired body. I got it.
本発明は上記問題を解決できるガラス粉末の提供を目的とする。 発明の開示  An object of the present invention is to provide a glass powder capable of solving the above problems. Disclosure of the invention
本発明は、 下記酸化物基準の質量百分率表示で、 S i 02 +B2 03 +B i 2 03 20〜98%、 Α 12 Ο3 0〜18%、 MgO + CaO + S rO + B a O + ZnO 0〜77%、 PbO 0〜75%、 L i 2 0 + Na2 0 + K2 O 0〜30%、 T i 02 +Z r02 0〜 19 %、 S nOa +C e 02 +CuO 0〜5%、 から本質的になるガラス粉末であって、 体積基準平均径05 。 が 1. 5 m以上、 かつ気体吸着 BET法による比表面積 Θが 6m2 /g以上であるこ とを特徴とするガラス粉末を提供する。 The present invention, in mass percentage based on the following oxides, S i 0 2 + B 2 0 3 + B i 2 0 3 20~98%, Α 1 2 Ο 3 0~18%, MgO + CaO + S rO + B a O + ZnO 0 to 77%, PbO 0 to 75%, L i 20 + Na 2 0 + K 2 O 0 to 30%, T i 0 2 + Z r0 20 to 19%, S nO a + CeO 2 + CuO 0-5%, which is a glass powder consisting essentially of: volume-based average diameter 0 5 . A glass powder characterized by having a specific surface area 1. of at least 1.5 m and a specific surface area に よ る of at least 6 m 2 / g by gas adsorption BET method.
また、 前記ガラス粉末を含有する無機物粉末を焼成して得られる焼成体を提供 する。  The present invention also provides a fired body obtained by firing an inorganic powder containing the glass powder.
また、 前記ガラス粉末を製造する方法であって、 原料粉末を可燃性液体に分散 させてスラリーとし、 該スラリーを液滴状にして燃焼させ、 前記原料粉末を溶解 することを特徴とするガラス粉末製造方法を提供する。  A method for producing the glass powder, wherein the raw material powder is dispersed in a flammable liquid to form a slurry, and the slurry is formed into droplets and burned to dissolve the raw material powder. A manufacturing method is provided.
本発明者は前記問題がガラス粉末焼成時の収縮が大きいために起こると考え、 本発明に至った。 発明を実施するための最良の形態  The present inventors have thought that the above problem occurs due to a large shrinkage at the time of firing the glass powder, and have reached the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
本発明のガラス粉末は通常、 次のような処理を経た後に焼成して使用される。 すなわち、 ガラス粉末をプレス成形してプレス成型体とする、 ガラス粉末をべ一 スト化またはスラリー化しこれを基体、 グリーンシート等に塗布する、 等の処理 を経た後に焼成され、 焼成体とされる。  The glass powder of the present invention is usually used by firing after the following treatment. That is, the glass powder is press-formed to form a press-formed body, the glass powder is formed into a base or slurry, and this is applied to a substrate, a green sheet, or the like. .
前記焼成されるものはガラス粉末を必須成分として含有するが、 必要に応じて ガラス粉末以外の無機物の粉末を含有してもよい。 このような無機物の粉末とし てはセラミックスフイラ一、 耐熱無機顔料等が例示される。  The material to be fired contains glass powder as an essential component, but may contain inorganic powders other than glass powder as necessary. Examples of such inorganic powders include ceramics fillers and heat-resistant inorganic pigments.
本発明のガラス粉末は、 そのガラス転移点を Te としたときに、 下記方法によ つて測定された温度 TB における焼成収縮率 Sが TB =TG + 320°Cまたは T B =TG + 3 5 0 において 8 %以下であることが好ましい。 Glass powder of the present invention, the glass transition point is taken as T e, firing shrinkage rate S at a temperature T B had it occurred in measuring the following methods T B = T G + 320 ° C or T It is preferably 8% or less at B = TG + 350.
(方法)  (Method)
(1) 内径が 1 5mmである円筒状プレス金型にガラス粉末 1. 5 gを入れ、 (1) Put 1.5 g of glass powder into a cylindrical press mold with an inner diameter of 15 mm,
2 5 0 kP aでプレスして直径 1 5 mmの円柱状ガラス粉末プレス体を作製する Press at 250 kPa to produce a cylindrical glass powder pressed body with a diameter of 15 mm
(2) 前記プレス体を速度 1 O^Z分で昇温し、 TB に 1 0分間保持後、 速度 1 οτ:/分で降温し焼成体を作製する。 (2) the temperature was raised at a rate 1 O ^ Z min the pressed body, after 1 0 minutes holding the T B, speed 1 Omikurontau: lowering the temperature in / min to produce a sintered body.
(3) 前記焼成体の直径 X (mm) を測定し、 S= (1 5— X) X 1 0 0/1 5を算出する。  (3) Measure the diameter X (mm) of the fired body, and calculate S = (15−X) × 100/15.
TB =TG + 3 20°Cまたは TB =TG + 3 5 0 °Cにおける Sが 8 %超では、 (TG + 1 50°C) 〜 (TG + 40 0°C) 、 特に (TG + 3 0 0 :) 〜 (TG +If S at T B = T G +3 20 ° C or T B = T G +350 ° C exceeds 8%, (T G + 150 ° C) ~ (T G + 400 ° C), In particular, ( TG + 300 :) to ( TG +
3 5 0°C) の範囲の温度で焼成したときに焼成体に亀裂が入る等の問題が起こる おそれがある。 より好ましくは 6 %以下、 特に好ましくは 4%以下である。 前記 TGは示差熱分析 (DTA) によって測定され、 典型的には 400〜7 5 0°Cである。 DT Aにおける昇温速度は 1 0°C/分である。 When firing at a temperature in the range of 350 ° C.), cracks may occur in the fired body and other problems may occur. It is more preferably at most 6%, particularly preferably at most 4%. The TG is measured by differential thermal analysis (DTA) and is typically 400-750 ° C. The rate of temperature rise in DTA is 10 ° C / min.
本発明のガラス粉末を焼成する温度は、 通常、 好ましくは、 (TG + 1 50°C ) 〜 (Te + 40 0°C) である。 (Te + 1 50°C) 未満では焼成体の焼結性が 低下するおそれがある。 より好ましくは (TG + 2 0 0°C) 以上である。 (TG + 40 0V) 超では焼成時の軟化流動が大きくなるおそれがある。 より好ましく は (Te + 3 5 0°C) 以下である。 The temperature at which the glass powder of the present invention is fired is usually preferably (T G + 150 ° C.) to (T e + 400 ° C.). If the temperature is less than (T e +1 50 ° C), the sinterability of the fired body may decrease. It is more preferably (T G + 200 ° C.) or more. If it exceeds (T G +400 V), the softening flow during firing may increase. It is more preferably (T e + 350 ° C) or less.
本発明のガラス粉末の体積基準平均径05 。 は 1. 以上である。 1. 5 zm未満では焼成体中の残存泡が増加し、 焼成体の強度が低下する、 焼成体の電 気絶縁性が低下する等の問題が起こるおそれがある。 好ましくは 2 m以上であ る。 また、 D5 。 は 4 xm以下であることが好ましい。 4 ^m超では、 焼結性が 低下し、 かえって焼成体の強度が低下する、 焼成体の電気絶縁性が低下する等の 問題が起こるおそれがある。 より好ましくは 3 zm以下である。 The volume-based average diameter of the glass powder of the present invention is 0 5 . Is more than 1. If it is less than 1.5 zm, residual bubbles in the fired body increase, and problems such as a decrease in strength of the fired body and a decrease in electrical insulation of the fired body may occur. It is preferably at least 2 m. In addition, D 5. Is preferably 4 xm or less. If it exceeds 4 m, the sinterability may be reduced, and the strength of the fired body may be reduced, and the electrical insulation of the fired body may be reduced. More preferably, it is 3 zm or less.
体積基準で、 積算ふるい下 1 0%径131 0 は 1 im以上であることが好ましい 。 1 xm未満では焼成体中の残存泡が増加するおそれがある。 より好ましくは 1 . 4 m以上である。 また、 積算ふるい下 90%径09 。 は 5 m以下であることが好ましい。 5 i m超では焼結性が低下するおそれがある。 より好ましくは 4. 5 以下である By volume, the accumulated sieve bottom 1 0% diameter 13 1 0 is preferably 1 im or more. If it is less than 1 xm, residual foam in the fired body may increase. It is more preferably at least 1.4 m. Also, 90% diameter 0 9 under the integrating sieve. Is preferably 5 m or less. If it exceeds 5 im, the sinterability may decrease. More preferably 4.5 or less
Ό, 0 が 以上かつ D9 。 が 5 //m以下であることがより好ましい。 なお、 Q 、 D5 。 および D9 。 は、 たとえばレーザー散乱式粒度測定装置 によつて測定した粒度分布から求められる。 Ό, 0 is greater than and D 9 . Is more preferably 5 // m or less. In addition, Q, D 5. And D 9. Is determined from a particle size distribution measured by, for example, a laser scattering type particle size measuring device.
本発明のガラス粉末の気体吸着 B E T法による比表面積 Θは 6 m 2 Z g以上で ある。 6m2 /g未満では前記 Sが大きくなる。 好ましくは 7m2 Zg以上であ る。 また、 ®は典型的には 1 5m2 Zg以下である。 The specific surface area に よ る by gas adsorption BET method of the glass powder of the present invention is 6 m 2 Zg or more. If it is less than 6 m 2 / g, the value of S becomes large. It is preferably at least 7 m 2 Zg. Further, ® is typically 15 m 2 Zg or less.
なお、 (9はたとえば周知の B E T式比表面積測定 1点法によって測定される。 本発明のガラス粉末において、 最大径が 2〜 4 mであるガラス粒子の W a d e 1 1の実用球形度 Ψは 0. 85以上であることが好ましい。 0. 85未満では 前記 Sが大きくなるおそれがある。 より好ましくは 0. 90以上である。  (9 is measured by, for example, the well-known one-point method of BET specific surface area measurement. In the glass powder of the present invention, the practical sphericity Ψ of Wade 11 of glass particles having a maximum diameter of 2 to 4 m is It is preferably 0.85 or more, and if it is less than 0.85, there is a possibility that the above-mentioned S becomes large, more preferably 0.90 or more.
Ψは、 最大径が 2〜4 tmであるガラス粒子 5個以上についてレーザー顕微鏡 (倍率: 1000倍) を用いて求めた各ガラス粒子の投影面積に等しい面積を有 する円の直径 dと当該ガラス粒子の投影像に外接する最小円の直径 Dとから算出 される各ガラス粒子の dZDの平均である。 なお、 Dは前記最大径に相当する。 本発明のガラス粉末は、 先に述べたように、 S i 02 、 B2 03 、 B i 2 03 、 A 12 03 、 MgO、 C aO、 S r 0、 B aO、 ZnO、 P bO、 L i 2 0、 Na2 0、 K2 0、 T i 02 、 Z r02 、 Sn02 、 Ce〇2 および CuOから 本質的になるが、 その他の成分をガラス粉末使用目的を損なわない範囲で含有し てもよい。 当該その他成分の質量百分率表示の含有量の合計は 10%以下である ことが好ましい。 なお、 PbOは環境に負荷をかけるおそれがあるので、 含有し ないことが好ましい。 Ψ is the diameter d of a circle having an area equal to the projected area of each glass particle obtained by using a laser microscope (magnification: × 1000) for 5 or more glass particles having a maximum diameter of 2 to 4 tm, and It is the average of the dZD of each glass particle calculated from the diameter D of the smallest circle circumscribing the projected image of the particle. D corresponds to the maximum diameter. Glass powder of the present invention, as previously described, S i 0 2, B 2 0 3, B i 2 0 3, A 1 2 0 3, MgO, C aO, S r 0, B aO, ZnO, P bO, L i 2 0, Na 2 0, K 2 0, T i 0 2, Z r0 2, Sn0 2, but consists essentially of Ce_〇 2 and CuO, other components impair the glass powder intended use It may be contained to the extent that it does not exist. It is preferable that the total content of the other components in terms of mass percentage is 10% or less. It is preferable that PbO is not contained because it may put a burden on the environment.
以下、 ガラス粉末の各成分の含有量は質量百分率表示で示す。  Hereinafter, the content of each component of the glass powder is shown by mass percentage.
また、 たとえば 「A 12 03 0〜1 8%」 は、 A 12 03 を含有しない、 ま たは A 12 03 を含有する場合その含有量は 18%以下であることを意味する。 本発明のガラス粉末を H I C 'クロスオーバーガラスペースト、 H I C ·多層 絶縁ガラスペースト、 プリントへッド用ォ一バーコ一トペースト等に用いる場合 、 S i〇2 20〜45%、 B2 O3 0〜16%、 A l 2 O3 3〜; 18%、 MgO+CaO+S rO+B aO 18〜50%、 ZnO 5〜30%、 T i O 2 0〜 15 %、 Z r 02 0〜4%、 L i 2 0 + Na2 0 + K2 O 0〜2% 、 S n02 0〜2%、 から本質的になることが好ましい。 Further, for example, "A 1 2 0 3 0~1 8%" is meant that it does not contain A 1 2 0 3, was or its content when they contain A 1 2 0 3 18% or less I do. When the glass powder of the present invention is used for HIC 'crossover glass paste, HIC, multi-layer insulating glass paste, overcoat for printing head, etc. , S i〇 2 20-45%, B 2 O 3 0-16%, Al 2 O 3 3 ~; 18%, MgO + CaO + S rO + B aO 18-50%, ZnO 5-30%, T i O 2 0-15%, Z r 0 2 0-4%, L i 2 0 + Na 2 0 + K 2 O 0-2%, S n 0 2 0-2%, can consist essentially of preferable.
本発明のガラス粉末を H I C ·オーバーコートペースト等に用いる場合、 S i 02 0〜35%、 B2 O3 0〜25%、 A l 2 O3 0〜2%、 B i 2 O3 When the glass powder of the present invention is used for an HIC overcoat paste or the like, Si 0 20 to 35%, B 2 O 30 to 25%, Al 2 O 3 0 to 2%, Bi 2 O 3
20〜90%、 B aO+Z ηθ 0〜50%、 T i 02 0〜10%、 L i 2 0 + Na2 0 + K2 O 0〜12%、 S n02 0〜1%、 Ce02 0〜2% 、 から本質的になることが好ましい。 20~90%, B aO + Z ηθ 0~50%, T i 0 2 0~10%, L i 2 0 + Na 2 0 + K 2 O 0~12%, S n0 2 0~1%, Ce0 Preferably, it consists essentially of 20 to 2%.
本発明のガラス粉末を電子部品用抵抗ペースト、 センサー気密封着用フリット 、 金属、 セラミックス等の封着または接着に用いるフリット、 等に用いる場合、 S i 02 5〜35%、 B2 03 15〜35%、 A 12 03 1〜10%、 M gO + C aO + S rO + B aO + ZnO 20〜66%、 T i 02 0〜5%、 Z r 02 0〜5%、 L i 2 0 + Na2 0 + K2 O 0〜30 %、 S nOa 0〜 2%、 C e02 0〜2%、 から本質的になることが好ましい。 When using the glass powder of the present invention for electronic parts resistive paste, the sensor hermetically wear frit, metallic, sealing or frit used in the bonding of ceramics, etc., S i 0 2 5~35%, B 2 0 3 15 ~35%, A 1 2 0 3 1~10%, M gO + C aO + S rO + B aO + ZnO 20~66%, T i 0 2 0~5%, Z r 0 2 0~5%, Preferably, it consists essentially of L i 20 + Na 20 + K 2 O 0 to 30%, S nO a 0 to 2%, and C e0 20 to 2%.
本発明のガラス粉末をガラスセラミックス多層基板製造等に用いる場合、 S i 02 60〜80%、 Β2 Ο3 17〜30%、 Α 12 Ο3 0〜: L 0%、 Mg O + C aO + S r O + B aO 0〜 5 %、 L i 2 O + N a 2 O + K2 O 0〜3 %、 から本質的になることが好ましい。 When using a glass powder of the present invention to the glass ceramic multilayer substrate manufacturing such, S i 0 2 60~80%, Β 2 Ο 3 17~30%, Α 1 2 Ο 3 0~: L 0%, Mg O + C aO + S r O + B aO 0~ 5%, L i 2 O + N a 2 O + K 2 O 0~3%, preferably consists essentially of.
本発明のガラス粉末を PDP用絶縁ガラスペースト等に用いる場合、 S i 02 + B2 03 20〜40%、 A l 2 O3 0〜10%、 PbO 35〜75%、 MgO + C aO + S r O + B aO + Z nO 0〜20%、 T i O2 0〜5%、 S n02 0〜2%、 CeO2 0〜2%、 CuO 0〜1%、 から本質的にな ることが好ましい。 また、 S i 02 5〜35%、 B2 03 15〜 35%、 A 12 03 1〜10%、 MgO + C aO + S rO + B aO + ZnO 20〜66 %、 T i〇2 0〜5%、 Z r 02 0〜5%、 L i 2 O + N a2 0 + K2 O 0〜30%、 S n02 0〜2%、 Ce〇2 0〜2%、 から本質的になること も好ましい。 When the glass powder of the present invention is used for an insulating glass paste for a PDP or the like, Si 0 2 + B 2 0 3 20 to 40%, Al 2 O 3 0 to 10%, PbO 35 to 75%, MgO + CaO + S r O + B aO + Z nO 0~20%, T i O 2 0~5%, S n0 2 0~2%, CeO 2 0~2%, i 0 to 1% CuO, from essentially Preferably. Also, S i 0 2 5 to 35%, B 2 0 3 15 to 35%, A 12 0 3 1 to 10%, MgO + CaO + SrO + BaO + ZnO 20 to 66%, Ti 2 0~5%, Z r 0 2 0~5 %, L i 2 O + N a 2 0 + K 2 O 0~30%, S n0 2 0~2%, essentially from Ce_〇 2 0 to 2%, It is also preferable that it becomes effective.
本発明のガラス粉末を自動車窓ガラス用セラミックカラーペースト等に用いる 場合、 S i 02 10〜35 %、 B2 03 0〜25 %、 A 12 03 0〜2% 、 B i 2 03 20〜70%、 B aO + ZnO 0〜50%、 T i 02 0〜1 0%、 L i 2 O + Na2 O + K2 O 0〜12%、 CeO2 0〜2%、 から本 質的になることが好ましい。 The glass powder of the present invention is used for a ceramic color paste for an automotive window glass, etc. If, S i 0 2 10~35%, B 2 0 3 0~25%, A 1 2 0 3 0~2%, B i 2 0 3 20~70%, B aO + 0~50% ZnO, T It is preferable that the organic solvent be essentially composed of i 0 20 to 10%, Li 2 O + Na 2 O + K 2 O 0 to 12%, and CeO 2 0 to 2%.
本発明のガラス粉末は本質的にガラスの粉末からなるが、 本発明の目的を損な わない範囲で結晶の粉末を含有してもよい。 なお、 通常は結晶の粉末を含有しな いことが好ましい。  The glass powder of the present invention consists essentially of a glass powder, but may contain a crystalline powder as long as the object of the present invention is not impaired. Normally, it is preferable not to contain crystal powder.
本発明において、 ガラス粉末が結晶の粉末を含有するか否かは、 ガラス粉末の X線回折パターンに回折ピークが認められるか否かによる。 すなわち、 ガラス粉 末の X線回折パターンに回折ピークが認められる場合にガラス粉末が結晶の粉末 を含有するという。  In the present invention, whether or not the glass powder contains crystalline powder depends on whether or not a diffraction peak is observed in the X-ray diffraction pattern of the glass powder. That is, when a diffraction peak is observed in the X-ray diffraction pattern of the glass powder, the glass powder is said to contain crystalline powder.
本発明のガラス粉末が結晶の粉末を含有する場合、 X線回折パターンの第 1の ブロードピークの面積を s、 回折ピークの面積を s, として、 s ' Z sは 0. 0 5以下である。 好ましくは 0. 03以下、 より好ましくは 0. 02以下、 特に好 ましくは 0. 01以下である。  When the glass powder of the present invention contains crystalline powder, s′Zs is 0.05 or less, where s is the area of the first broad peak and s is the area of the diffraction peak in the X-ray diffraction pattern. . It is preferably at most 0.03, more preferably at most 0.02, particularly preferably at most 0.01.
sは第 1のプロ一ドピークからバックグラウンド部分を除いた部分の面積であ る。 また、 s ' はブロードパターン (ブロードピーク等) 部分を含まない部分の 回折ピークの面積であり、 回折ピークが複数存在する場合はそれらの和である。 本発明の焼成体は、 本発明のガラス粉末を含有する無機物粉末を焼成して得ら れるものであるが、 当該無機物粉末は本発明のガラス粉末のみからなるものであ つてもよいし、 ガラス粉末以外の無機物の粉末を含有してもよい。 当該無機物の 粉末としてはセラミックスフイラ一、 耐熱無機顔料等が例示される。  s is the area of the portion excluding the background portion from the first prod peak. In addition, s' is the area of the diffraction peak of the portion that does not include the broad pattern (broad peak etc.) portion, and when there are multiple diffraction peaks, the sum of them. The fired body of the present invention is obtained by firing an inorganic powder containing the glass powder of the present invention. The inorganic powder may be composed of only the glass powder of the present invention, or may be made of glass. An inorganic powder other than the powder may be contained. Examples of the inorganic powder include a ceramic filler and a heat-resistant inorganic pigment.
本発明のガラス粉末は、 本発明のガラス粉末製造方法 (以下本発明の製造方法 という。 ) によって製造されることが好ましい。  The glass powder of the present invention is preferably manufactured by the glass powder manufacturing method of the present invention (hereinafter referred to as the manufacturing method of the present invention).
次に、 本発明の製造方法について説明する。  Next, the manufacturing method of the present invention will be described.
まず、 所望の組成のガラス粉末を得られるように原料を調合、 混合して原料粉 末とする。 なお、 原料粉末から計算によって求めた組成は必ずしも前記所望の組 成と一致しない。  First, raw materials are prepared and mixed so as to obtain a glass powder having a desired composition to obtain a raw material powder. The composition calculated from the raw material powder does not always match the desired composition.
前記原料は酸化物または炭酸塩であることが好ましい。 また、 硫酸塩ではない ことが好ましい。 原料が硫酸塩であると本発明の製造方法によって製造されたガ ラス粉末が中空状になるおそれがある。 The raw material is preferably an oxide or a carbonate. Also not sulfate Is preferred. If the raw material is a sulfate, the glass powder produced by the production method of the present invention may be hollow.
前記原料粉末は可燃性液体中に入れて混合され、 当該可燃性液体中に前記原料 粉末が分散しているスラリーとされる。 この混合の際には、 得られるガラス粉末 をより均一なものとするために粉砕することが好ましい。  The raw material powder is mixed in a flammable liquid to form a slurry in which the raw material powder is dispersed in the flammable liquid. In the case of this mixing, it is preferable to grind the obtained glass powder in order to make it more uniform.
前記スラリ一中の原料粉末の体積基準平均径は 2 m以下であることが好まし い。 2 m超では後述する燃焼において原料粉末を溶解してガラス化することが 困難になる。 より好ましくは 1 / m以下である。  The volume-based average diameter of the raw material powder in the slurry is preferably 2 m or less. If it exceeds 2 m, it becomes difficult to melt and vitrify the raw material powder in the combustion described later. It is more preferably 1 / m or less.
前記可燃性液体は、 取り扱いやすく、 燃焼しやすく、 さらに好ましくは安価な ものであれば特に限定されないが、 灯油、 重油、 アルコール等が例示される。 次に、 前記スラリーは二流体ノズル等を用いて液滴とされ、 当該液滴を別途用 意された火炎に近づけ燃焼させる。  The flammable liquid is not particularly limited as long as it is easy to handle, easily combustible, and more preferably inexpensive. Examples thereof include kerosene, heavy oil, and alcohol. Next, the slurry is formed into droplets using a two-fluid nozzle or the like, and the droplets are brought close to a separately prepared flame and burned.
スラリーを液滴状にして燃焼させる温度、 すなわち前記液滴を燃焼させる温度 は (TG + 1400 ) 以上であることが好ましい。 (TG + 1400°C) 未満 では原料粉末を溶解してガラス化することが困難になる。 より好ましくは (TG + 1 500 ) 以上、 特に好ましくは (Te + 1600で) 以上である。 The temperature at which the slurry is formed into droplets and burned, that is, the temperature at which the droplets are burned is preferably ( TG + 1400) or more. If the temperature is lower than (T G + 1400 ° C), it becomes difficult to dissolve and vitrify the raw powder. It is more preferably (T G +1 500) or more, particularly preferably (T e +1600) or more.
実施例 Example
(例 1)  (Example 1)
原料として、 珪砂 69 g、 無水ホウ酸 160. 5 g、 アルミナ 1 3. 5 g、 炭 酸カルシウム 37. 5 g、 炭酸バリウム 45 g、 酸化亜鉛 340. 5 g、 炭酸ナ トリウム 36 g、 炭酸カリウム 40. 5 g、 酸化第二錫 7. 5 gを用意し、 これ らを十分混合して 750 gの原料粉末を得た。  Raw materials: silica sand 69 g, boric anhydride 160.5 g, alumina 13.5 g, calcium carbonate 37.5 g, barium carbonate 45 g, zinc oxide 340.5 g, sodium carbonate 36 g, potassium carbonate 40.5 g and stannic oxide 7.5 g were prepared and sufficiently mixed to obtain 750 g of raw material powder.
この原料粉末 750 gと分散剤 (花王社製ホモゲノール L一 1820) 75 g とを 800 gの灯油に添加し、 ポールミルを使用して撹拌回転数 80 r pmの条 件で 7時間粉碎した。 ポールミルとしては、 ポットがアルミナ製で内容積は 50 00ml , ポールがアルミナ製で外径 1 5 mmであるものを使用した。  750 g of this raw material powder and 75 g of a dispersing agent (Homogenol L-1820 manufactured by Kao Corporation) were added to 800 g of kerosene, and the mixture was ground using a pole mill at a stirring speed of 80 rpm for 7 hours. The pole mill used had a pot made of alumina, the inner volume was 5,000 ml, and the pole was made of alumina and had an outer diameter of 15 mm.
ポールミル粉砕後、 灯油を 1784 g加え、 媒体撹拌ミルを使用して撹拌回転 数 2500 r pmの条件で 2時間湿式粉砕し、 灯油中に前記原料粉末が分散して いるスラリーを得た。 媒体撹拌ミルとしては、 チャンバがジルコニァ製でその内 容積が 1400m 1であり、 そのチャンバに入れるビーズがジルコニァ製でその 平均径が 0. 5 Omm、 その総量が 1120mlであるものを使用した。 After pulverization, 1784 g of kerosene was added, and the mixture was wet-pulverized for 2 hours using a medium stirring mill at a stirring speed of 2500 rpm to obtain a slurry in which the raw material powder was dispersed in kerosene. As a medium stirring mill, the chamber is made of zirconia and The volume used was 1400 ml, the beads put in the chamber were made of zirconia, the average diameter was 0.5 Omm, and the total volume was 1120 ml.
前記スラリ一から固体粒子を回収しレーザー散乱式粒度測定装置 (日機社製、 マイクロトラック HRAモデル 9320 -X 100) を用いて体積基準平均径を 測定したところ 0. 8 mであった。  The solid particles were collected from the slurry, and the volume-based average diameter was measured using a laser scattering particle size analyzer (Microtrac HRA model 9320-X100, manufactured by Nikkisha) to be 0.8 m.
次に前記スラリーを二流体ノズル (アトマックス社製、 AMH45 S—OS型 ) を用いて液滴とし、 これを火炎に近づけ燃焼させた。 燃焼温度は 2070°Cで あった。  Next, the slurry was formed into droplets by using a two-fluid nozzle (AMH45 S-OS type, manufactured by Atmax Co., Ltd.), which was burned by approaching a flame. The combustion temperature was 2070 ° C.
二流体ノズルに使用する噴霧ガスとしては圧力が 0. 3 MP aの空気を使用し た。  Air with a pressure of 0.3 MPa was used as the atomizing gas used for the two-fluid nozzle.
また、 前記火炎はたとえば LP G (液化石油ガス) を使用してパイロットバー ナに点火して生成される。  The flame is generated by igniting a pilot burner using, for example, LPG (liquefied petroleum gas).
前記燃焼によつて得られた粉末をバグフィル夕を用いて回収し、 X線回折測定 を行なったところ回折ピークは認められなかった。 すなわち、 前記回収された粉 末はガラス粉末であった。 なお、 X線回折測定は、 線源として Cuを使用し、 管 電圧 40 k V、 管電流 35mAの条件で行なった。  The powder obtained by the combustion was recovered using a bag-filled mixer and subjected to X-ray diffraction measurement. No diffraction peak was observed. That is, the recovered powder was glass powder. The X-ray diffraction measurement was performed using Cu as a radiation source under the conditions of a tube voltage of 40 kV and a tube current of 35 mA.
このようにして得られたガラス粉末について蛍光 X線法を用いて求めた質量百 分率表示組成 (単位:%) を、 表 1の例 1の S i 02〜Ce〇2 の欄に示す。 また、 DTAを用いて Te (単位:で) を、 前記レーザー散乱式粒度測定装置 を用いて D5 QQ、 D9 Q (単位: ) を、 島津製作所社製比表面積測定 装置 (フロソーブ 2 2300) を用いて Θ (単位: m2 / g) を、 最大径が 2 〜4 mであるガラス粒子 5個を対象にして Ψを、 それぞれ測定した。 さらに、 800°Cにおける S (単位:%) を測定した。 結果を表 1の例 1の各該当欄に示 す。 In this way, the mass percentile rate display composition determined by an X-ray fluorescence method for a glass powder obtained (unit:%) are shown in the column of S i 0 2 ~Ce_〇 2 of Example 1 in Table 1 . Further, by using the DTA Te: (unit in), using the laser scattering type particle size measuring apparatus D 5 Q, Q, D 9 Q ( unit:), and Shimadzu Corporation specific surface area measuring apparatus (Furosobu 2 2300) was used to measure て (unit: m 2 / g), and ガ ラ ス was measured for 5 glass particles having a maximum diameter of 2 to 4 m. Further, S (unit:%) at 800 ° C was measured. The results are shown in each corresponding column of Example 1 in Table 1.
(例 2)  (Example 2)
原料として、 珪砂 123 g、 無水ホウ酸 171 g、 アルミナ 27 g、 酸化亜鉛 294 g、 炭酸リチウム 76 g、 炭酸カリウム 45 g、 酸化第二錫 7 g、 酸化セ リウム 7 gを用意し、 これらを十分混合して 750 gの原料粉末を得た。  As raw materials, 123 g of silica sand, 171 g of boric anhydride, 27 g of alumina, 294 g of zinc oxide, 76 g of lithium carbonate, 45 g of potassium carbonate, 7 g of stannic oxide, and 7 g of cerium oxide were prepared. After thorough mixing, 750 g of the raw material powder was obtained.
この原料粉末 750 gと、 例 1と同じ分散剤 75 gとを 800 gの灯油に添加 し、 例 1と同じポールミルを使用して撹拌回転数 8 0 r p mの条件で 2 4時間粉 碎した。 Add 750 g of this raw material powder and 75 g of the same dispersant as in Example 1 to 800 g of kerosene Then, the mixture was ground for 24 hours using the same pole mill as in Example 1 at a stirring speed of 80 rpm.
ポールミル粉砕後、 例 1と同様にして媒体撹拌ミルを使用して湿式粉碎し、 灯 油中に前記原料粉末が分散しているスラリーを得た。 また、 当該スラリーから回 収した固体粒子の体積基準平均径を例 1と同様にして測定したところ 0 . 5 m であった。  After pulverization, the mixture was wet-pulverized using a medium stirring mill in the same manner as in Example 1 to obtain a slurry in which the raw material powder was dispersed in kerosene. The volume-based average diameter of the solid particles collected from the slurry was measured in the same manner as in Example 1 and found to be 0.5 m.
次に、 例 1と同様にして前記スラリーを燃焼させ、 得られた粉末をバグフィル 夕を用いて回収した。 この回収された粉末は、 X線回折測定の結果ガラス粉末で あった。  Next, the slurry was burned in the same manner as in Example 1, and the obtained powder was collected using a bag filter. The recovered powder was a glass powder as a result of X-ray diffraction measurement.
このようにして得られたガラス粉末について蛍光 X線法を用いて求めた質量百 分率表示組成、 TG 、 D 5 。 、 。 、 D 9 。 、 Θ、 、 8 0 0 °Cにおける Sを 表 1の例 2の各該当欄に示す。 The composition of the glass powder obtained in this manner, expressed as a percentage by mass determined by X-ray fluorescence, TG , D 5 . ,. , D 9. , Θ, and S at 800 ° C. are shown in the corresponding columns of Example 2 in Table 1.
なお、 L i 2 O含有量は蛍光 X線法によっては測定できないので、 ガラス粉末 の i 2 O含有量を前記原料粉末中の L i 2 O含有量に等しいとし、 その他の成 分の含有量は蛍光 X線法によって得られたデータ、 すなわち L i 2 O含有量を 0 %とみなして得られた含有量をもとにして算出し、 これら力、ら前記質量百分率表 示組成を求めた。 下記例 4の質量百分率表示組成も同様である。 Since L i 2 O content can not be measured by fluorescent X-ray method, the i 2 O content of the glass powder is equal to L i 2 O content of the raw material powder, the content of other Ingredients of Was calculated based on the data obtained by the X-ray fluorescence method, i.e., the content obtained by assuming the Li 2 O content as 0%, and the above-mentioned force and the above-mentioned mass percentage composition were obtained. . The same applies to the composition by mass percentage in Example 4 below.
例 1、 例 2のガラス粉末は、 電子部品用抵抗ペースト、 センサー気密封着用フ リッ卜、 P D P用絶縁ガラスペースト等に好適である。  The glass powders of Examples 1 and 2 are suitable for a resistance paste for electronic parts, a seal for hermetically sealing a sensor, an insulating glass paste for PDP, and the like.
(例 3、 例 4 )  (Example 3, Example 4)
原料として、 珪砂 4 6 g、 無水ホウ酸 1 0 7 g、 アルミナ 9 g、 炭酸カルシゥ ム 2 5 g、 炭酸バリウム 3 0 g、 酸化亜鉛 2 2 7 g、 炭酸ナトリウム 2 4 g、 炭 酸カリウム 2 7 g、 酸化第二錫 5 gを用意し、 これらを十分混合して 5 0 0 の 原料粉末を得た。  Raw materials: 46 g of silica sand, 107 g of boric anhydride, 9 g of alumina, 25 g of calcium carbonate, 30 g of barium carbonate, 27 g of zinc oxide, 24 g of sodium carbonate, 2 g of potassium carbonate 7 g and stannic oxide 5 g were prepared, and these were sufficiently mixed to obtain 50,000 raw material powder.
この原料粉末を白金るつぼに入れて 1 4 0 0 °Cで溶解し、 溶融ガラスを作製し た。 この溶融ガラスを冷却ロールで急冷後溶媒として水を使用してポールミルで 湿式粉砕した。 水を脱水ろ過後、 1 2 0 °Cで乾燥してガラス粉末を得た (例 3 ) また、 例 2と同じ原料粉末を用意し、 例 3と同様にしてガラス粉末を得た (例 4) 。 This raw material powder was put in a platinum crucible and melted at 140 ° C. to produce a molten glass. The molten glass was quenched by a cooling roll and wet-ground with a pole mill using water as a solvent. The water was dehydrated and filtered, and then dried at 120 ° C to obtain a glass powder (Example 3). Also, the same raw material powder as in Example 2 was prepared, and a glass powder was obtained in the same manner as in Example 3 (Example 3). Four) .
例 3および例 4はいずれも比較例である。  Examples 3 and 4 are comparative examples.
このようにして得られたガラス粉末の、 例 1、 例 2と同様にして求めた質量百 分率表示組成、 TG 、 D5 。 、 。 、 D9 D 、 ®、 Ψ、 800°Cにおける Sを 表 1の例 3、 4の各該当欄に示す。 The glass powder obtained in this manner was determined in the same manner as in Examples 1 and 2 to show the composition by mass percentage, TG and D 5 . ,. , D 9 D, ®, Ψ, and S at 800 ° C are shown in the corresponding columns of Examples 3 and 4 in Table 1.
表 1  table 1
Figure imgf000011_0001
産業上の利用の可能性
Figure imgf000011_0001
Industrial applicability
本発明によれば、 焼成時の収縮が小さいガラス粉末が得られる。  According to the present invention, a glass powder having a small shrinkage during firing can be obtained.

Claims

請求の範囲 The scope of the claims
1. 下記酸化物基準の質量百分率表示で、 S i 02 +B23 +B i 23 20〜98%、 A 12 03 0〜18%、 MgO + C aO + S rO + B aO + Z n〇 0〜77%、 PbO 0〜 75 %、 L i 2 O + N a 2 O + K2 O 0〜3 0%、 T i O2 +Z rO2 0〜19%、 SnO2 +CeO2 +CuO 0〜5 %、 から本質的になるガラス粉末であって、 体積基準平均径135 。 が 1. 5 m 以上、 かつ気体吸着 BET法による比表面積 Θが 6m2 /g以上であることを特 徵とするガラス粉末。 1. by mass percentage based on the following oxides, S i 0 2 + B 23 + B i 2 3 20~98%, A 1 2 0 3 0~18%, MgO + C aO + S rO + B aO + Z n 〇 0 to 77%, PbO 0 to 75%, Li 2 O + Na 2 O + K 2 O 0 to 30%, Ti O 2 + ZrO 2 0 to 19%, SnO 2 + CeO 2 + CuO 0~5% , a glass powder consisting essentially of a volume-based average diameter 13 5. A glass powder characterized by having a specific surface area of at least 1.5 m and a specific surface area 6 of at least 6 m 2 / g by gas adsorption BET method.
2. PbOを含有しないことを特徴とする請求項 1に記載のガラス粉末。 2. The glass powder according to claim 1, wherein the glass powder does not contain PbO.
3. D5 0 が 2 m以上、 かつ Θが 7m2 以上である請求項 1または 2に 記載のガラス粉末。 3. Glass powder according to claim 1 or 2 D 5 0 is least 2 m, and Θ is 7m 2 or more.
4. 請求項 1、 2または 3に記載のガラス粉末であって、 そのガラス転移点を TG としたときに、 下記方法によって測定された温度 TB における焼成収縮率 S が TB =TG + 320°Cまたは TB =TG + 350でにおいて 8 %以下であるガ ラス粉末。 4. The glass powder according to claim 1, 2 or 3, wherein the glass transition point is TG, and the firing shrinkage S at the temperature T B measured by the following method is T B = T G Glass powder that is less than 8% at + 320 ° C or T B = T G +350.
(方法)  (Method)
(1) 内径が 15mmである円筒状プレス金型にガラス粉末 1. 5 gを入れ、 2 50 kP aでプレスして直径 15mmの円柱状ガラス粉末プレス体を作製する。 (1) 1.5 g of glass powder is put into a cylindrical press die having an inner diameter of 15 mm, and pressed at 250 kPa to produce a cylindrical glass powder pressed body having a diameter of 15 mm.
(2) 前記プレス体を速度 1 O^Z分で昇温し、 TB に 10分間保持後、 速度 1 0°CZ分で降温し焼成体を作製する。 (2) the temperature was raised at a rate 1 O ^ Z min the pressed body, after 10 minutes holding the T B, the temperature was lowered at a rate 1 0 ° CZ min to produce a sintered body.
(3) 前記焼成体の直径 X (mm) を測定し、 S= (15— X) X 100/15 を算出する。  (3) Measure the diameter X (mm) of the fired body and calculate S = (15−X) × 100/15.
5. 体積基準で、 積算ふるい下 10%径1 1 。 が 1 m以上、 積算ふるい下 9 0 %径139 。 が 5 m以下である請求項 1、 2、 3または 4に記載のガラス粉末 5. by volume, the accumulated sieve bottom 10% diameter 1 1. There more than 1 m, the lower cumulative sieve 90% diameter 13 9. The glass powder according to claim 1, 2, 3 or 4, wherein
6. 最大径が 2〜4 mである粒子の Wa d e 1 1の実用球形度が 0. 85以 上である請求項 1、 2、 3、 4または 5に記載のガラス粉末。 6. The glass powder according to claim 1, 2, 3, 4, or 5, wherein particles having a maximum diameter of 2 to 4 m have a practical sphericity of Wade 11 of 0.85 or more.
7. 請求項 1〜 6のいずれかに記載のガラス粉末を含有する無機物粉末を焼成 して得られる焼成体。 7. Firing the inorganic powder containing the glass powder according to any one of claims 1 to 6 The fired body obtained by.
8 . 請求項 1〜6のいずれかに記載のガラス粉末を製造する方法であって、 原 料粉末を可燃性液体に分散させてスラリーとし、 該スラリーを液滴状にして燃焼 させ、 前記原料粉末を溶解することを特徴とするガラス粉末製造方法。  8. The method for producing a glass powder according to any one of claims 1 to 6, wherein the raw material powder is dispersed in a flammable liquid to form a slurry, and the slurry is formed into droplets and burned, and the raw material is burned. A method for producing glass powder, comprising dissolving the powder.
9 . 前記スラリーを液滴状にして燃焼させる温度が (T e + 1 4 0 0 °C) 以上 である請求項 8に記載のガラス粉末製造方法。 9. The method for producing glass powder according to claim 8, wherein the temperature at which the slurry is formed into droplets and burned is (T e + 1400 ° C) or higher.
PCT/JP2003/002043 2002-02-27 2003-02-25 Glass powder, fired product and method for producing glass powder WO2003072519A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003207111A AU2003207111A1 (en) 2002-02-27 2003-02-25 Glass powder, fired product and method for producing glass powder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002/51387 2002-02-27
JP2002051387A JP2003246643A (en) 2002-02-27 2002-02-27 Glass powder, fired body and method of producing glass powder

Publications (1)

Publication Number Publication Date
WO2003072519A1 true WO2003072519A1 (en) 2003-09-04

Family

ID=27764307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/002043 WO2003072519A1 (en) 2002-02-27 2003-02-25 Glass powder, fired product and method for producing glass powder

Country Status (3)

Country Link
JP (1) JP2003246643A (en)
AU (1) AU2003207111A1 (en)
WO (1) WO2003072519A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100691149B1 (en) 2005-01-10 2007-03-09 삼성전기주식회사 Glass frit for low temperature sintering and low temperature co-fired ceramic composition, chip components
CN102531399A (en) * 2010-12-15 2012-07-04 珠海彩珠实业有限公司 Glass powder for ADD electrode of plasma display panel back plate

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006327845A (en) * 2005-05-24 2006-12-07 Asahi Techno Glass Corp Press frit
JP5039969B2 (en) * 2006-11-15 2012-10-03 国立大学法人東北大学 Glass, crystallized glass, crystallized glass manufacturing method and photocatalytic member
JP2009227504A (en) * 2008-03-21 2009-10-08 Admatechs Co Ltd Spherical low-melting point glass composition powder, manufacturing method, and low-melting point glass composition
US8790782B2 (en) * 2008-07-02 2014-07-29 E I Du Pont De Nemours And Company Method for making glass frit powders using aerosol decomposition
JP2011105596A (en) * 2011-02-10 2011-06-02 Nippon Electric Glass Co Ltd Glass tablet, method for producing the same, and glass tablet-integrated exhaust pipe
JP2015229628A (en) * 2014-06-06 2015-12-21 旭硝子株式会社 Glass powder, glass slurry and laminate type electronic component
CN107324648B (en) * 2016-04-28 2021-12-17 科立视材料科技有限公司 Alkali-free low softening point glasses and compositions, and methods thereof
CN107935398B (en) * 2017-11-28 2021-09-21 贵州威顿晶磷电子材料股份有限公司 Lead-free low-melting-point glass powder for metal aluminum substrate insulating medium slurry and preparation method thereof
CN111977967A (en) * 2020-08-13 2020-11-24 山东省淄博市博山长虹陶瓷装饰材料厂 Environment-friendly high-corrosion-resistance low-temperature special automobile glass black fusing agent and preparation method and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6259553A (en) * 1985-09-06 1987-03-16 Agency Of Ind Science & Technol Porous spherical glass and production thereof
JPH0891874A (en) * 1994-09-29 1996-04-09 Sumitomo Osaka Cement Co Ltd Glass spherical powder and its production
JPH08310836A (en) * 1995-05-11 1996-11-26 Sumitomo Osaka Cement Co Ltd Spherical glass powder and its production
JPH09278485A (en) * 1996-04-11 1997-10-28 Tosoh Corp Alkali resistant spherical glass and its production
JP2002023383A (en) * 2000-07-05 2002-01-23 Toray Ind Inc Photosensitive paste, member for display using the same and method for producing member for display
US20020007650A1 (en) * 2000-06-05 2002-01-24 Murata Manufacturing Co., Ltd. Glass powder and manufacturing method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6259553A (en) * 1985-09-06 1987-03-16 Agency Of Ind Science & Technol Porous spherical glass and production thereof
JPH0891874A (en) * 1994-09-29 1996-04-09 Sumitomo Osaka Cement Co Ltd Glass spherical powder and its production
JPH08310836A (en) * 1995-05-11 1996-11-26 Sumitomo Osaka Cement Co Ltd Spherical glass powder and its production
JPH09278485A (en) * 1996-04-11 1997-10-28 Tosoh Corp Alkali resistant spherical glass and its production
US20020007650A1 (en) * 2000-06-05 2002-01-24 Murata Manufacturing Co., Ltd. Glass powder and manufacturing method therefor
JP2002023383A (en) * 2000-07-05 2002-01-23 Toray Ind Inc Photosensitive paste, member for display using the same and method for producing member for display

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100691149B1 (en) 2005-01-10 2007-03-09 삼성전기주식회사 Glass frit for low temperature sintering and low temperature co-fired ceramic composition, chip components
CN102531399A (en) * 2010-12-15 2012-07-04 珠海彩珠实业有限公司 Glass powder for ADD electrode of plasma display panel back plate

Also Published As

Publication number Publication date
AU2003207111A1 (en) 2003-09-09
JP2003246643A (en) 2003-09-02

Similar Documents

Publication Publication Date Title
JP4299021B2 (en) Sealing material and sealing paste
US6362119B1 (en) Barium borosilicate glass and glass ceramic composition
JP2005041734A (en) Glass for dielectric formation and dielectric formation material for plasma display panel
JP2995728B2 (en) Low dielectric constant glass composition
TWI518046B (en) Lead-free low melting point glass composition
WO2003072519A1 (en) Glass powder, fired product and method for producing glass powder
JP2009155200A (en) Sealing material
TW200406018A (en) Sealing material for sealing a closure of an electron tube, method for making such sealing material, and the electron tube having a closure sealed by such sealing material
JP2001052621A (en) Material for plasma display panel and glass powder
JP4899249B2 (en) Lead-free glass, glass ceramic composition and glass paste
JPH11180726A (en) Substrate for plasma display panel and low melting point glass composition
JP2002220256A (en) Lead-free glass, electronic circuit board composition, and the electronic circuit board
JP4370686B2 (en) Barium borosilicate glass and glass ceramic composition
JPH09188544A (en) Glass composition
JP2003054987A (en) Lead-free glass and lead-free glass powder
JP2002338295A (en) Alkali-free glass, composition for electronic circuit board and electronic circuit board
JP2005022962A (en) Glass composition, mixture, paste, green sheet and plasma display panel
JP4229045B2 (en) Electronic circuit board and lead-free glass for producing electronic circuit board
JP3829887B2 (en) Dielectric materials for plasma display panels
JP2018058716A (en) Borosilicate glass, composite powder material, and composite powder material paste
WO2008007570A1 (en) Lead-free glass composition
WO2004071982A1 (en) Lead-free glass, composition for electronic circuit substrate and electronic circuit substrate
JP6728898B2 (en) Ceramic powder and method for producing the same
JP2004345913A (en) Dielectric material for plasma display panel
JP2002080240A (en) Low dielectric constant alkali-free glass

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase